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Poisson and Stacks

Lie groupoids

differentiation

vv

Morita equivalence

))
Lie algebroids

A 7→A∗

��

Differentiable stacks

Poisson manifolds

P 7→T∗P

OO

Dirac manifolds

∩
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Two problems

Linearization of Poisson structures
A Poisson structure induces a Lie algebroid
Integrate it to a Lie groupoid
Linearize the Lie groupoid
And linearization is Morita invariant!

⇒ simpler proof, generalization, rigidity

Desingularization of Dirac manifolds
Poisson manifolds ARE symplectic Lie algebroids
ω ∈ Ω2(A) IM, ω# : TA→ T ∗A non-degenerate, ω closed
VB-algebroids are homotopy category
Dirac manifolds ARE symplectic up to homotopy Lie algebroids

⇒ revisiting pre-symplectic groupoids BCWZ
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What is a stack?

Stacks are categorified spaces introduced by Grothendieck in 1959.

A manifold M yields a representable functor Manifolds◦
Hom(−,M)−−−−−−→ Sets

This functor is locally determined, for a function X → M can be
reconstructed out of its restrictions Ui → M to an open over {Ui}i .

A stack F is a locally determined functor Manifolds◦
F−→ Groupoids

Yoneda: F (X ) = {Hom(−,X )→ F}

Paradigmatic Example
M manifold  VB(M) vector bundles over M + isomorphisms
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What is a differentiable stack?

A stack F sets a classification problem.

M is the universal / moduli / classifying space for F if Hom(−,M) ∼= F
It does not exists in general!

A presentation is a surjective submersion Hom(−,M)→ F .

F is a differentiable stack if it admits a presentation.

Examples
Manifolds, orbifolds, orbit spaces of actions, leaf spaces of foliations,
finite dimensional models for classifying spaces, ...

Differential geometry over singular quotients!
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Groupoids from the stack viewpoint

I Given G ⇒ M, the presheaf of groupoids FG is a prestack.

FG (X ) = (hom(X ,G )⇒ hom(X ,M))

Its associated stack F̃G can be presented as M → F̃G .

I Given F a smooth stack and M → F a presentation of it, we
construct a Lie groupoid by

M ×F M ⇒ M.

Theorem (Folklore)
A Lie groupoid is the same as a differentiable stack with a presentation.
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Stacks from the groupoid viewpoint

Every Lie groupoid has an underlying differentiable stack

G ⇒ M 7→ [M/G ]

When two groupoids have the same differentiable stack?
How to define stacks within the framework of Lie groupoids?

Morita equivalences

Theorem (Folklore)
A differentiable stack is the same as a Lie groupoid up to Morita
equivalence.

Morita equivalences within Lie gpd theory

{
principal bibundles

Morita morphisms
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2. Morita equivalences
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Recalling Lie groupoids

A Lie groupoid G ⇒ M consists of:

I manifolds G ,M and surjective submersions s, t : G → M,

I a partial associative multiplication with units and inverses

m : G ×M G → G (z
h←− y , y

g←− x) 7→ (z
hg←− x)

Given G ⇒ M and x ∈ M we have the isotropy group Gx = {x ←− x} and
the orbit Ox = {y |∃y ←− x} ⊂ M. There is a normal representation
Gx y NxO = TxM/TxO. The orbit space is M/G .

Examples
Manifolds, Lie groups, Group actions, Submersions, Foliations, Principal
bundles, pseudo-groups, flows, etc etc
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Morita morphisms

A Lie groupoid morphism φ : (G ⇒ M)
∼−→ (G ′ ⇒ M ′) consists of maps

G → G ′, M → M ′ preserving source, target, multiplication and units.

I φ is fully faithful if it induces a good pullback of manifolds,

G
φ−→ G ′

↓ ↓
M ×M

φ×φ−−−→ M ′ ×M ′

I φ is essentially surjective if the following is a surjective submersion.

tπ1 : G ′ ×M′ M → M ′ (x ′
g ′←− φ(x), x) 7→ x ′

I φ is a Morita if it is both FF and ES.

