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Introduction

Differential topology, like differential geometry, is the study of smooth (or ‘dif-
ferential’) manifolds. There are several equivalent versions of the definition: a
common one is the existence of local charts mapping open sets in the mani-
fold Mm to open sets in Rm, with the requirement that coordinate changes are
smooth, i.e. infinitely differentiable.
If M and N are smooth manifolds, a map f : M → N is called smooth if

its expressions by the local coordinate systems are smooth. This leads to the
concept of smooth embedding. If f : M → N and g : N → M are smooth and
inverse to each other, they are called diffeomorphisms: we can then regard M
and N as copies of the same manifold. If f and g are merely continuous and
inverse to each other, they are homeomorphisms. Thus homeomorphism is a
cruder means of classification than diffeomorphism.
The notion of smooth manifold gains in concreteness from the theorem

of Whitney that any smooth manifold Mm may be embedded smoothly in
Euclidean space Rn for any n ≥ 2m+ 1, and so may be regarded as a smooth
submanifold of Rn, locally defined by the vanishing of (n− m) smooth func-
tions with linearly independent differentials. An important example is the unit
sphere Sn−1 in Rn. The disc Dn bounded by Sn−1 is an example of the slightly
more general notion of manifold with boundary.
Whitney’s result is more precise: it states that (ifM is compact) embeddings

are dense in the space of all maps f : Mm → Rn, suitably topologised, pro-
vided n ≥ 2m+ 1, and more generally the same holds for mapsMm → Nn for
any manifold N of dimension n. Other ‘general position’ results include the
fact that if m > p+ q, a map f : Pp → Mm will in general avoid any union of
submanifolds of M of dimension ≤ q. These results can be deduced from the
general transversality theorem, which also applies to permit detailed study of
the local forms of singularities of smooth maps.

1
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2 Introduction

One of the ultimate aims of differential topology is the classification up to
diffeomorphism of (say, compact) smooth manifolds, and while this is algorith-
mically impossible in dimensions ≥ 4 on account of the corresponding result
for finitely presented groups, we can perform it in some cases of interest. The
technique is to reduce first to a problem in homotopy theory, and solve that
using algebraic techniques. A basic requirement is a reasonably intrinsic way
to describe manifolds: this is provided by a handle presentation.
Another central question is the possibility or otherwise of finding an embed-

ding of a given manifoldV v in a given manifoldMm of larger dimension. Whit-
ney himself found a key technique in the first tricky case m = 2v , and his idea
was extended to general results in a range, roughly m > 3

2v .
Classification results are accompanied by theorems giving methods of con-

structing manifolds: here we prescribe the homotopy type (which must satisfy
Poincaré duality) and further ‘normal’ structure, apply transversality to con-
struct something, and then endeavour to perform surgery to obtain the desired
result.
Classification up to diffeomorphism is very fine, and only available in a

few cases. The equivalence relation given by cobordism is much cruder, but
is generally applicable and computable. Extensive calculations are available,
and indeed through these, differential topology feeds back as a tool in pure
homotopy theory.
Although the foundations have much in common with differential geometry,

we approached the subject from a background in algebraic topology, and this
book is written from that viewpoint. The study of differential topology stands
between algebraic geometry and combinatorial topology. Like algebraic geom-
etry, it allows the use of algebra in making local calculations, but it lacks rigid-
ity: we can make a perturbation near a point without affecting what happens
far away. While the classification results are close to those for combinatorial
manifolds, the differential structure gives access to a rich source of techniques.
While the notion of differentiable manifold had gradually evolved over a

century, differential topology as a subject was to a large extent begun by Whit-
ney, with a major paper [175] in 1936 which, as well as clarifying the notion of
‘differentiable manifold’, established several foundational results. He obtained
further important results in [176] and [177]. Spectacular new ideas were intro-
duced in 1954 by Thom [150] on cobordism and in 1956 by Milnor [92] on
differential structures on S7. From then on, the pace of development was rapid,
with contributions by numerous mathematicians. The author personally was
inspired by lectures and writings of Milnor.
In a somewhat separate development, there was great progress in studying

group actions. The solution of Hilbert’s fifth problem [106], while independent
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Introduction 3

of the study of smooth actions, gave impetus to the whole area. Major results
were established by Montgomery, Mostow, and others in papers (for example,
[104], [111], [112], [105]) in the 1950s. The publication of the seminar notes
[20] was a landmark. The paper [119] extended key results to the case of proper
actions. By 1960 this topic had been absorbed in the mainstream of geometric
topology.
Many of the central problems in the topology of manifolds had been solved

(or reduced to problems in homotopy theory) by 1970: in §7.8 we describe
how to approach diffeomorphism classification and give some examples, and
in Theorem 6.4.8 we give a result dealing with smooth embeddings. As a result,
the focus of current research gradually shifted elsewhere.
The original draft of this book was written at a time when differential topol-

ogy was new and exciting, and there were no books on the topic. While there
now exist introductory accounts and books on particular areas of differential
topology, there does not seem to be any other that does justice to the breadth of
the subject.
This book falls roughly in two halves: introductory chapters with general

techniques, then four chapters, each including a major result. There are also
two appendices.
We begin in Chapter 1 with the definitions of smooth manifold, manifold

with boundary, and tangent bundle. We give equivalent formulations of the def-
inition, and go on to techniques for piecing together local constructions, which
are fundamental for much that follows.
It is often convenient to regard a manifold as formed by fitting pieces

together, and we deal with several aspects of this process in Chapter 2. We
introduce and establish the main results about tubular neighbourhoods, which
form the main pieces. We give the necessary details about cutting and glueing,
including a discussion of corners and how to straighten them.
Chapter 3 opens with basic definitions of Lie groups and of group actions,

and some basic properties. The key to the geometric description of the actions
is the notion of slice. The existence of slices was established in [104] for actions
of compact groups, and was extended to proper group actions by Palais [119].
Slices lead to local models for actions, which allow us to extend many of the
results of the first chapters of this book to the case of group actions: lead-
ing notably to existence of invariant metrics and (with some necessary restric-
tions) equivariant embeddings in Euclidean space.We go on to define and study
the stratification of a proper G-manifold by orbit types, which to some extent
reduces the classification problem for actions to problems not involving the
group, and illustrate by discussing the case when there are at most two orbit
types.
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4 Introduction

In Chapter 4 we treat ‘general position’ arguments, which are of frequent
use in constructions. We can begin with the naive idea that one can push a k-
dimensional subset and a v-dimensional one apart in a manifold of dimension
n > k + v . However – and this is one area where differential topology is much
richer than piecewise linear or ‘pure’ topology – we can apply the same basic
idea at the level of jets to study singularities. The key underlying result is the
transversality theorem. This whole subject has developed enormously, particu-
larly after the work of JohnMather in the sequence of papers [88].We have tried
to steer a middle course, keeping to fairly direct arguments, obtaining details
on the results wanted elsewhere in this book, and giving a brief introduction to
the study of singularities.
IfM is a manifold with boundary ∂M and f : Sr−1 × Dm−r → ∂M an embed-

ding, the union M ∪ f hr of M and Dr × Dm−r, with the copies of Sr−1 × Dm−r

identified by f , is said to be obtained from M by attaching an r-handle (some
care is necessary at the corner Sr−1 × Sm−r−1). A handle can be studied via
the embedding of the sphere f | (Sr−1 × {0}), and extending to a tubular neigh-
bourhood. Any compact manifold admits a decomposition into finitely many
handles. In Chapter 5 we develop handle theory up to the central result, the
h-cobordism theorem. Here we have taken the approach of forming a mani-
fold by glueing pieces together, rather than manipulating a function on a fixed
manifold: the latter is in some ways more elegant, but the former seems more
perspicuous. The h-cobordism theorem is the key result enabling classification
of manifolds up to diffeomorphism, and we illustrate with a few examples of
explicit diffeomorphism classifications. The absence of any such result for 4-
manifoldsmeans that no such classifications exist here. In the detailed treatment
we restrict to the simply connected case, but describe briefly in a final section
how to modify the theorem for the general case.
In Chapter 6, on immersions and embeddings, we include an account of

Smale–Hirsch theory, which gives a reduction of the classification of immer-
sions to a homotopy problem. We then describe in full Whitney’s method of
removing self-intersections of an n-manifold in a (2n)-manifold, and Hae-
fliger’s extension of the method to obtain a full theory of embeddings and
immersions in the metastable range, giving (when they apply) necessary and
sufficient conditions for a given map to be homotopic to an embedding (or
immersion) or for two homotopic embeddings to be diffeotopic.
Next, Chapter 7 gives a full account of the theory of surgery (in the sim-

ply connected case), with a number of applications. This restriction allows a
much simpler presentation than in my book [167], closer to the original papers,
but the approach is the same. Sections are included on the relevant pieces of
quadratic algebra, and on Poincaré complexes and maps of degree 1. A section
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Introduction 5

on homotopy theory of Poincaré complexes includes a discussion of Spivak’s
theorem and its uses, and a brief account of Brown’s treatment of the Kervaire
invariant.
Finally, in Chapter 8, we tackle the topic of cobordism, describe the main

geometrical ideas, and show how to build up cobordism groups, rings, and bor-
dism as a homology theory. We also give accounts of calculations of unori-
ented, unitary, oriented, and (perhaps rather ambitiously) special unitary bor-
dism. Here we suppress many details which would require an extensive knowl-
edge of homotopy theory; even so, much more is demanded of the reader
than in earlier chapters. A final section ties together much of the preceding
with an account of homotopy spheres and their embedding in the standard
sphere.
Each chapter opens with a summary of its contents and concludes with a

‘Notes’ section consisting of historical remarks, key references, and notes on
additional developments.
There are two appendices. Appendix A opens in §A.1 and §A.2 with a sum-

mary of useful results from analytic topology; §A.3 gives the results we need
about proper group actions; and §A.4 offers a treatment of the requisite results
on the topology of mapping spaces.
I attempt a bird’s eye view of homotopy theory in Appendix B: here I aim to

include the necessary definitions with (I hope) enough connecting material to
make them intelligible, but cannot attempt a full exposition. In §B.1, I give basic
terminology and describe the general framework for homotopy notions. The
next section §B.2 gives definitions and basic properties of (mostly classical) Lie
groups and classifying spaces. In §B.3, I list a number of calculations including
those to which reference is made in the main text. Finally, §B.4 gives very brief
introductions to skeletons, connected covers, Eilenberg–MacLane spaces and
cohomology operations, and spectra.
The focus of this book is on the geometric techniques required for the study

of the topology of smooth manifolds. One important tool I do not use is the
calculus of differential forms, and its application (de Rham) to calculating real
cohomology: for an account in this spirit I refer to the book [23] by Bott and
Tu. I also eschew the technical details required for the comparisons of different
kinds of structure: differential vs. combinatorial,C∞ vs.Cr or vs. real analytic:
these questions are not considered here, though I do pay some attention to com-
paring smooth and topological structures. Although I introduce, and use, Rie-
mannian metrics, I am not concerned with properties of the metric, so feel free
to choose a convenient metric when required. Symplectic structures are outside
the scope of this book: the methods devised in the last 30 years for their study
are of a different nature to those studied here.
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6 Introduction

In keeping with the original setting, I assume elementary analysis, but quote
(with references) some results from analysis that are needed. I will take basic
topological ideas and results as understood (there is a very brief account
in §A.1).
I also assume a certain background in algebraic topology, though this is

not needed in Chapters 1–4, and in Chapter 5 only basic homology theory is
used. All chapters are to a large extent independent (in particular, Chapter 6 is
independent of Chapter 5, so the forward references do not give problems); in
general they are ordered so that later chapters use an increasing knowledge of
homotopy theory.
The first draft of most of the book (Chapters 1–5, 7) was a series of dupli-

cated notes based on seminars in the early 1960s. Chapters 1, 2, and 4 were
originally based on a seminar held in Cambridge 1960–61. For the original
notes, it seemed desirable to elaborate the foundations considerably beyond
the point from which the lectures started, and the notes expanded accordingly.
For these, I am indebted to all the Cambridge topology research students of the
time for participating in the seminar, in particular to P. Baxandall, and to Steve
Gersten for considerable assistance in writing up. For Chapters 1 and 2 this
book remains fairly close to the original notes. However for Chapter 4, the area
has developed enormously in the interim, particularly after Mather’s work. So I
have rewritten most; in doing so I have tried to steer a middle course, keeping to
fairly direct arguments, but obtaining details on the results wanted elsewhere.
The original notes for Chapter 3 were issued a few years later, with thanks

to Peter Whitham. They were an attempt to pull together results from several
sources to get a coherent theory. The main source was the volume [20]. This
focussed on topological (rather than smooth) actions; indeed its first section
was on homology manifolds. Thus much of the emphasis on my notes was also
on questions of analytic topology. The account presented in this chapter is thus
completely rewritten: not only does it go well beyond the content of my old
notes, but has a very different emphasis.
Chapter 5 on handle decompositions, leading up to the h-cobordism theorem,

is based on lectures given and seminars held in Oxford (1962) and Cambridge
(1964). Thanks are due to numbers of the then research students for their par-
ticipation; in particular to the late Charles Thomas and to Denis Barden. I am
indebted to Shu Otsuka for rendering the original notes of these chapters into
LATEX, and to Iain Rendall for drawing the diagrams.

The remainder of the book has been newly written. Chapter 6 follows the
plan I had formed back in the 1960s. Chapter 7, although much simpler in
detail, was informed by the same philosophy as my book [167]. The first part
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Introduction 7

of Chapter 8 is based on my old seminar notes ‘Cobordism: geometric theory’
issued in Liverpool about 1965, but I felt that to give the chapter substance it
was also necessary to include some significant calculations.
Thanks are due to Andrew Ranicki for encouraging me to turn the old notes

into a book: a time-consuming, but agreeable task.
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1

Foundations

If we start from the notions of curve – of dimension 1, locally like the line R

of real numbers, and surface – of dimension 2, locally like the plane R2, the
general term is ‘manifold’. We begin with perhaps the most elegant form of the
definition, but will prove it equivalent to other versions.
We say that a function F defined on Rn (or on an open subset thereof) is

smooth if it admits continuous partial derivatives of all orders. We use the term
‘smooth’ in this sense throughout.
In the opening section, we begin with the definition of smooth manifold,

introduce the bump function, and proceed to the construction of partitions of
unity. We then discuss connectedness.
Probably the most important property distinguishing smooth from topologi-

cal manifolds is the existence of tangent vectors. Again we begin with a formal
definition, then give alternative ways to view the concept. We introduce smooth
maps, and discuss concepts of submanifold and embedding.
The tangent vectors to a smooth manifold form a vector bundle, so we next

introduce the notions of Lie group and of fibre bundle, and establish the exis-
tence of a Riemannian structure on any smooth manifold.
An essential tool in the study of smooth manifolds is the integration of

smooth vector fields. This becomes effective when combined with the use of
partitions of unity to construct vector fields. We show how to reformulate the
basic theorem asserting the existence solutions of ordinary differential equa-
tions in geometrical terms to yield flows on smooth manifolds.
Finally we extend the concept of smooth manifold to that of manifold

with boundary, and establish the existence of a collar neighbourhood of the
boundary.

8
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1.1 Smooth manifolds 9

1.1 Smooth manifolds

A smooth m-manifold is a Hausdorff topological space Mm with a family
F = FM of continuous real-valued functions defined on M and satisfying the
following conditions:
(M1) F is local. If f : M → R is such that each point ofM has a neighbour-

hood in which f agrees with a function of F , then f ∈ F .
(M2) F is differentiably closed. If f1, . . . , fk ∈ F , and F is a smooth func-

tion on Rn, then F ( f1, . . . , fk ) ∈ F .
(M3) (M,F ) is locally Euclidean. For each point P ∈ M, there are m func-

tions f1, . . . , fm ∈ F such that Q 	→ ( f1(Q), . . . , fm(Q)) gives a homeomor-
phism of a neighbourhood U of P in M onto an open subset V of Rm. Every
function f ∈ F coincides onU with F ( f1, . . . , fm), where F is a smooth func-
tion on V .
(M4) M is a countable union of compact subsets.
We call functions f ∈ F smooth functions of M, and the mapping defined

in (M3) (or, by abuse of language, the set U) a coordinate neighbourhood of
P. It follows from (M2) that sums, products, and constant multiples of smooth
functions are also smooth.
The integer m is called the dimension of the manifold M.
We now give some simple examples of smooth manifolds.
The empty set is a smoothm-manifold (the definition is vacuously satisfied).
Euclidean space Rm, with smooth functions taken in the ordinary sense, is

a smooth m-manifold. Condition (M1) is trivial; (M2) follows from the rule
for differentiating a composite (a function of a function); for (M3), since the
coordinate functions are smooth, we take the identity map; and Rm is the union
of the compact subsets given by ‖x‖ ≤ n.
The disjoint union of a finite or countable set of smooth m-manifolds is

another. Define a function to be smooth if the induced function on each part
is so; the conditions are then all trivial.
Let O be an open subset of Rm. Write GO for the restriction to O of functions

ofFRm ;FO for the set of functions locally agreeing with a function of GO. Then
sinceO is open inRm, (O, GO) satisfies conditions (M1), (M3); (O,FO) satisfies
them and also condition (M2).
For each positive integer i, consider the sets Dm

x (
√
m/i)1 such that all the

coordinates of ix are integers and which are contained in O. There are only
countablymany of these. For any y ∈ O, some D̊m

y (δ) ⊂ O. Choose i > 2
√
m/δ.

Then some x with ix ∈ Zm is within a distance
√
m/i of y, and

y ∈ Dm
x (
√
m/i) ⊂ Dm

y (2
√
m/i) ⊂ D̊m

y (δ) ⊂ O.

1 For this notation and others, see the Index of Notations on p. 340.
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10 Foundations

Thus the chosen sets coverM, so (M4) also holds, and O is a smooth manifold.
More generally, let M be any smooth m-manifold and O be an open subset

ofM. Again write GO for the restriction to O of functions of FM; FO for the set
of functions locally agreeing with a function of GO. We see as above that (M1)-
(M3) hold. Now M is covered by coordinate charts, so any compact subset is
covered by finitely many; hence M is covered by countably many charts Uα .
Thus O is the union of countably many sets O ∩Uα , each of which can be
regarded as an open set in Euclidean space, so by the preceding paragraph is
a countable union of compact sets. Thus (M4) also holds, and the structure of
smooth m-manifold on M induces such a structure on O. We call O an open
submanifold of M.

LetMm1
1 ,Mm2

2 be smooth manifolds. Then the topological product Nm1+m2 =
Mm1

1 ×Mm2
2 has a natural structure of smooth manifold. For let π1, π2 denote

projections on the factors. Then for f1 ∈ FM1 , f2 ∈ FM2 , we define f1 ◦ π1,
f2 ◦ π2 to belong to FN ; any smooth functions of a finite set of these; and any
function locally agreeing with one of these functions. This definition ensures
that conditions (M1) and (M2) are satisfied. But so is (M3), for it now follows
that if ϕ1 : U1 → Rm1 , ϕ2 : U2 → Rm2 are coordinate neighbourhoods in M1

andM2, then ϕ1 × ϕ2 : U1 ×U2 → Rm1+m2 can be taken as a coordinate neigh-
bourhood in M1 ×M2. And (M4) follows since (see §A.2) the product of two
compact sets is compact.
The first tool for working with our definition is a bump function. Define first

a function B1 on R by:

B1(x) =
⎧⎨⎩exp

(
1

(x(x−1))
)

if 0 ≤ x ≤ 1,

0 otherwise.

Then B1 is smooth, non-negative, and differs from zero when 0 < x < 1. The
bump function Bp(x) is now given by

Bp(x) =
∫ x

0
B1(t )dt

/∫ 1

0
B1(t )dt.

Since B1(x) is smooth, so is Bp(x). Also

Bp(x) = 0 if x ≤ 0,

0 < Bp(x) < 1 if 0 < x < 1, and

Bp(x) = 1 if x ≥ 1.

The bump function is illustrated in Figure 1.1. Although we have given
an explicit construction, the above are the essential properties of the bump
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1.1 Smooth manifolds 11

10

1

Figure 1.1 The bump function

function. We also note that since B1(1− x) = B1(x) we have Bp(1− x) =
1− Bp(x); we also have Bp′(x) > 0 if 0 < x < 1. We now have

Proposition 1.1.1 Let ϕ : U → V be a coordinate neighbourhood of P ∈ M,
and let F be a smooth function on V . Then there is a function f ∈ F , agreeing
with F ◦ ϕ in a neighbourhood of P, and zero outside U.

Proof Without loss of generality, let ϕ(P) = 0. Since V is a neighbourhood of
0, we can find r > 0 with D̊m(3r) ⊂ V . Define �(x) = Bp(2− r−1‖x‖). Then
�(x) = 1 for ‖x‖ ≤ r, �(x) = 0 for ‖x‖ ≥ 2r, and � is a smooth function on
Rm, hence also on V , since Bp is smooth, and ‖x‖ is smooth except at 0. Then
F� is also smooth on V , and F (x)�(x) = 0 if ‖x‖ ≥ 2r. We define a function
f on M by:

f (P) =
{
F (ϕ(P))�(ϕ(P)) if P ∈ M
0 otherwise.

Then, by (M2), f ∈ F , and f agrees with f ◦ ϕ in ϕ−1(Dm(r)).

Another commonly given version of the definition of manifold is as fol-
lows. For a Hausdorff topological space M, a chart is a homeomorphism of
an open subset U of M onto an open subset V of Rm. A collection of charts
{ϕα : Uα → Vα} is an atlas if the open setsUα cover M. For any pair of charts,
set Vα,β := ϕα (Uα ∩Uβ ); then there is a homeomorphism ψα,β : Vα,β → Vβ,α
between open sets of Euclidean space induced by ϕβ ◦ ϕ−1α . Then we say that
the atlas is smooth if each ψα,β is smooth.

Lemma 1.1.2 M is a (smooth) manifold if and only if it has a (smooth) atlas
with countably many charts.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.002
https:/www.cambridge.org/core


12 Foundations

Proof If (M,F ) satisfies (M1)–(M3), the coordinate neighbourhoods form a
smooth atlas. Each compact subset ofM is covered by open charts, hence by a
finite subset; it follows from (M4) that a countable number of charts cover M.

Conversely, given a smooth atlas, we defineF by letting f ∈ F if, for each α,
f ◦ ϕ−1α is a smooth function on Vα . It is immediate that this satisfies (M1) and
(M2). As to (M3), for eachP ∈ M, chooseαwithP ∈ Uα; then the functions xi ◦
ϕ−1α are defined near P and, by the proposition, there are functions fi, smooth
on Uα , vanishing outside a neighbourhood of P, and agreeing with these on
a smaller neighbourhood. Extend fi to a function on M vanishing outside Uα .
Then fi ∈ F , and ( f1, . . . , fm) have the desired property. Now (M4) follows
since each coordinate neighbourhood is a countable union of compact sets.

Using the notion of atlas, we now give further important examples of smooth
manifolds. If V is a vector space over R, with O the origin, the projective
space P(V ) is the quotient of V \ {O} by the equivalence relation v ∼ kv for
0 �= k ∈ R. For (x0, . . . , xn) �= 0 ∈ Rn+1 we write (x0 : . . . : xn) for its image in
Pn(R) := P(Rn+1) (since it is given by the ratios of the xi). We define an atlas
for Pn(R) by taking open setsUi given by xi �= 0 and defining ϕi : Ui → Rn by
ϕi(x0 : . . . : xn) := (x0x−1i , . . . , xnx

−1
i ) (with the ith term xix

−1
i omitted). The

coordinate transformations are multiplications by xix−1j on each coordinate, so
are smooth.We use the same notations withC in place ofR, giving the complex
projective space Pn(C).
For the next tools we will need condition (M4), and begin with a general

result. First observe that any manifold is locally Euclidean, and hence locally
compact.

Proposition 1.1.3 Suppose that X is locally compact and a countable union of
compact subsets. Then we can find compact subsets Cn and open subsets Bn+ 1

2

such that X =⋃n Cn and for all n ≥ 1, Cn ⊂ Bn+ 1
2
⊂ Cn+1.

Proof Suppose X the union of compact sets An. DefineC1 := A1. Now suppose
inductively Cn defined. Since X is locally compact, each x ∈ (Cn ∪ An+1) has
an open neighbourhood Ux with compact closure. These open sets cover the
compact setCn ∪ An+1, so we can choose finitely many of them which together
cover this set. Define Bn+ 1

2
to be the union of these open sets, and Cn+1 to be

its closure: this is a finite union of compact sets, so is compact. Finally since
X =⋃n An and An ⊆ Cn, X =⋃n Cn.

Theorem 1.1.4 For any manifold Mm, we can find a set of coordinate neigh-
bourhoods ϕα : Uα → D̊m(3) for Mm such that
(i) The sets ϕ−1α (D̊m) cover M.
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1.1 Smooth manifolds 13

(ii) Each P ∈ M has a neighbourhood in M which meets only a finite number
of sets Uα , i.e., the Uα are locally finite.
Moreover, the covering by theUα may be chosen to refine any given covering

of M.

Proof Choose subsets Cn and Bn+ 1
2
of X as in Proposition 1.1.3. Any x ∈ X

belongs to some Cn \Cn−1, so the open set Bn+ 1
2
\Cn−1 is a neighbourhood

of x: we may choose a coordinate neighbourhoodUα = ϕ−1α (D̊m(3)) of x inside
this, and also contained in one of the open sets of the given covering. The neigh-
bourhoods ϕ−1α (D̊m) cover the compact set Cn+1 \ Bn− 1

2
, so we may choose a

finite subcovering. The collection of these for all n covers M and refines the
given open covering.
Now any y ∈ X has Bm+ 1

2
\Cm−1 as a neighbourhood for some m, and this

meets Bn+ 1
2
\Cn−1 only if |m− n| ≤ 1, hence meets only finitely many of the

Uα .

The support of a continuous functionψ onM is the set {x ∈ M |ψ (x) �= 0}. A
set of non-negative continuous functions {ψα} onM is called a partition of unity
if their supports Uα form a locally finite covering of M and

∑
α ψα (P) = 1.

(Local finiteness is not strictly necessary, but ensures convergence and conti-
nuity of the infinite sum.) If we are given an open covering {Uβ} of M, the
partition {ψα} of unity is said to be subordinate to the covering if the support
of each ψα is contained in some setUβ of the covering.
If the ψα are smooth, we have a smooth partition of unity. These will be

key to numerous constructions. It will be useful if we can say that if fα is a
smooth function defined on Uα , then the function equal to fαψα on Uα and
zero elsewhere is smooth on M. This holds if moreover the support of ψα is
contained in a closed set in the interior ofUα . If this holds for each α, we will
say that the partition {ψα} of unity is strictly subordinate to the covering.

Theorem 1.1.5 For any open covering V of a smooth manifold M, there is a
smooth partition of unity strictly subordinate to it.

Proof By Theorem 1.1.4 there is a locally finite refinement of V by a set of
coordinate neighbourhoods ϕα : Uα → D̊m(3) such that the ϕ−1α (D̊m) coverM.
For each α, set

�α (P) =
{
Bp(2− ‖x‖) if P ∈ Uα, φα (P) = x,

0 otherwise.

As in the proof of Proposition 1.1.1, �α (P) is smooth. The above properties
imply that for each P ∈ M, there is an α with �α (P) = 1, and that each P ∈ M
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14 Foundations

has a neighbourhood on which all but a finite number of functions �α van-
ish. Hence the function 
(P) =∑α �α (P) can be defined, and is everywhere
smooth. Thus the functions ψα (P) = �α (P)/
(P) give a partition of unity.
The support of �α , hence also that of ψα , is ϕ−1α (Dm(2)), which is in the

interior of Uα , so the partition of unity is strictly subordinate to the given
covering.

The next result is of the same type, but needs more work. It will be needed for
Theorem 4.6.1 and Lemma 4.6.2. A slight modification of the argument gives
a corresponding result for subsets of Cartesian powers Mr with r > 2.

Lemma 1.1.6 (i) There is a countable collection of pairs of disjoint compact
sets (Kα,K′

α ) in M such that for any P,P′ ∈ M with P �= P′ there exists α with
P ∈ Kα and P′ ∈ K′

α .
(ii) Let U be an open neighbourhood of the diagonal�(M) in M ×M. Then

we can find pairs of disjoint compact sets (Lβ,L′β ) in M such that for any
(P,P′) ∈ (M ×M \U ) there exists β with P ∈ Lβ and P′ ∈ L′β and moreover
such that {Lβ,L′β} is locally finite.

Proof (i) Let δα be a partition of unity constructed as in Theorem 1.1.4. Then
the closureKα of the support of δα is compact. Given P, P′ ∈ M, either (a) there
exists α with P,P′ ∈ Kα or (b) we can choose P ∈ Kα \ Kα′ , P′ ∈ Kα′ \ Kα .
In case (a), the points P,P′ lie in the same coordinate patch. Here we have a

problem in Euclidean space, and the disjoint pairs of D̊n
x (
√
m/i) (where ix has

integer coordinates) give what we want.
To deal with (b), define compact sets by Kα,n := {P ∈ M | δα (P) ≥ 1

n } for
each α and n ≥ 2. Then if n > δα (P)−1 and similarly for n′, P and P′ lie in the
disjoint sets Kα,n, Kα′,n′ .
(ii) First choose a locally finite cover {Cγ } of M by compact sets – for

example, the setsCn+1 \ Bn− 1
2
of Proposition 1.1.3. For (P,P′) ∈ (M ×M \U ),

choose sets of this cover with P ∈ Cγ , P′ ∈ Cγ ′ . If Cγ ,Cγ ′ are disjoint, we can
choose these as our pair (Lβ,L′β ). If not, K = Cγ ∪Cγ ′ is compact, hence so
is K × K \U ; thus it is covered by finitely many of the pairs Kα × K′

α , and we
choose these as our (Lβ,L′β ).
Since eachCγ meets only finitely many other such sets, it meets only finitely

many of the chosen Lβ and L′β .

