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Poisson and Stacks
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Two problems

Linearization of Poisson structures

A Poisson structure induces a Lie algebroid
Integrate it to a Lie groupoid

Linearize the Lie groupoid

And linearization is Morita invariant!

= simpler proof, generalization, rigidity

Desingularization of Dirac manifolds

Poisson manifolds ARE symplectic Lie algebroids

w € Q2(A) IM, w” : TA — T*A non-degenerate, w closed
VB-algebroids are homotopy category

Dirac manifolds ARE symplectic up to homotopy Lie algebroids

=> revisiting pre-symplectic groupoids BCWZ
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What is a stack?

Stacks are categorified spaces introduced by Grothendieck in 1959.

A manifold M yields a representable functor Manifolds® w Sets

This functor is locally determined, for a function X — M can be
reconstructed out of its restrictions U; — M to an open over {U;};.

A stack F is a locally determined functor Manifolds® LR Groupoids

| Yoneda: F(X) = {Hom(—,X) — F}|

Paradigmatic Example
M manifold ~» VB(M) vector bundles over M + isomorphisms
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What is a differentiable stack?

A stack F sets a classification problem.

M is the universal / moduli / classifying space for F if Hom(—, M) = F
It does not exists in general!

A presentation is a surjective submersion Hom(—, M) — F.

F is a differentiable stack if it admits a presentation.

Examples
Manifolds, orbifolds, orbit spaces of actions, leaf spaces of foliations,
finite dimensional models for classifying spaces, ...

Differential geometry over singular quotients!
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Groupoids from the stack viewpoint

» Given G =% M, the presheaf of groupoids F¢ is a prestack.
Fe(X) = (hom(X, G) = hom(X, M))

Its associated stack /:_G can be presented as M — I-:(;.

» Given F a smooth stack and M — F a presentation of it, we
construct a Lie groupoid by

MxegM= M.

Theorem (Folklore)

A Lie groupoid is the same as a differentiable stack with a presentation.
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Stacks from the groupoid viewpoint

Every Lie groupoid has an underlying differentiable stack
G=2M — [M/G]

When two groupoids have the same differentiable stack?
How to define stacks within the framework of Lie groupoids?

‘ Morita equivalences ‘

Theorem (Folklore)

A differentiable stack is the same as a Lie groupoid up to Morita
equivalence.

rincipal bibundles
Morita equivalences within Lie gpd theory {p P

Morita morphisms
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2. Morita equivalences
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Recalling Lie groupoids

A Lie groupoid G = M consists of:
» manifolds G, M and surjective submersions s,t: G — M,

» a partial associative multiplication with units and inverses

m:GxyG—G (ziy,yix)»—)(z(ﬁx)

Given G = M and x € M we have the isotropy group Gx = {x «+ x} and
the orbit O, = {y|3y + x} C M. There is a normal representation
Gx ~ Ny O = T,M/T,O. The orbit space is M/G.

Examples

Manifolds, Lie groups, Group actions, Submersions, Foliations, Principal
bundles, pseudo-groups, flows, etc etc
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Morita morphisms

A Lie groupoid morphism ¢ : (G = M) = (G’ = M'’) consists of maps
G — G', M — M’ preserving source, target, multiplication and units.

> ¢ is fully faithful if it induces a good pullback of manifolds,
G 2, G'
1 1
MxM 22 m s m
» ¢ is essentially surjective if the following is a surjective submersion.
tr1 G xr M= M (X & (%), x) = X

» ¢ is a Morita if it is both FF and ES.

There may not exists a quasi-inverse!
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An example

A submersion f : M — B yields a Lie groupoid M xg M = M with an

arrow y M x iff f(x) = f(y). The projection yields a morphism

¢:(MxpgM=M)— (B=B)

Then:
» ¢ isomorphism iff f diffeomorphism;
» ¢ equivalence iff f admits a global section;
» ¢ Morita iff f surjective.

Particular case: M manifold, {U;}; open cover, [] U; — M surjective
submersion. The Cech groupoid has objects (x, /) with x € U; and arrows

(x,4, 1) with x € Uj.
H Ui = H Ui
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Characterization

Intuition: Two groupoids are linked by Morita maps if they have the
same transverse geometry.

In fact, we have:

Theorem (dH, 2013)

¢: (G = M) = (G = M') Morita morphism if and only if:
> ¢, M/G =N M'/G' homeomorphism,
> ¢, : Gy = G}, isomorphism for all x, and

> dedp: NyO = Ny O’ isomorphism for all x.

