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Abstract. We introduce a Banach Lie group G of unitary operators subject to
a natural trace condition. We compute the homotopy groups of G, describe its
cohomology and construct an S1-central extension. We show that the central
extension determines a non-trivial gerbe on the action Lie groupoid G�k, where
k denotes the Hilbert space of self-adjoint Hilbert–Schmidt operators. With an
eye towards constructing elements in twisted K-theory, we prove the existence of
a cubic Dirac operator D in a suitable completion of the quantum Weil algebra
U(g) ⊗ Cl(k), which is subsequently extended to a projective family of self-
adjoint operators DA on G � k. While the kernel of DA is infinite-dimensional,
we show that there is still a notion of finite reducibility at every point, which
suggests a generalized definition of twisted K-theory for action Lie groupoids.

1. Introduction

The present paper is motivated by an attempt to extend the representation the-
oretic construction of twisted K-theory cocycles on compact Lie groups to more
general settings. Twisted K-theory has its origin in [5], where it was defined in
terms of bundles of Azumaya algebras. The twist in question is a torsion class in
the degree three integral cohomology of the space. The restriction to torsion ele-
ments was lifted in [21] by passing to infinite-dimensional algebra bundles. Recent
years have witnessed a resurgence of interest in twisted K-theory, none the least
due to its various applications in conformal field theory. A particularly convenient
model for twisted K-theory is as homotopy classes of sections of an associated
bundle of Fredholm operators P ×PU(H) F . Here P is a principal PU(H)-bundle
on the space determined by the twist and PU(H) is the projective unitary group
of a complex Hilbert space, acting on the space of Fredholm operators F by con-
jugation.

In the case of a compact, connected, simply connected, simple Lie group G the
basic ingredients in the construction of twisted K-cocycles are the positive energy
representations of a central extension �LG of the smooth loop group LG [16]. The
level k of the representation is related by transgression to the Dixmier-Douady
class in H3(G,Z) = Z, which constitutes the twist in K-theory. The projective
representations of LG appear in the construction in two ways. First, one fixes an
arbitrary highest weight representation of �LG of level k in a complex Hilbert space
Vλ. Then in order to construct a cubic Dirac operator D on the loop group LG
one also needs a representation of the Clifford algebra based on the vector space
Lg with a fixed nondegenerate invariant bilinear form. The representations of the
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Clifford algebra actually arise from the quasi-free representations of the canonical
anticommutation algebra defined by the polarization of Lg to negative and pos-
itive Fourier components. The spin representation of so(Lg) yields a projective
representation Sρ of LG of level h∨, the dual Coxeter number of G, and with
weight ρ equal to the half sum of the positive roots. The full Hilbert space H is
the tensor productH = Vλ⊗Sρ carrying a loop group representation of level k+h∨.

The remaining ingredient in the construction is the coupling of the Dirac oper-
ator D to g-valued connection 1-forms A on a trivial G-bundle on the unit circle
S1, imitating the case of Dirac operators on finite dimensional manifolds coupled
to connections on a complex vector bundle. The resulting family DA of Fredholm
operators transforms equivariantly under the projective representation of LG (of
level k + h∨) and determines a cocycle in twisted K-theory of the quotient stack
A//LG of conjugacy classes in G, where A denotes the affine space of connec-
tions on which LG acts by gauge transformations. In fact all generators in the
equivariant twisted K-theory KG(G, k + h∨) can be constructed in this way [7].
By restricting to the based loop group ΩG, one obtains elements in the ordinary
twisted K-theory of the group G = A/ΩG.

The representation theory of �LG is closely related to the representation theory
of the restricted unitary group Ures [20]. Restricted means that the off-diagonal
blocks of a unitary transformation g in a polarized Hilbert space H = H+⊕H− are
Hilbert–Schmidt operators. The Lie algebra ures has a central extension ûres given
by the Lundberg cocycle ωL(X,Y ) = 1

4tr �[�, X][�, Y ] where � with �2 = 1 is the
grading operator in H+ ⊕H− [12]. In the purely algebraic approach this is called

the Kac–Peterson cocycle [8]. The basic representation of �LG is then obtained
by a restriction to the subgroup LG ⊂ Ures in a fixed unitary representation of
G. More general highest weight representations are obtained by a reduction from
tensor powers of the basic representation of Ûres [20].

Thus a natural question arises, namely whether it is possible to construct twisted
K-theory cocycles on a ‘universal’ space E/Ures for some appropriate contractible
space E carrying a free smooth action of Ures, in analogy with the construction for
G = A/ΩG. The answer is no and the obstruction comes from the spin represen-
tation of a certain Clifford algebra. What corresponds to the dual Coxeter number
h∨ in the case of a compact Lie group G now diverges. This can be understood
topologically as follows. The space E/Ures is a classifying space for principal Ures-
bundles and has the homotopy type of U(∞), the inductive limit of the unitary
groups U(n). Thus we are constructing twisted K-theory on the group U(∞), with
the dual Coxeter number h∨ = limn→∞ n = ∞. In the finite dimensional case of
U(n) (or SU(n)) the twisted K-theory groups K(U(n), k) vanish for 0 < k ≤ h∨.
Thus it is natural that one gets nothing in the case of U(∞).

Meanwhile, the above obstruction provides a hint of what could be done. The
issue with the spin representation of ures is that not every element is implementable
as an automorphism of the spin module. The necessary and sufficient requirement
is that the elements in ures satisfy the Hilbert–Schmidt condition defined by a



PROJECTIVE FAMILIES OF DIRAC OPERATORS ON A BANACH LIE GROUPOID 3

polarization in the adjoint representation of the Lie algebra [12]. We find that the
resulting condition is for [D,X] to be Hilbert–Schmidt, where D is an unbounded
self-adjoint operator with spectrum equal to Z. For instance, it can be interpreted
as the generator of rigid rotations on the unit circle. Since D is unbounded,
this imposes a non-trivial restriction on ures. The Lundberg cocycle in the spin
representation induces then the cocycle

ω(X,Y ) = trcX[D,Y ]

on the smaller Lie algebra of implementable automorphisms; the conditional trace
trc means that it is computed in a basis where D is diagonal. We denote our re-
stricted Lie algebra simply by g and the corresponding infinite unitary group by G.

Adhering to the above restriction, we can now repeat the cubic Dirac operator
construction almost verbatim in the new setting, aside from two subtle points.
Firstly, since g is a Banach Lie algebra it does not support a Clifford algebra. This
problem is resolved by instead considering the adjoint action of g on the Hilbert
space of self-adjoint Hilbert–Schmidt operators k and interpreting the Dirac oper-
ator D as an element in the quantum Weil algebra U(gC) ⊗ Cl(kC). Secondly, for
D to be well-defined it is necessary to perform a normal ordering regularization.
For loop groups, this amounts to suppressing an infinite constant by shifting the
bottom of the energy spectrum to zero. In our case the ramification is more drastic
as it involves subtraction by an unbounded operator.

Treating elements in k as generalized gauge connections, we can couple the
Dirac operator to A ∈ k and prove the equivariance of DA with respect to the
action of G in a projective highest weight representation. However, this family is
not quite Fredholm. The kernel of DA can be infinite-dimensional, but the infinite-
dimensionality is controlled in the following way. At every point A ∈ k, the kernel
carries a finite number of irreducible representations of the quantum Weil algebra
U(gA)⊗Cl(g�

A
), where gA ⊂ g is the Lie algebra of the isotropy group at that point

and g�
A
= gA ∩ k. More generally, we have the following definition, formulated in

terms of action groupoids since we want to study the case of non-free group actions
(see the two paragraphs following the definition):

Definition 1.1. Let G = G�k be an action Lie groupoid defined by a smooth action

of a Fréchet Lie group G on a Fréchet manifold k. Let c ∈ H2(G, S1) be a cocycle

on G defining a groupoid S1
-central extension Ĝ and fix a unitary representation

of Ĝ on a complex separable Hilbert space H. Then the generalized odd twisted

K-theory group K1(G, c) is defined as homotopy classes of maps f : k → End∗(H)
into the space of self-adjoint operators on H, such that

(i) f(Ag) = g−1f(A)g with A ∈ k and g ∈ G acting projectively on H,

(ii) the kernel of f(A) decomposes into a finite sum of irreducible modules of

U(h)⊗Cl(h�), where h is the Lie algebra of the stabilizer group at A and h�

is the adjoint module of h equipped with a real h-invariant inner product.

