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Classical (Hamiltonian) mechanics.
A collection A of “observables” like position, momentum, energy, etc.

These form a commutative algebra, i.e., we can add and multiply by scalars, and also
multiply elements together.

Think of smooth functions over some manifold M.
There is an additional structure: A Poisson bracket

ARA — A,
a,b— {a, b}.

Dynamics is given by Hamilton's equations: distinguished element H € A, and the
system evolves in such a way that

da

— ={H,a

g~ Hal

for all a € A.



Definition
A Poisson algebra is a commutative algebra A together with a Poisson bracket:

{,}:AQA = A,

ie.,
(1) {b7 a} = _{37 b}v

(2) {av {b7 C}} - {b7 {37 C}} = {{37 b}7 C}'
(3) {a, bc} = b{a,c} + a{b, c}.

The first and second axioms here are the axioms of a Lie algebra, i.e.,

Definition

A Lie algebra is a vector space g together with a Lie bracket:
[]:g®@g—g,

> [b,a] = —[a, b],
> [31 [b7 C]] - [bv [av C]] = [[37 b]7 C]'

So a Poisson algebra is a vector space which is at once a commutative algebra and a
Lie algebra, and the two structures interact according to the third axiom in the
definition.



Classical field theory.

Now the fundamental objects which evolve in time are fields. A field F has a value
F(x) at each point x in space.

For any field F in the theory, and any point x in space, we could observe the value of
F at x.

So our algebra contains an element Lg , for each field F and each point x.
This is a lot of observables!

Poisson bracket
{LF,Xv LG,y} =?



A new ingredient: locality.

The principle of locality says that fields at separate points x # y should evolve
independently.

So
{LFx, LGy} =0 whenever x # y.
So
{Lrx; Loy}t = Liyd(x —y)
where K is some other field of the theory.

Actually the truth is a little more complicated

N
{Lr Loy} =D Lyw ,&0(x —y)
Jj=0

So we have an structure of the type

F,Gw— (KO kO kM),

)



Collection A of fields.

Let's write

{FAG}=>_ KU))\—j.

il
JELy >

If G(y) € A'is a field, then its space derivative G’(y) is another field. So A comes
equipped with an operation

T:A= A, F F'.

The operation T should satisfy the Leibniz rule, and (A, T) is called a differential
algebra.

Now consider
{LF,X’ LG’,y} = 2 (LK,yé(X - y))
Oy
= Lgr,6(x —y)+ Lk, 0y0(x — y).
In terms of the A\-bracket this says

{FATG} = (T + A\){F\G}.



Definition
A Poisson vertex algebra is a commutative algebra A together with a derivation T,
and a A-bracket )
M
{axb} =3 ke
j>0 7"
such that
> {axTb} = (T + N){arb}.
> {bra} = —{a_x_7b}.
> {ax{buct} — {bu{arct} = {{axbirtpuch
» {aybc} = {anb}c + b{axc}.



Examples of Poisson vertex algebras...?

Easiest examples: arc spaces.



This is an algebra: C[x]
This is a differential algebra: C[x, x’,x"”,...] (the derivation T sends x(") to x("t1)),

More generally, let
E=Clxi,x,....x]/(fi,f2;..., f).

The arc algebra of E is obtained by adjoining a derivation to E in the “freest possible

way" .

Explicitly

JE — Clxi, x!, x!", .. ]
(07(1)))

Example: If E = C[x]/(x%) then

Clx,x",x",...]

JE = .
(x3,3x2x7,6x(x")? 4+ 3x2x",..".)

Even for very simple algebras E, the arc algebra JE can be very complicated.



Structure of J(C[x]/(x3))
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Now let E be a Poisson algebra, and let A = JE.

Theorem
A carries a unique structure of Poisson vertex algebra such that

Tx=x" and  {axb} ={a, b}
forx € A and a,b€ E C A.
It's clear the structure is unique: for example we must have
{axb("} = (A + T)"{a, b},

and {-)-} extends to products by the Leibniz axiom.



Two dimensional conformal (quantum) field theory.

In quantum theory the states of a system are vectors in a vector space (more precisely
a Hilbert space) V.

Now fields should be defined over the complex plane (or more generally over a
Riemann surface).

The physics should be independent of the choice of coordinates used to describe it.

