Trialities of \mathcal{W}-algebras

Andrew Linshaw

University of Denver

Joint with T. Creutzig (Edmonton)

1. Vertex operator algebras

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

> A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\operatorname{End}(\mathcal{V})\left[\left[z, z^{-1}\right]\right]$

\mathcal{V} has Wick product : $a b$:, generally nonassociative,
noncommutative.
Unit 1, derivation $\partial=\frac{d}{d z}$
Conformal weight grading $\mathcal{V}=\bigoplus_{n \geq 0} \mathcal{V}[n], n \in \mathbb{Z}$ or $\frac{1}{2} \mathbb{Z}$

1. Vertex operator algebras

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\operatorname{End}(\mathcal{V})\left[\left[z, z^{-1}\right]\right]$.

$$
a \leftrightarrow a(z)=\sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V})
$$

\mathcal{V} has Wick product : $a b$:, generally nonassociative,
noncommutative.
Unit 1, derivation $\partial=\frac{d}{d z}$.
Conformal weight grading $\mathcal{V}=\bigoplus_{n \geq 0} \mathcal{V}[n], n \in \mathbb{Z}$ or $\frac{1}{2} \mathbb{Z}$

1. Vertex operator algebras

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\operatorname{End}(\mathcal{V})\left[\left[z, z^{-1}\right]\right]$.

$$
a \leftrightarrow a(z)=\sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V})
$$

\mathcal{V} has Wick product : $a b$:, generally nonassociative, noncommutative.

Unit 1, derivation $\partial=\frac{d}{d z}$.

1. Vertex operator algebras

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\operatorname{End}(\mathcal{V})\left[\left[z, z^{-1}\right]\right]$.

$$
a \leftrightarrow a(z)=\sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V})
$$

\mathcal{V} has Wick product : $a b$:, generally nonassociative, noncommutative.

Unit 1, derivation $\partial=\frac{d}{d z}$.
Conformal weight grading $\mathcal{V}=\bigoplus_{n \geq 0} \mathcal{V}[n], n \in \mathbb{Z}$ or $\frac{1}{2} \mathbb{Z}$

1. Vertex operator algebras

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\operatorname{End}(\mathcal{V})\left[\left[z, z^{-1}\right]\right]$.

$$
a \leftrightarrow a(z)=\sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V})
$$

\mathcal{V} has Wick product : $a b$:, generally nonassociative, noncommutative.

Unit 1, derivation $\partial=\frac{d}{d z}$.
Conformal weight grading $\mathcal{V}=\bigoplus_{n \geq 0} \mathcal{V}[n], n \in \mathbb{Z}$ or $\frac{1}{2} \mathbb{Z}$

2. Operator product expansion

Let \mathcal{V} be a $\mathrm{VOA}, a, b \in \mathcal{V}$. Then

$$
a(z) b(w)=\sum_{n \geq 0}\left(a_{(n)} b\right)(w)(z-w)^{-n-1}+: a(z) b(w):
$$

Expansion of meromorphic function with poles along $z=w$, where 1. : $a(z) b(w):$ is regular part. 2. $(a(n) b)(w)$ is polar part of order $n+1$.

Defines bilinear products $\left({ }_{(n)}-\right): \mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$, where $(a, b) \mapsto a_{(n)} b$.

Also: $a(z) b(w):\left.\right|_{z=w}$ coincides with Wick product.
Often write

where \sim means equal modulo regular part.

2. Operator product expansion

Let \mathcal{V} be a $\mathrm{VOA}, a, b \in \mathcal{V}$. Then

$$
a(z) b(w)=\sum_{n \geq 0}\left(a_{(n)} b\right)(w)(z-w)^{-n-1}+: a(z) b(w): .
$$

Expansion of meromorphic function with poles along $z=w$, where 1. : $a(z) b(w)$: is regular part.
2. $\left(a_{(n)} b\right)(w)$ is polar part of order $n+1$.

Defines bilinear products $\left(-_{(n)}-\right): \mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$, where $(a, b) \mapsto a_{(n)} b$.

Also: $a(z) b(w): I_{z=w}$ coincides with Wick product.
Often write

2. Operator product expansion

Let \mathcal{V} be a $\operatorname{VOA}, a, b \in \mathcal{V}$. Then

$$
a(z) b(w)=\sum_{n \geq 0}\left(a_{(n)} b\right)(w)(z-w)^{-n-1}+: a(z) b(w): .
$$

Expansion of meromorphic function with poles along $z=w$, where 1. : $a(z) b(w)$: is regular part.
2. $\left(a_{(n)} b\right)(w)$ is polar part of order $n+1$.

Defines bilinear products $\left({ }_{(n)}-\right): \mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$, where $(a, b) \mapsto a_{(n)} b$.

Also : $a(z) b(w):\left.\right|_{z=w}$ coincides with Wick product.
Often write

2. Operator product expansion

Let \mathcal{V} be a VOA, $a, b \in \mathcal{V}$. Then

$$
a(z) b(w)=\sum_{n \geq 0}\left(a_{(n)} b\right)(w)(z-w)^{-n-1}+: a(z) b(w): .
$$

Expansion of meromorphic function with poles along $z=w$, where 1. : $a(z) b(w)$: is regular part.
2. $\left(a_{(n)} b\right)(w)$ is polar part of order $n+1$.

Defines bilinear products $\left({ }_{(n)}-\right): \mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$, where $(a, b) \mapsto a_{(n)} b$.

Also : $a(z) b(w):\left.\right|_{z=w}$ coincides with Wick product.
Often write

2. Operator product expansion

Let \mathcal{V} be a VOA, $a, b \in \mathcal{V}$. Then

$$
a(z) b(w)=\sum_{n \geq 0}\left(a_{(n)} b\right)(w)(z-w)^{-n-1}+: a(z) b(w): .
$$

Expansion of meromorphic function with poles along $z=w$, where 1. : $a(z) b(w)$: is regular part.
2. $\left(a_{(n)} b\right)(w)$ is polar part of order $n+1$.

Defines bilinear products $\left({ }_{(n)}-\right): \mathcal{V} \otimes \mathcal{V} \rightarrow \mathcal{V}$, where $(a, b) \mapsto a_{(n)} b$.

Also : $a(z) b(w):\left.\right|_{z=w}$ coincides with Wick product.
Often write

$$
a(z) b(w) \sim \sum_{n \geq 0}\left(a_{(n)} b\right)(w)(z-w)^{-n-1}
$$

where \sim means equal modulo regular part.

3. Operator product expansion

Often, a VOA is presented by giving generators and OPE relations.

Ex: Affine VOA $V^{k}(g)$, for g a simple Lie algebra with basis

 ξ_{1}, \ldots, ξ_{n}.$V^{k}(g)$ is generated by fields $X^{\xi_{i}}, i=1, \ldots, n$, satisfying $X^{\xi_{i}}(z) X^{\xi_{j}}(w) \sim k\left(\xi_{i} \mid \xi_{j}\right)(z-w)^{-2}+X^{\left[\xi_{i}, \xi_{j}\right]}(w)(z-w)^{-1}$

Fact: $V^{k}(\mathfrak{g})$ has a PBW basis consisting of monomials

$V^{k}(\mathfrak{g})$ linearly isomorphic to polynomial algebra on $\left\{\partial^{k} X^{\xi_{i}} \mid i=1, \ldots, n, k \geq 0\right\}$

3. Operator product expansion

Often, a VOA is presented by giving generators and OPE relations.
Ex: Affine VOA $V^{k}(\mathfrak{g})$, for \mathfrak{g} a simple Lie algebra with basis ξ_{1}, \ldots, ξ_{n}.
$V^{k}(g)$ is generated by fields $X^{\xi_{i}}, i=1, \ldots, n$, satisfying $X^{\xi_{i}}(z) X^{\xi_{j}}(w) \sim k\left(\xi_{i} \mid \xi_{j}\right)(z-w)^{-2}+X^{\left[\xi_{i}, \xi_{j}\right]}(w)(z-w)^{-1}$

Fact: $V^{k}(\mathfrak{g})$ has a PBW basis consisting of monomials
\square
$V^{k}(\mathfrak{g})$ linearly isomorphic to polynomial algebra on
\square

3. Operator product expansion

Often, a VOA is presented by giving generators and OPE relations.
Ex: Affine VOA $V^{k}(\mathfrak{g})$, for \mathfrak{g} a simple Lie algebra with basis ξ_{1}, \ldots, ξ_{n}.
$V^{k}(\mathfrak{g})$ is generated by fields $X^{\xi_{i}}, i=1, \ldots, n$, satisfying

$$
X^{\xi_{i}}(z) X^{\xi_{j}}(w) \sim k\left(\xi_{i} \mid \xi_{j}\right)(z-w)^{-2}+X^{\left[\xi_{i}, \xi_{j}\right]}(w)(z-w)^{-1}
$$

Fact: $V^{k}(\mathfrak{g})$ has a PBW basis consisting of monomials

3. Operator product expansion

Often, a VOA is presented by giving generators and OPE relations.
Ex: Affine VOA $V^{k}(\mathfrak{g})$, for \mathfrak{g} a simple Lie algebra with basis ξ_{1}, \ldots, ξ_{n}.
$V^{k}(\mathfrak{g})$ is generated by fields $X^{\xi_{i}}, i=1, \ldots, n$, satisfying

$$
X^{\xi_{i}}(z) X^{\xi_{j}}(w) \sim k\left(\xi_{i} \mid \xi_{j}\right)(z-w)^{-2}+X^{\left[\xi_{i}, \xi_{j}\right]}(w)(z-w)^{-1}
$$

Fact: $V^{k}(\mathfrak{g})$ has a PBW basis consisting of monomials

$$
\begin{gathered}
: \partial^{k_{1}^{1}} X^{\xi_{1}} \cdots \partial^{k_{r_{1}}^{1}} X^{\xi_{1}} \cdots \partial^{k_{1}^{n}} X^{\xi_{n}} \cdots \partial^{k_{r_{n}^{n}}^{n}} X^{\xi_{n}}: \\
k_{1}^{1} \geq k_{2}^{1} \geq \cdots \geq k_{r_{1}}^{1}, \quad k_{1}^{n} \geq k_{2}^{n} \geq \cdots \geq k_{r_{n}}^{n} .
\end{gathered}
$$