There may not exists a quasi-inverse!
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An example

A submersion f : M → B yields a Lie groupoid M ×B M ⇒ M with an

arrow y
(y ,x)←−−− x iff f (x) = f (y). The projection yields a morphism

φ : (M ×B M ⇒ M)→ (B ⇒ B)

Then:

I φ isomorphism iff f diffeomorphism;

I φ equivalence iff f admits a global section;

I φ Morita iff f surjective.

Particular case: M manifold, {Ui}i open cover,
∐

Ui → M surjective
submersion. The Cech groupoid has objects (x , i) with x ∈ Ui and arrows
(x , j , i) with x ∈ Uji . ∐

Uji ⇒
∐

Ui

13 / 40



Characterization

Intuition: Two groupoids are linked by Morita maps if they have the
same transverse geometry.

In fact, we have:

Theorem (dH, 2013)
φ : (G ⇒ M)

∼−→ (G ′ ⇒ M ′) Morita morphism if and only if:

I φ∗ : M/G
∼=−→ M ′/G ′ homeomorphism,

I φx : Gx
∼=−→ G ′x′ isomorphism for all x, and

I dxφ : NxO
∼=−→ Nx′O

′ isomorphism for all x.

The family of Morita maps is a saturated multiplicative system.
 good properties for localization (calculus of fractions).
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Morita equivalence

Two Lie groupoids G ⇒ M, G ′ ⇒ M ′ are Morita equivalent ∼ if there is
a third one G̃ ⇒ M̃ and Morita morphisms:

(G ⇒ M)
α←−
∼

(G̃ ⇒ M̃)
β−→
∼

(G ′ ⇒ M ′)

Example

I Morita equivalent to a manifold iff submersion gpd

I Morita equivalent to a Lie group iff transitive groupoid

I Mon and Hol are not Morita equivalent in general!

Orbifold − > many orbifold charts − > Morita equivalent Lie groupoids
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Generalized maps

A generalized map β/α : G → G ′ of Lie groupoids is the class of a
fraction β/α with α Morita:

(G ⇒ M)
α←−
∼

(G̃ ⇒ M̃)
β−→(G ′ ⇒ M ′)

Two fractions β/α, β′/α′ are equivalent if they fit in a diagram
commutative up to isom.

Fractions can be composed (HFP) and yield a well-defined category:

Differentiable stacks

β/α invertible ⇐⇒ β Morita morphism ⇐⇒ β, α Morita equivalence
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Relation with cocycles

G ⇒ M Lie groupoid, U = {Ui} open cover of M. The Cech fibration is
a Morita morphism.(∐

G (Uj ,Ui )⇒
∐

Ui

)
πU−−→ (G ⇒ M)

They generate all the others: ∀α Morita ∃ U , σ st

G ′

α

��
GU

σ

>>

πU

// G

Proposition
Every generalized map can be defined as by a cocycle β/πU .

Example
Fractions (M ⇒ M)← (

∐
Uji ⇒

∐
Ui )→ (G ⇒ ∗) are G -cocycles

Generalized maps M 99K G are principal bundles.
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Cohomology

Given G ⇒ M Lie gpd, its nerve (NGk , di , sk) is the simplicial manifold

NGk = {xk
gk←− xk−1

gk−1←−−− · · · g2←− x1
g1←− x0}

I Faces di : NGk → NGk−1 compose two arrows (or forget one)

I Degeneracies sj : NGk → NGk+1 insert an identity

The cohomology is Hk(G ) = Hk(⊕p+q=kΩp(NGq), dDR ±
∑

i (−1)id∗i )

... ... ... ...

Ω2(M) //

OO

Ω2(G) //

OO

Ω2(G ×M G) //

OO

...

Ω1(M) //

OO

Ω1(G) //

OO

Ω1(G ×M G) //

OO

...

Ω0(M) //

OO

Ω0(G) //

OO

Ω0(G ×M G) //

OO

...

