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Abstract. In gauge theory, the Faddeev–Mickelsson–Shatashvili anomaly ari-
ses as a prolongation problem for the action of the gauge group on a bundle
of projective Fock spaces. In this paper, we study this anomaly from the
point of view of bundle gerbes and give several equivalent descriptions of the
obstruction. These include lifting bundle gerbes with non-trivial structure
group bundle and bundle gerbes related to the caloron correspondence.
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1. Introduction

The Faddeev–Mickelsson–Shatashvili (FMS) anomaly arises in Hamiltonian quan-
tisation of massless chiral fermions interacting with external gauge potentials. It
signals the breakdown of local gauge symmetry in the quantum theory, which is re-
quired for identifying gauge equivalent fermionic Fock spaces and thereby removing
unphysical degrees of freedom.
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The anomaly manifests itself in a variety of ways. Historically it appeared as an
anomalous term in the equal-time commutators of Gauss law generators [6, 7, 10,
11]. Globally this is due to the fact that the gauge group G acts only projectively
on the bundle of Fock spaces parametrised by the space A of gauge connections. It
lifts to an honest action of an extension of the gauge group by the abelian group of
circle-valued functions on A.

In more detail, following the mathematical description given by Segal in [16], we
consider the chiral Dirac operator DA on a compact odd-dimensional Riemannian
spin manifold, coupled to a connection A ∈ A. This is an operator with discrete
spectrum and a dense domain inside the Hilbert spaceH of spinors. Let A0 ⊂ A×R
be the subspace of all pairs (A, s) where s is not in the spectrum of the Dirac
operator. For every such pair (A, s) the Hilbert space of spinors decomposes into the
direct sum of the subspace H+

(A,s) spanned by the eigenspaces of DA for eigenvalues

greater than s, and its orthogonal complement H
−
(A,s). This splitting determines

the vacuum in the fermionic Fock space

F(A,s) =
�

H
+
(A,s) ⊗

�
(H−

(A,s))
∗
.

Ideally one would like the Fock spaces to patch together to form a Hilbert bundle
over A, but there is a phase ambiguity related to different choices of the parameter
s. Indeed, if we leave A fixed and consider another t > s not in the spectrum of
DA, then

H = H
−
(A,s) ⊕ V(A,s,t) ⊕H

+
(A,t)

where V(A,s,t) is the finite dimensional vector space spanned by the eigenspaces for
eigenvalues between s and t. This corresponds to shifting the vacuum level from s

to t. Moreover

H
+
(A,s) = V(A,s,t) ⊕H

+
(A,t) and H

−
(A,t) = H

−
(A,s) ⊕ V(A,s,t),

and since
�
V

∗
(A,t,s) ⊗ detV(A,t,s) is canonically isomorphic to

�
V(A,t,s), it follows

that the Fock spaces are isomorphic up to a phase

(1) F(A,s) � F(A,t) ⊗ detV(A,s,t).

The projectivisations P(F(A,s)) and P(F(A,t)) on the other hand can be identified
for all s, t ∈ R and descend to a projective bundle P on A. We note that if the
spectrum of the Dirac operator had a mass gap (−m,m), it would be possible to
fix a global vacuum level at s = 0 for all connections. In the massless case however,
the spectral flow of DA makes the vacuum section A → F(A,s) discontinuous for
any fixed s. The discontinuities occur exactly at those points A ∈ A where an
eigenvalue of DA crosses s. This makes it impossible to set a vacuum level once and
for all, and one must instead resort to the local description above which gives rise
to a projective bundle.

The FMS anomaly is tied to the question of whether or not there is a Hilbert
bundle H over the moduli space A/G whose projective bundle is isomorphic to
P/G. This question can be phrased in two equivalent ways. Firstly we note that
P → A is always the projective bundle of a Hilbert bundle H over A because A is
contractible. However to make H a bundle on A/G we need to lift the group action
of G to H and the obstruction to that is a (locally smooth) group 2-cocycle with
values in Map(A, U(1)). Equivalently the problem can be tackled directly on A/G

where it is well-known that the obstruction to a projective bundle over A/G being
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the projectivisation of a Hilbert bundle is a class in H
3(A/G,Z). The image of this

class in real cohomology was first computed in [3] using the Atiyah–Patodi–Singer
index theorem. It was further shown in [4] that these two approaches are related by
transgression. Namely the transgression of the three class in question yields a Lie
algebra two-cocycle which is the derivative of the group cocycle mentioned above.

Central to the discussions in [3] was a line bundle Det → A0 and an associated
short exact sequence formed from the automorphisms of Det,

(2) 1 → Map(A, U(1)) → �G → G → 1.

