Stacks in Poisson geometry

Matias del Hoyo

Universidade Federal Fluminense

Workshop on Poisson Geometry, Groupoids and Quantization

24-25 Nov 2021, U. of Auckland, New Zealand

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Contents

- 1. Introduction
- 2. Morita equivalences
- 3. Linearization and metrics
- 4. Vector bundles over stacks

<ロト < 部 ト < 言 ト < 言 ト こ の < (~) 2/40 1. Introduction

Poisson and Stacks

(日) (部) (注) (注) (三)

4 / 40

Dirac manifolds

Two problems

Linearization of Poisson structures A Poisson structure induces a Lie algebroid Integrate it to a Lie groupoid Linearize the Lie groupoid And linearization is Morita invariant!

 \Rightarrow simpler proof, generalization, rigidity

Desingularization of Dirac manifolds

Poisson manifolds ARE symplectic Lie algebroids $\omega \in \Omega^2(A)$ IM, $\omega^{\#} : TA \to T^*A$ non-degenerate, ω closed VB-algebroids are homotopy category Dirac manifolds ARE symplectic up to homotopy Lie algebroids

 \Rightarrow revisiting pre-symplectic groupoids BCWZ

What is a stack?

Stacks are categorified spaces introduced by Grothendieck in 1959.

A manifold *M* yields a representable functor Manifolds^{\circ} $\xrightarrow{Hom(-,M)}$ Sets

This functor is locally determined, for a function $X \to M$ can be reconstructed out of its restrictions $U_i \to M$ to an open over $\{U_i\}_i$.

A stack F is a locally determined functor Manifolds^{\circ} \xrightarrow{F} Groupoids

Yoneda:
$$F(X) = \{Hom(-, X) \rightarrow F\}$$

イロト イヨト イヨト イヨト 三日

6/40

Paradigmatic Example

M manifold $\rightsquigarrow VB(M)$ vector bundles over M + isomorphisms

What is a differentiable stack?

A stack F sets a classification problem.

M is the universal / moduli / classifying space for *F* if $Hom(-, M) \cong F$ It does not exists in general!

A presentation is a surjective submersion $Hom(-, M) \rightarrow F$.

F is a differentiable stack if it admits a presentation.

Examples

Manifolds, orbifolds, orbit spaces of actions, leaf spaces of foliations, finite dimensional models for classifying spaces, ...

Differential geometry over singular quotients!

Groupoids from the stack viewpoint

• Given $G \rightrightarrows M$, the presheaf of groupoids F_G is a prestack.

 $F_G(X) = (\hom(X, G) \rightrightarrows \hom(X, M))$

Its associated stack \tilde{F}_G can be presented as $M \to \tilde{F}_G$.

► Given F a smooth stack and M → F a presentation of it, we construct a Lie groupoid by

$$M \times_F M \rightrightarrows M.$$

Theorem (Folklore)

A Lie groupoid is the same as a differentiable stack with a presentation.

Stacks from the groupoid viewpoint

Every Lie groupoid has an underlying differentiable stack

 $G \rightrightarrows M \qquad \mapsto \qquad [M/G]$

When two groupoids have the same differentiable stack? How to define stacks within the framework of Lie groupoids?

Morita equivalences

Theorem (Folklore)

A differentiable stack is the same as a Lie groupoid up to Morita equivalence.

《曰》《聞》《臣》《臣》 [] 臣

2. Morita equivalences

Recalling Lie groupoids

A Lie groupoid $G \rightrightarrows M$ consists of:

▶ manifolds G, M and surjective submersions $s, t : G \to M$,

a partial associative multiplication with units and inverses

$$m: G \times_M G \to G \quad (z \xleftarrow{h} y, y \xleftarrow{g} x) \mapsto (z \xleftarrow{hg} x)$$

Given $G \rightrightarrows M$ and $x \in M$ we have the isotropy group $G_x = \{x \leftarrow x\}$ and the orbit $O_x = \{y | \exists y \leftarrow x\} \subset M$. There is a normal representation $G_x \curvearrowright N_x O = T_x M / T_x O$. The orbit space is M/G.