We return to partitions of unity, which are an essential tool in numerous
proofs. As first applications, we can approximate continuous functions by
smooth functions.
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1.1 Smooth manifolds 15

Proposition 1.1.7 (i) Let f be a continuous positive function on M. Then we
can find a smooth function g, with 0 < g(P) < f (P) for all P ∈ M.
(ii) For any continuous function f on M and any ε > 0 there exists a smooth

function h on M with |h(P)− f (P)| < ε for every P ∈ M.
(iii) If f : M → R is continuous, ε > 0, and F is a closed subset of M such

that f is smooth on some open set U ⊃ F, we can find h such that also h = f
on a neighbourhood of F.

Proof (i) Let {ψα} be a smooth partition of unity, and choose δα > 0 less than
the infimum of f on the support of ψα (since the support has compact clo-
sure, this infimum cannot be zero). Then g :=∑α (δαψα ) has g(P) > 0 since
ψα (P) > 0 for some α; on the other hand, for each α with ψα (P) > 0 we have
δα < f (P), so g(P) <

∑
ψα (P) f (P) = f (P).

(ii) The sets {P ∈ M | n < 2
ε
f (P) < n+ 2} form an open cover of M. By

Theorem 1.1.5, we may choose a smooth partition {(Uα, ψα )} of unity strictly
subordinate to this cover. For each α choose Pα ∈ Uα . Now the function h :=∑

α f (Pα )ψα is well defined and smooth. AnyQ ∈ M belongs toUα for a finite,
non-empty set of α, and as each such Uα is contained in one of the sets of the
original cover, f (Q) and f (Pα ) lie in the same interval of length ε. Thus we
have f (Q)− f (Pα ) < ε, so

|h(Q)− f (Q)| =
∣∣∣∣∣∑

α

( f (Pα )− f (Q))ψα

∣∣∣∣∣
≤
∑
α

|( f (Pα )− f (Q)|ψα

<
∑
α

εψα = ε.

(iii) As well as the open setsUα , which we may take disjoint from F , we now
choose open sets Uβ ⊂ U which cover U , and set fβ := f . Piecing together
using a partition of unity now yields the result.

This approximation technique is very useful. It is also flexible: we will show
in Proposition 2.3.4 that the target can be any smooth manifold.
Our next topic is connectedness of smooth manifolds. A smooth map α :

R → M is called a path inM. Two points P, Q inM are called connected in M
if there is a path in M whose image contains P and Q.

Lemma 1.1.8 Connectedness in M is an equivalence relation.

Proof By definition, the relation is symmetric. It is reflexive, since a con-
stant map is a path. To prove transitivity, first observe that if h : I → M is a
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16 Foundations

smooth path, the normalised path N(h) : R → M given by N(h)(t ) = h(Bp(t ))
is smooth. If now h : (I, 0, 1) → (M,P,Q) and k : (I, 0, 1) → (M,Q,R) are
smooth paths, a smooth path joining P to R is given by settingH(t ) = N(h)(2t )
for 0 ≤ t ≤ 1

2 and H(t ) = N(k)(2t − 1) for 1
2 ≤ t ≤ 1.

The equivalence classes are called the components of M.

Lemma 1.1.9 (i) Each equivalence class is open and closed in M.
(ii) A subset of M is open and closed if and only if it is a union of equivalence

classes.

Proof (i) If ϕ : U → V is a coordinate neighbourhood of P such thatV is con-
vex, every point of U can be joined to P using the path corresponding to the
straight line in V (suitably parametrised). Hence an equivalence class contains
a neighbourhood of each of its points, so is open.
Since each equivalence class is the complement of the union of the other

equivalence classes, it is closed inM.
(ii) Sufficiency follows by (i). For necessity, observe that since R is con-

nected, any path which meets an open and closed subset is contained in it, so
such a subset is saturated for the equivalence relation.

It follows thatM is connected in the usual sense if it only has one component.
We also see that for smooth manifolds, connection and connection by smooth
paths are equivalent. A component of M, being open, is an open submanifold;
and M is the disjoint union of all its components. Thus to study M, it suffices
to take the components separately; we shall frequently do this.

1.2 Smooth maps, tangent vectors, submanifolds

Let Mm, V v be smooth manifolds. A mapping ϕ : M → V is called smooth if
for each f ∈ FV , f ◦ ϕ ∈ FM .
In view of (M3) this is equivalent to the requirement that each transformation

of coordinates induced by ϕ between coordinate neighbourhoods in M and in
V be smooth in the usual sense. The above definition is more convenient: for
example, the following are immediate.
If ϕ1 : M1 → M2 and ϕ2 : M2 → M3 are smooth, then so is ϕ2 ◦ ϕ1 : M1 →

M3.
If O is an open submanifold of M, i : O ⊂ M is smooth.
A bijective correspondence ϕ : Mm → Vm between two smooth manifolds

is a diffeomorphism if both ϕ and ϕ−1 are smooth. Mm and Vm are called dif-
feomorphic.
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1.2 Smooth maps, tangent vectors, submanifolds 17

Thus a diffeomorphism is a bijective correspondence between the two mani-
folds under which smooth functions correspond: this is the equivalence relation
which classifies manifolds.
A tangent vector at a point P of a smooth manifoldM is a derivation on F to

R. In detail, a tangent vector at P ∈ M is a mapping ξ : F → Rwhich satisfies:

(i) if a1, a2 ∈ R, f1, f2 ∈ F, then ξ (a1 f1 + a2 f2) = a1ξ ( f1)+ a2ξ ( f2);
(1.2.1)

(ii) if f1, f2 ∈ F, then ξ ( f1 f2) = ξ ( f1) f2(P)+ f1(P)ξ ( f2). (1.2.2)

We next study the set of all tangent vectors toM. Since sums and real multiples
of tangent vectors at P are also tangent vectors at P, the tangent vectors to M
at P form a vector space: we call it the tangent space TPM toM at P.
If p : U → M is a smooth path (U open in R), with p(0) = P, the expression

ξ ( f ) = d
dt p( f (t ))|t=0 is defined, and the map ξ : F → R satisfies (i) and (ii),

so ξ ∈ TPM. We call ξ the tangent to the path. Thus tangent vectors correspond
to displacement along the manifold.
Let ϕ : U → V ⊂ Rm be a coordinate neighbourhood of P with ϕ(P) = 0.

Let x1, . . . , xm be coordinates in Rm. Then for each f ∈ F , F := f ◦ ϕ−1 is a
smooth function on V , so ∂

∂xi
( f ) := ∂F

∂xi

∣∣∣
0
is well defined. Then ∂

∂xi
is a tangent

vector at P: condition (i) is clear, and (ii) follows by the rule for differentiating
a product. We will prove that the ∂

∂xi
form a basis for TPM; first, however, we

need a lemma, which will be used again.

Lemma 1.2.3 Let f be a smooth function on an open convex subset V of Rm

containing 0, and let f (0) = 0. Then there exist further smooth functions fi
(1 ≤ i ≤ m) onV such that f (x) =∑m

1 xi fi(x). Moreover, if f is a smooth func-
tion of additional parameters a j, we may suppose that fi also are.

Proof We may write

f (x) = f (x)− f (0) =
∫ 1

0

∂ f (tx)

∂t
dt.

But ∂ f (tx)
∂t =∑m

1 xi
∂ f
∂xi

(tx). Substituting this gives f (x) =∑m
1 xi fi(x), where

fi(x) :=
∫ 1
0

∂ f
∂xi

(tx)dt. The last part also follows.

Theorem 1.2.4 The tangent vectors ∂
∂x1

, . . . , ∂
∂xm

form a basis for TPM.

Proof We first remark that a tangent vector is essentially local in nature: if
f = g in a neighbourhood U of P, and ξ is a tangent vector at P, then ξ ( f ) =
ξ (g). For by Proposition 1.1.1, we can find a function � on M, equal to 1 in
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18 Foundations

a neighbourhood of P, and zero outside U . Then � f = �g, and so f − g=
( f − g)(1−�). Thus

ξ ( f )− ξ (g) = ξ ( f − g) = ξ ( f − g)(1−�(P))+ ( f (P)

− g(P))ξ (1−�) = 0.

Hence it is sufficient to consider only functions defined and smooth inU , where
ϕ : U → V is a coordinate neighbourhood ofPwithV convex; it will be simpler
to speak directly of functions on V .
For any smooth function f on V , by Lemma 1.2.3, we can put

f (x) = f (0)+
∑

xi fi(x).

For any tangent vector ξ at P, then,

ξ ( f ) = ξ ( f (0))+
∑

ξ (xi fi)

= f (0)ξ (1)+
∑

ξ (xi) fi(0)+
∑

xi(0)ξ ( fi).

But ξ (1) = ξ (1 · 1) = 1 · ξ (1)+ ξ (1) · 1 = 2ξ (1), and so ξ (1) = 0. Thus

ξ ( f ) =
∑

ξ (xi) fi(0).

In particular

∂

∂x j
( f ) =

∑ ∂

∂x j
(xi) fi(0) =

∑
δi j fi(0) = f j(0).

Thus ξ ( f ) =∑ ξ (xi)
∂ f
∂xi
, and as this is true for all f , ξ =∑ ξ (xi) ∂

∂xi
. Hence the

∂
∂xi

span TPM. Since ∂
∂xi

(x j ) = δi j, they are linearly independent. Hence they
form a basis.

For example, we may identify the tangent space to Rm at any point a with
Rm itself, by identifying

∑
i ki∂/∂xi with the vector (k1, . . . , km). In particular,

TaR is identified with R.
Now let ϕ : Mm → V v be a smooth mapping, and let ϕ(P) = Q. The differ-

ential of ϕ at P, dϕP : TPM → TQV is defined by:

dϕP(ξ )( f ) = ξ ( f ◦ ϕ) for ξ ∈ TPM, f ∈ FV .

Since f , ϕ are smooth, so is f ◦ ϕ, so the right-hand side is defined. Then
dϕP(ξ ) is a derivation since ξ is. Clearly, dϕP is a linear mapping of TPM to
TQV .
If f ∈ FM , then f : Mm → R is a smooth mapping, so for any P ∈ M, we

have dfP : TPM → Tf (P)R = R. Since dfP is linear, it is an element of the dual
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1.2 Smooth maps, tangent vectors, submanifolds 19

vector space T∨P M to TPM. Now, if x1, . . . , xm are local coordinates at P, we
have

dxi(∂/∂x j ) = ∂xi/∂x j = δi j

so the dx j form the basis of T∨P M dual to the basis ∂/∂xi of TPM.

Theorem 1.2.5 (Inverse Function Theorem) Let f1, . . . , fn be smooth func-

tions defined in a neighbourhood of O ∈ Rn, and suppose
∣∣∣ ∂ fi∂x j

∣∣∣ �= 0 at O. Then

( f1, . . . , fn) defines a diffeomorphism of some neighbourhood U of O on an
open subset of Rn.

A proof can be found, for example, in [40, Theorem 10.2.1].
We can now give a simple test for coordinate neighbourhoods of a point.

Corollary 1.2.6 Let Mn be a smooth manifold; f1, . . . , fn be smooth functions
on M, P ∈ M. The fi may be taken as coordinate functions for a coordinate
neighbourhood of P if and only if the dfi form a basis for TPM∨.

Proof Let ϕ : U → Rn be a coordinate neighbourhood of P. Then the fi ◦ ϕ−1
are smooth functions on a neighbourhood of ϕ(P) ∈ Rn; by the theorem, they
define a diffeomorphism of some such neighbourhood if and only if the Jaco-
bian determinant | ∂ ( fi◦ϕ−1 )

∂x j
| �= 0 at ϕ(P). But the elements of this matrix are just

the coefficients in the dfi of basis elements dx j of TPM∨.

Theorem 1.2.7 (Implicit Function Theorem) Let f1, . . . , fr be smooth func-
tions defined in a neighbourhood of O ∈ Rr+s and suppose the determinant
formed by their partial derivatives with respect to x1, . . . , xr is non-zero at O.
Then there are r smooth functions g1, . . . , gr defined in a neighbourhood of
O ∈ Rs such that within some neighbourhood of O ∈ Rr+s, a point satisfies
fi(P) = 0 (1 ≤ i ≤ r) if and only if it satisfies

xi = gi(xr+1, . . . , xr+s) (1 ≤ i ≤ r).

Proof It follows from the hypothesis that the map defined by

( f1, . . . , fr, xr+1, . . . , xr+s)

on a neighbourhood of O satisfies the hypothesis of the Inverse Function The-
orem 1.2.5. Hence by that result, there is a smooth inverse map. We may
write this map as (h1, . . . , hr, xr+1, . . . , xr+s). The result now follows on setting
gi(xr+1, . . . , xr+s) := hi(0, . . . , 0, xr+1, . . . , xr+s).

A subsetMm of a smooth manifold Nn is a submanifold (of dimensionm and
codimension n− m) if, for each point P ∈ M, there is a coordinate neighbour-
hood ϕ : U → Rn of P in N such thatU ∩M = ϕ−1(Rm).

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.002
https:/www.cambridge.org/core


20 Foundations

By Corollary 1.2.6, an equivalent requirement is that in a neighbourhood
of each point of M, M is defined by the vanishing of (n− m) functions with
linearly independent differentials. For in the case above, M is defined by the
vanishing of the last (n− m) coordinate functions; while by that corollary, any
set of functions with linearly independent differentials can be taken as functions
of a coordinate neighbourhood. IfM is a closed subset of N, we call it a closed
submanifold.
A submanifold Mm of Nn has a natural induced structure of smooth m-

manifold: the existence of coordinate neighbourhoods for M and the fact that
overlaps are smooth follow immediately from the definition.

Lemma 1.2.8 If M is a closed submanifold of N,FM consists of the restrictions
to M of the functions of FN.

Proof We have an open covering of N consisting of charts Uα as in the defi-
nition of submanifold, and the subsetU0 := N \M. By Theorem 1.1.5 we can
pick a smooth partition of unity ({δα}, δ0) strictly subordinate to this covering.
For each f ∈ FM , the restriction f |M ∩Uα of f toUα extends to a smooth func-
tion fα onUα using projection in the chart. Now

∑
δα fα is a smooth extension

of f .

IfM is not closed, we can construct smooth functions onM that do not even
extend to continuous functions on N: the simplest example is N = R, M =
{x | x > 0} with f (x) = x−1.

Many important examples of manifolds occur as submanifolds of Euclidean
or projective space, often given (at least locally) by equationswith linearly inde-
pendent differentials: for example, we have the unit sphere Sn−1 ⊂ Rn defined
by ‖x‖2 = 1; in particular, the unit circle S1.

There are plenty of examples of smooth manifolds.

Lemma 1.2.9 Any finite simplicial complex X is homotopy equivalent to a
smooth manifold.

This result is proved by first embedding X in Euclidean space of high enough
dimension, then taking a ‘regular’ neighbourhood N of X , which is a compact
manifold with boundary, containing X in its interior, and having X as (strong)
deformation retract, and then rounding the corner to makeN a smooth manifold
(for details see [71]). Characterising homotopy types of compact manifolds
without boundary is much more delicate: we will turn to this in §7.8.
A map f : V → M between two smooth manifolds will be called a smooth

embedding if f (V ) is a submanifoldW of M, and f induces a diffeomorphism
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1.2 Smooth maps, tangent vectors, submanifolds 21

of V onW , whereW has the induced structure. This is more stringent than the
notion of (topological) embedding, where only a homeomorphism is required.
A map f : V → M between two smooth manifolds is called an immersion

if f is smooth and, for each P ∈ V , dfP : TPV → Tf (Q)M is injective. The fol-
lowing criterion uses the notion of proper map, which is defined and studied in
§A.2.

Proposition 1.2.10 (i) A map f : V → M is a smooth embedding if and only
if it is both a (topological) embedding and an immersion.
(ii) A map f : V → M is an embedding as a closed submanifold if and only

if it is injective, proper, and an immersion.

Proof (i) It follows from the definition that if f is a smooth embedding, it is
an embedding. To see that it is an immersion at P, choose a coordinate neigh-
bourhood at Q = f (P), with x1, . . . , xm the coordinate functions on M at Q,
and such that f (V ) is given locally by xv+1 = . . . = xm = 0. By definition of
the induced structure, x1 ◦ f , . . . , xv ◦ f define a coordinate neighbourhood of
P in V say yi = xi ◦ f . But then df (∂/∂yi) = ∂/∂xi and so df has rank v at Q.
For the converse, let f : V v → Nn be a smooth immersion and an embed-

ding with imageW . Let P ∈ V , f (P) = Q, and choose a coordinate neighbour-
hood ϕ : U → Rm of Q inM such that df ∗(dx1), . . . , df ∗(dxv ) form a basis for
T∨P V - this is possible since f is an immersion. Write yi = xi ◦ f : then since
dy1, . . . , dyv form a basis for T∨P V by Corollary 1.2.6, y1, . . . , yv may be taken
as coordinates in a neighbourhood of P. Since the other yi are smooth functions,
by the definition of smooth manifold we can write yi = gi(y1, . . . , yv ) (v < i ≤
m) in a neighbourhood of P inV . Since f is an embedding, xi = gi(x1, . . . , xv )
in a neighbourhood of Q inW . ThusW is locally defined by vanishing of the
n− v smooth functions xi − gi(x1, . . . , xv ), which clearly have linearly inde-
pendent differentials. SoW is a submanifold, and it now follows that f defines
a diffeomorphism of V onW .
(ii) follows since by Lemma A.2.3, a map is proper and injective if and only

if it is an embedding as a closed subset.

We have a hierarchy of conditions on a smooth map f : V → M: proper
embedding⇒ smooth embedding⇒ injective immersion⇒ immersion. None
of the implications can be reversed: we now offer examples, which are illus-
trated in Figure 1.2.
The inclusion in R of {x ∈ R | x > 0} is a smooth embedding which is not

proper; another example is a curve (e−t cos t, e−t sin t ) spiralling in to the ori-
gin in the plane.
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Figure 1.2 Examples which fail to give embeddings

The parametrisation f (θ ) = (sin( 12θ ), sin(θ )) defines a figure eight curve in
the plane, with equation y2 = 4x2(1− x2). As the differential df is nowhere
zero, f is an immersion, but it is not injective. As θ runs from −2π to 2π , the
point f (θ ) starts at (0, 0), describes a loop in x < 0 returning to the origin at
θ = 0, then describes a loop in x > 0.

However, if we take t = tan( 14θ ) as parameter for the same curve, we have a

map given by g(t ) =
(

2t
1+t2 ,

4t(1−t2 )
(1+t2 )2

)
. As t goes from −∞ to +∞, θ increases

from −2π to 2π , so g is an injective immersion, but not an embedding.
The map h : R → R2 defined by h(t ) = (t2, t3) (a cusp) is a (topological)

embedding which is not an immersion.

Theorem 1.2.11 Any compact manifold Mm can be imbedded in a Euclidean
space.

Proof Let {ϕi : Ui → D̊m(3)} be the coordinate neighbourhoods constructed in
Theorem 1.1.4: since they are locally finite, and M compact, there are only a
finite number. Also as in Theorem 1.1.5, let�i(P) = Bp(2− ‖ϕi(P)‖) for P in
the range of ϕi, 0 otherwise. Now define functions fi j by

fi0(P) = �i(P)

fi j(P) = �i(P)x j(ϕi(P)) P in range of ϕi

= 0 otherwise.

Then the fi j are all smooth functions ofP; if the range of i is 1 ≤ i ≤ N, there are
(m+ 1)N of them, so they define a smooth map F : Mm → R(m+1)N . We assert
that F is an embedding: since M is compact, it suffices by Proposition 1.2.10
to prove that F is injective and an immersion.
Since the ϕ−1i (D̊m(1)) coverM, each P ∈ M belongs to at least one of them.

But in this set, �i = 1, fi j(P) = x j(ϕi(P)), and so the dfi j with j > 0 form a
basis for T∨P M. Thus dFP : TPM → Tf (P)R(m+1)N is injective, and so F is an
immersion.
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If F (P) = F (Q), and P ∈ ϕ−1i (D̊m(1)), then 1 = �i(P) = fi0(P), and so 1 =
fi0(Q) = �i(Q), and Q ∈ ϕ−1i (D̊m(1)) also. But in this set, we can take the
fi j(= x j ) as coordinates. Since these have the same values for P and Q, we
have P = Q. Thus F is also injective.

Here we have presented a shortcut to the result: we will give a sharper state-
ment in Theorem 4.2.2 and will see in Corollary 4.7.8 that embeddings are
dense in the space of smooth maps between any manifolds Mm and V v with
v > 2m; ifM is not compact we needV non-compact andmust restrict to proper
maps.

1.3 Fibre bundles

A map π : T → M is the projection of an n-vector bundle ifM can be covered
by open setsUα such that

(i) There are homeomorphisms ϕα : Uα × Rn → π−1(Uα ) such that, for all
x ∈ Uα , y ∈ Rn, πϕα (x, y) = x.
(ii) For each pair (α, β ) there is a continuous map gαβ : Uα ∩Uβ → GLn(R)

such that, for all x ∈ Uα ∩Uβ, y ∈ Rn, ϕβ (x, y) = ϕα (x, gαβ (x).y).
The space M is called the base space of the bundle, and T is its total space;

Rn is the fibre; more precisely, the fibre over m ∈ M is the preimage π−1(m).
If π : T → M is a vector bundle, and V ⊂ T is such that π |V is a vector

bundle with π−1(x) ∩V a vector subspace of π−1(x) for each x ∈ M, then V is
called a subbundle of T .

More generally, we can define fibre bundles. A Lie group is a smooth
manifold G, which is also a group, such that the group operations g 	→ g−1,
(g, h) 	→ gh are smooth maps G→ G, G× G→ G. A smooth action of a Lie
group G on a smooth manifold M is a smooth map φ : G×M → M which is
a group action, i.e. which satisfies the identity φ(g1, f (g2, x)) = φ(g1g2, x).
If the action is understood, it is frequently denoted by a dot: thus φ(g, x)
becomes g.x. We will discuss Lie groups and smooth actions more fully in
§3.
Given a smooth action of G on F , we define π : T → B to be the projection

of a smooth fibre bundle with structure group G and fibre F if B can be covered
by open setsUα such that

(i) There are homeomorphisms ϕα : Uα × F → π−1(Uα ) such that, for all
x ∈ Uα , y ∈ F , πϕα (x, y) = x.
(ii) For each pair (α, β ) there is a continuous map gαβ : Uα ∩Uβ → G such

that for x ∈ Uα ∩Uβ, y ∈ F , ϕβ (x, y) = ϕα (x, gαβ (x).y).
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The simplest example is a product T = M × F given by a single chart: this
is called a trivial bundle.
The structure of a bundle is determined by the maps gαβ ; two bundles with

the same gαβ but different fibres are called associated. If the gαβ all have images
in a subgroup G′ of G, we say that the group of the bundle reduces to G′, and
we say that a bundle with group G′, together with an isomorphism to the given
bundle, defines a reduction of the structure group from G to G′. A map χ :
M → T is called a cross-section if π ◦ χ = 1.

A trivial vector bundle π : T → M is isomorphic to a product M × Rn. In
this case each fibre of π is isomorphic to Rn, each unit vector ei of Rn defines
a section Ei : M → M × Rn ∼= T , and for each x ∈ M the vectors Ei(x) give
a basis of the vector space π−1(x) or, as one sometimes says, a framing of
this vector space. Conversely, a set of sections of a vector bundle π defining a
framing of each fibre gives an isomorphism T → M × Rn, whichmay be called
a framing or a trivialisation of the bundle; it is also a reduction of the structure
group of π to the trivial group.

Given two vector bundles ξ1 = (π1 : T1 → M) and ξ2 = (π2 : T2 → M) over
the same base spaceM we can construct a new vector bundle ξ = ξ1 ⊕ ξ2 over
M, called the direct sum orWhitney sum of the bundles ξ1 and ξ2: its fibre over
any m ∈ M is the direct sum of the fibres of ξ1 and ξ2 over m. In particular,
the direct sum of ξ with a trivial line bundle is called the suspension of ξ . Two
vector bundles ξ1 and ξ2 are said to be stably isomorphic if there exist a trivial
bundle η and an isomorphism ξ1 ⊕ η ∼= ξ2 ⊕ η.

If we have two fibre bundles π1 : T1 → M1, π2 : T2 → M2 with the same
group G and fibre F , a G-bundle map is given by maps f : T1 → T2, b : M1 →
M2 with π2 ◦ f = b ◦ π1 such that if Uα ⊂ M1 and Vβ ⊂ M2 are open sets as
above, there exists a continuous map gα,β : U ∩ b−1(V )→ G such that for x ∈
(U ∩ b−1(V )), y ∈ F we have ϕβ (b(x), y) = f (ϕα (x, gα,β (x).y)).
The total space T of a smooth fibre bundle admits a natural structure as

smooth manifold such that the maps ϕα are diffeomorphisms on open subman-
ifolds. For if we use these to define coordinate neighbourhoods, then we have
smooth transformations of coordinates on the intersections.
The reason for introducing these concepts at this point is that the set of all

tangent vectors to a smooth manifold M has a natural structure of a vector
bundle.
WriteT(M) = ∪{TPM : P ∈ M} for the set of all tangent vectors toM. Define

π : T(M)→ M byπ (TPM) = P. LetHα : Uα → Vα be a set of local coordinate
systems, with the Uα covering M, and for P ∈ Uα, v ∈ Rm, define ϕα (P, v ) as
the tangent vector at P determined by

∑
vi∂/∂xi. Then for each α, the mapping

ϕα : Uα × Rm → π−1(Uα ) is bijective. OnUα ∩Uβ , denoting the two systems
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of coordinates by xα, xβ ; we have, by the usual transformation rule,

∂/∂xβi =
∑
α

(∂xαj /∂x
β

i )(∂/∂x
α
j ),

so we define gαβ : Uα ∩Uβ → GLm(R) by

gαβ (Q) =
(
∂xαj

∂xβi

)
Q

.

Then gαβ is a smooth mapping, and satisfies the condition above. Now take the
ϕα (or rather their inverses) as coordinate neighbourhoods, and thus define on
T(M) the structure of smooth manifold, which in particular gives it a topology,
with the ϕα homeomorphisms. Thus we have a smooth vector bundle.

We say that π : T(M)→ M is the tangent bundle to M. Write T0(M) for
the zero cross-section, i.e. the set of zero tangent vectors. In general, a smooth
cross-section of T(M) is called a vector field on M. We can identify the set of
smooth vector fields on M with the set of derivations from FM to itself, for if
ξ is such a derivation then for each P ∈ M, f 	→ ξ ( f )(P) is a tangent vector at
P.
Any bundle associated to T(M) via a linear representation of GLm(R) is

called a tensor bundle (and a points of it are tensors, whose type is determined
by the representation). The bundle T∨(M) given by the adjoint representation
is the bundle of differential 1-forms on Mm; its fibre over P is the dual space
T∨P M to TPM.

The bundle whose fibre over P is the set of all positive definite quadratic
forms on TPM is called the Riemann bundle, and any smooth cross-section
of it a Riemannian structure on M. In local coordinates this takes the form∑m

1 gi, j(x)dxidx j.
We now prove the fundamental.

Theorem 1.3.1 Every smooth manifold Mm has a Riemannian structure.

Proof Let {Uα} be an open covering such that we have charts ϕα : Uα → Rm

(see, for example, Theorem 1.1.4). Let �α be a partition of unity strictly sub-
ordinate to this cover. Now Rm has the standard Euclidean Riemannian struc-
ture:

∑m
i=1 dx

2
i . We write ds2 =∑α �α (

∑m
i=1 d(xi ◦ ϕα )2). Since the Uα are

locally finite, the sum is defined; since the partition was strictly subordinate to
the cover, the sum is smooth. Since a linear combination of positive definite
quadratic forms is again positive definite, ds2 is everywhere positive definite.
Thus it defines a Riemannian structure onMm.
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Given a Riemannian structure on Mm, we can choose orthonormal bases
in the fibres of T(M) by applying the Gram–Schmidt orthogonalisation pro-
cess. This will modify the maps ϕα : Uα × Rm → π−1(Uα ) so as to preserve
the inner product on the fibres. Indeed, consider ϕα as a map ϕ : Rm → Rm

depending on certain parameters, and set ϕ′(ei) =
∑

j≤i λi jϕ(e j ), where the λi j
with j < i are chosen inductively to make the ϕ′(ei) orthogonal and the λii > 0
so as to make the ϕ′(ei) unit vectors. Then the λi j are also smooth functions of
the parameters.
A Riemannian structure on Mm determines a reduction of the group of the

tangent bundle to the orthogonal group Om; conversely, a reduction to Om cor-
responds to a Riemannian structure. We also observe that the choice of an inner
product on TPM allows us to identify TPM with T∨P M. For a Riemannian man-
ifold, we shall usually do this.
Mm is called orientable if the group of the tangent bundle is reducible to

GL+m (R), oriented if the group is so reduced. Since the coordinate transforma-
tionswere given by thematrices (∂xαj /∂x

β

i ), the condition is that all the Jacobian
determinants are positive. The total space of the bundle associated to the tan-
gent bundle with fibre GLm(R)/GL+m (R) = Z2 is a double covering M̃ of M,
called the orientation covering. Its projection on M, together with coordinate
neighbourhoods of M, can be taken as coordinate neighbourhoods, so M̃ is a
smooth manifold. By the definition, all the Jacobians occurring are positive, so
this manifold is orientable.
If M itself is orientable, M̃ consists of two copies of M; if M is connected

and non-orientable, M̃ is connected. IfM is non-orientable, we can find a closed
chain of coordinate neighbourhoods, each overlapping the next, such that the
number of negative Jacobians is odd.
We can specify an orientation ofM at a point P by giving an isomorphism of

Rm on TPM, or equivalently, an ordered basis (e1, . . . , em) of TPM; another basis
defines the same orientation if the determinant of the basis change is positive.
IfM has a Riemannian structure, an orientation gives a reduction of the group

of the tangent bundle from Om to SOm.