The family of Morita maps is a saturated multiplicative system.
~ good properties for localization (calculus of fractions).
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Morita equivalence

Two Lie groupoids G = M, G’ = M’ are Morita equivalent ~ if there is
a third one G = M and Morita morphisms:

(G= M) & (G= i) D (6= M)

Example

» Morita equivalent to a manifold iff submersion gpd
» Morita equivalent to a Lie group iff transitive groupoid

» Mon and Hol are not Morita equivalent in general!

Orbifold — > many orbifold charts — > Morita equivalent Lie groupoids
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Generalized maps

A generalized map 3/a : G — G’ of Lie groupoids is the class of a
fraction 8/« with  Morita:

(G = M) < (G = M) (6" = M)

Two fractions 3/, B'/a’ are equivalent if they fit in a diagram
commutative up to isom.

Fractions can be composed (HFP) and yield a well-defined category:

Differentiable stacks

B/ca invertible <= 3 Morita morphism <= /3, Morita equivalence
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Relation with cocycles

G = M Lie groupoid, U = {U;} open cover of M. The Cech fibration is
a Morita morphism.

(ITew. vy =TTu) = (6 = m)

7
They generate all the others: Yo Morita 3 U, o st 77 la
Ve

Gu —>

Proposition

Every generalized map can be defined as by a cocycle 5/my.

Example

Fractions (M = M) < (][ Ui = [1 Ui) — (G = *) are G-cocycles
Generalized maps M --+ G are principal bundles.
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Cohomology

Given G = M Lie gpd, its nerve (NGy, d;, s¢) is the simplicial manifold

8k—
NG/(:{X/((ﬂkal#“-ﬁXl(ﬂXo}

» Faces d; : NG, — NGy_1 compose two arrows (or forget one)

» Degeneracies s; : NG, — NGy insert an identity

The cohomology is H*(G) = HX(&®p1q=kQP(NGg), dpr = >.(—1)'d})

4.\.

(M) —

4

QM) —
(

i

QM) = Q°(G) = Q%(G xm G) — ...

Proposition

H*(G) is Morita invariant (= cohomology of stacks!)

Q2(G) = (G xum G) — ...

QN(G) = QY(G xum G) — ...
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Representations

Given G =% M a Lie groupoid and E — M a vector bundle, a
representation (G = M)~ (E - M)isamapp: Gxy E — E,
p(g,v) = pg(v), such that pppg = prg, p1, = idg, and pg linear.

y & x ~ pg Ex— E,
Examples

> Vector bundles (M = M) and group representations (K = x)
» Equivariant vetor bundles (K x M = M)
» Vector bundle + descent datum (M xg M =% M)

(G=M)~ (E— M) = (6= M) — (GL(E)= M)

Proposition

Representations are a Morita invariant (= vector bundles over stacks?)
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3. Linearization and metrics
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Linearization of Poisson manifolds

(M, ) Poisson, x € M a zero.
Then T;M is Lie algebra with [v, w] = 7(¥, W), and T, M linear Poisson.
(M, ) linearizable around x if it is locally equivalent to (T M, {, }iin)-

Conn’s Theorem
(M, ) Poisson, x € M a zero, T,,M* semisimple of compact type, then
7 is linearizable around x.

» Geometric proof (Crainic-Fernandes, Annals 2011)
» Key: linearization of Lie groupoids Weinstein 2002, Zung 2004
» New approach to lin. of groupoids: dH-Fernandes (2014-2018)

» Linearization around a symplectic leaf: Vorobiev (2006 ), Crainic-
Marcut (2012)
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Riemannian groupoids

f: M — N submersion. A metric n™ on M is f-transverse if for all x, x’
in the same fiber F there is an isometry N, F = T, N = N, F.

‘nM is f-transverse <> 3 n"V making f a Riemannian submersion

Definition [dH-Fernandes]
A groupoid metric on G = M is a metric 7(?) on
GO =GxyG={z i y & x} = {commutative triangles}

such that:
» 73 is invariant under S3 ~ G®), and
» 13 is transverse to m: G@ — G.

This extends/corrects the previous definitions [Gallego et al, 1989],
[Glickenstein, 2007] and [Pflaum et al, 2011].
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A system of metrics

Proposition
Given G == M and 7(?, there exist metrics ) on G and n(® on M such

that:
m

_— S ) ) .
> GA—_m=gG Z M are Riemannian submersions,
—_—

T2 t

» j: G — G is an isometry,
» u: M — G is totally geodesic, and
» the normal representations G, ~ N, O are by isometries.