The primary purpose of this paper is to explain the observation (Proposition 2.3)
that the FMS class vanishes if and only if the G-bundle A → A/G lifts to a �G-
bundle. Firstly, although (2) is not a central extension of groups, we can apply the
recently developed theory of the second author [14] to characterise the obstruction
to lifting A → A/G as a bundle gerbe on A/G with non-trivial structure group
bundle. The structure group bundle in question is a bundle of abelian groups
A = A ×G Map(A, U(1)) and the obstruction to the lift is the Dixmier–Douady
class of the bundle gerbe, which is an element of the cohomology groupH

2(A/G,A).
Secondly we relate this lifting bundle gerbe to the FMS gerbe from [5] and show
that their Dixmier–Douady invariants are related by isomorphisms

(3) H
2(A/G,A) � H

2(A/G, U(1)) � H
3(A/G,Z),

which explains Proposition 2.3. We also show how earlier results of the authors on
the caloron correspondence [9] can be used to construct a so-called caloron bundle
gerbe, associated to the extension (2), which is stably isomorphic to the FMS gerbe.

The paper is organised as follows. In Section 2 we review the theory of U(1)-
bundle gerbes and the construction of the FMS gerbe from [5]. We then establish
our motivating result, Proposition 2.3 referred to above. In Section 3 we review
the theory of bundle gerbes with non-trivial structure group bundle from [14], in
particular we develop the theory of the lifting bundle gerbe of an abelian extension.
In Section 4 we establish the relationship between the lifting bundle gerbe with
non-trivial structure group bundle and the FMS bundle gerbe. Finally in Section
5 we discuss the caloron bundle gerbe and remark on open problems for which this
point of view may be helpful.

2. The Faddeev–Mickelsson–Shatashvili bundle gerbe

2.1. Bundle gerbes. We give a brief introduction to bundle gerbes here and refer
the interested reader to [13] for an introduction and [12, 15] for further details.

Let π : Y → M be a surjective submersion.1 Let Y
[p] ⊂ Y

p denote the fibre
product, that is (y1, . . . , yp) ∈ Y

[p] if and only if π(y1) = π(y2) = · · · = π(yp).
In the context of bundle gerbes it will be useful to call Y the object space of the
bundle gerbe. For each i = 1, . . . , p we have the projection πi : Y [p] → Y

[p−1]

which omits the i
th element in the p-tuple. In particular π1(y1, y2) = y2 and

π2(y1, y2) = y1. If U ⊂ M is an open subset it will be useful to introduce the
notation YU = π

−1(U) ⊂ Y for the restriction of Y to U .
If Q and R are two U(1)-bundles we define their product Q⊗R to be the quotient

of the fibre product of Q and R by the U(1) action (q, r)z = (qz, rz−1), with the

1Note that in [12] Y was required to be a fibration, however this is not actually necessary and
we shall need the more general setup later.



4 P. HEKMATI, M. K. MURRAY, D. STEVENSON, AND R. F. VOZZO

induced right action of U(1) on equivalence classes being given by [q, r]w = [q, rw] =
[qw, r]. In addition if P is a U(1)-bundle we denote by P

∗ the U(1)-bundle with
the same total space as P but with the action of U(1) changed to its inverse, thus
if u ∈ P

∗ and z ∈ U(1) then z acts on u by sending it to uz
−1. We call P ∗ the dual

of P .
If Q → Y

[p] is a U(1)-bundle we define a new U(1)-bundle δ(Q) → Y
[p+1] by

δ(Q) = π
∗
1(Q)⊗ π

∗
2(Q)∗ ⊗ π

∗
3(Q)⊗ · · · .

It is straightforward to check that δ(δ(Q)) is canonically trivial as a U(1)-bundle.
We then have the following definition.

Definition 2.1. A bundle gerbe over M is a pair (P, Y ) where Y → M is a
surjective submersion and P → Y

[2] is a U(1)-bundle satisfying the following two
conditions:

(1) There is a bundle gerbe multiplication which is a smooth isomorphism

m : π∗
3(P )⊗ π

∗
1(P ) → π

∗
2(P )

of U(1)-bundles over Y [3].
(2) This multiplication is associative, namely if P(y1,y2) denotes the fibre of P

over (y1, y2) then the following diagram commutes for all (y1, y2, y3, y4) ∈
Y

[4].

P(y1,y2) ⊗ P(y2,y3) ⊗ P(y3,y4)
��

��

P(y1,y3) ⊗ P(y3,y4)

��
P(y1,y2) ⊗ P(y2,y4)

�� P(y1,y4)

We will find it convenient to depict a bundle gerbe with a diagram of the form:

P

��
Y

[2] ��
�� Y

��
M

Two bundle gerbes (P, Y ) and (Q, Y ) are called isomorphic if there is a U(1)-
bundle isomorphism P � Q commuting with the bundle gerbe multiplication.

Example 2.1. If Q → Y is a U(1)-bundle then we can form δ(Q) → Y
[2] as above.

This has a natural bundle gerbe multiplication given by the contraction

c : Qy2 ⊗Q
∗
y1

⊗Qy3 ⊗Q
∗
y2

→ Qy3 ⊗Q
∗
y1
.

More generally a bundle gerbe (P, Y ) over M is said to be trivial if there is a
U(1)-bundle Q → Y such that (P, Y ) is isomorphic to (δ(Q), Y ). We call Q and
the isomorphism δ(Q) � P a trivialisation of P . Any two trivialisations of P are
related by tensoring with the pullback of a U(1)-bundle on M .