1.4 Integration of smooth vector fields

We have already seen that a smooth path in a manifold has a tangent vector at
each of its points. We now show that, conversely, a tangent vector field can be
integrated to give a deformation (family of paths) in the manifold. This is an
essential technique for constructing deformations.
The key is Picard’s existence theorem for differential equations.
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Theorem 1.4.1 (Existence Theorem for Ordinary Differential Equations) Let
U be an open subset of Rn, K a compact subset of U. Given a system of equa-
tions dx

dt = X(x), whereX is a smooth function onU toRn, then for some ε > 0
there exists a unique smooth function x = g(x0, t ) = gt (x0) on K × E to U,
where E is the set |t| < ε, satisfying the equation, and such that x0 = g0(x0).

A proof is given in [40, Theorem 10.4.5].
We next translate this from the language of analysis to that of geometry, and

then see how to reformulate it. First writeX = (X1, . . . ,Xn) and define a vector
field ξ onU by ξ =∑i Xi

∂
∂xi
. Then the given equation becomes ξ (xi) = Xi.

For any smooth function f onU , and x = ϕt (x0), we have

df (x)
dt

=
∑
i

∂ f

∂xi

dxi
dt

=
∑
i

Xi
∂ f

∂xi
= ξ ( f ),

so this relation is not restricted to f being a coordinate function xi.
We define a flow on a smooth manifoldMm as a map ϕ : V → M × R withV

some neighbourhood of M × {0} in M × R, where we write ϕt (P) for ϕ(P, t ),
such that
(i) ϕ0(P) = P for all P ∈ M,
(ii) ϕs(ϕt (P)) = ϕs+t (P) whenever both are defined.
A flow gives rise to a vector field ξ on M as follows. For f ∈ FM , P ∈ M,

we set

ξP( f ) = lim
t→0

f (ϕt (P))− f (P)

t
= d

dt
f (ϕt (P))

∣∣∣∣
t=0

.

It is clear that ξP is a tangent vector toM at P, and that ξP varies smoothly with
P, so that ξ is a vector field. Substituting P = ϕs(Q), and using (ii), it follows
that

ξϕs(Q)( f ) =
d

dt
f (ϕt+s(Q))|t=0 = d

dt
f (ϕt (Q))|t=s.

We now show that any vector field defines a flow.

Theorem 1.4.2 Let Mm be a smooth manifold, ξ a vector field on M. Then
there is a flow ϕ : U → M × R giving rise to ξ , and any two such flows agree
on some neighbourhood of M × {0}.
Proof Any P ∈ M lies in a compact set K contained in the interior of some V ,
whereH : V → U is a coordinate neighbourhood. InU , write ξ in local coordi-
nates as

∑n
1 Xi(x)∂/∂xi, and consider the system dxi

dt = Xi(x). Apply Theorem
1.4.1: we find ε > 0, and a smooth function x = g(x0, t ) for x0 ∈ K, |t| < ε,
uniquely determined by the equation. We define ϕt in V by this relation inU .

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.002
https:/www.cambridge.org/core


28 Foundations

The fact that the functions defined by different coordinate neighbourhoods
agree on the intersection follows by the uniqueness, and the fact that the equa-
tions solved are simply derived from each other by change of variables.
The functions ϕs+t (P)→ g(x0, s+ t ) satisfy the same equation, with initial

value g(x0, s). By the uniqueness, g(x0, s+ t ) = g(g(x0, s), t ), i.e., ϕs+t (P0) =
ϕtϕs(P0), at least on some neighbourhood of s = t = 0 inM × R2.

We have seen that, for each point P ∈ M, ϕt (P) is defined for t = 0, and that
if it is defined for t = t0, then it can be uniquely defined in some neighbourhood
|t − t0| < ε. There is thus a bound BP ≤ ∞ such that ϕt (P) is defined for all
0 ≤ t < BP, but no further.

Lemma 1.4.3 Either BP = ∞ or the map [0,∞)→ M given by t 	→ ϕt (P) is
proper.

Proof We need to show that if BP <∞ and K is a compact subset of M, then
the set of t with ϕt (P) ∈ K is compact, i.e. that it has an upper bound strictly
less than BP.

It follows from Theorem 1.4.2 and Corollary A.2.4 that there is a number
ε > 0 such that ϕt (Q) is defined for all Q ∈ K and all t with |t| < ε. Suppose
there exists t > BP − ε withQ = ϕt (P) ∈ K. Then it follows that the definition
of ϕt (P) extends beyond t = BP, contradicting our hypothesis.

One sometimes wishes to solve an equation of the form dx
dt = X (x, t ). This

is not essentially different in nature: merely take t as an additional coordinate,
with dt

dt = 1. In geometrical terms, we have a ‘time-dependent vector field’ ξ (t )
defined on M, and treat this as a vector field ξ + ∂t on M × R, i.e. a vector
field on M × R whose projection on R is equal to ∂t . The corresponding flow
ϕ : V → (M × R)× R then has the property that whenever ϕs(P, t ) is defined,
its second component is equal to s+ t.
If we have a flow on M defined on the whole of M × R and satisfying

ϕs(ϕt (P)) = ϕs+t (P) everywhere, then each ϕt is a smooth map M → M and
has an inverse map ϕ−t , hence is a diffeomorphism. The map ϕ : M × R → M
thus defines a differentiable group action of the additive group R on M, often
called a 1-parameter group of diffeomorphisms ofM. In general, a vector field
onM is called complete if it generates a 1-parameter group of diffeomorphisms
ofM. We collect some simple sufficient conditions for completeness.

Proposition 1.4.4 (i) If Mm is compact, each vector field on M is complete.
(ii) The constant vector field ∂/∂t on R is complete.
(iii) If ξ is a complete vector field on V , and M is any manifold, ξ ⊕ 0 is

complete on V ×M.
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(iv) If ξ is complete, and ξ ′ agrees with ξ outside a compact subset of M,
then ξ ′ is also complete.
(v) If M has a complete metric, any bounded vector field is complete.

Proof (i) follows from Lemma 1.4.3, since there are no proper maps [0,∞)→
M ifM is compact.
(ii) and (iii) are trivial.
(iv) ϕt (P) is defined for all P and t, by hypothesis; since ξ and ξ ′ differ only

on a compact set, there is an ε > 0 such that ϕ′t (P) is defined for all P and all
|t| < ε. It follows that it is defined for all t.
(v) Since ξ is bounded, there is a uniform bound ρ(ϕt (P), ϕs(P)) < A|s− t|.

Thus as t converges to any limit B, the points ϕt (P) form a Cauchy sequence, so
converge since the metric is complete. Thus a limit value BP as in Lemma 1.4.3
cannot exist.

1.5 Manifolds with boundary

Wenow extend the notion ofmanifold by consideringmanifolds with boundary.
In the sequel these will play as much part as the manifolds already defined; we
have merely deferred the definition till this point to help concentrate ideas.
Nn is a smooth manifold with boundary, or bounded manifold, if it satisfies

all the defining conditions of a smooth manifold, with the exception that we
allow coordinate neighbourhoods to map onto open sets in either Rn or Rn

+,
where Rn

+ := {(x1, . . . , xn) ∈ Rn | x1 ≥ 0}.
Since we will not always include the phrase ‘with boundary’, we also

use the term closed manifold for a compact manifold without boundary (the
phrase ‘open manifold’ is sometimes used for a non-compact manifold without
boundary).
A point is a boundary point ofN if its image by the chart lies on the boundary

{x1 = 0} ofRn
+: it is clear that this property is preserved on change of coordinate

neighbourhood. The set of such points is the boundary of N, which we always
denote by ∂N. The restrictions of coordinate charts give ∂N the structure of a
smooth manifold of dimension n− 1. We write N̊ := N \ ∂N, the ‘interior’ of
N. This is a manifold, an open submanifold ofN. A simple example of manifold
with boundary is the unit disc Dn, with boundary ∂Dn = Sn−1.

The concept of smooth function on a manifold with boundary is clarified by
the following.

Theorem 1.5.1 (Whitney’s Extension Theorem) Let f be a smooth function
defined on the open set x1 > 0 of Rn, and suppose that f and all its partial
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derivatives extend to continuous functions on Rn
+. Then there is a smooth func-

tion g on Rn which agrees with f in its range of definition.

Whitney’s proof, which establishes results of much greater generality, can
be found in his paper [173].
A function on Rn

+ is called smooth if it satisfies the equivalent conditions of
the theorem. With this as the definition on a chart, we extend to a definition of
smooth functions and maps on manifolds with boundary in general.
A diffeomorphism between manifolds with boundary is a smooth bijection

whose inverse is smooth. Necessarily, the two boundaries correspond.
We also say Nn is a manifold with corner if it satisfies the defining condi-

tions for a smooth manifold, except that coordinate neighbourhoods may map
into open sets in any of Rn, Rn

+ and Rn
++, where Rn

++ denotes the set of points
(x1, . . . , xn) ∈ Rn with x1 ≥ 0, x2 ≥ 0. Topologically, as opposed to differen-
tiably, N is a manifold with boundary; its boundary ∂N consists of points cor-
responding to x1 = 0 (in Rn

+) or to x1x2 = 0 (in Rn
++). Points corresponding

to x1 = x2 = 0 in Rn
++ form the corner ∠N, which is a smooth manifold of

dimension n− 2.
If M1, M2 are manifolds with boundary, products of coordinate neighbour-

hoods of M1 and M2 give coordinate neighbourhoods in M1 ×M2 which (up
to a permutation of coordinates) are appropriate for a manifold N with cor-
ner. We have ∂ (M1 ×M2) = (∂M1 ×M2) ∪ (M1 × ∂M2) and ∠(M1 ×M2) =
∂M1 × ∂M2. In this, as in most other important cases, ∠N separates ∂N into
two parts; of course this is always true locally.
The discussion of orientability and orientations for manifolds with bound-

aries (and perhaps corners) is essentially the same as before. However, at
boundary points P ∈ ∂N, we must distinguish between inward- and outward-
pointing tangent vectors: in terms of a coordinate neighbourhood of P, these are
vectors 
λi∂/∂xi with λ1 > 0 resp. λ1 < 0. If λ1 = 0, we call the vector tan-
gent to the boundary; indeed, if i : ∂N → N is the inclusion map, such vectors
form the image of di, so do come from tangent vectors of ∂N. If p : R+ → N
is a path with p(0) = P, we see by considering local coordinates that the tan-
gent to p at P has λ1 ≥ 0. Thus the terminology is independent of the choice
of local coordinates. Boundaries of manifolds and submanifolds are pictured in
Figure 1.3.
In the presence of boundaries or corners, there are various corresponding

extensions of the notion of submanifold. A subset M of a manifold N with
boundary is a submanifold if it satisfies the same conditions as when N is not
bounded, except that the coordinate neighbourhood ϕ may map U to Rn or
Rn
+. Thus in a neighbourhood of a point of M, the pair (N,M) is locally like

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.002
https:/www.cambridge.org/core


1.5 Manifolds with boundary 31

Figure 1.3 Boundaries of manifolds and submanifolds

(Rn,Rm) or (Rn
+,R

m
+). Geometrically, we can say thatMmeets ∂N transversely

(for the general notion of transversality, see §4). M has an induced structure
of manifold with boundary, just as above, and we have ∂M = M ∩ ∂N. The
definition includes the case when ∂M is empty, and M is disjoint from ∂N;
then M is a submanifold of N̊. A result corresponding to Proposition 1.2.10
continues to hold.
As before, submanifolds which are not closed may have bad behaviour. We

usually require the condition M̄ ∩ ∂N = M ∩ ∂N, which excludes such exam-
ples as N = {(x, y) ∈ R2 | y ≥ 0}, M = {(0, y) ∈ R2 | y > 0}.

We could go on to consider further cases where the pair (N,M) is modelled
on any product of pairs (R,R), (R,R+), (R, 0), (R+,R+), (R+, 0), but restrict
to the following.
If Nn is a manifold, perhaps with boundary, we define a closed subset Mm

to be a closed submanifold with boundary of Nn if each point of Mm has a
neighbourhoodU in N and a smooth chart ϕ : U → Rn with ϕ(U ) an open set
in Rn or Rn

+ and ϕ(U ∩M) its intersection with Rm or with Rm ∩ {x | x2 ≥ 0}.
Thus in the case when N has a boundary we allowM to have a corner, and ∠M
divides ∂M intoM ∩ ∂N and the closure of M ∩ N̊.

The results on vector fields and flows extend as follows to manifolds with
boundary. First, the local existence theorem adapts as follows.

Lemma 1.5.2 If U is open in Rn
+, K ⊂ U compact, and ξ a smooth vector

field on U, inward pointing along U ∩ ∂Rn
+, then for some ε > 0 there is a

map ϕ : K × [0, ε]→ U with ∂ϕ(x, t )/∂t = ξ and ϕ(x, 0) = x for all x ∈ K.

For the global case, if ξ is a vector field on M, inward pointing at all points
of ∂M, it follows as for Theorem 1.4.2 that there is a flow ϕ : V → M × R+
for some neighbourhood V of M × {0} inM × R+.

Now suppose more generally that along some components of M, whose
union we denote by ∂−M, ξ is inward pointing, and along the rest (forming
∂+M), it is outward pointing. Then for each P ∈ M we have ϕ(x, t ) defined for
t in some interval in R containing 0 and with end points AP,BP say, and we
have
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Lemma 1.5.3 Either BP = ∞ or ϕ(P,BP) ∈ ∂+M or the map [0,∞)→ M
given by t 	→ ϕt (P) is proper.

The following result is the first step towards the construction of
diffeomorphisms.

Theorem 1.5.4 Suppose M a compact manifold with boundary ∂−M ∪ ∂+M,
ξ a vector field on M, pointing inward on ∂−M and outward on ∂+M, and f :
M → R such that ξ ( f ) > 0 on M. Then M ∼= ∂−M × I.

Proof Integrating ξ gives a flow ϕ which is defined on a neighbourhood of
∂−M × {0} in ∂−M × R+. Now apply Lemma 1.5.3. SinceM is compact, there
is no proper map [0,∞)→ M. Since ξ ( f ) > 0 on the compact manifold M,
it has a positive lower bound c, so f (ϕt+T (P)) ≥ f (ϕt (P))+ cT , and as f also
must be bounded, the case BP = ∞ is ruled out. Thus each orbit of the flow can
terminate only on ∂+M and likewise (as t decreases) on ∂−M. There is thus a
smooth positive function g on ∂−M such that for P ∈ ∂−M, the flow is defined
at (P, t ) if and only if 0 ≤ t ≤ g(P). Now the map (P, t ) 	→ ϕ(P, t

g(P) ) gives a
diffeomorphism of ∂−M × I on M.

If N is a manifold with boundary, a collar neighbourhood of ∂N in N is
an embedding ψ : ∂N × I → N as submanifold with boundary, extending the
projection of ∂N × 0 on ∂N. The use of collars will often enable us, when
discussing manifolds with boundary, to avoid special difficulties arising at the
boundary. We now establish their existence.

Theorem 1.5.5 For every manifold with boundary, the boundary has a collar
neighbourhood.

Proof Each point P ∈ ∂N lies in the domain of a coordinate neighbourhood
Uα with a map ϕα : Uα → D̊n

+. We may suppose these chosen so that the ∂Uα

cover ∂N. Hence the Uα together with U0 := N \ ∂N form an open cover of
N. By Theorem 1.1.5 we can pick a strictly subordinate locally finite smooth
partition of unity δα, δ0.

We next construct a vector field on N which is inward pointing along ∂N.
The vector field ∂/∂x1 onU+ corresponds under ϕα to a smooth vector field ξα
on Uα , which is inward pointing. Then δαξα gives a smooth vector field on N,
vanishing outside Uα . Now consider the smooth vector field ξ :=∑ δαξα on
N. Each point P of ∂N lies in the support of some δα , so in the chart ϕα , the
coefficient of ∂/∂x1 in δβξβ at P is non-negative for every β and positive for α,
hence ξ is inward pointing at P.
We can now integrate ξ on some neighbourhood of N × {0} in N × R+ to

give a map to N. We are only interested in the restriction ψ to a neighbourhood
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Figure 1.4 Collars of manifolds and submanifolds

W0 of ∂N × {0} in ∂N × R+. Along ∂N × {0} the map is the inclusion of ∂N in
N, and by (iii) of the theorem, the derivative with respect to t is the vector field
ξ . Since ξ is inward pointing, it follows from Theorem 1.2.5 that the map ψ is
a local diffeomorphism. By Corollary A.2.6 there is a (smaller) neighbourhood
W1 of ∂N × {0} on which ψ is an embedding. By Proposition 1.1.7 (i) we can
choose a smooth positive function gon ∂N such thatW1 containsW2 := {(x, t ) ∈
∂N × R | x ∈ ∂N, 0 ≤ t ≤ g(x)}.
The map (x, t )→ ψ (x, tg(x)) now gives the desired collar neighbourhood.

Extensions of the argument enable us to establish the existence of collars
compatible with corners and submanifolds. It will be convenient to introduce
the following terminology. For M a manifold with corner, a subset Q of ∂M is
a smooth part if ∂Q = Q ∩ ∠M. Thus the interior of Q is a union of connected
components of ∂M \ ∠M.

Proposition 1.5.6 (i) For N a manifold with corner and Q a smooth part of
∂N, there is a smooth embedding of Q× I in N giving a neighbourhood of Q
in N.
(ii) For N amanifold with boundary,M a submanifold, there is a collar neigh-

bourhood of ∂N whose restriction to ∂M × I gives a collar neighbourhood for
∂M.
(iii) For N amanifold with boundary,M a submanifold with boundary, so∠M

separates ∂M into ∂0M := M ∩ ∂N and ∂1M, there is a collar neighbourhood
of ∂N whose restriction to ∂0M × I gives a collar neighbourhood as in (i).

Collars of manifolds and submanifolds are illustrated in Figure 1.4.

Proof Once we have constructed suitable vector fields in coordinate neigh-
bourhoods, the piecing together using partitions of unity and integration of the
vector field to give a local diffeomorphism proceeds in just the same way as
above. But the local vector field can also be taken as ∂/∂x1 in each case.

For (i) it is sufficient to consider a chart ϕ : U → Rn at P ∈ ∂Q takingU ∩
(∂N \ Q) to x2 = 0 andU ∩ Q to x1 = 0. Integrating ∂/∂x1 gives translation in
the x1 direction, which preserves ∂N \ Q.
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For (ii) we need to consider points P ∈ ∂M. But here, by definition of sub-
manifold, we have a chart ϕ : U → Rn at P takingM to the subspace Rm where
all but the first m coordinates vanish. Again this is preserved by the vector field
∂/∂x1.

For (iii), other points of ∂0M are as in (ii), while at a point P ∈ ∠M, we have
a chart ϕ : U → Rn taking M to the subset of Rm with x1 ≥ 0 and x2 ≥ 0, and
the same vector field remains suitable.

1.6 Notes on Chapter 1

§1.1 The concept of manifold gradually evolved during the nineteenth cen-
tury, beginning with the cases of curves and surfaces in Euclidean space, with
successive steps taken by Riemann (who considered the n dimensional case)
and Poincaré (who introduced charts). Manifolds not considered as subsets of
Euclidean space first appeared in 1931 in the book [156] by Veblen and White-
head; see alsoWeyl [172]. A decisive step was taken byWhitney [175] in 1936,
who was the first to prove that any abstract manifold could be regarded as a
manifold embedded in Euclidean space.
The use of atlases allows several variations of the definition giving related

concepts: for example, instead of requiring the coordinate transformationsψα,β

to be smooth, we could have required them merely to be continuous, giving
topological manifolds; or to have all partial derivatives of order ≤ r defined
and continuous, givingCr-manifolds; or had charts as open subsets of Cr with
holomorphic coordinate transformations, giving complex manifolds.
Any smooth atlas defines a smooth structure; conversely, the set of all smooth

charts is a unique maximal atlas, and we could take ‘maximal atlas’ as the basic
concept.
Alternatively, for each P ∈ M, we can write FP for the ring of germs at P

of elements of F . The rings FP fit to give a sheaf, and we can recover F from
the sheaf of rings FP as the ring of global sections. Axiom (M1) is part of the
definition of sheaf; (M2)-(M3) easily translate into axioms on the sheaf.
Since our main interest is in compact manifolds (where the proofs are easier),

the reader new to the subject can afford to ignore most of the references to
topology, though of course the model example Rn is not compact.
It can be shown that in the presence of axioms (M1-M3), the following fur-

ther conditions are equivalent for smooth manifolds which are connected (more
generally if the set of components is (at most) countable):
M is a countable union of compact sets (the above condition (M4)),
Every open covering ofM has a locally finite refinement (M is paracompact),
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M has a countable base of open sets,
There is an embedding of M in Euclidean space,
The topology of M is metrisable.

We have seen in Theorem 1.1.4 that the first condition implies the second. The
third follows since asM is covered by coordinate neighbourhoods, so any com-
pact subset of M is contained in the union of finitely many, M is covered by
countably many coordinate neighbourhoods. Since Rn, and hence any open
subset, has a countable base of open sets, the same follows for M. The other
conditions follow from Theorems 1.2.11 and 2.1.1.
More general results of this kind are also known for topological spaces sat-

isfying appropriate local conditions.
Examples satisfying (M1-M3) but not (M4) can be constructed, but such

examples do not occur naturally. It is hard to obtain results of interest about
such objects, and we do not consider them further.
§1.2 Lemma 1.2.3 is due to Marston Morse.
Proofs of Theorem 1.2.5 can be found in any good book on analysis, for

example in [40].
§1.3 We give here merely the definitions necessary for the first two chapters

of this book. Smooth group actions will be more fully treated in Chapter 3.
We refer the reader to Steenrod’s book [144] for a systematic account of

fibre bundles: this is the classic exposition. Many others have appeared since;
another good reference is [77]. See also Appendix B.
§1.4 Proofs of Theorem 1.4.1 can also be found in any good book on analysis:

in [40] both Theorems 1.2.5 and 1.4.1 are obtained as simple applications of
the Contraction Mapping Theorem. Another reference is Hurewicz [75, 2.5].
The little book [83] gives slick treatments of all the topics up to this point, in a
somewhat abstract framework.
§1.5 Manifolds with boundary were, I believe, first introduced by Poincaré.
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Geometrical tools

We can regard a compact smooth manifold as built up by glueing together
smaller pieces, which are easier to analyse. In this chapter we begin the descrip-
tion of this process. After obtaining some basic results on Riemannian metrics,
we study geodesics for such metrics. The key result is that any two nearby
points are joined by a unique shortest geodesic. This leads us to study the way
in which a closed submanifold lies in a manifold: we describe the structure of
a neighbourhood of the submanifold as having the form of a tube.
A diffeotopy, or differentiable isotopy, can be considered either as deforming

the embedding of one manifold in another or as an embedding of a product with
I. If the deformation can be extended to the whole manifold, the two embed-
dings are equivalent. The diffeotopy extension theorem asserts that under cer-
tain conditions, this extension is possible; it may thus be looked on as a unique-
ness theorem. We apply this result to obtain a uniqueness theorem for tubular
neighbourhoods, which enables us to pass from knowledge of the structure of
a compact submanifold M of a manifold N to knowledge of a neighbourhood
of M: the only extra piece of information needed is the structure of the nor-
mal bundle N(N/M). This contributes to the general aim of building up global
results from merely local ones.
We define inverse procedures for straightening a corner, to yield a manifold

with boundary, and for introducing corners: it will be useful in Chapter 5 to be
able to effectively ignore corners.
Finally we discuss glueing and the inverse process of cutting: these are sim-

ple geometrical constructions which, given some smooth manifolds (perhaps
with boundaries and corners) and additional data where necessary, give rise to
new manifolds. On account of their perspicuity, these methods are traditional
in describing the topology of surfaces, and they remain a very powerful tool in
higher dimensions.

36
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2.1 Riemannian metrics 37

2.1 Riemannian metrics

We recall that if Mm is a smooth manifold, the bundle over M associated to
the tangent bundle and whose fibre over P is the set of all positive definite
quadratic forms on TPM is called the Riemann bundle, and any cross-section
of it a Riemannian structure on M; in local coordinates this takes the form∑m

i, j=1 gi, j(x)dxidx j.
We saw in Theorem 1.3.1 that every smooth manifoldMm has a Riemannian

structure. Such a structure induces an inner product on each TPM, which we
use to introduce the notion of length of tangent vectors. A (smooth) path in M
is a smooth map p toM with source R or an interval contained in R. For a path
p, we define the length of p between two of its points by

l(p) =
∫ b

a

ds

dt
dt,

where (ds/dt )2 =∑i, j gi, j(dxi/dt )(dx j/dt )
2, the derivatives being taken along

the path. We set

ρ(P,Q) = inf{l(p) : p a path joining P to Q};

this is defined if and only ifP,Q are in the same component ofM.We could also,
for example, define ρ(P,Q) = 1wheneverP andQ are in different components,
but the case of interest is when M is connected.

We call ρ the Riemannian metric: we now show that it is a metric.

Theorem 2.1.1 The function ρ defines a metric on M which induces the given
topology on M.

Proof The triangle inequality follows since, as in Lemma 1.1.8, we can (up to
re-parametrising, which does not alter length) combine smooth paths from P to
Q and fromQ to R to give a smooth path from P to R. That ρ(P,Q) = 0 implies
P = Q follows from the argument below.
To show that the metric induces the given topology, we need to establish that,

for any point P ∈ M,
(i) any neighbourhood of P inM contains {Q ∈ M | ρ(P,Q) < A} for some A,
(ii) any such set is a neighbourhood of P.
Choose a coordinate neighbourhood ϕ : U → Rm with ϕ(P) = O. By a lin-

ear change of coordinates in Rm, we can reduce the matrix
(
gi, j(P)

)
to the iden-

tity, so atP themetric ds2 agrees with the Euclideanmetric
∑n

1 dx
2
i . Hence there
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is a neighbourhood of P on which the ratio is bounded:

1

2

n∑
1

dx2i ≤
∑
i, j

gi, j(x)dxidx j ≤ 2
n∑
1

dx2i

for ‖x‖ < A, say.
Thus if p is a path in M with ϕ(p) ⊂ D̊n(A), and l(ϕ(p)) denotes the length

of ϕ(p) in the Euclidean metric, 1
2 l(ϕ(p)) ≤ l(p) ≤ 2l(ϕ(p)).

Now (ii) follows since, if B ≤ A, then for any Q = ϕ−1(x) with ‖x‖ < B
2 ,

taking the path p3 such that ϕ(p3) is the straight segment from O to x gives

ρ(P,Q) ≤ l(p3) ≤ 2l(ϕ(p3)) < B,

so the set {Q | ρ(P,Q) < B} contains the neighbourhood ϕ−1{D̊m( 12B)}.
As to (i), first note that if ϕ(Q) = x with ‖x‖ < A

2 , and p1 is a path from Q
with ϕ(p1) leaving D̊m(A), then l(ϕ(p1)) ≥ A

2 , hence l(p1) ≥ A
4 . Thus for any

path p2 from P to Q with ϕ(p2) leaving D̊m(A), we have l(p2) ≥ A
2 .

Now for any B < A
4 , since any path p from P with l(p) < B is contained in

ϕ−1{D̊m(A)}, it follows that D := {Q ∈ M | ρ(P,Q) < B} is also contained in
this region; and now since we need only consider paths p in this region, and
l(ϕ(p)) < 2l(p), D is contained in ϕ−1{D̊m(2B)}.

The basic results about Riemannian metrics: existence of a Riemannian
structure, and the definition and properties of a metric: apply without essen-
tial change also to manifolds with boundary.
Next let V v be a submanifold of a smooth manifold Mm. If P ∈ V , the

inclusion i : V → M induces di : TPV → TPM of rank v , hence the dual map
di∗ : T∨P M → T∨P V also has rank v , and its kernel has rank (m− v ).
The kernel of di∗ : T∨P M → T∨P V is called the normal space to V inM at P;

we will denote it by NP(M/V ). The union of these normal spaces is the normal
bundle N(M/V ) of V in M. We must check that the normal bundle is indeed
a vector bundle over V . Let ϕ : U → Rm be a coordinate neighbourhood of P
in M withU ∩V = ϕ−1(Rv ); then inU ∩V we may take dxv+1, . . . , dxm as a
basis for the normal space. These give the local product maps ϕα required of a
fibre bundle; as with the tangent bundle, the maps gαβ come from Jacobians on
change of coordinates.
A Riemannian structure on M induces one on V . The distinction between

T∨P M and TPM disappears, and in this case we can regard N(M/V ) as a sub-
bundle of the restriction T(M)|V of T(M) to V .

Proposition 2.1.2 T(M)|V is the Whitney sum of N(M/V ) and T(V ),
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2.2 Geodesics 39

Proof Since all the above bundles are defined, and the latter two are sub-
bundles of the first, it is sufficient to verify that at each point the fibre of the
first is the direct sum of the latter two. Since we have a positive definite inner
product, it will be sufficient to verify that the fibre Np(M/V ) of N(M/V ) over
P is the orthogonal complement of the fibre TPV of T(V ) in the fibre TPM of
T(M), or that it is the annihilator of TPV in T∨P M. But since di∗ is dual to di,
the kernel of di∗ is certainly the annihilator of the image of di.

