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1. Vertex operator algebras

Vertex operator algebras (VOAs) were studied by physicists in the
1980s and axiomatized by Borcherds (1986).

A VOA V is a vector space which is linearly isomorphic to an
algebra of formal power series in End(V)[[z , z−1]].

a↔ a(z) =
∑
n∈Z

a(n)z−n−1, a(n) ∈ End(V).

V has Wick product : ab :, generally nonassociative,
noncommutative.

Unit 1, derivation ∂ = d
dz .

Conformal weight grading V =
⊕

n≥0 V[n], n ∈ Z or 1
2Z
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2. Operator product expansion

Let V be a VOA, a, b ∈ V. Then

a(z)b(w) =
∑
n≥0

(a(n)b)(w)(z − w)−n−1+ : a(z)b(w) : .

Expansion of meromorphic function with poles along z = w , where

1. : a(z)b(w) : is regular part.

2. (a(n)b)(w) is polar part of order n + 1.

Defines bilinear products (−(n)−) : V ⊗ V → V, where
(a, b) 7→ a(n)b.

Also : a(z)b(w) : |z=w coincides with Wick product.

Often write

a(z)b(w) ∼
∑
n≥0

(a(n)b)(w)(z − w)−n−1,

where ∼ means equal modulo regular part.
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3. Operator product expansion

Often, a VOA is presented by giving generators and OPE relations.

Ex: Affine VOA V k(g), for g a simple Lie algebra with basis
ξ1, . . . , ξn.

V k(g) is generated by fields X ξi , i = 1, . . . , n, satisfying

X ξi (z)X ξj (w) ∼ k(ξi |ξj)(z − w)−2 + X [ξi ,ξj ](w)(z − w)−1.

Fact: V k(g) has a PBW basis consisting of monomials

: ∂k
1
1X ξ1 · · · ∂k

1
r1X ξ1 · · · ∂kn

1X ξn · · · ∂kn
rnX ξn :,

k11 ≥ k12 ≥ · · · ≥ k1r1 , kn1 ≥ kn2 ≥ · · · ≥ knrn .

V k(g) linearly isomorphic to polynomial algebra on
{∂kX ξi | i = 1, . . . , n, k ≥ 0}.
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4. Strong and free generations

We say that a VOA V is strongly generated by a set {αi | i ∈ I}
if V is spanned by monomials

{: ∂k1αi1 · · · ∂ irαir : | kj ≥ 0, ij ∈ I}.

Suppose {α1, α2, . . . } is an ordered strong generating set for V.

We say V is freely generated by {α1, α2, . . . } if

: ∂k
1
1αi1 · · · ∂

k1
r1αi1 · · · ∂k

n
1αin · · · ∂k

n
rnαin :,

forms a basis of V, where

i1 < · · · < in, k11 ≥ k12 ≥ · · · ≥ k1r1 , kn1 ≥ kn2 ≥ · · · ≥ knrn .

Equivalently, V is linearly isomorphic to polynomial algebra on
∂kαi for i = 1, 2, . . . , and k ≥ 0.

Ex: V k(g) is freely generated by X ξi .
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5. Conformal structure

The Virasoro Lie algebra is a central extension of the
(complexified) Lie algebra of vector fields on the circle.

Generators Ln = −tn+1 d
dt , n ∈ Z, and central element κ,

[Ln, Lm] = (n −m)Ln+m + δn+m,0
n3 − n

12
κ.

A Virasoro element of a vertex algebra V is a field
L(z) =

∑
n∈Z Lnz

−n−2 ∈ V satisfying

L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1.

[L0,−] is required to act diagonalizably and [L−1,−] acts by ∂.

Constant c is called the central charge.
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6. Conformal structure, cont’d

Conformal weight grading is eigenspace decomposition under L0.

If a ∈ V has weight d , then

L(z)a(w) ∼ · · ·+ da(w)(z − w)−2 + ∂a(w)(z − w)−1.

Note that L always has weight 2.

Virasoro VOA Virc is freely generated by L(z).

Conformal structure on V comes from homomorphism Virc → V.

Ex: V k(g) has Virasoro element

Lg =
1

2(k + h∨)

n∑
i=1

: X ξiX ξ′i :, k 6= −h∨.

Central charge c = kdim(g)
k+h∨ where h∨ is dual Coxeter number.
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7. Rational VOAs

There is a natural notion of modules for a VOA V.

V is called rational if its module category is semisimple and has
finitely many simple objects.

Example: For g simple and k ∈ N, V k(g) is not simple.

Simple quotient Lk(g) is rational.