If (P, Y ) is a bundle gerbe over M and f : N → M , we can pullback Y to
a surjective submersion f

∗(Y ) → N . We have an induced map f̂ : (f∗(Y ))[2] =
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f
∗(Y [2]) → Y

[2]. The bundle gerbe product pulls back to f
∗(P ) = f̂

∗(P ) to define
the pullback bundle gerbe (f∗(P ), f∗(Y )).

If (P, Y ) is a bundle gerbe over M then we can form the dual bundle gerbe
(P ∗

, Y ) by setting P
∗ → Y

[2] to be the dual of the U(1)-bundle P in the sense
described earlier. The process of forming duals commutes with taking pullbacks
and forming tensor products, so the bundle gerbe multiplication on P induces a
bundle gerbe multiplication on P

∗ in a canonical way.
Given two bundle gerbes (P, Y ) and (Q,X) over M , we can form a new bundle

gerbe (P ⊗Q, Y ×M X) over the same base called the tensor product of P and Q.
Here the surjective submersion is the fibre product Y ×M X → M and P ⊗ Q is
the U(1)-bundle on (Y ×M X)[2] whose fibre at ((y1, x1), (y2, x2)) is given by

P(y1,y2) ⊗Q(x1,x2).

The bundle gerbe multiplication on P ⊗Q is defined in the obvious way, using the
bundle gerbe multiplications on P and Q.

Every bundle gerbe (P, Y ) overM has a characteristic classDD(P, Y ) ∈ H
3(M,Z)

called the Dixmier–Douady class. We construct it in terms of Čech cohomology as
follows. Choose a good cover [1] U = {Uα} of M with sections sα : Uα → Y of
π : Y → M . Then

(sα, sβ) : Uα ∩ Uβ → Y
[2]

is a section. Choose sections σαβ of Pαβ = (sα, sβ)∗(P ). These are maps

σαβ : Uα ∩ Uβ → P

with σαβ(x) ∈ P(sα(x),sβ(x)). Over triple overlaps we have

m(σαβ(x),σβγ(x)) = σαγ(x)gαβγ(x) ∈ P(sα(x),sγ(x))

for gαβγ : Uα ∩ Uβ ∩ Uγ → U(1). This defines a cocycle which represents the
Dixmier–Douady class

DD(P, Y ) = [gαβγ ] ∈ H
2(M,U(1)) � H

3(M,Z).

Here H2(M,U(1)) denotes the Čech cohomology of M with coefficients in the sheaf
of germs of maps from M into U(1). The Dixmier–Douady class of P is the ob-
struction to (P, Y ) being trivial. That is, DD(P, Y ) = 0 if and only if (P, Y ) is
isomorphic to a trivial bundle gerbe. Note also that the Dixmier–Douady class sat-
isfies DD(P⊗Q, Y ×MX) = DD(P, Y )+DD(Q,X) and DD(P, Y ) = −DD(P ∗

, Y ).
Two bundle gerbes (P, Y ) and (Q,X) over M are said to be stably isomorphic

if the bundle gerbe (P ⊗ Q
∗
, Y ×M X) is trivial or, equivalently if DD(P, Y ) =

DD(Q,X) [15].
We note here a standard result that will be needed later.

Proposition 2.2 ([15]). Let X → M and π : Y → M be two surjective submersions

and µ : X → Y a map commuting with the projections to M . Denote by µ : X [2] →

Y
[2]

the induced map. If (P, Y ) is a bundle gerbe on M , then (µ∗(P ), X) is also a

bundle gerbe which is stably isomorphic to (P, Y ).

Finally notice that everything we have said here generalises if U(1) is replaced
by any abelian topological group A. The only modification required is that the
Dixmier–Douady class is in the Čech cohomology group H

2(M,A) rather than
H

2(M,U(1)).
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2.2. The Faddeev–Mickelsson–Shatashvili bundle gerbe. The space A0 in-
troduced in Section 1 projects onto the space of connections A. This projection is
clearly onto and a submersion because locally A0 is a product of an open set in A

and an open set in R. Note though that A0 → A is not a fibration because it fails
to be locally trivial near points of A for which DA has degenerate eigenvalues.

The fibre product A
[2]
0 can be identified with the set of triples (A, s, t) where

neither of the real numbers s and t are in the spectrum of DA. We define a line

bundle F over A[2]
0 pointwise by defining its fibre to be

F(A,s,t) =

�
detV(A,s,t) if s ≤ t

detV ∗
(A,s,t) if s ≥ t,

where as before V(A,s,t) is the sum of all the eigenspaces for eigenvalues between s

and t. The first two conditions for a bundle gerbe follow naturally. For the third
consider r < s < t then

V(A,r,s) ⊕ V(A,s,t) = V(A,r,t)

so that

det(V(A,r,s))⊗ det(V(A,s,t)) = det(V(A,r,t))

giving us the bundle gerbe multiplication

F(A,r,s) ⊗ F(A,s,t) � F(A,r,t).