3. Operator product expansion

Often, a VOA is presented by giving generators and OPE relations.
Ex: Affine VOA $V^{k}(\mathfrak{g})$, for \mathfrak{g} a simple Lie algebra with basis ξ_{1}, \ldots, ξ_{n}.
$V^{k}(\mathfrak{g})$ is generated by fields $X^{\xi_{i}}, i=1, \ldots, n$, satisfying

$$
X^{\xi_{i}}(z) X^{\xi_{j}}(w) \sim k\left(\xi_{i} \mid \xi_{j}\right)(z-w)^{-2}+X^{\left[\xi_{i}, \xi_{j}\right]}(w)(z-w)^{-1} .
$$

Fact: $V^{k}(\mathfrak{g})$ has a PBW basis consisting of monomials

$$
\begin{gathered}
: \partial^{k_{1}^{1}} X^{\xi_{1}} \cdots \partial^{k_{1}^{1}} X^{\xi_{1}} \cdots \partial^{k_{1}^{n}} X^{\xi_{n}} \cdots \partial^{k_{r_{n}}^{n}} X^{\xi_{n}} \\
k_{1}^{1} \geq k_{2}^{1} \geq \cdots \geq k_{r_{1}}^{1}, \quad k_{1}^{n} \geq k_{2}^{n} \geq \cdots \geq k_{r_{n}}^{n} .
\end{gathered}
$$

$V^{k}(\mathfrak{g})$ linearly isomorphic to polynomial algebra on $\left\{\partial^{k} X^{\xi_{i}} \mid i=1, \ldots, n, k \geq 0\right\}$.

4. Strong and free generations

We say that a $\operatorname{VOA} \mathcal{V}$ is strongly generated by a set $\left\{\alpha_{i} \mid i \in I\right\}$ if \mathcal{V} is spanned by monomials

$$
\left\{: \partial^{k_{1}} \alpha_{i_{1}} \cdots \partial^{i_{r}} \alpha_{i_{r}}: \mid k_{j} \geq 0, i_{j} \in I\right\}
$$

Suppose $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is an ordered strong generating set for \mathcal{V}
We say \mathcal{V} is freely generated by $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ if
forms a basis of \mathcal{V}, where

Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^{k} \alpha_{i}$ for $i=1,2, \ldots$, and $k \geq 0$.
\square

4. Strong and free generations

We say that a VOA \mathcal{V} is strongly generated by a set $\left\{\alpha_{i} \mid i \in I\right\}$ if \mathcal{V} is spanned by monomials

$$
\left\{: \partial^{k_{1}} \alpha_{i_{1}} \cdots \partial^{i_{r}} \alpha_{i_{r}}: \mid k_{j} \geq 0, i_{j} \in I\right\}
$$

Suppose $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is an ordered strong generating set for \mathcal{V}.
We say \mathcal{V} is freely generated by $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ if
forms a basis of \mathcal{V}, where

Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on

\square

4. Strong and free generations

We say that a VOA \mathcal{V} is strongly generated by a set $\left\{\alpha_{i} \mid i \in I\right\}$ if \mathcal{V} is spanned by monomials

$$
\left\{: \partial^{k_{1}} \alpha_{i_{1}} \cdots \partial^{i_{r}} \alpha_{i_{r}}: \mid k_{j} \geq 0, i_{j} \in I\right\}
$$

Suppose $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is an ordered strong generating set for \mathcal{V}.
We say \mathcal{V} is freely generated by $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ if

$$
: \partial^{k_{1}^{1}} \alpha_{i_{1}} \cdots \partial^{k_{r_{1}}^{1}} \alpha_{i_{1}} \cdots \partial^{k_{1}^{n}} \alpha_{i_{n}} \cdots \partial^{k_{r_{n}}^{n}} \alpha_{i_{n}}:
$$

forms a basis of \mathcal{V}, where

$$
i_{1}<\cdots<i_{n}, \quad k_{1}^{1} \geq k_{2}^{1} \geq \cdots \geq k_{r_{1}}^{1}, \quad k_{1}^{n} \geq k_{2}^{n} \geq \cdots \geq k_{r_{n}}^{n} .
$$

Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^{k} \alpha_{i}$ for $i=1,2, \ldots$, and $k \geq 0$.

4. Strong and free generations

We say that a VOA \mathcal{V} is strongly generated by a set $\left\{\alpha_{i} \mid i \in I\right\}$ if \mathcal{V} is spanned by monomials

$$
\left\{: \partial^{k_{1}} \alpha_{i_{1}} \cdots \partial^{i_{r}} \alpha_{i_{r}}: \mid k_{j} \geq 0, i_{j} \in I\right\}
$$

Suppose $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is an ordered strong generating set for \mathcal{V}.
We say \mathcal{V} is freely generated by $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ if

$$
: \partial^{k_{1}^{1}} \alpha_{i_{1}} \cdots \partial^{k_{r_{1}}^{1}} \alpha_{i_{1}} \cdots \partial^{k_{1}^{n}} \alpha_{i_{n}} \cdots \partial^{k_{r_{n}}^{n}} \alpha_{i_{n}}
$$

forms a basis of \mathcal{V}, where

$$
i_{1}<\cdots<i_{n}, \quad k_{1}^{1} \geq k_{2}^{1} \geq \cdots \geq k_{r_{1}}^{1}, \quad k_{1}^{n} \geq k_{2}^{n} \geq \cdots \geq k_{r_{n}}^{n} .
$$

Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^{k} \alpha_{i}$ for $i=1,2, \ldots$, and $k \geq 0$.

Ex: $V^{k}(\mathfrak{g})$ is freely generated by $X^{\xi_{i}}$.

5. Conformal structure

The Virasoro Lie algebra is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_{n}=-t^{n+1} \frac{d}{d t}, n \in \mathbb{Z}$, and central element κ,

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n+m, 0} \frac{n^{3}-n}{12} \kappa .
$$

A Virasoro element of a vertex algebra \mathcal{V} is a field $L(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2} \in \mathcal{V}$ satisfying $L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1}$ $\left[L_{0},-\right]$ is required to act diagonalizably and $\left[L_{-1},-\right]$ acts by ∂. Constant c is called the central charge.

5. Conformal structure

The Virasoro Lie algebra is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_{n}=-t^{n+1} \frac{d}{d t}, n \in \mathbb{Z}$, and central element κ,

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n+m, 0} \frac{n^{3}-n}{12} \kappa .
$$

A Virasoro element of a vertex algebra \mathcal{V} is a field $L(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2} \in \mathcal{V}$ satisfying

$\left[L_{0},-\right]$ is required to act diagonalizably and $\left[L_{-1},-\right]$ acts by ∂.

5. Conformal structure

The Virasoro Lie algebra is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_{n}=-t^{n+1} \frac{d}{d t}, n \in \mathbb{Z}$, and central element κ,

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n+m, 0} \frac{n^{3}-n}{12} \kappa
$$

A Virasoro element of a vertex algebra \mathcal{V} is a field $L(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2} \in \mathcal{V}$ satisfying

$$
L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1} .
$$

$\left[L_{0},-\right]$ is required to act diagonalizably and $\left[L_{-1},-\right]$ acts by ∂.

5. Conformal structure

The Virasoro Lie algebra is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_{n}=-t^{n+1} \frac{d}{d t}, n \in \mathbb{Z}$, and central element κ,

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n+m, 0} \frac{n^{3}-n}{12} \kappa
$$

A Virasoro element of a vertex algebra \mathcal{V} is a field $L(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2} \in \mathcal{V}$ satisfying

$$
L(z) L(w) \sim \frac{c}{2}(z-w)^{-4}+2 L(w)(z-w)^{-2}+\partial L(w)(z-w)^{-1} .
$$

$\left[L_{0},-\right]$ is required to act diagonalizably and $\left[L_{-1},-\right]$ acts by ∂.
Constant c is called the central charge.

6. Conformal structure, cont'd

Conformal weight grading is eigenspace decomposition under L_{0}.
If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1}
$$

Note that L always has weight 2
Virasoro VOA Vir $^{ }$is freely generated by $L(z)$.
Conformal structure on \mathcal{V} comes from homomorphism $\mathrm{Vir}^{c} \rightarrow \mathcal{V}$
Ex: $V^{k}(g)$ has Virasoro element

6. Conformal structure, cont'd

Conformal weight grading is eigenspace decomposition under L_{0}.
If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1} .
$$

Note that L always has weight 2.
Virasoro VOA Vir^{c} is freely generated by $L(z)$. Conformal structure on \mathcal{V} comes from homomorphism $\mathrm{Vir}^{c} \rightarrow \mathcal{V}$

Ex: $V^{k}(g)$ has Virasoro element

6. Conformal structure, cont'd

Conformal weight grading is eigenspace decomposition under L_{0}.
If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1} .
$$

Note that L always has weight 2.
Virasoro VOA Vir^{c} is freely generated by $L(z)$.
Conformal structure on \mathcal{V} comes from homomorphism $\mathrm{Vir}^{c} \rightarrow \mathcal{V}$
Ex: $V^{k}(\mathfrak{g})$ has Virasoro element

6. Conformal structure, cont'd

Conformal weight grading is eigenspace decomposition under L_{0}.
If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1} .
$$

Note that L always has weight 2.
Virasoro VOA Vir^{c} is freely generated by $L(z)$.
Conformal structure on \mathcal{V} comes from homomorphism $\mathrm{Vir}^{c} \rightarrow \mathcal{V}$.
Ex: $V^{k}(g)$ has Virasoro element

6. Conformal structure, cont'd

Conformal weight grading is eigenspace decomposition under L_{0}.
If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1} .
$$

Note that L always has weight 2.
Virasoro VOA Vir^{c} is freely generated by $L(z)$.
Conformal structure on \mathcal{V} comes from homomorphism $\mathrm{Vir}^{c} \rightarrow \mathcal{V}$.
Ex: $V^{k}(\mathfrak{g})$ has Virasoro element

$$
L^{\mathfrak{g}}=\frac{1}{2\left(k+h^{\vee}\right)} \sum_{i=1}^{n}: X^{\xi_{i}} X^{\xi_{i}^{\prime}}:, \quad k \neq-h^{\vee}
$$

6. Conformal structure, cont'd

Conformal weight grading is eigenspace decomposition under L_{0}.
If $a \in \mathcal{V}$ has weight d, then

$$
L(z) a(w) \sim \cdots+d a(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1} .
$$

Note that L always has weight 2.
Virasoro VOA Vir^{c} is freely generated by $L(z)$.
Conformal structure on \mathcal{V} comes from homomorphism $\mathrm{Vir}^{c} \rightarrow \mathcal{V}$.
Ex: $V^{k}(\mathfrak{g})$ has Virasoro element

$$
L^{\mathfrak{g}}=\frac{1}{2\left(k+h^{\vee}\right)} \sum_{i=1}^{n}: X^{\xi_{i}} X^{\xi_{i}^{\prime}}:, \quad k \neq-h^{\vee}
$$

Central charge $c=\frac{k \operatorname{dim}(\mathfrak{g})}{k+h^{\vee}}$ where h^{\vee} is dual Coxeter number.