For unbounded operators, we consider the strong operator topology on the space
of self-adjoint operators End∗(H). The generalized even twisted K-theory group
K0(G, c) is defined in the usual way by introducing a Z2 grading operator Γ and re-
quiring that the operators f(A) anticommute with Γ. In the case of a free G-action
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on k, the above definition reduces to the standard definition of twisted K-theory
on the manifold k/G. More generally, if dim h < ∞ we obtain the usual Fredholm
picture in K-theory. For G = LH, the loop group of a compact Lie group H, and
k the space of smooth h-valued 1-forms on the circle, one recovers the equivariant
twisted K-theory of H. This is because the stabilizer group of a 1-form A with
respect to the gauge action A �→ g−1Ag + g−1dg is conjugate to a subgroup of H
and thus finite dimensional.

Twisted K-theory for Lie groupoids has been studied previously in [25] in the
locally compact setting. Unfortunately it is not clear how to extend their methods
to the case of infinite-dimensional group actions even in the Fredholm case, when
dim h < ∞.

An outline of the paper is as follows. In Section 2 we introduce the infinite-
dimensional unitary group G and its central extension. The homotopy groups of
G are determined and the low dimensional cohomology groups are discussed. In
Section 3 we recall some basic relations between characteristic forms on k/G and
Lie algebroid cocycles on G�k, when a Lie group G acts freely on a manifold k. The
discussion serves as a motivation for the non-free case, when k/G is not a smooth
manifold and one is confined to work with Lie groupoid cocycles instead of (de
Rham) forms on the quotient. In Section 4 we refine the geometric construction
of Lie group cocycles by Wagemann and Wockel [24] to the case of action Lie
groupoids. Besides serving as a method for integrating our Lie algebroid cocycle,
this is important also in gauge theory where the breaking of chiral symmetries
manifests itself as abelian extensions of the group of gauge transformations [14].

Finally, in Section 5 we present a construction of a cubic Dirac operator based
on the representation theory of a central extension of G. Although one can easily
give a formal definition of the cubic Dirac operator imitating the finite-dimensional
case, particular care is needed in infinite dimensions as the formal operator is an
infinite sum in the quantum Weil algebra. The divergencies can be avoided by
working in a suitable completion and performing normal ordering twice; first in
the definition of the spin group generators which are quadratic expressions in the
Clifford algebra, and second in the construction of the cubic term which involves
products of the spin operators with the generators of the Clifford algebra. We
can then proceed to define a family of cubic Dirac operators and we show that
our construction conforms to Definition 1.1 for the case of a Lie groupoid central
extension determined by the Lie algebra cocycle ω.

2. The Banach Lie group G and its central extension

Let H be a complex separable infinite-dimensional Hilbert space and D a self-
adjoint operator such that in an orthonormal basis {en}n∈Z the action is defined
by Den = nen. Thus D can be interpreted as the generator for rotations of the
unit circle S1 in the Hilbert space L2(S1) of square integrable complex functions.

Let G be the group of unitary operators g on H such that [D, g] is a Hilbert–
Schmidt operator,

G = {g ∈ U(H)| ||[D, g]||22 = tr|[D, g]|2 < ∞}.
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In particular, in the orthonormal basis {en} the off-diagonal part of g is Hilbert–
Schmidt. The Lie algebra g of G consists of bounded skew-adjoint operators X
with the property that [D,X] is Hilbert–Schmidt,

g = {X ∈ u(H)| ||[D,X]||22 = tr|[D,X]|2 < ∞}.

Then for any X,Y ∈ g the conditional trace ω(X,Y ) = trcX[D,Y ] is absolutely
convergent; the conditional trace means that it is evaluated in the basis {en}. We
shall omit the subscript c in the sequel. By a direct computation one observes that
ω is a Lie algebra 2-cocycle, namely it is skew-symmetric and satisfies

ω(X, [Y, Z]) + ω(Y, [Z,X]) + ω(Z, [X,Y ]) = 0

for all X,Y, Z ∈ g. In finite dimensions ω would be the coboundary of the linear
form −trDX, but in the Hilbert space H this trace does not converge.

We define the topology on G by the Hilbert–Schmidt norm on [D, g] and the
supremum norm on the diagonal matrix elements of g. Consequently the Hilbert–
Schmidt norm of the off-diagonal matrix elements of g is continuous in this topol-
ogy. The Lie algebra g acquires a Banach structure from the norm

||X|| = ||Xd||∞ + ||[D,X]||2
where Xd is the diagonal part of X. Thus G becomes a real Banach Lie group
in the standard way [17], by using the exponential map to construct a local chart
near the identity element of G and using left translations by elements in the group
to obtain an atlas. Smoothness of the local group structure near the unit and of
the transition functions is ensured by the Campbell–Baker–Hausdorff formula. We
note further that G embeds continuously as a subgroup of the restricted unitary
group Ures(H+ ⊕H−), but it is not a normal subgroup. Here the polarization of
H is defined by the sign of D. We shall not make use of this embedding since the
cocycle defining the standard central extension of Ures when restricted to G is not
equivalent to ω, see Remark 2.2 below.

Lemma 2.1. The 2-cocycle ω defines a non-trivial central extension of the Lie

algebra g.

Proof. Restricted to finite rank operators in g, ω is the coboundary of

θ(X) = −trDX + λtrX

for any complex number λ and this is the most general form of any θ with δθ = ω.
The 1-cochain θ cannot be extended to g since for bounded diagonal matrices the
trace does not converge for any λ ∈ C. �
Remark 2.2. The second Lie algebra cohomology of g is infinite-dimensional. In
particular, ωm(X,Y ) = trX[D1/(2m+1), Y ] defines a non-trivial 2-cocycle on g for
every m ∈ N and since the operator D1/(2m+1)−D1/(2n+1) is unbounded for n �= m,
a similar argument as in the proof of Lemma 2.1 implies that these cocycles are
distinct in H2(g,C). Similarly one shows that ω cannot be cohomologous to the
restriction of the Lundberg cocycle ωL(X,Y ) = trX [�, Y ] to the Lie algebra g.
Here � = D

|D| is the sign operator and we recall that tr denotes the conditional
trace. The zero mode of D could belong to either the positive or the negative
sector, as these yield cohomologous cocycles.
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A central extension �G of G can be constructed analogously to the method used
in [20] for the central extension of the restricted unitary group. Consider the set
S of pairs (g, q) where g ∈ G and q is any invertible diagonal matrix such that
the diagonal part of gq−1 differs from the unit matrix by a matrix h such that
Dh is trace-class. Define an equivalence relation (g, q) ∼ (g�, q�) if g = g� and
det((q−1q�)D) = 1 and set �G = S/∼. Here qD for a diagonal matrix q means the
operator with the matrix entries (qD)ii = (qii)i. The group law in �G is defined by
(g1, q1)(g2, q2) = (g1g2, q1q2). This is well-defined since the function g �→ det(gD)
is well-defined and multiplicative for invertible diagonal matrices g with D(g − 1)
trace-class.

Near the unit element in G we have a smooth local section ψ : g �→ (g, gd) where
gd is the diagonal part of g. This identifies locally the extension �G as a product
G×C∗ by (g, q) �→ (g, det((qgd)D)). Using the first terms in the Baker–Campbell–

Hausdorff formula, eXeY = eX+Y+ 1
2 [X,Y ]+... and writing

(eX ,λ)(eY , µ) = (eXeY ,λµe
1
2ω(X,Y )+...),

where the dots signify higher order terms in X,Y , one checks that the Lie algebra
cocycle arising from the central extension �G is indeed the 2-cocycle ω. In the
above construction we could have taken the determinant det((q−1q�)D) to any
integer power k and then the corresponding Lie algebra cocycle would be of the
form

ω(X,Y ) = k trX[D,Y ],

a central extension of level k.
Recall that any Lie algebra 2-cocycle defines a closed left-invariant 2-form on a

corresponding Lie group G by identifying the Lie algebra with left-invariant vector
fields on G.