In this case, invariant under conformal transformations. (Preserve angles.)
Infinitesimally (and locally) such a transformation is given by

zZ—=w= exp(af(z)di)z
z



The Lie algebra of local vector fields has a basis

d
z"’d—, for m € Z.
z
More conventionally
d
L,= —z”+1d—, forne Z,
z
with commutation relation
[Lm, Ln] = (m — n)Lmtn.

This Lie algebra:
W =P CL,, [Lm, Ln] = (m — n)Lmtn,
neZ
is called the Witt algebra.

So our space of states V should carry a representation of W.



Representations of a group G:
Y(g): V>V

for each g € G, such that
I(g182) = X(g1)X(g2)-

Actually in quantum theory, the state of the system is described by a vector v € V
(the Hilbert space), only up to rescaling. That is

v and av
describe the same state.
So in principle “projective representations”
Y (g182) = (g1, &)%(e1)X(&2),

where
a:GxG—C*

is a 2-cocycle, i.e.,
a(g, g2)(g182, 83) = g1, 8283) (82, 83),

can appear.



A representation X of a Lie group G induces a representation o of the Lie algebra
g= TG.

That is, o(X) : V — V for each X € g, such that

a([X1, X2]) = a(X1)a(X2) — o(X2)o(X1).

If X is only a projective representation of G then o is only a projective representation
of g, i.e.,
o([X1, X2]) = o(X1)o(X2) — o(X2)o(X1) + (X1, X2) 1y,

where
e:gxg—C

is a 2-cocycle, i.e., satisfying

E(Xl, [)(27 X3]) =+ E(XQ, [)(37 Xl]) + E(X3, [Xl,XQ]) =0.



Suppose V finite dimensional, and o is a projective representation.

Then we could redefine
try o(X)

dim(v) V"

This is again a projective representation of g on V.

F(X) = o(X) —

But by construction
try o(X) =0,

and so

0 = try 7([X1, X2])

=try (E(Xl)E(XQ) — E(XQ)E(Xl)) + try E(Xl7 XQ)I\/7

0 =0+ try &(X1, X2)lv,

So € =0 and 7 is a true representation of g.

Moral: on finite dimensional vector spaces, there are no nontrivial projective

representations of Lie algebras.



For infinite dimensional representations, things are different.
A projective representation of the Witt algebra
W=EPCLy,  [Lm,La]=(m—n)Lmin
nez

yields a true representation of the Virasoro algebra

3 _
L=CL®CC,  [Lm,Lal = (m— n)limin+ 6m—n—nC,  [C,L]=0.

neZ 12

In the state space V (assuming it is an irreducible representation of £), the element C
acts by a constant, called the central charge.



Vacuum representations of L.
Positive half £y = CC & @,~_; CLy.

Vacuum modules
V(c) = U(L) ®y(c,) Cv
generated by v on which £ acts via:

Cv=cv, and L>_;v=0.
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Natural Z,-grading on V/(c) with V(c), spanned by the monomials
Ly=L_xL_x,...L_xv, deg=> X\ =n,
where
AM>A> . > > 1

runs over the partitions A\ of n into parts greater than 1.

Generating function (character) of V/(c¢):

Xv(e)(@) =Y _dim V(c)aq" = [ ] T om
n=0 m=2 q

— 14+ P +2¢* +20° +4q° + 497 + 76 + 8q° + 12410 . ..



Minimal Models: certain special values

C = C

(p—p')?
N N

pp

r=1-6 ’ P7P/Z27 ng(p7p/):17

at which a singular vector o, ,» appears in degree s = (p — 1)(p’ — 1).



{1

submedule



Singular vector generates the maximal nontrivial submodule.

Consider quotient £-module

Virp’p/ = V(C)/U(E)O'p’p/.

The character of Vir,, ,; (determined by Feigin and Fuchs) is very interesting:

1 (pr’rrﬁrp—p’),2 —(p—p")? (pr'm+p+p/)/2 —(p—p")?
. - E 4pp — 4pp
XVlrpvp/ (q) ;..;1(1 — C/n) q q

meZ

Example:

XVinn7(@) = 1+ a* +¢* +2¢* +2¢° +3¢° +3q" +5¢° +6¢° + 8¢ +- - .