7. Rational VOAs

There is a natural notion of modules for a VOA \mathcal{V}.
\mathcal{V} is called rational if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}, V^{k}(\mathfrak{g})$ is not simple.
Simple quotient $L_{k}(g)$ is rational.
Example: Let p, q be coprime positive integers with $2 \leq p<1$.
For $c=1-6 \frac{(p-q)^{2}}{p q}$, Vir c is not simple.
Simple quotient $\operatorname{Vir}_{c}=\operatorname{Vir}_{p, q}$ is rational.

7. Rational VOAs

There is a natural notion of modules for a $\mathrm{VOA} \mathcal{V}$.
\mathcal{V} is called rational if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}, V^{k}(\mathfrak{g})$ is not simple.
Simple quotient $L_{k}(\mathfrak{g})$ is rational.
Example: Let p, q be coprime positive integers with $2 \leq p<1$.
For $c=1-6 \frac{(p-q)^{2}}{p q}, \mathrm{Vir}^{c}$ is not simple.
Simple quotient $\mathrm{V} \mathrm{ir}_{c}=\mathrm{Vir}_{p, q}$ is rational.

7. Rational VOAs

There is a natural notion of modules for a VOA \mathcal{V}.
\mathcal{V} is called rational if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}, V^{k}(\mathfrak{g})$ is not simple.
Simple quotient $L_{k}(\mathfrak{g})$ is rational.
Example: Let p, q be coprime positive integers with $2 \leq p<1$.
For $c=1-6 \frac{(p-q)^{2}}{p q}$, Vir c is not simple.
Simple quotient $\mathrm{Vir}_{c}=\mathrm{Vir}_{p, q}$ is rational.

7. Rational VOAs

There is a natural notion of modules for a VOA \mathcal{V}.
\mathcal{V} is called rational if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}, V^{k}(\mathfrak{g})$ is not simple.
Simple quotient $L_{k}(\mathfrak{g})$ is rational.
Example: Let p, q be coprime positive integers with $2 \leq p<1$.
For $c=1-6 \frac{(p-q)^{2}}{p q}, \mathrm{Vir}^{c}$ is not simple.
Simple quotient $\mathrm{V} / \mathrm{ir}_{c}=\mathrm{Vir}_{p, q}$ is rational.

7. Rational VOAs

There is a natural notion of modules for a VOA \mathcal{V}.
\mathcal{V} is called rational if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}, V^{k}(\mathfrak{g})$ is not simple.
Simple quotient $L_{k}(\mathfrak{g})$ is rational.
Example: Let p, q be coprime positive integers with $2 \leq p<1$.
For $c=1-6 \frac{(p-q)^{2}}{p q}, \mathrm{Vir}^{\mathrm{c}}$ is not simple.
Simple quotient $\operatorname{Vir}_{c}=\operatorname{Vir}_{p, q}$ is rational.

7. Rational VOAs

There is a natural notion of modules for a $\mathrm{VOA} \mathcal{V}$.
\mathcal{V} is called rational if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}, V^{k}(\mathfrak{g})$ is not simple.
Simple quotient $L_{k}(\mathfrak{g})$ is rational.
Example: Let p, q be coprime positive integers with $2 \leq p<1$.
For $c=1-6 \frac{(p-q)^{2}}{p q}, \mathrm{Vir}^{c}$ is not simple.
Simple quotient $\operatorname{Vir}_{c}=\operatorname{Vir}_{p, q}$ is rational.

7. Rational VOAs

There is a natural notion of modules for a $\mathrm{VOA} \mathcal{V}$.
\mathcal{V} is called rational if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}, V^{k}(\mathfrak{g})$ is not simple.
Simple quotient $L_{k}(\mathfrak{g})$ is rational.
Example: Let p, q be coprime positive integers with $2 \leq p<1$.
For $c=1-6 \frac{(p-q)^{2}}{p q}, \mathrm{Vir}^{c}$ is not simple.
Simple quotient $\operatorname{Vir}_{c}=\operatorname{Vir}_{p, q}$ is rational.

8. \mathcal{W}-algebras

Class of VOAs associated to

1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g},
2. A nilpotent element f in the even part of \mathfrak{g}.

$\mathcal{W}^{k}(\mathfrak{g}, f)$ the \mathcal{W}-algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{s l}_{2}$-submodules of \mathfrak{g}.

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$
If $f=0, w^{k}(g, 0)=V^{k}(g)$
For $\mathfrak{g}=\mathfrak{s l}_{2}$ and $f=f_{\text {prin }}$ principal nilpotent, $\mathcal{W}^{k}\left(\mathfrak{s l}_{2}, f_{\text {prin }}\right)$ is just

For $k=-2+\frac{p}{q}$ an admissible level, simple quotient
$\mathcal{W}_{k}\left(\mathfrak{s l}_{2}, f_{\text {prin }}\right) \cong \operatorname{Vir}_{p, q}$

8. \mathcal{W}-algebras

Class of VOAs associated to

1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g},
2. A nilpotent element f in the even part of \mathfrak{g}.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ the \mathcal{W}-algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{s l}_{2}$-submodules of \mathfrak{g}.

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$

8. \mathcal{W}-algebras

Class of VOAs associated to

1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g},
2. A nilpotent element f in the even part of \mathfrak{g}.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ the \mathcal{W}-algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{s l}_{2}$-submodules of \mathfrak{g}.

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$ If $f=0, \mathcal{W}^{k}(\mathfrak{g}, 0)=V^{k}(\mathfrak{g})$.

8. \mathcal{W}-algebras

Class of VOAs associated to

1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g},
2. A nilpotent element f in the even part of \mathfrak{g}.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ the \mathcal{W}-algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{s l}_{2}$-submodules of \mathfrak{g}.

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.
If $f=0, \mathcal{W}^{k}(g, 0)=V^{k}(g)$.
For $\mathfrak{g}=\mathfrak{s l}_{2}$ and $f=f_{\text {prin }}$ principal nilpotent, $\mathcal{W}^{k}\left(\mathfrak{s l}_{2}, f_{\text {prin }}\right)$ is just the Virasoro algebra Vir^{c} for $\psi=k+2$ and $c=-\frac{(2 \psi-3)(3 \psi-2)}{\psi}$.

8. \mathcal{W}-algebras

Class of VOAs associated to

1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g},
2. A nilpotent element f in the even part of \mathfrak{g}.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ the \mathcal{W}-algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{s l}_{2}$-submodules of \mathfrak{g}.

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.
If $f=0, \mathcal{W}^{k}(\mathfrak{g}, 0)=V^{k}(\mathfrak{g})$.
For $\mathfrak{g}=\mathfrak{s l}_{2}$ and $f=f_{\text {prin }}$ principal nilpotent, $\mathcal{W}^{k}\left(\mathfrak{s l}_{2}, f_{\text {prin }}\right)$ is just the Virasoro algebra Vir^{c} for $\psi=k+2$ and $c=-\frac{(2 \psi-3)(3 \psi-2)}{\psi}$. For 1 $k=-2+\frac{p}{q}$ an admissible level, simple quotient

8. \mathcal{W}-algebras

Class of VOAs associated to

1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g},
2. A nilpotent element f in the even part of \mathfrak{g}.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ the \mathcal{W}-algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{s l}_{2}$-submodules of \mathfrak{g}.

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.
If $f=0, \mathcal{W}^{k}(\mathfrak{g}, 0)=V^{k}(\mathfrak{g})$.
For $\mathfrak{g}=\mathfrak{s l}_{2}$ and $f=f_{\text {prin }}$ principal nilpotent, $\mathcal{W}^{k}\left(\mathfrak{s l}_{2}, f_{\text {prin }}\right)$ is just the Virasoro algebra Vir^{c} for $\psi=k+2$ and $c=-\frac{(2 \psi-3)(3 \psi-2)}{\psi}$.

8. \mathcal{W}-algebras

Class of VOAs associated to

1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g},
2. A nilpotent element f in the even part of \mathfrak{g}.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ the \mathcal{W}-algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{s l}_{2}$-submodules of \mathfrak{g}.

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.
If $f=0, \mathcal{W}^{k}(\mathfrak{g}, 0)=V^{k}(\mathfrak{g})$.
For $\mathfrak{g}=\mathfrak{s l}_{2}$ and $f=f_{\text {prin }}$ principal nilpotent, $\mathcal{W}^{k}\left(\mathfrak{s l}_{2}, f_{\text {prin }}\right)$ is just the Virasoro algebra Vir^{c} for $\psi=k+2$ and $c=-\frac{(2 \psi-3)(3 \psi-2)}{\psi}$.

For $k=-2+\frac{p}{q}$ an admissible level, simple quotient $\mathcal{W}_{k}\left(\mathfrak{s l}_{2}, f_{\text {prin }}\right) \cong \operatorname{Vir}_{p, q}$.

9. Notation and examples

For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
> $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(g, f)$ with $k=\psi-h^{\vee}$.
> If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f)=\mathcal{W}^{\psi}(\mathfrak{g})$.
> $W^{\boldsymbol{W}}(g)$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right)$, where $r=\operatorname{rank}(g)$, and d_{1}, \ldots, d_{r} degrees of fundamental invariants of g.