Example: Let p, q be coprime positive integers with 2 ≤ p < 1.

For c = 1− 6 (p−q)2
pq , Virc is not simple.

Simple quotient Virc = Virp,q is rational.
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8. W-algebras

Class of VOAs associated to

1. A simple, finite-dimensional Lie (super)algebra g,

2. A nilpotent element f in the even part of g.

Wk(g, f ) the W-algebra at level k associated to g and f via
(generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors
for irreducible sl2-submodules of g.

For each such module of dimension d , get a field of weight d+1
2 .

If f = 0, Wk(g, 0) = V k(g).

For g = sl2 and f = fprin principal nilpotent, Wk(sl2, fprin) is just

the Virasoro algebra Virc for ψ = k + 2 and c = − (2ψ−3)(3ψ−2)
ψ .

For k = −2 + p
q an admissible level, simple quotient

Wk(sl2, fprin) ∼= Virp,q.
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For g = sl2 and f = fprin principal nilpotent, Wk(sl2, fprin) is just

the Virasoro algebra Virc for ψ = k + 2 and c = − (2ψ−3)(3ψ−2)
ψ .

For k = −2 + p
q an admissible level, simple quotient

Wk(sl2, fprin) ∼= Virp,q.
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9. Notation and examples

For this talk: We will replace k with the shifted level ψ = k +h∨.

Wψ(g, f ) will always denote Wk(g, f ) with k = ψ − h∨.

If f = fprin is a principal nilpotent, write Wψ(g, f ) =Wψ(g).

Wψ(g) is freely generated of type W(d1, . . . , dr ), where
r = rank(g), and d1, . . . , dr degrees of fundamental invariants of g.

This means strong generators have conformal weights d1, . . . , dr .

Thm (Arakawa, 2015): If ψ = p
q is a nondegenerate admissible

level, Wψ(g) is rational.

Special case of the Kac-Wakimoto conjecture, proven by McRae
in 2022.
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10. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let g be a simple Lie algebra. Then

Wψ(g) ∼=Wψ′(Lg), r∨ψψ′ = 1.

Here Lg is the Langlands dual Lie algebra, and r∨ is the lacity of g.

In fact, a similar result holds for g = osp1|2n.

Thm: (Creutzig, Genra)

Wψ(osp1|2n) ∼=Wψ′(osp1|2n), 4ψψ′ = 1.
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11. Coset construction

Let V be a VOA and A ⊆ V a subVOA

The coset C = Com(A,V) is the subVOA of V which commutes
with A, that is,

C = {v ∈ V| [a(z), v(w)] = 0, ∀a ∈ A}.

If V, A have Virasoro elements LV , LA, then C has Virasoro
element

LC = LV − LA,

The map A⊗ C ↪→ V is a conformal embedding.
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12. Coset construction of principal W-algebras

Thm: (Arakawa, Creutzig, L., 2018) Let g be simple and
simply-laced. We have diagonal embedding

V k+1(g) ↪→ V k(g)⊗ L1(g), u 7→ u ⊗ 1 + 1⊗ u, u ∈ g.

Set
Ck(g) = Com(V k+1(g),V k(g)⊗ L1(g)).

We have an isomorphism of 1-parameter VOAs

C k(g) ∼=Wψ(g), ψ =
k + h∨

k + h∨ + 1
.

Coset realization for B (and C ) is different.

Thm: (Creutzig-L., 2021) We have an isomorphism of 1-parameter
VOAs

Com(V k(sp2n),V k(osp1|2n)) ∼=Wψ(so2n+1), ψ =
2k + 2n + 1

2(1 + k + n)
.
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13. What are trialities of W-algebras?

Let f ∈ g be a nilpotent, and complete f to a copy {f , h, e} of sl2
in g.

Let a ⊆ g denote the centralizer of this sl2 in g.

Then Wψ(g, f ) has affine subVOA V ψ′(a), for some level ψ′.

By the affine coset, we mean Cψ(g, f ) := Com(V ψ′(a),Wψ(g, f )).

Sometimes we also take invariants under some group of outer
automorphisms.

Trialities are isomorphisms between three different affine cosets

Cψ(g, f ) ∼= Cψ
′
(g′, f ′) ∼= Cψ

′′
(g′′, f ′′).

These unify and generalize both Feigin-Frenkel duality and the
coset realization of principal W-algebras.
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14. Hook-type W-algebras in type A

Recall: For n ≥ 1, write

sln+m = sln ⊕ glm ⊕
(
Cn ⊗ (Cm)∗

)
⊕
(

(Cn)∗ ⊗ Cm

)
.