Examples
Manifolds , submersions , Lie groups , transitive groupoids , action
groupoids of isometric actions , etal groupoids with orthogonal effect ,

orbifolds , etc etc
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Proper groupoids

Recall G = M is proper if (s,t) : G = M x M is a proper map.
This extends the notion of proper action.
Being proper is Morita invariant!!

Proper groupoids < Separated differentiable stacks

If G = M is proper then:
> the orbit space M/G is Hausdorff,

» the isotropy groups G, are compact for all x.

Proper groupoids admit Haar systems
(generalization of Haar measures on groups).
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Construction of metrics

Theorem (dH-Fernandes, 2018)

Every proper Lie groupoid admits a metric.

Sketch of proof.

Averaging argument.
We see G(®) as a quotient of {(g1, &2, 3)Is(e1) = s(g2) = s(g3)}:

[ ] [ ]
81 _
\ Tg1g2 !
o <5H— @ — °
-1
A nggg
[ ) [

There are three commuting free proper actions G ~ G . They induce
quasi-actions G ~ TG®. Pick any metric on G® and average it with
respect to the three actions.

O
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Linearization by exponential flows

In a Riemannian submersion p : (M,n™) — (N,n"V) there is a
correspondence between horizontal geodesics on M and geodesics on N.

Theorem (Ehresmann)
A proper submersion p : M — N is locally trivial.

Proof.
Endow M with a transverse metric, making p a Riemannian submersion.
Then use the exponential flow.

FxR" = NF=TF:Z_»

T Af

exp

R" o~ T N—- —— >

26 /40



Linearization of groupoids
Theorem (dH-Fernandes, 2018)

A Riemannian groupoid (G = M, 7)) is linearizable around a saturated
embedded submanifold S C M.

Sketch of proof.
Q—= R
NG ——NGs—= NS
exp | exp | exp |

I \4
CO—=G——=wm™m

» Infinitesimal linearization.
» If G proper ~~ linearization,

» If G is s-proper then ~~ strict linearization.

Simpler proof and stronger version of Linearization Theorem [Weinstein,
2001], [Zung, 2004], [Crainic-Struchiner, 2011].
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Morita invariance: metrics on stacks

Two metrics on G = M are equivalent if they induce the same metric on
N, O for all x € M.

Theorem (dH-Fernandes, 2019)

Equivalence classes of metrics is a Morita invariant of G = M.
(= metrics on stacks!)

A Morita morphism ¢ : (G = M,n®) = (G’ = M’,n(z)/) is isometric if
it induces isometries N, O — N, O'.

Pullback/pushforward of metrics
Given ¢ : (G = M) — (G’ = M') Morita map and a metric on G'/G,
there exists a metric on G/G’ for which ¢ is isometric.

Moving forward: Stacky Hopf-Rinow Thm [dH, de Melo]
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4. Vector bundles over stacks
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VB-groupoids

A VB-groupoid is a diagram of Lie groupoids and vector bundles

r = E
1 1
G = M

Hidden piece of data: the core C = ker(s: ['|y — E).
d
MNuw=E = C—=>E

Dolc:Kan

Core sequence: 0 — t*C — [ — s*E — 0 plays a key role in duality.

Theorem (Bursztyn-Cabrera-dH 2014)
A VB-groupoid is the same as a regular action (R,-) ~ (I = E).

Useful in differentiation and integration: VB-groupoids = VB-algebroids
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Examples of VB-groupoids

Examples
» The tangent groupoid TG = TM has core Ag;
» The cotangent groupoid T*G =3 Af; has core T*M.

Proposition
A representation is the same as a VB-groupoid with trivial core:

GxyE = E
(G=2Mn(E-M) = 1 1l core Oy
G = M

If $: G’ — G Morita then ¢* : Rep(G) — Rep(G’) equivalence.

Problem
Are VB-groupoids a Morita invariant?
What is the geometry induced by VB-groupoids at the level of stacks?
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RUTH

A representation up to homotopy (G = M) ~ (CH E — M) is
» 0:C — E alinear map;
» p: G~ (C@ E) a pseudo-representation;
> 7,2%, : Ex — C; a chain homotopy between pp, and prpg;

satisfying certain coherence axioms.

