Trialities of \mathcal{W} -algebras

Andrew Linshaw

University of Denver

Joint with T. Creutzig (Edmonton)

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\operatorname{End}(\mathcal{V})[[z, z^{-1}]]$.

$$a \leftrightarrow a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V}).$$

 ${\mathcal V}$ has Wick product : ab :, generally nonassociative, noncommutative.

Unit 1, derivation $\partial = \frac{d}{dz}$.

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n], n \in \mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\text{End}(\mathcal{V})[[z, z^{-1}]]$.

$$a \leftrightarrow a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V}).$$

 ${\mathcal V}$ has Wick product : *ab* :, generally nonassociative, noncommutative.

Unit 1, derivation $\partial = \frac{d}{dz}$.

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n], n \in \mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\text{End}(\mathcal{V})[[z, z^{-1}]]$.

$$a \leftrightarrow a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V}).$$

 $\mathcal V$ has Wick product : *ab* :, generally nonassociative, noncommutative.

Unit 1, derivation $\partial = \frac{d}{dz}$.

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n]$, $n \in \mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\text{End}(\mathcal{V})[[z, z^{-1}]]$.

$$a \leftrightarrow a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V}).$$

 $\mathcal V$ has Wick product : *ab* :, generally nonassociative, noncommutative.

Unit 1, derivation $\partial = \frac{d}{dz}$.

Conformal weight grading $\mathcal{V} = \bigoplus_{n \ge 0} \mathcal{V}[n]$, $n \in \mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\text{End}(\mathcal{V})[[z, z^{-1}]]$.

$$a \leftrightarrow a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V}).$$

 $\mathcal V$ has Wick product : *ab* :, generally nonassociative, noncommutative.

Unit 1, derivation $\partial = \frac{d}{dz}$.

Conformal weight grading $\mathcal{V} = \bigoplus_{n \ge 0} \mathcal{V}[n]$, $n \in \mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$

Let
$$\mathcal{V}$$
 be a VOA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n \ge 0} (a_{(n)}b)(w)(z-w)^{-n-1} + : a(z)b(w) : .$$

Expansion of meromorphic function with poles along z = w, where 1. : a(z)b(w) : is regular part. 2. (a(x)b)(w) is polar part of order n + 1.

Defines bilinear products $(-_{(n)}-): \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, where $(a, b) \mapsto a_{(n)}b$.

Also : a(z)b(w) : $|_{z=w}$ coincides with Wick product.

Often write

$$a(z)b(w) \sim \sum_{n\geq 0} (a_{(n)}b)(w)(z-w)^{-n-1},$$

where \sim means equal modulo regular part. $\langle a \rangle \langle a \rangle \langle a \rangle \langle a \rangle \langle a \rangle$

Let
$$\mathcal{V}$$
 be a VOA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n \ge 0} (a_{(n)}b)(w)(z-w)^{-n-1} + : a(z)b(w) : .$$

Expansion of meromorphic function with poles along z = w, where 1. : a(z)b(w) : is regular part. 2. $(a_{(n)}b)(w)$ is polar part of order n + 1.

Defines bilinear products $(-_{(n)}-): \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, where $(a, b) \mapsto a_{(n)}b$.

Also : a(z)b(w) : $|_{z=w}$ coincides with Wick product.

Often write

$$a(z)b(w) \sim \sum_{n\geq 0} (a_{(n)}b)(w)(z-w)^{-n-1},$$

where \sim means equal modulo regular part. $\langle a \rangle \langle a \rangle$

Let
$$\mathcal{V}$$
 be a VOA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n \ge 0} (a_{(n)}b)(w)(z-w)^{-n-1} + : a(z)b(w) : .$$

Expansion of meromorphic function with poles along z = w, where 1. : a(z)b(w) : is regular part. 2. $(a_{(n)}b)(w)$ is polar part of order n + 1.

Defines bilinear products $(-_{(n)}-): \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, where $(a, b) \mapsto a_{(n)}b$.

Also : a(z)b(w) : $|_{z=w}$ coincides with Wick product.

Often write

$$a(z)b(w) \sim \sum_{n\geq 0} (a_{(n)}b)(w)(z-w)^{-n-1},$$

where \sim means equal modulo regular part.

Let
$$\mathcal{V}$$
 be a VOA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n \ge 0} (a_{(n)}b)(w)(z-w)^{-n-1} + : a(z)b(w) : .$$

Expansion of meromorphic function with poles along z = w, where 1. : a(z)b(w) : is regular part. 2. $(a_{(n)}b)(w)$ is polar part of order n + 1.

Defines bilinear products $(-_{(n)}-): \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, where $(a, b) \mapsto a_{(n)}b$.

Also : a(z)b(w) : $|_{z=w}$ coincides with Wick product.

Often write

$$a(z)b(w) \sim \sum_{n\geq 0} (a_{(n)}b)(w)(z-w)^{-n-1},$$

where \sim means equal modulo regular part.

Let
$$\mathcal{V}$$
 be a VOA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n \ge 0} (a_{(n)}b)(w)(z-w)^{-n-1} + : a(z)b(w) : .$$

Expansion of meromorphic function with poles along z = w, where 1. : a(z)b(w) : is regular part. 2. $(a_{(n)}b)(w)$ is polar part of order n + 1.

Defines bilinear products $(-_{(n)}-): \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, where $(a, b) \mapsto a_{(n)}b$.

Also : a(z)b(w) : $|_{z=w}$ coincides with Wick product.

Often write

$$a(z)b(w) \sim \sum_{n\geq 0} (a_{(n)}b)(w)(z-w)^{-n-1},$$

where \sim means equal modulo regular part.

Often, a VOA is **presented** by giving generators and OPE relations.

Ex: Affine VOA $V^k(\mathfrak{g})$, for \mathfrak{g} a simple Lie algebra with basis ξ_1, \ldots, ξ_n .

 $V^k(\mathfrak{g})$ is generated by fields X^{ξ_i} , $i = 1, \dots, n$, satisfying $X^{\xi_i}(z)X^{\xi_j}(w) \sim k(\xi_i|\xi_j)(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$

Fact: $V^{k}(\mathfrak{g})$ has a PBW basis consisting of monomials $: \partial^{k_{1}^{1}} X^{\xi_{1}} \cdots \partial^{k_{r_{1}}^{n}} X^{\xi_{1}} \cdots \partial^{k_{1}^{n}} X^{\xi_{n}} \cdots \partial^{k_{r_{n}}^{n}} X^{\xi_{n}} :$

 $k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1, \qquad k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$

Often, a VOA is **presented** by giving generators and OPE relations. **Ex**: Affine VOA $V^k(\mathfrak{g})$, for \mathfrak{g} a simple Lie algebra with basis ξ_1, \ldots, ξ_n .

 $V^k(\mathfrak{g})$ is generated by fields X^{ξ_i} , $i = 1, \dots, n$, satisfying $X^{\xi_i}(z)X^{\xi_j}(w) \sim k(\xi_i|\xi_j)(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$

Fact: $V^{k}(\mathfrak{g})$ has a PBW basis consisting of monomials $: \partial^{k_{1}^{1}} X^{\xi_{1}} \cdots \partial^{k_{r_{1}}^{1}} X^{\xi_{1}} \cdots \partial^{k_{1}^{n}} X^{\xi_{n}} \cdots \partial^{k_{r_{n}}^{n}} X^{\xi_{n}} :,$ $k_{1}^{1} \ge k_{2}^{1} \ge \cdots \ge k_{r_{1}}^{1}, \qquad k_{1}^{n} \ge k_{2}^{n} \ge \cdots \ge k_{r_{n}}^{n}.$

Often, a VOA is **presented** by giving generators and OPE relations. **Ex**: Affine VOA $V^k(\mathfrak{g})$, for \mathfrak{g} a simple Lie algebra with basis ξ_1, \ldots, ξ_n .

 $V^k(\mathfrak{g})$ is generated by fields X^{ξ_i} , $i = 1, \dots, n$, satisfying $X^{\xi_i}(z)X^{\xi_j}(w) \sim k(\xi_i|\xi_j)(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$

Fact: $V^{k}(\mathfrak{g})$ has a PBW basis consisting of monomials $: \partial^{k_{1}^{1}} X^{\xi_{1}} \cdots \partial^{k_{r_{1}}^{1}} X^{\xi_{1}} \cdots \partial^{k_{1}^{n}} X^{\xi_{n}} \cdots \partial^{k_{r_{n}}^{n}} X^{\xi_{n}} :,$ $k_{1}^{1} \ge k_{2}^{1} \ge \cdots \ge k_{r_{1}}^{1}, \qquad k_{1}^{n} \ge k_{2}^{n} \ge \cdots \ge k_{r_{n}}^{n}.$

Often, a VOA is **presented** by giving generators and OPE relations. **Ex**: Affine VOA $V^k(\mathfrak{g})$, for \mathfrak{g} a simple Lie algebra with basis ξ_1, \ldots, ξ_n .

 $V^k(\mathfrak{g})$ is generated by fields X^{ξ_i} , $i = 1, \dots, n$, satisfying $X^{\xi_i}(z)X^{\xi_j}(w) \sim k(\xi_i|\xi_j)(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$

Fact: $V^{k}(\mathfrak{g})$ has a PBW basis consisting of monomials

$$:\partial^{k_1^1}X^{\xi_1}\cdots\partial^{k_{r_1}^1}X^{\xi_1}\cdots\partial^{k_1^n}X^{\xi_n}\cdots\partial^{k_{r_n}^n}X^{\xi_n}:,$$

$$k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1, \qquad k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n$$

Often, a VOA is **presented** by giving generators and OPE relations. **Ex**: Affine VOA $V^k(\mathfrak{g})$, for \mathfrak{g} a simple Lie algebra with basis ξ_1, \ldots, ξ_n .