Proposition
Hk(G) is Morita invariant (⇒ cohomology of stacks!)
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Representations

Given G ⇒ M a Lie groupoid and E → M a vector bundle, a
representation (G ⇒ M) y (E → M) is a map ρ : G ×M E → E ,
ρ(g , v) = ρg (v), such that ρhρg = ρhg , ρ1x = idEx and ρg linear.

y
g←− x  ρg : Ex → Ey

Examples

I Vector bundles (M ⇒ M) and group representations (K ⇒ ∗)
I Equivariant vetor bundles (K nM ⇒ M)

I Vector bundle + descent datum (M ×B M ⇒ M)

(G ⇒ M) y (E → M) 
 (G ⇒ M)→ (GL(E )⇒ M)

Proposition
Representations are a Morita invariant (⇒ vector bundles over stacks?)
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3. Linearization and metrics
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Linearization of Poisson manifolds

(M, π) Poisson, x ∈ M a zero.
Then T ∗x M is Lie algebra with [v ,w ] = π(ṽ , w̃), and TxM linear Poisson.
(M, π) linearizable around x if it is locally equivalent to (TxM, {, }lin).

Conn’s Theorem
(M, π) Poisson, x ∈ M a zero, TxM

∗ semisimple of compact type, then
π is linearizable around x .

I Geometric proof (Crainic-Fernandes, Annals 2011)

I Key: linearization of Lie groupoids Weinstein 2002, Zung 2004

I New approach to lin. of groupoids: dH-Fernandes (2014-2018)

I Linearization around a symplectic leaf: Vorobiev (2006 ), Crainic-
Marcut (2012)
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Riemannian groupoids

f : M → N submersion. A metric ηM on M is f -transverse if for all x , x ′

in the same fiber F there is an isometry NxF ∼= TyN ∼= Nx′F .

ηM is f -transverse ⇔ ∃ ηN making f a Riemannian submersion

Definition [dH-Fernandes]
A groupoid metric on G ⇒ M is a metric η(2) on

G (2) = G ×M G = {z h←− y
g←− x} = {commutative triangles}

such that:

I η(2) is invariant under S3 y G (2), and

I η(2) is transverse to m : G (2) → G .

This extends/corrects the previous definitions [Gallego et al, 1989],
[Glickenstein, 2007] and [Pflaum et al, 2011].
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A system of metrics

Proposition
Given G ⇒ M and η(2), there exist metrics η(1) on G and η(0) on M such
that:

I G (2)

π1 //
m //
π2

//G
s //
t
//M are Riemannian submersions,

I i : G → G is an isometry,

I u : M → G is totally geodesic, and

I the normal representations Gx y NxO are by isometries.

Examples
Manifolds , submersions , Lie groups , transitive groupoids , action
groupoids of isometric actions , etal groupoids with orthogonal effect ,
orbifolds , etc etc
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Proper groupoids

Recall G ⇒ M is proper if (s, t) : G → M ×M is a proper map.
This extends the notion of proper action.
Being proper is Morita invariant!!

Proper groupoids � Separated differentiable stacks

If G ⇒ M is proper then:

I the orbit space M/G is Hausdorff,

I the isotropy groups Gx are compact for all x .

Proper groupoids admit Haar systems
(generalization of Haar measures on groups).
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Construction of metrics

Theorem (dH-Fernandes, 2018)
Every proper Lie groupoid admits a metric.

Sketch of proof.
Averaging argument.
We see G (2) as a quotient of {(g1, g2, g3)|s(g1) = s(g2) = s(g3)}:

•

• •

g1

__

g2oo

g3��
•

7→

•

•

g1g
−1
2

OO

•

g2g
−1
3

OO

There are three commuting free proper actions G y G (2). They induce
quasi-actions G y TG (2). Pick any metric on G (2) and average it with
respect to the three actions.
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Linearization by exponential flows

In a Riemannian submersion p : (M, ηM)→ (N, ηN) there is a
correspondence between horizontal geodesics on M and geodesics on N.

Theorem (Ehresmann)
A proper submersion p : M → N is locally trivial.

Proof.
Endow M with a transverse metric, making p a Riemannian submersion.
Then use the exponential flow.

F × Rn

π

��

∼= NF = TF⊥
exp //

dp

��

M

p

��
Rn ∼= TyN

exp // N

26 / 40



Linearization of groupoids

Theorem (dH-Fernandes, 2018)
A Riemannian groupoid (G ⇒ M, η(2)) is linearizable around a saturated
embedded submanifold S ⊂ M.