We say that a submanifold V of M meets ∂M orthogonally if the normal
vectors to V and ∂M at each point of ∂V are perpendicular.

Lemma 2.1.3 Let M be a manifold with boundary, V a submanifold. Then M
has a Riemannian metric in which V meets ∂M orthogonally.

Proof We construct a metric just as in Theorem 1.3.1; the only point to watch is
thatV meets ∂M orthogonally in each of the partial metrics to be fitted together.
But since V is a submanifold, at a point of ∂V , there is a coordinate map of an
open set of (M,V ) to (Rn

+,R
m
+), and the Euclidean metric will do. Now when

we fit these together, V continues to meet ∂M orthogonally.

2.2 Geodesics

For a connected manifold Mm with a Riemannian structure, we have already
defined the length of a path and the distance function as the infimum of lengths
of paths, and shown in Theorem 2.1.1 that the infimum ρ(P,Q) of lengths of
paths joining P to Q is a metric defining the topology on M.

We now focus attention on the paths minimising this distance. Recall that
the length of a path p : U → M (U open in R) between two of its points is
defined by l(p) := ∫ ba ds

dt dt, where (ds/dt )2 =∑i, j gi, j(dxi/dt )(dx j/dt )
2, the

derivatives being taken along the path. We now define the energy of p by

E(p) := (b− a)
∫ b

a

(
ds

dt

)2

dt.

Then a geodesic is defined to be a smooth path p : U → M giving an extremal
value to the energy between any two of its points.
By Schwarz’ inequality,

l(p)2 =
(∫ b

a

ds

dt
dt

)2

≤
∫ b

a
dt
∫ b

a

(
ds

dt

)2

dt = (b− a)
∫ b

a

(
ds

dt

)2

dt = E(p),
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with equality if and only if ds/dt is constant, so that the curve is parametrised
proportionately to arc length. Since any curve can be parametrised by arc
length, the geodesic gives an extremal value also to the length of the path.

Proposition 2.2.1 In local coordinates, geodesics are defined by equations

d2xi
dt2

+
∑
j,k

�i
jk

dx j
dt

dxk
dt

= 0.

Proof Euler’s equation for the variational problem of minimising the integral

of G :=∑ j,k g jk
dx j
dt

dxk
dt is ∂G

∂xr
= d

dt

(
∂G
∂yr

)
, where yr = dxr

dt . This gives

∑
j,k

∂g jk
∂xr

dx j
dt

dxk
dt

= d

dt

⎛⎝2∑
j

gr j
dx j
dt

⎞⎠
= 2gr j

d2x j
dt2

+ 2
∂gr j
∂xk

dx j
dt

dxk
dt

= 2gr j
d2x j
dt2

+ dx j
dt

dxk
dt

(
∂gr j
∂xk

+ ∂grk
∂x j

)
,

where in the last step we use symmetry under the interchange of j and k. If gi j

is the inverse matrix to gi, j, multiply by gir, sum over r and simplify:

d2xi
dt2

+ 1

2

∑
r

gir
(
∂gr j
∂xk

+ ∂grk
∂x j

− ∂g jk
∂xr

)
dx j
dt

dxk
dt

= 0.

The coefficient of the last term is usually abbreviated to �i
jk.

Theorem 2.2.2 For any point Q ∈ M, we can find a neighbourhood V of Q in
M and an ε > 0 such that for any P ∈ V, and v ∈ TP(M) with ‖v‖ < ε, there
is a unique geodesic p(t ) with

p(0) = P,
d

dt
p(t )

∣∣∣∣
t=0

= v .

This is defined for |t| < 2, stays in V , and depends smoothly on p, v , t.

Proof We take a coordinate neighbourhood ϕ onM at Q mapping onto D̊m(3)
and apply the Existence Theorem for Ordinary Differential Equations (Theo-
rem 1.4.1). Consider the system

dxi/dt = yi

dyi/dt = �i
jk(x)y jyk

}
,
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2.2 Geodesics 41

where x ∈ D̊m(3), ‖y‖ < 3 corresponds to the U of that theorem, and x ∈
Dm(2), ‖y‖ ≤ 2 to its K. Then for some ε > 0, we find a unique solution
x = f (x0, y0, t ) for all ‖x0‖ ≤ 2, ‖y0‖ < 2, |t| < ε depending smoothly on all
its arguments, and lying in ‖x‖ < 3. Lifting to V by ϕ−1, this gives a geodesic
inM.
To deduce the theorem, we need only change parameter by t ′ = 2

ε
t; this has

the effect of multiplying the initial d
dt p(t ) by the inverse factor, and so altering

the condition ‖v‖ ≤ 2 to ‖v‖ ≤ ε.

It is worth emphasising that though the argument involved defining a flow in
the tangent bundle T(M), the geodesic itself is a path inM.
As for flows in general, the local existence and uniqueness of geodesics given

by Theorem 2.2.2 does not imply global existence, but does imply uniqueness
in the whole range of existence (by applying the result to a sequence of points
along the geodesic), given the initial point and direction.
Let P ∈ M, v ∈ TPM, and suppose that the geodesic with direction v at P can

be defined for |t| ≤ 1. Then we write exp(P, v ) for the point at |t| = 1 on the
geodesic, and call exp the exponential map. We also define the map Exp from a
subset of T(M) to M ×M by Exp(P, v ) = (P, exp(P, v )). We have shown that
these maps are defined on a neighbourhood V of T0(M) in T(M).

A submanifold V ⊂ M is called totally geodesic if each geodesic in M tan-
gent to V is contained in V . Thus a one-dimensional submanifold is totally
geodesic if and only if it is a geodesic.
We now obtain further properties of the exponential map.

Proposition 2.2.3 The Jacobian determinant of Exp is non-zero on T0(M).

Proof For P ∈ M, let ϕ : U → Rm be a coordinate neighbourhood, and choose
x1, . . . , xm as coordinates inM, dx1, . . . , dxm as coordinates in the fibres TPM;
write the latter as v1, . . . , vm, and write coordinates in M ×M as x1, . . . , xm,
z1, . . . , zm. Then we have Exp(x, v ) = (x, z), so it remains to compute the par-
tial derivatives of the zi at 0. Now z is the point at t = 1 on the solution of the
equation dz

dt = y with initial condition z = x, y = v0, i.e. at the point t0 on the
solution with initial condition z = x, y = v0/t0 = v . Hence

z = x+ t0v + smaller terms, where t0 is small, v fixed,

and so to find ∂zi
∂v j

, set (v0)i = t0δi j; then

∂zi
∂v j

= ∂zi(v0)

∂t0

∣∣∣∣
t0=0

= δi j.

This proves the result: for later reference note also that ∂zi
∂x j

= δi j.
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42 Geometrical tools

It follows from Proposition 2.2.3 and the Inverse Function Theorem 1.2.5
that T0(M) has a neighbourhood V ′ in T(M) on which Exp is defined, and is a
local diffeomorphism. It now follows using Corollary A.2.6 that T0(M) has a
neighbourhood V ′′ in T(M) on which Exp is defined, and is a diffeomorphism.

We have an even sharper statement.

Theorem 2.2.4 There is a neighbourhood W of �(M) in M ×M such that if
(x, y) ∈W, there is a unique geodesic from x to y of length ρ(x, y). Hence Exp
defines a diffeomorphism of Exp−1(W ) onto W.

Proof For each P ∈ M, it follows from the above that we can find a neigh-
bourhood VP of P such that Exp−1 defines a diffeomorphism of VP ×VP on a
neighbourhood of T0(VP). Then ifUP is a sufficiently small neighbourhood of
P, each pair of points inUP is joined by a unique geodesic lying inUP, and (as
in the proof of Theorem 2.1.1) each geodesic going outsideUP is longer. Thus
this geodesic gives a minimum length for curves inUP joining the two points.
(In the technical language of Calculus of Variations, the metric is positive defi-
nite, the problem is regular, and we have constructed a semi-field of extremals,
passing through a point and covering a neighbourhood.)
The geodesic gives the global minimum, which we defined as the distance

ρ(x, y). Thus Exp−1 is a diffeomorphism onUP ×UP: we takeW as the union
of such neighbourhoods.

This has the following useful application.

Corollary 2.2.5 There exist a neighbourhoodW of�(M) in M ×M and aC∞

map H :W × [0, 1] → M such that for each (P,Q) ∈W, H(P,Q, 0) = P and
H(P,Q, 1− t ) = H(Q,P, t ).

Proof Take W as given by the theorem. Then for each (P,Q) ∈W there is a
unique geodesic gP,Q : [0, ρ(P,Q)] → M with gP,Q(0) = P and gP,Q(1) = Q.
We can thus take H(P,Q, t ) = gP,Q(t.ρ(P,Q)).

We will need a variant of this below (for Proposition 6.4.4).

Proposition 2.2.6 For M a smooth manifold, the map eM : T(M)→ M ×M
given by eM (ξ ) = (exp(ξ ), exp(−ξ )) is a local diffeomorphism along �(M)
and there exist neighbourhoods AM of T0(M) in T(M) and OM of �(M) in
M ×M such that eM gives a diffeomorphism of AM on OM.

For it follows from the proof of Proposition 2.2.3 that, in the natural local
coordinates, the differential of eM takes the form (x, v ) 	→ (x+ v, x− v ), so is
an isomorphism. The conclusion now follows as above.
In the region where geodesics are unique, the distance function also has the

expected properties.
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2.2 Geodesics 43

Proposition 2.2.7 On the set W of Theorem 2.2.4, the square ρ(x, y)2 of the
distance is a smooth function.

Proof In view of Theorem 2.2.4, it suffices to show that taking the square of
the length of the geodesic defines a smooth function on a neighbourhood of
T0(M) in T(M). But this function is just the square of the length of the tangent
vector in question, so is a smooth function since the Riemannian structure is
smooth.

We recall that a metric space is complete if each Cauchy sequence of points
converges to a limit point, or equivalently, if each bounded closed subset is
compact.With this concept, we can give the global forms of the above theorems.

Theorem 2.2.8 M is complete if and only if geodesics may be indefinitely pro-
duced, i.e. if exp and Exp are definable on T(M). Any two points in a complete
manifold may be joined by geodesics: the length of at least one such is the
distance between them.

Proof Suppose first M is complete, and p(t ) a geodesic which exists only for
t < k. Then the points p(t − 1

n ) form a Cauchy sequence: sinceM is complete,
these have a limit point P. But by Theorem 2.2.2, P has a compact neighbour-
hood K such that any geodesic within K may be produced a distance ε. This
gives a contradiction.
Now suppose exp globally definable, but that there are pairs of points (P,Q)

not joined by a geodesic of length ρ(P,Q). Let r be the greatest lower bound
of the distance of such points Q from P (by Theorem 2.2.4, r > 0), let K1 =
{v ∈ TPM | ‖v‖ ≤ r}, and let K = exp(K1). Then K1 is compact, hence so is K,
by definition of r, K contains all points at distance less than r from P. Choose
2ε < r as the number ε in Theorem 2.2.2, and choose Q such that ρ(P,Q) =
r0 < r + ε, but P and Q are not joined by a geodesic of length ρ(P,Q). Now
let Pi be a smooth path from P to Q of length at most r0 + 1/i, and let Ri be the
point on it at distance r − ε from P. The Ri lie in the compact set K; let R be a
cluster point. Then

ρ(P,R) ≤ lim sup ρ(P,Ri) = r − ε,

ρ(R,Q) ≤ lim sup ρ(Ri,Q) = r0 − r + ε,

so by the triangle inequality we have

ρ(P,R) = r − ε, ρ(R,Q) = r0 − r + ε.

By the definition of r, ε; P can be joined to R by a geodesic of length r − ε;
R to Q by on of length r0 − r + ε. If these met at an angle at Q, we could
construct a shorter path by rounding the corner in a neighbourhood ofQ. Hence
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Figure 2.1 Rounding the corner of a path

they have the same direction at Q, so by the uniqueness theorem form part of
the same geodesic. Thus P is joined to Q by a geodesic of length ρ(R,Q) : a
contradiction. The idea of this proof is sketched in Figure 2.1.
Finally, suppose exp(TPM) = M. Then a bounded set lies within a finite dis-

tance from P, so is contained in the image of a closed and bounded, hence
compact, subset of TPM. But the image of this set is also compact, so it follows
that M is complete.

Theorem 2.2.9 Any connected manifold has a Riemannian metric in which it
is complete.

Proof Wemake a slight refinement of the proof of Theorem 1.3.1, asserting the
existence of Riemannian structures. Let ϕα : Uα → D̊m(3) be the coordinate
neighbourhoods constructed in Theorem 1.1.4, and define �α ∈ Fi by

�α (P) =
{
Bp(2 1

2 − ‖x‖) if P ∈ Uα, ϕα (P) = x

0 if P /∈ Uα.

Then write ds2 =∑�α (
∑
dx2i ) ◦ ϕα . As in the earlier proof, we see that this is

a metric. In ϕ−1α (D̊m(1 1
2 )), it is greater than or equal to the Euclidean metric, so

the set of points at distance≤ 1
3 from ϕ−1α (Dm) is a closed subset of ϕ−1α (Dm(2)),

so is compact. As in Theorem 2.2.8, it follows that all geodesics from a point of
ϕ−1α (Dm), and hence from any point of M, may be produced a distance at least
1
3 from any point. Thus they can all be produced indefinitely.

Corollary 2.2.10 (i) For any smooth manifold V , there is a proper map V →
R+.
(ii) If M is non-compact, there is a proper map V → M.

Proof (i) Choose a complete Riemannian metric onV ; then for any P0 ∈ V , the
distance from P0 is a proper map ρ(P0,−) : V → R+. For we saw above that
the preimage of any set [0,K] is compact. The square ρ(P0,−)2 is also proper,
and is smooth.
Since the composite of two proper maps is proper, (ii) will follow if we can

construct a proper map R+ → M. Choose a non-compact component M0 of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.003
https:/www.cambridge.org/core


2.3 Tubular neighbourhoods 45

M and a point Q0 ∈ M0. Suppose inductively chosen Qi ∈ Mi: then remove
{P ∈ Mi | ρ(P,Q0) < i} from Mi, let Mi+1 be a non-compact component of the
complement, and choose any Qi+1 ∈ Mi+1.

SinceQi, Qi+1 lie in the connected setMi, they can be joined by a path [i, i+
1]→ Mi. Joining all these paths gives amap ϕ : R+ = [0,∞)→ M. Since, for
any P ∈ Mi, ρ(P,Q0) ≥ i− 1, the map ϕ is proper.

2.3 Tubular neighbourhoods

We will now apply the results of §2.2 in the context of a submanifold V v of
Mm. Then we proceed to consider boundaries.

Proposition 2.3.1 The Jacobian determinant of exp : N(M/V )→ M on
T0(V ) is non-zero.

Proof Let P ∈ V , and let ϕ : U → Rn be a coordinate neighbourhood of P
in M such that U ∩V = ϕ−1(Rm). Then if x1, . . . , xn are coordinates in Rn,
we can take as local coordinates in N(M/V ) x1, . . . , xm (coordinates in V )
and vm+1, . . . , vn (coordinates in the fibre) where vi = dxi. Now refer back to
Proposition 2.2.3, where we showed that if exp(x, v ) = z, then ∂zi

∂x j
= ∂zi

∂v j
= δi j

so that with respect to our coordinates, the Jacobian matrix is the unit matrix,
so its determinant is non-zero.

Theorem 2.3.2 Let V be a submanifold of M. Then
(i) the map exp : N(M/V )→ M is a local diffeomorphism at T0(V ),
(ii) there is a neighbourhood of T0(V ) in N(M/V ) on which exp is a diffeo-

morphism to a neighbourhood U of V in M,
(iii) V has a neighbourhood U ′ in M such that each point P of U is joined to

V by a unique geodesic of length ρ(P,V ); this meets V orthogonally.

Proof (i) follows from Proposition 2.3.1 and the Inverse Function Theorem
1.2.5.
(ii) follows from this by applying Corollary A.2.6.
(iii) Let Q ∈ V , and let U1 ⊂ U0 be neighbourhoods of Q in M as in the

proof of Theorem 2.2.4: any two points in U0 are joined by a unique geodesic
of minimal length, and the minimal geodesic joining two points of U1 lies in
U0. We may suppose Ū0 compact.

For P ∈ U1, let rP be the greatest lower bound of distances of P from points
of V . If we have points Qi ∈ V with ρ(P,Qi) < 1

i , then for i > D−1 we have
Qi ∈ U0, and since Ū0 is compact, the pointsQi have a cluster pointQ; sinceV is
closed, we haveQ ∈ V , and now ρ(P,Q) = rP. By the above choice ofU0,P and
Q are joined by a unique geodesic ofminimal length. This meetsV orthogonally
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46 Geometrical tools

for if not, by a small modification near Q, we could make it shorter (take a path
orthogonal to V , and smooth off the corner), giving a shorter path from P to V .
Hence there is a point R′ of N(M/V ) lying over Q with exp(R′) = P.
We may now takeU ′ as the union of theU1.

Taking the intersection U ∩U ′ gives a neighbourhood of V on which both
exp is a diffeomorphism and the geodesics give shortest distances from V .
For V v a closed submanifold of a smooth manifold Mm, a tubular neigh-

bourhood ofV inM consists of a bundle B overV with fibre the disc Dn−m and
an embedding ψ : B→ M (as submanifold with boundary) extending the map
taking the centre of each disc to the corresponding point of V .
As with coordinate neighbourhoods, the actual neighbourhood ψ (B) is the

more geometrical concept; but the mappingψ is more convenient to work with.
A tubular neighbourhood is pictured in Figure 2.2.
For any tubular neighbourhood, the map ψ induces an isomorphism of the

normal bundle of V in M with that in B, and hence with the vector bundle
associated to B. IfMm has a Riemannian structure, the normal bundle N(M/V )
has group Om−v . We may then take B as the associated disc bundle, consisting
of vectors of N(M/V ) of at most unit length.

Figure 2.2 Tubular neighbourhood in a manifold and in one with boundary

Theorem 2.3.3 For any submanifold V of a smooth manifold M, there exists
a tubular neighbourhood of V in M.

Proof Choose a Riemannian metric onM. LetW be a neighbourhood ofT0(V )
in N(M/V ) mapped diffeomorphically by exp: the existence of suchW is guar-
anteed by Theorem 2.3.2. Let f be a positive continuous function onV such that
vectors in NP(M/V ) of length less than f (P), are contained inW : the existence
of such f follows from Lemma A.2.4 (i). By Proposition 1.1.7, we can find a
positive smooth function g on V such that 0 < g(P) < f (P) for all P ∈ V . We
now define a diffeomorphism ψ . For each P ∈ V , v ∈ NP(M/V ), set

ψ (P,V ) = exp(P, g(P)v ).
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Multiplication by g(P) in the fibre is possible since g(P) �= 0, and for ‖v‖ ≤ 1
we have |g(P)v| ≤ g(P) < f (P), so (P, g(P)v ) ∈W .

We will extend this result to the case of manifolds with boundary, but need
first to develop further ideas.
We now combine Whitney’s embedding theorem with the existence of tubu-

lar neighbourhoods to give a general method of constructing maps into smooth
manifolds. We illustrate by showing the existence of smooth approximations,
extending Lemma 1.1.7.
Let V be a compact manifold. By Theorem 1.2.11, there exists a smooth

embedding i : V → RN for someN. By Theorem 2.3.3 there exist a disc bundle
π :WN → V and a smooth embedding ψ :W → RN , extending i, and whose
image is a neighbourhood U of i(V ). Further, we can choose the discs to have
radius ε; U is then a ε-neighbourhood of i(V ). We have a retraction φ :=
π ◦ ψ−1 : U → V ; for each x ∈ V , the preimage φ−1(x) is a disc of radius ε.

Proposition 2.3.4 Let M and V be smooth manifolds with V ⊂ RN compact.
(i) For any continuous f : M → V and any ε > 0 there exists a smooth h :

M → V with ‖h(x)− f (x)‖ < ε for every x ∈ M.
(ii) If moreover F is a closed subset of M such that f is smooth on some open

set U ⊃ F, we can find h such that also h = f on a neighbourhood of F.

Proof Choose a tubular neighbourhood ofV in RN as above. Applying Propo-

sition 1.1.7 to each component ofM
f−→ V ⊂ RN gives a smoothmap h : M →

RN within distance ε of f , and hence with image contained in U . Thus φ ◦ h
gives a mapM → V , and since φ moves each point within a disc of radius< ε,
h is within ε of f .

The same argument, but using (iii) of Proposition 1.1.7, gives (ii).

For N a smooth manifold with boundary, the discussion of geodesics at non-
boundary points is the same as before. At a boundary point P, we see from the
differential equations that local geodesics can be constructed for all inward-
pointing tangent vectors and for no outward-pointing ones. There are several
possibilities for those tangent to the boundary; as examples, the reader may
consider D2 and the closure of R2 \ D2, each with the metric induced from R2.
A Riemannian metric on M is adapted to the boundary if ∂M is totally

geodesic.

Lemma 2.3.5 Let Mm have a Riemannian metric. Then the product metric for
M × R1

+ is adapted to the boundary.
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Proof Let x1, . . . , xm be local coordinates in M, and x0 the coordinate in R1
+.

Then for the metric gi, j we have g0 j = δ0 j. Hence one of the defining equations
for geodesics is simply d2x0/dt2 = 0. Thus if initially x0 = dx0/dt = 0, we
have x0 = 0 all along the geodesic, which thus stays inM × {0}.
A similar argument gives the following.

Lemma 2.3.6 If V ⊂ M is a submanifold whose normal bundle is trivial, then
M has a Riemannian metric in which the submanifold V is totally geodesic.

Proof It follows from Theorem 2.3.3 that V has a neighbourhood inM diffeo-
morphic to V × Rc, where c is the codimension of V in M. We may choose
any metric on V and then take the product metric on V × Rc: in any coor-
dinate neighbourhood of V with metric ds2 =∑ gi, jdxidx j this is given by
ds

′2 =∑ gi, jdxidx j +
∑
dy2k . A short calculation shows that any geodesic ini-

tially tangent to V × {0} remains in this submanifold.
As in the proof of Theorem 1.3.1, we can now construct a metric onM which

agrees with this metric on some neighbourhood of V in M. The result follows.

Proposition 2.3.7 (i) Every manifold Mm with boundary has a Riemannian
metric adapted to the boundary.
(ii) Given a submanifold V v of Mm, there is a metric on M such that V

meets ∂M orthogonally, and the restriction of the metric to V is adapted to the
boundary.

Proof (i) By Theorem 1.5.5, ∂M has a collar neighbourhood ψ : ∂M × I →
M. Let ϕ be a metric on M, ϕ′ the product of some metric on ∂M with the
standard metric of I. We define a metric ϕ′′ by

ϕ′′ =
{
ϕ outside the image of ψ

ϕ′ + (ϕ − ϕ′)Bp(3t − 1) at ψ (P, t ).

The latter agrees with ϕ in a neighbourhood of t = 1, so is smooth everywhere;
it is a Riemannian structure, as a positive linear combination of positive form
is another, and it agrees with ϕ′ near t = 0, so by Lemma 2.3.5, it is adapted to
∂M.
(ii) By Proposition 1.5.6(ii), we may suppose that the restriction to ∂V × I

of the collar neighbourhood of ∂M gives a collar neighbourhood for ∂V . Then
the metric constructed above has both the desired properties.

The definition of tubular neighbourhood of a closed submanifold V v of a
manifoldMm with boundary is the same as before: we require a bundle B over
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V with fibre the discDn−m and an embeddingψ : B→ M (as submanifold with
boundary) extending themap taking the centre of each disc to the corresponding
point of V .
If π : B→ V is the projection of a disc bundle, 
 the boundary sphere-

bundle of B, and C = π−1(∂V ), then B has the structure of a smooth man-
ifold with corner, and ∠B = 
 ∩C separates ∂B into two parts, with clo-
sures 
 and C. It follows that if (B, ψ ) is a tubular neighbourhood of V ,
ψ (C) = ∂M ∩ ψ (B).

Theorem 2.3.8 If M is a manifold with boundary, V a submanifold, then there
exists a tubular neighbourhood of V in M.

Proof By Proposition 2.3.7 (ii), we can choose a Riemannian metric for M,
adapted to the boundary, in whichV meets ∂M orthogonally. As in the proof of
Theorem 2.3.3, we consider the exponential map of the normal bundleN(M/V ).
We need to show that this is well defined. The crucial point is that since the
metric is adapted to the boundary, and the vectors in C are normal to V and
hence tangent to ∂M, integrating them gives curves in ∂M and hence, at least
locally, a mapC→ ∂M. The previous argument shows that this map is a local
diffeomorphism.
The arguments needed to go from having a local diffeomorphism to the result

are the same as those for Theorem 2.3.3.

2.4 Diffeotopy extension theorems

LetV v ,Mm be smooth manifolds, possibly with boundary. A diffeotopy ofV in
M is an embedding h : V × I → M × I which is level-preserving, i.e. we can
write

h(x, t ) = (ht (x), t ) m ∈ V, t ∈ I.
It follows that each ht is also an embedding. We also say that h is a diffeotopy
between h0 and h1.
h is called normalised if it extends to a level-preserving embedding h : V ×

R → M × R such that ht = h0 when t ≤ 0, and ht = h1 when t ≥ 1. If h is any
diffeotopy, the map H : V × R → M × R given by H(m, t ) = (hBp(t )(m), t ) is
a normalised diffeotopy between h0 and h1.

A diffeotopy ofM is a diffeomorphism k ofM × I which is level-preserving,
thus in particular it is a diffeotopy ofM inM. The diffeotopy k ofM covers the
diffeotopy h of V in M if, for all x ∈ V, t ∈ I, kt (h0(x)) = ht (x). A diffeotopy
covered by a diffeotopy of M is called an ambient diffeotopy.
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Lemma 2.4.1 Diffeotopy is an equivalence relation.

Proof The definition h(x, t ) = (h0(x), t ) gives a diffeotopy between h0 and
itself. If h′ gives one between h0 and h1, then h′′, where h′′(x, t ) = h′(x, 1− t )
gives a diffeotopy between h1 and h0. Finally, let h′, h′′ be normalised dif-
feotopies between h0 and h1 and h1 and h2. Then set

h′′′t (x) =
{
h′3t (x) if t ≤ 1/2

h′′3t−2(x) if t ≥ 1/2;

this is a smooth embedding, since h′ and h′′ are so, and we have h′′′t = h1 for
1
3 ≤ t ≤ 2

3 , so that the two parts of the definition fit smoothly.

One of the basic problems in differential topology is to determine the set of
equivalence classes. We will accomplish this in some cases in Chapter 6.
The support of a diffeomorphism h of a smooth manifoldM is the closure of

the set of points P with h(P) �= P.
The support of a diffeotopy h of V in M is the closure of the set of points

P ∈ V such that ht (P) is not independent of t.

Theorem 2.4.2 (Diffeotopy Extension Theorem) Let V , M be smooth mani-
folds, perhaps with boundary, and let h : V × R → M × R be a diffeotopy of
V in M, whose support K is compact, and contained in M̊. Then there is a
diffeotopy k of M, whose support is compact and contained in M̊, and which
covers h; in particular, h is ambient.

Proof Since K is contained in M̊, we can ignore the boundary of M, and sup-
pose simply thatM is a smooth manifold, for if the result is proved in this case,
the diffeotopy k of M which we obtain, having compact support, equals the
identity on a neighbourhood of ∂M × R, and can therefore be extended to the
boundary as the identity.
Let k be a diffeotopy of M × R. Then k defines a vector field on M × R as

follows. Write ∂t for the vector field which projects to 0 onM and to ∂/∂t on R,
and define a vector field onM × R by ξk := dk(∂t ). Since k is level-preserving,
the projection of ξk on the second factor is still ∂/∂t. Also, if k has compact
support, ξk = ∂t except at some points of a compact set.
Conversely, suppose given a vector field ξ whose projection on R is ∂/∂t.

If ξ is complete, it gives rise to a 1-parameter group (ϕt ) of diffeomorphisms
ofM × R, and hence to the diffeotopy given by k(P, t ) = (ϕt (P), t ). Moreover,
the local uniqueness clause in Theorem 1.4.2 implies that if k gives rise to ξ ,
then we recover the original k.
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2.4 Diffeotopy extension theorems 51

Since by Proposition 1.4.4 (ii) and (iii), the vector field ∂t onM × R is com-
plete, it follows by (iv) that if ξ = ∂t except on a compact set, then ξ is complete.
We conclude that to construct the diffeotopy, it is sufficient to construct the

vector field ξ . By the above argument, we see that the necessary and sufficient
condition that k covers h is that on h(V × R), we have ξ = dh(∂/∂t ). Thus the
problem is reduced to the construction of a vector field ξ onM × R satisfying:
(i) ξ = ∂t outside a compact set,
(ii) the projection of ξ on R is everywhere ∂/∂t,
(iii) on h(V × R), ξ = dh(∂/∂t ).
We assert that if we can do this in a neighbourhood of each point of h(V × R),

ξ can be constructed. For such neighbourhoods, together with the complement
U0 of h(V × R), form an open covering of M × R. By Theorem 1.1.5, there
is a smooth partition {�α} of unity strictly subordinate to this covering. If ξα
is a function on the support Uα of �α which satisfies conditions (i) – (iii), the
function ξ :=∑α ξα�α (where ξ0 := ∂t) will satisfy all the conditions.
Now h(V × R) is a submanifold of M × R, hence in a neighbourhood of

any point of it we can find a coordinate neighbourhood ϕ : U → Rm+1 with
U ∩ Imh = ϕ−1(Rv+1); say for simplicity that the image of U is D̊m+1. Then
dϕ(dh(∂/∂t )) =∑ ai∂/∂xi in D̊v+1; we define ξ by taking the same formula
in D̊m+1 (i.e. by taking the ai independent of the last m− v coordinates).