> This means strong generators have conformal weights d_{1}, \ldots, d_{r}
> Thm (Arakawa, 2015): If $\psi=\frac{p}{q}$ is a nondegenerate admissible level, $\mathcal{W}_{\psi}(\mathfrak{g})$ is rational.

Special case of the Kac-Wakimoto conjecture, proven by McRae
in 2022.

9. Notation and examples

For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
$\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k=\psi-h^{\vee}$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(g, f)=\mathcal{W}^{\psi}(g)$.
$\mathcal{W}^{\psi}(\mathfrak{g})$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right)$, where
$r=\operatorname{rank}(\mathfrak{g})$, and d_{1}, \ldots, d_{r} degrees of fundamental invariants of \mathfrak{g}.
This means strong generators have conformal weights d_{1}, \ldots, d_{r}
Thm (Arakawa, 2015): If $\psi=\frac{p}{q}$ is a nondegenerate admissible level, $\mathcal{W}_{\psi}(\mathfrak{g})$ is rational

Special case of the Kac-Wakimoto conjecture, proven by McRae
in 2022.

9. Notation and examples

For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
$\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k=\psi-h^{\vee}$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f)=\mathcal{W}^{\psi}(\mathfrak{g})$.
$\mathcal{W}^{\psi}(\mathfrak{g})$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right)$, where
$r=\operatorname{rank}(\mathfrak{g})$, and d_{1}, \ldots, d_{r} degrees of fundamental invariants of \mathfrak{g}.
This means strong generators have conformal weights d_{1}, \ldots, d_{r}
Thm (Arakawa, 2015): If $\psi=\frac{p}{q}$ is a nondegenerate admissible level, $\mathcal{W}_{\psi}(\mathfrak{g})$ is rational.

Special case of the Kac-Wakimoto conjecture, proven by McRae
in 2022.

9. Notation and examples

For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
$\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k=\psi-h^{\vee}$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f)=\mathcal{W}^{\psi}(\mathfrak{g})$.
$\mathcal{W}^{\psi}(\mathfrak{g})$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right)$, where
$r=\operatorname{rank}(\mathfrak{g})$, and d_{1}, \ldots, d_{r} degrees of fundamental invariants of \mathfrak{g}.
This means strong generators have conformal weights d_{1}, \ldots, d_{r}.
Thm (Arakawa, 2015): If $\psi=\frac{p}{q}$ is a nondegenerate admissible level, $\mathcal{W}_{\psi}(\mathfrak{g})$ is rational.

Special case of the Kac-Wakimoto conjecture, proven by McRae
in 2022.

9. Notation and examples

For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
$\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k=\psi-h^{\vee}$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f)=\mathcal{W}^{\psi}(\mathfrak{g})$.
$\mathcal{W}^{\psi}(\mathfrak{g})$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right)$, where
$r=\operatorname{rank}(\mathfrak{g})$, and d_{1}, \ldots, d_{r} degrees of fundamental invariants of \mathfrak{g}.
This means strong generators have conformal weights d_{1}, \ldots, d_{r}.
Thm (Arakawa, 2015): If $\psi=\frac{p}{q}$ is a nondegenerate admissible level, $\mathcal{W}_{\psi}(\mathfrak{g})$ is rational.

Special case of the Kac-Wakimoto conjecture, proven by McRae in 2022.

9. Notation and examples

For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
$\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k=\psi-h^{\vee}$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f)=\mathcal{W}^{\psi}(\mathfrak{g})$.
$\mathcal{W}^{\psi}(\mathfrak{g})$ is freely generated of type $\mathcal{W}\left(d_{1}, \ldots, d_{r}\right)$, where
$r=\operatorname{rank}(\mathfrak{g})$, and d_{1}, \ldots, d_{r} degrees of fundamental invariants of \mathfrak{g}.
This means strong generators have conformal weights d_{1}, \ldots, d_{r}.
Thm (Arakawa, 2015): If $\psi=\frac{p}{q}$ is a nondegenerate admissible level, $\mathcal{W}_{\psi}(\mathfrak{g})$ is rational.

Special case of the Kac-Wakimoto conjecture, proven by McRae in 2022.

10. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$
\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi^{\prime}}\left({ }^{L} \mathfrak{g}\right), \quad r^{\vee} \psi \psi^{\prime}=1
$$

Here ${ }^{L} \mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g}.
In fact, a similar result holds for $\mathfrak{g}=\mathbf{o s p}_{1 \mid 2 n}$.
Thm: (Creutzig, Genra)

$$
\mathcal{W}^{v^{\prime}}\left(\operatorname{osp}_{1 \mid 2 n}\right) \cong \mathcal{W}^{\psi^{\prime}}\left(\operatorname{osp}_{1 \mid 2 n}\right)
$$

10. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$
\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi^{\prime}}\left({ }^{L} \mathfrak{g}\right), \quad r^{\vee} \psi \psi^{\prime}=1
$$

Here ${ }^{L} \mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g}.
In fact, a similar result holds for $\mathfrak{g}=\mathfrak{o s p}_{1 \mid 2 n}$.
Thm: (Creutzig, Genra)

$$
W^{w h}\left(\operatorname{osp}_{1 \mid 2 n}\right) \cong W^{\psi^{\prime}}\left(\operatorname{osp}_{1 \mid 2 n}\right)
$$

10. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$
\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi^{\prime}}\left({ }^{L} \mathfrak{g}\right), \quad r^{\vee} \psi \psi^{\prime}=1
$$

Here ${ }^{L} \mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g}.
In fact, a similar result holds for $\mathfrak{g}=\mathfrak{o s p}_{1 \mid 2 n}$.
Thm: (Creutzig, Genra)

$$
\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2 n}\right) \cong \mathcal{W}^{\psi^{\prime}}\left(\mathfrak{o s p}_{1 \mid 2 n}\right), \quad 4 \psi \psi^{\prime}=1
$$

11. Coset construction

Let \mathcal{V} be a VOA and $\mathcal{A} \subseteq \mathcal{V}$ a subVOA

The $\operatorname{coset} \mathcal{C}=\operatorname{Com}(\mathcal{A}, \mathcal{V})$ is the subVOA of \mathcal{V} which commutes with \mathcal{A}, that is,

$$
\mathcal{C}=\{v \in \mathcal{V} \mid[a(z), v(w)]=0, \forall a \in \mathcal{A}\} .
$$

If \mathcal{V}, \mathcal{A} have Virasoro elements $L^{\mathcal{V}}, L^{\mathcal{A}}$, then \mathcal{C} has Virasoro element

The map $\mathcal{A} \otimes \mathcal{C} \hookrightarrow \mathcal{V}$ is a conformal embedding.

11. Coset construction

Let \mathcal{V} be a VOA and $\mathcal{A} \subseteq \mathcal{V}$ a subVOA
The $\operatorname{coset} \mathcal{C}=\operatorname{Com}(\mathcal{A}, \mathcal{V})$ is the subVOA of \mathcal{V} which commutes with \mathcal{A}, that is,

$$
\mathcal{C}=\{v \in \mathcal{V} \mid[a(z), v(w)]=0, \forall a \in \mathcal{A}\} .
$$

If \mathcal{V}, \mathcal{A} have Virasoro elements $L^{\mathcal{V}}, L^{\mathcal{A}}$, then \mathcal{C} has Virasoro element

The map $\mathcal{A} \otimes \mathcal{C} \hookrightarrow \mathcal{V}$ is a conformal embedding.

11. Coset construction

Let \mathcal{V} be a VOA and $\mathcal{A} \subseteq \mathcal{V}$ a subVOA
The $\operatorname{coset} \mathcal{C}=\operatorname{Com}(\mathcal{A}, \mathcal{V})$ is the subVOA of \mathcal{V} which commutes with \mathcal{A}, that is,

$$
\mathcal{C}=\{v \in \mathcal{V} \mid[a(z), v(w)]=0, \forall a \in \mathcal{A}\} .
$$

If \mathcal{V}, \mathcal{A} have Virasoro elements $L^{\mathcal{V}}, L^{\mathcal{A}}$, then \mathcal{C} has Virasoro element

$$
L^{\mathcal{C}}=L^{\mathcal{V}}-L^{\mathcal{A}}
$$

11. Coset construction

Let \mathcal{V} be a VOA and $\mathcal{A} \subseteq \mathcal{V}$ a subVOA
The $\operatorname{coset} \mathcal{C}=\operatorname{Com}(\mathcal{A}, \mathcal{V})$ is the subVOA of \mathcal{V} which commutes with \mathcal{A}, that is,

$$
\mathcal{C}=\{v \in \mathcal{V} \mid[a(z), v(w)]=0, \forall a \in \mathcal{A}\} .
$$

If \mathcal{V}, \mathcal{A} have Virasoro elements $L^{\mathcal{V}}, L^{\mathcal{A}}$, then \mathcal{C} has Virasoro element

$$
L^{\mathcal{C}}=L^{\mathcal{V}}-L^{\mathcal{A}}
$$

The map $\mathcal{A} \otimes \mathcal{C} \hookrightarrow \mathcal{V}$ is a conformal embedding.

12. Coset construction of principal \mathcal{W}-algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

$$
V^{k+1}(\mathfrak{g}) \hookrightarrow V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g}), \quad u \mapsto u \otimes 1+1 \otimes u, \quad u \in \mathfrak{g}
$$

Set

$$
\mathcal{C}^{k}(\mathfrak{g})=\operatorname{Com}\left(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})\right)
$$

We have an isomorphism of 1-parameter VOAs

$$
C^{k}(\mathfrak{g}) \cong \mathcal{W}^{\psi}(\mathfrak{g}), \quad \psi=\frac{k+h^{\vee}}{k+h^{\vee}+1}
$$

Coset realization for B (and C) is different.
Thm: (Creutzig-L., 2021) We have an isomorphism of 1-parameter VOAs

12. Coset construction of principal \mathcal{W}-algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

$$
V^{k+1}(\mathfrak{g}) \hookrightarrow V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g}), \quad u \mapsto u \otimes 1+1 \otimes u, \quad u \in \mathfrak{g}
$$

Set

$$
\mathcal{C}^{k}(\mathfrak{g})=\operatorname{Com}\left(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})\right)
$$

We have an isomorphism of 1-parameter VOAs

$$
C^{k}(\mathfrak{g}) \cong \mathcal{W}^{\psi}(\mathfrak{g}), \quad \psi=\frac{k+h^{\vee}}{k+h^{\vee}+1}
$$

Coset realization for B (and C) is different.