We call the bundle gerbe (F ,A0) the trivial Faddeev–Mickelsson–Shatashvili (FMS)

bundle gerbe on A.

We know that (F ,A0) is trivial because A is contractible. In [5] an explicit
trivialisation was constructed using a determinant line bundle over an infinite-
dimensional Grassmannian. The details of that construction are not important in
what follows. We denote this trivialisation by Det → A0 and note that we must
have

(4) F(A,s,t) � Det∗(A,s) ⊗Det(A,t) .

From equation (1) we have

F(A,s) � F(A,t) ⊗ F(A,s,t)

and hence

F(A,s) ⊗Det(A,s) � F(A,t) ⊗Det(A,t) .

This means that the Hilbert bundle F ⊗Det → A0 descends to a Hilbert bundle H
on A and clearly we have P(H) � P. Therefore if the bundle gerbe F is trivial, then
the projective bundle P is the projectivisation of a Hilbert bundle. The converse is
easily seen to be true [4].

So far everything we have said is happening on A where the bundle gerbe is triv-
ial. However G clearly acts on F and it descends to a bundle gerbe (F/G,A0/G)
on A/G, which we call the Faddeev–Mickelsson–Shatashvili bundle gerbe, or simply
the FMS bundle gerbe. A trivialisation of the bundle gerbe on A/G is therefore
equivalent to a G-equivariant trivialisation of the bundle gerbe over A. As A is
contractible any two trivialisations of a bundle gerbe are isomorphic, so we con-
clude that the FMS bundle gerbe is trivial if and only if Det → A0 admits an action
of G covering the action on A0 and compatible with the isomorphisms F � δ(Det).
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Denote by �G the group of all pairs (ψ, g) where ψ ∈ Aut(Det) is a right bundle auto-
morphism covering the right action of g : A0 → A0 and preserving the trivialisation
δ(Det) � F . We have an exact sequence

(5) 1 → Map(A, U(1)) → �G → G → 1

which admits local sections. We conclude that the FMS bundle gerbe is trivial if
and only if this exact sequence splits.

These observations enable us to prove the following Proposition which is the
motivation for our constructions below.

Proposition 2.3. The principal G-bundle A → A/G lifts to a �G-bundle if and only

if (F/G,A0/G) is trivial.

Proof. We have already seen that (F/G,A0/G) is trivial if and only if (5) splits.
Clearly if that occurs we have a homomorphism G → �G which enables us to lift
A → A/G to a �G-bundle.

Conversely assume that A can be lifted to a �G-bundle �A → A/G. Then �A → A

is a Map(A, U(1))-bundle which must be trivial. Let s : A → �A be a section and
let A ∈ A and g ∈ G. We denote the action of G on A by A �→ A

g. Consider s(A)
and s(Ag). As the following diagram commutes,

�A

A

A/G

p ��

s��

�π
��

π

��

we have

�π(s(Ag)) = π(p(s(Ag))) = π(Ag) = π(A) = π(p(s(A))) = �π(s(A))

and hence s(Ag) = s(A)φ(A, g) where φ : A × G → �G. It is easy to see that
φ(A, g)φ(Ag

, h) = φ(A, gh). We can now define an action of G on Det. If g ∈ G

and l ∈ Det(A,s), the fibre of Det over (A, s) ∈ A0, we define lg = lφ(A, g). It is
straightforward to check that this is an action and hence (5) splits. �

3. Lifting bundle gerbes for abelian extensions

Proposition 2.3 motivates us to attempt to understand the obstruction to lifting
A → A/G to a �G-bundle. In the case of a central extension

1 → Z → �H → H → 1

it is well known that the obstruction to lifting an H-bundle Y → M to an �H-bundle
is a class in H

2(M,Z). This can be interpreted as the Dixmier–Douady class of the
so-called lifting bundle gerbe [12] defined as follows. As Y is a principal H-bundle
we have a map τ : Y [2] → H defined by y1τ(y1, y2) = y2 and we can use this to
pullback the Z-bundle �H → H. The resulting bundle has a bundle gerbe product
induced by the group action of �H. It is straightforward to check that a trivialisation
of the lifting bundle gerbe, which is a Z-bundle �Y → Y , is precisely a lift of Y to
�H.
The problem with applying the theory of lifting bundle gerbes outlined above is

that the exact sequence (5) is not a central extension but only an abelian extension,
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that is Map(A, U(1)) is a normal, abelian subgroup of �G but not in the centre of �G.
Recent work of the second author [14], which we now review, has shown that for
such extensions the obstruction to lifting a bundle is a bundle gerbe with non-trivial
structure group bundle.

3.1. Lifting bundle gerbes with non-trivial structure group bundle.

3.1.1. Bundle gerbes with non-trivial structure group bundle. Let A → M be a
locally trivial bundle of abelian groups over M . We call such objects abelian group
bundles. We say that a fibre bundle P → M is a principal A-bundle if each fibre of
P → M is a principal space for the corresponding fibre of A → M and if whenever
we locally trivialise A as AU = U ×A, we have that PU is a locally trivial principal
A-bundle. In such a case we call A the structure group bundle of P . Duals and
products of A-bundles are defined fibre by fibre. It is straightforward to show that
isomorphism classes of A-bundles are classified by the group H

1(M,A), where here
A also denotes the sheaf of smooth sections of the group bundle A.