In the case of boundaries, the ai are only defined on D̊v+1
+ . But by Whitney’s

Extension Theorem 1.5.1, they can be extended to smooth functions on D̊v+1,
and then extended to D̊m+1 as above. This completes the proof of the result.

Corollary 2.4.3 If M is a smooth manifold,V a compact submanifold (perhaps
with boundary), then any diffeotopy of the inclusion i : V ⊂ M is an ambient
diffeotopy.

Corollary 2.4.4 If M is a smooth manifold with boundary, any diffeotopy of a
compact submanifold (perhaps with boundary) of M̊ is covered by a diffeotopy
of M.

Proof By the theorem, it is covered by a diffeotopy of M̊ with compact support.
Thus ∂M has a neighbourhood in M̊ fixed by the diffeotopy, which can thus be
extended toM, defining it to be fixed on ∂M.

Proposition 2.4.5 Any diffeotopy of ∂M is covered by a diffeotopy of M.

Proof We shall suppose the diffeotopy ht of ∂M normalised so that ht = 1 for
t ≤ 1

3 and ht = h1 for t ≥ 2
3 . Let ψ : ∂M × I → M be a collar neighbourhood

of ∂M inM (such exist by Theorem 1.5.5). Thenwe define a covering diffeotopy
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kt of M by

kt (Q) =

⎧⎪⎪⎨⎪⎪⎩
Q if Q �∈ Im(ψ ),

Q if Q = ψ (P, s), s ≥ t,

ψ (ht−s(P), s) if Q = ψ (P, s), s ≤ t.

Thus for s = 0, kt agrees with ht , and for s ≥ 2
3 , kt (P) = P, so that k is every-

where smooth, and does cover h.

Theorem 2.4.6 Let M be a manifold with boundary,V a submanifold (perhaps
with boundary). Any diffeotopy of V in M with compact support is covered by
a diffeotopy of M with compact support.

Proof Following the proof of Theorem 2.4.2, we see that it only remains to
show that we can construct ξ in a neighbourhood of each point of h(V × R).
In this case, in a neighbourhood of any point of h(V × R) we can find a
coordinate neighbourhood ϕ : U → Rm+1 with U ∩ Imh = ϕ−1(Rv+1

+ ). By
Theorem 1.5.1 we can write dϕ(dh(∂/∂t )) =∑ ai∂/∂xi in D̊v+1 with the ai
smooth in Rv+1 and define ξ by taking the same formula in Rm+1.

We shall need one or two further kinds of diffeotopy extension, when we
come to consider corners, but feel that by now proofs may be left to the reader.
We mention one immediate application of our results.

Proposition 2.4.7 Let Mm be a manifold (perhaps with boundary), V v a com-
pact submanifold with boundary. Then there is a submanifold Uv of Mm con-
taining V v .

Proof First suppose thatM has no boundary. Let ϕ : ∂V × I → V be a tubular
neighbourhood of ∂V in V . We define a diffeotopy of V by{

ht (P) = P P /∈ Imϕ

htϕ(P, u) = ϕ(P, f (t, u))
,

where f is chosen with
f (t, u) = u for u > 1− ε,
f (0, u) = u,
f (t, 0) > 0 for 0 < ε,

and ∂ f /∂u > 0 everywhere; so that the diffeotopy ‘pushes’ the boundary a
little way into V : for example, we can take f (t, u) = u+ Bp(t − u) provided
t ≤ k, where in this range Bp′(t ) < 1. Now ht is a diffeotopy, hence (V being
compact) is ambient, and so covered by Ht , say, hk(V ) ⊂ V̊ . We can thus take
U = H−1

k (V̊ ).
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2.5 Tubular neighbourhood theorem 53

IfM is bounded, we argue similarly, using that part of the boundary ofV not
contained in ∂V .

This result has the effect that to describe a neighbourhood ofV inM, we can
use tubular neighbourhoods ofU ; tubes round V do not give neighbourhoods.

2.5 Tubular neighbourhood theorem

We shall now use our results on diffeotopy extension to complete the discus-
sion in §2.3 of tubular neighbourhoods by showing that these are, essentially,
unique.
We recall the definition. If B is an (m− v )-disc bundle over V , with group

Om−v , and central cross-section B0, then a tubular neighbourhood of V inM is
an embedding ϕ : B→ M, as submanifold with boundary, extending the pro-
jection of B0 on V .
We say that two tubular neighbourhoods ϕ : B→ M and ϕ′ : B′ → M are

equivalent if there is a bundle map χ : B→ B′ over the identity map of V , and
an ambient diffeotopy of ϕ on ϕ′0χ which is fixed on B0.
Our object is to show that any two tubular neighbourhoods are equivalent.

Since we shall use the result of §2.4 we shall have to assume thatV is compact.
One might expect that this assumption was unnecessary; however, it cannot be
omitted, as the example of Figure 2.3 illustrates.

Figure 2.3 Example of a bad tubular neighbourhood

In the figure, T is the set defined by−3 ≤ y < 3 and x2 + (y− 2)2 ≥ 1, and
the projection of T on R1 is defined by straight lines through (0, 3). This gives
a tubular neighbourhood of R1 in R2

+, which is not a closed subset, so is not
equivalent to a standard one.
The same example thus also shows the necessity of the compactness hypoth-

esis in Theorem 2.4.2.
Let ϕ : B→ M be a tubular neighbourhood for V in M. We consider the

bundle E associated to B but with fibre Rm−v . Then B is a submanifold with
boundary of E. For the tubular neighbourhoods of §2.3, E is simply the normal
bundle N(M/V ).
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We say that an embedding ϕ̄ : E → M as open submanifold, extending the
projection of E0 on V , is a open tubular neighbourhood of V inM.

Lemma 2.5.1 Any tubular neighbourhood ϕ : B→ M can be extended to an
open tubular neighbourhood ϕ̄ : E → M.

Remember that we are assuming that V is compact. We use the same idea as
for Proposition 2.4.7.

Proof We can define a diffeotopy of ϕ as follows. Recall that over each neigh-
bourhoodU inV , B is a product ofU with a vector space; in the sequel, we per-
mit ourselves to form sums and products by scalars in these vector spaces, using
the standard notation. Then our diffeotopy is ϕt (x, v ) = ϕ(x, tv ) for 1

2 ≤ t ≤ 1
(where x ∈ V , v ∈ Dm−v ). Since V , and so also B, is compact, the diffeotopy is
ambient: say it is covered by the diffeotopy kt of M. But ϕ1/2 can be extended
to a open tubular neighbourhood, for example, by the map

¯̄ϕ(x, v ) = ϕ

(
x,
γ (‖v‖)
‖v‖ · v

)
,

where γ is smooth, γ (t ) = 1
2 t for 0 ≤ t ≤ 1, γ ′(t ) > 0, and γ (t ) < 1. We can

now define ϕ̄ = k−11/2 ◦ ¯̄ϕ.
A suitable γ can be constructed by using bump functions, for example, we

may take

γ (t ) = 1

3

∫ t

0
{1+ (e−x − 1)Bp(x− 1)}dx.

Lemma 2.5.2 Let ϕ̄ : E → M, ϕ̄′ : E ′ → M be open tubular neighbourhoods
ofV inM such that Im ϕ̄ ⊂ Im ϕ̄′. Then for some bundle map χ̄ : E → E ′, there
is a diffeotopy of ϕ̄ on ϕ̄′ ◦ χ̄ which is fixed on B0.

Proof Let j = ϕ̄′−1 ◦ ϕ̄ : E → E ′, then j is an embedding. Consider the map-
pings jt given by jt (e) = t−1 j(te) for 0 < t ≤ 1, e ∈ E; where the multiplica-
tions by t−1, t are again scalar multiplications in the fibre. Clearly j1 = j; we
shall show that the definition of jt can be extended to t = 0, and that j0 can be
taken as χ̄ : ϕ̄′ ◦ jt will then give the required diffeotopy of ϕ̄ = ϕ̄′ ◦ j on ϕ̄′χ̄ ;
it is fixed on B0.

Take local coordinates x = (x1, . . . , xv ) in V , and let y, z be Euclidean coor-
dinates in the fibres of E, E ′. Then setting j(x, y) = (α(x, y), β(x, y)) we have

jt (x, y) = (α(x, ty), t−1β(x, ty)).
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But j carries the zero cross-section of E onto that of E ′, so

α(x, 0) = x, β(x, 0) = 0.

Now by Lemma 1.2.3, applied to β (regarded as a function of y with x as a
parameter), there are smooth functions βi with β(x, y) =∑ yiβi(x, y). Then
t−1β(x, ty) =∑ yiβi(x, ty), so we can write jt in the form

jt (x, y) = (α(x, ty),
∑

yiβi(x, ty)),

where the left-hand side is a smooth function also at t = 0. This shows that we
have a smooth map J : E × I → E ′ × I defined by the jt ; to have a diffeotopy,
wemust check that the Jacobian is everywhere non-zero. This follows for t �= 0,
since j is a diffeomorphic embedding, and multiplication by t or t−1 gives a
diffeomorphism. Now

j0(x, y) =
(
x,
∑

yiβi(x, 0)
)
=
(
x,
∑

yi
∂β

∂yi

∣∣∣∣
y=0

)
induces a linear map of each fibre, with matrix (∂β j/∂yi) = (∂z j/∂yi) which is
also the matrix of partial derivatives of j on B0. Since j0 is an embedding, this
is non-zero. It follows that j0 is aGLm−v -bundle map, hence a diffeomorphism.
We can thus take χ̄ = j0. We have also verified by the same token that J is a
diffeotopy.

Corollary 2.5.3 The result holds also without the assumption Im ϕ̄ ⊂ Im ϕ̄′.

Proof For Im ϕ̄ ∩ Im ϕ̄′ is a neighbourhood of V , which thus has a tubular
neighbourhood, hence also a open one ϕ̄′′, with Im ϕ̄′′ ⊂ Im ϕ̄ ∩ Im ϕ̄′. Then
there are bundle maps modulo which ϕ̄′′ is diffeotopic both to ϕ̄ and ϕ̄′, whence
the result follows.

Lemma 2.5.4 Let ϕ̄ : E → M, ϕ̄′ : E ′ → M be open tubular neighbourhoods
of V in M where the bundles E, E ′ have group Om−v . Then the conclusion of
Lemma 2.5.2 holds, with χ̄ an Om−v -bundle map.

Proof It suffices to show that any ψ : E → E ′ which is a GLm−v (R)-bundle
map is diffeotopic to anOm−v -bundle map. As above, in coordinates,ψ is given
by

ψ (x, y) = (x, z) where zi =
∑

ai j(x)y j.

Now since the group is the orthogonal group, we can speak of the length of
a vector in the fibre (compare §1.2). By the Gram–Schmidt orthogonalisation
process, take the vectors bi with components ai j, and write bi =

∑i
j=1 λi je j,
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where the ei are orthonormal, and each λi j > 0. If ei has components ei j, con-
sider now the diffeotopy

kt (x, y) = (x, zt ), where (zt )i =
∑
j,k

(tλi j + (1− t )δi j )e jkyk.

That this is a diffeotopy follows as no matrix (tλi j + (1− t )δi j ) is singular (for
the matrix is triangular, with non-zero diagonal terms); k1 is the given map ψ ,
and k0 takes one orthonormal base to another, so is an Om−v -bundle map.

Theorem 2.5.5 (Tubular Neighbourhood Theorem) Let Mm be a smooth man-
ifold and V v a compact submanifold. Then any two tubular neighbourhoods of
V in M are equivalent.

Proof Let ϕ : B→ M, ϕ′ : B′ → M be tubular neighbourhoods of V inM. By
Lemma 2.5.1, ϕ and ϕ′ extend to open tubular neighbourhoods ϕ̄, ϕ̄′. By Corol-
lary 2.5.3, there is a bundle map χ̄ : E → E ′ such that there is a diffeotopy of
ϕ̄ on ϕ̄′ ◦ χ̄ , fixed on B0. By Lemma 2.5.4, we may take χ̄ as an Om−v -bundle
map. Then χ̄ maps B into B′, and so we can take χ as its restriction. It follows
that χ is a bundle isomorphism. Also, by Theorem 2.4.2, the diffeotopy we
have constructed is in fact ambient.

As a first corollary, we obtain a useful little result.

Theorem 2.5.6 (Disc Theorem) Let M be a connected manifold (perhaps
with boundary), f1, f2 : Dm → Mm embeddings as submanifold with bound-
ary. Then f1 and f2 are ambient diffeotopic unless M is oriented and f1, f2
have opposite orientations.

Proof LetPi = fi(O) (i = 1, 2). Since M̊ is connected, there is a smooth path
connecting P1 and P2 in M̊, i.e. a diffeotopy of P1 and P2, considered as sub-
manifolds of zero dimension. By the diffeotopy extension theorem, there is an
ambient diffeotopy. Hence we may suppose P1 = P2 = P. Now f1, f2 are tubu-
lar neighbourhoods of P, so by Theorem 2.5.5, there is an orthogonal transfor-
mation χ of Dm, such that f1 and f2 ◦ χ are ambient diffeotopic.

Now if χ ∈ SOm, then f2 is diffeotopic, so also ambient diffeotopic to f2 ◦ χ ,
so the result follows. If not, andM is orientable, we have the case excluded by
the theorem. If M is non-orientable, there is an orientation-reversing smooth
path (see the discussion after the definition of orientability), and if we take P
on an ambient diffeotopy round such a path, the sign of the determinant of χ
will change.

We shall use numerous extensions of Theorem 2.5.5 in the sequel; let us
indicate one or two briefly here. The definition of equivalence remains the same.
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Proposition 2.5.7 Any two collar neighbourhoods of ∂M in M are equivalent
if ∂M is compact.

Proof The proof follows the same pattern. The analogues of Lemma 2.5.1 and
Lemma 2.5.2 follow as before. In Lemma 2.5.4, note only that our group is not
GL1(R) or O1, but simply GL+1 (R) or SO1 – the trivial group. This makes for a
slight simplification in the argument.

Proposition 2.5.8 The result of Theorem 2.5.5 holds also if M has a boundary.

We note that in proving uniqueness of tubular neighbourhoods, in contrast to
the case where we had to prove existence, no extra difficulties arise in the case
where we have boundaries.
We now present an alternative approach to the existence of tubular neigh-

bourhoods which, while less immediate than the use of the exponential map, is
more flexible for generalisations.
We begin with notation. For π : E → B the projection map of a vector bun-

dle, we identify B with the zero cross-section (the zero vectors in the fibres).
The map π induces π∗ : T(E )→ T(B), hence for each e ∈ E a linear map
TeE → TeB. Vectors in the kernel are called vertical tangent vectors of E, and
we write Tv (E ) for the bundle of vertical tangent vectors.

Define a partial tubular neighbourhood of a submanifold V of M to consist
of a neighbourhoodU of V in the normal bundle N(M/V ) together with a map
ψ : U → M such that, for each v ∈ V , ψ (v ) = v and the composite

Nv (M/V ) = T v
v (N(M/V ))

dψ−→ Tv (M)→ Nv (M/V )

is the identity. We will construct partial tubular neighbourhoods by piecing
together ones constructed over coordinate neighbourhoods in V . The defini-
tion implies that at each v ∈ V the map dψ : TvU → TuM is the identity on
the common subspace TvV and an isomorphism on the quotient, hence by the
Inverse Function Theorem 1.2.5 that ψ is a local diffeomorphism. Thus if V
is a closed submanifold with a partial tubular neighbourhood in M, it follows
from Corollary A.2.6 that V has a neighbourhood U ′ in U such that ψ |U ′ is
an embedding; and so, by the same argument as in Theorem 2.3.3, that V has a
tubular neighbourhood inM.

Proposition 2.5.9 Any submanifold V of a manifold M has a partial tubular
neighbourhood.

Proof Since V is a submanifold, at any point P ∈ V there is a chart φ :
(UP,UP ∩V )→ (Rm,Rv ). Identifying Rm ∼= Rv × Rm−v gives a partial tubu-
lar neighbourhood forUP ∩V .
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These open sets UP ∩V form an open cover {Va} of V ; by Theorem 1.1.5,
there is a smooth partition {ηa} of unity strictly subordinate to it. WriteWa for
the closure of the support of ηa: thusWa is closed,Wa ⊂ Va, and theWa cover
V . We will construct a partial tubular neighbourhood overV by extending over
a neighbourhood of one setWa at a time. Arguing as in Proposition 1.1.7, we
can construct a smooth function εa onV , vanishing outsideVa, taking the value
2 on a neighbourhood ofWa, and with all values in [0,2].

First consider two open subsets Va, Vb of V and partial tubular neighbour-
hoods ψa : Ua → M, ψb : Ub → M. Since each of the images is a neighbour-
hood ofVa ∩Vb inM, the composite φab := ψ−1

b ◦ ψa is defined on a neighbour-
hood X of the zero cross-section ofVa ∩Vb inN(M/V ). Using a trivialisation of
N(M/V ) over Vb, we can write φab, which is a partial map of Rk × (Va ∩Vb) to
itself, as φab(x, y) = ({ fi(x, y)}, g(x, y)) in a neighbourhood of {0} × (Va ∩Vb).
Since φab preserves the zero cross-section, each fi(x, y) vanishes when x = 0.
Hence by Lemma 1.2.3, we can write fi(x, y) =

∑
k xk fik(x, y). Define a defor-

mation by

�t (x, y) :=
({∑

k

xk fik(tx, y)

}
, g(tx, y)

)
.

As in the proof of Lemma 2.5.2, this is well defined and smooth for a range
including t = 0. By definition, �1 = φab = ψ−1

b ◦ ψa. It follows from the def-
inition of partial tubular neighbourhood that �0 reduces to the identity.

Define ε : Va ∩Vb → I by ε(z) = Bp( 12 (1+ εa(z)− εb(z))); thus ε = 1 if
εa − εb ≥ 1 and ε = 0 where εa − εb ≤ −1. Now define ψab by

ψab(z) =

⎧⎪⎪⎨⎪⎪⎩
ψa(z) if z ∈W ′

a \ Xb,
ψb(�ε(z)(z)) if z ∈ Va ∩Vb,
ψb(z) ifz ∈W ′

b \ Xa.

Each formula defines a smooth map on an open set.
On the overlapW ′

a ∩ (Vb \ Xb) we have εa(z) = 2, εb(z) ≤ 1, so ε(z) = 1 and
the first two formulae agree. Similarly onW ′

b ∩ (Va \ Xa) we have ε(z) = 0, and
the latter two formulae agree. Hence ψab is defined and smooth onW ′

a ∪W ′
b.

It remains to check the derivative along the zero section. This reduces to
checking the x-derivative at x = 0 of

∑
k xk fik(tx, y), which indeed reduces to

the identity.
By Theorem 1.1.4 we may suppose the covering {Va} locally finite and hence

countable, so label the pairs by n ∈ N. We now construct a partial tubular neigh-
bourhood over V by extending over one set at a time. Suppose a partial tubular
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neighbourhood constructed on a neighbourhood X of
⋃n−1

r=1Wr. Then the con-
struction in the first part of the proof yields a partial tubular neighbourhood on
a neighbourhood of

⋃n
r=1Wr; moreover, the alteration takes part only insideVn.

Since the covering is locally finite, each point ofV has a neighbourhood which
is only affected by a finite number of steps of the construction, so the sequence
of maps converges, being ultimately constant on a neighbourhood of any given
point. The limit gives the desired partial tubular neighbourhood of V .

Proposition 2.5.10 Given submanifolds V ⊂W ⊂ M, there exists a partial
tubular neighbourhood ψ : U → M of V in M such that the restriction of ψ
to U ∩ N(W/V ) is a partial tubular neighbourhood of V in W. Hence if V
is closed, there exists a tubular neighbourhood ψ : N(M/V )→ M of V in M
whose restriction to N(W/V ) is a tubular neighbourhood of V in W.

Proof The proof of Proposition 2.5.9 goes through with the only change being
the requirement on each of the partial tubular neighbourhoods of compatibility
withW . As before, the existence of a tubular neighbourhood follows from that
of a partial tubular neighbourhood.

This rather weak relative form of Theorem 2.3.3 will be used in §6.3.
Clearly the argument adapts to further cases such as V ⊂W1 ⊂W2 ⊂ M or

to having two submanifoldsW1 andW2 of M such that at each v ∈ V there is a
chart with each of theWi mapping to a coordinate subspace of Rm. Let us make
one such result explicit.

Lemma 2.5.11 Let V v → Mm be an embedding of connected oriented man-
ifolds. Then there exist orientation preserving embeddings φ : (Dm,Dv )→
(M,V ), and any two such are isotopic.

2.6 Corners and straightening

We recall thatMm is a manifold with corner if it has an atlas, with charts map-
ping to open sets in Rm

++, and that the corner ∠M is the set of points mapping
to Rm−2. At such a point ∠M has two sides in ∂M: one corresponding locally
to x1 = 0, the other to x2 = 0. Globally, the two sides define a double covering
of ∠M, and we say that the corner is two-sided if this covering is trivial.

Lemma 2.6.1 If ∠M is two-sided, there is a smooth embedding h : ∠M ×
I2 → M with h(x, 0, 0) = x for each x ∈ ∠M and h−1(∂M) = (I × {0}) ∪
({0} × I). Moreover, h is unique up to diffeotopy.
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Proof Since we are only interested in a neighbourhood of ∠M, we can delete
from ∂M the complement of a neighbourhood of ∠M, and thus suppose that
∂M consists of such a neighbourhood and hence, since ∠M is two-sided, can
be split into two components, ∂1M and ∂2M, each with boundary ∠M.

Let h1 : ∠M × I → ∂1M be a collar neighbourhood of ∠M in ∂1M.
By Proposition 1.5.6, there is a smooth embedding h2 : (∂1M)× I → M giv-

ing a neighbourhood of ∂1M. We may now set h(x, t1, t2) = h2(h1(x, t1), t2)
for x ∈ ∠M and t1, t2 ∈ I. Uniqueness up to diffeotopy follows from the corre-
sponding result for collars.

We can call the map we have constructed a bicollar neighbourhood of ∠M.
Define ∂ sM by cutting ∂M along∠M. By the arguments of Proposition 1.5.6,

we can find a map ∂sM × I → M which is an embedding except that a bicollar
neighbourhood is covered twice: call the image a semicollar of ∂M. Both a
bicollar and a semicollar are pictured in Figure 2.4.

Figure 2.4 A bicollar and a semicollar

Proposition 2.6.2 If M is a manifold with corner, there exist a manifold with
boundary N and a homeomorphism h : M → N which is a diffeomorphism
except on ∠M. Moreover, there is a construction of such an N which gives a
result unique up to diffeomorphism.

Proof Our construction is as follows. N will be M itself, with a different dif-
ferential structure, defined by a new set of coordinate neighbourhoods. At
points ofM \ ∠M, the differential structure and coordinate neighbourhoods are
unchanged. Let h : ∠M × I2 → M be a bicollar neighbourhood as above. Then
a coordinate neighbourhood for ∠M, with coordinates x3, . . . , xm determines
one for the neighbourhood with additional coordinates t1, t2.
We define N by the same mapping, but followed by taking the new coordi-

nates as (z1, z2) = (t21 − t22 , 2t1t2). Since t1 + it2 lies in the first quadrant of the
complex plane C, z1 + iz2 = (t1 + it2)2 lies in the upper half-plane z2 ≥ 0. We
thus have the structure of smooth manifold with boundary. Uniqueness up to
diffeomorphism follows from the uniqueness in Lemma 2.6.1.
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Figure 2.5 Rounding a corner

The resulting manifold N is said to be derived from M by straightening the
corner.

We have discussed straightening corners, but may also consider the converse
process, the introduction of corners. Given a manifold with boundary N, and a
submanifold L of ∂N of codimension 1, we can construct a tubular neighbour-
hood of L in N, and redefine the differentiable structure, again using the change
of coordinates (z1, z2) = (t21 − t22 , 2t1t2) in R2, to introduce a corner along L.
The resulting M is unique up to diffeomorphism.
Since we have just reversed the above procedure, if we straighten the corner,

we return to amanifold diffeomorphic toN. The procedure is roughly illustrated
in Figure 2.5.

Lemma 2.6.3 If L is a submanifold of ∂N of codimension 1, we can introduce
a corner on L in an essentially unique way. If we straighten it, we recover L.

While the abovemethod of straightening is satisfactory, it is desirable to have
alternative constructions, and be able to recognise when they give the same
result.
We begin with the picture in the case when M has no corner. We can take

a smooth vector field ξ on M, inward pointing at the boundary, and integrate
to construct a collar neighbourhood ϕ : ∂M × I → M. A smooth submanifold
L ⊂ M of codimension 1, contained in the collar neighbourhood, and transverse
everywhere to ξ , can be identified with the graph of a smoothmap ∂M → I. If L
lies in the interior of the collar, it separates the collar into two pieces; it follows
from Theorem 1.5.4 (taking the function f = t as the projection on I and the
vector field as ∂/∂t) that each is diffeomorphic to ∂M × I. Now L separatesM
into an outer part lying between L and ∂M, and hence diffeomorphic to ∂M × I
and an inner part L∗; it follows from Lemma 2.7.2 below that the inner part is
diffeomorphic to M.
We say that a smooth vector field

∑n
1 ai

∂
∂xi

is inward pointing in Rn
++ if

a1 > 0 on x1 = 0 and a2 > 0 on x2 = 0. This definition is intrinsic, so passes
to manifolds with corners.
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Proposition 2.6.4 Let ξ be a smooth vector field on M, inward pointing
at boundaries and corners, L ⊂ M a smooth submanifold of codimension 1,
contained in a semicollar, and transverse everywhere to ξ . Then the inner
region of L is diffeomorphic to the manifold N defined by straightening the
corner.

Proof ThemanifoldN is obtained by applying the above change of coordinates
(z1, z2) = (t21 − t22 , 2t1t2) at the corner. The image of the vector field ξ is not
smooth at points corresponding to the corner, so we argue as follows.
In N we have a collar neighbourhood of z2 = 0 given locally by (z1, t ). It

contains a smooth submanifold Lε given locally by z2 = ε. The region between
Lε and ∂N is a collar, and the inner region for Lε is diffeomorphic to N.
The region 0 ≤ z2 ≤ ε in N becomes 0 ≤ t1, t2 and 2t1t2 ≤ ε in M. The

boundary Lε given by 2t1t2 = ε is transverse to ξ , for we have
∑

i ai
∂
∂ti
(2t1t2) =

2a1t2 + 2a2t1 > 0 since, at least for ε small enough, we have a1, a2, t1, t2 > 0.
If L is any other submanifold transverse to ξ , there is an L′ contained in the

collar region, transverse to ξ , and disjoint from both L and Lε. Hence the inner
regions for L, L′ and Lε are all diffeomorphic.

Once we have a semicollar, we can regard a neighbourhood of ∠M as the
product of ∠M with the region 1 > y > |x| in R2 and then construct L as the
graph of a function μ(x) defined by smoothing |x|. An example of such a func-
tion can be constructed as follows.
The function ε−1Bp(1− |x|

ε
) is smooth, non-negative, vanishes unless |x| <

ε, and has
∫∞
−∞ δε(x)dx = 1. Now set μ(x) := ∫∞−∞ |y|δε(x− y)dy. Then μ(x)

is smooth, even, μ(x) = |x| if |x| ≥ ε, and μ(x) is strictly increasing for x > 0.

Corollary 2.6.5 Dr+s is derived from Dr × Ds by straightening the corner.

Proof We can take the vector field in Dr × Ds to be the radial vector field∑r+s
1 xi

∂
∂xi
, which is indeed inward pointing at the corner. We can then take

Sr+s−1 as the above L.

We have given details for rounding corners in the simplest case. It is
not possible to approximate any submanifold (not even any locally tame
one) of a smooth manifold by a smooth submanifold, but the technique of
rounding corners can be extended to the boundary of a submanifold of zero
codimension: we have already mentioned the existence of smooth regular
neighbourhoods.
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2.7 Cutting and glueing

Let Mi(i = 1, 2) be manifolds with boundary, ∂Mi = Qi, and suppose given a
diffeomorphism h : Q1 → Q2. Take the disjoint union M1 ∪M2, and identify
points corresponding under h to give a topological space N, and an identifica-
tion map π : M1 ∪M2 → N. Choose collar neighbourhoods ϕi : Qi × I → Mi,
and define a map ϕi : Q1 × D1 → N by

ϕ(q, t ) =
{
πϕ1(q, t ) if t ≥ 0

πϕ2(h(q), t ) if t ≤ 0;
these agree on t = 0 since Q1 and Q2 were identified using h. Then ϕ is injec-
tive; in fact, it is an embedding. Define a function f on N to be smooth pro-
vided f ◦ π is a smooth function on M1 ∪M2 and f ◦ ϕ a smooth function on
Q1 × D1. The axioms defining a smooth manifold are now satisfied: coordinate
neighbourhoods in M1, Q1 × D1, and in M2 give rise to coordinate neighbour-
hoods in N, and where these overlap, they agree.
We have not made full use of the assumption ∂Mi = Qi, and none of the

above argument is affected if ∂Mi is the disjoint union of a certain set of com-
ponents, and Qi the union of a subset of these components. In this case, the
remaining boundary components form the boundary of N.
More generally, suppose given manifoldsM1, M2 with corner, smooth parts

Qi of ∂Mi, and a diffeomorphism h : Q1 → Q2. Then by Proposition 1.5.6 (i)
we have collar neighbourhoods of eachQi, and the same definition now applies.
We say that N is obtained by glueing M1 toM2 by h (or, along Q1).