Lemma 2.3. The pairing of the left-invariant 2-form ω with any smooth cycle in

G vanishes.

Proof. Let Σ ⊂ G be a smooth closed surface in G. Then for any g ∈ Σ the
off-diagonal part of the infinite unitary matrix

fN (g)ij =

�
gij if |i| > N or |j| > N

δij otherwise

is smaller than 1/2 in the Hilbert–Schmidt norm when N = N(g) is large enough.
By the continuity of the Hilbert–Schmidt norm of the off-diagonal matrix elements
of g, there is an open neighbourhood UN (g) of g such that the Hilbert–Schmidt
norm of fN (g) away from the diagonal is less than 1/2 in UN (g). The family
{UN (g)}g∈Σ forms an open cover of the compact space Σ, thus by choosing a finite
subcover indexed by N(g1), . . . , N(gp), we get a largest integer N = max{N(gi)}
such that the Hilbert–Schmidt norm of the off-diagonal part of fN (g) is smaller
than 1/2 for all g ∈ Σ. By the unitarity of g this implies that |gii − 1| < 1/4 for
all g ∈ Σ and |i| > N. In particular, each gii is invertible for |i| > N.

Define a 1-form θ on Σ by

θ(X) =
�

|k|>N

k(Xkk − g−1
kk

dgkk(X)) +
�

|k|≤N

kXkk
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where the matrix X ∈ g is again interpreted as a left-invariant vector field on
G. Since dgkk(X) = gkkXkk +

�
j �=k

gkjXjk we have kg−1
kk

dgkk(X) = kXkk +�
j �=k

kg−1
kk

gkjXjk. Inserting the right hand side of this expression into the sum
|k| > N above, we see that the second term is convergent by the Hilbert–Schmidt
property of [D,X] in the off-diagonal part of g. The first term cancels against the
diverging part of trDX and so θ is well-defined.

Since each g−1
kk

dgkk is closed, this ‘renormalization’ of the diverging 1-form trDX
does not affect the relation ω = dθ on Σ and therefore the integral of ω over the
closed surface Σ is indeed zero. �
Remark 2.4. Recall that if a group G is not simply connected it could admit
several inequivalent central extensions with the same Lie algebra extension. For
instance, the simply connected covering group G̃ is an extension of G but of course
their Lie algebras are isomorphic when the fundamental group π1(G) is discrete. In
Proposition 2.7 we show that in our case the groupG has a free abelian fundamental
group on a set with the cardinality of R. Thus, the central extension �G constructed
above may be topologically non-trivial despite the vanishing of ω in H2(G,R). In
addition, since H1(G,Z) = π1(G) it follows by the universal coefficient theorem
that H2(G,Z) is torsion-free.

Proposition 2.5. The rank of the cohomology group Hn(G,R) is greater than or

equal to 2ℵ0 for all n ≥ 1.

Proof. By Hölder’s inequality all commutators in the Lie algebra g have the prop-
erty of being trace-class and in particular the elements in the diagonal of [X,Y ]
form a sequence in the Banach space �1 of absolutely summable sequences. On the
other hand, there is an infinite number of continuous linear functionals λ on the
Banach space �∞ of bounded sequences that vanish on the vector subspace �1.

1

Any such linear functional defines a trace on the Lie algebra g by applying λ to
the bounded sequence of diagonal matrix elements of X ∈ g.

Using this trace one can define a closed 1-form on G by

θλ = λ(g−1dg),

where λ is computed on the diagonal entries in the Lie algebra. It is not difficult to
show that θλ is not an exact form for λ �= 0 by pairing with a cycle in H1(G,Z) ∼=
Z2ℵ0 . Moreover, by θλ−θλ� = θλ−λ� it follows that these 1-forms are cohomologous
if and only if λ = λ�. Since any trace functional λ ∈ �∗∞ can be scaled by a real
number, we conclude that dimH1(G,R) ≥ 2ℵ0 .

Next any wedge product θλ∧θλ� defines a closed 2-form on G, which is not exact
since pairing with a 2-torus in G yields a non-zero number in general, namely (2π)2

times the form λ ∧ λ� ∈
�2 �∗∞ evaluated on some X,Y ∈ g with integral diagonal

entries. More specifically, a pair of linearly independent trace functionals can be

1Recall that the second dual of �1 is the Banach algebra of regular Borel measures on the Stone–
Čech compactification βN of the natural numbers. Elements in �∗∞ that vanish on �1 ⊂ �∞ can
be constructed as follows. Consider the closed subspace c ⊂ �∞ of bounded convergent sequences
and its closed subspace c0 ⊂ c of sequences converging to zero. By the Hahn–Banach theorem,
the limit functional (ak) �→ limk→∞ ak on c can be extended to a generalized limit functional
λ ∈ �∗∞. This is a non-trivial continuous linear functional of operator norm 1 that annihilates all
of c0 and hence vanishes on �1 ⊂ c0.



8 PEDRAM HEKMATI AND JOUKO MICKELSSON

constructed by defining λ(X) = λ�(Y ) = 1 and λ(Y ) = λ�(X) = 0 on linearly
independent elements X,Y ∈ g whose diagonal entries form integral sequences in
�∞ modulo c0. The integrality condition ensures that the diagonals exponentiate
to a torus in G. We require that λ,λ� vanish on c0 in order that the 2-form θλ∧θλ� is
closed. Now λ,λ� defined on spanC{X,Y }⊕c0 extend to bounded linear functionals
on the whole space �∞ by the Hahn–Banach theorem.

As before, the difference θλ ∧ θλ� − θλ ∧ θλ�� = θλ ∧ θλ�−λ�� cannot be exact unless
λ�−λ�� is proportional to λ. Thus by considering real multiples of θλ∧θλ� , it follows
that dimH2(G,R) ≥ 2ℵ0 . Since there exist infinitely many linearly independent
trace functionals in �∗∞, this process can be continued inductively and we conclude
that the dimension of Hn(G,R) is larger than or equal to the cardinality of the
continuum for all n ≥ 1. �
Remark 2.6. By H1(G,Z) = HomZ(H1(G,Z),Z) = Map(R,Z) it follows that the

rank of the first cohomology group of G is 22
ℵ0 , so in this case the lower bound in

Proposition 2.5 is strict.

Let Lp denote the Schatten two-sided ∗-ideal of bounded operators X ∈ B(H)
satisfying tr|X|p < ∞. Recall that the stable unitary group U(∞) is a dense
subgroup of the Banach Lie groups Up(H) = U(H) ∩ (1 + Lp) for p ≥ 1 and these
groups all have the same homotopy type. In particular, the homotopy groups are
trivial in even degrees and freely generated by a single element in odd degrees.
For instance, an explicit generator for the fundamental group of Up(H) is given
by choosing a unit vector v ∈ H and setting γ : S1 → Up(H), z �→ 1 + (z − 1)Pv,
where Pv is the projection onto the span of v.

Proposition 2.7. The homotopy groups πk(G) are equal to the homotopy groups

of the stable unitary group U(∞) for k �= 1, namely π2m(G) = 0 and π2m+3(G) = Z
for m ∈ N. The fundamental group is the infinite free abelian group

π1(G) = π1(T/(G0 ∩ T ))⊕ Z,
where T ⊂ G is the subgroup of all unitary diagonal matrices and G0 ⊂ G is the

subgroup of elements g for which the diagonal sum
�

i∈Z |gii − 1| converges.