12. Coset construction of principal \mathcal{W}-algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

$$
V^{k+1}(\mathfrak{g}) \hookrightarrow V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g}), \quad u \mapsto u \otimes 1+1 \otimes u, \quad u \in \mathfrak{g}
$$

Set

$$
\mathcal{C}^{k}(\mathfrak{g})=\operatorname{Com}\left(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})\right)
$$

We have an isomorphism of 1-parameter VOAs

$$
C^{k}(\mathfrak{g}) \cong \mathcal{W}^{\psi}(\mathfrak{g}), \quad \psi=\frac{k+h^{\vee}}{k+h^{\vee}+1}
$$

Coset realization for B (and C) is different.
Thm: (Creutzig-L., 2021) We have an isomorphism of 1-parameter VOAs
$\operatorname{Com}\left(V^{k}\left(\mathfrak{s p}_{2 n}\right), V^{k}\left(\mathfrak{o s p}_{1 \mid 2 n}\right)\right) \cong \mathcal{W}^{\psi}\left(\mathfrak{s o}_{2 n+1}\right), \quad \psi=\frac{2 k+2 n+1}{2(1+k+n)}$.

13. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $W^{w^{\prime}}(g, f)$ has affine subVOA $V^{\psi^{\prime}}(a)$, for some level ψ^{\prime}
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

$$
C^{\prime k}(g, f) \simeq C^{k \prime}\left(g^{\prime}, f^{\prime}\right) \simeq C^{\prime \prime \prime}\left(g^{\prime \prime}, f^{\prime \prime}\right) \text {. }
$$

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

13. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi^{\prime}}(\mathfrak{a})$, for some level ψ^{\prime}.
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

$$
C^{k \prime}(g, f) \simeq C^{k \prime}\left(g^{\prime}, f^{\prime}\right) \simeq C^{k^{\prime \prime}}\left(g^{\prime \prime}, f^{\prime \prime}\right) .
$$

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

13. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi^{\prime}}(\mathfrak{a})$, for some level ψ^{\prime}.
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(g, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

13. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi^{\prime}}(\mathfrak{a})$, for some level ψ^{\prime}.
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

13. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi^{\prime}}(\mathfrak{a})$, for some level ψ^{\prime}.
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

13. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi^{\prime}}(\mathfrak{a})$, for some level ψ^{\prime}.
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

$$
\mathcal{C}^{\psi}(\mathfrak{g}, f) \cong \mathcal{C}^{\psi^{\prime}}\left(\mathfrak{g}^{\prime}, f^{\prime}\right) \cong \mathcal{C}^{\psi^{\prime \prime}}\left(\mathfrak{g}^{\prime \prime}, f^{\prime \prime}\right)
$$

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

14. Hook-type \mathcal{W}-algebras in type A

Recall: For $n \geq 1$, write

$$
\mathfrak{s l}_{n+m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Let $f_{n} \in \mathfrak{s l}_{n+m}$ be the nilpotent which is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.

Then f_{n} corresponds to the hook-type partition $n+1+\cdots+1$.
Define shifted level $\psi=k+n+m$, and define

$$
\mathcal{W}^{\psi}(n, m):=\mathcal{W}^{\psi}\left(s l_{n+m}, f_{n}\right),
$$

which has level $k=\psi-n-m$.

14. Hook-type \mathcal{W}-algebras in type A

Recall: For $n \geq 1$, write

$$
\mathfrak{s l}_{n+m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Let $f_{n} \in \mathfrak{s l}_{n+m}$ be the nilpotent which is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.

Then f_{n} corresponds to the hook-type partition $n+1+\cdots+1$.
Define shifted level $\psi=k+n+m$, and define

$$
W^{\psi}(n, m):=W^{k}\left(s l_{n+m}, f_{n}\right),
$$

which has level $k=\psi-n-m$.

14. Hook-type \mathcal{W}-algebras in type A

Recall: For $n \geq 1$, write

$$
\mathfrak{s l}_{n+m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Let $f_{n} \in \mathfrak{s l}_{n+m}$ be the nilpotent which is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.

Then f_{n} corresponds to the hook-type partition $n+1+\cdots+1$.
Define shifted level $\psi=k+n+m$, and define

$$
W^{k}(n, m):=W^{k}\left(s I_{n+m}, f_{n}\right),
$$

which has level $k=\psi-n-m$.

14. Hook-type \mathcal{W}-algebras in type A

Recall: For $n \geq 1$, write

$$
\mathfrak{s l}_{n+m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Let $f_{n} \in \mathfrak{s l}_{n+m}$ be the nilpotent which is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.

Then f_{n} corresponds to the hook-type partition $n+1+\cdots+1$.
Define shifted level $\psi=k+n+m$, and define

$$
\mathcal{W}^{\psi}(n, m):=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n+m}, f_{n}\right)
$$

which has level $k=\psi-n-m$.

15. Hook-type \mathcal{W}-algebras in type A

For $n \geq 1, \mathcal{W}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2, \mathcal{W}^{\psi}(n, 0)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$
Subregular: For $n \geq 2, \mathcal{W}^{\psi}(n, 1)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n+1}, f_{\text {subreg }}\right)$
Trivial: For $m \geq 1, W^{h}(1, m) \cong W^{h}\left(5_{m+1}, 0\right)=V^{n-m-1}\left(5 l_{m+1}\right)$
Minimal: For $m \geq 1, \mathcal{W}^{\psi}(2, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{m+2}, f_{\text {min }}\right)$

15. Hook-type \mathcal{W}-algebras in type A

For $n \geq 1, \mathcal{W}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2, \mathcal{W}^{\psi}(n, 0)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$
Subregular: For $n \geq 2, \mathcal{W}^{\psi}(n, 1)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n+1}, f_{\text {subreg }}\right)$
Trivial: For $m \geq 1, \mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{m+1}, 0\right)=V^{\psi-m-1}\left(\mathfrak{s l}_{m+1}\right)$
Minimal: For $m \geq 1, \mathcal{W}^{\psi}(2, m) \cong \mathcal{W}^{\psi}\left(5 l_{m+2}, f_{\text {min }}\right)$

15. Hook-type \mathcal{W}-algebras in type A

For $n \geq 1, \mathcal{W}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2, \mathcal{W}^{\psi}(n, 0)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$
Subregular: For $n \geq 2, \mathcal{W}^{\psi}(n, 1)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n+1}, f_{\text {subreg }}\right)$
Trivial: For $m \geq 1, \mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{m+1}, 0\right)=V^{\psi-m-1}\left(\mathfrak{s l}_{m+1}\right)$
Minimal: For $m \geq 1, \mathcal{W}^{\psi}(2, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{m+2}, f_{\text {min }}\right)$.

15. Hook-type \mathcal{W}-algebras in type A

For $n \geq 1, \mathcal{W}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2, \mathcal{W}^{\psi}(n, 0)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$
Subregular: For $n \geq 2, \mathcal{W}^{\psi}(n, 1)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n+1}, f_{\text {subreg }}\right)$
Trivial: For $m \geq 1, \mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{m+1}, 0\right)=V^{\psi-m-1}\left(\mathfrak{s l}_{m+1}\right)$
Minimal: For $m \geq 1, \mathcal{W}^{\psi}(2, m) \cong \mathcal{W}^{\psi}\left(s_{m+2}, f_{\text {min }}\right)$.

15. Hook-type \mathcal{W}-algebras in type A

For $n \geq 1, \mathcal{W}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2, \mathcal{W}^{\psi}(n, 0)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$
Subregular: For $n \geq 2, \mathcal{W}^{\psi}(n, 1)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n+1}, f_{\text {subreg }}\right)$
Trivial: For $m \geq 1, \mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{m+1}, 0\right)=V^{\psi-m-1}\left(\mathfrak{s l}_{m+1}\right)$
Minimal: For $m \geq 1, \mathcal{W}^{\psi}(2, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{m+2}, f_{\text {min }}\right)$.

16. Features of $\mathcal{W}^{\psi}(n, m)$

For $m \geq 2, \mathcal{W}^{\psi}(n, m)$ has affine subalgebra

$$
V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right)=\mathcal{H} \otimes V^{\psi-m-1}\left(\mathfrak{s l}_{m}\right)
$$

Additional even generators are in weights $2,3, \ldots, n$ together with $2 m$ even fields in weight $\frac{n+1}{2}$ which transform under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the case $\mathcal{W}^{\psi}(0, m)$ separately as follows.

1. For $m \geq 2$,

$$
\mathcal{W}^{\psi}(0, m)=V^{\psi-m}\left(\mathfrak{s l}_{m}\right) \otimes \mathcal{S}(m),
$$

where $\mathcal{S}(m)$ is the rank $m \beta \gamma$-system.
2. $\mathcal{W}^{\psi}(0,1)=\mathcal{S}(1)$.
3. $\mathcal{W}^{\psi}(0,0) \cong \mathbb{C}$.

16. Features of $\mathcal{W}^{\psi}(n, m)$

For $m \geq 2, \mathcal{W}^{\psi}(n, m)$ has affine subalgebra

$$
V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right)=\mathcal{H} \otimes V^{\psi-m-1}\left(\mathfrak{s l}_{m}\right)
$$

Additional even generators are in weights $2,3, \ldots, n$ together with $2 m$ even fields in weight $\frac{n+1}{2}$ which transform under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the case $\mathcal{W}^{\psi}(0, m)$ separately as follows.

1. For $m \geq 2$,

$$
\mathcal{W}^{\psi}(0, m)=V^{\psi-m}\left(\mathfrak{s l}_{m}\right) \otimes \mathcal{S}(m),
$$

where $\mathcal{S}(m)$ is the rank $m \beta \gamma$-system.
\square
3. $\mathcal{N}^{\psi}(0,0) \cong \mathbb{C}$.

