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Chapter 1

Introduction

Bo’s take

This is a short exact sequence (SES):
0→ A→ B → C → 0 .

To see why this plays a central role in algebra, suppose that A and C are subspaces of B, then, by going
through the definitions of a SES in 3.1, one can notice that this line arrows encodes information about the
decomposition of B into A its orthogonal compliment C. If B is a module and A and C are now submodules
of B, we would like to be able to describe how A and C can “span” B in a similar way. The usefulness of
SES is that given submodules A,C ⊆ B, and a surjection B → C, we are able to determine if A and C
“span” B by just checking if ker(B → C) = A. If so, encode this situation in the SES.

Now, notice that in the above description, I was able to move seamlessly between subspaces and submod-
ules for A,B and C. This is captured beautifully by category theory (c.f. §4.1, which aims to capture the
underlying structure of the object of study. When we would like to study two mathematical objects with
similar structures, we look to functors between the two categories. Since SES is part of the structure of a
category, a question is if functors can preserve SESs. The answer turns out to be not always. Those functors
that preserve SESs are named exact sequences and for those that are not, we would like to understand what
obstructs the functor from being so. And this is where homological algebra comes in.

4



Chapter 2

Rings and Modules

In this chapter, we will set out the notation and introduce the main characters of homological algebra.
Readers are assumed to be familiar with groups and basic algebra. References will be provided for results
that are deemed to be basic or finicky. We will present examples that we hope the reader can carry throughout
the course and will draw from number theory, algebraic geometry and algebraic topology.

2.1 Rings

Definition. A group, G, is a set with a binary operation ∗ : G×G→ G such that for all a, b, c ∈ G,

(i) the binary operation is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c;

(ii) there exists an identity element e ∈ G such that e ∗ a = a ∗ e = a;

(iii) there exists an inverse element a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.

Definition. A ring, R, is a set with two operations

+ : R×R→ R, · : R×R→ R

such that for all x, y, z ∈ R,

(i) (R,+) is an abelian group;

(ii) multiplication is associative: x · (y · z) = (x · y) · z;

(iii) and distributive over addition: x · (y + z) = x · y + x · z, (y + z) · x = y · x+ z · x;

(iv) there exists a multiplicative inverse 1R ∈ R such that 1R · x = x · 1R = x for all x ∈ R.

Furthermore, if × is commutative, i.e. x · y = y · x, then we say that R is a commutative ring.

For more properties and examples of commutative rings, one can consult the holy bible of the subject:
Introduction to Commutative Algebra by Atiyah and Macdonald.

Now, let R be a ring and I ⊂ (R,+) be a subgroup then since (R,+) is abelian, we have that I ER. So
we can consider the quotient group R/I, where the operation is also denoted by +. The natural course of
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action is to turn this set into a ring by giving it a multiplicative operation. A natural option for this is to
define multiplication R

I ×
R
I →

R
I as

(a+ I, b+ I) 7→ ab+ I.

We need to check if our definition is well-defined. Let a, b, a′, b′ ∈ I, then we need to check that if

a+ I = a′ + I, b+ I = b′ + I,

then we have
ab+ I = a′b′ + I.

We can restate the condition that we have to check as

a− a′, b− b′ ∈ I

=⇒ ab− a′b′ = (a− a′)b+ a′(b− b′) ∈ I.

So if we have a′ = 0, a ∈ I and b ∈ R, then we need to have ab ∈ I. Let’s use this to form our definition of
an ideal and we will see later that this really does work.

Definition. An ideal is a subset I ⊆ R such that:

(i) I ≤ (R,+);

(ii) If a ∈ I, b ∈ R, then ab ∈ I.

Then R/I is a ring under

(i) (a+ I) + (b+ I) = (a+ b) + I,

(ii) (a+ I) · (b+ I) = (ab) + I.

for all a, b ∈ R.

The introduction of ideals allows us to speak about Ring homomorphisms, isomorphism theorems. Again,
one should refer to other sources to find out more about basic ring properties.

2.2 Modules

Notice that ideals are subsets of the ring such that we have a ring action on them. Just as in group theory,
where a group action on itself is the most natural thing in the world, ideals form the analogue for ring
actions. But the power of group actions lies in the action of groups on a different set, so we will see that
this generalisation on rings gives us modules.

Let k be a field, in particular, it is also a ring. Let V be a k-vectorspace, then we can see that k acts on
V in the usual MATHS250 way. In particular, vectorspaces over a field generalises to modules over a ring.

Definition. Let R be a ring. A left module is an abelian group (M,+) together with a map R×M →M ,
(r,m) 7→ rm, such that we have distributivity, associativity and identity:

(i) (r1 + r2)m = r1m+ r2m, ∀r1, r2 ∈ R,m ∈M ;

(ii) r(m1 +m2) = rm1 + rm2, ∀r ∈ R,m1,m2 ∈M ;
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(iii) r1(r2m) = (r1r2)m, ∀r1, r2 ∈ R,m ∈M ;

(iv) 1m = m, ∀m ∈M .

Remark. In this course, we will only interest ourselves with commutative rings, groups and modules unless
stated otherwise. So we will not be referring to left/right modules until the occasion presents itself.

Example.

(i) Any ring R is a module over itself: R×R→ R.

(ii) Any abelian group is a Z-module.

(iii) When R is a field, a module over R is called a vectorspace.

(iv) R = R[x], M = R2 =

{(
α
β

)∣∣∣∣α, β ∈ R
}

, then if we fix A =

(
5 2
−1 −3

)
, then we can define

(
p(x),

(
α
β

))
= p(A)

(
α
β

)
.

Definition. A homomorphism of R-modules f : M → N is a map such that

(i) f(m+m′) = f(m) + f(m′), ∀m,m′ ∈M ;

(ii) f(rm) = rf(m), ∀r ∈ R,m ∈M .

An epimorphism is a homomorphism which is surjective.
A monomorphism is a homomorphism which is injective.
An isomorphism is a homomorphism which is bijective.

Proposition 2.2.1. Let homR(M,N) be the set of R-homomorphisms from M to N . Then for f, g ∈
homR(M,N), r ∈ R, define

f + g : M → N, m 7→ f(m) + g(m);

rf : M → N, m 7→ rf(m).

Then, homR(M,N) is an R-module.

Proof. Checking that f + g is a homomorphism:

m+m′ 7→ f(m+m′) + g(m+m′)

= f(m) + f(m′) + g(m) + g(m′)

= (f + g)(m) + (f + g)(m′),

rm 7→ (f + g)(rm)

= f(rm) + g(rm)

= rf(m) + rg(m)

= r(f + g)(m).

One can show that rf is a homomorphism by following the method above.

homR(M,N) is an abelian group because N is an abelian group and we are always dealing with elements
of N .

7



Checking module axioms:

r(f + g)(m) = r(f(m) + g(m))

= rf(m) + rg(m) ∵ N is an R-module

= (rf + rg)(m)

The distributivity over R and associativity is proved in a similar fashion. Identity is obvious.

Definition. Let {Mi}i∈I be any collection of R-modules.

(i) Consider ∏
i∈I

Mi = {(mi)i∈I |mi ∈Mi∀i ∈ I} .

This is an R-module by component-wise addition and multiplication by ring elements. That is

(mi) + (m′i) = (mi +m′i), r(mi) = (rmi).

This is the direct product of Mi’s.

(ii) Now, consider ⊕
i∈I

Mi =
{

(mi)i∈I ∈
∏

Mi

∣∣∣mi 6= 0 for finitely many i’s, maybe none
}
.

This the the direct sum of Mi’s.

Example. If R = Z, Mi = Z/3, then

(1, 1, 1, . . .) (0, 1, 2, 0, 0, 1, 2, 0, . . .) (1, 2, 0, 0, 0, . . .)∏
Mi ∈ ∈ ∈⊕
Mi /∈ /∈ ∈

Theorem 2.2.2. Let {Mi} be a collection of R-modules. Let

αi : Mi →
⊕

Mj

be given by
mi 7→ (0, . . . , 0,mi, 0, . . .).

Then, for each R-module N , there is a bijection{
R-mod homs
f :
⊕
Mi → N

}
↔
{

Collection of homs
fi : Mi → N

}
f 7→ (f ◦ αi)i

This says that each homomorphism f :
⊕
Mi → N is uniquely defined by the individual component functions.

Proof. Construct the reverse map and check that the composition is the identity. So, given the collection
(fi : Mi → N)i∈I , we need to find a map g :

⊕
Mi → N . We will define it as

g ((mi)i∈I) =
∑
i∈I

fi(mi).
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This is a finite sum since (mi) only have finitely many non-zero components. (This is where the proof will
fail without the finiteness assumption.)

Now, let’s check that if the composition is the identity, that is,

f → (f ◦ αi)i∈I → g =
∑
i∈I

f ◦ αi =⇒ f = g.

Let (mj)j∈I ∈
⊕
Mi, then

g
(
(mi)i∈I

)
=
∑
i∈I

(f ◦ αi)
(
(mi)i∈I

)
=
∑
i∈I

(f ◦ αi)(mi)

=
∑
i∈I

f(0, . . . , 0,mi, 0, . . .)

= f

(∑
i∈I

(0, . . . , 0,mi, 0, . . .)

)
= f

(
(mi)i∈I

)
.

Hence f = g and the composition is the identity.

Now, for the other direction:

(fi)i∈I →
∑
i∈I

fi →

((∑
i∈I

fi

)
◦ αj

)
j∈I

Let (mi) ∈Mi, then we want to show that

fi(mi) =

((∑
i∈I

fi

)
◦ αj

)
(mj).

((∑
i∈I

fi

)
◦ αj

)
(mj) =

(∑
i∈I

fi

)
(0, . . . , 0,mj , 0, . . .)

=
∑
i∈I

δijfi(mj)

= fi(mi).

Note that δij is the kronecker delta function. Hence, we once again have the identity.

Theorem 2.2.3. Let πi :
∏
Mj → Mi be given by (mj)j∈I 7→ mi. Then, for each R-module N , there is a

bijection {
R-mod homs
f : N →

∏
iMi

}
↔
{

Collection of homs
fi : N →Mi

}
(∗)

f 7→ (fi = πi ◦ f)i∈I

Proof. The proof is similar to the one above. First, let us identify the reverse map. So given (fi : N →Mi)i∈I ,
we define the map g : N →

∏
Mi by

g : n 7→ (fi(n))i∈I .
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Since the range is a direct product of modules, we do not have to fret about finiteness. (If we were to replace
direct products with direct sums, what would happen?)

Now, we need to proceed as before and check that the compositions result in the identity. Consider this

f → (πi ◦ f)i∈I → (πi1 ◦ f, πi2 ◦ f, . . . )ij∈I ,

where the second term is a collection of maps, and the last term describes the components of a map.

Let n ∈ N , then

f(n) = (f(n)i1 , f(n)i2 , . . . )ij∈I where f(n)ij ∈Mij

= (πi1 ◦ f(n), πi2 ◦ f(n), . . . )ij∈I

= (πi1 ◦ f, πi2 ◦ f, . . . )ij∈I (n),

so we are done.