Examples

Manifolds, Lie groups, Group actions, Submersions, Foliations, Principal bundles, pseudo-groups, flows, etc etc

Morita morphisms

A Lie groupoid morphism $\phi : (G \rightrightarrows M) \xrightarrow{\sim} (G' \rightrightarrows M')$ consists of maps $G \rightarrow G', M \rightarrow M'$ preserving source, target, multiplication and units.

 $\blacktriangleright \phi$ is fully faithful if it induces a good pullback of manifolds,

$$\begin{array}{ccc} G & \stackrel{\phi}{\to} & G' \\ \downarrow & & \downarrow \\ M \times M & \stackrel{\phi \times \phi}{\longrightarrow} & M' \times M' \end{array}$$

 $\blacktriangleright \phi$ is essentially surjective if the following is a surjective submersion.

$$t\pi_1: G' \times_{M'} M \to M' \qquad (x' \xleftarrow{g'} \phi(x), x) \mapsto x'$$

• ϕ is a Morita if it is both FF and ES.

There may not exists a quasi-inverse!

< □ > < 部 > < 言 > < 言 > 差 > う < で 2 / 40

An example

A submersion $f : M \to B$ yields a Lie groupoid $M \times_B M \rightrightarrows M$ with an arrow $y \xleftarrow{(y,x)} x$ iff f(x) = f(y). The projection yields a morphism

$$\phi: (M \times_B M \rightrightarrows M) \to (B \rightrightarrows B)$$

Then:

- $\blacktriangleright \phi$ isomorphism iff *f* diffeomorphism;
- ϕ equivalence iff f admits a global section;
- ϕ Morita iff f surjective.

Particular case: *M* manifold, $\{U_i\}_i$ open cover, $\coprod U_i \to M$ surjective submersion. The Cech groupoid has objects (x, i) with $x \in U_i$ and arrows (x, j, i) with $x \in U_{ji}$.

$$\coprod U_{ji} \rightrightarrows \coprod U_i$$

Characterization

Intuition: Two groupoids are linked by Morita maps if they have the same transverse geometry.

In fact, we have:

Theorem (dH, 2013) $\phi: (G \Rightarrow M) \xrightarrow{\sim} (G' \Rightarrow M')$ Morita morphism if and only if: $\phi_*: M/G \xrightarrow{\cong} M'/G'$ homeomorphism, $\phi_x: G_x \xrightarrow{\cong} G'_{x'}$ isomorphism for all x, and $d_x \phi: N_x O \xrightarrow{\cong} N_{x'} O'$ isomorphism for all x.

The family of Morita maps is a saturated multiplicative system. → good properties for localization (calculus of fractions).

Morita equivalence

Two Lie groupoids $G \rightrightarrows M$, $G' \rightrightarrows M'$ are Morita equivalent \sim if there is a third one $\tilde{G} \rightrightarrows \tilde{M}$ and Morita morphisms:

$$(G \rightrightarrows M) \stackrel{lpha}{\leftarrow} (\tilde{G} \rightrightarrows \tilde{M}) \stackrel{eta}{\rightarrow} (G' \rightrightarrows M')$$

Example

- Morita equivalent to a manifold iff submersion gpd
- Morita equivalent to a Lie group iff transitive groupoid
- Mon and Hol are not Morita equivalent in general!

Orbifold -> many orbifold charts -> Morita equivalent Lie groupoids

Generalized maps

A generalized map $\beta/\alpha : G \to G'$ of Lie groupoids is the class of a fraction β/α with α Morita:

$$(G \rightrightarrows M) \stackrel{\alpha}{\underset{\sim}{\leftarrow}} (\tilde{G} \rightrightarrows \tilde{M}) \stackrel{\beta}{\xrightarrow{}} (G' \rightrightarrows M')$$

Two fractions β/α , β'/α' are equivalent if they fit in a diagram commutative up to isom.