 $V^k(\mathfrak{g})$ is generated by fields X^{ξ_i} , $i = 1, \dots, n$, satisfying $X^{\xi_i}(z)X^{\xi_j}(w) \sim k(\xi_i|\xi_j)(z-w)^{-2} + X^{[\xi_i,\xi_j]}(w)(z-w)^{-1}.$

Fact: $V^{k}(\mathfrak{g})$ has a PBW basis consisting of monomials

$$:\partial^{k_1^1} X^{\xi_1} \cdots \partial^{k_{r_1}^1} X^{\xi_1} \cdots \partial^{k_1^n} X^{\xi_n} \cdots \partial^{k_{r_n}^n} X^{\xi_n} :,$$

$$k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1, \qquad k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n,$$

We say that a VOA \mathcal{V} is **strongly generated** by a set $\{\alpha_i | i \in I\}$ if \mathcal{V} is spanned by monomials

$$\{:\partial^{k_1}\alpha_{i_1}\cdots\partial^{i_r}\alpha_{i_r}:|k_j\geq 0, i_j\in I\}.$$

Suppose $\{\alpha_1, \alpha_2, \dots\}$ is an **ordered** strong generating set for \mathcal{V} . We say \mathcal{V} is **freely generated** by $\{\alpha_1, \alpha_2, \dots\}$ if $: \partial^{k_1^1} \alpha_{i_1} \cdots \partial^{k_1^n} \alpha_{i_n} \cdots \partial^{k_n^n} \alpha_{i_n} :,$ forms a basis of \mathcal{V} , where $i_1 < \dots < i_n$ $k^1 > k^1 > \dots > k^1$ $k^n > \dots > k^n$

Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^k \alpha_i$ for i = 1, 2, ..., and $k \ge 0$.

Ex: $V^k(\mathfrak{g})$ is freely generated by X^{ξ_i} .

(ロ)、

We say that a VOA \mathcal{V} is **strongly generated** by a set $\{\alpha_i | i \in I\}$ if \mathcal{V} is spanned by monomials

$$\{:\partial^{k_1}\alpha_{i_1}\cdots\partial^{i_r}\alpha_{i_r}:|k_j\geq 0, i_j\in I\}.$$

Suppose $\{\alpha_1, \alpha_2, \dots\}$ is an **ordered** strong generating set for \mathcal{V} .

We say $\mathcal V$ is **freely generated** by $\{\alpha_1, \alpha_2, \dots\}$ if

$$:\partial^{k_1^1}\alpha_{i_1}\cdots\partial^{k_{r_1}^1}\alpha_{i_1}\cdots\partial^{k_1^n}\alpha_{i_n}\cdots\partial^{k_{r_n}^n}\alpha_{i_n}:,$$

forms a basis of \mathcal{V} , where

 $i_1 < \cdots < i_n,$ $k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1,$ $k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$ Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^k \alpha_i$ for $i = 1, 2, \ldots$, and $k \ge 0$.

Ex: $V^k(\mathfrak{g})$ is freely generated by X^{ξ_i} .

We say that a VOA \mathcal{V} is **strongly generated** by a set $\{\alpha_i | i \in I\}$ if \mathcal{V} is spanned by monomials

$$\{:\partial^{k_1}\alpha_{i_1}\cdots\partial^{i_r}\alpha_{i_r}:|k_j\geq 0, i_j\in I\}.$$

Suppose $\{\alpha_1, \alpha_2, \dots\}$ is an **ordered** strong generating set for \mathcal{V} .

We say \mathcal{V} is **freely generated** by $\{\alpha_1, \alpha_2, \dots\}$ if

$$:\partial^{k_1^1}\alpha_{i_1}\cdots\partial^{k_{r_1}^1}\alpha_{i_1}\cdots\partial^{k_1^n}\alpha_{i_n}\cdots\partial^{k_{r_n}^n}\alpha_{i_n}:,$$

forms a basis of \mathcal{V} , where

 $i_1 < \cdots < i_n,$ $k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1,$ $k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$ Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^k \alpha_i$ for $i = 1, 2, \ldots$, and $k \ge 0$.

Ex: $V^k(\mathfrak{g})$ is freely generated by X^{ξ_i} .

We say that a VOA \mathcal{V} is **strongly generated** by a set $\{\alpha_i | i \in I\}$ if \mathcal{V} is spanned by monomials

$$\{:\partial^{k_1}\alpha_{i_1}\cdots\partial^{i_r}\alpha_{i_r}:|k_j\geq 0, i_j\in I\}.$$

Suppose $\{\alpha_1, \alpha_2, \dots\}$ is an **ordered** strong generating set for \mathcal{V} .

We say \mathcal{V} is **freely generated** by $\{\alpha_1, \alpha_2, \dots\}$ if

$$:\partial^{k_1^1}\alpha_{i_1}\cdots\partial^{k_{r_1}^1}\alpha_{i_1}\cdots\partial^{k_1^n}\alpha_{i_n}\cdots\partial^{k_{r_n}^n}\alpha_{i_n}:,$$

forms a basis of \mathcal{V} , where

 $i_1 < \cdots < i_n,$ $k_1^1 \ge k_2^1 \ge \cdots \ge k_{r_1}^1,$ $k_1^n \ge k_2^n \ge \cdots \ge k_{r_n}^n.$ Equivalently, \mathcal{V} is linearly isomorphic to polynomial algebra on $\partial^k \alpha_i$ for $i = 1, 2, \ldots$, and $k \ge 0$.

Ex: $V^k(\mathfrak{g})$ is freely generated by X^{ξ_i} .

The **Virasoro Lie algebra** is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_n = -t^{n+1} \frac{d}{dt}$, $n \in \mathbb{Z}$, and central element κ ,

$$[L_n, L_m] = (n - m)L_{n+m} + \delta_{n+m,0} \frac{n^3 - n}{12} \kappa.$$

A **Virasoro element** of a vertex algebra \mathcal{V} is a field $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \in \mathcal{V}$ satisfying

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1}$$

 $[L_0,-]$ is required to act diagonalizably and $[L_{-1},-]$ acts by ∂ .

Constant c is called the central charge.

(ロ)、

The **Virasoro Lie algebra** is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_n = -t^{n+1} \frac{d}{dt}$, $n \in \mathbb{Z}$, and central element κ ,

$$[L_n, L_m] = (n - m)L_{n+m} + \delta_{n+m,0} \frac{n^3 - n}{12} \kappa.$$

A **Virasoro element** of a vertex algebra \mathcal{V} is a field $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \in \mathcal{V}$ satisfying

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1}$$

 $[L_0,-]$ is required to act diagonalizably and $[L_{-1},-]$ acts by ∂

Constant c is called the central charge.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The **Virasoro Lie algebra** is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_n = -t^{n+1} \frac{d}{dt}$, $n \in \mathbb{Z}$, and central element κ ,

$$[L_n, L_m] = (n - m)L_{n+m} + \delta_{n+m,0} \frac{n^3 - n}{12} \kappa.$$

A **Virasoro element** of a vertex algebra \mathcal{V} is a field $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \in \mathcal{V}$ satisfying

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1}$$

 $[L_0, -]$ is required to act diagonalizably and $[L_{-1}, -]$ acts by ∂ .

Constant c is called the **central charge**.

The **Virasoro Lie algebra** is a central extension of the (complexified) Lie algebra of vector fields on the circle.

Generators $L_n = -t^{n+1} \frac{d}{dt}$, $n \in \mathbb{Z}$, and central element κ ,

$$[L_n, L_m] = (n-m)L_{n+m} + \delta_{n+m,0} \frac{n^3 - n}{12} \kappa.$$

A **Virasoro element** of a vertex algebra \mathcal{V} is a field $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \in \mathcal{V}$ satisfying

$$L(z)L(w) \sim \frac{c}{2}(z-w)^{-4} + 2L(w)(z-w)^{-2} + \partial L(w)(z-w)^{-1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $[L_0, -]$ is required to act diagonalizably and $[L_{-1}, -]$ acts by ∂ .

Constant *c* is called the **central charge**.

Conformal weight grading is eigenspace decomposition under L_0 .

If $a \in \mathcal{V}$ has weight d, then

 $L(z)a(w)\sim\cdots+da(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1}.$

Note that *L* always has weight 2.

Virasoro VOA Vir^{*c*} is freely generated by L(z).

Conformal structure on \mathcal{V} comes from homomorphism $Vir^{c} \rightarrow \mathcal{V}$.

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}} = rac{1}{2(k+h^{ee})}\sum_{i=1}^{n} : X^{\xi_i}X^{\xi_i'}:, \qquad k
eq -h^{ee}.$$

Conformal weight grading is eigenspace decomposition under L_0 .

If $a \in \mathcal{V}$ has weight d, then

$$L(z)a(w)\sim \cdots + da(w)(z-w)^{-2} + \partial a(w)(z-w)^{-1}.$$

Note that L always has weight 2.

Virasoro VOA Vir^c is freely generated by L(z).