Now, let’s check the other direction:

(πi ◦ f)i∈I → (πi1 ◦ f, πi2 ◦ f, . . . )ik∈I →
(
πj ◦ (πi1 ◦ f, πi2 ◦ f, . . . )ik∈I

)
j∈I

Let n ∈ N , then (
πj ◦ (πi1 ◦ f, πi2 ◦ f, . . . )ik∈I

)
j∈I

(n)

=
(
πj ◦ (πi1 ◦ f(n), πi2 ◦ f(n), . . . )ik∈I

)
j∈I

=
(
πj ◦

(
f(n)i1 , f(n)i2 , . . .

)
ik∈I

)
j∈I

=f(n)j

=(πi ◦ f)(n).

And we are done. Phew!

Theorem 2.2.4 (Uniqueness of Universal properties for products). Suppose {σi : P → Mi} is a collection
of R-module homomorphisms such that for all R-modules N , there is a bijection{

R-mod homs
f : N → P

}
↔
{

Collection of homs
fi : N →Mi

}
(?)

f 7→ (σi ◦ f)i∈I .

Then there is a unique isomorphism g :
∏
iMi → P such that σi◦g = πi and the following diagram commutes.

∏
iMi P

Mi

g

πi σi
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Proof. By applying (∗) of Theorem 2.2.3 to (P, (σi)), we have{
Collection of homs

σi : P →Mi

}
7−→ h : P →

∏
Mi (σi = πi ◦ h).

Now, by applying (?) in the statement of the theorem to (
∏
Mi, πi), we get{

Collection of homs
πi :

∏
Mi →Mi

}
7−→ g :

∏
Mi → P (πi = σi ◦ g).

We now need to show that h ◦ g and g ◦ h are identity maps.

For g ◦ h:

P
h−−→

∏
i

Mi
g−−→ P

Then for all i,
σi ◦ (g ◦ h) = (σi ◦ g) ◦ h = πi ◦ h = σi = σi ◦ id.

Now apply (?) to (P, (σi)), then there exists a unique homomorphism u : P → P such that σi ◦ u = σi. So
by the uniqueness of u, u = IdP =⇒ g ◦ h = IdP .

Another way of writing universal properties is:

homR

(⊕
i

Mi, N

)
∼=
∏
i

homR(Mi, N)

homR

(
N,
∏
i

Mi

)
∼=
∏
i

homR(N,Mi)

where the RHS is the direct product of R-modules.

Tensor Product

In Theorem 2.2.3 we have examined one notion of a product on modules, namely the direct product which is
more or less cumbersome to work with. A different product that we can consider is called the tensor product
and is motivated by the following idea.

Let M,N be two R-modules and consider the free R-module i : M × N → F over the direct product
M ×N . Let T be the submodule generated by all elements of the form

i(m+m′, n)− i(m,n)− i(m′, n),

i(rm, n)− ri(m,n),

i(m,n+ n′)− i(m,n)− i(m,n′),
i(m, rn)− ri(m,n)

(2.1)

where r ∈ R, m,m′ ∈ M , and n, n′ ∈ N . Let q : F → F/T be the quotient map, then we claim that
h = q ◦ i : M × N → F/T is what we call the tensor product of M and N which we shall denote with
M ⊗R N .

Before we get further into this, let us first define the tensor product in terms of its universal property.
For this we require the definition of what is essentially captured in Equation 2.1, namely a bilinear map of
modules.
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Definition. Let M,N , and P be R-modules. A map f : M ×N → P is called R-bilinear if it is R-linear in
each argument, i.e. if

f(m+m′, n) = f(m,n) + f(m′, n),

f(rm, n) = rf(m,n),

f(m,n+ n′) = f(m,n) + f(m,n′),

f(m, rn) = rf(m,n)

for all r ∈ R, m,m′ ∈M , and n, n′ ∈ N .

Definition. Let M,N be R-modules. A tensor product of M and N is an R-module denoted by M ⊗R N
together with an R-bilinear map h : M ×N →M ⊗RN such that for every R-bilinear map f : M ×N → P
there exists a unique linear map f̃ : M ⊗R N → P which makes the following diagram commute:

M ×N M ⊗R N

P f̃

h

f

Usually we will drop naming the map h altogether and denote with m ⊗ n the image h(m × n) of an
element m× n ∈M ×N in the tensor product M ⊗R N .

Note that the tensor product induces a functor M ⊗R − from R-modules to abelian groups. With that
being said, we now come back to constructing a tensor product explicitly.

Theorem 2.2.5 (Existence of Tensor Products). Let M,N be R-modules, then there exists a tensor product
M ⊗R N .

Proof. Recall the map i : M × N → F from Equation 2.1. We have that F is a free module and so there
exists a unique g such that the diagram

M ×N F

P
g

i

f

commutes for a bilinear map f : M ×N → P . We want to show that g factors through F/T by f̃ : F/T → P

such that g = f̃ ◦ q : F → P . To see that, note that f is bilinear and so g ◦ i is bilinear, i.e.

(g ◦ i)(m+m′, n) = (g ◦ i)(m,n) + (g ◦ i)(m′, n),

(g ◦ i)(rm, n) = r(g ◦ i)(m,n),

(g ◦ i)(m,n+ n′) = (g ◦ i)(m,n) + (g ◦ i)(m,n′),
(g ◦ i)(m, rn) = r(g ◦ i)(m,n).

Since g is linear it follows that

g(i(m+m′, n)− i(m,n)− i(m′, n)) = 0,

g(i(rm, n)− ri(m,n)) = 0,

g(i(m,n+ n′)− i(m,n)− i(m,n′)) = 0,

g(i(m, rn)− ri(m,n)) = 0.
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Thus g factors through F/T . Let now f̃ be the map such that g = f̃ ◦ q. The composite map h = q ◦ i :
M ×N → F/T is bilinear by a similar argument and so we find the following commuting diagram:

M ×N F/T

P f̃

q ◦ i

f

We are left to show that the map f̃ is unique. This follows from the uniqueness of g and the fact that q is
surjective: Assume there exist two f̃1 and f̃2 such that f̃1 ◦ q = g = f̃2 ◦ q. For a given x ∈ F/T let y ∈ F be

such that q(y) = x. Then f̃1(x) = (f̃1 ◦ q)(y) = g(y) = (f̃2 ◦ q)(y) = f̃2(x) which implies that f̃1 = f̃2 since q
was surjective.

We can actually show a bit more than just existence, namely that tensor products are unique up to
isomorphism.

Theorem 2.2.6 (Uniqueness of Tensor Products). Let M,N be R-modules, and let h : M × N → T and
h′ : M ×N → T ′ be two tensor products. Then there exists a unique isomorphism f : T → T ′.

Proof. From the universal property of h we have that h′ factors uniquely through T via a linear map, call it
f : T → T ′ such that the following diagram commutes:

M ×N T

T ′
f

h

h′

By playing the same game again (with reversed roles of T and T ′), we end up with another commuting
diagram:

M ×N T ′

T
f ′

h′

h

for a different unique linear map f ′ : T ′ → T . By combining the two diagrams we find that f ′ ◦ f = idT and
f ◦ f ′ = idT ′ by the universal property of the tensor product. Thus T and T ′ are isomorphic by f.

Remark. The definition and existence of tensor products can be generalised to non-commutative rings. In
this case we consider a left R-module M and a right R-module N and form the tensor product M ⊗RN . The
construction of the tensor product is now a little more involved as we have to start from a free abelian group
and consider a quotient on it rather than directly constructing it from the module F as in Theorem 2.2.5.

Remark. The tensor product M ⊗RN of two R-modules M and N can be generalised to an arbitrary finite
number of R-modules M1⊗R · · ·⊗RMn in the obvious way by extending the definition of the unique property
of the tensor product M ⊗R N .
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Example. Let a, b be two non-zero integers. One can show that Z/aZ ⊗Z Z/bZ ' Z/ gcd(a, b)Z. For
example, Z/3Z⊗Z Z/5Z ' 0.

We can generalise this to an arbitrary ring R and ideals I, J of R. Then it holds that R/I ⊗R R/J '
R/(I + J).

Example. The vector space Rn is an R-module. Thus is makes sense to consider tensor products for it.
Take for example R2⊗RR3. Bases for R2 and R3 are the sets {e1, e2} respectively {f1, f2, f3} of unit vectors.
Using them, we can form a basis {gi}i=1,...,6 of R2 ⊗R R3, namely

g1 = e1 ⊗ f1, g2 = e1 ⊗ f2, g3 = e1 ⊗ f3,
g4 = e2 ⊗ f1, g5 = e2 ⊗ f2, g6 = e2 ⊗ f3.

We observe, that R2 ⊗R R3 ' R6. In general, one can show that Rn ⊗R Rm ' Rnm.

Adjoint Isomorphism

Let L,M,N be R-modules. We are now interested in the connection between homR(L ⊗R M,N) and
homR(L,homR(M,N)) which will become useful in the next section.

Theorem 2.2.7 (Adjoint Isomorphism/Tensor-Hom-Adjunction). The map

τL,M,N : homR(L⊗RM,N)→ homR(L,homR(M,N))

which takes a homomorphism α : L⊗RM → N to the homomorphism α′ : L→ homR(M,N) defined by

α′(l)(m) = α(l ⊗m)

is an isomorphism of abelian groups.

Proof. We immediately see that τL,M,N is a group homomorphism. We are left to show that there exists
an inverse group homomorphism. To see this, let β : L → homR(M,N) be a homomorphism. The map
L×M → N that sends (l,m) 7→ β(l)(m) is bilinear and so by the universal property of the tensor product
there exists a group homomorphism ψ(β) : L⊗RM → N such that ψ(β)(l ⊗m) = β(l)(m). It follows that
the assignment β 7→ ψ(β) defines a group homomorphism. Call it σL,M,N : β 7→ (l ⊗m 7→ β(l)(m)). We
check that (σL,M,N ◦τL,M,N )(α) = α and that (τL,M,N ◦σL,M,N )(β) = β and so we found the required inverse
group homomorphism.

Theorem 2.2.7 tells us that the functors −⊗RM and homR(M,−) are adjoint to each other.

Remark. The adjoint isomorphism can be generalised for modules over arbitrary rings. In this case one
similarly finds that the map

τL,N : homS(L⊗RM,N)→ homR(L,homS(M,N))

is an isomorphism but now L is a left R-module, N is a right S-module and M is a (R,S)-bimodule for rings
R and S. In fact there exist even more general forms where all involved modules are taken to be bimodules
though which we will not list here and only mention for completeness.