Classical limits.
In classical physics observables commute with each other.
In quantum theory, famously, this is not so.
Already in our case we see, for example
L oL _3v= (L,3L,2 + (L,2L73 — L,3L,2)) v

=(L3lo+[Lo,L3])v
=L 3L v+ L _5v.

So the operators L_5 and L_3 do not commute!

In classical physics we would expect

L,2L,3V = L,3L,2V

Note that the difference between the two sides is a shorter monomial. This holds in
general.



A paradigm for classical limits.

The vector space V = V/(c¢) carries a filtration:

GV CGVCGVC...

where
GPVZ <L)\V ‘ A= ()‘17"'7Ak)7 k§p>
Now
L,2L73V and L,3L,2V lie in G2V
and

L_2L_3V = L_3L_2V (mod G1 V)



Associated graded of a filtered vector space

Vi Vo V3
V = — P — “ee
grg Vo 5> Vi [S>) Vs &b
Then gre V is naturally a commutative algebra. (Product is union of partitions)
And A carries a derivation (Induced by L_; : V — V).
Let x = [L_ov] € A. Denote by A C A the subalgebra generated by x.
Then x’ = [L_3], x" = 2[L_4], etc.

So A is generated as a differential algebra by A°.



Associated graded of V = Viry 7:

gre Vo | O 1 2 3 4
01
0 13
2 ™1
3 3) 1
W e
5 1 13,2
6 1 2
7 1 2

n 8 1 3 1(4,2,2)

9 1 3 2
10 1 4 3
11 1 4 4
12 1 5 6 1
13 1 5 7 1
14 1 6 9 3
15 1 6 11 4
16 1 7 13 7
17 1 7 15 9
18 1 8 18 13




For V = Vira,7 we have A® = C[x]/(x3).

This is because
o27=L ol oL sv+ail 3L 3+axl 4L >+ azl g
and so in the associated graded

[0'2,7] = [L72L72L72] = X3.



Comparing A with J(A?)
In general there is a surjection
7 J(A®) — A.

In particular
7 J(C[x]/(x®)) — gr¢ Vira,7 .



Definition
We say V (and generally any vertex algebra V) is classically free if the surjection

7 J(AY) = A

is an isomorphism.



Proposition
The (2,2s + 1) minimal models Vir 2511 are classically free.
All other (p, g) minimal models are not classically free. However...

Proposition

The (3,4) minimal model is as “close” to classically free as possible.



Let s=(p—1)(qg —1)/2.

Idea: compare the graded dimensions of

J(C[x]/(x®)) and grg Virp g -
For example for (p, q) = (2,5) this is the Rogers-Ramanujan identity:

K24k 20m+3)2 —9 20m+7)2 —9
Zq _ 1 Z(q( 12 7q( 47 )

vz, @k (@) 22

Notation:

(@ =] -a™, and (@) =]~ q").
m=1

m=1



The Ising model: (p, p’) = (3,4). Central charge ¢ = 1/2.
Singular vector in V/(1/2):
93 27 33

03,4 = L:ig + aL273 — RL_ﬁ — gL—4L—2-

So
72 J(C[x]/(x3)) — grVirs 4.



Compare

Xuepd/e)(@) = 1+ 6 +@° + 24" +2¢° +36° +3¢" +5¢° + 64° + 8" + 9¢™ + - -

Xvirs 4 (@) = 1+ 6* + ¢ +2¢* +2¢° +3¢° +3q" +5¢° +5¢° +7¢'° +8¢" +--- .

Hence ker w contains a 1-dimensional component in degree 9.

By computer calculation we find that this vector is
b=L 5L oL _»+6L_4L 3L 5.
Write | = J(a, b) the ideal in
JC[x] =C[L_o,L_3,L_4,..]
generated by a = Li2, b and all their derivatives. Now have

7'+ JC[x]/I — grVirza.



Theorem (Andrews, vE, Heluani, 2020)

The morphism 7’ is an isomorphism.

Proof follows from

Theorem (Andrews, vE, Heluani, 2020)

oo q4k12+3k1 ko+k3

o (Dr @)k

1 (24m+1)2—1 (24m+7)2—1
-z (q =t e ) ,
oo

meZ

(1 _ qkl + qk1+k2>