Conformal structure on \mathcal{V} comes from homomorphism $Vir^{c} \rightarrow \mathcal{V}$.

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}}=rac{1}{2(k+h^{ee})}\sum_{i=1}^{n}:X^{\xi_i}X^{\xi_i'}:,\qquad k
eq-h^{ee}.$$

Conformal weight grading is eigenspace decomposition under *L*₀.

If $a \in \mathcal{V}$ has weight d, then

$$L(z)a(w)\sim \cdots + da(w)(z-w)^{-2} + \partial a(w)(z-w)^{-1}.$$

Note that L always has weight 2.

Virasoro VOA Vir^{*c*} is freely generated by L(z).

Conformal structure on \mathcal{V} comes from homomorphism $Vir^{c} \rightarrow \mathcal{V}$.

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}} = rac{1}{2(k+h^{ee})} \sum_{i=1}^{n} : X^{\xi_i} X^{\xi'_i} :, \qquad k \neq -h^{ee}.$$

Conformal weight grading is eigenspace decomposition under L_0 .

If $a \in \mathcal{V}$ has weight d, then

$$L(z)a(w)\sim \cdots + da(w)(z-w)^{-2} + \partial a(w)(z-w)^{-1}.$$

Note that L always has weight 2.

Virasoro VOA Vir^{*c*} is freely generated by L(z).

Conformal structure on $\mathcal V$ comes from homomorphism $\mathsf{Vir}^c\to \mathcal V.$

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}} = \frac{1}{2(k+h^{\vee})} \sum_{i=1}^{n} : X^{\xi_i} X^{\xi'_i} :, \qquad k \neq -h^{\vee}.$$

Conformal weight grading is eigenspace decomposition under L_0 .

If $a \in \mathcal{V}$ has weight d, then

$$L(z)a(w)\sim\cdots+da(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1}.$$

Note that L always has weight 2.

Virasoro VOA Vir^{*c*} is freely generated by L(z).

Conformal structure on $\mathcal V$ comes from homomorphism $\mathsf{Vir}^c\to \mathcal V.$

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}}=rac{1}{2(k+h^{ee})}\sum_{i=1}^{n}:X^{\xi_i}X^{\xi_i'}:,\qquad k
eq-h^{ee}.$$

Conformal weight grading is eigenspace decomposition under L_0 .

If $a \in \mathcal{V}$ has weight d, then

$$L(z)a(w)\sim\cdots+da(w)(z-w)^{-2}+\partial a(w)(z-w)^{-1}.$$

Note that *L* always has weight 2.

Virasoro VOA Vir^{*c*} is freely generated by L(z).

Conformal structure on $\mathcal V$ comes from homomorphism $\mathsf{Vir}^c\to \mathcal V.$

Ex: $V^k(\mathfrak{g})$ has Virasoro element

$$L^{\mathfrak{g}}=rac{1}{2(k+h^{ee})}\sum_{i=1}^{n}:X^{\xi_i}X^{\xi_i'}:,\qquad k
eq-h^{ee}.$$

There is a natural notion of **modules** for a VOA \mathcal{V} .

 $\ensuremath{\mathcal{V}}$ is called rational if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}$, $V^k(\mathfrak{g})$ is not simple.

Simple quotient $L_k(\mathfrak{g})$ is rational.

Example: Let p, q be coprime positive integers with $2 \le p < 1$.

For
$$c = 1 - 6 \frac{(p-q)^2}{pq}$$
, Vir^c is not simple.

There is a natural notion of **modules** for a VOA \mathcal{V} .

 ${\cal V}$ is called ${\bf rational}$ if its module category is semisimple and has finitely many simple objects.

Example: For g simple and $k \in \mathbb{N}$, $V^k(g)$ is not simple.

Simple quotient $L_k(\mathfrak{g})$ is rational.

Example: Let p, q be coprime positive integers with $2 \le p < 1$.

For
$$c = 1 - 6 \frac{(p-q)^2}{pq}$$
, Vir^c is not simple.

There is a natural notion of **modules** for a VOA \mathcal{V} .

 ${\cal V}$ is called ${\bf rational}$ if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}$, $V^k(\mathfrak{g})$ is not simple.

Simple quotient $L_k(\mathfrak{g})$ is rational.

Example: Let p, q be coprime positive integers with $2 \le p < 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For $c = 1 - 6 \frac{(p-q)^2}{pq}$, Vir^c is not simple.

There is a natural notion of **modules** for a VOA \mathcal{V} .

 ${\cal V}$ is called ${\bf rational}$ if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}$, $V^k(\mathfrak{g})$ is not simple.

Simple quotient $L_k(\mathfrak{g})$ is rational.

Example: Let p, q be coprime positive integers with $2 \le p < 1$.

For
$$c = 1 - 6 \frac{(p-q)^2}{pq}$$
, Vir^c is not simple.

There is a natural notion of **modules** for a VOA \mathcal{V} .

 ${\cal V}$ is called **rational** if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}$, $V^k(\mathfrak{g})$ is not simple.

Simple quotient $L_k(\mathfrak{g})$ is rational.

Example: Let p, q be coprime positive integers with $2 \le p < 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For $c = 1 - 6 \frac{(p-q)^2}{pq}$, Vir^c is not simple.

There is a natural notion of **modules** for a VOA \mathcal{V} .

 ${\cal V}$ is called **rational** if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}$, $V^k(\mathfrak{g})$ is not simple.

Simple quotient $L_k(\mathfrak{g})$ is rational.

Example: Let p, q be coprime positive integers with $2 \le p < 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For
$$c = 1 - 6 \frac{(p-q)^2}{pq}$$
, Vir^c is not simple.

7. Rational VOAs

There is a natural notion of **modules** for a VOA \mathcal{V} .

 ${\cal V}$ is called **rational** if its module category is semisimple and has finitely many simple objects.

Example: For \mathfrak{g} simple and $k \in \mathbb{N}$, $V^k(\mathfrak{g})$ is not simple.

Simple quotient $L_k(\mathfrak{g})$ is rational.

Example: Let p, q be coprime positive integers with $2 \le p < 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For
$$c = 1 - 6 \frac{(p-q)^2}{pq}$$
, Vir^c is not simple.

Simple quotient $Vir_c = Vir_{p,q}$ is rational.

Class of VOAs associated to

- 1. A simple, finite-dimensional Lie (super)algebra $\mathfrak{g},$
- 2. A nilpotent element f in the even part of \mathfrak{g} .

 $\mathcal{W}^k(\mathfrak{g}, f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible \mathfrak{sl}_2 -submodules of \mathfrak{g} .

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.

If f = 0, $\mathcal{W}^k(\mathfrak{g}, 0) = V^k(\mathfrak{g})$.

For $\mathfrak{g} = \mathfrak{sl}_2$ and $f = f_{\text{prin}}$ principal nilpotent, $\mathcal{W}^k(\mathfrak{sl}_2, f_{\text{prin}})$ is just the Virasoro algebra Vir^c for $\psi = k + 2$ and $c = -\frac{(2\psi-3)(3\psi-2)}{\psi}$.

Class of VOAs associated to

- 1. A simple, finite-dimensional Lie (super)algebra $\mathfrak{g},$
- 2. A nilpotent element f in the even part of \mathfrak{g} .

 $\mathcal{W}^k(\mathfrak{g}, f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible \mathfrak{sl}_2 -submodules of \mathfrak{g} .

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.

If f = 0, $\mathcal{W}^k(\mathfrak{g}, 0) = V^k(\mathfrak{g})$.

For $\mathfrak{g} = \mathfrak{sl}_2$ and $f = f_{\text{prin}}$ principal nilpotent, $\mathcal{W}^k(\mathfrak{sl}_2, f_{\text{prin}})$ is just the Virasoro algebra Vir^c for $\psi = k + 2$ and $c = -\frac{(2\psi-3)(3\psi-2)}{\psi}$.

Class of VOAs associated to

- 1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g} ,
- 2. A nilpotent element f in the even part of \mathfrak{g} .

 $\mathcal{W}^k(\mathfrak{g}, f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{sl}_2\text{-submodules}$ of $\mathfrak{g}.$

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.

If f = 0, $\mathcal{W}^k(\mathfrak{g}, 0) = V^k(\mathfrak{g})$.

For $\mathfrak{g} = \mathfrak{sl}_2$ and $f = f_{\text{prin}}$ principal nilpotent, $\mathcal{W}^k(\mathfrak{sl}_2, f_{\text{prin}})$ is just the Virasoro algebra Vir^c for $\psi = k + 2$ and $c = -\frac{(2\psi-3)(3\psi-2)}{\psi}$.

Class of VOAs associated to

- 1. A simple, finite-dimensional Lie (super)algebra $\mathfrak{g},$
- 2. A nilpotent element f in the even part of \mathfrak{g} .

 $\mathcal{W}^k(\mathfrak{g}, f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{sl}_2\text{-submodules}$ of $\mathfrak{g}.$

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.

If f = 0, $\mathcal{W}^k(\mathfrak{g}, 0) = V^k(\mathfrak{g})$.

For $\mathfrak{g} = \mathfrak{sl}_2$ and $f = f_{\text{prin}}$ principal nilpotent, $\mathcal{W}^k(\mathfrak{sl}_2, f_{\text{prin}})$ is just the Virasoro algebra Vir^c for $\psi = k + 2$ and $c = -\frac{(2\psi-3)(3\psi-2)}{\psi}$.

