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Classical (Hamiltonian) mechanics.

A collection A of “observables” like position, momentum, energy, etc.

These form a commutative algebra, i.e., we can add and multiply by scalars, and also
multiply elements together.

Think of smooth functions over some manifold M.

There is an additional structure: A Poisson bracket

A⊗ A→ A,

a, b 7→ {a, b}.

Dynamics is given by Hamilton’s equations: distinguished element H ∈ A, and the
system evolves in such a way that

da

dt
= {H, a}

for all a ∈ A.



Definition
A Poisson algebra is a commutative algebra A together with a Poisson bracket:

{·, ·} : A⊗ A→ A,

i.e.,
(1) {b, a} = −{a, b},
(2) {a, {b, c}} − {b, {a, c}} = {{a, b}, c},
(3) {a, bc} = b{a, c}+ a{b, c}.

The first and second axioms here are the axioms of a Lie algebra, i.e.,

Definition
A Lie algebra is a vector space g together with a Lie bracket:

[·, ·] : g⊗ g→ g,

i.e.,
I [b, a] = −[a, b],
I [a, [b, c]]− [b, [a, c]] = [[a, b], c].

So a Poisson algebra is a vector space which is at once a commutative algebra and a
Lie algebra, and the two structures interact according to the third axiom in the
definition.



Classical field theory.

Now the fundamental objects which evolve in time are fields. A field F has a value
F (x) at each point x in space.

For any field F in the theory, and any point x in space, we could observe the value of
F at x .

So our algebra contains an element LF ,x for each field F and each point x .

This is a lot of observables!

Poisson bracket
{LF ,x , LG ,y} =?



A new ingredient: locality.

The principle of locality says that fields at separate points x 6= y should evolve
independently.

So
{LF ,x , LG ,y} = 0 whenever x 6= y .

So
{LF ,x , LG ,y} = LK ,y δ(x − y)

where K is some other field of the theory.

Actually the truth is a little more complicated

{LF ,x , LG ,y} =
N∑
j=0

LK (j),y∂
j
y δ(x − y)

So we have an structure of the type

F ,G 7→ (K (0),K (1), . . . ,K (N)).



Collection A of fields.

Let’s write

{FλG} =
∑
j∈Z+

K (j) λ
j

j!
.

If G(y) ∈ A is a field, then its space derivative G ′(y) is another field. So A comes
equipped with an operation

T : A→ A, F 7→ F ′.

The operation T should satisfy the Leibniz rule, and (A,T ) is called a differential
algebra.

Now consider

{LF ,x , LG ′,y} =
∂

∂y

(
LK ,y δ(x − y)

)
= LK ′,y δ(x − y) + LK ,y∂y δ(x − y).

In terms of the λ-bracket this says

{FλTG} = (T + λ){FλG}.



Definition
A Poisson vertex algebra is a commutative algebra A together with a derivation T ,
and a λ-bracket

{aλb} =
∑
j≥0

λj

j!
a(j)b,

such that
I {aλTb} = (T + λ){aλb}.
I {bλa} = −{a−λ−Tb}.
I {aλ{bµc}} − {bµ{aλc}} = {{aλb}λ+µc}.
I {aλbc} = {aλb}c + b{aλc}.



Examples of Poisson vertex algebras...?

Easiest examples: arc spaces.



This is an algebra: C[x]

This is a differential algebra: C[x , x ′, x ′′, . . .] (the derivation T sends x(n) to x(n+1)).

More generally, let
E = C[x1, x2, . . . , xr ]/(f1, f2, . . . , fs).

The arc algebra of E is obtained by adjoining a derivation to E in the “freest possible
way”.

Explicitly

JE =
C[xi , x

′
i , x
′′
i , . . .]

(∂n(fj ))
.

Example: If E = C[x]/(x3) then

JE =
C[x , x ′, x ′′, . . .]

(x3, 3x2x ′, 6x(x ′)2 + 3x2x ′′, . . .)
.

Even for very simple algebras E , the arc algebra JE can be very complicated.



Structure of J(C[x]/(x3))

0 1 2 3 4 5 6 p

0 1
1
2 1
3 1
4 1 1
5 1 1
6 1 2
7 1 2

n 8 1 3 1
9 1 3 2

10 1 4 3
11 1 4 4
12 1 5 6 1
13 1 5 7 1
14 1 6 9 3
15 1 6 11 4
16 1 7 13 7
17 1 7 15 9
18 1 8 18 13 1



Now let E be a Poisson algebra, and let A = JE .

Theorem
A carries a unique structure of Poisson vertex algebra such that

Tx = x ′ and {aλb} = {a, b}

for x ∈ A and a, b ∈ E ⊂ A.