Proof. By Theorem B in [19] the group G0 has the same homotopy type as the
group U(∞) of infinite unitary matrices which differ from the unit matrix by a
matrix of finite size. NowG0 is a normal subgroup inG and in factG/G0 is abelian.
The subgroup T of diagonal matrices defines a Banach Lie group T/(G0∩T ) which
is homotopy equivalent to G/G0. This follows using the argument in the proof of
Lemma 2.3. Namely, any g ∈ G has the property that the diagonal matrix elements
are nonzero outside a finite block with matrix indices |i|, |j| < N and furthermore
|gii| → 1 as |i| → ∞. Multiplying g by the diagonal matrix d with dii = g−1

ii
for

|i| > N and dii = 1 otherwise, one obtains dg ∈ G0. Although d is not unitary
in general we can use the homotopy equivalence of the unit circle with C× to
conclude that the class gG0 is represented as d�G0 with d�

ii
= dii/|dii| and the

inclusion T/(G0 ∩ T ) → G/G0 is an isomorphism.
Using the fact that any continuous loop in S1 is homotopic to a homomorphism

S1 → S1 we conclude that any based loop in T is homotopic to a map t �→ (eitak)
with ak ∈ Z and 0 ≤ t ≤ 2π. The infinite sequence (ak)k∈Z must be bounded in
order that the loop is continuous in the operator norm topology. The set of the
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bounded sequences has the cardinality of the set of real numbers and thus π1(T )
is a free abelian group of cardinality 2ℵ0 . The continuous loops in the subgroup
G0 ∩T correspond to sequences (ak) such that ak = 0 when |k| >> 0. This set has
the cardinality of the set Q of rational numbers and thus π1(T/(G0 ∩ T )) is the
additive abelian group of bounded sequences of integers modulo sequences with
finite nonzero entries and has the cardinality of R.

Next, using the homotopy equivalence of G/G0 and T/(G0 ∩ T ) and the long
exact sequence

· · · → πk(G0 ∩ T ) → πk(T ) → πk(G/G0) → πk−1(G0 ∩ T ) → . . .

we conclude that πk(G/G0) = 0 for k > 1. Consequently, the homotopy exact
sequence

· · · → πk(G0) → πk(G) → πk(G/G0) → πk−1(G0) → · · ·
yields πk(G) = πk(G0) for k > 1 and a short exact sequence

0 → Z → π1(G) → π1(T/(G0 ∩ T )) → 0.

This group extension is split since G is an H-space, so its fundamental group is
abelian and consequently the extension must be central. Furthermore, π1(T/(G0∩
T )) is a free abelian group so by lifting each generator, the isomorphism π1(T/(G0∩
T )) → π1(G)/Z extends to a homomorphism π1(T/(G0 ∩ T )) → π1(G) and the
obstructing 2-cocycle must vanish. Thus we have π1(G) = π1(T/(G0 ∩ T ))⊕ Z.

�
Remark 2.8. The homotopy groups of G agree with the homotopy groups of
the product G0 × K(L, 1), where L = π1(T/(G0 ∩ T )) and K(π, n) denotes the
Eilenberg-MacLane space whose only non-trivial homotopy group is equal to the
group π in dimension n. However, in order to use the Whitehead theorem to con-
clude that G is homotopy equivalent to G0×K(L, 1), we would need a continuous
map between the two spaces that induces the isomorphism between the homotopy
groups. We observe further that the universal covering group of G has the same
homotopy groups as �Up(H) = {(g, z) ∈ Up(H) × C| detp(g) = ez} for any p ≥ 1,
where detp is the Carleman–Fredholm determinant of order p,

detp(g) = det

�
ge

�p−1
j=1 (−1)j (g−1)j

j

�
.

3. K-theory and Lie algebroid cocycles

In this section we discuss the relation between Lie algebroid cocycles and the
Chern character of classes in odd K-theory. We then show that our Lie algebra
cocycle ω defines a non-trivial cocycle on a natural action Lie groupoid associated
to the group G. As a motivation consider first the following situation. Let k be a
contractible manifold and G a connected Lie group acting freely on k. The quotient
k/G is then a smooth manifold. If Ω is a closed integral 3-form on the base k/G, the
pullback π∗Ω with respect to the canonical projection π : k → k/G is an exact form
on k, π∗Ω = dθ. The form θ is closed along the G-orbits in k, therefore it defines
a (possibly exact) 2-cocycle on the Lie algebra g with coefficients in the algebra
of smooth functions on k, or equivalently, a cocycle in the degree two cohomology
of the action Lie algebroid g � k with values in the sheaf of smooth R-valued
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functions. In particular, for a connected simply connected (infinite-dimensional)
Lie group one has H2(G,Z) = π2(G) and by the exact homotopy sequence for
fibrations π1(k/G) = π2(k/G) = 0, which impliesH3(k/G,Z) = π3(k/G) = π2(G) =
H2(G,Z) and the transgression discussed above is a realization of this isomorphism.
This happens for instance when G is the based loop group of a connected simply
connected Lie group H and k is the space of smooth h-valued 1-forms on the unit
circle on which G acts by gauge transformations.

In the opposite direction, any such Lie algebroid 2-cocycle θ defines a class in
H3(k/G,Z). Although the 3-form is not canonically defined, the class is determined
as follows. Let s3 be a closed singular 3-chain on k/G and choose a lift ŝ3 to k.
Then ŝ3 is not closed in general, but the boundary ∂ŝ3 = b2 projects to zero as a
singular 2-simplex in k/G, namely b2 is a vertical 2-cycle and can be paired with
the vertical 2-cocycle θ. We can define a 3-form Ω on k/G by

�Ω, s3� = �θ, b2�.

In our case, the G-action is not free and the quotient k/G is a differentiable stack,
but we can still think of the gerbe as an S1-central extension of the action Lie
groupoid G� k defined by integrating the cocycle θ ∈ H2(g� k,R) to an S1-valued
groupoid cocycle [25]. Note that while we have defined θ as a vertical de Rham
cocycle, one could more generally consider θ as a vertical singular cocycle.

Degree two cocycles for infinite-dimensional algebras, including current algebras
and algebras of vector fields, typically arise from quantization of families of Dirac
type operators. The 2-cocycles are then determined by the K-theory class of a
family of Fredholm operators and can be computed from index theory [4]. We
want to point out that higher order cocycles are generated in the same way.

Let F∗ be the space of self-adjoint Fredholm operators acting in a complex
Hilbert space H, with both positive and essential spectrum. The bounded Fred-
holm operators provide a model for the classifying space of odd complex K-theory
but in many applications one has to deal with unbounded operators. There are
then different options for the topology on F∗. The simplest is the Riesz topol-
ogy defined by the map D �→ D/(|D|2 + 1)1/2 to bounded Fredholm operators
and defining the topology by pullback from the operator norm topology. Another
popular choice is the gap topology, see [3] for details in the context of K-theory.
Alternatively, one can use the group U1(H) of unitary operators g in H such that
g − 1 is a trace-class operator as a classifying space [2].

Typically a representative for a class in K1(k/G) is given by a continuous G-
equivariant map f : k → U1(H), that is, f(Ag) = g−1f(A)g for g ∈ G with a fixed
unitary representation of G on H. However, we have

Lemma 3.1. Any G-equivariant map f : k → U1(H) is homotopic to a G-invariant

map.

Proof. The G-action on k×U(H) given by (A, u) �→ (Ag, g−1ug) defines a principal
U(H) bundle over k/G. This bundle is trivial by Kuiper’s theorem, so there exists
a trivialization, given by a map r : k → U(H) such that r(Ag) = g−1r(A). Let rt
with 0 ≤ t ≤ 1 be a contraction of this map, r0(A) = 1 and r1(A) = r(A). Define
ft(A) = rt(A)−1f(A)rt(A). Then f0 = f and f1(Ag) = f1(A) is an invariant
map. �
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Using U1(H) as the classifying space for the odd K-group and a G-invariant
representative of an element f in K1(k/G), its Chern character is given by pulling
back the odd generators ρ2k+1 = tr (g−1dg)2k+1 of the cohomology of U1(H) by
the map f . If f is not G-invariant, the forms f∗ρ2k+1 are no longer basic forms on
the bundle k → k/G. However, the pullbacks are still G-invariant and furthermore
they vanish when all the arguments are vertical vector fields; this follows from the
formula

tr [(g−1fg)−1d(g−1fg)]2k+1 = tr (f−1df)2k+1 + . . .

where the dots represent a differential polynomial in the Maurer-Cartan 1-forms
f−1df and g−1dg which is at least of degree one in g−1dg. Let f∗ρ2k+1 = db2k and
let θ2k be the restriction of the form b2k in the vertical directions on k. Then θ2k
defines an R-valued cocycle of degree 2k on the Lie algebroid g� k. This proves

Proposition 3.2. Let G be a connected Lie group that acts smoothly on a con-

tractible manifold k. Let f : k → F∗ be a G-equivariant family representing an

element in K1(k/G). Then the Chern character of f is given by the even cochains

θ2k on k; they define even cocycles in the Lie algebroid cohomology H2k(g� k,R).
Returning to our setting, let k denote the real Hilbert space of self-adjoint

Hilbert–Schmidt operators with the bilinear form �X,Y � = trXY . Then k is a
contractible space carrying a non-free smooth affine action by our Banach Lie
group G,

G× k → k, (X, g) �→ g−1Xg + g−1[D, g].