Example. It is easier to visualise the usefulness of these adjoint isomorphism identities by considering vector
spaces again. What we then have is that hom(U ⊗V,W ) ' hom(U,hom(V,W )) for finite dimensional vector
spaces U, V and W over some common field k. For such vector spaces it holds that (U ⊗V )∗ ' U∗⊗V ∗ and
U∗∗ ' U (where U∗ = hom(U, k), the linear maps from U to k). We write U∗ ⊗ V as hom((U∗ ⊗ V )∗, k) '
hom(U ⊗V ∗, k) which using the initial identity we can write as hom(U ⊗V ∗, k) ' hom(U,hom(V ∗, k)). But
now hom(V ∗, k) is isomorphic to V and thus we find that U∗⊗V ' hom(U, V ), i.e. every linear map U → V
has a representation as an element of U∗ ⊗ V .
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Change of Ring

Consider two rings R and S and a ring homomorphism ϕ : R → S. Here we want to answer the question
of how to move from a R-module to a S-module via the homomorphism ϕ. For any S-module M (and thus
also S itself), the action of S induces an action of R on M through ϕ, namely

r ·m = ϕ(r)m.

The idea now is to consider another S-module N and a homomorphism ψ ∈ homS(M,N). It turns out that
ψ can also be regarded as a member of homR(M,N) by the following identity:

ψ(r ·m) = ψ(ϕ(r)m) = ϕ(r)ψ(m) = r · ψ(m).

Thus ϕ induces a functor ϕ∗ from S-modules to R-modules. Specifically, we call the functor ϕ∗ the restriction
of scalars. We see why in the following

Theorem 2.2.8 (Extension of Scalars). There is a natural isomorphism of abelian groups

homS(S ⊗R N,M) ' homR(N,ϕ∗(M)).

In particular, the functor ϕ! = S ⊗R − is left adjoint to ϕ∗.

Proof. Observe that ϕ∗(M) ' homS(S,M). The theorem then follows from viewing S as a (S,R)-bimodule
and the adjoint isomorphism identities.

Here we call the functor S⊗R− the extension of scalars. We will see that there exists also a co-extension
of scalars. Note that we have used ϕ to define a left action which gave us ϕ! = S ⊗R −. If we consider a
right action instead, we end up with the functor ϕ! = −⊗R S. For commutative rings these coincide.

Theorem 2.2.9 (Co-Extension of Scalars). There is a natural isomorphism of abelian groups

homR(ϕ∗(M), N) ' homS(M,ϕ∗(N)).

In particular, the functor ϕ∗ = homR(S,−) is right adjoint to ϕ∗.

Proof. Here we view S instead as a (R,S)-bimodule. The theorem then follows from the fact that

τM,S,N : homR(ϕ∗(M), N)→ homS(M, homR(S,N))

is an isomorphism of abelian groups.

Example. Let S be a commutative ring and R be a subring of S such that 1S = 1R. Then we have
R[x]⊗R S = S[x]. Let I be an ideal of R. Then we have (R[x]/I)⊗R S = S[x]/IS[x]. In particular we see
that C⊗R C = C2 for example (by using C = R[x]/(x2 + 1)).
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Chapter 3

Homology and Cohomology

3.1 Exact Sequences

Remark. This isn’t quite a remark, just letting y’all know that I consistently use xf notation instead of
f(x).

Suppose we have an R-module epimorphism ϕ : M → N . Consider the zero map 01 : N → 0. By
construction, ker 01 = imϕ. We say that

M N 0
ϕ 01

is exact at N . We now consider the inclusion ι : kerϕ→ M , and the zero map 02 : 0→ kerϕ. It is easy to
see that

0 kerϕ M
02 ι

is exact at kerϕ, because ι is injective. Moreover, the image of ι is precisely the kernel of ϕ. Therefore

0 kerϕ M N 0

is exact at each group. Therefore we call it an exact sequence.

Definition (Exactness). A sequence

· · · Ai+1 Ai Ai−1 · · ·
ϕi+1 ϕi

of R-modules and R-homomorphisms is exact at Ai if kerϕi = imϕi+1. We say it is exact if it is exact at
Ai for all i. A short exact sequence is an exact sequence of the form

0 L M N 0.
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Example. In the above example, exactness of G→ imϕ→ 0 and 0→ kerϕ→ G came from the surjectivity
and injectivity of the maps in question. The converse also holds:

• M ϕ−→ N −→ 0 is exact if and only if ϕ is surjective.

• 0 −→M
ψ−→ N is exact if and only if ψ is injective.

Definition. The cokernel of an R-homomorphism ϕ : M → N is defined by cokerϕ := N/imϕ.

In category theory, like a lot of other things, we define the kernel of a map using a universal property.
Suppose M,N are R-modules, and f : M → N is an R-homomorphism. Then the kernel of f is the map
k : K →M such that:

• kf = 0,

• Given any R-homomorphism k′ : K ′ → X such that k′f = 0, there exists a unique R-homomorphism
u : K ′ → K such that uk = k′.

Intuitively, the map k : K → M takes the role of the inclusion of the classical notion of the kernel into the
domain of f . The universal property tells us that K “is the right size”. Existence of u tells us that it’s large
enough, but uniqueness tells us that it’s not too large.

M

K N

K ′

k

0

f

u

k′

0

We are now well positioned to define a cokernel. In category theory, dual objects are always defined by
reversing arrows. Hence given an R-homomorphism g : N → M , the cokernel of g is the map q : M → C
such that gq = 0, and the dashed morphism exists and is unique whenever the diagram below commutes.

M

C N

C ′

q

0

g

v

q′

0

Intuitively, q is the quotient map from M to the classical cokernel.
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Theorem 3.1.1 (Splicing). Given two short exact sequences 0 → L → M → N → 0 and 0 → N →
P → Q → 0, we may form a new (longer!) exact sequence 0 → L → M → P → Q → 0. Conversely,

every exact sequence · · · → Ai−1
ϕi−1−−−→ Ai

ϕi−→ Ai+1 → · · · can be decomposed into short exact sequences
0→ imϕi+1 → Ai → imϕi → 0 for each i.

Proof. ⇒ Consider the following diagram:

0 L M P Q 0

N

0 0

ϕ ψ

ϕψ

We know that ψ is injective, so kerϕψ = kerϕ. On the other hand, ϕ is onto, so imϕψ = imψ. Thus the
new sequence is exact.

⇐ Consider the exact sequence of R-modules · · · → Ai−1
ϕi−1−−−→ Ai

ϕi−→ Ai+1 → · · · . Recall from our
first example that, given some n, there is a short exact sequence 0 → kerϕn → An → imϕn → 0. By
exactness, kerϕn is just imϕn+1.

Definition. Let M,N be R-modules. M is a retract of N if there exists r : N → M and σ : M → N such
that σr = idM . We call σ a section and r a retraction.

Theorem 3.1.2 (Splitting lemma). Let L,M,N be R-modules. Suppose we have a short exact sequence

0→ L
ι−→M

π−→ N → 0. The following are equivalent, and we call such a short exact sequence split:

(i) There is a retraction r : M → L.

(ii) There is a section σ : N →M .

(iii) M is isomorphic to L⊕N .

Proof. It is clear that (iii) implies (i) and (ii).

We now prove (i) implies (iii). Define the map P : M → M by P = rι. Let m ∈ M , and write
m = (m − mP ) + mP . m − mP belongs to ker r, since (m − mP )r = mr − mrιr = mr − mr = 0.
Similarly, mP belongs to im ι. Therefore M ∼= ker r + im ι.

We now have to show that the decomposition is unique, that is, ker r ∩ im ι = 0. Suppose l = mι and
lr = 0. Then m = m(ιr) = (mι)r = 0. It follows that M ∼= ker r ⊕ im ι.

By injectivity, im ι ∼= L. On the other hand, by exactness, kerπ = im ι. Since π is surjective, given
any n ∈ N , there exists m such that mπ = n. But recall that m = lι + k for some l ∈ L and k ∈ ker r, so
n = mπ = (lι+k)π = kπ. It follows that π|ker r is surjective. To see that it is injective, suppose kπ|ker r = 0.
Then k belongs to im ι by exactness, but from earlier we have seen that im ι ∩ ker r = 0. Thus πker r is
injective, so ker r ∼= N .

The proof of (ii) implies (iii) is very similar.
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We now state the snake lemma, because are we really doing homological algebra without our friend snakeboi?

Theorem 3.1.3 (Snake lemma). Suppose we have a commutative diagram of R-modules and R-homomorphisms
as below, denoted by solid morphisms, where the rows are exact.

A B C 0

0 A′ B′ C ′

ker a ker b ker c

coker a coker b coker c

d

a b c

Then there exists a morphism d called the connecting homomorphism so that the sequence denoted by dashed
morphisms is exact.

Proof. It’s My Turn, 1980.

Remark. The snake lemma holds in a more general setting: It is valid in every abelian category.

Theorem 3.1.4 (Five lemma). Suppose we have a commutative diagram of R-modules and R-homomorphisms
as follows, where the rows are exact and the solid vertical morphisms are isomorphisms. then the dashed
morphism is an isomorphism.

A B C D E

A′ B′ C ′ D′ E′

Proof. Diagram chase.

Remark. This also holds in more general settings. We do not in fact need the abelian condition. For
example, it holds for groups and group homomorphisms.

3.2 Exact Functors

Example. As a physicist, a familiar example of an exact sequence is the following diagram.

C∞(R3) Γ(TR3) Γ(TR3) C∞(R3)
grad curl div
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First this tells us that given a scalar field φ, ∇×∇φ = 0, and given a vector field A, ∇·∇×A = 0. Moreover,
given A ∈ Γ(TR3), it tells us that if ∇×A = 0, then A = ∇φ for some φ ∈ C∞(R3), and if ∇ ·A = 0, then
A = ∇×B for some B ∈ Γ(TR3). This is a special case of the de Rham complex, which may or may not be
covered later:

C∞(M) Ω1(M) Ω2(M) · · · Ωn(M)
d d d d

To formalise the connection between the two diagrams, we define a map that takes objects from one diagram
to objects in the other, as well as taking morphisms from one diagram to morphisms in the other. This is
called a functor. A common proof of the exactness of the first diagram is constructive and messy. A cleaner
proof uses the fact that the de Rham complex is exact when M = R3, and the functor between diagrams
preserves exactness.

However, it’s not generally true that a functor will preserve exactness. To proceed further, we’ll formally
define some categorical notions along with exactness of functors.

Definition (Category). A category C consists of a class of objects ob(C) and a class of morphisms hom(C).
Each morphism f ∈ hom(C) has a source object a and target object b. homC(a, b) denotes the class of
all morphisms from a to b in C. (We drop the subscript C when the category is clear.) There is a binary
operation hom(a, b)× hom(b, c)→ hom(a, c) called composition, where (f, g) 7→ fg. Moreover, the following
properties must hold:

• (Associativity.) If f ∈ hom(a, b), g ∈ hom(b, c), and h ∈ hom(c, d), then f(gh) = (fg)h.

• (Identity.) For each a ∈ ob(C), there is a morphism ida called the identity, so that ida f = f and
g ida = g for any f ∈ hom(a, b) and g ∈ hom(c, a), for any b, c ∈ ob(C).

Example. The category Set consists of sets as its objects and functions as its morphisms. The definition is
vague by design: Some consider it to be the category of all sets, some consider it to be the category of small
sets, which are sets contained in a Grothendieck universe. On the other hand, Ab is the category consisting
of all abelian groups as objects and group homomorphisms as morphisms.