It’s clear the structure is unique: for example we must have

{aλb(n)} = (λ+ T )n{a, b},

and {·λ·} extends to products by the Leibniz axiom.



Two dimensional conformal (quantum) field theory.

In quantum theory the states of a system are vectors in a vector space (more precisely
a Hilbert space) V .

Now fields should be defined over the complex plane (or more generally over a
Riemann surface).

The physics should be independent of the choice of coordinates used to describe it.

In this case, invariant under conformal transformations. (Preserve angles.)
Infinitesimally (and locally) such a transformation is given by

z 7→ w = exp(εf (z)
d

dz
)z



The Lie algebra of local vector fields has a basis

zm
d

dz
, for m ∈ Z.

More conventionally

Ln = −zn+1 d

dz
, for n ∈ Z,

with commutation relation

[Lm, Ln] = (m − n)Lm+n.

This Lie algebra:

W =
⊕
n∈Z

CLn, [Lm, Ln] = (m − n)Lm+n,

is called the Witt algebra.

So our space of states V should carry a representation of W .



Representations of a group G :
Σ(g) : V → V

for each g ∈ G , such that
Σ(g1g2) = Σ(g1)Σ(g2).

Actually in quantum theory, the state of the system is described by a vector v ∈ V
(the Hilbert space), only up to rescaling. That is

v and αv

describe the same state.

So in principle “projective representations”

Σ(g1g2) = α(g1, g2)Σ(g1)Σ(g2),

where
α : G × G → C×

is a 2-cocycle, i.e.,

α(g1, g2)α(g1g2, g3) = α(g1, g2g3)α(g2, g3),

can appear.



A representation Σ of a Lie group G induces a representation σ of the Lie algebra
g = TeG .

That is, σ(X ) : V → V for each X ∈ g, such that

σ([X1,X2]) = σ(X1)σ(X2)− σ(X2)σ(X1).

If Σ is only a projective representation of G then σ is only a projective representation
of g, i.e.,

σ([X1,X2]) = σ(X1)σ(X2)− σ(X2)σ(X1) + ε(X1,X2)IV ,

where
ε : g× g→ C

is a 2-cocycle, i.e., satisfying

ε(X1, [X2,X3]) + ε(X2, [X3,X1]) + ε(X3, [X1,X2]) = 0.



Suppose V finite dimensional, and σ is a projective representation.

Then we could redefine

σ(X ) = σ(X )−
trV σ(X )

dim(V )
IV .

This is again a projective representation of g on V .

But by construction
trV σ(X ) = 0,

and so

0 = trV σ([X1,X2])

= trV (σ(X1)σ(X2)− σ(X2)σ(X1)) + trV ε(X1,X2)IV ,

0 = 0 + trV ε(X1,X2)IV ,

So ε = 0 and σ is a true representation of g.

Moral: on finite dimensional vector spaces, there are no nontrivial projective
representations of Lie algebras.



For infinite dimensional representations, things are different.

A projective representation of the Witt algebra

W =
⊕
n∈Z

CLn, [Lm, Ln] = (m − n)Lm+n

yields a true representation of the Virasoro algebra

L =
⊕
n∈Z

CLn ⊕ CC , [Lm, Ln] = (m − n)Lm+n + δm,−n
m3 −m

12
C , [C ,L] = 0.

In the state space V (assuming it is an irreducible representation of L), the element C
acts by a constant, called the central charge.



Vacuum representations of L.

Positive half L+ = CC ⊕
⊕

n≥−1 CLn.

Vacuum modules

V (c) = U(L)⊗U(L+) Cv

generated by v on which L+ acts via:

Cv = cv , and L≥−1v = 0.





Natural Z+-grading on V (c) with V (c)n spanned by the monomials

Lλ = L−λ1
L−λ2

. . . L−λk
v , deg =

∑
λi = n,

where

λ1 ≥ λ2 ≥ . . . ≥ λk > 1.

runs over the partitions λ of n into parts greater than 1.

Generating function (character) of V (c):

χV (c)(q) =
∞∑
n=0

dimV (c)nq
n =

∞∏
m=2

1

1− qm

= 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + 7q8 + 8q9 + 12q10 · · · .



Minimal Models: certain special values

c = cp,p′ = 1− 6
(p − p′)2

pp′
, p, p′ ≥ 2, gcd(p, p′) = 1,

at which a singular vector σp,p′ appears in degree s = (p − 1)(p′ − 1).





Singular vector generates the maximal nontrivial submodule.

Consider quotient L-module

Virp,p′ = V (c)/U(L)σp,p′ .

The character of Virp,p′ (determined by Feigin and Fuchs) is very interesting:

χVirp,p′
(q) =

1∏∞
n=1(1− qn)

∑
m∈Z

(
q

(2pp′m+p−p′)2−(p−p′)2

4pp′ − q
(2pp′m+p+p′)2−(p−p′)2

4pp′

)
.