This action is well-defined as k is a two-sided ideal inside the algebra of bounded
operator B(H). Let G� k denote the associated action Lie groupoid and g� k its
Lie algebroid. We have seen that the Lie algebra cocycle ω can be integrated to a
locally smooth group 2-cocycle defining a central extension �G of G. We can view
this also as an S1-extension of the groupoid G� k. While the central extension �G
is non-trivial in cohomology with constant S1-coefficients, we show next that the
cocycle remains non-trivial when we allow coefficients in the G-module of smooth
S1-valued functions on k. Recall that any Lie algebra cocycle ω ∈ H2(g, C∞(k,R))
is equivalent to 2-cocycle on the action Lie algebroid g � k with coefficients in R
[23].

Lemma 3.3. Any Lie groupoid cocycle in H2(G� k, S1) corresponding to the Lie

algebroid cocycle ω ∈ H2(g� k,R) is non-trivial.

Proof. We show that ω is non-trivial in the category of integrable Lie algebroid
cochains. It suffices to prove that it fails to be a coboundary at a single point
A ∈ k. Restricting first to the finite rank matrices of size N ×N in g, the cocycle
ω can be written as the coboundary of any 1-cochain c1 of the form

c1(A;X) = −trDX + b(A;X)

where b is an arbitrary 1-cocycle, and this c1 is the most general form such that
ω = δc1. The point A = −D, in the restriction to N ×N matrices, is a fixed point
for the G-action and therefore X �→ b(−D;X) is a Lie algebra homomorphism to
the abelian algebra of complex numbers. But the only homomorphism for the Lie
algebra of N×N matrices to C is of the form X �→ λtrX for some complex number
λ. This fixes the form of the 1-cocycle b at the point A = −D, but this is not
immediately helpful since D does not belong to the space k in the limit N → ∞.
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Consider next the restriction of the cocycle b to the abelian Lie algebra h of
N × N diagonal matrices. At this point we recall that we are really discussing
the groupoid cohomology, so all Lie algebroid cochains should be integrated to
groupoid cochains. The group cocycle B corresponding to b is a character of the
group H of invertible diagonal matrices. In fact, all the points A = −tD for
0 ≤ t ≤ 1 are fixed points of H and therefore h �→ B(−tD;h) is a character for all
values of t. But the characters form a discrete lattice in the space of maps H → C×

and by the continuity of B we get

B(−tD;h) = B(0;h) = B(−D;h) = det(h)p

for some integer p. Again, on the Lie algebra level, this means that b(0;X) = ptrX
for X ∈ h. Thus the most general form for the 1-cochain c1 at A = 0 and for X ∈ h
is c1(0;X) = trDX + ptrX. This linear function of X does not have a finite limit
as N → ∞ for any p = p(N), and hence ω cannot be trivialized by any integrable
1-cochain. �

4. Integration of Lie algebroid cocycles

In this section we shall extend some of the results on the construction of Lie
group cocycles by Wagemann and Wockel [24] to the case of action Lie groupoids.
This allows us to integrate our cocycle ω explicitly to a non-trivial Lie groupoid
cocycle c ∈ H2(G� k, S1), which is locally smooth in an open identity neighbour-
hood of G. The latter determines a non-trivial S1-gerbe on G� k, or equivalently,
an abelian extension �G of G by the group C∞(k, S1) [23].

Consider an action Lie groupoid G�k, with a smooth right action of a Lie group
G on a smooth manifold k. Let ωp be a Lie algebroid p-cocycle in Hp(g � k,R).
Let Σ ⊂ G be a submanifold (possibly with boundary) of dimension p containing
the identity in G and let A ∈ k be a base point. Then we can define the pairing

�Σ,ωp�A.

The pairing is defined by an integration over Σ, viewing ωp as a closed left-
equivariant differential form ω̃p on G through

ω̃p(g;X1, . . . , Xp) = ωp(A · g;X1, . . . , Xp).

One should keep in mind that this depends on the choice of the base point A. The
cocycle ωp is integral if the form ω̃p defines an integral cohomology class on G.
Moreover, if k is connected the integrality does not depend on the choice of base
point A.

Suppose that the homology groups Hk(G,Z) vanish up to the dimension k =
p − 1. Then any smooth integral p-cocycle ωp defines a locally smooth groupoid
cocycle cp. Given a pair of points a, b ∈ G choose a path s1(a, b) from a to b. Given a
triple of points a, b, c ∈ G choose in addition a smooth singular 2-simplex s2(a, b, c)
in G with a boundary b1(a, b, c) consisting of the paths s1(a, b), s1(b, c) and s1(c, a).
This process can be continued to fix a singular p-simplex sp(a1, a2, . . . , ap+1) in G
for a given ordered subset (a1, . . . , ap+1) ⊂ G.

Let g1, . . . , gp ∈ G and set a1 = e and ai = g1g2 · · · gi−1 for i = 2, . . . , p + 1.
Then we can define a locally smooth p-cocycle on the Lie groupoid G� k by

cp(A; g1, . . . , gp) = e2πi�sp(a1,...,ap+1),ωp�A .
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Proposition 4.1. The cochain cp satisfies the cocycle condition

cp(A; g1, . . . , gp) · cp(A; g1g2, g3, . . . , gp+1)
−1 · · · cp(A; g1, . . . , gp−1, gpgp+1)

(−1)p

·cp(A · g1; g2, . . . , gp+1)
(−1)p+1

= 1,

Proof. For the proof one simply needs to check that the sum of the relevant singular
simplices sp has a vanishing boundary; this is seen by observing that the boundary
components of the different simplices match pairwise. The pairing of a singular
cycle with the integral cocycle ωp gives an integer which multiplied by 2π and
exponentiated gives 1. �
Remark 4.2. One can relax the requirement on the homology groups of G. If
Hk(G,Z) = 0 for k ≤ p − 2 then the above construction works if cp defines a
Cheeger-Simons differential character of degree p on G. Recall that a differential
character of degree p with values in S1 is a homomorphism f from the space of
p − 1 dimensional homology cycles to S1 such that if sp−1 is a boundary of a
p-dimensional chain sp then f(sp−1) = exp 2πi

�
sp
ω, where ω is a uniquely fixed

closed integral differential form on G.

Remark 4.3. If there is an obstruction coming from the lower homology groups
Hk(G,Z) the above construction can in some cases be modified to define a groupoid
cocycle cp. For example, assume that H1(G,Z) is a free Z-module and we want to
define a cocycle of degree 3. Fix a set of 1-cycles w1, . . . , wn in G such that the
homology classes [wi] form a basis over Z in H1(G,Z). Then a linear combination
of the cycles wi defines the unit element in H1(G,Z) if and only if that linear
combination vanishes strictly as a 1-cycle. Next starting from a pair g1, g2 of group
elements, form the 1-cycle b1(e, g1, g1g2) as above. We can write [b1] =

�
i
ni[wi]

for a set of integers ni. Replace now b1 by b�1 = b1−
�

i
niwi. Then b�1 is a boundary

of a 2-chain s2. For a triple g1, g2, g3 we do this construction for each face of the
simplices corresponding to pairs of group elements. In this way one obtains a
closed cycle which can be filled to a tetraed provided that H2(G,Z) = 0.

Example 4.1. The above remark is relevant in gauge theory. Suppose that G =
Map0(S2, SU(n)) with n ≥ 3. Here Map0 denotes the space of based smooth maps
f, namely f(x) = e for a given point x ∈ S2. Then H1(G,Z) = π1(G) = Z whereas
H2(G,Z) = 0 and H3(G,Z) = Z = H3(G,Z). In this case the differential character
of degree 3 is given by a closed integral 3-form on G coming from an integral 5-form
on SU(n) by transgression.