Fractions can be composed (HFP) and yield a well-defined category:

Differentiable stacks

 β/α invertible $\iff \beta$ Morita morphism $\iff \beta, \alpha$ Morita equivalence

Relation with cocycles

 $G \rightrightarrows M$ Lie groupoid, $U = \{U_i\}$ open cover of M. The **Cech fibration** is a Morita morphism.

$$\left(\coprod G(U_j, U_i) \rightrightarrows \coprod U_i\right) \xrightarrow{\pi_{\mathcal{U}}} (G \rightrightarrows M)$$

They generate all the others: $\forall \alpha$ Morita $\exists \ U, \sigma$ st

CI

Proposition

Every generalized map can be defined as by a cocycle $\beta/\pi_{\mathcal{U}}$.

Example

Fractions $(M \rightrightarrows M) \leftarrow (\coprod U_{ji} \rightrightarrows \coprod U_i) \rightarrow (G \rightrightarrows *)$ are *G*-cocycles Generalized maps $M \dashrightarrow G$ are principal bundles.

Cohomology

Given $G \rightrightarrows M$ Lie gpd, its nerve (NG_k, d_i, s_k) is the simplicial manifold

$$NG_k = \{x_k \xleftarrow{g_k} x_{k-1} \xleftarrow{g_{k-1}} \cdots \xleftarrow{g_2} x_1 \xleftarrow{g_1} x_0\}$$

Faces d_i : NG_k → NG_{k-1} compose two arrows (or forget one)
 Degeneracies s_j : NG_k → NG_{k+1} insert an identity

The cohomology is $H^k(G) = H^k(\bigoplus_{p+q=k} \Omega^p(NG_q), d_{DR} \pm \sum_i (-1)^i d_i^*)$

Proposition

 $H^k(G)$ is Morita invariant (\Rightarrow cohomology of stacks!)

Representations

Given $G \rightrightarrows M$ a Lie groupoid and $E \rightarrow M$ a vector bundle, a **representation** $(G \rightrightarrows M) \curvearrowright (E \rightarrow M)$ is a map $\rho : G \times_M E \rightarrow E$, $\rho(g, v) = \rho_g(v)$, such that $\rho_h \rho_g = \rho_{hg}$, $\rho_{1_x} = \operatorname{id}_{E_x}$ and ρ_g linear.

$$y \xleftarrow{g} x \longrightarrow \rho_g : E_x \to E_y$$

Examples

- ▶ Vector bundles $(M \rightrightarrows M)$ and group representations $(K \rightrightarrows *)$
- Equivariant vetor bundles $(K \ltimes M \rightrightarrows M)$
- Vector bundle + descent datum $(M \times_B M \rightrightarrows M)$

$$(G \rightrightarrows M) \frown (E
ightarrow M) \quad \Rightarrow \quad (G \rightrightarrows M)
ightarrow (GL(E) \rightrightarrows M)$$

Proposition

Representations are a Morita invariant (\Rightarrow vector bundles over stacks?)

3. Linearization and metrics

Linearization of Poisson manifolds

 (M, π) Poisson, $x \in M$ a zero. Then T_x^*M is Lie algebra with $[v, w] = \pi(\tilde{v}, \tilde{w})$, and T_xM linear Poisson. (M, π) linearizable around x if it is locally equivalent to $(T_xM, \{, \}_{lin})$.

Conn's Theorem

 (M, π) Poisson, $x \in M$ a zero, $T_x M^*$ semisimple of compact type, then π is linearizable around x.

- Geometric proof (Crainic-Fernandes, Annals 2011)
- ► Key: linearization of Lie groupoids Weinstein 2002, Zung 2004
- ▶ New approach to lin. of groupoids: dH-Fernandes (2014-2018)
- Linearization around a symplectic leaf: Vorobiev (2006), Crainic-Marcut (2012)

Riemannian groupoids

 $f: M \to N$ submersion. A metric η^M on M is *f*-transverse if for all x, x' in the same fiber F there is an isometry $N_x F \cong T_y N \cong N_{x'} F$.

 η^{M} is $f\text{-transverse} \Leftrightarrow \exists \ \eta^{N}$ making f a Riemannian submersion

Definition [dH-Fernandes] A groupoid metric on $G \Rightarrow M$ is a metric $\eta^{(2)}$ on

$$G^{(2)} = G \times_M G = \{z \xleftarrow{h} y \xleftarrow{g} x\} = \{\text{commutative triangles}\}$$

such that:

•
$$\eta^{(2)}$$
 is invariant under $S_3 \curvearrowright G^{(2)}$, and
• $\eta^{(2)}$ is transverse to $m: G^{(2)} \to G$.