Class of VOAs associated to

- 1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g} ,
- 2. A nilpotent element f in the even part of \mathfrak{g} .

 $\mathcal{W}^k(\mathfrak{g}, f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{sl}_2\text{-submodules}$ of $\mathfrak{g}.$

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.

If f = 0, $\mathcal{W}^k(\mathfrak{g}, 0) = V^k(\mathfrak{g})$.

For $\mathfrak{g} = \mathfrak{sl}_2$ and $f = f_{\text{prin}}$ principal nilpotent, $\mathcal{W}^k(\mathfrak{sl}_2, f_{\text{prin}})$ is just the Virasoro algebra Vir^c for $\psi = k + 2$ and $c = -\frac{(2\psi-3)(3\psi-2)}{\psi}$.

Class of VOAs associated to

- 1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g} ,
- 2. A nilpotent element f in the even part of \mathfrak{g} .

 $\mathcal{W}^k(\mathfrak{g}, f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{sl}_2\text{-submodules}$ of $\mathfrak{g}.$

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.

If f = 0, $\mathcal{W}^k(\mathfrak{g}, 0) = V^k(\mathfrak{g})$.

For $\mathfrak{g} = \mathfrak{sl}_2$ and $f = f_{\text{prin}}$ principal nilpotent, $\mathcal{W}^k(\mathfrak{sl}_2, f_{\text{prin}})$ is just the Virasoro algebra Vir^c for $\psi = k + 2$ and $c = -\frac{(2\psi-3)(3\psi-2)}{\psi}$.

Class of VOAs associated to

- 1. A simple, finite-dimensional Lie (super)algebra \mathfrak{g} ,
- 2. A nilpotent element f in the even part of \mathfrak{g} .

 $\mathcal{W}^k(\mathfrak{g}, f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and f via (generalized) Drinfeld-Sokolov reduction.

Freely generated by fields corresponding to lowest weight vectors for irreducible $\mathfrak{sl}_2\text{-submodules}$ of $\mathfrak{g}.$

For each such module of dimension d, get a field of weight $\frac{d+1}{2}$.

If f = 0, $\mathcal{W}^k(\mathfrak{g}, 0) = V^k(\mathfrak{g})$.

For $\mathfrak{g} = \mathfrak{sl}_2$ and $f = f_{\text{prin}}$ principal nilpotent, $\mathcal{W}^k(\mathfrak{sl}_2, f_{\text{prin}})$ is just the Virasoro algebra Vir^c for $\psi = k + 2$ and $c = -\frac{(2\psi-3)(3\psi-2)}{\psi}$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k = \psi - h^{\vee}$.

If $f = f_{\mathsf{prin}}$ is a principal nilpotent, write $\mathcal{W}^\psi(\mathfrak{g}, f) = \mathcal{W}^\psi(\mathfrak{g})$.

 $\mathcal{W}^{\psi}(\mathfrak{g})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, where $r = \operatorname{rank}(\mathfrak{g})$, and d_1, \ldots, d_r degrees of fundamental invariants of \mathfrak{g} .

This means strong generators have conformal weights d_1,\ldots,d_r .

Thm (Arakawa, 2015): If $\psi = \frac{p}{q}$ is a nondegenerate admissible level, $W_{\psi}(\mathfrak{g})$ is rational.

Special case of the **Kac-Wakimoto conjecture**, proven by McRae in 2022.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$. $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k = \psi - h^{\vee}$.

If $f = f_{\mathsf{prin}}$ is a principal nilpotent, write $\mathcal{W}^\psi(\mathfrak{g}, f) = \mathcal{W}^\psi(\mathfrak{g})$.

 $\mathcal{W}^{\psi}(\mathfrak{g})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, where $r = \operatorname{rank}(\mathfrak{g})$, and d_1, \ldots, d_r degrees of fundamental invariants of \mathfrak{g} .

This means strong generators have conformal weights d_1,\ldots,d_r .

Thm (Arakawa, 2015): If $\psi = \frac{p}{q}$ is a nondegenerate admissible level, $W_{\psi}(\mathfrak{g})$ is rational.

Special case of the **Kac-Wakimoto conjecture**, proven by McRae in 2022.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g},f)$ with $k=\psi-h^{\vee}.$

If $f = f_{prin}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

 $W^{\psi}(\mathfrak{g})$ is freely generated of type $W(d_1, \ldots, d_r)$, where $r = \operatorname{rank}(\mathfrak{g})$, and d_1, \ldots, d_r degrees of fundamental invariants of \mathfrak{g} .

This means strong generators have conformal weights d_1,\ldots,d_r .

Thm (Arakawa, 2015): If $\psi = \frac{p}{q}$ is a nondegenerate admissible level, $W_{\psi}(\mathfrak{g})$ is rational.

Special case of the **Kac-Wakimoto conjecture**, proven by McRae in 2022.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g},f)$ with $k=\psi-h^{\vee}.$

If $f = f_{prin}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

 $\mathcal{W}^{\psi}(\mathfrak{g})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, where $r = \operatorname{rank}(\mathfrak{g})$, and d_1, \ldots, d_r degrees of fundamental invariants of \mathfrak{g} .

This means strong generators have conformal weights d_1, \ldots, d_r .

Thm (Arakawa, 2015): If $\psi = \frac{p}{q}$ is a nondegenerate admissible level, $W_{\psi}(\mathfrak{g})$ is rational.

Special case of the **Kac-Wakimoto conjecture**, proven by McRae in 2022.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g},f)$ with $k=\psi-h^{\vee}.$

If $f = f_{prin}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

 $\mathcal{W}^{\psi}(\mathfrak{g})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, where $r = \operatorname{rank}(\mathfrak{g})$, and d_1, \ldots, d_r degrees of fundamental invariants of \mathfrak{g} .

This means strong generators have conformal weights d_1, \ldots, d_r .

Thm (Arakawa, 2015): If $\psi = \frac{p}{q}$ is a nondegenerate admissible level, $W_{\psi}(\mathfrak{g})$ is rational.

Special case of the **Kac-Wakimoto conjecture**, proven by McRae in 2022.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g},f)$ with $k=\psi-h^{\vee}.$

If $f = f_{prin}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

 $\mathcal{W}^{\psi}(\mathfrak{g})$ is freely generated of type $\mathcal{W}(d_1, \ldots, d_r)$, where $r = \operatorname{rank}(\mathfrak{g})$, and d_1, \ldots, d_r degrees of fundamental invariants of \mathfrak{g} .

This means strong generators have conformal weights d_1, \ldots, d_r .

Thm (Arakawa, 2015): If $\psi = \frac{p}{q}$ is a nondegenerate admissible level, $W_{\psi}(\mathfrak{g})$ is rational.

Special case of the **Kac-Wakimoto conjecture**, proven by McRae in 2022.

10. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g}), \qquad r^{\vee}\psi\psi' = 1.$$

Here $L_{\mathfrak{g}}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g} .

In fact, a similar result holds for $\mathfrak{g} = \mathfrak{osp}_{1|2n}$.

Thm: (Creutzig, Genra)

 $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2n}) \cong \mathcal{W}^{\psi'}(\mathfrak{osp}_{1|2n}), \qquad 4\psi\psi' = 1.$

10. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g}), \qquad r^{\vee}\psi\psi' = 1.$$

Here ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g} .

In fact, a similar result holds for $\mathfrak{g} = \mathfrak{osp}_{1|2n}$.

Thm: (Creutzig, Genra)

 $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2n}) \cong \mathcal{W}^{\psi'}(\mathfrak{osp}_{1|2n}), \qquad 4\psi\psi' = 1.$

10. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g}), \qquad r^{\vee}\psi\psi' = 1.$$

Here ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g} .

In fact, a similar result holds for $\mathfrak{g} = \mathfrak{osp}_{1|2n}$.

Thm: (Creutzig, Genra)

$$\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2n}) \cong \mathcal{W}^{\psi'}(\mathfrak{osp}_{1|2n}), \qquad 4\psi\psi' = 1.$$

Let $\mathcal V$ be a VOA and $\mathcal A\subseteq \mathcal V$ a subVOA

The **coset** C = Com(A, V) is the subVOA of V which commutes with A, that is,

$$\mathcal{C} = \{ v \in \mathcal{V} | \ [a(z), v(w)] = 0, \ \forall a \in \mathcal{A} \}.$$

If \mathcal{V} , \mathcal{A} have Virasoro elements $L^{\mathcal{V}}$, $L^{\mathcal{A}}$, then \mathcal{C} has Virasoro element

$$L^{\mathcal{C}} = L^{\mathcal{V}} - L^{\mathcal{A}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $\mathcal V$ be a VOA and $\mathcal A\subseteq \mathcal V$ a subVOA

The **coset** C = Com(A, V) is the subVOA of V which commutes with A, that is,

$$\mathcal{C} = \{ v \in \mathcal{V} | \ [a(z), v(w)] = 0, \ \forall a \in \mathcal{A} \}.$$

If \mathcal{V} , \mathcal{A} have Virasoro elements $L^{\mathcal{V}}$, $L^{\mathcal{A}}$, then \mathcal{C} has Virasoro element

$$L^{\mathcal{C}} = L^{\mathcal{V}} - L^{\mathcal{A}},$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Let $\mathcal V$ be a VOA and $\mathcal A\subseteq \mathcal V$ a subVOA