16. Features of $\mathcal{W}^{\psi}(n, m)$

For $m \geq 2, \mathcal{W}^{\psi}(n, m)$ has affine subalgebra

$$
V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right)=\mathcal{H} \otimes V^{\psi-m-1}\left(\mathfrak{s l}_{m}\right) .
$$

Additional even generators are in weights $2,3, \ldots, n$ together with $2 m$ even fields in weight $\frac{n+1}{2}$ which transform under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the case $\mathcal{W}^{\psi}(0, m)$ separately as follows.

1. For $m \geq 2$,

$$
\mathcal{W}^{\psi}(0, m)=V^{\psi-m}\left(\mathfrak{s l}_{m}\right) \otimes \mathcal{S}(m),
$$

where $\mathcal{S}(m)$ is the rank $m \beta \gamma$-system.
2. $\mathcal{W}^{\psi}(0,1)=\mathcal{S}(1)$.
3. $\mathcal{W}^{\psi}(0,0) \cong \mathbb{C}$.

17. Hook-type \mathcal{W}-superalgebras of type A

For $n+m \geq 2$ and $n \neq m$, write

$$
\mathfrak{s l}_{n \mid m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Nilpotent $f_{n} \in \mathfrak{s l}_{n}$ is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
Define shifted level $\psi=k+n-m$, and let

$$
\mathcal{V}^{\psi}(n, m)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid m}, f_{n}\right),
$$

which has level $k=\psi-n+m$.
Case $n=m \geq 2$ slightly different: $\mathcal{V}^{\psi}(n, n)=\mathcal{W}^{\psi}\left(\operatorname{psl}_{n \mid n}, f_{n}\right)$.

17. Hook-type \mathcal{W}-superalgebras of type A

For $n+m \geq 2$ and $n \neq m$, write

$$
\mathfrak{s l}_{n \mid m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Nilpotent $f_{n} \in \mathfrak{s l}_{n}$ is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
Define shifted level $\psi=k+n-m$, and let

$$
\nu^{\psi}(n, m)=W^{\psi}\left(s l_{n \mid m}, f_{n}\right),
$$

which has level $k=\psi-n+m$.
Case $n=m \geq 2$ slightly different: $\mathcal{V}^{\psi}(n, n)=\mathcal{W}^{\psi}\left(\operatorname{psl}_{n \mid n}, f_{n}\right)$.

17. Hook-type \mathcal{W}-superalgebras of type A

For $n+m \geq 2$ and $n \neq m$, write

$$
\mathfrak{s l}_{n \mid m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Nilpotent $f_{n} \in \mathfrak{s l}_{n}$ is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
Define shifted level $\psi=k+n-m$, and let

$$
\mathcal{V}^{\psi}(n, m)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid m}, f_{n}\right)
$$

which has level $k=\psi-n+m$.
Case $n=m \geq 2$ slightly different: $\mathcal{V}^{\psi}(n, n)=\mathcal{W}^{\psi}\left(\operatorname{psl}_{n \mid n}, f_{n}\right)$.

17. Hook-type \mathcal{W}-superalgebras of type A

For $n+m \geq 2$ and $n \neq m$, write

$$
\mathfrak{s l}_{n \mid m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Nilpotent $f_{n} \in \mathfrak{s l}_{n}$ is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
Define shifted level $\psi=k+n-m$, and let

$$
\mathcal{V}^{\psi}(n, m)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid m}, f_{n}\right)
$$

which has level $k=\psi-n+m$.
Case $n=m \geq 2$ slightly different: $\mathcal{V}^{\psi}(n, n)=\mathcal{W}^{\psi}\left(\mathfrak{p s l}_{n \mid n}, f_{n}\right)$.

18. Hook-type \mathcal{W}-superalgebras of type A

For $n \geq 1, \mathcal{V}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2, \mathcal{V}^{\psi}(n, 0)=\mathcal{W}^{\psi}\left(s \swarrow_{n}\right)$
Principal: For $n \geq 2, \mathcal{V}^{\psi}(n, 1)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid 1}\right)$.
Trivial: For $m \geq 1$,
$\mathcal{V}^{\psi}(1, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{1 \mid m}, 0\right)=V^{\psi+m-1}\left(\mathfrak{s l}_{m \mid 1}\right)=V^{-\psi-m+1}\left(5 \mathfrak{l}_{1 \mid m}\right)$
Minimal: For $m \geq 1, \mathcal{V}^{\psi}(2, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{m \mid 2}, f_{\text {min }}\right)$.

18. Hook-type \mathcal{W}-superalgebras of type A

For $n \geq 1, \mathcal{V}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2, \mathcal{V}^{\psi}(n, 0)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$
Principal: For $n \geq 2, \mathcal{V}^{\psi}(n, 1)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid 1}\right)$.
Trivial: For $m \geq 1$,
$\mathcal{V}^{\psi}(1, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{1 \mid m}, 0\right)=V^{\psi+m-1}\left(5 l_{m \mid 1}\right)=V^{-\psi-m+1}\left(5 l_{1 \mid m}\right)$
Minimal: For $m \geq 1, \mathcal{V}^{\psi}(2, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l} l_{m \mid 2}, f_{\text {min }}\right)$.

18. Hook-type \mathcal{W}-superalgebras of type A

For $n \geq 1, \mathcal{V}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2, \mathcal{V}^{\psi}(n, 0)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$
Principal: For $n \geq 2, \mathcal{V}^{\psi}(n, 1)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid 1}\right)$.
Trivial: For $m \geq 1$,
$\mathcal{V}^{\psi}(1, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{1 \mid m}, 0\right)=V^{\psi+m-1}\left(\mathfrak{s l}_{m \mid 1}\right)=V^{-\psi-m+1}\left(\mathfrak{s l}_{1 \mid m}\right)$
Minimal: For $m \geq 1, \mathcal{V}^{\psi}(2, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{m \mid 2}, f_{\text {min }}\right)$.

18. Hook-type \mathcal{W}-superalgebras of type A

For $n \geq 1, \mathcal{V}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2, \mathcal{V}^{\psi}(n, 0)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$
Principal: For $n \geq 2, \mathcal{V}^{\psi}(n, 1)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid 1}\right)$.
Trivial: For $m \geq 1$,
$\mathcal{V}^{\psi}(1, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{1 \mid m}, 0\right)=V^{\psi+m-1}\left(\mathfrak{s l}_{m \mid 1}\right)=V^{-\psi-m+1}\left(\mathfrak{s l}_{1 \mid m}\right)$
Minimal: For $m \geq 1, \mathcal{V}^{\psi}(2, m) \cong \mathcal{N}^{\psi}\left(\mathfrak{s l}_{m \mid 2}, f_{\text {min }}\right)$.

18. Hook-type \mathcal{W}-superalgebras of type A

For $n \geq 1, \mathcal{V}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2, \mathcal{V}^{\psi}(n, 0)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$
Principal: For $n \geq 2, \mathcal{V}^{\psi}(n, 1)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid 1}\right)$.
Trivial: For $m \geq 1$,
$\mathcal{V}^{\psi}(1, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{1 \mid m}, 0\right)=V^{\psi+m-1}\left(\mathfrak{s l}_{m \mid 1}\right)=V^{-\psi-m+1}\left(\mathfrak{s l}_{1 \mid m}\right)$
Minimal: For $m \geq 1, \mathcal{V}^{\psi}(2, m) \cong \mathcal{W}^{\psi}\left(\mathfrak{s l}_{m \mid 2}, f_{\text {min }}\right)$.

19. Hook-type \mathcal{W}-superalgebras of type A

For $m \geq 2, \mathcal{V}^{\psi}(n, m)$ has affine subalgebra

$$
\begin{aligned}
& V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \quad m \neq n, \\
& V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \quad m=n .
\end{aligned}
$$

Additional even generators in weights $2,3, \ldots, n$, together with $2 m$ odd fields in weight $\frac{n+1}{2}$ transforming under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the cases $\mathcal{V}^{\psi}(0, m)$ and $\mathcal{V}^{\psi}(1,1)$ separately as follows.

```
1. For m\geq2,
```

$$
\nu^{\psi}(0, m)=V^{-\psi-m}\left(\mathfrak{s l} l_{m}\right) \otimes \mathcal{E}(m),
$$

where $\mathcal{E}(m)$ is the rank $m b c$-system.
2. $\mathcal{V}^{\psi}(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.
3. $\nu^{\psi}(0,1)=\mathcal{E}(1)$.
4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}$.

19. Hook-type \mathcal{W}-superalgebras of type A

For $m \geq 2, \mathcal{V}^{\psi}(n, m)$ has affine subalgebra

$$
\begin{aligned}
& V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \quad m \neq n, \\
& V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \quad m=n .
\end{aligned}
$$

Additional even generators in weights $2,3, \ldots, n$, together with $2 m$ odd fields in weight $\frac{n+1}{2}$ transforming under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the cases $\mathcal{V}^{\psi}(0, m)$ and $\mathcal{\nu}^{\psi}(1,1)$ separately as follows.

where $\mathcal{E}(m)$ is the rank $m b c$-system.
2. $\mathcal{V}^{\psi}(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.
3. $\nu^{\psi}(0,1)=\mathcal{E}(1)$.
4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}$.

19. Hook-type \mathcal{W}-superalgebras of type A

For $m \geq 2, \mathcal{V}^{\psi}(n, m)$ has affine subalgebra

$$
\begin{aligned}
& V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \quad m \neq n, \\
& V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \quad m=n .
\end{aligned}
$$

Additional even generators in weights $2,3, \ldots, n$, together with $2 m$ odd fields in weight $\frac{n+1}{2}$ transforming under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the cases $\mathcal{V}^{\psi}(0, m)$ and $\mathcal{V}^{\psi}(1,1)$ separately as follows.

1. For $m \geq 2$,

$$
\mathcal{V}^{\psi}(0, m)=V^{-\psi-m}\left(\mathfrak{s l}_{m}\right) \otimes \mathcal{E}(m),
$$

where $\mathcal{E}(m)$ is the rank $m b c$-system.
2. $\mathcal{V}^{\psi}(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.
3. $\mathcal{V}^{\psi}(0,1)=\mathcal{E}(1)$.
4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}$.