Lemma 2.7.1 The manifold defined by glueing M1 to M2 by h is determined
up to diffeomorphism.

Proof The only arbitrary element in the definition was the choice of collar
neighbourhoods of the Qi. The result follows since these are unique up to dif-
feotopy.

The manifold obtained by glueingM to itself via the identity map ∂M → ∂M
is said to be obtained by doubling M, and denoted D(M).
Another simple but useful case is the following.

Lemma 2.7.2 The result of glueing M to ∂M × I by the map h : ∂M → ∂M ×
{0} given by h(x) = (x, 0) is diffeomorphic to M.

Proof Let k : ∂M × I → M be a collar neighbourhood of ∂M. Define p : M ∪
(∂M × I) → M by:
p is the identity on M \ Im(k),
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Figure 2.6 Cutting and glueing

p(k(x, t )) = k(x, α(t )) for x ∈ ∂M, t ∈ I,
p(x, t ) = k(x, 1

2 (1− t )) x ∈ ∂M, t ∈ I.
This induces a bijection between the manifold obtained by glueing andM pro-
vided that α(t ) increases from 1

2 to 1 as t increases from 0 to 1. To make it a
diffeomorphism it will suffice if also α(t ) = 1

2 (1+ t ) for t < ε and α(t ) = t
for t > 1− ε, for some small ε, for example, take α(t ) = 1

2 {(t + 1)+ (t − 1)
Bp(3t − 1)}.

Glueing, and its inverse operation cutting, are both illustrated in Figure 2.6.
Now let Qn−1 be a submanifold of Nn, with inclusion map i : Q→ N. For each
point P ∈ Q, di(TPQ) is a subspace of TPN of unit codimension, and so sepa-
rates this real vector space into two components. We define a manifold M as
follows. Its points are those of N \ Q, together with two points for each point P
of Q, one associated with each complementary component of di(TPQ) in TPN
or, as we shall say, side ofQ inN. There is thus a natural projection π : M → N.
We take for coordinate neighbourhoods inM those induced by π from coordi-
nate neighbourhoods in N \ Q; in addition, for each coordinate neighbourhood
f : U → Rn with f−1(Rn−1) = U ∩ Q two coordinate neighbourhoods in M;
induced by π from the restriction of f to the inverse images of Rn

+ and Rn
−

(in the latter case, we must change the sign of the first coordinate to obtain a
coordinate neighbourhood of standard type). Here, of course, the points of N
corresponding to a certain side of Q in N are mapped by the coordinate neigh-
bourhood for the corresponding side of Rn−1 in Rn; since df is nonsingular, it
preserves the distinction between sides.
We say that the resulting manifold M is obtained by cutting N along Q.
The same definition can be given more generally in the case when N has a

boundary and Q is a submanifold of codimension 1 (so ∂Q = Q ∩ ∂N): in this
case the points corresponding to ∂Q form the corner ∠M; this divides ∂M into
two parts: a part ∂1M obtained by cutting ∂N along ∂Q and a part ∂2M which
is a double covering of Q. The double covering is given by the two sides of Q,
or equivalently by the normal bundle, which we can take to have fibre D1 with
boundary giving the two points.
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For example, if N \ Q has just two components, with closuresM1 andM2 so
that ∂M1 = Q = ∂M2, then cutting N along Q yields the disjoint union of M1

and M2.

Proposition 2.7.3 If N is defined by glueing M1 to M2 along Q1, and we cut
N along π (Q1), we recover M1 and M2. Conversely, if Nn and its submanifold
Qn−1 are connected, Q separates N with parts M1 and M2 and we glue M1 to
M2 along Q, we recover N.

Proof The first part is immediate from the definition of glueing. For the con-
verse, if the above conditions are satisfied, we obtain M1 and M2. Now if
ϕ : Q× D1 → N is a tubular neighbourhood ofQ in N, ϕ defines by restriction
collar neighbourhoods of Q inM1,M2. If these are used in the glueing process,
we recoverN. The second part of the result now follows fromLemma 2.7.1.

There are alternative definitions of cutting, which yield the same result up to
diffeomorphism. One is to let ρ be a complete metric on N, and defineM as the
metric completion of N \ Q.
We can also define a manifoldM′ by deleting from N the interior of a tubular

neighbourhood of Q. We see directly that this is obtained from the manifoldM
obtained by cutting N along Q by removing the interior of a collar neighbour-
hood of the boundary, hence by Lemma 2.7.2 is diffeomorphic toM.

We have seen that cutting and glueing are inverse operations, but cutting as
defined above is more general than the inverse of glueing as it includes the case
when the normal covering of Q in N is non-trivial. However we can also define
glueing more generally: let Q1,Q2 be smooth parts of ∂M, not necessarily dis-
joint, and h : Q1 → Q2 a diffeomorphism. The definition of glueing along h is
now, as above, the quotient ofM by identifying along h, with smooth structure
defined using a choice of collar neighbourhoods of the Qi. We see easily that
this remains inverse to the cutting operation.
An important application of glueing is the following. Let Mm

1 ,M
m
2 be con-

nected smooth manifolds, fi : Dm → Mm
i embeddings. Delete the interiors of

the images of the fi, and glue the result along the boundary fi(Sm−1) by f2 f−11 .
Since removing a disc does not disconnectM if m > 1, the result is connected:
it is called the connected sum, and writtenM1#M2. The construction is pictured
in Figure 2.7.

Theorem 2.7.4 M1#M2 is determined up to diffeomorphism by summands,
unless these are both orientable, when there are two determinations.

Proof By the Disc Theorem 2.5.6, the embeddings fi are unique up to ambi-
ent diffeotopy and a possible change of orientation. By Lemma 2.7.1 the result
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Figure 2.7 The connected sum

of glueing, given f1 and f2, is unique up to diffeomorphism. Hence the result
follows, except for considerations of orientation. Now if f1, f2 are replaced by
f1 ◦ r, f2 ◦ r, where r is a reflection, the connected sum is unaltered. If neither
Mi is orientable, the result is trivial; if only M2 is orientable, using the above
possibility of simultaneous reversal, uniqueness again follows. If both are ori-
entable, the result has two possible cases.

To make the result precise in the orientable case, we suppose the Mi both
oriented, and that one of the fi preserves, the other reverses orientation. The
result is then again unique, and has a canonical orientation inducing the given
ones of the Mi.
The connected sum is also defined for manifolds with boundaries and cor-

ners; we simply suppose that the fi map into the interior. However, in this
case we also have a different sum operation. Let fi : Dm−1 → ∂Mm

i be an
embedding. Introduce a corner along fi(Sm−2). We may now glue the fi(Dm−1)
together by f2 f−11 . The result is called a boundary sumM1 +M2 ofM1 andM2.

Proposition 2.7.5 If Mm
1 , M

m
2 are connected manifolds with connected bound-

aries, M1 +M2 is determined up to diffeomorphism by M1 and M2 unless ∂M1

and ∂M2 are both orientable, when there are two sums.

Proof This follows by the Disc Theorem exactly as for Theorem 2.7.4.

We conclude by summing up the simple properties of those operations.

Proposition 2.7.6 Both operations are commutative and associative, with
units: Mm#Sm ∼= Mm, Mm + Dm ∼= Mm. We have ∂ (M1 +M2) = ∂M1#∂M2.

Proof Commutativity and associativity are immediate. To form Mm#Sm we
simply delete one disc fromMm, and replace it by another disc.

The second result may be seen as follows. Dm is obtained from Dm−1 × I
by straightening the corner. Derive N from M by introducing a corner along
f (Sm−2) as above; then glueing on Dm−1 × I does not affect N other than by
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a diffeomorphism by Lemma 2.7.2. The result follows by straightening the
corner.
The last part is merely an observation of what happens to the boundary for

the sum operation.

2.8 Notes on Chapter 2

§2.1 I have proved a little more than I need at this point, but the existence of a
neighbourhood of �(M) of pairs joined by minimal geodesics allows us to go
further and define a continuous family of paths joining nearby points.
§2.2 These (classical) results on geodesics could be taken as the jumping

off point for further results in differential geometry. Another treatment of this
material is given in Milnor [98, II].
§2.3 It seems that tubular neighbourhoods, along with fibre bundles, were

first introduced by Whitney [174].
§2.4 Our results are restricted to the case of diffeotopies of compact support.

This restriction is necessary; otherwise we have counterexamples; but it may
be possible to improve the result. The result was first proved by Thom [152],
with a sharper version obtained independently by Cerf [36] and Palais [118].
§2.5 The tubular neighbourhood theorem was first proved by Milnor in lec-

tures at Princeton University in 1961; an equivalent result was obtained in [36].
The construction of tubular neighbourhoods by local piecing together of par-

tial tubular neighbourhoods is the method adopted by Cerf [36] and Lang [83];
it gives a proof of Theorem 2.5.10 without using the clumsy hypothesis that the
normal bundle is trivial.
§2.6, §2.7, For a corner which is not two-sided, there is an analogue of a

bicollar neighbourhood which is an embedding of a bundle over ∠M with fibre
I × I and group Z2 interchanging the components.

The disc theorem justifies the definition of connected sum. This seems to be
due to Milnor, in the context of homotopy spheres.
Both these sections are designed for use in Chapter 5 for the theory of handle

decompositions.
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3

Differentiable group actions

We begin by recalling the definitions of Lie groups, of group actions, and of
smooth actions, and establish some elementary properties.
Although the centre of our interest is in actions of compact (including finite)

groups, the geometrical properties extend to all proper group actions. A key step
is the notion of slice. We establish the existence of slices for arbitrary proper
actions. This leads at once to a local model for a proper smooth actions, which
is the basis for all the subsequent results.
We show that the development of basic results in §1.1 can be parallelled

in the group action situation: we have covers by coordinate neighbourhoods,
partitions of unity, an approximation lemma, and invariant Riemannian met-
rics. There is also a theorem on the existence of an equivariant embedding in
Euclidean space (with an orthogonal action), which applies when the group is
compact.
We continue by defining orbit types, and the stratification of the manifold

by orbit types. This stratification is locally finite and smoothly locally trivial.
One consequence is that if the manifold is connected, one orbit type is dense
and open: orbits of this type are called principal orbits. We give a model for a
neighbourhood of a stratum, and proceed to an analysis of the case with two
strata.
We conclude with examples.

3.1 Lie groups

We recall from §1.3 that a Lie group is a smooth manifold G, which is also a
group, such that the group operations g 	→ g−1, (g, h) 	→ gh are smooth maps
G→ G, G× G→ G.

68
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3.1 Lie groups 69

Important examples are the general linear groups GLm(R) and GLm(C)
of nonsingular m× m real, respectively complex, matrices, which are open
submanifolds of the vector space of all matrices. We also use the notation
GL(V ) for the group of linear endomorphisms of the vector space V .
A Lie subgroup is a smooth submanifold which is also a subgroup. Any sub-

group of a Lie group G which is a closed subset is a Lie subgroup. This result
is not trivial: a proof is given, for example, in [146, Theorem 4.1] or in [148,
§3.1].
Not every subgroup of a Lie group is a closed subset: a simple example is

the additive subgroup Q of R. However, the closure of any subgroup is also
a subgroup, hence is a Lie subgroup. If H is a Lie subgroup of G, as H is
locally closed, it is open in its closure and hence by homogeneity is equal to its
closure.
Among the Lie subgroups of GLm(R) are the group GL+m (R) of matrices

with positive determinant, the group SLm(R) of matrices of determinant 1, the
orthogonal group Om (orthogonal matrices can be characterised by the equa-
tion AAt = I), and SOm = SLm(R) ∩ Om. Lie subgroups of GLm(C) include
SLm(C),Um (here we have AA

t = I) and SUm. Further important examples are
the spinor groups Spinm (the double covering group of SOm), and the symplec-
tic group Spm, defined like Um, but using the algebra H of quaternions. We
identify SO2 with the multiplicative group S1 of complex numbers of modu-
lus 1, and SU2 (also Spin3 and Sp1) with the multiplicative group S3 of unit
quaternions.
There is a general classification of compact Lie groups, which has its origin

in the work of Lie andKilling: a convenient recent account is given in [125] (see
Theorem 10.7.2.4). Any connected compact Lie group G has a finite covering
group which is a direct product of copies of groups of the type S1, SUm, Spinm,
Spm and five other groups denoted G2, F4, E6, E7, and E8. We will not use this
in this book, but it opens the way to enumerations of groups and group actions
satisfying prescribed conditions.
For G a Lie group and g ∈ G, the map ρg : G→ G defined by ρg(x) = xg

is a diffeomorphism, with inverse ρg−1 ; it is called right translation by g. Left
translation λg is defined similarly.

If G is a group and H a subgroup, we write G/H for the set of right
cosets {gH | g ∈ G} and π : G→ G/H for the natural projection given by
π (g) = gH. We also have left cosets Hg := {hg | h ∈ H} and the coset space
H\G := {Hg | g ∈ G}.
IfG is a Lie group andH a Lie subgroup, the coset spaceG/H (with the quo-

tient topology) has a natural structure as a smooth manifold. For at any g ∈ G,
choose a chart ϕ : U → Rp+q such that the submanifold U ∩ gH corresponds
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to the subspace Rp; then take the composite Rq ⊂ Rp+q → U ⊂ G→ G/H as
a chart at gH ∈ G/H. It is easy to see that transformations between overlapping
charts are smooth, using as guideline the fact that a function f : G/H → R is
smooth if and only if f ◦ π ∈ FG is smooth. A similar argument shows that the
projection G→ G/H is that of a smooth fibre bundle. More generally, if we
have two Lie subgroups H1 ⊂ H2 ⊂ G, the projection G/H2 → G/H1 is that
of a fibre bundle, with fibre H2/H1.
If G is a Lie group, the tangent space T1(G) at the identity has the structure

of a Lie algebra. We will not use this in this book.
If H is a Lie subgroup of G we may choose an additive complement Y to

T1(H ) in T1(G). Then the differential at (0, 1) of the mapY × H → G given by
(y, h) 	→ exp(y)h is an isomorphism (here we may use any Riemannian metric
on G to define the exponential map), so by Theorem 1.2.5 the map is a local
diffeomorphism. We can thus choose open neighbourhoods U of 1 in exp(Y )
andV of 1 in H such thatU ×V → G is an embedding. We will callU a local
section of H in G.

Lemma 3.1.1 There exist local sections U1 such that the map μ : U1 × H →
G is an embedding.

Proof The fact that the differential of μ at any (u, h) ∈ U × H is bijective fol-
lows since this holds at (u, 1) by hypothesis, and (right) translation by h is
a diffeomorphism. It follows (as in the proof of Theorem 2.3.2) from Corol-
lary A.2.6 that there is a neighbourhood of 1× H such that the restriction of μ
to it is an embedding and by Lemma A.2.4 that for ε small enough ifU1 is the
ε-neighbourhood of 1 inU , the restriction ofμ toU1 × H is an embedding.

It follows that the induced map U1 → G/H is an embedding. We can also
argue similarly for H ×U → G andU → H\G.
IfG is a Lie group, the connected component of the identity is a subgroupG0,

as if x(t ) is a path from 1 to g ∈ G and y(t ) a path from 1 to h, then x(t )−1 gives
a path from 1 to g−1 and x(t )y(t ) a path from 1 to gh. As G is a manifold, G0

is an open subset. Any open subgroup G∗ of G is closed, since its complement
is a union of cosets of G∗, each open, hence is open. Now if p : I → G is any
path, p−1(G∗) is open and closed in I, hence is either I or the empty set. Thus
G∗ contains all paths from 1 ∈ G, hence contains G0.

If N is a neighbourhood of 1 inG, then the subgroupG∗ ofG generated by N
contains an open neighbourhood of 1, so by homogeneity is open, soG0 ⊂ G∗.
Thus if N ⊂ G0 we also have G∗ ⊂ G0, so the two coincide.
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The point G0/G0 of G/G0 is open; since G acts by homeomorphisms, all
points, hence all subsets, are open, so the coset space G/G0 has the discrete
topology. If G is compact, then G/G0 also is compact, so is finite.

Proposition 3.1.2 Let G be a compact Lie group and let H �= G be a Lie sub-
group. Then either
dimH < dimG or
dimH = dimG, and H has fewer components than G.

Proof Since H ⊂ G is a submanifold, we have dimH � dimG.
Suppose dimH = dimG. Then H contains a neighbourhood of 1 in G, so H

contains G0. As H is a proper subgroup of G, H/G0 is a proper subgroup of
G/G0, which is compact and discrete, hence finite. But the components of G
are the cosets of G0.

If G is a compact topological group, there is an averaging operator on the
space C0(G) of continuous functions on G: it is the unique linear map

∫
G :

C0(G)→ R such that
(i) if g. f : G→ R is defined by g. f (x) := f (gx), then

∫
G(g. f ) =

∫
G( f ),

(ii) if fc is given by fc(g) = c for all g ∈ G, then ∫G( fc) = c,
(iii) if f (g) ≥ 0 for all g ∈ G, then ∫G( f ) ≥ 0.
For the reader familiar with integration theory, we can give a quick account as

follows. The bundle of differential n-forms on a smooth manifoldM is defined
to be the nth exterior power�nT∨1 M. IfM has dimension n, then for any section
ω of this bundle with compact support we can integrate ω overM: the result is
denoted

∫
M ω.

If G is a Lie group of dimension n, we choose a form ω0 at the identity
1 ∈ G to be any element of the exterior power�nT∨1 G. Now for any g ∈ G, left
translation by g gives a diffeomorphism of G taking 1 to G and hence ω0 to
an n-form at g ∈ G; assembling these gives an n-form ω′ on G invariant under
left translations by elements g ∈ G. For any (smooth or even just continuous)
function f of compact support on G we can now form the integral

∫
G fω′.

In the casewhenG is compact we can now define
∫
G f := ∫G fω/

∫
G ω; prop-

erties (i)–(iii) follow easily. We will not give the proof of uniqueness; however
from uniqueness follows that if f .g′ : G→ R is defined by f .g′(x) := f (xg′),
then

∫
G( f .g

′) = ∫G( f ). For since the averaging operator is unique, it suffices
to show that f 	→ ∫

G( f .g
′) satisfies (i)–(iii). But these follow from the same

results for
∫
G by substitution. It follows similarly that if we define f ∗ by

f ∗(g) = f (g−1), then
∫
G f ∗ = ∫G f .
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72 Differentiable group actions

A proof of existence of an averaging operator for arbitrary compact groups
(due to Haar) may be found in [68], also a theory of (left invariant) integration
for any locally compact topological group.

3.2 Smooth actions

A (left) action of a group G on a set X is a map φ : G× X → X such that
φ(1, x) = x for all x ∈ X and φ(g, φ(h, x)) = φ(gh, x) for all x ∈ X and g, h ∈
G. If the action is understood, it is frequently denoted by a dot: thus φ(g, x)
becomes g.x; we will callX aG-space. IfG is a Lie group,X a smoothmanifold,
and φ a smooth map, we speak of a smooth action and a smooth G-space.
If we have an action of a groupG on a set X , and x ∈ X , the isotropy group of

x is defined to beGx := {g ∈ G | g.x = x}. It follows from the definition of group
action that this is a subgroup of G; it is also sometimes called the stabiliser of
x. The orbit of x is defined to be {g.x | g ∈ G}, and is denoted G.x. The action
induces a bijection G/Gx → G.x since

g.x = h.x⇔ h−1g.x = x⇔ h−1g ∈ Gx ⇔ hGx = gGx.

Equivalently, themapOpx : G→ X defined byOpx(g) := g.x induces an injec-
tion of G/Gx into X .

The set of orbits of a left group action is denoted G\X ; in the case of contin-
uous, in particular smooth actions, we give G\X the quotient topology and call
it the orbit space. Even for a smooth action, this is only rarely a manifold.
For a smooth action, any isotropy group is a closed subgroup of G, hence

is a Lie subgroup. A sufficient condition for the injection G/Gx → X to be a
smooth embedding will be given in the next section.
A point x ∈ X is fixed under G if g.x = x for all g ∈ G, i.e. if Gx = G. The

fixed set of the action is the set of all fixed points, and is denoted XG. At the
opposite extreme to the fixed set, an action is called free if g.x = x implies
g= 1: thus {1} is the only isotropy group. The action is semi-free if the only
isotropy groups are {1} and G.

A subset Y ⊆ X is invariant under G if g.y ∈ Y for all g ∈ G and y ∈ Y .
Given two actions φ : G× X → X and ψ : G× Y → Y , a map f : X → Y

is equivariant (more precisely, G-equivariant) if, for all g ∈ G and x ∈ X , we
have f (φ(g, x)) = ψ (g, f (x)).
Given a subgroup H of G and an action of H on X , we define G×H X to

be the quotient of G× X by the relation (gh, x) ∼ (g, hx) for all g ∈ G, h ∈ H
and x ∈ X : this is an equivalence relation since H is a subgroup. We denote the
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equivalence class containing (g, x) by [g, x]. Setting g′.[g, x] := [g′g, x] defines
an action of G on G×H X .

Lemma 3.2.1 The isotropy group of [g, z] ∈ G×H X is gHzg−1.

For if [g, z] ∈ G×H X , we have g′.[g, z] = [g′g, z], and this is equal to [g, z] if
and only if, for some h ∈ H, g′g= gh and h−1.y = y; so h.y = y and g′ = ghg−1.
If these groups and actions are smooth, then by Lemma 3.1.1 we can pick a

local section Y such that Y × H → G is a diffeomorphism onto an open set. It
follows that Y × X → G×H X is a diffeomorphism onto an open set.

We will give many examples of smooth group actions at the end of this chap-
ter, but offer two here.
If H is a subgroup of G, G acts on G/H by left translations: g.g′H := gg′H.

If G is a Lie group and H a Lie subgroup, this action is smooth.
The group GL(V ) acts on the vector space V : for example, GLm(R) acts on

the space Rm of column vectors by matrix multiplication. If G is any group
and f : G→ GL(V ) a homomorphism, there is an induced action of G on V
by linear maps; we refer to V as a linear G-space. The action is called a linear
representation of G.
A classical theorem, known as the Peter–Weyl Theorem, states that for any

compact group G there exist a (finite dimensional) real vector space V and
an injective continuous homomorphism G→ GL(V ). Moreover, the function
algebra L2(G) is a direct sum of finite dimensional invariant subspaces so, for
example, any smooth function on G can be approximated by functions of the
form g 	→ �(g.x), where x ∈ V for some linear G-space V and � : V → R is
linear.

Lemma 3.2.2 For any continuous linear action of a compact Lie group H on
a vector space V , there is an inner product on V invariant under H.

Proof Choose an inner product V ×V → R, and denote it 〈x, y〉. Define
〈x, y〉H := ∫H〈g.x, g.y〉. This is linear in each of x and y, and invariant in the
sense that 〈g.x, g.y〉H = 〈x, y〉H for all g ∈ H and x, y ∈ V . Moreover we have
〈x, x〉H > 0 if x �= 0, so 〈∗, ∗〉H is an inner product.

The image of H in GL(V ) is a subgroup of the orthogonal group of V with
respect to this product. Since any two inner products onV are equivalent under
the general linear groupGL(V ), it follows that any compact subgroup ofGL(V )
is conjugate to a subgroup of O(V ). Extending Lemma 3.2.2, we have

Proposition 3.2.3 For any smooth action of a compact Lie group H on a
smooth manifold M, there is a Riemannian metric on M invariant under H.
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Proof Choose any Riemannian metric onM: we can regard it as a collection of
inner products on all the tangent spaces TxM. The action of g ∈ H takes g−1.x
to x and gives an isomorphism of Tg−1.xM on TxM, so transporting the given
inner product 〈, 〉 on Tg−1.xM gives an inner product 〈, 〉g on TxM. Integrating
over H as above gives a new family of scalar products giving a Riemannian
metric invariant under H.

Since the exponential map Exp : T(M)→ M was directly constructed from
the metric, it follows that if we have aG-invariant metric onM, the correspond-
ing exponential map is G-equivariant.

Corollary 3.2.4 The fixed set MH of a smooth action of a compact Lie group
H on a smooth manifold M is a smooth submanifold of M.

Proof By the Proposition, we can choose an H-invariant Riemannian metric
on M. Let x ∈ MH be a fixed point, then the exponential map TxM → M is a
local diffeomorphism and is H-equivariant. Since H acts orthogonally on TxM,
the fixed set (TxM)H is a linear subspace, and so a smooth submanifold. The
result follows.

3.3 Proper actions and slices

The main geometrical results about smooth group actions depend on compact-
ness. The theory is usually written in terms of actions of a compact group G,
but with a little effort, the results extend to arbitrary Lie groups, provided the
action satisfies the following key condition.
An action φ : G× X → X is said to be proper if the map

(φ, i) : G× X → X × X

given by (g, x) 	→ (g.x, x) is a proper map.

Proposition 3.3.1 Let φ : G× X → X be a proper group action and x ∈ X.
Then
(i) the isotropy group Gx is compact;
(ii) the map Opx : G→ X is proper;
(iii) the orbit G.x is a closed subset of X;
(iv) the induced map G/Gx → G.x is a homeomorphism;
(v) for any compact subsets K,L ⊆ X, {g ∈ G | g.K ∩ L �= ∅} is compact;
(vi) the orbit space G\X is Hausdorff.
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A fuller discussion is given in §A.3. The above result is contained in Propo-
sitions A.3.1 and A.3.3.
By LemmaA.3.2(i), a smooth group action withG compact is always proper.

So is the action on G by a Lie subgroup H by left translation. More generally,
by (ii) of the Lemma, given two Lie subgroups H, K of G with K compact, the
natural action of H on the coset space G/K is proper.
To illustrate the importance of properness, we give examples where the con-

dition fails, and the geometrical picture is very different from what we obtain
below in the proper case.
First, we can consider Q as a discrete group and let it act additively on R.
Second, take G as R, M := R2/Z2 and let α ∈ R be irrational: define an

action by φ(t, [x, y]) := [x+ t, y+ αt].
In these two cases, all isotropy groups are trivial but all orbits are dense inM.

In general, a smooth action of R onM (also called a dynamical system) defines
a vector field on M, and we saw in Theorem 1.4.2 that conversely any vector
field defines a flow and subject to a completeness condition (see, for example,
Proposition 1.4.4) gives a group action.
For a third example take M = R and dθ

dt = sin θ (which is certainly
bounded). The fixed set of this action is the set of θ with sin θ = 0, so con-
sists of integer multiples of π .

Theorem 3.3.2 (The Rank Theorem) Let f : Rm � Rn be a smooth map
defined on a neighbourhood A of a ∈ Rm such that, for all x ∈ A, dfx has rank
p, for some fixed p > 0. Then there exist open neighbourhoods U ⊂ A of a,
V ⊃ f (U ) of f (a), and diffeomorphisms u : U → (D̊1)m, v : V → (D̊1)n such
that f |U = v−1 ◦ π ◦ u, where π (x1, · · · , xm) = (x1, · · · , xp, 0, · · · , 0).

We regard this as an extension of Theorem 1.2.5 and, as for that result, proofs
can be found in [40] and [52]. As for Theorem 1.2.5, the given statement refers
only to a neighbourhood of a point in Rm, but the result translates at once to
one valid for any manifold.

Theorem 3.3.3 For any smooth action of G on M and any x ∈ M, the induced
map j : G/Gx → M is a smooth immersion with image G.x.
If the action is proper, j is an embedding as a closed submanifold.

Proof We first apply Theorem 3.3.2 to the map Opx : G→ M. We claim that
it follows from the group action property that this map has the same rank at all
points. For left translation �g by g ∈ G is a diffeomorphism ofG taking a neigh-
bourhood of 1 ∈ G to a neighbourhood of g. The action of g is a diffeomorphism
rg ofM taking x to g.x. The diagram
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76 Differentiable group actions

is commutative and the vertical maps are diffeomorphisms. Taking tangent
spaces thus gives a commutative diagram with the vertical maps linear iso-
morphisms. Thus indeed dOpx has the same rank at 1 and at g.

It follows from the rank theorem that the map Opx is locally trivial. Hence
the rank of dOpx is equal to the dimension of the image, namely of the orbit
G.x; and the rank of the kernel is equal to the dimension of the fibre, which is
the isotropy group Gx. Thus the induced map G/Gx → G.x is an immersion.

By Proposition 3.3.1 (ii), if the action is proper, the map j : G/Gx → M is
proper. It follows from Proposition 1.2.10 that j is an embedding as a closed
submanifold.

Although the basic idea of taking a slice is simple, the following definition
is important; the existence of slices is key to the structure results that follow.
Given a smooth action of theG onM, and a closed subgroupH ofG, a smooth

H-slice to the action is a smoothly embedded submanifold V of M such that
(S1) For all y ∈ V , TyM = Ty(G.y)+ TxV .
(S2) V is H-invariant.
(S3) If s ∈ V , g ∈ G and g.s ∈ V , then g ∈ H.

The definition includes the case when V is a submanifold with boundary.

Theorem 3.3.4 For any proper smooth action of G on M and any x ∈ M there
exists a smooth Gx-slice V to the action with x ∈ V.

Proof Since the action is proper, the isotropy group Gx is compact; write
H := Gx. By Proposition 3.2.3 we can choose a Riemannian metric ofM invari-
ant under H. Then Tx(G.x) is a subspace of TxM; write E for its orthogonal
complement. Then E is also invariant under the induced action of H on TxM.