We can generalise the definition of bundle gerbes to the case of non-trivial struc-
ture group bundles as follows. Let Y → M be a submersion and A → M be a
bundle of abelian groups with fibre isomorphic to A. Denote also by A the pullback
of A to any of the fibre products Y

[p] → M . The definition of an A-bundle gerbe
is then an A-bundle Q → Y

[2] with the obvious notion of a bundle gerbe prod-
uct. The definition of the Dixmier–Douady class is analogous to the U(1)-bundle
gerbe case: choose a good cover U = {Uα} of M and sections sα : Uα → Y . Let
σαβ : Uα ∩ Uβ → Q be sections of Q. Then

σαβσβγ = σαγgαβγ

where gαβγ : Uα ∩ Uβ ∩ Uγ → A. The class of gαβγ in H
2(M,A) is the Dixmier–

Douady class.

3.1.2. Changing the structure group bundle of a bundle gerbe. Let φ : A → B be a
homomorphism of group bundles, that is, φ is a bundle map which is a homomor-
phism on fibres φm : Am → Bm and moreover this homomorphism on fibres is, up to
isomorphisms, constant. If (P, Y ) is an A-bundle gerbe over M , then we can extend
the structure group bundle to B by defining an associated bundle P ×AB where the
action of A on the left of B is induced by φ. It is straightforward to check that the
bundle gerbe product extends. We denote this bundle gerbe by (φ∗(P ), Y ). The
homomorphism φ induces a homomorphism of sheaves of smooth sections of A and
B which induces a map

φ∗ : H
2(M,A) → H

2(M,B)

and it is a straightforward calculation to show that

(6) DD((φ∗(P ), Y )) = φ∗(DD(P, Y )).

3.1.3. Lifting bundle gerbes and abelian extensions. Consider an extension of groups

1 → A → �H π
→ H → 1

where A is abelian and normal in �H but possibly not central.
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Let Y → M be a principal H-bundle and τ : Y [2] → H as before. Let L = τ
∗( �H)

so that an element of L(y1,y2) is a triple (y1, y2, ĥ) where ĥ ∈ A�τ(y1, y2) and τ̂(y1, y2)

is any lift of τ(y1, y2) ∈ H to �H. For convenience we identify

L(y1,y2) = A�τ(y1, y2).

Because A is normal, the product on �H restricts to a well-defined map

(7) L(y1,y2) × L(y2,y3) → L(y1,y3).

Notice that H acts on A because we can lift h ∈ H to ĥ ∈ �H and define
h(a) = ĥaĥ

−1 which is independent of the choice of lift as A is abelian. This action
is non-trivial exactly when A is not central. As a result we can form a group bundle
A = Y ×H A → M .

We define an action of (the pullback of) A on L as follows. Let l ∈ L(y1,y2) and

[y2, a] ∈ A, and define l[y2, a] = la. Notice that if π(ĥ) = h, then

l[y2h, a] = l[y2, h(a)] = l[y2, ĥaĥ
−1] = lĥaĥ

−1
.

This makes L into an A-bundle. If l ∈ L(y1,y2) and l
� ∈ L(y2,y3), then using the

product (7) we have ll
� ∈ l(y1,y3). Moreover

l[y2, a](l
�[y2, a]

−1) = l[y2, a]l
�([y2, a

−1])

= l[y2, a]l
�([y3, τ(y2, y3)

−1(a−1)])

= lal
�
τ(y2, y3)

−1(a−1)

= ll
�

because τ(y2, y3)−1(a−1) = (l�)−1
a
−1

l
�. This shows that the product descends to

make (L, Y ) an A-bundle gerbe which we call the lifting bundle gerbe of Y → M .
Before we prove the next Proposition we need to collect some facts about right

principal A-spaces for an abelian group A. Let X be such a space and X
∗ the dual

space. There is a well-defined map

X
∗
×X → A

which we write as (ξ, x) �→ ξ(x), where ξ(x) is defined by x = ξ ξ(x) bearing
in mind that X

∗ is the same set as X but with the inverse A-action. We have
xa = ξ ξ(x)a so that ξ(xa) = ξ(x)a, and x = ξ a

−1
a ξ(x) = (ξa) a ξ(x) which

implies that (ξa)(x) = ξ(x)a.
Let X1, X2, X3 be right principal A-spaces and define the map

c : X2 ⊗X
∗
1 ×X3 ⊗X

∗
2 → X3 ⊗X

∗
1

by
c(x2 ⊗ ξ1, x3 ⊗ ξ2) = (x3 ⊗ ξ1)ξ2(x2).