Let fn ∈ sln+m be the nilpotent which is principal in sln and
trivial in glm.

Then fn corresponds to the hook-type partition n + 1 + · · ·+ 1.

Define shifted level ψ = k + n + m, and define

Wψ(n,m) :=Wψ(sln+m, fn),

which has level k = ψ − n −m.
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15. Hook-type W-algebras in type A

For n ≥ 1, Wψ(n,m) is a common generalization of the following
well-known examples.

Principal: For n ≥ 2, Wψ(n, 0) =Wψ(sln)

Subregular: For n ≥ 2, Wψ(n, 1) =Wψ(sln+1, fsubreg)

Trivial: For m ≥ 1, Wψ(1,m) ∼=Wψ(slm+1, 0) = V ψ−m−1(slm+1)

Minimal: For m ≥ 1, Wψ(2,m) ∼=Wψ(slm+2, fmin).
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16. Features of Wψ(n,m)

For m ≥ 2, Wψ(n,m) has affine subalgebra

V ψ−m−1(glm) = H⊗ V ψ−m−1(slm).

Additional even generators are in weights 2, 3, . . . , n together with
2m even fields in weight n+1

2 which transform under glm as
Cm ⊕ (Cm)∗.

We define the case Wψ(0,m) separately as follows.

1. For m ≥ 2,

Wψ(0,m) = V ψ−m(slm)⊗ S(m),

where S(m) is the rank m βγ-system.

2. Wψ(0, 1) = S(1).

3. Wψ(0, 0) ∼= C.
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17. Hook-type W-superalgebras of type A

For n + m ≥ 2 and n 6= m, write

sln|m = sln ⊕ glm ⊕
(
Cn ⊗ (Cm)∗

)
⊕
(

(Cn)∗ ⊗ Cm

)
.

Nilpotent fn ∈ sln is principal in sln and trivial in glm.

Define shifted level ψ = k + n −m, and let

Vψ(n,m) =Wψ(sln|m, fn),

which has level k = ψ − n + m.

Case n = m ≥ 2 slightly different: Vψ(n, n) =Wψ(psln|n, fn).
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18. Hook-type W-superalgebras of type A

For n ≥ 1, Vψ(n,m) is a common generalization of the following
well-known examples.

Principal: For n ≥ 2, Vψ(n, 0) =Wψ(sln)

Principal: For n ≥ 2, Vψ(n, 1) =Wψ(sln|1).

Trivial: For m ≥ 1,
Vψ(1,m) ∼=Wψ(sl1|m, 0) = V ψ+m−1(slm|1) = V−ψ−m+1(sl1|m)

Minimal: For m ≥ 1, Vψ(2,m) ∼=Wψ(slm|2, fmin).
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19. Hook-type W-superalgebras of type A

For m ≥ 2, Vψ(n,m) has affine subalgebra

V−ψ−m+1(glm), m 6= n,

V−ψ−n+1(sln), m = n.

Additional even generators in weights 2, 3, . . . , n, together with 2m
odd fields in weight n+1

2 transforming under glm as Cm ⊕ (Cm)∗.

We define the cases Vψ(0,m) and Vψ(1, 1) separately as follows.

1. For m ≥ 2,

Vψ(0,m) = V−ψ−m(slm)⊗ E(m),

where E(m) is the rank m bc-system.

2. Vψ(1, 1) = A(1), rank one symplectic fermion algebra.

3. Vψ(0, 1) = E(1).

4. Vψ(0, 0) ∼= Vψ(1, 0) ∼= C.
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20. Trialities in type A

Consider the affine cosets

Cψ(n,m) = Com(V ψ−m−1(glm),Wψ(n,m)),

Dψ(n,m) = Com(V−ψ−m+1(glm),Vψ(n,m)), n 6= m,

Dψ(n, n) = Com(V−ψ−n+1(sln),Vψ(n, n))U(1).

Thm: (Creutzig-L., 2020) Let n ≥ m be non-negative integers.
We have isomorphisms of 1-parameter VOAs

Dψ(n,m) ∼= Cψ
−1

(n −m,m) ∼= Dψ
′
(m, n),

1

ψ
+

1

ψ′
= 1.

Originally conjectured in physics by Gaiotto and Rapčák (2017).
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21. Some special cases

Dψ(n, 0) ∼= Cψ−1
(n, 0) recovers Feigin-Frenkel duality in type A.

Isomorphisms Dψ(n,m) ∼= Cψ−1
(n −m,m) are of Feigin-Frenkel

type.

Dψ(n, 0) ∼= Dψ′(0, n) recovers the coset realization of Wψ(sln).