Example 4.2. In a similar way we can construct a 2-cocycle for the transformation
groupoid consisting of the group G = Map0(S3, SU(n)) acting on su(n)-valued
connection 1-forms on a trivial SU(n)-bundle on S3 through gauge transformations
A �→ Ag = g−1Ag + g−1dg. In this case G is disconnected, the connected compo-
nents are labelled by elements in π3(SU(n)) = Z. Fix a function a : S3 → SU(n)
that generates π3(SU(n)). Then g1 ∈ G is homotopic to some ak for k ∈ Z and
g2 is homotopic to some al. Set g�1 = a−kg1 and g�2 = a−lg2 and define a cycle
b1(e, g�1, g

�
1g

�
2) as before. We can then choose a filling s2(e, g�1, g

�
1g

�
2) since the ho-

mology of Map0(S3, SU(n)) in dimension one vanishes for n ≥ 3. A Lie algebra
2-cocycle can be constructed as in [6, 14]. This construction of the Lie groupoid
cocycle is essentially the same as in [15].
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A normalized p-cocycle on an action Lie groupoid which is smooth in an open
neighbourhood of the unit element and with values in S1 defines a Čech cocycle of
degree p−1. This fact was utilized by Neeb [18] in showing that for the construction
of a smooth central (or abelian) extension of a Lie group, it is sufficient to construct
a 2-cocycle that is globally defined but smooth only in a neighbourhood of the unit
element. Below we provide a somewhat simplified proof of (part of) Neeb’s result
when the group is connected. Actually, in [18] the connectedness assumption was
replaced by an additional condition on the groupoid cocycle that is automatically
satisfied when G is connected.

Theorem 4.4 (Neeb [18]). Let c be a normalized group 2-cocycle on a connected

Lie group G with values in a smooth G-module A. Normalization means that

c(g, e) = c(e, g) equals the unit element 1 ∈ A for all g ∈ G. If c is smooth in an

open neighbourhood U of the identity element e, then it defines a smooth abelian

extension

1 → A → �G → G → 1.

Conversely, any smooth abelian extension of G by A determines a locally smooth

2-cocycle c.

Proof. Suppose first that there is a smooth abelian extension �G of G by A. Then
we can choose a global (discontinuous) section ψ : G → �G such that ψ is smooth in
an open set U containing e. We define the 2-cocycle c with respect to the section
ψ by

c(g1, g2) = ψ(g1g2)ψ(g2)
−1ψ(g1)

−1.

By construction it satisfies the cocycle condition

c(g1, g2)c(g1g2, g3) = c(g1, g2g3)[g1 · c(g2, g3)]

and is normalized. It is also smooth in an open neighbourhood V of unity such
that V 2 ⊂ U.

Choose an open cover of G using the left translated sets Ui = aiU with ai ∈ G.
Smooth local sections can be defined as

φi(x) = ψ(ai)ψ(a
−1
i

x) = c(ai, a
−1
i

x)−1ψ(x)

for x ∈ Ui with transition functions fij(x) = c(ai, a
−1
i

x)−1c(aj , a
−1
j

x) on the over-
laps Ui ∩ Uj .

The argument can then be reversed. Suppose that c is a global cocycle, smooth
in an open identity neighbourhood V and normalized. Choose a smaller open
neighbourhood U of e such that U = U−1 and U2 ⊂ V. This can be achieved using
the exponential map from the Lie algebra to the Lie group. Choose an open cover
of G as before and define fij(x) = c(ai, a

−1
i

x)−1c(aj , a
−1
j

x) for x ∈ Ui ∩ Uj . These

functions clearly satisfy the Čech cocycle property

fij(x)fjk(x) = fik(x)

on triple overlaps. However, since the factors defining fij are not separately
smooth, we have to prove the smoothness in their domain of definition. Using
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the cocycle and the normalization property repeatedly we can write

fij(x) = c(ai, a
−1
i

x)−1c(aj , a
−1
j

x)

= c(ai, a
−1
i

)−1c(e, x)−1ai · [c(a−1
i

, x)]c(aj , a
−1
j

x)

= c(ai, a
−1
i

)−1ai · c(a−1
i

, x)c(aj , a
−1
j

x)

= c(ai, a
−1
i

)−1ai · [c(a−1
i

, x)a−1
i

· c(aj , a−1
j

x)]

= c(ai, a
−1
i

)−1ai · [c(a−1
i

, aj)c(a
−1
i

aj , a
−1
j

x)].

The last expression shows that the transition function fij is locally smooth in the
argument x. This is because x ∈ Ui ∩ Uj can be written as x = aiy = ajz for
y, z ∈ U. Now a−1

i
aj = yz−1 ∈ V and thus the middle factor is smooth in x. Thus

we have recovered the eventually topologically twisted extension �G in terms of the
local transition functions.

To complete the proof we still need to check that the local 2-cocycles

cijk(x, y) = c(ak, a
−1
k

xy)c(x, y)c(ai, a
−1
i

x)−1[x · c(aj , a−1
j

y)−1]

are smooth; here x ∈ Ui, y ∈ Uj and xy ∈ Uk. We suspect that this can be done
without the connectedness assumption, but the details remain to be worked out.
We refer to [18] for a proof of the global smoothness of the product, Theorem C.2
and Proposition II.6.

�

5. Families of cubic Dirac operators

Let g be a finite dimensional quadratic complex Lie algebra with a basis {ei}.
The cubic Dirac operator D is an odd element of the quantum Weil superalgebra
W(g) = U(g)⊗ Cl(g) [1, 9, 10, 11]. Denoting by ei the dual basis with respect to
the invariant bilinear form, γ(ei) = γi the generators of the Clifford algebra Cl(g)
and λijk the structure constants, then

D =
dim g�

i=1

eiγ
i +

1

3
�siγi =

dim g�

i=1

eiγ
i − 1

12

dim g�

i,j,k=1

λijkγ
iγjγk.

We would like to extend this construction to the complexified Lie algebra of our
Banach Lie group G,

gC =
�
(Xij)i,j∈Z ∈ C

�� sup
i∈Z

|Xii|+
�

i,j∈Z
|(i− j)Xij |2 < ∞

�
.

For this it is necessary to modify the definition ofW(g) in order to make sense of the
Clifford algebra. Recall that the space k of self-adjoint Hilbert–Schmidt operators is
a real Hilbert space with the inner product �X,Y � = trXY . The complexification
kC is equipped with the Hermitian inner product �X,Y � = trX∗Y. The space kC
is further an orthogonal gC-module under the adjoint action of gC on kC. Thus it
is possible to associate a quantum Weil algebra W(g, k) = U(gC) ⊗ Cl(kC) to the
pair (g, k). Let {eij}i,j∈Z denote the standard basis for both gC and kC with matrix
elements (eij)�m = δi�δjm, satisfying the commutation relations of a level k central
extension,

[eij , e�m] = δj�eim − δime�j + k δj�δim(�− i)
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and with the dual basis eij = eji with respect to the above inner product. There
exists a formal cubic Dirac operator in W(g, k) given by

D =
�

i,j∈Z
eijγji +

1

3
�sijγji,

where �s : gC → spin(kC) ⊂ Cl(kC) is the spin lift of the adjoint representation
ad: gC → so(kC) and γij = γ(eij) are the generators of Cl(kC) satisfying the
Clifford relation [γij , γk�]+ = 2δi�δjk. The expression for D is ill-defined as it
involves infinite sums and it is therefore necessary to introduce certain operator
subtractions to obtain a well-defined element in a suitable completion of W(g, k).
In other words we seek to construct a �g-module V ⊗ S and define the completion
�W(g, k) as the endomorphism algebra End(V ⊗ S) in which the infinite sums in D
make sense.