Notice that this satisfies

c((x2 ⊗ ξ1)a, (x3 ⊗ ξ2)a
−1) = c(x2a⊗ ξ1, x3 ⊗ ξ2a) = c(x2 ⊗ ξ1, x3 ⊗ ξ2)

and therefore descends to a map

c : X2 ⊗X
∗
1 ⊗X3 ⊗X

∗
2 → X3 ⊗X

∗
1 .

Moreover if α = x⊗ ζ ∈ X⊗Z
∗ and z ∈ Z, then define α(z) = xζ(z). In particular

if α ∈ X2 ⊗X
∗
1 , β ∈ X3 ⊗X

∗
2 and x ∈ X1, we have

(8) c(α,β)(x) = β(α(x)).
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Proposition 3.1. The lifting bundle gerbe (L, Y ) is a trivial A-bundle gerbe if and

only if the bundle Y → M lifts to �H.

Proof. First assume that the bundle lifts to �Y → M with a map �Y → Y which is
an A-bundle. We make �Y → Y into an A-bundle by defining ŷ[y, a] = ŷa, where
ŷ ∈ �Y and π(�y) = y.

We need to define an isomorphism φ : L → δ(�Y ) of A-bundles over Y
[2] which

preserves the bundle gerbe multiplications. If ĥ ∈ L(y1,y2) = Aτ(y1, y2) we choose

ŷ ∈ �Yy1 and notice that ŷĥ ∈ �Yy1τ(y1,y2) =
�Yy2 . Define the map φ by

φ(ĥ) = ŷĥ⊗ ŷ
∗
∈ �Y

y2
⊗ �Y ∗

y1
.

This is well-defined because changing ŷ to ŷ[y1, a] gives

(ŷ[y1, a])ĥ⊗ (ŷ[y1, a])
∗ = (ŷ[y1, a])ĥ⊗ ŷ

∗[y1, a
−1]

= ŷaĥ[y1, a
−1]⊗ ŷ

∗

= ŷaĥ[y2, ĥ
−1

a
−1

ĥ]⊗ ŷ
∗

= ŷaĥĥ
−1

a
−1

ĥ⊗ ŷ
∗

= ŷĥ⊗ ŷ
∗
.

To check that this an A-bundle isomorphism we note that ĥ[y2, a] = ĥa so that

φ(ĥ[y2, a]) = ŷ(ĥa)⊗ ŷ
∗ = (ŷĥ)a⊗ ŷ

∗ = ŷĥ[y2, a]⊗ ŷ
∗ = (ŷĥ⊗ ŷ

∗)[y2, a].

To see that φ preserves multiplication choose k̂ ∈ L(y2,y3) = Aτ(y2, y3) and ŷĥ ∈ �Yy2

so that

c(φ(ĥ),φ(k̂)) = c(ŷĥ⊗ ŷ
∗
, ((ŷĥ)k̂)⊗ (ŷĥ)∗)

= ((ŷĥ)k̂)⊗ ŷ
∗

= ŷ(ĥk̂)⊗ ŷ
∗

= φ(ĥk̂)

as required. It follows that �Y → Y is a trivialisation of L.
On the other hand assume that the lifting bundle gerbe L is trivial. Namely,

there is an A-bundle p : �Y → Y and an A-bundle isomorphism φ : L → δ(�Y ) which
commutes with the bundle gerbe products. Consider ĥ ∈ �H and ŷ ∈ �Yy so that

p(ŷ) = y. We want to define an action of ĥ on the right of ŷ sending it to an element
in �Yyh. Notice that since ĥ ∈ L(y,yh) and

φ : L(y,yh) →
�Y
yh

⊗ �Y ∗
y
,

we can define

ŷĥ = φ(ĥ)(ŷ).

We need to check that this is a right group action. Let k̂ ∈ �H and consider

φ : L(yh,yhk) →
�Y
yhk

⊗ �Y ∗
yh
.
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Using (8), we have

(ŷĥ)k̂ = φ(k̂)(ŷĥ)

= φ(k̂)(φ(ĥ)(ŷ))

= c(φ(ĥ),φ(k̂))(ŷ)

= φ(ĥk̂)(ŷ)

= ŷ(ĥk̂).

Hence �Y → Y is a lift of Y to an �H-bundle as required. �

In the FMS case the structure group bundle is given by

A = A×G Map(A, U(1))

and we denote the lifting bundle gerbe for A → A/G by (L,A).

4. The lifting bundle gerbe and the Faddeev–Mickelsson–Shatashvili
gerbe

Recall that we were motivated by Proposition 2.3 to find a relationship between
the FMS bundle gerbe and the problem of lifting the G-bundle A → A/G to �G.
We have now described the obstruction to this lifting problem as a bundle gerbe
over A/G. However it is not a U(1)-bundle gerbe like the FMS gerbe, but a bundle
gerbe with structure group bundle A = A×G Map(A, U(1)). So the answer cannot
be that the lifting bundle gerbe is stably isomorphic to the FMS bundle gerbe. On
the other hand if we consider the Dixmier–Douady invariant of the lifting bundle
gerbe, we see that

H
2(A/G,A×G Map(A, U(1))) � H

3(A/G,A×G Map(A,Z))
� H

3(A/G,A×G Z)
� H

3(A/G,Z),

where we have used the exact sequence

1 → Map(A,Z) → Map(A,R) → Map(A, U(1)) → 1

for the first isomorphism, and the fact that A is connected (so that Map(A,Z) = Z)
for the second. Hence the obstruction class to the lifting problem lives in the same
space as the FMS class. Below we will show that these classes are in fact equal.
This requires changing the structure group bundle from A×G Map(A, U(1)) to the
trivial U(1) group bundle using the ideas in Section 3.1.2.