Sketch of proof.

NG
(2)
S

//
//
//

exp

��

NGS
//
//

exp

��

NS

exp

��
G (2)

//
//
//G

//
//M

I Infinitesimal linearization.

I If G proper  linearization,

I If G is s-proper then  strict linearization.

Simpler proof and stronger version of Linearization Theorem [Weinstein,
2001], [Zung, 2004], [Crainic-Struchiner, 2011].
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Morita invariance: metrics on stacks

Two metrics on G ⇒ M are equivalent if they induce the same metric on
NxO for all x ∈ M.

Theorem (dH-Fernandes, 2019)
Equivalence classes of metrics is a Morita invariant of G ⇒ M.
(⇒ metrics on stacks!)

A Morita morphism φ : (G ⇒ M, η(2))→ (G ′ ⇒ M ′, η(2)′) is isometric if
it induces isometries NxO → Nx′O

′.

Pullback/pushforward of metrics
Given φ : (G ⇒ M)→ (G ′ ⇒ M ′) Morita map and a metric on G ′/G ,
there exists a metric on G/G ′ for which φ is isometric.

Moving forward: Stacky Hopf-Rinow Thm [dH, de Melo]
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4. Vector bundles over stacks
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VB-groupoids

A VB-groupoid is a diagram of Lie groupoids and vector bundles

Γ ⇒ E
↓ ↓
G ⇒ M

Hidden piece of data: the core C = ker(s : Γ|M → E ).

Γ|M ⇒ E 

Dold−Kan

C
∂−→ E

Core sequence: 0→ t∗C → Γ→ s∗E → 0 plays a key role in duality.

Theorem (Bursztyn-Cabrera-dH 2014)
A VB-groupoid is the same as a regular action (R, ·) y (Γ⇒ E ).

Useful in differentiation and integration: VB-groupoids � VB-algebroids

30 / 40



Examples of VB-groupoids

Examples

I The tangent groupoid TG ⇒ TM has core AG ;

I The cotangent groupoid T ∗G ⇒ A∗G has core T ∗M.

Proposition
A representation is the same as a VB-groupoid with trivial core:

(G ⇒ M) y (E → M) �
G ×M E ⇒ E
↓ ↓
G ⇒ M

core 0M

If φ : G ′ → G Morita then φ∗ : Rep(G )→ Rep(G ′) equivalence.

Problem
Are VB-groupoids a Morita invariant?
What is the geometry induced by VB-groupoids at the level of stacks?
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RUTH

A representation up to homotopy (G ⇒ M) y (C ⊕ E → M) is

I ∂ : C → E a linear map;

I ρ : G y (C ⊕ E ) a pseudo-representation;

I γ2
h,g : Ex → Cz a chain homotopy between ρhg and ρhρg ;

satisfying certain coherence axioms.

Theorem (dH, Stefani 2017)
A ruth (G ⇒ M) y (C ⊕ E → M) is the same as a pseudo-functor into
the general linear 2-groupoid

(G ⇒ M) 99K GL(C ⊕ E → M)
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Grothendieck correspondence

Theorem (GraciaSaz-Mehta 2010, dH-Ortiz 2016)
Correspondence between RUTHs (G ⇒ M) y (C ⊕ E → M) and
VB-groupoids (Γ⇒ E )→ (G ⇒ M).

A (linear) cleavage Σ on a VB-groupoid Γ⇒ E is a section for Γ→ s∗E .

w v
Σ(g ,v)oo

y x
goo

Σ unital if Id ⊂ Σ and flat if ΣΣ ⊂ Σ.