This extends/corrects the previous definitions [Gallego et al, 1989], [Glickenstein, 2007] and [Pflaum et al, 2011].

A system of metrics

Proposition

Given $G \rightrightarrows M$ and $\eta^{(2)}$, there exist metrics $\eta^{(1)}$ on G and $\eta^{(0)}$ on M such that:

•
$$G^{(2)} \xrightarrow[\pi_2]{\pi_1} G \xrightarrow[t]{s} M$$
 are Riemannian submersions,

•
$$i: G \to G$$
 is an isometry,

• $u: M \to G$ is totally geodesic, and

▶ the normal representations $G_x \frown N_x O$ are by isometries.

Examples

Manifolds , submersions , Lie groups , transitive groupoids , action groupoids of isometric actions , etal groupoids with orthogonal effect , orbifolds , etc etc

Proper groupoids

Recall $G \rightrightarrows M$ is proper if $(s, t) : G \rightarrow M \times M$ is a proper map. This extends the notion of proper action. Being proper is Morita invariant!!

Proper groupoids \leftrightarrows Separated differentiable stacks

- If $G \rightrightarrows M$ is proper then:
 - the orbit space M/G is Hausdorff,
 - the isotropy groups G_x are compact for all x.

Proper groupoids admit Haar systems (generalization of Haar measures on groups).

Construction of metrics

Theorem (dH-Fernandes, 2018) Every proper Lie groupoid admits a metric.

Sketch of proof.

Averaging argument.

We see $G^{(2)}$ as a quotient of $\{(g_1, g_2, g_3) | s(g_1) = s(g_2) = s(g_3)\}$:

There are three commuting free proper actions $G \curvearrowright G^{(2)}$. They induce quasi-actions $G \curvearrowright TG^{(2)}$. Pick any metric on $G^{(2)}$ and average it with respect to the three actions.

Linearization by exponential flows

In a Riemannian submersion $p: (M, \eta^M) \to (N, \eta^N)$ there is a correspondence between horizontal geodesics on M and geodesics on N.

Theorem (Ehresmann)

A proper submersion $p: M \rightarrow N$ is locally trivial.

Proof.

Endow M with a transverse metric, making p a Riemannian submersion. Then use the exponential flow.

$$\begin{array}{ccc} F \times \mathbb{R}^n & \cong & NF = TF^{\perp exp} - \succ M \\ \pi & & dp \\ \mathbb{R}^n & & qp \\ \mathbb{R}^n & \cong & T_y N - \stackrel{exp}{-} - \succ N \end{array}$$

イロト イヨト イヨト イヨト 三日

Linearization of groupoids

Theorem (dH-Fernandes, 2018)

A Riemannian groupoid ($G \Rightarrow M, \eta^{(2)}$) is linearizable around a saturated embedded submanifold $S \subset M$.

Sketch of proof.

- Infinitesimal linearization.
- If G proper \rightsquigarrow linearization,
- ▶ If *G* is s-proper then ~→ strict linearization.

Simpler proof and stronger version of Linearization Theorem [Weinstein, 2001], [Zung, 2004], [Crainic-Struchiner, 2011].

Morita invariance: metrics on stacks

Two metrics on $G \rightrightarrows M$ are equivalent if they induce the same metric on $N_x O$ for all $x \in M$.

Theorem (dH-Fernandes, 2019)

Equivalence classes of metrics is a Morita invariant of $G \rightrightarrows M$. (\Rightarrow metrics on stacks!)

A Morita morphism $\phi : (G \Rightarrow M, \eta^{(2)}) \rightarrow (G' \Rightarrow M', \eta^{(2)'})$ is isometric if it induces isometries $N_x O \rightarrow N_{x'} O'$.

Pullback/pushforward of metrics

Given $\phi : (G \Rightarrow M) \rightarrow (G' \Rightarrow M')$ Morita map and a metric on G'/G, there exists a metric on G/G' for which ϕ is isometric.