Example. Up until now we have been working in the category of left modules, denoted R-mod. We see
that our definition of homR(M,N) is in fact homR-mod(M,N) equipped with addition of morphisms and left
multiplication by elements of R. While homR-mod(M,N) is just a set, homR(M,N) is an R-module.

The word “functor” is thrown around a lot, loosely thought of as a map between categories that takes objects
to objects and morphisms to morphisms. Here’s a precise definition.

Definition (Covariant Functor). Let C, D be categories. A covariant functor (often just called a functor) is a
map F that takes each a ∈ ob(C) to aF ∈ ob(D), and each morphism f ∈ homC(a, b) to fF ∈ homD(aF, bF ),
satisfying

• For all objects a ∈ ob(C), ida F = idaF .

• For all morphisms f ∈ homC(a, b), g ∈ homC(b, c), (fg)F = (fF )(gF ).

Definition (Contravariant Functor). A contravariant functor F from C to D is simply a functor from the
opposite category Cop to D. The opposite category is the category in which the sources and targets of all
morphisms is swapped, along with the order of function composition. This means F maps f ∈ homC(a, b)
to fF ∈ homD(bF, aF ). Function composition satisfies (fg)F = (gF )(fF ).
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Example. We’ve referred to hom as being a functor, but why is it a functor? Let C be a category, and
a ∈ ob(C). Then hom(a,−) defines a functor from C to Set. The functor is defined by

• For all b ∈ ob(C), b 7→ hom(a, b) ∈ ob(Set).

• For all f ∈ hom(C), (f : c → d) 7→ (hom(a, f) : hom(a, c) → hom(a, d)), where the map is given by
g 7→ gf .

It easily verified that this is a functor. It is also easily shown that hom(−, a) defines a contravariant functor.

Example. Let M ∈ ob(R-mod). Then homR(M,−) defines a functor from R-mod to itself.

Example. LetM ∈ ob(R-mod). Then−⊗RM defines a functor from R-mod to itself. Given f ∈ hom(N,L),
f ⊗RM : N ⊗RM → L⊗RM is defined to be the map n⊗R m 7→ nf ⊗R m.

Definition (Exact Functor). Let C, D be categories of modules, and F : C → D a functor. We say F is

left exact if whenever 0
f−→ L

g−→M
h−→ N is exact in C, 0

fF−−→ LF
gF−−→MF

gF−−→ NF is exact in D. Similarly,

we say F is right exact if whenever L
g−→M

h−→ N
j−→ 0 is exact in C, LF

gF−−→MF
hF−−→ NF

jF−−→ 0 is exact in
D. A functor is exact if it is both left and right exact.

Proposition 3.2.1. If a functor F : C → D between categories of modules is left (right) exact, it maps
monics to monics (epics to epics).

Proof. This is clear from the definition.

Example. The functor hom(M,−) is left exact. The functor − ⊗R M is right exact. The proofs are
bookwork: Simply show that sequences obtained by applying the functors are exact at each module.

3.3 Projective and Injective Modules

3.4 Chain Complexes and Homologies

The notion of exact sequences has been shown to be useful, but many of the sequences we encounter are
not exact. How do we measure how “close” we are to exactness, and what information can this measure tell
us? If we relax the definition of the exact sequence, we can begin to explore the world of complexes and
homologies.

Definition. Let {Cn}n∈N be a sequence of R-Modules, and let {dn}n∈N be homomorphisms dn : Cn → Cn−1
such that dn ◦ dn+1 = dn+1dn = 0. Then we call (Cn, dn)n∈N a chain complex, and the dn the boundary
maps. We call Imd the boundaries of Cn and ker d the cycles of Cn.

Example. Consider the sequence of the modules Cn = Z/8Z, with the boundary homomorphisms dn : x 7→
4x.

Definition. A chain complex (C•, d•) is bounded above (below) if there exists an n ∈ N such that Ci = 0
for all i > n (i < n). If a complex is bounded both above and below, then we say it is bounded.

Definition. Given a chain complex C = (C•, d•), define its homology groups as

Hk(C) =
ker dk

imdk+1

If a complex has only trivial Homology groups, then we say that the chain complex is exact.
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Example. In the setting of the previous example, the homology groups are all isomorphic to Z/2Z.

Definition. Let C = (C•, d•) and D = (D•, δ•) be chain complexes. A sequence of homomorphisms
fn : Cn → Dn is a chain map if each fn commutes with the boundary operators:

fn−1 ◦ dn = δn−1 ◦ fn

i.e., for which the following diagram commutes:

Cn+1 Cn Cn−1

Dn+1 Dn Dn−1

fn+1

dn+1

fn

dn

fn−1

δn+1 δn

These are important because of the following:

Lemma 3.4.1. Chain maps map cycles to cycles and boundaries to boundaries.

Proof. Let c ∈ ker d. Then by the commutativity of f , cfδ = cdf = 0f = 0, so indeed cycles are preserved.
Now take c = bd ∈ Imd. Then again by commutativity cf = bdf = bfδ ∈ Imδ, so boundaries are mapped to
boundaries too.

Now consider a commutative diagram of the form:

0 0 0

Dn+1 Dn Dn−1

En+1 En En−1

0 0 0

jn+1

dn+1

jn

dn

jn−1

dn+1 dn+1

If the columns are exact, then we call this a short exact sequence of chain complexes. It is possible to
relate the homology groups together to form a long exact sequence of homology groups:

Hn(C) Hn(D) Hn(E) Hn−1(C) Hn−1(D) Hn−1(E)
i∗ j∗ δ i∗ j∗

To see this, note that the commutativity of the diagram means that i and j are chain maps, as defined
above. They induce homomorphisms i∗ : Hn(C) → Hn(D) and j∗ : Hn(D) → Hn(E) given by, [c] 7→ [ci]
and [d] 7→ [jd]. All that we need is the boundary map δ : Hn(E)→ Hn−1(C).

Take [e] ∈ Hn(E). Since j is onto, e = aj for some a ∈ D. Now consider adj = ajd = ed = 0, so
ad ∈ ker j = Imi. But then there exists a c ∈ C so that ci = ad. Moreover, c is unique because i is injective.
Let δ map [e] 7→ [c].
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Lemma 3.4.2. δ : Hn(E)→ Hn−1(C) is a well defined homomorphism.

Proof. First, see that cdi = cid = add = 0, so by injectivity of i, c ∈ ker d.

Secondly, we need that [c] as defined is an invariant of the choice of a. Suppose both a and a′ have
aj = a′j = e. Then a − a′ ∈ ker j = Im i, so a − a′ = c′i for some c′ ∈ C. Thus a′ = a + c′i, and so
a′d = ad+ c′id = ci+ c′di = (c+ c′d)i. But [c] = [c+ c′d], so indeed this does not depend on the choice of a.

Thirdly, see that the map does not depend on the choice of representative from the cohomology class of
e. Take e, e′ ∈ [e], with preimages (under j) a and a′ respectively. Then we must have a′ = a + a0d so
ad = a′d, and thus we are done.

Lastly, δ is indeed a homomorphism. Let [e1] 7→ [c1] and [e2] 7→ [c2] via the choices a1 and a2 as above. See
that (a1 + a2)j = a1j + a2j = e1 + e2 and that (c1 + c2)i = c1i+ c2i = a1d+ a2d = (a1 + a2)d. Then

([e1] + [e2])δ = ([e1 + e2])δ = [c1 + c2] = [c1] + [c2]

Theorem 3.4.3. The long exact sequence of homology groups (given below) is exact.

Hn(C) Hn(D) Hn(E) Hn−1(C) Hn−1(D) Hn−1(E)
i∗ j∗ δ i∗ j∗

Proof. We must show that the kernel for each homomorphism is indeed the image of the prior one. We do
this for each three below.

It is clear that Imi∗ ⊆ ker j∗ because ij = 0 and so j∗i∗ = 0. So let [a] ∈ ker j∗. Then aj = ed for
some e ∈ E. By the sujectivity of j, there exists some b ∈ Dn+1 with bj = e. Then

(a− bd)j = aj − adj = aj − ajd = aj − ed = aj − aj = 0

so a− bd ∈ ker j = Imi. Thus a− bd = ci for some c ∈ C, and so

cdi = cid = (a− bd)d = ad = 0

But then by the injectivity of i, cd = 0. Thus [c]i∗ = [a− bd] = [a], so [a] ∈ Imi∗.

We now show Imj∗ = ker δ. First, see that if [e] = [b]j∗ ∈ Imj∗ then we must have b ∈ ker d, so bd = 0i (by
injectivity of i), and so [e]δ = [0], so Imj∗ ⊆ ker δ. Now let [e] ∈ ker δ, and take b ∈ D such that bj = e.
Then [c]δ = [a] = 0 so a ∈ ker d, and thus a = a′d for some a′ ∈ C. Now

(b− a′i)d = bd− a′id = bd− a′di = bd− ai = bd− bd = 0

so (b− a′i) ∈ ker d. Then (b− a′i)j = bj − a′ij = bj = e and so [b− a′i]j∗ = [e] ∈ Imj∗.

Lastly, see that Imδ ⊆ ker i∗ as [a]δi∗ = [c]i∗ = [bd] = 0. So take [a] ∈ ker i∗, so ai = bd for some
b ∈ D. Then bdj = bdj = aij = 0, so bj ∈ ker d. Then δ maps [bj] 7→ [a] ∈ Imδ, finishing the proof.

This could also be done by two applications of the snake lemma, and we leave the details of this to the
reader.
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3.5 Cochains and Cohomology

Definition. Let {Cn}n∈N be a sequence of R-Modules, and let {dn}n∈N be homomorphisms dn : Cn → Cn+1

such that dn ◦ dn−1 = 0. Then we call (Cn, dn)n∈N a cochain complex.

Definition. Given a co-chain complex C = (C•, d•), define its cohomology groups as

Hk(C) =
ker dk

imdk−1

Example. Consider the de Rham complex on a closed smooth n-manifold (Ω•(M),d). Where

ddkω(V1, . . . , Vk+1) =

k+1∑
i=1

(−1)i Vi ω(V1, . . . , Vi−1, Vi+1, . . . Vk+1)

+

k+1∑
i=1

i∑
j=1

(−1)i+jω([Vj , Vi], V1, . . . , Vj−1, Vj+1, . . . , Vi−1, Vi+1, . . . Vk+1)

Then in local co-ordinates (for global co-ordinates, the proof is much longer and more involved), we see that

dk+1 ◦ dkω = −(∂i∂jωi1···ik)(dui ∧ duj ∧ dui1 ∧ · · · ∧ duik) = −dk+1 ◦ dkω

Thus d2 = 0, and so we have a cochain complex. The cohomology groups of this complex contain impor-
tant topological information about the structure of the manifold, as we will see when we consider singular
homologies.

How do we construct cochains from chains? One way is to reindex; are there any nontrivial ways? Let
(Cn, dn) be a chain complex and let G be an abelian group (considered as a Z-Module). Consider the modules
C∗n = Hom(Cn, G). Then define the coboundary map δn : C∗n−1 → C∗n by φ 7→ d∗φ = (c 7→ cdφ). It is then
clear that

φδnδn+1 = dn+1dnφ = 0φ = 0

So (C∗n, δ
n) is indeed a cochain complex, closely related to (Cn, dn). The question now is how are the homology

groups related to the cohomology groups? It may be tempting to think that Hn(C,G) ' Hom(Hn(C), G),
but unfortunately this is not usually the case. We start see how much of this we can recover with the
following proposition.