The **coset** C = Com(A, V) is the subVOA of V which commutes with A, that is,

$$\mathcal{C} = \{ v \in \mathcal{V} | \ [a(z), v(w)] = 0, \ \forall a \in \mathcal{A} \}.$$

If $\mathcal V,\,\mathcal A$ have Virasoro elements $L^{\mathcal V},\,L^{\mathcal A},$ then $\mathcal C$ has Virasoro element

$$L^{\mathcal{C}} = L^{\mathcal{V}} - L^{\mathcal{A}},$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Let $\mathcal V$ be a VOA and $\mathcal A\subseteq \mathcal V$ a subVOA

The **coset** C = Com(A, V) is the subVOA of V which commutes with A, that is,

$$\mathcal{C} = \{ v \in \mathcal{V} | \ [a(z), v(w)] = 0, \ \forall a \in \mathcal{A} \}.$$

If $\mathcal V,\ \mathcal A$ have Virasoro elements $L^{\mathcal V},\ L^{\mathcal A},$ then $\mathcal C$ has Virasoro element

$$L^{\mathcal{C}} = L^{\mathcal{V}} - L^{\mathcal{A}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

12. Coset construction of principal W-algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

 $V^{k+1}(\mathfrak{g}) \hookrightarrow V^k(\mathfrak{g}) \otimes L_1(\mathfrak{g}), \qquad u \mapsto u \otimes 1 + 1 \otimes u, \qquad u \in \mathfrak{g}.$

Set

$$\mathcal{C}^{k}(\mathfrak{g}) = \mathsf{Com}(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})).$$

We have an isomorphism of 1-parameter VOAs

$${\mathcal C}^k({\mathfrak g})\cong {\mathcal W}^\psi({\mathfrak g}), \qquad \psi=rac{k+h^ee}{k+h^ee+1}.$$

Coset realization for B (and C) is different.

Thm: (Creutzig-L., 2021) We have an isomorphism of 1-parameter VOAs

 $\operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}), V^{k}(\mathfrak{osp}_{1|2n})) \cong \mathcal{W}^{\psi}(\mathfrak{so}_{2n+1}), \qquad \psi = \frac{2k+2n+1}{2(1+k+n)}.$

12. Coset construction of principal W-algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

 $V^{k+1}(\mathfrak{g}) \hookrightarrow V^k(\mathfrak{g}) \otimes L_1(\mathfrak{g}), \qquad u \mapsto u \otimes 1 + 1 \otimes u, \qquad u \in \mathfrak{g}.$

Set

$$\mathcal{C}^{k}(\mathfrak{g}) = \mathsf{Com}(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})).$$

We have an isomorphism of 1-parameter VOAs

$${\mathcal C}^k({\mathfrak g})\cong {\mathcal W}^\psi({\mathfrak g}), \qquad \psi=rac{k+h^ee}{k+h^ee+1}.$$

Coset realization for B (and C) is different.

Thm: (Creutzig-L., 2021) We have an isomorphism of 1-parameter VOAs

 $\operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}), V^{k}(\mathfrak{osp}_{1|2n})) \cong \mathcal{W}^{\psi}(\mathfrak{so}_{2n+1}), \qquad \psi = \frac{2k+2n+1}{2(1+k+n)}.$

12. Coset construction of principal \mathcal{W} -algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

 $V^{k+1}(\mathfrak{g}) \hookrightarrow V^k(\mathfrak{g}) \otimes L_1(\mathfrak{g}), \qquad u \mapsto u \otimes 1 + 1 \otimes u, \qquad u \in \mathfrak{g}.$

Set

$$\mathcal{C}^{k}(\mathfrak{g}) = \mathsf{Com}(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})).$$

We have an isomorphism of 1-parameter VOAs

$${\mathcal C}^k({\mathfrak g})\cong {\mathcal W}^\psi({\mathfrak g}), \qquad \psi=rac{k+h^ee}{k+h^ee+1}.$$

Coset realization for B (and C) is different.

Thm: (Creutzig-L., 2021) We have an isomorphism of 1-parameter VOAs

$$\operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}), V^{k}(\mathfrak{osp}_{1|2n})) \cong \mathcal{W}^{\psi}(\mathfrak{so}_{2n+1}), \qquad \psi = \frac{2k+2n+1}{2(1+k+n)}.$$

13. What are trialities of W-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f) := \operatorname{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong \mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong \mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

13. What are trialities of \mathcal{W} -algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a}\subseteq\mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in $\mathfrak{g}.$

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f) := \operatorname{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong \mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong \mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

13. What are trialities of \mathcal{W} -algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $C^{\psi}(\mathfrak{g}, f) := \operatorname{Com}(V^{\psi'}(\mathfrak{a}), W^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong \mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong \mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

13. What are trialities of W-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f) := \mathsf{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong \mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong \mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

13. What are trialities of \mathcal{W} -algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f) := \operatorname{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong \mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong \mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

13. What are trialities of W-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f) := \operatorname{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^\psi(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Let $f_n \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Then f_n corresponds to the **hook-type partition** $n + 1 + \cdots + 1$.

Define shifted level $\psi = k + n + m$, and define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m},f_n),$$

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Let $f_n \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Then f_n corresponds to the **hook-type partition** $n + 1 + \cdots + 1$.

Define shifted level $\psi = k + n + m$, and define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m},f_n),$$

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Let $f_n \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Then f_n corresponds to the **hook-type partition** $n + 1 + \cdots + 1$.

Define shifted level $\psi = k + n + m$, and define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m},f_n),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Let $f_n \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Then f_n corresponds to the **hook-type partition** $n + 1 + \cdots + 1$.

Define shifted level $\psi = k + n + m$, and define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m},f_n),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For $n \ge 1$, $\mathcal{W}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \ge 2$, $\mathcal{W}^{\psi}(n, 0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Subregular: For $n \ge 2$, $W^{\psi}(n, 1) = W^{\psi}(\mathfrak{sl}_{n+1}, f_{subreg})$

Trivial: For $m \ge 1$, $\mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+1}, 0) = V^{\psi-m-1}(\mathfrak{sl}_{m+1})$

Minimal: For $m \ge 1$, $\mathcal{W}^{\psi}(2, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+2}, f_{\min})$.

For $n \ge 1$, $\mathcal{W}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{W}^{\psi}(n, 0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Subregular: For $n \ge 2$, $\mathcal{W}^{\psi}(n, 1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n+1}, f_{subreg})$

Trivial: For $m \ge 1$, $\mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+1}, 0) = V^{\psi-m-1}(\mathfrak{sl}_{m+1})$

Minimal: For $m \ge 1$, $\mathcal{W}^{\psi}(2, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+2}, f_{\min})$.

15. Hook-type W-algebras in type A

For $n \ge 1$, $\mathcal{W}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{W}^{\psi}(n, 0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Subregular: For $n \geq 2$, $W^{\psi}(n, 1) = W^{\psi}(\mathfrak{sl}_{n+1}, f_{subreg})$

Trivial: For $m \ge 1$, $\mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+1}, 0) = V^{\psi-m-1}(\mathfrak{sl}_{m+1})$

15. Hook-type W-algebras in type A

For $n \ge 1$, $W^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{W}^{\psi}(n, 0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Subregular: For $n \geq 2$, $W^{\psi}(n, 1) = W^{\psi}(\mathfrak{sl}_{n+1}, f_{\mathsf{subreg}})$

Trivial: For $m \ge 1$, $\mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+1}, 0) = V^{\psi-m-1}(\mathfrak{sl}_{m+1})$

15. Hook-type W-algebras in type A

For $n \ge 1$, $W^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{W}^{\psi}(n, 0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Subregular: For $n \geq 2$, $W^{\psi}(n, 1) = W^{\psi}(\mathfrak{sl}_{n+1}, f_{\mathsf{subreg}})$

Trivial: For $m \ge 1$, $\mathcal{W}^{\psi}(1,m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+1},0) = V^{\psi-m-1}(\mathfrak{sl}_{m+1})$

16. Features of $\mathcal{W}^{\psi}(n,m)$

For $m\geq 2$, $\mathcal{W}^\psi(n,m)$ has affine subalgebra $V^{\psi-m-1}(\mathfrak{gl}_m)=\mathcal{H}\otimes V^{\psi-m-1}(\mathfrak{sl}_m).$

Additional **even** generators are in weights 2, 3, ..., *n* together with 2m **even** fields in weight $\frac{n+1}{2}$ which transform under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the case $\mathcal{W}^{\psi}(0,m)$ separately as follows.

1. For $m \ge 2$,

$$\mathcal{W}^{\psi}(0,m) = V^{\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{S}(m),$$

where S(m) is the rank $m \beta \gamma$ -system.

2. $W^{\psi}(0,1) = S(1).$ 3. $W^{\psi}(0,0) \cong \mathbb{C}.$

16. Features of $\mathcal{W}^{\psi}(n,m)$

For $m \ge 2$, $\mathcal{W}^{\psi}(n, m)$ has affine subalgebra $V^{\psi-m-1}(\mathfrak{gl}_m) = \mathcal{H} \otimes V^{\psi-m-1}(\mathfrak{sl}_m).$

Additional **even** generators are in weights 2, 3, ..., n together with 2m **even** fields in weight $\frac{n+1}{2}$ which transform under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the case $\mathcal{W}^{\psi}(0,m)$ separately as follows.