Example:

χVir2,7
(q) = 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 5q8 + 6q9 + 8q10 + · · · .



Classical limits.

In classical physics observables commute with each other.

In quantum theory, famously, this is not so.

Already in our case we see, for example

L−2L−3v = (L−3L−2 + (L−2L−3 − L−3L−2)) v

= (L−3L−2 + [L−2, L−3])) v

= L−3L−2v + L−5v .

So the operators L−2 and L−3 do not commute!

In classical physics we would expect

L−2L−3v ≡ L−3L−2v

Note that the difference between the two sides is a shorter monomial. This holds in
general.



A paradigm for classical limits.

The vector space V = V (c) carries a filtration:

G0V ⊂ G1V ⊂ G2V ⊂ . . .

where

GpV = 〈Lλv | λ = (λ1, . . . , λk ), k ≤ p〉 .

Now
L−2L−3v and L−3L−2v lie in G2V

and
L−2L−3v ≡ L−3L−2v (mod G1V )



Associated graded of a filtered vector space

grG V =
V1

V0
⊕

V2

V1
⊕

V3

V2
⊕ · · ·

Then grG V is naturally a commutative algebra. (Product is union of partitions)

And A carries a derivation (Induced by L−1 : V → V ).

Let x = [L−2v ] ∈ A. Denote by A0 ⊂ A the subalgebra generated by x .

Then x ′ = [L−3], x ′′ = 2[L−4], etc.

So A is generated as a differential algebra by A0.



Associated graded of V = Vir2,7:

grpG Vn 0 1 2 3 4 5 6 p

0 1
1
2 1
3 1
4 1 1
5 1 1
6 1 2
7 1 2

n 8 1 3 1
9 1 3 2

10 1 4 3
11 1 4 4
12 1 5 6 1
13 1 5 7 1
14 1 6 9 3
15 1 6 11 4
16 1 7 13 7
17 1 7 15 9
18 1 8 18 13 1



For V = Vir2,7 we have A0 ∼= C[x]/(x3).

This is because

σ2,7 = L−2L−2L−2v + α1L−3L−3 + α2L−4L−2 + α3L−6

and so in the associated graded

[σ2,7] ≡ [L−2L−2L−2] = x3.



Comparing A with J(A0)

In general there is a surjection
π : J(A0)→ A.

In particular
π : J(C[x]/(x3))→ grG Vir2,7 .



Definition
We say V (and generally any vertex algebra V ) is classically free if the surjection

π : J(A0)→ A

is an isomorphism.



Proposition
The (2, 2s + 1) minimal models Vir2,2s+1 are classically free.

All other (p, q) minimal models are not classically free. However...

Proposition
The (3, 4) minimal model is as “close” to classically free as possible.



Let s = (p − 1)(q − 1)/2.

Idea: compare the graded dimensions of

J(C[x]/(xs)) and grG Virp,q .

For example for (p, q) = (2, 5) this is the Rogers-Ramanujan identity:

∑
k∈Z+

qk
2+k

(q)k
=

1

(q)∞

∑
m∈Z

(
q

(20m+3)2−9
40 − q

(20m+7)2−9
40

)
.

Notation:

(q)∞ =
∞∏
m=1

(1− qm), and (q)n =
n∏

m=1

(1− qm).



The Ising model: (p, p′) = (3, 4). Central charge c = 1/2.

Singular vector in V (1/2):

σ3,4 = L3
−2 +

93

64
L2
−3 −

27

16
L−6 −

33

8
L−4L−2.

So
π : J(C[x]/(x3))� gr Vir3,4 .



Compare

χJ(C[x]/(x3))(q) = 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 5q8 + 6q9 + 8q10 + 9q11 + · · ·

χVir3,4
(q) = 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 5q8 + 5q9 + 7q10 + 8q11 + · · · .

Hence ker π contains a 1-dimensional component in degree 9.

By computer calculation we find that this vector is

b = L−5L−2L−2 + 6L−4L−3L−2.

Write I = J(a, b) the ideal in

JC[x] = C[L−2, L−3, L−4, . . .]

generated by a = L3
−2, b and all their derivatives. Now have

π′ : JC[x]/I � gr Vir3,4 .



Theorem (Andrews, vE, Heluani, 2020)
The morphism π′ is an isomorphism.

Proof follows from

Theorem (Andrews, vE, Heluani, 2020)

∞∑
k1,k2=0

q4k2
1 +3k1k2+k2

2

(q)k1
(q)k2

(
1− qk1 + qk1+k2

)
=

1

(q)∞

∑
m∈Z

(
q

(24m+1)2−1
48 − q

(24m+7)2−1
48

)
.