Definition. If [φ] ∈ Hn(C,G), then φ|ker d : ker d → G induces a homomorphism φ0 : Hn(C) → G. Define
the map h : Hn(Cn, G)→ Hom(Hn(Cn), G) given by taking [φ] 7→ φ0.

Proposition 3.5.1. h is a homomorphism.

Theorem 3.5.2. h is surjective.

3.6 Recap of Chain Complexes and Maps

We firstly recall some important definitions and results from earlier. Reference: A Course in the Theory of
Groups by Derek J.S. Robinson.

Let C = (Cn, ∂n)n∈Z and C = (Cn, ∂n)n∈Z be chain complexes of R-modules. Sometimes we will just call
C, C complexes. Recall that a chain map γ : C→ C is a sequence (γn : Cn → Cn)n∈Z of R-homomorphisms
such that ∂nγn−1 = γn∂n for n ∈ Z. We sometimes call a chain map a morphism of complexes.

Since ∂n+1∂n = 0 one has im ∂n+1 ⊆ ker ∂n. Note the image and kernel of an R-homomorphisms
are R-submodules, hence it makes sense to define the homology group Hn(C) of a complex by Hn(C) :=
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ker ∂n/ im ∂n+1. In fact these may be equipped with an R-module structure, but they are typically just
called homology groups.

There is a reason that ∂, δ, or d are commonly used letters for the homomorphisms in a chain complex.
In 3.12, we will see that there is a natural chain complex (the singular complex of a topological space) in
which one may view ∂ as a “boundary” operator. The identity ∂n+1∂n = 0 then says that the boundary of
a boundary is empty.

In view of this, one sometimes refers to the elements of im ∂n+1 as the boundaries, and the elements of
ker ∂n as the cycles (cycles have no boundary). Lemma 3.4.1 then states that if γ : C→ C is a morphism of
complexes, then γn maps ker ∂n into ker ∂n, and im ∂n+1 into im ∂n+1.

It follows from this that γ : C → C induces group (indeed R-module) homomorphisms γn,∗ : Hn(C) →
Hn(C). Why? Elements of Hn(C) are of the form a+im ∂n+1 where a ∈ ker ∂n. For a ∈ ker ∂n, the mapping
a+ im ∂n+1 7→ aγn + im ∂n+1 is

• well defined, because γn maps im ∂n+1 into im ∂n+1,

• maps Hn(C) = ker ∂n/ im ∂n+1 into Hn(C) = ker ∂n/ im ∂n+1, because γn maps ker ∂n into ker ∂n,

• is an R-module homomorphism from Hn(C)→ Hn(C).

We invite the reader to verify the above claims. Once this is done, one has the following lemma.

Lemma 3.6.1. A morphism γ : C→ C of complexes induces homomorphisms γn,∗ : Hn(C)→ Hn(C).

3.7 Homotopy of Chain Complexes

Homotopy is a way of comparing maps. Recall that in topology, if X and Y are topological spaces, and
f, g : X → Y are continuous maps, then we say that f and g are homotopic if there exists a continuous
function H : X × [0, 1] → Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. We call H
a homotopy. This induces an equivalence relation on the space of continuous maps from X → Y . A
continuous map is null-homotopic if it is homotopic to a constant function.

Our goal is to define a meaningful notion of homotopy on chain maps between two complexes C and C.
It is difficult (for me) to fully motivate this in advance so here we will firstly just state the definition.

Definition (Homotopy). Let γ, ρ : C→ C be morphisms of complexes (i.e. chain maps). We say that γ, ρ
are homotopic if there exist R-homomorphisms σn : Cn → Cn+1 such that

γn − ρn = σn∂n+1 + ∂nσn−1

for all n ∈ Z. One may visualise this as “partial commutativity” in the two middle triangles of the below
diagram (NB: this diagram does NOT commute).

· · · Cn+1 Cn Cn−1 · · ·

· · · Cn+1 Cn Cn−1 · · ·

∂n+1 ∂n

γn−ρnσn σn−1

∂n+1 ∂n
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Why is this a good definition for homotopy? One answer is that to each topological space one can
associate a chain complex (known as the singular complex). A continuous map f : X → Y of topological
spaces induces a chain map between the corresponding singular complexes. If two continuous maps X → Y
are homotopic in the topological sense, then one can show that the induced chain maps are homotopic in
the algebraic sense.

A second answer is that there is an appropriate generalisation of homotopy which agrees with the above
algebraic definition. Instead of working in the category of topological spaces, one works in the category of
R-module chain complexes (the morphisms are naturally chain maps). One must generalise the notion of an
“interval object” to replace [0, 1] with an appropriate object in this new category.

Theorem 3.7.1. Let γ : C→ C and ρ : C→ C be morphisms of complexes. If γρ and ργ are homotopic to
identity morphisms, then the induced homomorphisms γn,∗ : Hn(C)→ Hn(C) are isomorphisms.

Proof. Since γρ is homotopic to idC, there exist R-module homomorphisms σn : Cn → Cn+1 such that
γnρn − idCn

= σn∂n+1 + ∂nσn−1, for n ∈ Z. If a ∈ ker ∂n, then aγnρn − a = aσn∂n+1 ∈ im ∂n+1. Therefore
one has aγnρn + im ∂n+1 = a + im ∂n+1, i.e. (γρ)n,∗ : Hn(C) → Hn(C) is the identity map. Similarly
(ργ)n,∗ : Hn(C)→ Hn(C) is the identity map. Hence γn,∗ : Hn(C)→ Hn(C) is an isomorphism.

3.8 Resolutions

Definition. A chain complex C is positive if Cn = 0 for all n < 0. We often write a positive complex C as
· · · → C2 → C1 → C0 → 0.

Definition (Resolution). Let M be an R-module. An R-resolution of M is a positive chain complex C and
an epimorphism ε : C0 �M such that

· · · C2 C1 C0 M 0
∂3 ∂2 ∂1 ε

is exact. We may abbreviate the resolution by C
ε
−� M . We call the resolution free (projective) if the

complex C is free (projective), which means that each of the R-modules C0, C1, . . . are free (projective).

Theorem 3.8.1. Every R-module has a free R-resolution.

Proof. Let M be an R-module. There exists a free R-module C0 and an epimorphism ε : C0 � M . For
example, letX be a set which generatesM as an R-module, let C0 be free onX, then the identity mapX → X

extends to the required epimorphism. We then have a short exact sequence 0 ↪→ ker ε ↪→ C0
ε
−�M � 0.

Replacing M with ker ε, we obtain a short exact sequence 0→ ker ε1 → C1
ε1−→ ker ε→ 0, where C1 is a

free R-module. Similarly we obtain short exact sequences 0→ ker εn → Cn
εn−→ ker εn−1 → 0 for n = 1, 2, . . .,

with each Cn free. Concatenating these using the splicing lemma 3.1.1 we obtain an exact sequence

· · · → C2 → C1 → C0
ε−→M → 0,

as required.

In view of this theorem and the above proof, we may imagine R-resolutions to be a generalisation of
R-module presentations. Indeed, let M be an R-module, and let X be a set which generates M as an R-
module. Let F be a free R-module on the set X, and let K be the kernel of the natural map F �M . Then
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we say 〈X | K〉 is a presentation of M . (More generally, if Y is any set which generates K, then 〈X | Y 〉 is
a presentation of M .)

In group theory there is an important theorem (Nielsen-Schreier) which asserts that every subgroup of a
free group is free. However as we have already seen in 3.3, submodules of free modules are not necessarily
free. Thus in our identification F/K ∼= M , while F is free, K may not be, and so we may wish to construct
a presentation of K to better understand it. This yields an epimorphism F1 � K with some kernel K1 and
F1 free. Continuing this process yields the free R-resolution of M described above.

Theorem 3.8.2. Let P
ε
−� M and P

ε
−� M be two projective R-resolutions. If α : M → M is an R-

homomorphism, there is a morphism π : P→ P such that π0ε = εα. Moreover π is unique up to homotopy.

P M

P M

ε

π α

ε

Proof. Since P0 is projective and ε is an epimorphism, we may lift εα : P0 → M along ε : P 0 → M to
obtain an R-homomorphism π0 : P0 → P 0 such that π0ε = εα. Now let n ≥ 0 and suppose homomorphisms
πi : Pi → P i have been constructed for 1 ≤ i ≤ n, such that πi∂i = ∂iπi−1. For convenience, call ε = ∂0,
ε = ∂0, α = π−1, so that this holds for i = 0 as well.

Note that ∂n+1 is a an epimorphism when viewed as mapping from Pn+1 onto im ∂n+1 = ker ∂n. We
would like to show that im(∂n+1πn) ⊆ ker ∂n, because then since Pn+1 is projective, it would follow that
map ∂n+1πn will factor through ∂n+1 via some map πn+1 : Pn+1 → Pn+1.

One has ∂n+1πn∂n = ∂n+1∂nπn−1 = 0, since ∂n+1∂n = 0. Hence im ∂n+1πn ⊆ ker ∂n = im ∂n+1. Since
Pn+1 is projective, the map ∂n+1πn : Pn+1 → im ∂n+1 factors via the epimorphism ∂n+1 : Pn+1 � im ∂n+1.
In other words, there exists a map πn+1 : Pn+1 → Pn+1 such that πn+1∂n+1 = ∂n+1πn.

Inductively this produces a morphism π : P → P as required. Suppose that π′ : P → P is another such
morphism. Recall that ∂1 is an epimorphism from P 1 onto im ∂1 = ker ε. We would like to show that
im(π0 − π′0) ⊆ ker ε, so that by the projectivity of P0, the map π0 − π′0 lifts along ∂1 to a map σ0 : P0 → P 1

such that σ0∂1 = π0 − π′0. Notice that (π0 − π′0)ε = π0ε− π′0ε = εα− εα = 0, hence im(π0 − π′0) ⊆ ker ε as
required.

Let n ≥ 0 and suppose that σi has been defined for 1 ≤ i ≤ n, such that πi − π′i = σi∂i+1 + ∂iσi−1. We
want to construct σn+1 : Pn+1 → Pn+2 such that πn+1 − π′n+1 = σn+1∂n+2 + ∂n+1σn. If we can show that

im(πn+1 − π′n+1 − ∂n+1σn) ⊆ im ∂n+2 = ker ∂n+1, then by the projectivity of Pn+1 such a map σn+1 indeed
exists. Observe we have the following

(πn+1−π′n+1−∂n+1σn)∂n+1 = (πn+1−π′n+1)∂n+1−∂n+1σn∂n+1 = ∂n+1(πn−π′n−σn∂n+1) = ∂n+1∂nσn−1 = 0.

Hence im(πn+1−π′n+1−∂n+1σn) ⊆ ker ∂n+1, as required. Inductively we construct the maps σn : Pn → Pn+1

as required, and thus π and π are homotopic. This completes the proof.