20. Trialities in type A

Consider the affine cosets

$$
\begin{aligned}
& \mathcal{C}^{\psi}(n, m)=\operatorname{Com}\left(V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right), \mathcal{W}^{\psi}(n, m)\right), \\
& \mathcal{D}^{\psi}(n, m)=\operatorname{Com}\left(V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \mathcal{V}^{\psi}(n, m)\right), \quad n \neq m, \\
& \mathcal{D}^{\psi}(n, n)=\operatorname{Com}\left(V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \mathcal{V}^{\psi}(n, n)\right)^{U(1)} .
\end{aligned}
$$

Thm: (Creutzig-L., 2020) Let $n \geq m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

20. Trialities in type A

Consider the affine cosets

$$
\begin{aligned}
& \mathcal{C}^{\psi}(n, m)=\operatorname{Com}\left(V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right), \mathcal{W}^{\psi}(n, m)\right), \\
& \mathcal{D}^{\psi}(n, m)=\operatorname{Com}\left(V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \mathcal{V}^{\psi}(n, m)\right), \quad n \neq m, \\
& \mathcal{D}^{\psi}(n, n)=\operatorname{Com}\left(V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \mathcal{V}^{\psi}(n, n)\right)^{U(1)} .
\end{aligned}
$$

Thm: (Creutzig-L., 2020) Let $n \geq m$ be non-negative integers.
We have isomorphisms of 1-parameter VOAs

$$
\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n), \quad \frac{1}{\psi}+\frac{1}{\psi^{\prime}}=1
$$

20. Trialities in type A

Consider the affine cosets

$$
\begin{aligned}
& \mathcal{C}^{\psi}(n, m)=\operatorname{Com}\left(V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right), \mathcal{W}^{\psi}(n, m)\right), \\
& \mathcal{D}^{\psi}(n, m)=\operatorname{Com}\left(V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \mathcal{V}^{\psi}(n, m)\right), \quad n \neq m, \\
& \mathcal{D}^{\psi}(n, n)=\operatorname{Com}\left(V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \mathcal{V}^{\psi}(n, n)\right)^{U(1)}
\end{aligned}
$$

Thm: (Creutzig-L., 2020) Let $n \geq m$ be non-negative integers.
We have isomorphisms of 1-parameter VOAs

$$
\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n), \quad \frac{1}{\psi}+\frac{1}{\psi^{\prime}}=1
$$

Originally conjectured in physics by Gaiotto and Rapčák (2017).

21. Some special cases

$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{C}^{\psi^{-1}}(n, 0)$ recovers Feigin-Frenkel duality in type A.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m)$ are of Feigin-Frenkel
type.
$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{D}^{\psi^{\prime}}(0, n)$ recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{s l n})$.
Isomorphisms $D^{\psi}(n, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n)$ are of coset realization
type.
One more example:

$$
\mathcal{D}^{\psi}(n, 1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi^{\prime}}(1, n),
$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

21. Some special cases

$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{C}^{\psi^{-1}}(n, 0)$ recovers Feigin-Frenkel duality in type A. Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m)$ are of Feigin-Frenkel type.
$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{D}^{\psi^{\prime}}(0, n)$ recovers the coset realization of $\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n)$ are of coset realization type.

One more example:

$$
\mathcal{D}^{\psi}(n, 1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi^{\prime}}(1, n)
$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

21. Some special cases

$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{C}^{\psi^{-1}}(n, 0)$ recovers Feigin-Frenkel duality in type A.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m)$ are of Feigin-Frenkel type.
$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{D}^{\psi^{\prime}}(0, n)$ recovers the coset realization of $\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n)$ are of coset realization type.

One more example:

$$
\mathcal{D}^{\psi}(n, 1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi^{\prime}}(1, n)
$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

21. Some special cases

$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{C}^{\psi^{-1}}(n, 0)$ recovers Feigin-Frenkel duality in type A.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m)$ are of Feigin-Frenkel type.
$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{D}^{\psi^{\prime}}(0, n)$ recovers the coset realization of $\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n)$ are of coset realization type.

One more example:

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

21. Some special cases

$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{C}^{\psi^{-1}}(n, 0)$ recovers Feigin-Frenkel duality in type A. Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m)$ are of Feigin-Frenkel type.
$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{D}^{\psi^{\prime}}(0, n)$ recovers the coset realization of $\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n)$ are of coset realization type.

One more example:

$$
\mathcal{D}^{\psi}(n, 1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi^{\prime}}(1, n)
$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

22. Sketch of proof, cont'd

Step 1: In the $\psi \rightarrow \infty$ limit, both $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become $G L_{m}$-orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. $\mathcal{C}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(m+n+1)-1)$,
2. $\mathcal{D}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(n+1)-1)$

> Step 2: Universal two-parameter \mathcal{W}_{∞}-algebra $\mathcal{W}(c, \lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
> $\mathcal{W}(c, \lambda)$ is freely generated of type $\mathcal{W}(2,3, \ldots)$, and is defined over the polynomial ring $\mathbb{C}[c, \lambda]$.

Weight zero component $\mathcal{W}(c, \lambda)[0] \cong \mathbb{C}[c, \lambda]$.

22. Sketch of proof, cont'd

Step 1: In the $\psi \rightarrow \infty$ limit, both $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become $G L_{m}$-orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. $\mathcal{C}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(m+n+1)-1)$,
2. $\mathcal{D}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(n+1)-1)$.

$\mathcal{W}(c, \lambda)$ is freely generated of type $\mathcal{W}(2,3, \ldots)$, and is defined over the polynomial ring $\mathbb{C}[c, \lambda]$.

22. Sketch of proof, cont'd

Step 1: In the $\psi \rightarrow \infty$ limit, both $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become $G L_{m}$-orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. $\mathcal{C}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(m+n+1)-1)$,
2. $\mathcal{D}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞}-algebra $\mathcal{W}(c, \lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
$\mathcal{W}(c, \lambda)$ is freely generated of type $\mathcal{W}(2,3, \ldots)$, and is defined over the polynomial ring $\mathbb{C}[c, \lambda]$.

Weight zero component $\mathcal{W}(c, \lambda)[0] \cong \mathbb{C}[c, \lambda]$

22. Sketch of proof, cont'd

Step 1: In the $\psi \rightarrow \infty$ limit, both $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become $G L_{m}$-orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. $\mathcal{C}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(m+n+1)-1)$,
2. $\mathcal{D}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞}-algebra $\mathcal{W}(c, \lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
$\mathcal{W}(c, \lambda)$ is freely generated of type $\mathcal{W}(2,3, \ldots)$, and is defined over the polynomial ring $\mathbb{C}[c, \lambda]$.

22. Sketch of proof, cont'd

Step 1: In the $\psi \rightarrow \infty$ limit, both $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become $G L_{m}$-orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. $\mathcal{C}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(m+n+1)-1)$,
2. $\mathcal{D}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞}-algebra $\mathcal{W}(c, \lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
$\mathcal{W}(c, \lambda)$ is freely generated of type $\mathcal{W}(2,3, \ldots)$, and is defined over the polynomial ring $\mathbb{C}[c, \lambda]$.

Weight zero component $\mathcal{W}(c, \lambda)[0] \cong \mathbb{C}[c, \lambda]$.

23. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
Let I W W (c, λ) be the VOA ideal generated by I.
The quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(1 \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$W^{\prime}(c, \lambda)$ is simple for a generic ideal /
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{1}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
In fact, all simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$
satisfying mild hypotheses, are of this form.
Variety $V(I) \subseteq \mathbb{C}^{2}$ is called the truncation curve
es

23. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.
The quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$w^{\prime}(c, \lambda)$ is simple for a generic ideal /
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}^{\prime}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
In fact, all simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$
satisfying mild hypotheses, are of this form.
Variety $V(I) \subseteq \mathbb{C}^{2}$ is called the truncation curve

23. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.
The quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal $/$
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $W_{i}(c, \lambda)$ be simple graded quotient of $W^{\prime}(c, \lambda)$.
In fact, all simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$
satisfying mild hypotheses, are of this form.

23. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.
The quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I.
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{l}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
In fact, all simple, one-parameter VOA of type $\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

23. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.
The quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I.
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{I}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
In fact, all simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

23. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.
The quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I.
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{l}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
In fact, all simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

23. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.
The quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I.
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{l}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
In fact, all simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

23. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.
The quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I.
But for certain discrete families of ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.
Let $\mathcal{W}_{l}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
In fact, all simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^{2}$ is called the truncation curve.

24. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.
$\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I
Extension is generated by 2 m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines I.
Same method works for $\nu^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

24. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.
$\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(g_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I
Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines / Same method works for $\mathcal{V}^{\psi}(n, m)$.

Triality theorem follows from explicit form of I.

24. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$. $\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines /
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

24. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$. $\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines $/$.
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

24. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$. $\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines l.
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

24. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$. $\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines l.
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

24. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$. $\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines l.
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

25. Some applications

Let $I_{n, m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n, m)$
Nontrivial isomorphisms $\mathcal{C}_{\psi}(n, m) \cong \mathcal{C}_{\psi^{\prime}}\left(n^{\prime}, m^{\prime}\right)$ correspond to intersection points in $V\left(I_{n, m}\right) \cap V\left(I_{n^{\prime}, m^{\prime}}\right)$.

All intersections between the curves $V\left(I_{n, m}\right)$ are rational points.
Recall: $\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}\right)=\mathcal{W}_{\psi}(n, 0)=\mathcal{C}_{\psi}(n, 0)$.
Thm: For all $2 \leq n<m$,

$$
\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}\right) \cong \mathcal{W}_{\psi^{\prime}}\left(\mathfrak{s l}_{m}\right), \quad \psi=\frac{n}{n+m}, \quad \psi^{\prime}=\frac{m}{m+n}
$$

Conjectured by Gaberdiel and Gopakumar (2011).
If m, n coprime, $\psi=\frac{n}{m+n}$ and $\psi^{\prime}=\frac{m}{m+n}$ are boundary admissible in the sense of Kac-Wakimoto.

25. Some applications

Let $I_{n, m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n, m)$
Nontrivial isomorphisms $\mathcal{C}_{\psi}(n, m) \cong \mathcal{C}_{\psi^{\prime}}\left(n^{\prime}, m^{\prime}\right)$ correspond to intersection points in $V\left(I_{n, m}\right) \cap V\left(I_{n^{\prime}, m^{\prime}}\right)$.