Since the metric is H-invariant, the exponential map of M is H-equivariant.
Denote by Da, D̊a the closed and open discs of radius a in E, and write Va :=
exp(Da) and V̊a = exp(D̊a). As in the construction of tubular neighbourhoods, if
a is small enough, the restriction of the exponential map toDa is an embedding.
We will show that for b small enough Vb, hence also V̊b, is a smooth H-slice.
It follows from the construction that for any b ≤ a, Vb is a smoothly embed-

ded disc and is H-invariant, so satisfies (S2).
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Now choose a local sectionU to H in G: thenUH is an open neighbourhood
of H in G, so its complement is closed. Since by Proposition 3.3.1(ii), Opx is a
closed map, (G \UH ).x is a closed set. It does not contain x, so is at a positive
distance 2ε from x.
We also have TxVa = E, so TxM = Tx(G.x)⊕ TxVa. The action induces a

smooth map G×Va → M whose differential is surjective at (1, x). Hence it
is also surjective on some neighbourhood of this point. If b is small enough,
this neighbourhood contains 1×Vb, thus Vb satisfies (S1).

Since T1U ⊕ T1H = T1G, and it follows from the Rank Theorem that
T1G/T1H ∼= Tx(G.x), themap T1U → Tx(G.x) is an isomorphism. Thus themap
U ×Va → M induces an isomorphism T1U ⊕ TxVa → TxM of tangent spaces,
so induces a diffeomorphism of some neighbourhood; shrinking U if neces-
sary, and taking b small enough, we may suppose this neighbourhood contains
U ×Vb. Then u �= 1 ∈ U and y ∈ Vb implies u.y �∈ Vb.

Since the action is proper and Va is compact, it follows from Proposi-
tion 3.3.1(v) that K := {g ∈ G : Vag∩Va �= ∅} is compact; note that H ⊆ K.
It follows from Lemma A.2.1 that for any ε we can find δ such that if s ∈ Va,
g ∈ K and ρ(s, x) < δ we have ρ(g.s, g.x) < ε.
Now if s ∈ Vb and g.s ∈ Vb, then

ρ(x, g.x) ≤ ρ(x, g.s)+ ρ(g.s, g.x) ≤ b+ ε < 2ε.

Hence g /∈ G \UH. i.e. g ∈ UH: say g= uh. Then h.s ∈ Vb and u.(h.s) ∈ Vb.
It now follows from the above that u = 1, so indeed g= h ∈ H. Thus Vb also
satisfies (S3).

We now derive a local model giving a description of the neighbourhood of
an orbit in a proper group action.

Theorem 3.3.5 Let V be an H-slice at x to a smooth proper action of G on M,
with H = Gx. Then the action induces a smooth map j : G×H V → M giving
an equivariant diffeomorphism onto a neighbourhood Y of G.x in M.
If V is a closed disc, this gives a tubular neighbourhood of G.x in M.

Proof By (S2) V is H-invariant, so G×H V is defined. The action φ now
induces a smooth equivariant map j, and it follows from (S3) that j is injective
and from (S1) that j is a submersion, hence a diffeomorphism.
We recall that a tubular neighbourhood of a (closed) submanifold F in M is

defined to consist of a bundle B over F with fibre a disc and an embedding ψ :
B→ M (as submanifold with boundary) extending the map taking the centre
of each disc to the corresponding point of V . Here we take F = G.x and B =
G×H V . A projectionG×H V → G/H ∼= G.x is given by [g, s]→ gH → g.x:

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.004
https:/www.cambridge.org/core
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we see at once that this is well defined, and its fibre is V . A local sectionU for
H in G induces a local trivialisation.

For a smooth proper group action of G on M, by Theorem 3.3.5 there is
a smooth map j : G×H V → M giving an equivariant diffeomorphism onto a
G-invariant neighbourhood Y of G.x in M. We constructed V as a metric disc
in the orthogonal complement E of Tx(G.x) in TxM. Moreover, since we have
a diffeomorphism of D̊m on Rm which is invariant under rotations, we may
also replace V by E itself, and have an equivariant diffeomorphism of Y with
G×H E. Here E is a real vector space on which H acts orthogonally. This
choice gives a convenient local model, which we use for further analysis below.

3.4 Properties of proper actions

From now on, we suppose M a smooth proper G-space. By Proposition A.3.4,
the quotient space G\M is Hausdorff, locally compact, and a countable union
of compact sets. We can now parallel the development in §1.1.
First, we can apply Proposition 1.1.3 to express G\M as

⋃
n Cn, where we

have compact subsets Cn and open subsets Bn+ 1
2
such that for all n ≥ 1, Cn ⊂

Bn+ 1
2
⊂ Cn+1.

The map j : G×H V → M of Theorem 3.3.5 induces a homeomorphism of
G\(G×H V ) onto a neighbourhood of the image [x] of x in G\M. We will
regard such a map as a coordinate neighbourhood1 for G\M. Observe that
G\(G×H V ) ∼= H\V , so this neighbourhood is a quotient of V . We will use
the term ‘nice neighbourhood’ in the case when V is a disc D (we suppress the
affix giving the dimension of the disc, which depends on the slice, and will be
clear from the context). We think of this as a map j : H\D→ G\M coming
from a map j : G×H D→ M.

Theorem 3.4.1 We can find a set of nice coordinate neighbourhoods ϕα :
D̊(3)→ G\M, with images denoted Uα , such that
(i) The sets ϕα (D̊) cover G\M.
(ii) Each P ∈ G\M has a neighbourhood which meets only a finite number

of sets Uα , i.e. the Uα are locally finite.
Moreover, the covering {Uα} may be chosen to refine any given covering of

G\M.
The proof of Theorem 1.1.4 goes through here with essentially no change.

1 This differs from the notation of 1.1, where the map went from a neighbourhood in the
manifold to one in Euclidean space.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.004
https:/www.cambridge.org/core


3.4 Properties of proper actions 79

It follows that the quotient spaceG\M is locally modelled by quotientsH\Dk

of discs Dk by compact subgroups H of Ok: although this is not smooth, it is a
topological space with very good properties (triangulable, semi-algebraic, etc.).
We define a function f : G\M → R to be smooth: if the composite function

f ◦ p : M → R is smooth.

Theorem 3.4.2 For any covering V of M by G-invariant open sets, there is a
smooth partition of unity by invariant functions strictly subordinate to it.

Proof This is an analogue of Theorem 1.1.5, and the proof of the earlier result
carries over with only minor change. The images of the elements of V define an
open covering U of G\M. By Theorem 3.4.1 there is a locally finite refinement
of U by a set of coordinate neighbourhoods ϕα : D̊k(3)→ G\M such that the
ϕα (D̊k ) cover G\M. As in the earlier proof, we use these to construct smooth
functions �α on G\M, with �α supported on the image of ϕα , such that for
each P ∈ G\M, there is an α with �α (P) = 1, and that each P ∈ G\M has a
neighbourhood on which all but a finite number of functions�α vanish. Hence

(P) :=∑α �α (P) is defined, and is everywhere smooth. Thus the functions
ψα (P) = �α (P)/
(P) give a partition of unity; by construction it is strictly
subordinate to U . Now the functions ψα ◦ p are smooth invariant functions on
M giving the desired partition of unity.

Next we have an equivariant version of Proposition 1.1.7.

Proposition 3.4.3 (i) Let f be a continuous positive invariant function on M.
Then we can find a smooth invariant function g, with 0 < g(P) < f (P) for all
P ∈ M.
(ii) For any continuous invariant function f on M and any ε > 0 there exists

a smooth invariant function h on M with |h(x)− f (x)| < ε for every x ∈ M.
(iii) If f : M → R is continuous and invariant, ε > 0, and F is a closed

invariant subset of M such that f is smooth on some open invariant set U ⊃ F,
we can find h such that also h = f on an invariant neighbourhood of F.

We can carry over the whole proof of the earlier result: it suffices to work
throughout in G\M rather than inM.

For actions of a compact group, it is shown in Proposition A.3.5 that any
neighbourhood of an invariant set contains an invariant neighbourhood. This
is not true in general for proper actions. For an example, consider the trans-
lation action of R× {0} on R2. The subset R× {0} is invariant, and the set
{(x, y) | |xy| ≤ 1} is a neighbourhood, but any invariant neighbourhood contains
{(x, y) | |y| ≤ ε} for some ε > 0.
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We turn to the existence of an invariant metric. First we consider Riemannian
metrics on G itself. A positive definite scalar product on the tangent space T1G
at the identity gives rise under left translation λg to a scalar product on TgG;
collecting these for all g ∈ G gives a Riemannian structure onG, invariant under
left translation by elements of G.
Inner automorphism x→ g−1xg by g ∈ G is a diffeomorphism of G fixing

the identity, so induces a linear automorphism of T1G. Collecting these for all
g ∈ G gives a homomorphism adG : G→ GL(T1G). IfH is a compact subgroup
of G, we know by Lemma 3.2.2 that there is an inner product on T1G invariant
underH. If we begin with such an inner product, it follows that the Riemannian
metric on G is also invariant under right translation by elements of H.

Theorem 3.4.4 A smooth proper G-manifoldM has aG-invariant Riemannian
structure.

Proof This is an analogue of Theorem 1.3.1, and the proof is againmodelled on
the previous one. As there, we begin with a cover by charts ϕα : D̊k(3)→ G\M,
associated to maps jα : G×H D̊k(3)→ M, and a strictly subordinate partition
ψα of unity.
We next construct aG-invariant metric onY := G×H E. SinceH is compact

we can, as in Proposition 3.2.3, find an H-invariant Riemannian structure on
the restriction of T(Y ) to E = H ×H E (an explicit construction can be given
using an H-invariant inner product on E, and a Riemannian metric on G). The
action of G gives a unique G-invariant Riemannian metric on T(Y ) extending
this structure over E.
Pulling back this metric by jα gives a metric mα on jα (G×H D̊k(3)). Then

ψαmα extends to an invariant section over M of the Riemannian bundle which
is supported in jα (G×H Dk(2)). Now consider

∑
α ψαmα . Since the Uα are

locally finite, the sum is defined; since the partition was strictly subordinate
to the cover, the sum is smooth. Since a linear combination of positive defi-
nite quadratic forms is again positive definite, the sum is everywhere positive
definite. Thus it defines an invariant Riemannian structure on Mm.

I expect that the existence of a complete invariant metric can be established,
but have not found a proof.
Under some restrictions, one can prove the existence of equivariant embed-

dings in Euclidean space. We first need a couple of results about linear actions.

Lemma 3.4.5 Let G be a compact Lie group, H a Lie subgroup. Then
(i) if V is a linear H-space, there exist a linear G-space W and an H-

equivariant linear embedding V →W;
(ii) there exist a linear G-space U and u ∈ U with Gu = H.
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We omit the proofs, which can both be deduced from the Peter–Weyl Theo-
rem. For (i) we consider the vector bundle over G/H with fibreV . The space of
L2 sections is an infinite-dimensional linear G-space, and one needs to extract
a finite dimensional subspace. For (ii) one similarly begins with the action of
G on the space of functions on G/H (see [20, p. 105]).

Theorem 3.4.6 For any smooth action of a compact group G on a compact
manifold M, there exist a linear G-space E and a G-equivariant embedding
M → E.

Proof By Theorem 3.4.1, we can cover G\M by a finite set of nice coordinate
neighbourhoods Uα = jα (G×Hα

D̊α (3)) coming from maps ϕα : D̊α (3)→
G\M, where D̊α (3) is the disc of radius 3 in the Hα-space Eα . We define
a smooth map �α : G\M → R by �α (ϕα (x)) = Bp(2− ‖x‖) for x ∈ D̊α (3),
�α (P) = 0 otherwise.

By Lemma 3.4.5 (i) we can choose an Hα-linear embedding fα :
Eα →Wα with Wα a linear G-space. By (ii) of the Lemma we can
choose a linear G-space Uα and uα ∈ Uα with Guα = Hα . Now define
φα : G× Eα →Wα ⊕Uα by φα (g, s) = (g. fα (s), g.uα ). Then for h ∈ Hα ,
φα (gh, s) = (gh. fα (s), gh.uα ); since Guα = Hα , h.uα = uα so gh.uα = g.uα;
since f is Hα-equivariant, gh. fα (s) = g.h. fα (s) = g. fα (h.s). Thus φα (gh, s) =
(g. fα (h.s), g.uα ) = φα (g, h.s), so φα factors through ψα : G×Hα

Eα →Wα ⊕
Uα . By construction, ψα is a G-equivariant map.

The map ψα is injective since as Guα = Hα , g.uα = g′.uα implies g′ = gh
for some h ∈ Hα; thus if φα (g, s) = φα (g′, s′) then φα (g, s) = φα (g, hs′) so
g. fα (s) = g. fα (hs′) and as f is injective, s = hs′. A corresponding argument
on tangent spaces proves ψα a smooth embedding.
Now define �α : M →Wα ⊕Uα ⊕ R by �α (Q) = (�α (p(Q))ψα ([g, s]),

�α (p(Q))) if Q = jα ([g, s]) with s ∈ D̊α (3), and �α (Q) = 0 otherwise. Since
ψα is G-equivariant, so is this, where G acts trivially on R. In view of the def-
inition of �α , �α is a smooth map. It now follows exactly as in the proof of
Theorem 1.2.11 that the product map∏

α

�α : M →
⊕
α

(Wα ⊕Uα ⊕ R)

is a smooth embedding.

3.5 Orbit types

If we denote by ρ the (orthogonal) representation of H on E, then by The-
orem 3.3.5 the structure of M in a neighbourhood of the orbit is determined
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82 Differentiable group actions

by the pair (H ⊆ G, ρ). In turn, this pair is determined by the action and the
point x ∈ M. If we replace x by another point g.x on the same orbit, H = Gx

is replaced by G′ = Gg.x = gHg−1 and ρ by an action ρ ′ of G′ on E ′, where
there is an isomorphism λ : E → E ′ with λ(ρ(h).e) = ρ ′(ghg−1).λ(e) for all
h ∈ H, e ∈ E. Wewill call two such pairs equivalent: then the equivalence class
of the pair (H, ρ) depends only on the orbit G.x. We call it the orbit type of the
orbit.
We may also define the weak orbit type of an orbit G.x to be the conjugacy

class of the isotropy groupGx of x. SinceGg.x = g−1Gxg, this too is determined
by the orbit. Two orbits have the same weak orbit type if and only if there
is an equivariant bijection between them. Write M〈H〉 := {x ∈ X |Gx = H} for
the set of points with isotropy group H. For M a proper smooth G-space,
Theorem 3.3.5 describes the neighbourhood of an orbit as Y = j(G×H E ).

Lemma 3.5.1 In the notation of Theorem 3.3.5,
YH = Y 〈H〉 = j(NG(H )×H EH ) = j((NG(H )/H )× EH ).

Thus M〈H〉 is an open submanifold of MH.

Proof By Lemma 3.2.1, the isotropy group of [g, z] is gHzg−1. For this to be
conjugate to H, we need Hz = H, so z ∈ EH ; otherwise the isotropy group is
strictly smaller (in the sense of Proposition 3.1.2). The calculation follows.

The manifoldM〈H〉 is not in general closed; nor need it be dense inMH : if H
does not itself occur as an isotropy group, the open subset M〈H〉 of MH will be
empty.
Different components of MH , or of M〈H〉, may well have different dimen-

sions. A simple example is given by the action of Z2 on the projective plane
P2(R) defined by T.(x0 : x1 : x2) = (−x0 : x1 : x2). The fixed point set consists
of the point (1 : 0 : 0) and the projective line x0 = 0. Thus it is not convenient
to partitionM according to weak orbit type, and we focus on the study of orbit
types.
Having the same orbit type is an equivalence relation on orbits, which we

use to define partitions of G\M and of M. We will study these partitions, and
begin with a key finiteness result.

Theorem 3.5.2 Let ϕ be a proper smooth action of G onM. ThenM has locally
a finite number of orbit types.

Proof We prove the result by induction on the dimension of M. If M is 0-
dimensional, for each x ∈ M, the point {x} is a neighbourhood of x and con-
tains just one orbit type. So the assertion holds in this case. Now supposeM of
dimension m and the result proved for manifolds of dimension k < m.
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3.5 Orbit types 83

Let x ∈ M, set H = Gx and let V be an H-slice at x. By Theorem 3.3.5, G.x
has an invariant neighbourhood diffeomorphic to G×H V . Every orbit in this
neighbourhood meets V , so it is sufficient to show that there are only a finite
number of orbit types in V .
Wemay also supposeDk ∼= V ⊂ E a disc, and the action ofH on E linear. All

points on the same open radius have the same isotropy group, so the different
orbit types occur at 0 and on the boundary of Dk, which is a sphere Sk−1, for
some k � m. By the inductive hypothesis, there are only a finite number of orbit
types on Sk−1; and there is just one orbit type at 0. Thus Dk ∼= V has a finite
number of orbit types.

Let τ denote an orbit type, and writeMτ for the union of orbits of type τ .

Proposition 3.5.3 Mτ is a smooth submanifold of M.

Proof Let x ∈ Mτ , and consider the neighbourhood j(G×H V ) of x con-
structed in Theorem 3.3.5. By Lemma 3.5.1 the points with the same weak
orbit type as x in this neighbourhood form j(G×H VH ), which is isomorphic
to (G/H )×VH , and hence smooth. For v ∈ VH , the translation in E by v is H-
equivariant and takes a neighbourhood of O to one of v; thus we have the same
orbit type. It follows that the set of points of orbit type τ in j(G×H V ) is also
j(G×H VH ). Thus Mτ is a smooth neighbourhood of each of its points.

It follows from this proof that the orbit type is locally constant along M〈H〉,
hence also along the space G.M〈H〉 of points of the same weak orbit type: thus
is constant on each connected component of this set.
A stratification of a manifold is a locally finite partition into smooth sub-

manifolds. The preceding two results show that given a smooth proper action
of G onM, the partition by orbit types is a stratification. We next show that this
partition has a local triviality property.
For a stratification to be used geometrically one usually imposes some con-

dition on the way strata fit together; in particular on the behaviour of a bigger
stratum near a smaller one. The strongest such condition is local triviality. We
say a stratification S = {Sα} ofM is locally trivial if at each point x ∈ M there
is a neighbourhood W of x in M and a diffeomorphism φ :W → A× B with
A, B smooth manifolds such that if Sα is the stratum containing x, φ(Sα ∩W ) =
A× {x0} for some x0 ∈ B and for any other stratum Sβ , φ(Sβ ∩W ) = A× Bβ
for some smooth submanifold Bβ of B.

Theorem 3.5.4 The stratification of M by orbit types is locally trivial.

Proof Again we use the model given by Theorem 3.3.5, and work in a neigh-
bourhood Y = j(G×H E ) of G.x in M. The orbit type α of the point [g, y] is
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84 Differentiable group actions

determined by that of y under the action of H on V . Now split E as a direct
sum EH ⊕ Eα , where Eα is the orthogonal complement to EH in E. Then the
orbit type of y under H depends only on the component of y in Eα . The result
follows, taking Eα as the B in the above definition.

We defined above the stratification of M by orbit types: the strata Mα are
smooth submanifolds of M, and are locally finite. Thus at least one must have
the same dimension as M. More precisely,

Theorem 3.5.5 (Principal Orbit Theorem) For any smooth proper group
action on a connected manifold M, there is one orbit type stratum which is
open and dense in M.

Proof We use the model given by Theorem 3.3.5: an invariant neighbourhood
of a point x with H = Gx is equivariantly diffeomorphic to G×H E for some
H-vector space E. The setMα of points with the same orbit type α as x locally
form G×H EH . Thus if dimEα ≥ 2, Mα has codimension at least 2 and does
not separate M. Now consider the case dimEα = 1. Since the action of H on
Eα is orthogonal and non-trivial, there is a subgroup H+ of index 2 which acts
trivially, and H acts by reflection. In this caseMα does locally separate M, but
points on opposite sides lie on the same orbit. So here also G\Mα does not
separate G\M, so the complement of the union of the G\Mα with dimEα > 0
is connected, and so is a single orbit type stratum.

There is a natural partial order on the set of orbit types which is defined as
follows. An orbit type α determines (up to equivalence) a subgroup Hα of G
and a linear Hα-space Eα . Then a neighbourhood of an orbit of this type is
equivariantly diffeomorphic to Nα := G×Hα

Eα . If β is an orbit type occurring
in Nα , we write β ≺ α.

Lemma 3.5.6 The relation ≺ is a partial order. If β ≺ α then Mα ⊂ M̄β . For
any α there are only finitely many types β with β ≺ α. For M connected, the
principal orbit type of M is the least α with Mα �= ∅.
Proof It follows from the definition that if β ≺ α there is an equivariant embed-
ding of Nβ in Nα , so the relation is transitive. Moreover, by Proposition 3.1.2
Hβ has either a lower dimension than Hα or the same dimension and fewer
components, so the relation is antisymmetric.
The second clause also follows from the definition; the third from

Theorem 3.5.2; and the fourth is the definition of ‘principal’.

There is scope for confusion here: if β ≺ α then Hβ is ‘smaller’ than Hα

but the stratum Mβ is ‘larger’ than Mα . If A is a set of orbit types we say
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3.5 Orbit types 85

that A is closed if α ∈ A and β ≺ α imply β ∈ A: thus the set of orbit types
with Mα non-empty is always closed. If A is a closed set of orbit types, then⋃

α∈A M
α is an open subset of M. We observe that if α and β are distinct orbit

types with the same class of isotropy groups Hα = Hβ , then neither precedes
the other.
We return to the problem of equivariant embedding in a linear G-space L.

We see from Theorem 3.5.2 that there are only finitely many orbit types for the
action of G on L (they all appear in any neighbourhood of the origin), and it
follows that there are only finitely many orbit types on any G-submanifold of
L: thus the hypothesis in Theorem 3.4.6 that M be compact cannot simply be
removed. However we do have

Theorem 3.5.7 For any smooth action of a compact group G on M with only
finitely many orbit types, there exist a linear G-space E and a G-equivariant
embedding M → E.

Proof Write T for the set of orbit types α. As before, we coverG\M by a set of
nice coordinate neighbourhoods {Ui | i ∈ I}, so there is a map a : I → T and for
each i ∈ I,Ui = ji(G×Ha(i) Da(i) ) coming from amap ϕi : Da(i) → G\M, where
Da(i) is a disc in the Ha(i)-space Ea(i). Define �i : G\M → R by �i(ϕi(P)) =
Bp(2− |P|) for P ∈ D̊α (3), �α (Q) = 0 otherwise.

In the former proof, for each α we chose anHα-linear embedding fα : Eα →
Wα with Wα a linear G-space, and a linear G-space Uα and uα ∈ Uα with
Guα = Hα , and then formed the G-equivariant embedding ψα : G×Hα

Eα →
Wα ⊕Uα . Here we need to separate the different ϕi for the different i with the
same a(i) = α; the difficulty is that these neighbourhoodsUi overlap.

The images ϕi(Dα ∩ EHα
α ) with a(i) = α give an open covering of Bα . Since

Bα is finite dimensional, it follows from Proposition A.2.9 that this covering has
a finite dimensional refinement. More precisely, there exist an open covering
{S j | j ∈ J} of Bα , with each S j contained in ϕi(Dα ∩ EHα

α ) for some i( j), and a
map d : J → {0, . . . ,N} such that if d( j) �= d( j′), then S̄ j ∩ S̄ j′ = ∅. Choose an
open setCj inDα such thatCj ∩ EHα

α = ϕ−1i (S j ); then by shrinking theCj if nec-
essary, we may suppose that if d( j) �= d( j′), then also ¯ϕi( j)(Cj ) ∩ ¯ϕi( j′ )(Cj′ ) =
∅.
Now for each rwith 0 ≤ r ≤ N we define a map Fα,r : Eα × d−1(r)→Wα ×

R as follows. Choose an injective map n : d−1(r)→ Z and set

Fα,r(x, s) := ( fα (x),�α (x)+ 3n(s)).

Since the fα are injective and the values of�α lie in [0, 1], this is injective; since
�α is invariant, this is equivariant (where G acts trivially on R). As above we
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86 Differentiable group actions

can now form aG-equivariant embedding�α,r : G×Hα
(
⋃

d( j)=r(Cj × { j}))→
Wα ⊕Uα ⊕ R.

Since we now have a finite set of embeddings, we can piece them together
as before.

There is also an equivariant embedding theorem when G is not compact.
It is clear that some restriction on G is needed, as there exist Lie groups
with no faithful finite dimensional linear G-space. A notorious example is the
so-called Weil–Heisenberg group, which can be considered as the group of

matrices

⎛⎝1 a b
0 1 c
0 0 1

⎞⎠ with a, c ∈ R and b ∈ R/Z.

Palais gives a result in [119] using only the hypothesis that there exists a
faithful finite dimensional linear G-space.
If Aα is a stratum of the orbit type stratification of M, the quotient Bα :=

G\Aα is a smooth manifold. We next give a model for the action of G in a
neighbourhood of Aα .

Theorem 3.5.8 A neighbourhood of Aα in M is equivariantly diffeomorphic
to a bundle over Bα with fibre G×H Eα .

Proof By Theorem 3.4.4 since the action is proper we can choose aG-invariant
metric for M: this induces metrics on the submanifold Aα and, by Proposi-
tion A.3.6, on G\M; it also induces a reduction of the structure group of the
normal bundle Nα to the orthogonal group.
By Proposition 2.3.1, the exponential map eα for the normal bundleN(M/Aα )

has non-zero Jacobian along the zero cross-section of Nα , so is a local diffeo-
morphism at Aα; since the metric is invariant, eα is equivariant. We now follow
the proof of Theorem 2.3.3: we know some neighbourhood of the zero cross-
section Aα is embedded, but need an invariant one.

In the model given by Theorem 3.3.5, we can choose the slice at x as the
image of the normal space by the exponential map; by equivariance, the same
holds at each point on the orbit G.x. In the model G×H (EH ⊕ Eα ), we can
identify Aα with G×H EH ; by Lemma 3.5.1 the normal space at x to Aα can be
identified with Eα , the normal bundle Nα is identified with the projection with
kernel Eα; and eα is represented by the identity map.
Now factor outG: eα : Nα → M yieldsG\eα : G\Nα → G\M. Near the zero

cross-section G\Aα = Bα this too is represented by the identity map (of EH ×
H\Eα); thus it is a local homeomorphism. It follows from Corollary A.2.6 that
there is a neighbourhoodW of Bα on which G\eα is an embedding. Hence also
the restriction of eα to Z := q−1(W ) is an embedding.
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We have a function � : Nα → R measuring the length of the normal vector.
Define f : Aα → R by

f (x) = in f {ρ(x, y)+�(z) | z ∈ (Nα \ Z), π (z) = y}.
Since each x ∈ Aα has a neighbourhood disjoint from Z, we have f (x) > 0. It
follows from the definition that | f (x)− f (y)| ≤ ρ(x, y), so f is continuous; and
clearly f is invariant. By Proposition 3.4.3 there is a positive smooth invariant
function F on Aα with F (x) ≤ f (x) for all x. The proof is completed, as for
Theorem 2.3.3, by writing down a diffeomorphism of the bundle with fibre the
unit disc to the submanifold �(z) ≤ F (π (z)).

3.6 Actions with few orbit types

We can decompose a G-manifold M into orbit types and then build it up piece
by piece. We begin with a stratum Aα of least dimension: this is a compact
smooth manifold, and has a neighbourhood Nα given by a bundle over Aα with
fibre Eα . The next piece Aβ overlaps this bundle; the details are made precise
by the local structure theorem. We now explore how M is built up in the case
when there are at most two strata.
For the principal orbit type α we have Eα = 0, Aα is open inM, and is equiv-

ariantly diffeomorphic to a bundle over Bα with group G and fibre G/Hα .
If there is only one stratum, it is necessarily principal: the orbit map M →

G\M is a fibration with fibre G/H. To regard this as a bundle, first consider
the submanifoldM〈H〉 = MH of points with isotropy subgroup equal toH. This
meets all orbits, and g.MH is equal to MH if g−1Hg= H, and is disjoint from
MH otherwise. The elements g ∈ G satisfying g−1Hg= H form a subgroup of
G, called the normaliser of H in G and denoted NG(H ). The action of NG(H )
onMH factors through NG(H )/H (since H acts trivially here). We thus see that
NG(H )/H acts freely onMH and the quotient is justG\M, sowe have a principal
bundle.
If in particularM is a sphere, we have a fibration of a sphere. The possibilities

for fibrations of spheres are strictly limited: the standard examples are the Hopf
fibrations S1 → S2n−1 → Pn−1(C), S3 → S4n−1 → Pn−1(H), and S7 → S15 →
S8. It follows from a result of Browder [29] that for any non-trivial fibration of
a sphere with connected fibres, the fibre is homotopy equivalent to S1, S3, or
S7. In the case of manifolds it follows from the generalised Poincaré conjecture
(see §5.6 and discussion following) that the fibre is homeomorphic to a sphere
and, except perhaps for S7, diffeomorphic.
In the present situation we can be even more precise.
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88 Differentiable group actions

Theorem 3.6.1 If H is a non-trivial compact connected Lie group, acting on
Sn (n ≥ 2) with just one weak orbit type, then either (a) the action is transitive
or (b) H has rank 1 and the action is free.

We refer to Borel [20, p 185] for the proof which, after several preliminaries,
is homological in nature, so Borel’s result is stated in more general terms.
It was shown by Poncet [122] that the only faithful transitive actions on

spheres are the classical actions of SOn and On on Sn−1, Un and SUn on S2n−1,
and Spn on S4n−1; also three exceptional cases S6 = G2/SU3, S7 = Spin7/G2,
and S15 = Spin9/Spin7.