3.9 Double complexes, and the Ext and Tor functors

We have seen over the course the last few sections/weeks the increasing complexity of complexes (pun
intended). We first saw short exact sequences (SES), and moved on to long exact sequences (LES) before
generalising those into chain complexes. We then studied maps between chain complexes and moved on to
cover SESs of chain complexes. Now, we will follow the trajectory from before and define chain complexes
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of chain complexes!
These are easy to define, but difficult to draw!

Definition. A double complex of R-modules C∗∗ is a family {Ci,j}i,j∈Z of modules together with morphisms

hi,j : Ci,j → Ci,j+1 and vi,j : Ci,j → Ci+1,j

such that we still have cochain complexes in both directions: hi,j ◦ hi,j−1 = 0 and vi,j ◦ vi−1,j = 0; and we
have anti-commutativity in all squares: vi,j+1 ◦ hi,j = −hi+1,j ◦ vi,j .

A double complex would look something like:

. . .

. . .

. . .

...

Ci−1,j−1

Ci,j−1

Ci+1,j−1

...

...

Ci−1,j

Ci,j

Ci+1,j

...

...

Ci−1,j+1

Ci,j+1

Ci+1,j+1

...

. . .

. . .

. . .

hi−1,j−2

hi,j−2

hi+1,j−2

hi−1,j−1

hi,j−1

hi+1,j−1

hi−1,j

hi,j

hi+1,j

hi−1,j+1

hi,j+1

hi+1,j+1

vi−2,j−1

vi−1,j−1

vi,j−1

vi+1,j−1

vi−2,j

vi−1,j

vi,j

vi+1,j

vi−2,j+1

vi−1,j+1

vi,j+1

vi+1,j+1

We say that a double complex C∗∗ is bounded if for each n, there are only finitely many non-zero modules
Ci,j such that n = i+ j.

We say that a double complex C∗∗ is positive if Ci,j = 0 for all i, j < 0.

Remark. The use of the anti-commutative property seems odd here, but this definition would become apparent
after the definition of the total complex to come.

We can turn a positive double complex C∗∗ into a single one by defining

Tot(C)n =
⊕
i+j=n

Ci,j .

Now consider the maps

Dn : Tot(C)n → Tot(C)n+1

Ci,j 3 x 7→ hi,j(x) + vi,j(x) .
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Then let’s consider what happens to the map Dn+1 ◦Dn. Let x ∈ Ci,j ⊂ Tot(C)n, then

Dn+1 ◦Dn(x) = Dn+1(hi,j(x)∈

Ci,j+1

+ vi,j(x)∈

Ci+1,j

)

= hi,j+1(hi,j(x)) + vi,j+1(hi,j(x)) + hi+1,j(vi,j(x)) + vi+1,j(vi,j(x))

= 0 .

Hence {Tot(C)n}n∈N with the maps defined above forms a cochain complex.

For positive double complexes, we have the following picture:

C0,0

C1,0

C2,0

...

C0,1

C1,1

C2,1

...

C0,2

C1,2

C2,2

...

. . .

. . .

. . .

h0,0

h1,0

h2,0

h0,1

h1,1

h2,1

h0,2

h1,2

h2,2

v0,0

v1,0

v2,0

v0,1

v1,1

v2,1

v0,2

v1,2

v2,2

The diagram has omitted the 0 → ∗ maps for brevity. Note that we can extend/augment this diagram by
including the kernels of the maps h∗,0 and v0,∗ on the left and the top respectively. Then setting

H0
v (C0,∗) = ker v0,∗ and H0

h(C∗,0) = kerh∗,0

we have

H0
h(C0,0)

H0
h(C1,0)

...

H0
v (C0,0)

C0,0

C1,0

...

H0
v (C0,1)

C0,1

C1,1

...

. . .

. . .

. . .

d0h d1h

h0,0 h0,1

h1,0 h1,1

v0,0

v1,0

v0,1

v1,1

d0v

d1v
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Now note that by inheriting the operations on C∗∗, we have that

H0
v (C∗∗) = H0

v (C0,∗) and H0
h(C∗∗) = H0

h(C∗,0)

are cochain complexes.

Lemma 3.9.1 (Double Complex Lemma). If C∗∗ is a positive double complex with exact rows and columns,
then there are canonical isomorphisms for all n ≥ 0:

Hn(Tot(C)∗) ∼= Hn
v (H0

h(C∗∗)) ∼= Hh
v (H0

v (C∗∗)) .

Proof. The notes have already constructed an isomorphism between Hn
v (H0

h(C∗∗)) ∼= Hn(Tot(C)∗). We will
construct the other isomorphism.

Consider the map

Hn
h (H0

v (C∗∗))→ Hn(Tot(C)∗)

[a0,n] 7→ [(a0,n, 0, . . . , 0)] .

We follow the proof strategy in the notes and aim to show that an arbitrary element in Hn(Tot(C)∗) can be
written in the above form, then the inverse map is obvious.

So let x = [(a0,n, a1,n−1, . . . , ak,n−k, 0, . . . , 0)] and let π : Tot(C)n+1 → Ck+1,n−k. Then notice that
D(x) = 0 since D is now restricted to the cohomology groups, and so we have

0 = π ◦D(x) = hk,n+k(0) + vk,n+k(ak,n−k) .

Then using the exactness of the (n − k)-th column, there exists e ∈ Ck−1,n−k such that vk−1,n−k+1(e) =
ak,n−k. Hence

[(a0,n, a1,n−1, . . . , ak,n−k, 0, . . . , 0)]− [(a0,n, a1,n−1, . . . , ak−1,n−k+1 − hk−1,n−k+1(e), 0, . . . , 0)]

=[(0, . . . , 0, hk−1,n−k+1(e), ak,n−k, 0, . . . , 0)]

=[(0, . . . , 0, hk−1,n−k+1(e), vk−1,n−k+1(e), 0, . . . , 0)]

=D[(0, . . . , 0, e, 0, . . . , 0)] .

An example of a double complex is by constructing them via resolutions:

Let A,B be R-modules and consider the projective P∗
ε−−→ A and injective B

η−−→ I∗ resolutions of A and
B respectively. Then consider the positive double exact complex obtained by using the left-exactness of the
covariant functor hom(M,−) and its dual, we have
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homR(P0, B)

homR(P1, B)

...

homR(A, I0)

homR(P0, I
0)

homR(P1, I
0)

...

homR(A, I1)

homR(P0, I
1)

homR(P1, I
1)

...

. . .

. . .

. . .

d0h d1h

h0,0 h0,1

h1,0 h1,1

η∗

η∗

ε∗

v0,0

v1,0

ε∗

v0,1

v1,1

d0v

d1v

So using the Double Complex Lemma, we have

Hn(hom(A, I∗)) ∼= Hn(hom(P∗, B)) .

Definition. The cohomology group we obtained above is defined to be the Ext groups, and are denoted
Extn(A,B).

Analogously, we can take two projective resolutions P∗
ε−−→ A and Q∗

δ−−→ B and define the Tor groups,
Torn(A,B) as the homology groups

Torn(A,B) ∼= Hn(A⊗Q∗)) ∼= Hn(P∗ ⊗B) .

Now, the natural thing to do here is to take two injective resolutions and look to build more double
complexes. It is clear that we will not be able to use the hom-functor twice as this would cause the
complexes to point the wrong way. One can see that this is true for using a mix of the two functors as in
the construction of Ext and Tor. This leaves us with two applications of the tensor functor. But one will
see that this construction does not work because of the lack of left-exactness of the tensor functor.

The last result in the notes show that the Tor-functor measures the obstruction of the left-exactness of
the tensor-functor. However, I will not pull on that thread and will instead motivate Ext and Tor from a
different direction: derived functors.

Derived functors

Definition. Let F be a right-exact (resp. left-exact) covariant map and M be any module. We take a
projective resolution P∗ (resp. injective resolution I∗) of M and define Hi(F (P∗)) (resp. Hi(F (I∗))) to be
the i-th left derived functor (resp. right derived functor) of M , written as Fi(M) (resp. F i(M)).

Remark. If F is contravariant, swap the words left and right in the definitions above.

Lemma 3.9.2. The Fi(M) depends only on M and F (and not on the projective resolution). Furthermore,
F0(M) = F (M).

31



Proof. Suppose we have two projective resolutions on M given by P∗ → M → 0 and Q∗ → M → 0. Then
using results from the Section 3.8, we can extend 1 : M → M to φ : P∗ → Q∗, and also ψ : Q∗ → P∗. And
applying Theorem 3.8.2 twice, we have that ψ◦φ and φ◦ψ are homotopic to the identity, hence Theorem 3.7.1
gives us the isomorphisms between the homology groups.

The fact that F is right-exact shows that the last four terms

F (P1)→ F (P0)→ F (M)→ 0

is exact, hence F (M) = F0(M).

Lemma 3.9.3. If α : M → N is R-linear and F is as above, then we get Fi(α) : Fi(M)→ Fi(N).

Proof. Use Proposition 1.10.6 and Lemma 1.10.12 of Moerdijk’s notes to get the result.

From these results, it is clear that if M
α−→ N

β−→ P is a sequence, then Fi(βα) = Fi(β)Fi(α). So we have
a functor between R-modules that takes M to Fi(M).

Theorem 3.9.4. If there is a SES 0→ L→M → N → 0 of modules, then we get a long exact sequence:

· · · → F2(N)→ F1(L)→ F1(M)→ F1(N)→ F0(L)→ F0(M)→ F0(N)→ 0 .

Definition. Let M be an R-module, then homR(M,−) is a left-exact covariant functor. The n-th right-
derived functor for this is written as Extn(M,−). Explicitly, for a module N , take any injective resolution
0→ N → I∗, and applying the functor, we get the complex

0→ hom(M,N)→ hom(M, I0)→ hom(M, I1)→ . . .

and Extn(M,N) is the n-th cohomology group of this complex.

Similarly, M ⊗R − is a right-exact covariant functor, and its n-th left-derived functor is written as
Torn(M,−). Explicitly, for a module N , take any projective resolution P∗ → N → 0, and we have a complex

· · · →M ⊗R P1 →M ⊗R P0 →M ⊗R N → 0

and Torn(M,N) is the n-th homology group of this sequence.

Computing with Ext and Tor

In this section, we will try to compute M ⊗ N , hom(M,N), Tor(M,N) and Ext(M,N) for Z-modules
M,N = Z,Q,Z/nZ.

Before doing so, we will state some results that I may or may not prove:

Proposition 3.9.5. The following are equivalent for a module M :

(i) M is projective.

(ii) Extn(M,N) = 0 for all i > 0 and modules N .

(iii) Ext1(M,N) = 0 for all modules N .

Proposition 3.9.6. The following are equivalent for a module N :

(i) N is injective.
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(ii) Extn(M,N) = 0 for all i > 0 and modules N .

(iii) Ext1(M,N) = 0 for all modules N .

Proposition 3.9.7. The following are equivalent for a left-module N :

(i) N is flat.

(ii) Torn(M,N) = 0 for all i > 0 and modules M .