Consider the evaluation map

ev : A×Map(A, U(1)) → U(1).

This descends to a homomorphism of group bundles

ev : A×G Map(A, U(1)) → A×G U(1) = A/G × U(1),
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sending [A, f ] to [A, f(A)] = (π(A), f(A)). Similarly we can use the evaluation map
on R-valued and Z-valued maps to form a commuting diagram

1 �� A/G × Z ���� A×G Map(A,R) ��

ev

��

A×G Map(A, U(1)) ��

ev

��

1

1 �� A/G × Z ���� A/G × R �� A/G × U(1) �� 1

Taking the cohomology of this diagram shows that ev∗ is an isomorphism

H
2(A/G,A×G Map(A, U(1)))

ev∗
−−→ H

2(A/G, U(1))
∼
−→ H

3(A/G,Z).

It follows from equation (6) that

DD(ev∗(L),A) = ev∗(DD(L,A))

and because ev∗ is an isomorphism, we have that DD(ev∗(L),A) = 0 if and only if
DD(L,A) = 0. It remains to show that the U(1)-bundle gerbe (ev∗(L),A) is stably
isomorphic to the FMS bundle gerbe, so we can conclude that DD(ev∗(L),A) is
equal to the FMS class and thereby explain Proposition 2.3. We wish to prove then
the following:

Theorem 4.1. The bundle gerbe (ev∗(L),A) is stably isomorphic to the FMS bun-

dle gerbe (F/G,A0/G).

Proof. Consider the following diagram:

A

A0
A0/G

A/G

A[2]
A

[2]
0 (A0/G)[2]

ev∗(L) F/G

��

π

�� ��

����

π2

��
π1

��
����α

��
β

��

�� ���� ��

We claim that the bundle gerbe (α∗(ev∗(L)),A0) is isomorphic to the bundle gerbe
(π∗

1(Det)∗ ⊗ π
∗
2(Det)⊗ β

∗(F/G),A0) = (δ(Det)∗ ⊗ β
∗(F/G),A0).

To see this, take ĝ ∈ �G which projects to g ∈ G and let A ∈ A and z ∈ U(1).
An element of ev∗(L) is given by a triple [(A, ĝ), z] = [(A, fĝ), f(A)z] for any f ∈

Map(A, U(1)). Notice that an element of A[2]
0 takes the form ((A, s), (Ag

, t)) and
an element of the fibre of α∗ ev∗(L) over such a point is a pair ([(A, ĝ), z], (A, s, t)),
where (A, s) and (A, t) belong to A0.

On the other hand π1((A, s), (Ag
, t)) = (Ag

, t) and π2((A, s), (Ag
, t)) = (A, s),

so that the fibre of

(π∗
1(Det)∗ ⊗ π

∗
2(Det)⊗ β

∗(F/G),A0)

at the point ((A, s), (Ag
, t)) is

Det∗(Ag,t) ⊗Det(A,s) ⊗F(Ag,s,t).
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Recall that ĝ ∈ �G is an automorphism Det → Det covering the action of g ∈ G on
A0. Therefore, for every s not in the spectrum of DA, we have ĝ(A) : Det(A,s) →

Det(Ag,s) and hence fiberwise we can define a map

ϕ([(A, ĝ), z], (A, s, t)) : Det(A,s) → Det(Ag,s)

by ϕ([(A, ĝ), z], (A, s, t)) := ĝ(A)z−1. This is well-defined under change of repre-
sentative,

([fĝ, A, f(A)z], (A, s, t)) �→ f(A)ĝ(A)f(A)−1
z
−1 = ĝ(A)z−1

,

so we have

ϕ([(A, ĝ), z], (A, s, t)) ∈ Det(Ag,s) ⊗Det∗(A,s) � Det(Ag,t) ⊗Det∗(A,s) ⊗F
∗
(Ag,s,t)

using equation (4). We conclude that

ϕ : α∗(ev∗(L)) → δ(Det)⊗ β
∗(F/G)∗

as a map of spaces. However, note that the action of z ∈ U(1) on α
∗(ev∗(L)) gets

mapped to the action of z−1 on δ(Det)⊗ β
∗(F/G)∗, so in fact

ϕ : α∗(ev∗(L)) → δ(Det)∗ ⊗ β
∗(F/G)

as a map of U(1)-bundles. That ϕ is a bundle gerbe isomorphism follows from
the fact that the bundle gerbe multiplication on ev∗(L) is given by the group
multiplication in �G, which is composition of automorphisms Det → Det, and that
the isomorphism δ(Det) � F is itself a bundle gerbe isomorphism.