1. For $m \ge 2$,

$$\mathcal{W}^{\psi}(0,m) = V^{\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{S}(m),$$

where S(m) is the rank $m \beta \gamma$ -system.

2. $W^{\psi}(0,1) = S(1).$ 3. $W^{\psi}(0,0) \cong \mathbb{C}.$

16. Features of $\mathcal{W}^{\psi}(n,m)$

For $m\geq 2$, $\mathcal{W}^\psi(n,m)$ has affine subalgebra $V^{\psi-m-1}(\mathfrak{gl}_m)=\mathcal{H}\otimes V^{\psi-m-1}(\mathfrak{sl}_m).$

Additional **even** generators are in weights 2, 3, ..., *n* together with 2m **even** fields in weight $\frac{n+1}{2}$ which transform under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the case $\mathcal{W}^{\psi}(0,m)$ separately as follows.

1. For $m \ge 2$,

$$\mathcal{W}^{\psi}(0,m) = V^{\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{S}(m),$$

where S(m) is the rank $m \beta \gamma$ -system.

2. $\mathcal{W}^{\psi}(0,1) = \mathcal{S}(1).$ 3. $\mathcal{W}^{\psi}(0,0) \cong \mathbb{C}.$

For
$$n + m \ge 2$$
 and $n \ne m$, write
 $\mathfrak{sl}_{n|m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$

Nilpotent $f_n \in \mathfrak{sl}_n$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(n,m) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|m},f_n),$$

which has level $k = \psi - n + m$.

Case $n=m\geq 2$ slightly different: $\mathcal{V}^\psi(n,n)=\mathcal{W}^\psi(\mathfrak{psl}_{n\mid n},f_n)$

For
$$n + m \ge 2$$
 and $n \ne m$, write

$$\mathfrak{sl}_{n|m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Nilpotent $f_n \in \mathfrak{sl}_n$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(n,m)=\mathcal{W}^{\psi}(\mathfrak{sl}_{n|m},f_n),$$

which has level $k = \psi - n + m$.

Case $n = m \ge 2$ slightly different: $\mathcal{V}^{\psi}(n, n) = \mathcal{W}^{\psi}(\mathfrak{psl}_{n|n}, f_n)$.

For $n + m \ge 2$ and $n \ne m$, write

$$\mathfrak{sl}_{n|m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Nilpotent $f_n \in \mathfrak{sl}_n$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(n,m)=\mathcal{W}^{\psi}(\mathfrak{sl}_{n|m},f_n),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which has level $k = \psi - n + m$.

Case $n = m \ge 2$ slightly different: $\mathcal{V}^{\psi}(n, n) = \mathcal{W}^{\psi}(\mathfrak{psl}_{n|n}, f_n)$.

For $n + m \ge 2$ and $n \ne m$, write

$$\mathfrak{sl}_{n|m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Nilpotent $f_n \in \mathfrak{sl}_n$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(n,m)=\mathcal{W}^{\psi}(\mathfrak{sl}_{n|m},f_n),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which has level $k = \psi - n + m$.

Case $n = m \ge 2$ slightly different: $\mathcal{V}^{\psi}(n, n) = \mathcal{W}^{\psi}(\mathfrak{psl}_{n|n}, f_n)$.

For $n \ge 1$, $\mathcal{V}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \ge 2$, $\mathcal{V}^{\psi}(n, 0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Principal: For $n \ge 2$, $\mathcal{V}^{\psi}(n, 1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|1})$.

Trivial: For $m \ge 1$, $\mathcal{V}^{\psi}(1,m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{1|m},0) = V^{\psi+m-1}(\mathfrak{sl}_{m|1}) = V^{-\psi-m+1}(\mathfrak{sl}_{1|m})$

A D N A 目 N A E N A E N A B N A C N

For $n \ge 1$, $\mathcal{V}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{V}^{\psi}(n, 0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Principal: For $n \ge 2$, $\mathcal{V}^{\psi}(n, 1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|1})$.

Trivial: For $m \ge 1$, $\mathcal{V}^{\psi}(1,m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{1|m},0) = V^{\psi+m-1}(\mathfrak{sl}_{m|1}) = V^{-\psi-m+1}(\mathfrak{sl}_{1|m})$

A D N A 目 N A E N A E N A B N A C N

For $n \ge 1$, $\mathcal{V}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{V}^{\psi}(n, 0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Principal: For $n \ge 2$, $\mathcal{V}^{\psi}(n, 1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|1})$.

Trivial: For $m \ge 1$, $\mathcal{V}^{\psi}(1,m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{1|m},0) = V^{\psi+m-1}(\mathfrak{sl}_{m|1}) = V^{-\psi-m+1}(\mathfrak{sl}_{1|m})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

For $n \ge 1$, $\mathcal{V}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{V}^{\psi}(n, 0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Principal: For $n \ge 2$, $\mathcal{V}^{\psi}(n, 1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|1})$.

Trivial: For $m \ge 1$, $\mathcal{V}^{\psi}(1,m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{1|m},0) = V^{\psi+m-1}(\mathfrak{sl}_{m|1}) = V^{-\psi-m+1}(\mathfrak{sl}_{1|m})$

For $n \ge 1$, $\mathcal{V}^{\psi}(n, m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{V}^{\psi}(n, 0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Principal: For $n \ge 2$, $\mathcal{V}^{\psi}(n, 1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|1})$.

Trivial: For $m \ge 1$, $\mathcal{V}^{\psi}(1,m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{1|m},0) = V^{\psi+m-1}(\mathfrak{sl}_{m|1}) = V^{-\psi-m+1}(\mathfrak{sl}_{1|m})$

For $m \geq 2$, $\mathcal{V}^{\psi}(n, m)$ has affine subalgebra $V^{-\psi-m+1}(\mathfrak{gl}_m), \qquad m \neq n,$ $V^{-\psi-n+1}(\mathfrak{sl}_n), \qquad m = n.$

Additional **even** generators in weights 2, 3, ..., *n*, together with 2*m* odd fields in weight $\frac{n+1}{2}$ transforming under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the cases $\mathcal{V}^{\psi}(0, m)$ and $\mathcal{V}^{\psi}(1, 1)$ separately as follows. 1. For $m \geq 2$,

$$\mathcal{V}^{\psi}(0,m) = V^{-\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{E}(m),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\mathcal{E}(m)$ is the rank *m bc*-system.

2. $\mathcal{V}^\psi(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.

- 3. $\mathcal{V}^{\psi}(0,1) = \mathcal{E}(1).$
- 4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}.$

For $m \geq 2$, $\mathcal{V}^{\psi}(n, m)$ has affine subalgebra $V^{-\psi-m+1}(\mathfrak{gl}_m), \qquad m \neq n,$ $V^{-\psi-n+1}(\mathfrak{sl}_n), \qquad m = n.$

Additional **even** generators in weights 2, 3, ..., *n*, together with 2m **odd** fields in weight $\frac{n+1}{2}$ transforming under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the cases $\mathcal{V}^{\psi}(0,m)$ and $\mathcal{V}^{\psi}(1,1)$ separately as follows. 1. For $m \geq 2$,

$$\mathcal{V}^{\psi}(0,m) = V^{-\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{E}(m),$$

(日)((1))

where $\mathcal{E}(m)$ is the rank *m bc*-system.

2. $\mathcal{V}^\psi(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.

- 3. $\mathcal{V}^{\psi}(0,1) = \mathcal{E}(1).$
- 4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}.$

For $m \geq 2$, $\mathcal{V}^{\psi}(n, m)$ has affine subalgebra $V^{-\psi-m+1}(\mathfrak{gl}_m), \qquad m \neq n,$ $V^{-\psi-n+1}(\mathfrak{sl}_n), \qquad m = n.$

Additional **even** generators in weights 2, 3, ..., *n*, together with 2m odd fields in weight $\frac{n+1}{2}$ transforming under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the cases $\mathcal{V}^\psi(0,m)$ and $\mathcal{V}^\psi(1,1)$ separately as follows.

1. For $m \ge 2$,

$$\mathcal{V}^{\psi}(0,m) = V^{-\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{E}(m),$$

(日)((1))

where $\mathcal{E}(m)$ is the rank *m* bc-system.

- 2. $\mathcal{V}^{\psi}(1,1) = \mathcal{A}(1)$, rank one symplectic fermion algebra.
- 3. $\mathcal{V}^{\psi}(0,1) = \mathcal{E}(1).$
- 4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}.$

20. Trialities in type A

Consider the affine cosets

 $\mathcal{C}^{\psi}(n,m) = \operatorname{Com}(V^{\psi-m-1}(\mathfrak{gl}_m), \mathcal{W}^{\psi}(n,m)),$

$$\mathcal{D}^{\psi}(n,m) = \operatorname{Com}(V^{-\psi-m+1}(\mathfrak{gl}_m), \mathcal{V}^{\psi}(n,m)), \qquad n \neq m,$$

$$\mathcal{D}^{\psi}(n,n) = \operatorname{Com}(V^{-\psi-n+1}(\mathfrak{sl}_n), \mathcal{V}^{\psi}(n,n))^{U(1)}.$$

Thm: (Creutzig-L., 2020) Let $n \ge m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

$$\mathcal{D}^\psi(n,m)\cong \mathcal{C}^{\psi^{-1}}(n-m,m)\cong \mathcal{D}^{\psi'}(m,n), \qquad rac{1}{\psi}+rac{1}{\psi'}=1.$$

Originally conjectured in physics by Gaiotto and Rapčák (2017).