The space of Hilbert–Schmidt operators has a natural orthogonal decomposition
kC = k+⊕ k0⊕ k−, where k± are the isotropic subspaces of strictly upper and lower
triangular matrices and k0 ∼= �2 is the subspace of diagonal matrices. The spin
representation of Cl(kC) is defined by

S = Sk0 ⊗
�

k−,

where Sk0 is a fixed spin module of Cl(k0). The latter is constructed analogously
by first considering k0 as a real Hilbert space with the �2-inner product. Then
any complex structure J ∈ O(k0) with J2 = −1 turns the complexification k0,C =
k0 ⊗R C into a complex polarized Hilbert space k0,J , with the Hermitian inner
product �X,Y �C = �X,Y � + i�X, JY �. The splitting k0,J = k+0,J ⊕ k−0,J is defined

by the projection operators P± = 1
2(I ± iJ) and the spin module is given by

Sk0 =
�
k−0,J . Any other complex structure that differs from J by a Hilbert–

Schmidt operator determines a unitarily equivalent representation. Furthermore,
since two such complex structures are related by conjugation by an element in the
restricted orthogonal group Ores(k

+
0,J⊕k−0,J), the possible inequivalent spin modules

of Cl(k0) are parametrized by O(k0)/Ores(k
+
0,J ⊕ k−0,J) = BOres(k

+
0,J ⊕ k−0,J).

In terms of the basis {eij}i,j∈Z the spin representation �s : gC → End(S) is for-
mally given by

�sij =
1

2

�

�∈Z
γi�γ�j .

This sum is of course divergent but it can be regularized by applying the standard
normal ordering prescription. In the following we shall restrict to operators in
gC with zero entries outside of a block of size 2N so that all sums become finite.
We pass to the limit N → ∞ in the strong operator topology, only in the final
regularized expressions. Let

sij =
1

2

�

�

: γi�γ�j :=

�
1
2

�
�
γi�γ�j if i �= j

1
2

�
�<i

γi�γ�i − 1
2

�
�>i

γ�iγi� if i = j

= �sij − (N − i+
1

2
)δij .
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As a result of normal ordering, the spin operators satisfy the commutation
relations

[sij , s�m] = δj�sim − δims�j + δj�δim(N − i+
1

2
)− δimδ�j(N − �+

1

2
)

= δj�sim − δims�j + δj�δim(�− i),

where the central term is precisely ω(sij , s�m). Since the dependence on N cancels
out it is possible to extend these operators to the whole Lie algebra by taking the
limit N → ∞ and this yields a projective representation S of g of level 1. One
easily checks that the following commutation relations hold,

[sij , γ�m] = δj�γim − δimγ�j ,
�

�,m

[sij , s�mγm�] = (j − i)γij .

With our choice of the normal ordering, sijv = 0 for all i ≤ j when v is the
vector in the ‘vacuum sector’, that is, it is of the form v = w ⊗ 1 ∈ Sk0 ⊗

�
k−.

On these vectors γijv = 0 for i < j. In particular, the weight of the spin module
is equal to zero. It should be kept in mind that the highest weight space is not
spanned by a single vector but it is the infinite-dimensional irreducible module Sk0
of the Clifford algebra Cl(k0).

Next we would like to construct a Verma module for the central extension �gC.
There is a natural triangular decomposition �gC = g+ ⊕ h ⊕ CK ⊕ g−, where g±
correspond to strictly upper respectively lower triangular matrices and h ∼= �∞
is the infinite-dimensional Cartan subalgebra of diagonal matrices. Let Λ = �∗∞
denote the weight space. Starting with the universal enveloping algebra U(�gC) and
a weight λ ∈ Λ, the Verma module is defined by the quotient V(λ,k) = U(�gC)/I(λ, k)
where I(λ, k) is the left ideal generated by g+ and elements h− λ(h)1, h ∈ h and
K−k1. Let vλ denote the image of the identity element 1 of U(�gC) in the quotient,
then eiivλ = λivλ with λi = λ(eii) and eijvλ = 0 for i < j.

If the representation of the Lie algebra �gC can be integrated to a representation
of �G, then the components λi have to belong to Z. In a unitary representation we
have in addition the positivity constraints

0 ≤ ||ejivλ||2 = (vλ, eijejivλ) = (vλ, (eii − ejj + k(j − i))vλ), i ≤ j,

which implies
λi − λj − k(i− j) ≥ 0, i ≤ j.

The problem of integrating unitary representations of Banach Lie algebras is far
from trivial and while there exists integrability criteria extending Nelson’s famous
criterion [13, 22], we shall consider a different route to constructing integrable
�gC-modules.

Recall that there is a natural homomorphism X �→ adX from g to the Lie
algebra ures(g+ ⊕ g−) by the adjoint action of g. Here g+ denotes the span of the
generators eij with i ≤ j and g− by the generators eij with i > j. In this action
adeii is represented by the matrix

adeii =
�

m∈Z
(Eim − Emi)

where Eij is the diagonal linear operator Eij · emn = δimδjnemn. The Lundberg co-
cycle ωL(X,Y ) = −1

2trX[�, Y ] on ures(g+⊕g−) induces then the level two cocycle
ω(X,Y ) = ωL(adX , adY ) = 2trX[D,Y ] on g. Thus any integrable representation
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of ûres gives an integrable representation of ĝ. In particular, the integrable highest
weight representations of ûres give (in general reducible) highest weight represen-
tations of ĝ. The highest weight of the former is given by the set µ(Eij) = µij of
integers. If the level of the ures representation is k then |µij | ≤ k. Only a finite
number of the µij ’s can be nonzero. The weight µ of ures determines a weight λ
of g,

λi = λ(eii) = µ(adeii) =
�

m∈Z
(µim − µmi)

which is also integral and has only a finite number of nonzero entries.
The doubling of the level from the restriction g ⊂ ures(g+⊕g−) results from the

fact that the adjoint representation of g is real, so the relevant embedding is actu-
ally g ⊂ ores ⊂ ures. The space g of skew-adjoint operators should be considered
as a real Hilbert space and its complexification gC = g+ ⊕ g− defines the polariza-
tion in the complexification ores,C. The geometric construction of representations
of ures acting on holomorphic sections of a determinant bundle on a homogeneous
space of Ures can be refined for ores as a representation acting on Pfaffians which
are square roots of determinants [20]. The square root construction leads to a
basic representation of ores, with the value of the level equal to 1, which then
corresponds to the basic cocycle trX[D,Y ] of g.

The ordering of the integers µij depends on the choice of simple root vectors; we
can fix a linear ordering of the index pairs (ij) > (mj) for i > m and (ij) > (im)
for j < m. In this ordering we can fix the simple root vectors as E(ij),(i,j−1) and
E(ij),(i+1,j) in ures(g+ ⊕ g−), following the standard notation that Eab means the
matrix with all entries equal to zero except the entry at the position (ab) equal to
1. In this ordering the elements

adeij =
�

m∈Z
(E(im),(jm) − E(mj),(mi))

are linear combinations of positive root vectors for i < j.
Thus any integrable unitary highest weight representation of ûres(g+ ⊕ g−) in-

deed gives by restriction an integrable unitary highest weight representation Vλ of
ĝ. The cubic Dirac operator can now be defined by

D =
�

i,j

eijγji +
1

3
sijγji,

acting on the �gC-module H = Vλ⊗S. The latter is generated by the highest weight
subspace, denoted vλ, which carries an irreducible representation of the Clifford
algebra Cl(k0). The expression for D is however still problematic in the limit
N → ∞ and requires further regularization. We introduce an additional operator
subtraction,

D =
�

i,j

eijγji +
1

3
: sijγji :,

where the normal ordering is defined as
�

i,j

: sijγji :=
�

i>j

sijγji +
�

i≤j

γjisij .
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Note that here the normal ordering is not simply a subtraction by an (infinite)
constant because of the nonzero commutators [sij , γji] = γii−γjj . Let tij = eij+sij ,
then we have

Theorem 5.1. The cubic Dirac operator D extends to a well-defined unbounded

essentially self-adjoint operator in the completion �W(g, k) = End(Vλ ⊗ S) with a

dense domain

Dom(D) = (Vλ ⊗ S)pol ⊂ Vλ ⊗ S,
consisting of polynomials in the generators tij and γij applied to the highest weight

subspace vλ, and with the kernel

Ker(D) = Sk0 .

Proof. We begin by computing some relevant commutators, where throughout we
consider a finite approximation with indices in the range [−N,N ]. Rewriting the
normal ordered term

�

i,j

: sijγji : =
�

i,j

sijγji +
�

i≤j

(γjj − γii) =
�

i,j

sijγji + 2
�

i

iγii,

we have
�

�,m

[: s�mγm� :, sij ] = (i− j)γij + 2(i− j)γij

= 3(i− j)γij .