Since (β∗(F/G),A0) differs from (δ(Det)∗ ⊗ β
∗(F/G),A0) by a trivial bundle

gerbe, they have the same Dixmier–Douady class,

DD(α∗(ev∗(L)),A0) = DD(δ(Det)∗ ⊗ β
∗(F/G),A0) = DD(β∗(F/G),A0).

By Proposition 2.2,DD(α∗(ev∗(L)),A0) = DD(ev∗(L),A) andDD(β∗(F/G),A0) =
DD(F/G,A0/G), thus

DD(ev∗(L),A) = DD(F/G,A0/G).

�

5. Relation to the caloron correspondence

We conclude this paper by providing another description of the lifting bundle
gerbe (ev∗(L),A) using the caloron correspondence [9].

5.1. The caloron bundle gerbe. The caloron correspondence is a natural bijec-
tion between isomorphism classes of G-bundles �P on a product manifold M × X

and G-bundles on M . Here G is the gauge group of an auxiliary principal G-bundle
Q on the compact connected manifold X and it is assumed that �P is of type Q,
meaning that the restriction �P |m is isomorphic to Q for all m ∈ M . In more detail,
starting with a G-bundle P the associated G-bundle �P on M ×X is defined by

�P = (P ×Q)/G.

Going in the other direction, applying the functor of G-equivariant maps Eq
G
(Q, ·)

to �P one shows that the resulting bundle is indeed a G-bundle on M .
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Noting that Map(A, U(1)) is the gauge group of the trivial bundle A×U(1), we
can apply the caloron transform to the abelian extension �G → G which produces a
circle bundle C over the fibre product A[2] = A× G,

C = (�G ×A× U(1))/Map(A, U(1)).

More importantly, the group law in �G induces a bundle gerbe multiplication on C.
To see this, regard �G as a left principal Map(A, U(1))-bundle and define the product

[ĝ1, A, z1] · [ĝ2, A
g1 , z2] = [ĝ1ĝ2, A, z1z2],

which on fibres takes the form

C(A,g1) ⊗ C(Ag1 ,g2)
∼= C(A,g1g2).

Changing representatives we get

[f1ĝ1, A, z1f1(A)] · [f2ĝ2, A
g1 , z2f2(A

g1)] = [f1ĝ1f2ĝ
−1
1 ĝ1ĝ2, A, z1z2f1(A)f2(A

g1)].

For the bundle gerbe multiplication to be well-defined we need that

(f1(ĝ1f2ĝ
−1
1 ))(A) = f1(A)f2(A

g1),

but this holds since the adjoint action of �G induces the left G-module structure
on Map(A, U(1)). Note that for the multiplication to work, it is essential that
Map(A, U(1)) acts on the left on �G. We call (C,A) the caloron bundle gerbe

2 and it
is not hard to see that (ev∗(L),A) is isomorphic to (C,A). Indeed if ĝ ∈ �G, A ∈ A

and z ∈ U(1), then an element of ev∗(L) is given by [(A, ĝ), z] = [(A, fĝ), f(A)z]
and an element of C is a triple [ĝ, A, z] = [fĝ, A, f(A)z]. The isomorphism is simply
given by

ev∗(L) = L×ev U(1) → C, [(A, ĝ), z] �→ [ĝ, A, z].

5.2. Conclusion. The point of view explained above lends itself naturally to the
study of the geometry of the FMS bundle gerbe in the following way. The strength
of the caloron correspondence is that it holds not only at the level of bundles but
also at the level of connections. More precisely, if �P → M×X is a G-bundle of type
Q with connection, then the corresponding G-bundle P → M inherits a connection
and also the additional data of a Higgs field. The Higgs field is a section of Q×G A,
where A is the space of connections on Q. The result from [9] implies that a pair
given by a connection and a Higgs field determines the complete geometry of P in
the sense that there is an equivalence of categories between G-bundles of type Q

with connection and G-bundles with connection and Higgs field. In particular, this
means that reciprocally one can construct a connection on the G-bundle given a
connection and Higgs field on the G-bundle.

An interesting open problem is to use this geometric caloron correspondence to
give a bundle gerbe connection and curving on the caloron bundle gerbe (and hence
the lifting bundle gerbe) using a connection and Higgs field on the abelian extension
�G → G. In particular, the group �G carries a natural connection α defined by [8]

α = Adĝ−1 pr(θ),

2Note that in a recent paper [2] the authors also use the term caloron bundle gerbe but
in a different context. That paper considers a G-bundle over M × S1 and uses the caloron
correspondence to get an LG-bundle over M , where LG is the loop group of G. The caloron
bundle gerbe in their setting is essentially the lifting bundle gerbe for the central extension of LG.



THE FMS ANOMALY AND LIFTING BUNDLE GERBES 15

where θ is the right Maurer-Cartan form on �G and pr denotes the projection onto
the Lie algebra of Map(A, U(1)).
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