(iii) Tor1(M,N) = 0 for all modules M .

Tensor and Tor

Firstly, note that 0⊗N = 0 since 0⊗ n = 0 · 0⊗ n = 0⊗ 0 · n = 0⊗ 0 = 0.
Next, check that we have

(1) Z⊗N = N is given by a⊗ n 7→ an,

(2) Q⊗Q = Q is given by a⊗ b 7→ ab.

Proposition 3.9.8. (3) Z/nZ⊗N = N/nN ,

(4) Tor(Z/nZ, N) = N [n].

Proof. Consider the SES
0→ Z n−→ Z→ Z/nZ→ 0

and apply the right-exact covariant functor −⊗N to get

· · · → Tor(Z/nZ, N)→ Z⊗N n−→ Z⊗N → Z/nZ⊗N → 0 .

Using what we got from (1) and noting that Tor(Z, N) = 0 since Z is projective and hence flat, we can
simplify it to get

0→ Tor(Z/nZ, N)→ N
n−→ N → Z/nZ⊗N → 0 .

Then

Tor(Z/nZ, N) = ker(Z n−→ Z) = N [n]

Z/nZ⊗N = coker(Z n−→ Z) = N/nN .

Now notice that we can use this result to get

(5) Z/nZ⊗Q = 0.

(6) Tor(Z/nZ,Q) = 0.

Finally, we have from the first section of this chapter that

(7) Z/mZ⊗ Z/nZ = Z/dZ, where d = gcd(m,n).

(8) Then using (4), we also have that Tor(Z/mZ,Z/nZ) = Z/dZ, where d = gcd(m,n).

We have (9) Tor(M,Q) = 0 since Q is flat.

33



Hom and Ext

We have from basis results that

(1) hom(Z, N) = N is given by φ 7→ φ(1) = n,

(2) Ext(Z, N) = 0 since Z is projective.

Next, we have

Proposition 3.9.9. (3) hom(Z/nZ, N) = N [n],

(4) Ext(Z/nZ, N) = N/nN .

The proof is almost identical to the proof above and we will not repeat it.

Using this result, we get:

(5) hom(Z/nZ,Z) = 0.

(6) Ext(Z/nZ,Z) = Z/nZ.

(7) hom(Z/mZ,Z/nZ) = Z/dZ, where d = gcd(m,n).

(8) Ext(Z/mZ,Z/nZ) = Z/dZ, where d = gcd(m,n).

(9) hom(Z/nZ,Q) = 0.

(10) Ext(Z/nZ,Q) = 0.

Next, we have hom(Q,Q) = Q via φ 7→ φ(1) and Ext(M,Q) = 0 since Q is injective.

Lastly, we come to Ext(Q,Z)... this is where we stop!

3.10 The Künneth Formula

We are now reaching a stage where computing actual objects becomes a reality. In this section we will give
more tools that are handy for calculating (co)homology groups involving tensor products.

Informally, let C be a chain complex of free modules over a ring R and let M be an R-module. What we
will derive are the following short exact sequences:

0→ Hn(C)⊗M → Hn(C ⊗M)→ Tor1(Hn−1(C),M)→ 0 (3.1)

and more generally, for R a principal ideal domain and a second chain complex C ′ again of free R-modules

0→
⊕
p+q=n

Hp(C)⊗Hq(C
′)→ Hn(C ⊗ C ′)→

⊕
p+q=n−1

Tor1(Hp(C), Hq(C
′))→ 0. (3.2)

We have not yet defined what it means to take a tensor product of chain complexes, but we see that taking
C ′0 = M and C ′n = 0 for n 6= 0 in Equation 3.2 immediately yields Equation 3.1. So instead of deriving the
first equation directly, we will prove a theorem about the more general second one first.
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Tensor Product of Complexes Consider the double complex Cp,q = Cp⊗C ′q of chain complexes C and
C ′ of left and right R-modules with the boundary maps

d⊗ id : Cp,q → Cp−1,q, (−1)p id⊗d : Cp,q → Cp,q−1.

The boundary map of its total complex is given by

D(c⊗ c′) = dc⊗ c′ + (−1)pc⊗ dc′ (3.3)

for all c ∈ Cp and c′ ∈ C ′q.

Definition. The total complex of the double complex Cp,q = Cp ⊗C ′q is called the tensor product of C and
C ′ and is denoted by C ⊗R C ′.

Recall, that for the tensor product of modules, a certain associativity holds; let A be a right R-module,
B an (R,S)-bimodule, and C a left R-module. Then there is an isomorphism

(A⊗R B)⊗S C → A⊗R (B ⊗S C),

(a⊗ b)⊗ c 7→ a⊗ (b⊗ c).

Further, let A and B be R-bimodules, then there is an isomorphism

A⊗B → B ⊗A,
a⊗ b 7→ b⊗ a.

This generalises neatly to complexes as follows.

Corollary 3.10.1. Let C ′ and C ′′ be chain complexes of right R-modules respectively left S-modules and let
C be a chain complex of (R,S)-bimodules. Then there is an isomorphism of chain complexes

(C ′ ⊗R C)⊗S C ′′ → C ′ ⊗R (C ⊗S C ′′).

Further, let C and C ′ be chain complexes of R-bimodules, then there is an isomorphism

C ⊗ C ′ → C ′ ⊗ C,
c⊗ c′ 7→ (−1)pqc′ ⊗ c,

for all c ∈ Cp and c′ ∈ C ′q.

Let us now come back to the tensor product of chain complexes. Let C and C ′ be two chain complexes of
left respectively right R-modules. From Equation 3.3 we see that the tensor product of two cycles is again a
cycle and that the tensor product of a cycle and a boundary is a boundary. Thus we can make the following

Definition. Let C and C ′ be two chain complexes of left respectively right R-modules. The homomorphism⊕
p+q=n

Hp(C)⊗Hq(C
′)→ Hn(C ⊗ C ′) : [c]⊗ [c′] 7→ [c⊗ c′]

is called the homology product.

Before we proceed, we require another definition.

Definition. Let (Ci)i∈I be a family of chain complexes of R-modules. The direct sum
⊕

i∈I Ci is given by(⊕
i∈I

Ci

)
n

=
⊕
i∈I

(Ci)n, d(ci) = (dci).
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The direct sum
⊕

i∈I Ci is a chain complex of R-modules. There exists a canonical isomorphism

Hn(
⊕
i∈I

Ci) '
⊕
i∈I

Hn(Ci).

If all of the Ci are chain complexes of left R-modules and we have an additional C ′ a chain complex of left
R-modules, then there exists a canonical isomorphism

(
⊕
i∈I

Ci)⊗ C ′ '
⊕
i∈I

(Ci ⊗ C ′).

The Künneth Formula We are now ready to state and proof the Künneth formula given by Equation 3.2.
Intuitively, the torsion term

⊕
p+q=n−1 Tor1(Hp(C), Hq(C

′)) gives us a measure of how much the homology
product fails to be an isomorphism.

Remark. If a ring R is a principal ideal domain, then every submodule of a free R-module is free as well.

Theorem 3.10.2 (Künneth Formula). Let R be a principal ideal domain and let C and C ′ be chain complexes
of right and left R-modules respectively. If the R-modules Ci are all free then, for each n, there exists a natural
short exact Künneth sequence

0→
⊕
p+q=n

Hp(C)⊗Hq(C
′)→ Hn(C ⊗ C ′)→

⊕
p+q=n−1

Tor1(Hp(C), Hq(C
′))→ 0.

Proof. This is a proof in two parts.

(i) We first proof the statement in a special case. Assume that the chain complex C has trivial boundary
morphisms (i.e. dn ≡ 0) such that Hp(C) = Cp is free for all p. Then the torsion term vanishes and it
suffices to show that the homology product is an isomorphism.

Now D(c⊗ c′) = (−1)pc⊗ dc′ for all c ∈ Cp and c′ ∈ C ′q. We also have a canonical isomorphism

C ⊗ C ′ '
⊕
p∈Z

Cp ⊗ C ′[p]

where the C ′[p] is given by C ′[p]n := C ′n−p. By our assumption, Cp is free and so it can be written as
a disjoint sum of of a family of R-modules (Ri)i∈I , and all of the Ri are isomorphic to R. Thus, using
Ri ⊗ C ′q ' C ′q and Hn(C ′[p]) = Hn−p(C

′), we find

Hn(Cp ⊗ C ′[p]) '
⊕
i

Hn−p(C
′) ' Cp ⊗Hn−p(C

′) = Hp(C)⊗Hn−p(C
′).

Now applying the homology functor Hn(−) to both sides of Equation 1 and summing over p gives us
the required isomorphism

Hn(C ⊗ C ′) '
⊕
p+q=n

Hp(C)⊗Hq(C
′).

(ii) Now we show the general case. Recall that Hn(C) = Zn/Bn where we denote with Zn ⊂ Cn the kernel
of dn and with Bn ⊂ Cn the image of dn+1. Notice that they form chain complexes Z and B with
trivial boundary morphisms and that we have a short exact sequence

0→ Zp → Cp
d→ Bp−1 → 0

for each p. Since Bp−1 is free, we have Tor1(Bp−1, C
′
q) = 0 in the associated Tor-sequence. Therefore,

0→ Zp ⊗ C ′q → Cp ⊗ C ′q → Bp−1 ⊗ C ′q → 0
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is exact for all pairs (p, q). By taking the chain complex tensor product (i.e. summing over p+ q = n)
we find

0→ (Z ⊗ C ′)n → (C ⊗ C ′)n → (B ⊗ C ′)n−1 → 0

By case (i) we have

Z ⊗ C ′ '
⊕
p∈Z

Zp ⊗ C ′[p],

B ⊗ C ′ '
⊕
p∈Z

Bp ⊗ C ′[p]

and thus we obtain the exact sequence

0→
⊕
p∈Z

Zp ⊗ C ′[p]→ C ⊗ C ′ →
⊕
p∈Z

Bp−1 ⊗ C ′[p]→ 0.

Taking homologies, we find the long exact sequence

· · · →
⊕
p+q=n

Bp ⊗Hq(C
′)
δn→

⊕
p+q=n

Zp ⊗Hq(C
′)→ Hn(C ⊗ C ′) (3.4)

→
⊕

p+q=n−1
Bp ⊗Hq(C

′)
δn−1−→

⊕
p+q=n−1

Zp ⊗Hq(C
′)→ · · · (3.5)

The exactness in Hn(C ⊗ C ′) is equivalent to the exactness of the following short exact sequence

0→ coker δn → Hn(C ⊗ C ′)→ ker δn−1 → 0.

We will determine coker δn and ker δn−1. Start with the exact sequence 0 → Bp → Zp → Hp(C) → 0
to find the exact sequence

Bp ⊗Hq(C
′)→ Zp ⊗Hq(C

′)→ Hp(C)⊗Hq(C
′)→ 0.

Again, summing over p+ q = n we obtain the exact sequence⊕
p+q=n

Bp ⊗Hq(C
′)→

⊕
p+q=n

Zp ⊗Hq(C
′)→

⊕
p+q=n

Hp(C)⊗Hq(C
′)→ 0

and hence by matching with Equation 3.4 we find that coker δn =
⊕

p+q=nHp(C)⊗Hq(C
′).