20. Trialities in type A

Consider the affine cosets

 $\mathcal{C}^{\psi}(n,m) = \operatorname{Com}(V^{\psi-m-1}(\mathfrak{gl}_m), \mathcal{W}^{\psi}(n,m)),$

$$\mathcal{D}^{\psi}(n,m) = \operatorname{Com}(V^{-\psi-m+1}(\mathfrak{gl}_m), \mathcal{V}^{\psi}(n,m)), \qquad n \neq m,$$

$$\mathcal{D}^{\psi}(n,n) = \operatorname{Com}(V^{-\psi-n+1}(\mathfrak{sl}_n), \mathcal{V}^{\psi}(n,n))^{U(1)}.$$

Thm: (Creutzig-L., 2020) Let $n \ge m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

$$\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m) \cong \mathcal{D}^{\psi'}(m,n), \qquad \frac{1}{\psi} + \frac{1}{\psi'} = 1.$$

Originally conjectured in physics by Gaiotto and Rapčák (2017).

20. Trialities in type A

Consider the affine cosets

 $\mathcal{C}^{\psi}(n,m) = \operatorname{Com}(V^{\psi-m-1}(\mathfrak{gl}_m), \mathcal{W}^{\psi}(n,m)),$

$$\mathcal{D}^{\psi}(n,m) = \operatorname{Com}(V^{-\psi-m+1}(\mathfrak{gl}_m), \mathcal{V}^{\psi}(n,m)), \qquad n \neq m,$$

$$\mathcal{D}^{\psi}(n,n) = \operatorname{Com}(V^{-\psi-n+1}(\mathfrak{sl}_n), \mathcal{V}^{\psi}(n,n))^{U(1)}$$

Thm: (Creutzig-L., 2020) Let $n \ge m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

$$\mathcal{D}^{\psi}(n,m)\cong \mathcal{C}^{\psi^{-1}}(n-m,m)\cong \mathcal{D}^{\psi'}(m,n), \qquad rac{1}{\psi}+rac{1}{\psi'}=1.$$

Originally conjectured in physics by Gaiotto and Rapčák (2017).

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*.

Isomorphisms $\mathcal{D}^\psi(n,m)\cong\mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel** type.

 $\mathcal{D}^\psi(n,0)\cong\mathcal{D}^{\psi'}(0,n)$ recovers the coset realization of $\mathcal{W}^\psi(\mathfrak{sl}_n).$

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(n,1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi'}(1,n),$$

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*. Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel type**.

 $\mathcal{D}^\psi(n,0)\cong\mathcal{D}^{\psi'}(0,n)$ recovers the coset realization of $\mathcal{W}^\psi(\mathfrak{sl}_n).$

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(n,1)\cong \mathcal{C}^{\psi^{-1}}(n-1,1)\cong \mathcal{D}^{\psi'}(1,n),$$

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*. Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel type**.

 $\mathcal{D}^{\psi}(n,0)\cong\mathcal{D}^{\psi'}(0,n)$ recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_n).$

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(n,1)\cong \mathcal{C}^{\psi^{-1}}(n-1,1)\cong \mathcal{D}^{\psi'}(1,n),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*.

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel type**.

 $\mathcal{D}^{\psi}(n,0)\cong\mathcal{D}^{\psi'}(0,n)$ recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_n).$

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(n,1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi'}(1,n),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*.

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel type**.

 $\mathcal{D}^{\psi}(n,0)\cong\mathcal{D}^{\psi'}(0,n)$ recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_n).$

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(\mathsf{n},1)\cong\mathcal{C}^{\psi^{-1}}(\mathsf{n}-1,1)\cong\mathcal{D}^{\psi'}(1,\mathsf{n}),$$

Step 1: In the $\psi \to \infty$ limit, both $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become GL_m -orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. $C^{\psi}(n,m)$ has generating type W(2,3,...,(m+1)(m+n+1)-1),

2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c, \lambda)$ serves is a **classifying object** for VOAs of type $\mathcal{W}(2, 3, ..., N)$ for some *N*.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda]$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Step 1: In the $\psi \to \infty$ limit, both $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become GL_m -orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

- 1. $\mathcal{C}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(m+n+1)-1),$
- 2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c, \lambda)$ serves is a **classifying object** for VOAs of type $\mathcal{W}(2, 3, ..., N)$ for some *N*.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda]$.

Step 1: In the $\psi \to \infty$ limit, both $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become GL_m -orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

- 1. $\mathcal{C}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(m+n+1)-1),$
- 2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c, \lambda)$ serves is a **classifying object** for VOAs of type $\mathcal{W}(2, 3, ..., N)$ for some N.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda]$.

Step 1: In the $\psi \to \infty$ limit, both $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become GL_m -orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1.
$$C^{\psi}(n, m)$$
 has generating type $W(2, 3, ..., (m+1)(m+n+1) - 1)$,

2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c, \lambda)$ serves is a **classifying object** for VOAs of type $\mathcal{W}(2, 3, ..., N)$ for some *N*.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda]$.

Step 1: In the $\psi \to \infty$ limit, both $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become GL_m -orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1.
$$C^{\psi}(n, m)$$
 has generating type $W(2, 3, ..., (m+1)(m+n+1) - 1)$,

2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c, \lambda)$ serves is a **classifying object** for VOAs of type $\mathcal{W}(2, 3, ..., N)$ for some N.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda]$.

Weight zero component $\mathcal{W}(c,\lambda)[0] \cong \mathbb{C}[c,\lambda]$.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{l}(c,\lambda) = \mathcal{W}(c,\lambda)/(l \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{I}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{I}(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type W(2, 3, ..., N) satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^2$ is called the **truncation curve**, \mathcal{O} , \mathcal{O} , \mathcal{O} , \mathcal{O}

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{l}(c,\lambda) = \mathcal{W}(c,\lambda)/(l \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{I}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{I}(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type W(2, 3, ..., N) satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^2$ is called the **truncation curve**, \mathcal{O} , \mathcal{O} , \mathcal{O} , \mathcal{O}

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}'(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{I}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{I}(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type W(2, 3, ..., N) satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^2$ is called the **truncation curve** \mathbb{C}^2 , \mathbb{C}^2 is called the **truncation curve** \mathbb{C}^2 , \mathbb{C}^2 is called the truncation curve \mathbb{C}^2 is called the truncation curve \mathbb{C}^2 .

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{\prime}(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

$\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{I}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{I}(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type W(2, 3, ..., N) satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^2$ is called the **truncation curve** \mathbb{C}^2 , \mathbb{C}^2 is called the **truncation curve** \mathbb{C}^2 , \mathbb{C}^2 is called the truncation curve \mathbb{C}^2 is called the truncation curve \mathbb{C}^2 .

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}'(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $\mathcal{W}^{I}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{I}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{I}(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type W(2, 3, ..., N) satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^2$ is called the **truncation curve** \mathbb{C}^2 , \mathbb{C}^2 is called the **truncation curve** \mathbb{C}^2 , \mathbb{C}^2 is called the truncation curve \mathbb{C}^2 is called the truncation curve \mathbb{C}^2 .

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}'(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $\mathcal{W}^{I}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{l}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{l}(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type $\mathcal{W}(2, 3, ..., N)$ satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^2$ is called the **truncation curve** \mathbb{C}^2 , \mathbb{C}^2 is called the **truncation curve** \mathbb{C}^2 , \mathbb{C}^2 is called the truncation curve \mathbb{C}^2 is called the truncation curve \mathbb{C}^2 .

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}'(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}'(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $\mathcal{W}^{I}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{I}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{I}(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type W(2, 3, ..., N) satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^2$ is called the **truncation curve** \mathfrak{g} , $\mathfrak{g$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}'(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}'(c,\lambda)$ is simple for a generic ideal *I*.

But for certain discrete families of ideals I, $\mathcal{W}^{I}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{l}(c,\lambda)$ be simple graded quotient of $\mathcal{W}^{l}(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type W(2, 3, ..., N) satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^2$ is called the **truncation curve**, \mathcal{P} , $\mathcal{$

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^\psi(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines *I*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Same method works for $\mathcal{V}^{\psi}(n,m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^\psi(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines *I*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Same method works for $\mathcal{V}^{\psi}(n,m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some *I*.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

$\mathcal{W}^\psi(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines *I*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Same method works for $\mathcal{V}^{\psi}(n,m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some *I*.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^{\psi}(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines 1.

Same method works for $\mathcal{V}^{\psi}(n,m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some *I*.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^{\psi}(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines I.

Same method works for $\mathcal{V}^{\psi}(n,m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^{\psi}(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines I.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Same method works for $\mathcal{V}^{\psi}(n, m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^{\psi}(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines *I*.

Same method works for $\mathcal{V}^{\psi}(n, m)$.

Let $I_{n,m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

Recall: $\mathcal{W}_{\psi}(\mathfrak{sl}_n) = \mathcal{W}_{\psi}(n,0) = \mathcal{C}_{\psi}(n,0).$

Thm: For all $2 \le n < m$,

$$\mathcal{W}_{\psi}(\mathfrak{sl}_n) \cong \mathcal{W}_{\psi'}(\mathfrak{sl}_m), \qquad \psi = \frac{n}{n+m}, \qquad \psi' = \frac{m}{m+n}.$$

Conjectured by Gaberdiel and Gopakumar (2011).