Isomorphisms Dψ(n,m) ∼= Dψ′(m, n) are of coset realization
type.

One more example:

Dψ(n, 1) ∼= Cψ
−1

(n − 1, 1) ∼= Dψ
′
(1, n),

recovers a duality conjectured by Feigin and Semikhatov and
proved in a different way by Creutzig, Genra, and Nakatsuka.
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22. Sketch of proof, cont’d

Step 1: In the ψ →∞ limit, both Cψ(n,m) and Dψ(n,m) become
GLm-orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. Cψ(n,m) has generating type
W(2, 3, . . . , (m + 1)(m + n + 1)− 1),

2. Dψ(n,m) has generating type W(2, 3, . . . , (m+ 1)(n+ 1)−1).

Step 2: Universal two-parameter W∞-algebra W(c , λ) serves is a
classifying object for VOAs of type W(2, 3, . . . ,N) for some N.

W(c, λ) is freely generated of type W(2, 3, . . . ), and is defined
over the polynomial ring C[c , λ].

Weight zero component W(c, λ)[0] ∼= C[c , λ].
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23. One-parameter quotients of W(c , λ)

Let I ⊆ C[c, λ] be a prime ideal.

Let I · W(c , λ) be the VOA ideal generated by I .

The quotient

W I (c, λ) =W(c , λ)/(I · W(c , λ))

is a VOA over R = C[c , λ]/I .

W I (c , λ) is simple for a generic ideal I .

But for certain discrete families of ideals I , W I (c, λ) is not simple.

Let WI (c , λ) be simple graded quotient of W I (c , λ).

In fact, all simple, one-parameter VOAs of type W(2, 3, . . . ,N)
satisfying mild hypotheses, are of this form.

Variety V (I ) ⊆ C2 is called the truncation curve.
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24. One-parameter quotients of W(c , λ)

Then Cψ(n,m) and Dψ(n,m) are of the form WI (c , λ) for some I .

Step 3: Explicit truncation curves for Cψ(n,m) and Dψ(n,m).

Wψ(n,m) is an extension V ψ−m+1(glm)⊗WI (c, λ) for some I

Extension is generated by 2m fields in weight n+1
2 which transform

as Cm ⊕ (Cm)∗ under glm.

Existence of such an extension uniquely and explicitly determines I .

Same method works for Vψ(n,m).

Triality theorem follows from explicit form of I .
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Same method works for Vψ(n,m).
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25. Some applications

Let In,m be ideal corresponding to Cψ(n,m)

Nontrivial isomorphisms Cψ(n,m) ∼= Cψ′(n′,m′) correspond to
intersection points in V (In,m) ∩ V (In′,m′).

All intersections between the curves V (In,m) are rational points.

Recall: Wψ(sln) =Wψ(n, 0) = Cψ(n, 0).

Thm: For all 2 ≤ n < m,

Wψ(sln) ∼=Wψ′(slm), ψ =
n

n + m
, ψ′ =

m

m + n
.

Conjectured by Gaberdiel and Gopakumar (2011).

If m, n coprime, ψ = n
m+n and ψ′ = m

m+n are boundary admissible
in the sense of Kac-Wakimoto.
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26. Some applications

Recall: Wψ(n − 1, 1) =Wψ(sln, fsubreg).

Affine subalgebra is just a Heisenberg algebra H, and

Cψ(n − 1, 1) ∼= Com(H,Wψ(sln, fsubreg)).

By finding intersection points in V (In−1,1) ∩ V (Ir ,0), we can
classify isomorphisms Com(H,Wψ(sln, fsubreg)) ∼=Wφ(slr ).

Cor: For all n ≥ 2, if r + 1 and r + n are coprime, Wψ(sln, fsubreg)
is a simple current extension of VL ⊗Wφ(slr ), where

ψ =
n + r

n − 1
, φ =

r + 1

r + n
, L =

√
nr Z.

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel
(1994).
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27. Universal objects

More generally, a universal object is a VOA V with the following
properties:

1. V has some prescribed strong generating type W(d1, d2, . . . ).

2. V is defined over a commutative C-algebra R.

3. V cannot be defined in a nontrivial way over a ring with larger
Krull dimension.

Condition (3) means: If V ′ is a VOA of type W(d1, d2, . . . ) and is
defined over a ring S of higher Krull dimension, then we have

V ′ = V ⊗R S ,

possibly after localizing.

Universal objects have two main applications:

1. Classification of VOAs by strong generating type.

2. Classification of nontrivial coincidences among different VOAs
via intersection of truncation varieties.
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