Theorem (dH, Stefani 2017)

A ruth (G = M) ~ (C@® E — M) is the same as a pseudo-functor into
the general linear 2-groupoid

(G = M) --> GL(C® E — M)
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Grothendieck correspondence

Theorem (GraciaSaz-Mehta 2010, dH-Ortiz 2016)

Correspondence between RUTHs (G = M) ~ (C ® E — M) and
VB-groupoids (I = E) — (G = M).

A (linear) cleavage ¥ on a VB-groupoid I' = E is a section for [ — s*E.

¥ (g,v)
w=<=>v

y<=—x
2 unital if Id C ¥ and flat if XX C .

From VB-groupoids to RUTH: Pick unital cleavage and define:
» 0 is the target map;

» p pushes forward by using the cleavage;
» ~ curvature of X.
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Linear Morita morphisms

The fiber of a VB-groupoid [ = E over G = M at x € M is a 2-vect
= EX. We have exact sequences

> 1—>F§—>Fe—>Gx——+l

> 0 Tl = Tule = TG = NeFs = NeE = NeM 0

Theorem (dH-Ortiz 2016)
¢: (T = E)— (I" = E') linear Morita iff ¢ Morita and ¢* Morita for all

X
r=E é
(p*r/ j <p*E/ r/ j E/
G=M G =M
Proof.

Char. of Morita maps + sequences above + 5 lemma. |
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The derived category of VB-groupoids

~

Question: If ¢ : G — G’ Morita then ¢* : VB(G') — VB(G)? A: No!
ExXE=E 4

SlxSl=851 5 «=«

Given G, VB[G] = VB(G)[Morita'] derived category of VB-groupoids.

Fact: Every linear epimorphic Morita map over G admits a section.

M xr, (M)

ZW W‘

I 5 P

Using canonical factorization we conclude 'y ~ I, iff there are acyclic
Ql, Qz such that r1 D Ql =~ r2 (&) Q2-
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Morita invariance of VB-groupoids

Theorem (dH-Ortiz 2018)
¢ G' = G Morita then ¢* : VB[G] — VB[G'] equivalence.

» Notion of 2-vector bundle over differentiable stacks.

Proof.
Gly —= G

Step 1: ¢M\L / \L¢ Reduction to the case of Cech fibration

Gy —G (M) ——T
I

Step 2: Show it is full by averaging with partition of 1 wl | ¢
, A

Step 3: Show faithful by averaging homotopies. (M) —— T

Step 4: Essentially surjective comes from strictification of cleavage.
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VB-cohomology

A VB-groupoid ' = G has VB-cohomology Hyg (") obtained by
considering linear cochains ¢ that are projectable:

i) &(vi,...,Vp—1,04) =0, and
i) d(vi,...,vp0g) = P(va,..., ).

Combining Morita invariance of H*(I") (Crainic 2001) and a section for
inclusion C2, (') — C*(I") (Cabrera-Drummond 2016) we get:
Proposition

Morita invariance of VB-cohomology.

= Deformation cohomology of Lie groupoids is a Morita invariant.

In progress: Morita invariance of cohomology with coefficients in RUTH
[dH, Studzinski, Ortiz]
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Dirac structures

A Dirac structure on M is L C TM & T*M such that:
> Lagrangian for {((X,a),(Y,8)) = a(Y)+ B(X), and
> involutive for [(X,a)(Y,B)]] = ([X, Y], LxB — iyda).

Examples
Poisson structures, pre-symplectic structures, foliations, etc

Proposition

A Dirac structure L over M is the same as:
> A Lie algebroid A;
» a closed IM-2-form A € Q?(A);

such that A# : TA — T*A quasi-isomorphism of VB-algebroids.
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Integrating Dirac structures

Globlal counter-part of Dirac structures:

Pre-symplectic groupoids (Bursztyn-Crainic-Weinstein-Zhu 2004).
» G = M with dim(G) = 2dim(M);
» a closed multiplicative 2-form w € Q?(G)

such that ds(x) N dt(x) N kerw, = {0}.

Proposition

G = M Lie groupoid, w closed 2-form on G. Then (G,w) pre-symplectic
groupoid iff w# : (TG = TM) — (T*G = A*) linear Morita map.
Corollary

Simple proof of integration of Dirac structures: (i) multiplicative forms
correspond to IM forms + (ii) core sequence is preserved.
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Thanks!
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