Let $I_{n,m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

Recall: $\mathcal{W}_{\psi}(\mathfrak{sl}_n) = \mathcal{W}_{\psi}(n, 0) = \mathcal{C}_{\psi}(n, 0).$

Thm: For all $2 \le n < m$,

$$\mathcal{W}_{\psi}(\mathfrak{sl}_n) \cong \mathcal{W}_{\psi'}(\mathfrak{sl}_m), \qquad \psi = \frac{n}{n+m}, \qquad \psi' = \frac{m}{m+n}.$$

Conjectured by Gaberdiel and Gopakumar (2011).

Let $I_{n,m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

Recall: $\mathcal{W}_{\psi}(\mathfrak{sl}_n) = \mathcal{W}_{\psi}(n, 0) = \mathcal{C}_{\psi}(n, 0).$

Thm: For all $2 \le n < m$,

$$\mathcal{W}_{\psi}(\mathfrak{sl}_n) \cong \mathcal{W}_{\psi'}(\mathfrak{sl}_m), \qquad \psi = \frac{n}{n+m}, \qquad \psi' = \frac{m}{m+n}.$$

Conjectured by Gaberdiel and Gopakumar (2011).

Let $I_{n,m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

Recall: $\mathcal{W}_{\psi}(\mathfrak{sl}_n) = \mathcal{W}_{\psi}(n, 0) = \mathcal{C}_{\psi}(n, 0).$

Thm: For all $2 \le n < m$,

$$\mathcal{W}_{\psi}(\mathfrak{sl}_n) \cong \mathcal{W}_{\psi'}(\mathfrak{sl}_m), \qquad \psi = \frac{n}{n+m}, \qquad \psi' = \frac{m}{m+n}.$$

Conjectured by Gaberdiel and Gopakumar (2011).

Let $I_{n,m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

Recall: $\mathcal{W}_{\psi}(\mathfrak{sl}_n) = \mathcal{W}_{\psi}(n,0) = \mathcal{C}_{\psi}(n,0).$

Thm: For all $2 \le n < m$,

 $\mathcal{W}_{\psi}(\mathfrak{sl}_n) \cong \mathcal{W}_{\psi'}(\mathfrak{sl}_m), \qquad \psi = \frac{n}{n+m}, \qquad \psi' = \frac{m}{m+n}.$

Conjectured by Gaberdiel and Gopakumar (2011).

Let $I_{n,m}$ be ideal corresponding to $\mathcal{C}^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

Recall: $\mathcal{W}_{\psi}(\mathfrak{sl}_n) = \mathcal{W}_{\psi}(n,0) = \mathcal{C}_{\psi}(n,0).$

Thm: For all $2 \le n < m$,

$$\mathcal{W}_{\psi}(\mathfrak{sl}_n) \cong \mathcal{W}_{\psi'}(\mathfrak{sl}_m), \qquad \psi = \frac{n}{n+m}, \qquad \psi' = \frac{m}{m+n}.$$

Conjectured by Gaberdiel and Gopakumar (2011).

Recall: $\mathcal{W}_{\psi}(n-1,1) = \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{\mathsf{subreg}}).$

Affine subalgebra is just a Heisenberg algebra $\mathcal H$, and

 $\mathcal{C}_{\psi}(n-1,1) \cong \operatorname{Com}(\mathcal{H}, \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{\operatorname{subreg}})).$

By finding intersection points in $V(I_{n-1,1}) \cap V(I_{r,0})$, we can classify isomorphisms $Com(\mathcal{H}, \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{subreg})) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_r)$.

Cor: For all $n \ge 2$, if r + 1 and r + n are coprime, $\mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{subreg})$ is a simple current extension of $V_L \otimes \mathcal{W}_{\phi}(\mathfrak{sl}_r)$, where

$$\psi = \frac{n+r}{n-1}, \qquad \phi = \frac{r+1}{r+n}, \qquad L = \sqrt{nr} \mathbb{Z}.$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

Recall: $\mathcal{W}_{\psi}(n-1,1) = \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{\mathsf{subreg}}).$

Affine subalgebra is just a Heisenberg algebra \mathcal{H} , and

$$\mathcal{C}_{\psi}(n-1,1) \cong \mathsf{Com}(\mathcal{H}, \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{\mathsf{subreg}})).$$

By finding intersection points in $V(I_{n-1,1}) \cap V(I_{r,0})$, we can classify isomorphisms $Com(\mathcal{H}, \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{subreg})) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_r)$.

Cor: For all $n \ge 2$, if r + 1 and r + n are coprime, $\mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{subreg})$ is a simple current extension of $V_L \otimes \mathcal{W}_{\phi}(\mathfrak{sl}_r)$, where

$$\psi = \frac{n+r}{n-1}, \qquad \phi = \frac{r+1}{r+n}, \qquad L = \sqrt{nr} \mathbb{Z}.$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

Recall: $\mathcal{W}_{\psi}(n-1,1) = \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{\mathsf{subreg}}).$

Affine subalgebra is just a Heisenberg algebra \mathcal{H} , and

$$\mathcal{C}_{\psi}(n-1,1) \cong \operatorname{Com}(\mathcal{H}, \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{\mathsf{subreg}})).$$

By finding intersection points in $V(I_{n-1,1}) \cap V(I_{r,0})$, we can classify isomorphisms $Com(\mathcal{H}, \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{subreg})) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_r)$.

Cor: For all $n \ge 2$, if r + 1 and r + n are coprime, $\mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{subreg})$ is a simple current extension of $V_L \otimes \mathcal{W}_{\phi}(\mathfrak{sl}_r)$, where

$$\psi = \frac{n+r}{n-1}, \qquad \phi = \frac{r+1}{r+n}, \qquad L = \sqrt{nr} \mathbb{Z}.$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

Recall: $\mathcal{W}_{\psi}(n-1,1) = \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{\mathsf{subreg}}).$

Affine subalgebra is just a Heisenberg algebra \mathcal{H} , and

$$\mathcal{C}_{\psi}(n-1,1) \cong \operatorname{Com}(\mathcal{H}, \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{\mathsf{subreg}})).$$

By finding intersection points in $V(I_{n-1,1}) \cap V(I_{r,0})$, we can classify isomorphisms $Com(\mathcal{H}, \mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{subreg})) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_r)$.

Cor: For all $n \ge 2$, if r + 1 and r + n are coprime, $\mathcal{W}_{\psi}(\mathfrak{sl}_n, f_{subreg})$ is a simple current extension of $V_L \otimes \mathcal{W}_{\phi}(\mathfrak{sl}_r)$, where

$$\psi = \frac{n+r}{n-1}, \qquad \phi = \frac{r+1}{r+n}, \qquad L = \sqrt{nr} \mathbb{Z}.$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

27. Universal objects

More generally, a **universal object** is a VOA \mathcal{V} with the following properties:

- 1. \mathcal{V} has some prescribed strong generating type $\mathcal{W}(d_1, d_2, \dots)$.
- 2. \mathcal{V} is defined over a commutative \mathbb{C} -algebra R.
- 3. ${\cal V}$ cannot be defined in a nontrivial way over a ring with larger Krull dimension.

Condition (3) means: If \mathcal{V}' is a VOA of type $\mathcal{W}(d_1, d_2, ...)$ and is defined over a ring S of higher Krull dimension, then we have

 $\mathcal{V}'=\mathcal{V}\otimes_R S,$

possibly after localizing.

Universal objects have two main applications:

- 1. Classification of VOAs by strong generating type.
- 2. Classification of nontrivial coincidences among different VOAs via intersection of truncation varieties.

27. Universal objects

More generally, a **universal object** is a VOA \mathcal{V} with the following properties:

- 1. \mathcal{V} has some prescribed strong generating type $\mathcal{W}(d_1, d_2, \dots)$.
- 2. \mathcal{V} is defined over a commutative \mathbb{C} -algebra R.
- 3. ${\cal V}$ cannot be defined in a nontrivial way over a ring with larger Krull dimension.

Condition (3) means: If \mathcal{V}' is a VOA of type $\mathcal{W}(d_1, d_2, ...)$ and is defined over a ring S of higher Krull dimension, then we have

$$\mathcal{V}'=\mathcal{V}\otimes_R S,$$

possibly after localizing.

Universal objects have two main applications:

- 1. Classification of VOAs by strong generating type.
- 2. Classification of nontrivial coincidences among different VOAs via intersection of truncation varieties.

27. Universal objects

More generally, a **universal object** is a VOA \mathcal{V} with the following properties:

- 1. \mathcal{V} has some prescribed strong generating type $\mathcal{W}(d_1, d_2, \dots)$.
- 2. \mathcal{V} is defined over a commutative \mathbb{C} -algebra R.
- 3. $\ensuremath{\mathcal{V}}$ cannot be defined in a nontrivial way over a ring with larger Krull dimension.

Condition (3) means: If \mathcal{V}' is a VOA of type $\mathcal{W}(d_1, d_2, ...)$ and is defined over a ring S of higher Krull dimension, then we have

$$\mathcal{V}'=\mathcal{V}\otimes_R S,$$

possibly after localizing.

Universal objects have two main applications:

- 1. Classification of VOAs by strong generating type.
- 2. Classification of nontrivial coincidences among different VOAs via intersection of truncation varieties.