Moving forward: Stacky Hopf-Rinow Thm [dH, de Melo]

4. Vector bundles over stacks

VB-groupoids

A VB-groupoid is a diagram of Lie groupoids and vector bundles

$$\begin{array}{cccc}
\Gamma & \Rightarrow & E \\
\downarrow & & \downarrow \\
G & \Rightarrow & M
\end{array}$$

Hidden piece of data: the core $C = \ker(s : \Gamma|_M \to E)$.

$$\Gamma|_M \rightrightarrows E \quad \underset{Dold-Kan}{\rightleftharpoons} \quad C \xrightarrow{\partial} E$$

Core sequence: $0 \to t^*C \to \Gamma \to s^*E \to 0$ plays a key role in duality.

Theorem (Bursztyn-Cabrera-dH 2014) A VB-groupoid is the same as a regular action $(\mathbb{R}, \cdot) \curvearrowright (\Gamma \rightrightarrows E)$.

Useful in differentiation and integration: VB-groupoids \leftrightarrows VB-algebroids

Examples of VB-groupoids

Examples

- The tangent groupoid $TG \Rightarrow TM$ has core A_G ;
- The cotangent groupoid $T^*G \Rightarrow A_G^*$ has core T^*M .

Proposition

A representation is the same as a VB-groupoid with trivial core:

If $\phi: G' \to G$ Morita then $\phi^*: Rep(G) \to Rep(G')$ equivalence.

Problem

Are VB-groupoids a Morita invariant? What is the geometry induced by VB-groupoids at the level of stacks?

RUTH

A representation up to homotopy $(G \rightrightarrows M) \curvearrowright (C \oplus E \rightarrow M)$ is

- $\blacktriangleright \ \partial: C \to E \text{ a linear map;}$
- $\rho: G \curvearrowright (C \oplus E)$ a pseudo-representation;
- $\gamma_{h,g}^2 : E_x \to C_z$ a chain homotopy between ρ_{hg} and $\rho_h \rho_g$; satisfying certain coherence axioms.

Theorem (dH, Stefani 2017)

A ruth $(G \rightrightarrows M) \curvearrowright (C \oplus E \to M)$ is the same as a pseudo-functor into the general linear 2-groupoid

$$(G \rightrightarrows M) \dashrightarrow GL(C \oplus E \rightarrow M)$$

Grothendieck correspondence

Theorem (GraciaSaz-Mehta 2010, dH-Ortiz 2016) Correspondence between RUTHs ($G \rightrightarrows M$) \curvearrowright ($C \oplus E \rightarrow M$) and VB-groupoids ($\Gamma \rightrightarrows E$) \rightarrow ($G \rightrightarrows M$).

A (linear) cleavage Σ on a VB-groupoid $\Gamma \rightrightarrows E$ is a section for $\Gamma \rightarrow s^*E$.

$$w \stackrel{\Sigma(g,v)}{\prec} v$$
$$y \stackrel{g}{\leftarrow} x$$

 Σ unital if $\mathrm{Id} \subset \Sigma$ and flat if $\Sigma\Sigma \subset \Sigma$.

From VB-groupoids to RUTH: Pick unital cleavage and define:

- \triangleright ∂ is the target map;
- $\blacktriangleright \rho$ pushes forward by using the cleavage;
- > γ curvature of Σ.

Linear Morita morphisms

The fiber of a VB-groupoid $\Gamma \rightrightarrows E$ over $G \rightrightarrows M$ at $x \in M$ is a 2-vect $\Gamma^{x} \rightrightarrows E^{x}$. We have exact sequences $\blacktriangleright 1 \rightarrow \Gamma_{e}^{x} \rightarrow \Gamma_{e} \xrightarrow{} G_{x} \dashrightarrow 1$ $\blacktriangleright 0 \rightarrow T_{u(e)}\Gamma_{e}^{x} \rightarrow T_{u(e)}\Gamma_{e} \xrightarrow{} T_{x}G_{x} \xrightarrow{\partial (0)} N_{e}E_{x} \rightarrow N_{e}E \xrightarrow{} N_{x}M \rightarrow 0$ Theorem (dH-Ortiz 2016) $\phi: (\Gamma \rightrightarrows E) \rightarrow (\Gamma' \rightrightarrows E')$ linear Morita iff φ Morita and ϕ^{x} Morita for all x:

Proof.