On the other hand, start again with the exact sequence 0→ Bp → Zp → Hp(C)→ 0 and consider the
associated Tor-sequence. By our assumption, Zp is free and so Tor1(Zp, Hq(C

′)) = 0. Hence we obtain
the exact sequence

0→ Tor1(Hp(C), Hq(C
′))→ Bp ⊗Hq(C

′)→ Zp ⊗Hq(C
′)→ Hp(C)⊗Hq(C

′)→ 0.

Similarly, by summing over p + q = n − 1 and matching with Equation 3.4 we find that ker δn−1 =⊕
p+q=n−1 Tor1(Hp(C), Hq(C

′)).

The Universal Coefficient Theorem We are now ready to state and proof our second result about
Equation 3.1. But before we do so, we quickly define a notation often found in literature.

Definition. Let C be a chain complex of left R-modules. If M is any right R-module, the homology of C
with coefficients in M is given by

H∗(C;M) = H∗(C ⊗M).
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Theorem 3.10.3 (Universal Coefficient Theorem). Let C be a chain complex of free left R-modules and let
M be a right R-modules. Then there is a natural short exact sequence

0→ Hn(C)⊗M → Hn(C;M)→ Tor1(Hn−1(C),M)→ 0.

Proof. This now follows immediately from Theorem 3.10.2.

Remark. Theorem 3.10.2 and Theorem 3.10.3 have some interesting implications. If K is a field and C
and C ′ are chain complexes of K-modules, then the homology product is an isomorphism. It also holds that
Hn(C ⊗M) ' Hn(C)⊗M for some K-module M .

Remark. The Künneth-sequence splits:

Hn(C ⊗ C ′) '

( ⊕
p+q=n

Hp(C)⊗Hq(C
′)

)
⊕

( ⊕
p+q=n−1

Tor1(Hp(C), Hq(C
′))

)
,

but this splitting is not natural.

Example. Anticipating later results, let us state the homology groups for the real projective plane RP2:

H0(RP2,Z) ' Z,
H1(RP2,Z) ' Z/2Z,
Hi(RP2,Z) = 0, i ≥ 2.

All Tor groups are zero but
Tor1(H1(RP2,Z), H1(RP2,Z)) ' Z/2Z.

Using this and the Künneth formula, we can compute the homology groups of RP2 × RP2:

H0(RP2 × RP2,Z) ' H0(RP2,Z)⊗H0(RP2,Z) ' Z,
H1(RP2 × RP2,Z) ' H0(RP2,Z)⊗H1(RP2,Z)⊕H1(RP2,Z)⊗H0(RP2,Z) ' Z/2Z⊕ Z/2Z,
H2(RP2 × RP2,Z) ' H1(RP2,Z)⊗H1(RP2,Z) ' Z/2Z,
H3(RP2 × RP2,Z) ' Tor1(H1(RP2,Z), H1(RP2,Z)) ' Z/2Z,
Hi(RP2 × RP2,Z) = 0, i ≥ 4.

3.11 Group cohomology

3.12 Simplicial cohomology
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Chapter 4

Abelian Categories and Derived Functors

4.1 Categories and functors

4.2 Abelian categories

Recall the definition of a category:

Definition (Category). A category C consists of a class of objects ob(C) and a class of morphisms hom(C).
Each morphism f ∈ hom(C) has a source object a and target object b. homC(a, b) denotes the class of
all morphisms from a to b in C. (We drop the subscript C when the category is clear.) There is a binary
operation hom(a, b)× hom(b, c)→ hom(a, c) called composition, where (f, g) 7→ fg. Moreover, the following
properties must hold:

• (Associativity.) If f ∈ hom(a, b), g ∈ hom(b, c), and h ∈ hom(c, d), then f(gh) = (fg)h.

• (Identity.) For each a ∈ ob(C), there is a morphism ida called the identity, so that ida f = f and
g ida = g for any f ∈ hom(a, b) and g ∈ hom(c, a), for any b, c ∈ ob(C).

Example. The category Set consists of sets as its objects and functions as its morphisms. The definition is
vague by design: Some consider it to be the category of all sets, some consider it to be the category of small
sets, which are sets contained in a Grothendieck universe. On the other hand, Ab is the category consisting
of all abelian groups as objects and group homomorphisms as morphisms.

Example. Up until now we have been working in the category of left modules, denoted R-mod. We see
that our definition of homR(M,N) is in fact homR-mod(M,N) equipped with addition of morphisms and left
multiplication by elements of R. While homR-mod(M,N) is just a set, homR(M,N) is an R-module.

There are obvious connections between Ab and R-mod: every abelian group can be made into a Z-module
and every R-module is, at its core, an abelian group. Both of these are prototypical examples of an abelian
category, a special type of categories where the morphisms are enriched with additional structure.

Example. Consider Ab the category of Abelian groups with group homomorphisms. Take two abelian
groups A and B, and consider f, g ∈ hom(A,B). We define a new map f + g : A → B by (f + g)(a) =
f(a) + g(a), as if a, b ∈ A, then (f + g)(a+ b) = f(a+ b) + g(a+ b) = f(a) + f(b) + g(a) + f(g). If A were not
abelian, then this new map is not necessarily a Homomorphism, but here we luckily get: (f + g)(a + b) =
(f + g)(a) + (f + g)(b). We also get identity via the trivial Homomorphism, associativity inverses and
commutativity via the associativity of the group. Therefore hom(A,B) can be “enriched” with the structure
of an Abelian group.
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This structure is exactly what we want to capture with of abelian categories. It will turn out that
abelian categories are the most general (in a sense) place where we can do Homological Algebra. We begin
by introducing new category theory definitions.

Definition. A preadditive category if every hom(A,B) has the structure of an abelian group (as outlined
above), where the composition of morphisms is bilinear: if φ ∈ hom(A,B), f, g ∈ hom(B,C) and ψ ∈
hom(C,D), then both:

(f + g) ◦ φ = f ◦ φ+ g ◦ φ; and

ψ ◦ (f + g) = φ ◦ f + ψ ◦ g.

Now we need additional structure:

Definition. An initial object in a category C is an object I such that for every object A, there exists a
unique morphism φ ∈ hom(I,A). Similarly, a terminal object is is an object T such that for every object
A, there exists a unique morphism φ ∈ hom(A, T ). A zero object is any object that is both an initial and
a zero object.

Example. In Gp and Ab the trivial group is a zero object. Set has ∅ as an initial object, and singletons
{x} as terminal objects, so there is no zero object in Set

Definition. A zero morphism for objects A,B and zero object Z is a morphism 0A,B,Z ∈ hom(A,B) such
that 0A,B,Z = φ◦ψ where ψ ∈ hom(A,Z) and φ ∈ hom(Z,B). Since ψ and φ are unique, the zero morphism
through Z is unique too.

Example. The trivial homomorphism is a zero morphism in Ab through the zero object {0}.

Proposition 4.2.1. A zero morphism between A and B is independent of the choice of zero object.

Proof. Take two zero objects Z,Z ′ in C. Define φ, ψ as above and φ′, ψ′ as the unique morphisms corre-
sponding instead to Z ′. Also take ϕ as the unique morphism in hom(Z,Z ′). Then by the uniqueness of these
homomorphisms, we have that ψ′ = ϕ ◦ ψ and φ = φ′ ◦ ϕ. Thus by the associativity:

0A,B,Z = φ ◦ ψ = (φ′ ◦ ϕ) ◦ ψ = φ′ ◦ (ϕ ◦ ψ) = φ′ ◦ ψ′ = 0A,B,Z′

Proposition 4.2.2. Composition with a zero morphism is another zero morphism.

Proof. Exercise.

Definition. If A,B are objects, a product of A and B, denoted A × B, is an object paired with mor-
phism π1 ∈ hom(A × B,A) and φ2 ∈ hom(A × B,B) such that if C is another object,f1 ∈ hom(C,A) and
f2 ∈ hom(C,B) then there exists a unique f ∈ hom(C,A×B) such that f1 = π1 ◦ f and f2 = π2 ◦ f .

A coproduct of A and B, denoted A
∐
B (or sometimes in abelian categories, A ⊕ B) is the dual of a

product: i.e., the same definition as above with the arrows reversed.

Example. In Gp , the direct product along with the component wise projections forms the product. Similarly

Definition. An additive category is a preadditive category that also:

(i) has at least one zero object; and
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(ii) every finite set of objects {Xi} has both a product and coproduct.

Definition. a kernel of f ∈ hom(A,B) is a pair of an object K and a morphsim k ∈ hom(K,A) such
that f ◦ k is a zero morphism. A cokernel of f ∈ hom(A,B) is a pair of an object C and a morphism
c ∈ hom(B,C) such that c ◦ f is the zero morphism.

Example. Every morphism φ ∈ hom(A,B) in Gp has a kernel, namely kerφ ⊆ A. The morphism is then
just inclusion ι : kerφ→ A. We also know that imφ ≤ B. Let N be the smallest normal subgroup of B that
contains imφ. Then the cokernel of f is B/N with morphism x 7→ xN . In Ab this is just B/imφ as every
subgroup is normal.

Definition. A pre-abelian category is an additive category where every morphism has both a kernel and
cokernel.

Definition. A monomorphism is normal if it is the kernel of some morphism. An epimorphism is normal
if it is the cokernel of some morphism.

Definition. An abelian category is a preabelian category where every monomorphism and epimorphism
are normal.

Example. Ab, R-mod. and Vect are all abelian categories.

We now wish to characterise abelian categories.

Definition. An additive functor F : A → B is a functor for which the induced maps homA(a, a′) →
homB(Fa, Fa′) are homomorphisms of abelian groups. F is called a full embedding if F is injective on
objects and the induced homomorphisms (on the hom groups) are bijections for every pair of objects.

Theorem 4.2.3. Let A be a small abelian category. Then there exist a ring R and a full exact embedding
F : A → R-mod.

We now establish homological algebra in our abelian categories.

Definition. Define cocomplexes as in R-mod but where each Ci is an object rather than a module
specifically, and boundary maps dn ∈ hom(Cn, Cn+1). Define ιn : ker dn → Cn as the natural embedding.
By the universal property there exists a unique an−1 such that ιn ◦ an−1 = dn−1. Define cohomologies as
Hn(C) = coker(an−1).

Example. See that this definition agrees with the prior definition in R-mod.

Proposition 4.2.4. If C is an abelian category, then define C(C) as the category of complexes in C. C(C)
is an abelian category.

Now see that any chain map f : X → Y in C(C) induces a map Hn(f) : Hn(X) → Hn(Y ). (e.g., in
R-mod, the map is given by x+ Im dn−1 7→ f(x) + Im δn−1). Thus Hn is a functor from C(C) to C.

4.3 Derived functors

4.4 Sheaf cohomology

4.5 Derived categories
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Chapter 5

Spectral Sequences

5.1 Motivation

5.2 Serre spectral sequence

5.3 Grothendieck spectral sequence
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