From VB-groupoids to RUTH: Pick unital cleavage and define:

I ∂ is the target map;

I ρ pushes forward by using the cleavage;

I γ curvature of Σ.
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Linear Morita morphisms

The fiber of a VB-groupoid Γ⇒ E over G ⇒ M at x ∈ M is a 2-vect
Γx ⇒ E x . We have exact sequences

I 1→ Γx
e → Γe →

L99
Gx 99K 1

I 0→ Tu(e)Γ
x
e → Tu(e)Γe →

L99
TxGx

∂ (0)−−−→ NeEx → NeE →
L99

NxM → 0

Theorem (dH-Ortiz 2016)
φ : (Γ⇒ E )→ (Γ′ ⇒ E ′) linear Morita iff ϕ Morita and φx Morita for all
x:

Γ⇒ E φ

++φ̄ ��
ϕ∗Γ′ ⇒ ϕ∗E ′ // Γ′ ⇒ E ′

G ⇒ M
ϕ
// G ′ ⇒ M ′

Proof.
Char. of Morita maps + sequences above + 5 lemma.
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The derived category of VB-groupoids

Question: If φ : G → G ′ Morita then φ∗ : VB(G ′)
∼−→ VB(G )? A: No!

E × E ⇒ E @

S1 × S1 ⇒ S1 → ∗⇒ ∗

Given G , VB[G ] = VB(G )[Morita−1] derived category of VB-groupoids.
Fact: Every linear epimorphic Morita map over G admits a section.

Γ1 ×Γ2 (Γ2)I

φ̃=τπ2

$$
Γ1

φ
//

ι̃=(id,µφ)
::

Γ2

Using canonical factorization we conclude Γ1 ∼ Γ2 iff there are acyclic
Ω1,Ω2 such that Γ1 ⊕ Ω1

∼= Γ2 ⊕ Ω2.
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Morita invariance of VB-groupoids

Theorem (dH-Ortiz 2018)
φ : G ′ → G Morita then φ∗ : VB[G ]→ VB[G ′] equivalence.

I Notion of 2-vector bundle over differentiable stacks.

Proof.

Step 1:

G ′U′ //

φU

��

G ′

φ

��
GU //

σ

>>

G

Reduction to the case of Cech fibration

Step 2: Show it is full by averaging with partition of 1

π∗U (Γ)
π //

ψ

��

Γ

φ

��
π∗U (Γ′)

π′ // Γ′Step 3: Show faithful by averaging homotopies.

Step 4: Essentially surjective comes from strictification of cleavage.
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VB-cohomology

A VB-groupoid Γ→ G has VB-cohomology H•VB(Γ) obtained by
considering linear cochains φ that are projectable:

i) φ(v1, . . . , vp−1, 0g ) = 0, and

ii) φ(v1, . . . , vp0g ) = φ(v1, . . . , vp).

Combining Morita invariance of H•(Γ) (Crainic 2001) and a section for
inclusion C•lin(Γ)→ C•(Γ) (Cabrera-Drummond 2016) we get:

Proposition
Morita invariance of VB-cohomology.

⇒ Deformation cohomology of Lie groupoids is a Morita invariant.

In progress: Morita invariance of cohomology with coefficients in RUTH
[dH, Studzinski, Ortiz]
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Dirac structures

A Dirac structure on M is L ⊆ TM ⊕ T ∗M such that:

I Lagrangian for
〈
(X , α), (Y , β)

〉
= α(Y ) + β(X ), and

I involutive for
[[

(X , α)(Y , β)
]]

= ([X ,Y ],LXβ − iY dα).

Examples
Poisson structures, pre-symplectic structures, foliations, etc

Proposition
A Dirac structure L over M is the same as:

I A Lie algebroid A;

I a closed IM-2-form Λ ∈ Ω2(A);

such that Λ# : TA→ T ∗A quasi-isomorphism of VB-algebroids.
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Integrating Dirac structures

Globlal counter-part of Dirac structures:
Pre-symplectic groupoids (Bursztyn-Crainic-Weinstein-Zhu 2004).

I G ⇒ M with dim(G ) = 2dim(M);

I a closed multiplicative 2-form ω ∈ Ω2(G )

such that ds(x) ∩ dt(x) ∩ kerωx = {0}.

Proposition
G ⇒ M Lie groupoid, ω closed 2-form on G . Then (G , ω) pre-symplectic
groupoid iff ω# : (TG ⇒ TM)→ (T ∗G ⇒ A∗) linear Morita map.

Corollary
Simple proof of integration of Dirac structures: (i) multiplicative forms
correspond to IM forms + (ii) core sequence is preserved.

39 / 40



Thanks!
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