Char. of Morita maps + sequences above + 5 lemma.

The derived category of VB-groupoids

Question: If $\phi : G \to G'$ Morita then $\phi^* : VB(G') \xrightarrow{\sim} VB(G)$? A: No!

$$E \times E \rightrightarrows E \qquad \nexists$$

$$S^1 imes S^1
ightarrow S^1
ightarrow *
ightarrow *
ightarrow *$$

Given G, $VB[G] = VB(G)[Morita^{-1}]$ derived category of VB-groupoids. Fact: Every linear epimorphic Morita map over G admits a section.

Using canonical factorization we conclude $\Gamma_1 \sim \Gamma_2$ iff there are acyclic Ω_1, Ω_2 such that $\Gamma_1 \oplus \Omega_1 \cong \Gamma_2 \oplus \Omega_2$.

<ロト < 部 ト < 語 ト < 語 ト 語 の Q (* 35 / 40

Morita invariance of VB-groupoids

Theorem (dH-Ortiz 2018)

 $\phi: G' \to G$ Morita then $\phi^*: VB[G] \to VB[G']$ equivalence.

Notion of 2-vector bundle over differentiable stacks.

Proof.

Reduction to the case of Cech fibration

Step 4: Essentially surjective comes from strictification of cleavage.

VB-cohomology

A VB-groupoid $\Gamma \to G$ has VB-cohomology $H^{\bullet}_{VB}(\Gamma)$ obtained by considering linear cochains ϕ that are projectable:

i)
$$\phi(v_1, ..., v_{p-1}, 0_g) = 0$$
, and

ii)
$$\phi(\mathbf{v}_1,\ldots,\mathbf{v}_p\mathbf{0}_g)=\phi(\mathbf{v}_1,\ldots,\mathbf{v}_p).$$

Combining Morita invariance of $H^{\bullet}(\Gamma)$ (Crainic 2001) and a section for inclusion $C^{\bullet}_{lin}(\Gamma) \rightarrow C^{\bullet}(\Gamma)$ (Cabrera-Drummond 2016) we get:

Proposition

Morita invariance of VB-cohomology.

 \Rightarrow Deformation cohomology of Lie groupoids is a Morita invariant.

In progress: Morita invariance of cohomology with coefficients in RUTH [dH, Studzinski, Ortiz]

Dirac structures

A Dirac structure on *M* is $L \subseteq TM \oplus T^*M$ such that:

- Lagrangian for $\langle (X, \alpha), (Y, \beta) \rangle = \alpha(Y) + \beta(X)$, and
- ▶ involutive for $[[(X, \alpha)(Y, \beta)]] = ([X, Y], \mathcal{L}_X\beta i_Y d\alpha).$

Examples

Poisson structures, pre-symplectic structures, foliations, etc

Proposition

A Dirac structure L over M is the same as:

- A Lie algebroid A;
- ► a closed IM-2-form $\Lambda \in \Omega^2(A)$;

such that $\Lambda^{\#}$: $TA \rightarrow T^*A$ quasi-isomorphism of VB-algebroids.

Integrating Dirac structures

Globlal counter-part of Dirac structures: Pre-symplectic groupoids (Bursztyn-Crainic-Weinstein-Zhu 2004).

- $G \Rightarrow M$ with dim(G) = 2dim(M);
- ▶ a closed multiplicative 2-form $\omega \in \Omega^2(G)$

such that $ds(x) \cap dt(x) \cap \ker \omega_x = \{0\}.$

Proposition

 $G \rightrightarrows M$ Lie groupoid, ω closed 2-form on G. Then (G, ω) pre-symplectic groupoid iff $\omega^{\#} : (TG \rightrightarrows TM) \rightarrow (T^*G \rightrightarrows A^*)$ linear Morita map.

Corollary

Simple proof of integration of Dirac structures: (i) multiplicative forms correspond to IM forms + (ii) core sequence is preserved.

Thanks!