Furthermore,
�

�,m

[s�mγm�, γij ]+ =
�

�,m

s�m[γij , γm�]+ +
�

�,m

[γij , s�m]γm�

= 2sij +
�

�,m

(δ�jγim − δmiγ�j)γm�

= 2sij +
�

m

γimγmj −
�

�

γ�jγi�

= 6sij + 4δij(N − i+
1

2
)− 2(2N + 1)δij

= 6sij − 4i · δij
where we have used 2sij =

�
m
γimγmj−2(N−i+ 1

2)δij . Next, using the expression�
i,j

: sijγji :=
�

i,j
sijγji + 2

�
i
iγii, we obtain

[
�

�,m

: s�mγm� :, γij ]+ = 6sij .

In addition,
�

�,m
[e�mγm�, γij ]+ = 2eij and thus

[D, γij ]+ = 2(eij + sij) = 2tij .

A similar computation, for a level k central extension of the Lie algebra generated
by {eij}, gives

[D, tij ] = (i− j)(k + 1)γij .

It follows that

[D2, γij ] = −[D, γij ]+D+ D[D, γij ]+ = −2tijD+ D · 2tij = 2(i− j)(k + 1)γij
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and similarly

[D2, tij ] = 2(i− j)(k + 1)tij .

The final result does not depend on the cutoff parameter N and hence we can
pass to the limit N → ∞ in the strong operator topology. This proves that D is a
well-defined operator in the algebra End(Vλ ⊗ S).

From the above commutation relations we can write a simple expression for the
square of the operator D,

D2 =
�

i,j∈Z
: eijeji : +

�

i,j∈Z
i : γijγji :

where

: eijeji :=

�
eijeji if j ≤ i

ejieij if i < j
.

To show that this is the right expression one only needs to show (by a simple
computation) that the commutator of D2 with γij and tij agrees with the already
given formulas above and that the action of D2 on the highest weight subspace is
correct. The last statement is true since D acting on the highest weight vectors vλ
is a multiplication by

�
i
γiiλi and the square of this is

�
i
λ2
i
, which agrees with

the action of the quadratic expression above. Note that we are only considering
representations of the Lie algebra which can be exponentiated to projective repre-
sentations of the group G, so the numbers λi must all be integers. Since the sum�

i
λ2
i
converges, it follows then that only a finite number of the components λi

are nonzero.
The difference C = D2−

�
i∈Z 2(k+1)itii plays the role of the Casimir operator

of �gC since it commutes with all the generators γij , tij . Its value on the vacuum
subspace vλ is equal to λ2 −

�
i∈Z 2(k + 1)iλi and this converges by the remark

above for integrable representations. A further immediate consequence of the above
commutation relations and the identity �D2vλ, vλ� = �vλ,D2vλ� is that the operator
D2 is unbounded, non-negative and symmetric on the dense domain (Vλ ⊗ S)pol.
It is also diagonalizable in a basis given by ordered monomials in the generators
γij , tij acting on vλ, which implies that D2 can be uniquely extended to a self-
adjoint operator.

Finally, note that the eigenvalues of D2 have an infinite degeneracy due to the
fact that the diagonal elements γii commute with D2. In particular, the vacuum
vλ is not a single vector but an irreducible representation of the Clifford algebra
Cl(k0) generated by the elements γii. All these vectors have the same weight for
the Cartan subalgebra spanned by the elements tii. This observation combined
with the above commutation relations and the action of D2 on the highest weight
subspace vλ imply that the kernel of D2 is the infinite-dimensional subspace Sk0 .
The theorem follows by taking the square root of D2.

�

Next we introduce a family of operators DA parametrized by self-adjoint Hilbert–
Schmidt operators A ∈ k, which play the role of gauge connections in our setting.
We let

DA = D+ (k + 1)
�

i,j∈Z
γijAji.
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The connection A transforms under a conjugation by g ∈ G, represented as ĝ in
the projective representation of G of level k+ 1, as Ag = g−1Ag+ g−1[D, g]. Next
we compute the square

D2
A = D2 + (k + 1)[D,

�

i,j∈Z
γijAji]+ + (k + 1)2

�

i,j∈Z
A2

ij

= D2 + 2(k + 1)
�

i,j∈Z
Aijtji + (k + 1)2A2.

We want to gather information about the spectrum of DA. First, we observe
that A can be diagonalized by a ‘gauge transformation’ g ∈ G. This follows from
the fact that the unbounded self-adjoint operator DA = D+A can be diagonalized
by a unitary transformation g ∈ U(H). But after diagonalization,

g−1DAg = D +A� = D + g−1Ag + g−1[D, g]

and since g−1Ag is Hilbert–Schmidt by the L2-property of A and the off diagonal
part of A� vanishes, we conclude that [D, g] is also Hilbert–Schmidt and so g ∈ G.

We can thus assume that A is diagonal without loss of generality, with diagonal
values Aii = µi. In this case

[D2
A, γij ] = 2(k + 1)(i− j + µi − µj)γij ,

[D2
A, tij ] = 2(k + 1)(i− j + µi − µj)tij .

But now

(D2
A − D2)vλ =

�
(k + 1)2

�

i∈Z
µ2
i + 2(k + 1)

�

i∈Z
µiλi

�
vλ,

that is, the vacuum eigenvalue of D2
A
is equal to (λ+ (k + 1)µ)2. The eigenvalues

of DA are then square roots of the eigenvalues of D2
A
.

The Hilbert space H = Vλ ⊗ S is spanned by the vectors

v(i),(j)
λ

= t(i),(j)γ(i),(j)vλ = ti1j1 · · · tipjpγip+1,jp+1 · · · γiqjqvλ
with is > js for s = 1, 2, . . . q. Using the commutation relations of D2

A
with γij , tij

we conclude that

D2
Av

(i),(j)
λ

=

�
(λ+ (k + 1)µ)2 +

�

s

2(k + 1)(is − js + µis − µjs)

�
v(i),(j)
λ

.

The sum over the index s can be negative, so the eigenvalue of D2
A
can be zero for

some parameters µ. However, for any given vector µ there can be at most a finite
number of the integer sequences (is > js) for which this is the case. The reason
for this is that because µ2 is convergent, it follows that µi → 0 as i → ±∞ and
therefore for large values of the indices the positive integers is − js dominate over
the small, potentially negative, numbers µis − µjs .

By the equivariance property

ĝ−1DAĝ = DAg

the action of the isotropy group GA ⊂ G at the point A commutes with the
quantum operator DA and therefore leaves its spectral subspaces invariant. For a
generic A, for which the differences of the numbers µi are not in Z, the isotropy
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group is just the group of diagonal matrices in G. In the general case, the Lie
algebra of the isotropy group contains also those elements tij for which

i− j + µi − µj = 0.

As we remarked earlier, there are only a finite number of these pairs of indices
with i �= j, and thus the isotropy group at A ∼ µ is a finite rank perturbation of
the group of diagonal matrices.

The kernel of DA, which is the same as the kernel of D2
A
, carries a representation

of the tensor product of the Clifford algebra Cl(k0) and the enveloping algebra of
the Cartan subalgebra U(h). The vacuum sector carries an irreducible representa-
tion of this algebra. Since the kernel of DA consists of a finite number of operators
t(i),(j)γ(i),(j) applied to the vacuum representation, the kernel is a finite sum of
irreducible representations of U(h)⊗ Cl(k0). We have thus proven

Theorem 5.2. The kernel of the operator DA is a finite direct sum of irreducible

representations of the algebra W(gA) = U(gA) ⊗ Cl(g�A), where g�A is the inter-

section of the Lie algebra gA of the isotropy group GA ⊂ G at the point A with the

space of Hilbert–Schmidt operators.

Remark 5.3. After a gauge transformation Ag = g−1Ag + g−1[D, g], which corre-
sponds to the conjugation g−1(D + A)g, the operator D + A can be brought to
a diagonal form D + h where h is a Hilbert-Schmidt operator. The commutant
of D + h in g consists of the Cartan subalgebra h and a finite subalgebra of non-
diagonal elements in g. This follows from the fact that the spectrum of D is the set
of integers Z, whereas h is a compact operator. This shows that the Lie algebra of
the stabilizer group gA is conjugate to h extended by a finite dimensional matrix
algebra.
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