All intersections between the curves $V\left(I_{n, m}\right)$ are rational points.
Recall: $\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}\right)=\mathcal{W}_{\psi}(n, 0)=\mathcal{C}_{\psi}(n, 0)$.
Thm: For all $2 \leq n<m$,

$$
\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}\right) \cong \mathcal{W}_{\psi^{\prime}}\left(\mathfrak{s l}_{m}\right), \quad \psi=\frac{n}{n+m}, \quad \psi^{\prime}=\frac{m}{m+n}
$$

Conjectured by Gaberdiel and Gopakumar (2011).

25. Some applications

Let $I_{n, m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n, m)$
Nontrivial isomorphisms $\mathcal{C}_{\psi}(n, m) \cong \mathcal{C}_{\psi^{\prime}}\left(n^{\prime}, m^{\prime}\right)$ correspond to intersection points in $V\left(I_{n, m}\right) \cap V\left(I_{n^{\prime}, m^{\prime}}\right)$.

All intersections between the curves $V\left(I_{n, m}\right)$ are rational points.
Recall: $\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}\right)=\mathcal{W}_{\psi}(n, 0)=\mathcal{C}_{\psi}(n, 0)$.
Thm: For all $2 \leq n<m$,

Conjectured by Gaberdiel and Gopakumar (2011).
If m, n coprime, $\psi=$
in the sense of Kac-Wakimoto.

25. Some applications

Let $I_{n, m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n, m)$
Nontrivial isomorphisms $\mathcal{C}_{\psi}(n, m) \cong \mathcal{C}_{\psi^{\prime}}\left(n^{\prime}, m^{\prime}\right)$ correspond to intersection points in $V\left(I_{n, m}\right) \cap V\left(I_{n^{\prime}, m^{\prime}}\right)$.

All intersections between the curves $V\left(I_{n, m}\right)$ are rational points.
Recall: $\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}\right)=\mathcal{W}_{\psi}(n, 0)=\mathcal{C}_{\psi}(n, 0)$.
Thm: For all $2 \leq n<m$,

Conjectured by Gaberdiel and Gopakumar (2011).
If m, n coprime, $\psi=$ in the sense of Kac-Wakimoto.

25. Some applications

Let $I_{n, m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n, m)$
Nontrivial isomorphisms $\mathcal{C}_{\psi}(n, m) \cong \mathcal{C}_{\psi^{\prime}}\left(n^{\prime}, m^{\prime}\right)$ correspond to intersection points in $V\left(I_{n, m}\right) \cap V\left(I_{n^{\prime}, m^{\prime}}\right)$.

All intersections between the curves $V\left(I_{n, m}\right)$ are rational points.
Recall: $\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}\right)=\mathcal{W}_{\psi}(n, 0)=\mathcal{C}_{\psi}(n, 0)$.
Thm: For all $2 \leq n<m$,

$$
\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}\right) \cong \mathcal{W}_{\psi^{\prime}}\left(\mathfrak{s l}_{m}\right), \quad \psi=\frac{n}{n+m}, \quad \psi^{\prime}=\frac{m}{m+n}
$$

Conjectured by Gaberdiel and Gopakumar (2011).

25. Some applications

Let $I_{n, m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n, m)$
Nontrivial isomorphisms $\mathcal{C}_{\psi}(n, m) \cong \mathcal{C}_{\psi^{\prime}}\left(n^{\prime}, m^{\prime}\right)$ correspond to intersection points in $V\left(I_{n, m}\right) \cap V\left(I_{n^{\prime}, m^{\prime}}\right)$.

All intersections between the curves $V\left(I_{n, m}\right)$ are rational points.
Recall: $\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}\right)=\mathcal{W}_{\psi}(n, 0)=\mathcal{C}_{\psi}(n, 0)$.
Thm: For all $2 \leq n<m$,

$$
\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}\right) \cong \mathcal{W}_{\psi^{\prime}}\left(\mathfrak{s l}_{m}\right), \quad \psi=\frac{n}{n+m}, \quad \psi^{\prime}=\frac{m}{m+n}
$$

Conjectured by Gaberdiel and Gopakumar (2011).
If m, n coprime, $\psi=\frac{n}{m+n}$ and $\psi^{\prime}=\frac{m}{m+n}$ are boundary admissible in the sense of Kac-Wakimoto.

26. Some applications

Recall: $\mathcal{W}_{\psi}(n-1,1)=\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)$.
Affine subalgebra is just a Heisenberg algebra \mathcal{H}, and

$$
\mathcal{C}_{\psi}(n-1,1) \cong \operatorname{Com}\left(\mathcal{H}, \mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)\right) .
$$

By finding intersection points in $V\left(I_{n-1,1}\right) \cap V\left(I_{r, 0}\right)$, we can classify isomorphisms $\operatorname{Com}\left(\mathcal{H}, \mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)\right) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{r}\right)$.

Cor: For all $n \geq 2$, if $r+1$ and $r+n$ are coprime, $\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)$ is a simple current extension of $V_{L} \otimes \mathcal{W}_{\phi}\left(\mathfrak{s l}_{r}\right)$, where

$$
\psi=\frac{n+r}{n-1}, \quad \phi=\frac{r+1}{r+n}, \quad L=\sqrt{n r} \mathbb{Z} .
$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

26. Some applications

Recall: $\mathcal{W}_{\psi}(n-1,1)=\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)$.
Affine subalgebra is just a Heisenberg algebra \mathcal{H}, and

$$
\mathcal{C}_{\psi}(n-1,1) \cong \operatorname{Com}\left(\mathcal{H}, \mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)\right)
$$

By finding intersection points in $V\left(I_{n-1,1}\right) \cap V\left(I_{r, 0}\right)$, we can classify isomorphisms $\operatorname{Com}\left(\mathcal{H}, \mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)\right) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{r}\right)$.

Cor: For all $n \geq 2$, if $r+1$ and $r+n$ are coprime, $\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)$
is a simple current extension of $V_{L} \otimes \mathcal{W}_{\phi}\left(\mathfrak{s l}_{r}\right)$, where

26. Some applications

Recall: $\mathcal{W}_{\psi}(n-1,1)=\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)$.
Affine subalgebra is just a Heisenberg algebra \mathcal{H}, and

$$
\mathcal{C}_{\psi}(n-1,1) \cong \operatorname{Com}\left(\mathcal{H}, \mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)\right)
$$

By finding intersection points in $V\left(I_{n-1,1}\right) \cap V\left(I_{r, 0}\right)$, we can classify isomorphisms $\operatorname{Com}\left(\mathcal{H}, \mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)\right) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{r}\right)$.

Cor: For all $n \geq 2$, if $r+1$ and $r+n$ are coprime, $\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)$ is a simple current extension of $V_{L} \otimes \mathcal{W}_{\phi}\left(\mathfrak{s l}_{r}\right)$, where

26. Some applications

Recall: $\mathcal{W}_{\psi}(n-1,1)=\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)$.
Affine subalgebra is just a Heisenberg algebra \mathcal{H}, and

$$
\mathcal{C}_{\psi}(n-1,1) \cong \operatorname{Com}\left(\mathcal{H}, \mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)\right)
$$

By finding intersection points in $V\left(I_{n-1,1}\right) \cap V\left(I_{r, 0}\right)$, we can classify isomorphisms $\operatorname{Com}\left(\mathcal{H}, \mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)\right) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{r}\right)$.

Cor: For all $n \geq 2$, if $r+1$ and $r+n$ are coprime, $\mathcal{W}_{\psi}\left(\mathfrak{s l}_{n}, f_{\text {subreg }}\right)$ is a simple current extension of $V_{L} \otimes \mathcal{W}_{\phi}\left(\mathfrak{s l}_{r}\right)$, where

$$
\psi=\frac{n+r}{n-1}, \quad \phi=\frac{r+1}{r+n}, \quad L=\sqrt{n r} \mathbb{Z}
$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

27. Universal objects

More generally, a universal object is a VOA \mathcal{V} with the following properties:

1. \mathcal{V} has some prescribed strong generating type $\mathcal{W}\left(d_{1}, d_{2}, \ldots\right)$.
2. \mathcal{V} is defined over a commutative \mathbb{C}-algebra R.
3. \mathcal{V} cannot be defined in a nontrivial way over a ring with larger Krull dimension.

possibly after localizing.
Universal objects have two main applications:
4. Classification of VOAs by strong generating type.
5. Classification of nontrivial coincidences among different VOAs via intersection of truncation varieties.

27. Universal objects

More generally, a universal object is a VOA \mathcal{V} with the following properties:

1. \mathcal{V} has some prescribed strong generating type $\mathcal{W}\left(d_{1}, d_{2}, \ldots\right)$.
2. \mathcal{V} is defined over a commutative \mathbb{C}-algebra R.
3. \mathcal{V} cannot be defined in a nontrivial way over a ring with larger Krull dimension.

Condition (3) means: If \mathcal{V}^{\prime} is a VOA of type $\mathcal{W}\left(d_{1}, d_{2}, \ldots\right)$ and is defined over a ring S of higher Krull dimension, then we have

$$
\mathcal{V}^{\prime}=\mathcal{V} \otimes_{R} S
$$

possibly after localizing.
Universal objects have two main applications:

1. Classification of VOAs by strong generating type.
2. Classification of nontrivial coincidences among different VOAs via intersection of truncation varieties.

27. Universal objects

More generally, a universal object is a VOA \mathcal{V} with the following properties:

1. \mathcal{V} has some prescribed strong generating type $\mathcal{W}\left(d_{1}, d_{2}, \ldots\right)$.
2. \mathcal{V} is defined over a commutative \mathbb{C}-algebra R.
3. \mathcal{V} cannot be defined in a nontrivial way over a ring with larger Krull dimension.

Condition (3) means: If \mathcal{V}^{\prime} is a VOA of type $\mathcal{W}\left(d_{1}, d_{2}, \ldots\right)$ and is defined over a ring S of higher Krull dimension, then we have

$$
\mathcal{V}^{\prime}=\mathcal{V} \otimes_{R} S
$$

possibly after localizing.
Universal objects have two main applications:

1. Classification of VOAs by strong generating type.
2. Classification of nontrivial coincidences among different VOAs via intersection of truncation varieties.