Now consider groupsH acting freely on spheres; first supposeH finite. Then
(see [35, Chapter XII]) H has periodic cohomology, and hence all Sylow sub-
groups of G are cyclic or generalised quaternionic. The classification up to iso-
morphism of such groups is known: see [170], which also gives the latest known
results about the classification of these actions.
In particular,Z2 ⊕ Z2 cannot act freely on a sphere, hence neither can a torus

S1 × S1. Thus ifH acts freely, it has rank at most 1. The only connected groups
of rank 1 are S1, S3, and SO3, and SO3 has a subgroup isomorphic to Z2 ⊕ Z2,
so is excluded.
IfH �= H0 = S1 and g ∈ H \ H0, conjugation ofH0 by g is an automorphism,

hence is either the identity or themap x→ x−1. If gcentralisesH0, the subgroup
〈H0, g〉 is isomorphic to a direct sum S1 ⊕ Zk for some k, hence contains a
subgroupZk ⊕ Zk; hence this case does not occur. ThusH/H0 has order 2 andH
is isomorphic to the subgroup S1 ∪ jS1 of S3. (This group can also be identified
with the group Pin2 of [15].)

IfH0 = S3 and g ∈ H \ H0, g−1S1g is a circle subgroup of S3, hence conjugate
in S3 to S1, so for some h ∈ S3 gh normalises S1. Arguing as above now yields
a contradiction.
There are many free actions of S1 on spheres; the classification is described,

for example, in §14C of my surgery book [167]; a similar analysis holds for
actions of S3. The same methods could be applied to the S1 ∪ jS1 case, but to
the author’s knowledge this has not been attempted.
We next consider the case of just two orbit types α (principal) and β.

Choose x ∈ Mβ and set H := Gx (= Hβ ). By Theorem 3.3.5, a neighbourhood
of G.x is equivariantly diffeomorphic to G×H E, where H acts orthogonally
on E (= Eβ ) and the only fixed point is the origin. Thus there is only one orbit
type for the action of H on the unit sphere Sk−1 in E (where we choose an iso-
morphism of E with Rk) and we can apply the classification just discussed; so
by Theorem 3.6.1, either (a) H acts transitively on Sk−1 or (b) H has rank at
most 1.
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In the present situation these H-spaces are the restrictions to Sk−1 of linear
H-spaces, so the list of cases is shorter. For (b) if H is finite a complete list of
fixed point free representations (and of groups) was given by Wolf [182] (the
list is repeated in a simpler notation in [170]). For H = S1 any fixed point free
representation is isomorphic (over R) to the action on Cn for some n; and for
S3 and S1 ∪ jS1 to Hn.

By Theorem 3.5.8, a neighbourhood N(Mβ ) ofMβ inM is equivariantly dif-
feomorphic to a bundle over Bβ with fibreG×H Eβ : hereMβ itself corresponds
to choosing 0 ∈ Eβ . Choose y ∈ Mα to lie in the fibre over x corresponding to
a point in Eβ \ {0}, and set K := Gy (= Hα ).
The isomorphism Eβ → Rk induces Eβ \ {0} ∼= Sk−1×]0,∞[. Thus we can

identifyMα ∩ N(Mβ ) with the bundle over Bβ with fibre (G×H Sk−1)×]0,∞[.
Factoring out G gives an identification of Bα ∩ N(Bβ ) with the bundle over Bβ
with fibre (H\Sk−1)×]0,∞[: note that this projection indeed has fibre G/K.
Now B is the union of Bα and N(Bβ ) modulo this identification on the intersec-
tion. Correspondingly,M is the union ofMα and N(Mβ ) modulo an identifica-
tion on the intersection of bundles with fibre G/K over the above. In principle,
this reduces the classification problem to a problem about manifolds (with no
group action) and bundles over them.
In case (a), H acts transitively on Sk−1: here B = G\M is a smooth mani-

fold with boundary: Bβ is the boundary and Bα its complement; the identifica-
tion takes place over a collar neighbourhood of the boundary. This necessarily
occurs if a principal orbit has codimension 2. Here some classifications have
been effectively done. If also M = Rm, it was shown by Borel (see [20, XIV])
thatG has a fixed point P, so the whole action is modelled by the induced linear
action on the tangent space at P.
Interesting examples were given by Bredon [25]. Begin with the linear action

of SOn on Rn ⊕ Rn. Then (see example (vb) below) there are just two orbit
types; the isotropy subgroups are SOn−1 and SOn−2. Next restrict toDn × Sn−1.
For x ∈ Sn−1 define θx ∈ On to be the reflection in the radius through x. Then
the map of Sn−1 × Sn−1 given by ψk(x, y) := ((θxθy)kx, (θxθy)ky) is a diffeo-
morphism equivariant for the action of SOn; it acts on Hn−1(Sn−1 × Sn−1) by

the identity (if n is odd) and by the matrix

(
2k + 1 2k
2k 1− 2k

)
(if n is even).

Now glue two copies of Dn × Sn−1 together using the diffeomorphism ψk. We
obtain a closed manifoldM with an action of SOn; it still has just the two orbit
types. If n is odd,M has the homology of S2n−1; if n is even,Hn−1(M) ∼= Z2k+1.
For n = 3 this coincides with the manifold denoted M2k+1 in §7.8.

In [26], Bredon goes on to give a classification of actions of compact Lie
groups G on manifolds with the homology of Sm and just two orbit types, one
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with orbits of codimension 2, and onewith orbits of lower dimension. He proves
that m = 2n− 1 is odd and either G = SOn with one of the above actions (so
if n is even we have k = 0); or we have the action restricted to the subgroup
Spin7 of SO8 or the subgroup G2 of SO7. We do not give the proof: a large part
of it is devoted to identifying the possibilities for the group G and the isotropy
subgroups Hα and Hβ .

3.7 Examples of smooth proper group actions

Most of the following examples are linear actions; each of these induces also
an action on the unit sphere in the vector space, also one on the corresponding
projective space. Write, for n ∈ N, ζn := e2iπ/n.
(ia) The symmetric group Sn acts on Rn by permutation of the coordi-

nates. For each partition λ : n = λ1 + λ2 + . . .+ λr (with λ1 ≤ λ2 . . .) there
is an orbit type with isotropy subgroup

∏
iSλi . The orbit type containing

(x1, . . . , xn) is given by the partition defined by i ∼ j⇔ xi = x j. For a prin-
cipal orbit, the xi are distinct; each λi = 1; and the isotropy group is trivial.
The orbit space Rn/Sn can be identified with the subset x1 ≤ x2 ≤ . . . ≤ xn.
(ib) If we replace Rn by Cn in example (i), the description of orbit types

is the same, but now the orbit space Cn/Sn is isomorphic (using elementary
symmetric functions) with Cn.
(ic) The orthogonal group On acts on the space of symmetric n× nmatrices

by P.A := PAPt (where the affix t denotes transpose). Each orbit contains a
diagonal matrix; to calculate the isotropy group we partition the eigenvalues
(as above) into sets of equal ones: say this gives n =∑ λi. Then the isotropy
group is (conjugate to)

∏
i Oλi . Principal orbits occur where all eigenvalues are

distinct: here the isotropy group is On
1 = {±1}n. The orbit space is as in (i)

the simplicial cone x1 ≤ x2 ≤ . . . ≤ xn. In this example, we can interpret the
corresponding projective space as the space of (central) quadrics.
(id) A similar example is the action of the unitary group Un on the set of

self-adjoint n× n matrices over C. Here the eigenvalues can be any non-zero
complex numbers; the orbit space is all of Cn.
(ie) The unitary groupUn acts on itself by conjugation: x.y = xyx−1. As any

unitary matrix is conjugate to a diagonal matrix, we again have a similar situ-
ation: here the eigenvalues satisfy |λ| = 1.

(iia) The circle group S1 acts on the sphere S2 by rotations, say eiθ .(x, y, z) =
(x cos θ + y sin θ, y cos θ − x sin θ, z). We have two fixed points at the poles
(0, 0,±1), and the remaining orbits are principal, with trivial isotropy group.
We can identify the orbit space with [−1, 1] and q : S2 → S1\S2 with z : S2 →
[−1, 1].
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3.7 Examples of smooth proper group actions 91

(iib) The group S3 acts on itself by conjugation. The isotropy group of±1 is
S3; of other points in S1 is S1 and at other points is conjugate to S1. The orbit
space is [−1, 1].
(iii) For any sequence a = (a0, a1, . . . , an) of integers, the circle group S1 :=

{t ∈ C | |t| = 1} acts on Cn+1 by t.(z0, z1, . . . , zn) = (ta0z0, ta1z, . . . , tan zn); the
induced action onPn(C) is thus t.(z0 : z1 : . . . : zn) = (ta0z0 : ta1z1 : . . . : tanzn).

A point z is fixed under t ∈ S1 if and only if, for all values of iwith zi �= 0, the
corresponding tai are equal. Thus if t has multiplicative order r, we need the ai
for these i to be congruent mod r to each other; and, for the isotropy subgroup
to have order r, no more. The isotropy action is then given by the ta j−ai for the
j with a j �= ai.
(iva) The quaternion group of order 4n has a presentation {t, u | t2n =

1, u2 = tn, u−1tu = t−1}. There is a semi-free action on C2 with t.(x1, x2) =
(ζ2nx1, ζ−12n x2), u.(x1, x2) = (x2,−x1). The ring of invariants is generated by
Y = x2n1 + x2n2 , Z = x21x

2
2 and W = x1x2(x2n1 − x2n2 ); these have the unique

syzygy Y 2Z −W 2 = 4Zn+1.
(ivb) Let G = {u, v | u7 = v3 = 1, v−1uv = u2}. The subgroupU = 〈u〉 has

a 1-dimensional representation u→ ζ7. The induced representation of G takes
u to the diagonal matrix (ζ7, ζ 27 , ζ

4
7 ) and v to the matrix which cyclically per-

mutes the coordinates. Thus v fixes the line x1 = x2 = x3.
(ivc) Let G = {u, v | u7 = v9 = 1, v−1uv = u2}. The subgroup U = 〈u, v3〉

is cyclic and has a 1-dimensional representation u→ ζ7, v3 → ζ3. In this case,
the induced representation of G on C3 is semi-free, and we have a free action
of G on the unit sphere S5.
(va) Consider the natural action of SOn ⊂ SOn+r on Sn+r−1 ⊂ Rn × Rr. The

isotropy subgroup of (x, y) is trivial, and the orbit an (n− 1)-sphere unless
x = 0, when we have a fixed point, so the action is semi-free. The orbit space
is homeomorphic to Dr.
(vb) The diagonal subgroup SOn ⊂ SOn × SOn acts on S2n−1 ⊂ Rn × Rn.

For (x, y) ∈ S2n−1, if x and y are independent we have a principal orbit; the
isotropy subgroup is (conjugate to) SOn−2 and the orbit a Stiefel manifoldVn,2.
If x and y are linearly dependent, the isotropy subgroup is SOn−1 and the orbit
Sn−1. The orbit space is homeomorphic to D2.
(via) The group SL2(R) acts on the upper half-planeH2 = {z ∈ C | Imz > 0}

by (
a b
c d

)
· z = az+ b

cz+ d
.

This action is transitive, and the isotropy subgroup of i is the rotation group
SO2: thus we have a diffeomorphism of SO2\SL2(R) on H2 and the action is
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92 Differentiable group actions

proper. The action is not effective:−I acts trivially, so the action factors through
PSL2(R).

(vib) The restriction of the action in (via) to an action of SL2(Z) is thus also
proper. There are only two non-principal orbits for this action: they are the
orbits of i, with isotropy group of order 4, and of a cube root ζ3 of 1, with
isotropy group of order 6. The orbit space is usually identified with a sphere S2

with one point deleted (puncture).

3.8 Notes on Chapter 3

§3.1 and §3.2 contain little more than basic definitions and terminology.
There are many introductory books on these subjects: for Lie groups: [37],

for example, has an algebraic approach; and [6] gives an excellent account for
topologists.
A good general reference for (compact) differentiable group actions is [27].

An early account is in [20], which is a good source for early references.
§3.3: Although slices in the sense of a submanifold transverse to an orbit had

appeared long before, the use of ‘slice’ in the precise sense needed here perhaps
appeared first in Montgomery and Yang [104], where existence is proved for
actions of compact groups; for proper actions the result is due to Palais [119].
The concept of proper group action developed from special cases and seems

to have been first formalised about 1960. It appears in the later revisions of
Bourbaki (not yet in [24]): the first reference I have is [119]. (The volume [20]
only considers actions of compact groups.)
We commented in §1.6 that (M4) was equivalent to various other conditions.

A similar situation exists here. It is shown in Proposition A.3.1 that the action
φ : G× X → X is proper if and only if

(i) the map (φ, π ) : G× X → X × X (where π denotes the projection) is a
proper map;
(ii) (φ, π ) is closed and all isotropy groups Gx are compact;
(iii) for any compact subsets K,L ⊆ X , TK,L := {g ∈ G | g.K ∩ L �= ∅} is

compact;
further equivalent conditions are mentioned in Proposition 3.3.1:
(iv) for any compact subsets K,L ⊆ X , {g ∈ G | g.K ∩ L �= ∅} is compact;
(v) the orbit space G\X is Hausdorff.
§3.4 Most of the results in this section are fairly easy for actions of compact

groups; the extension to proper actions is again in [119], though his emphasis
is on continuous actions on metric spaces.
§3.5 Several results on weak orbit type appear in [20]. The Principal Orbit

Theorem is due to Montgomery and Yang [105]. However, orbit types in our
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sense are what is required in the study of cobordism of group actions. The
Atiyah–Singer fixed point theorem gives formulae expressed in terms of sums
where the character of the representation ofH onE plays a role. The local finite-
ness theorem is due to Mostow [112]. The earlier literature does not explicitly
mention the stratification.
There was an explosion of papers on group actions in the 1960s: see, for

example, the conference proceedings [110].
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4

General position and transversality

We open our discussion of the deeper properties of smooth manifolds with
Whitney’s embedding theorem for two reasons. The first is historical: smooth
manifolds were originally considered as submanifolds of Euclidean spaces, and
this theorem reconciled this approach with the abstract form of definition which
we prefer. Secondly, the proof is quite simple, and opens the way to our later
discussion of the general transversality theorem.
In Chapter 5 we will give a method for describing compact manifolds up to

diffeomorphism. The method consists in defining a smooth function f : Mm →
R; and then we can regard M as ‘filtered’ by the subset f−1(−∞, a] as a
increases. In order to carry out this process in detail, it is necessary to sup-
pose f non-degenerate. Thus we next give a direct proof of the existence of
non-degenerate functions.
We proceed to techniques for moving a smooth map into ‘general position’.

The language of jet spaces, which is basic to the study of singularities of smooth
maps, is introduced in §4.4. Jets are also used to define topologies on function
space (we give some proofs of properties of these topologies in §A.4).
The fundamental technical general position result is the transversality the-

orem, which is stated and proved in §4.5, and extended in the following
section to multitransversality, to deal with the interaction of two maps with
a common target. The development of transversality as a tool is due to
Thom [150]; the very flexible formulation of multitransversality is due to
Mather [88].
The main theorems include ‘general position’ results which we will often

use in later chapters. In particular, a map f : V v → Mm may be supposed an
embedding ifm > 2v (or an immersion ifm = 2v); it may be deformed to avoid
any subset of M of dimension < (m− v ), and to be transverse to any given
submanifold of M.

94
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4.1 Nul sets 95

However the results allow a much wider range of application: for example,
dealing with transversality to submanifolds of jet space rather than just of M;
and establishing that the set of smooth maps satisfying such conditions is open
and dense in function space. We thus spend some time in §4.7 applying the
main results to describe the singularities of a dense open set of maps when the
target dimension is either small (≤ 2) or large (≥ 3

2m). The main results also
lead to local normal forms for smooth maps, and in §4.8 we obtain these in the
same cases. The details here are somewhat technical, and the reader may prefer
to pass over them and just read the statements of the theorems to get a feel for
what can be proved.

4.1 Nul sets

We say that a subset A of Rn is nul if for each ε > 0, A can be enclosed in a
countable union of discs of total volume (i.e. the sum of the volumes)< ε. The
useful terminology ‘nul’ is now out of fashion; it is equivalent to saying that A
has Lebesgue measure zero.
It is trivial that a countable union of nul sets is nul; also that a nul set has no

interior: its complement is everywhere dense.

Lemma 4.1.1 Suppose U open in Rn, f : U → Rn smooth, and A ⊂ U nul.
Then f (A) is nul.

Proof Let K be a compact subset of U . Then in K the partial derivatives of f
of first order are bounded, so infinitesimal lengths are multiplied by a bounded
factor: let c be a bound. Then the image of a ball of radius r is contained in a
ball of radius cr. If A ⊂ K is nul, for any ε > 0 it is contained in a number of
balls in K of total volume less than ε, so f (A) is contained in a union of balls
of total volume less than cnε, so is nul.
Now as in Theorem 1.1.4, we may find a countable set of discs Ki = Dn

xi (2δi)

contained inU , with the D̊n
xi (δi) coveringU . AsKi is compact, and Ai := A ∩ Ki

is nul, f (Ai) is nul. Hence so is the countable union f (A) =⋃i f (Ai).

We say that a subset A of a smooth manifold N is nul if, for each coordinate
neighbourhood ϕ : U → Rn, ϕ(U ∩ A) is nul. Since by the lemma, nul sets
are preserved by smooth maps, it is sufficient to verify the condition for a set
(Uα, ϕα ) of coordinate neighbourhoods with theUα covering N.

Corollary 4.1.2 (i) If A ⊂ Nn
1 is nul, and f : N

n
1 → Nn

2 smooth, f (A) is nul.
(ii) Suppose U open in Rv , v < n, f : U → Rn smooth. Then f (U ) is nul.
(iii) If v < n and f : V v → Nn is smooth, f (V ) is nul.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316597835.005
http:/www.cambridge.org/core


96 General position and transversality

Proof (i) follows at once from Lemma 4.1.1 and the definition. For (ii) define
F : U × Rn−v → Rn by F (x, y) = f (x). Then f (U ) = F (U × O), but U × O
is nul in Rn. Similarly for (iii).

These give the basic properties of nul sets: we now go on to the deeper result
whichwewill need. If f : V v → Mm is a smoothmap, a pointP ∈ V is a regular
point of f if df : Tg(P)V → Tf (P)M has rank m. Otherwise P is a critical point,
and f (P) a critical value of f .

Theorem 4.1.3 (Sard’s Theorem) Let f : V v → Mm be a smooth map. Then
the set of critical values of f is nul.

We give the proof here only for v ≤ m. For v > m, we refer the reader to the
original paper of Sard [132] or to Milnor’s account [100].

Proof We observe that it is sufficient to consider values in a coordinate neigh-
bourhood of M, and further that, since V is a countable union of coordinate
neighbourhoods, we may also restrict attention to a coordinate neighbourhood
of V . This reduces the proof to the case M = Rm, V an open subset of Rv . For
v < m, the result follows by Corollary 4.1.2 (ii).
Now let m = v . If P is a critical point, the Jacobian determinant of f van-

ishes at P, so given δ, we can find a ball containing P with |J( f )| < δ in
the ball. Hence the volume of the image is at most δ times the volume of
the original ball, so it can be contained in balls of at most twice this total
volume.
If K is a compact submanifold of Rv , A the set of critical points in K, we

enclose these in small balls of total volume less than 2μ(K), say. Then f (A)
can be enclosed in balls of total volume less than 4δμ(K). But δ is arbitrarily
small, so f (A) is nul. The set of critical values is a countable union of sets f (A),
hence also is nul.

4.2 Whitney’s embedding theorem

The proof of the embedding theorem 1.2.11 is very simple, but the result is
rather weak.We shall now obtain a stronger version, with a bound on the dimen-
sion of the Euclidean space, and an approximation clause. It is possible by sim-
ilar methods to give a proof for non-compact manifolds; we defer this exten-
sion till Corollary 4.7.8. First remark that the result extends to manifolds with
boundary, as if M has boundary, form the double D(M): then any embedding
of D(M) restricts to give an embedding of M.
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4.2 Whitney’s embedding theorem 97

Each non-zero vector in Rn determines the parallel unit vector from the ori-
gin, and hence its end-point, which lies on Sn−1. Define u : (Rn \ {0})→ Sn−1

by u(x) := x
‖x‖ .

Lemma 4.2.1 Let f : Mm → Rn be an embedding. Then the set of points of
Sn−1 parallel to a tangent of Mm is nul if n ≥ 2m+ 1, and the set of those
parallel to a chord is nul if n ≥ 2m+ 2.

Proof Any tangent ofMm is parallel to a unit tangent. Let B be the sub-bundle
of T(M) consisting of unit vectors. Then df : T(M)→ T(Rn) restricts to df :
B→ T(Rn), and the identification of tangent spaces to Rn with Rn defines a
smooth map T : T(Rn)→ Rn. Moreover, since B consists of unit vectors, T ◦
df maps B to Sn−1. Hence the set of points in Sn−1 whose vectors are parallel to
a tangent of M is the image of B under a smooth map. Since B has dimension
2m− 1, the first result follows from Corollary 4.1.2 (iii).
For chords we proceed similarly. LetM ×M be the product manifold,�(M)

the diagonal, and write M(2) for M ×M \�(M): this is a smooth manifold.
Since f is an embedding, any two distinct points have distinct images, so if we
define � f : M(2) → Rn by � f (P,Q) = f (P)− f (Q) (vector subtraction), the
image does not contain O. Thus we can define δ f := u ◦� f : M(2) → Sn−1.
Again we see that the set of points of Sn−1 whose vectors parallel to a chord of
M is the image under a smoothmap; this time ofM(2). SinceM(2) has dimension
2m, the result follows as before.

Theorem 4.2.2 (Whitney’s Embedding Theorem) Let Mm be a smooth com-
pact manifold. Any map of Mm to R2m+1 may be approximated arbitrarily
closely by an embedding.

Since we have not yet discussed topologies for mapping spaces (see §4.4
below), approximation is here to be understood in the sense of pointwise
convergence.

Proof Let f1 : Mm → R2m+1 be the given map; by Proposition 1.1.7 (applied
to each component), we may suppose f1 a smooth map. By Theorem 4.2.2,
we can choose an embedding f2 : Mm → Rn for some n. The product map f3 :
Mm → R2m+1+n is an embedding, for since f2 is an immersion and injective,
so is f3.
By Lemma 4.2.1, the set E of points of S2m+n whose vector is parallel to

a tangent or chord is nul, thus its complement is everywhere dense. Choose a
point x, close to the unit point on the last axis, and not in E, and project f3(M)
orthogonally in the direction x to R2m+n. The first 2m+ 1 coordinates of the
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98 General position and transversality

projected map f4 differ from those of f3, and hence of f1, by an amount which
can be made arbitrarily small by choice of x.
We claim that f4 is an embedding. For since x is parallel to no chord of

f3(Mm), no two distinct points of M have the same image under f4; and since
x is parallel to no tangent vector, there is no tangent vector which is mapped to
zero by df4. Thus f4 is an immersion and injective, hence an embedding.

We may now repeat the projection process a further (n− 1) times, obtaining
ultimately an embedding inR2m+1 with coordinates differing by arbitrarily little
from those of f1.

Theorem 4.2.3 Any map of a compact smooth manifold Mm to R2m may be
approximated by an immersion.

Proof As for Theorem 4.2.2, we obtain an embedding in R2m+1, and then
choose x ∈ S2m, arbitrarily close to the unit point on the last axis, and parallel to
no tangent vector (which is possible, as before, using Lemma 4.2.1). Projecting
parallel to x, we obtain the desired immersion.

4.3 Existence of non-degenerate functions

Let f be a smooth function onM, and P a critical point of f , so that df (TPM) =
0. If we take local coordinates with P as origin, we have f (O) = 0 and ∂ f /∂xi
vanishes at O for 1 ≤ i ≤ m. It is now natural to consider the Hessian matrix
(∂2 f /∂xi∂x j ) of second derivatives of f at O. We regard the Hessian as a sym-
metric bilinear form H( f ) : TPM × TPM → R, given in local coordinates by

H( f )

(∑
ai

∂

∂xi
,
∑

bi
∂

∂xi

)
=
∑

aib j
∂2 f

∂xi∂x j
.

We can also formulate an equivalent definition without referring to coordinates:
given u, v ∈ TPM, extend v to a local vector field v defined (at least) in a neigh-
bourhood of P; then H( f )(u, v ) = u(v( f )) is independent of the extension v of
v (since P is a critical point). (Recall here that a tangent vector is a mapping of
functions on M to the reals, and a vector field maps functions to functions.)

We say that P is a degenerate (resp. non-degenerate) critical point of f if
H( f ) is a singular (resp. nonsingular) bilinear form. Thus P is singular if and
only if the matrix ∂2 f

∂xi∂x j
is; equivalently, if the rows are linearly dependent, i.e.

if for some constants λi not all zero we have
∑

i λi
∂2 f

∂xi∂x j
= 0 for all j.

We call f non-degenerate if it has no degenerate critical point. Many authors
call such functions ‘Morse functions’.
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4.3 Existence of non-degenerate functions 99

For i : M → Rn an embedding, since we identify T(Rn) with Rn × Rn, we
may identify N(Rn/M) with the submanifold of Rn × Rn given by

N(Rn/M) = {(P, v ) : P ∈ M, v orthogonal to di(TPM)}.
Here the exponential map is given by exp(P, v ) = P+ v (vector addition).
In general, ifM is a submanifold of the complete Riemannian manifold N, a

critical value of exp : N(N/M)→ N is called a focus ofM; if the corresponding
critical point is a vector at P, it is a focus of M at P. It follows from Sard’s
theorem 4.1.3 that the set of foci of M in N is nul.

Figure 4.1 A focus

The existence of non-degenerate functions will now follow from the theorem
below. Let M be a smooth submanifold of Rm+n; for P ∈ Rm+n, define LP :
M → R by LP(Q) := ‖P− Q‖2.
Theorem 4.3.1 LP has a critical point at Q ∈ M if and only if the vector Q− P
is normal to M at Q. Q is a degenerate critical point if and only if P is a focus
of M at Q.

Proof The first statement is clear. For the second, first supposeM is a curve in
R2. Then a focus must be a point of intersection of consecutive normals, i.e. a
centre of curvature. But LP has a degenerate critical point at Q if and only if
‖P− X‖2 is constant to the second order at X = Q, i.e. again if and only if P is
the centre of curvature of M at Q. The notion of focus of a curve is illustrated
in Figure 4.1.
The result holds in general for essentially the same reasons, but for clar-

ity we calculate in convenient coordinates. We may suppose M given in the
neighbourhood of Q as the graph B of a map A : Rm → Rn with A(0) = 0
and d0A = 0: thus A has components ar whose Taylor expansions at 0 begin
ar =

∑m
i, j=1 p

i, j
r xix j, where p

i, j
r is symmetric in i and j. Differentiating B with
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100 General position and transversality

respect to xi gives a vector αi whose jth component is δi, j (i.e. 1 if i = j, 0
if not) and with rth component ∂ar

∂xi
. These span TxM, hence a base for NxM is

given by the vectors βr with ith component − ∂ar
∂xi

and sth component δr,s.
We now have exp(x, v ) = B(x)+∑r vrβr. Its derivative with respect to vr is

βr; the derivative with respect to xi has the last n coordinates zero. Thus at a sin-
gular point of exp theremust be a linear relation of the form

∑
λi

∂
∂xi

exp(x, v ) =
0 with the λi not all zero. This reduces to

∑
i λi

∂
∂xi

(x j −
∑

r vr
∂ar
∂x j

) for each j,

so occurs at x = 0 if and only if λ j − 2
∑

i,r λivr p
i, j
r = 0 for each j.

On the other hand, the square of the distance of B(x) from a typical point
on NQM, with coordinates (0, . . . , 0, c1, . . . , cn) is

∑m
1 x

2
i +
∑n

1(cr − ar(x))2,
whose Taylor expansion at 0 is

∑n
1 c

2
r +
∑m

1 x
2
i − 2

∑
r,i, j cr p

i, j
r xix j.

The quadratic form q(x) :=∑m
1 x

2
i − 2

∑
r,i, j cr p

i, j
r xix j is degenerate if and

only if, for some λi not all zero, the derivative
∑

i λi
∂q
∂xi

vanishes identically,

i.e. 2
∑

i λixi − 4
∑

r,i, j λicr p
i, j
r x j = 0, i.e. 2λi − 4

∑
r, j λicr p

i, j
r = 0 for each

i. This coincides with the previous condition on setting cr = vr. The result
follows.

Corollary 4.3.2 Any compact manifold M admits non-degenerate functions.

Proof By Theorem 4.2.2, M can be imbedded in Euclidean space. By Sard’s
theorem, the set of foci, which are critical values of a smooth map, is nul. So we
can choose P /∈ M not a focus, and then by the theorem LP is a non-degenerate
function.

We remark that compactness is inessential, and also that using the approxi-
mation clause in Theorem 4.2.2, we could obtain one here.
If P /∈ M, we can also replace LP = ‖P− Q‖2 by the distance function

‖P− Q‖.

4.4 Jet spaces and function spaces

We now introduce the methods for studying smooth mappings in general. We
begin by introducing the language for describing a mapping locally, near a
point.
Two functions f , g each defined on some neighbourhood of a point x of a

topological space X have the same germ at x if there is a neighbourhood of x
on which they take the same value. The definition applies whether the values
are real numbers or lie in any space. We talk of germs, or map-germs at (X, x).
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4.4 Jet spaces and function spaces 101

Lemma 4.4.1 Let f , g : Rv → Rm be smooth map-germs at O such that the
values of f and all its partial derivatives of orders ≤ r agree with those of g
at O. Let ϕ, ψ be diffeomorphisms of Rv , Rm keeping O fixed. Then the values
of ψ ◦ f ◦ ϕ and all its partial derivatives of orders ≤ r agree with those of
ψ ◦ g ◦ ϕ at O.

Proof The result is an immediate consequence of the chain rules for differen-
tiating a composite: ‘a function of a function’.

For g, h : (V v ,P)→ Mm smooth map-germs, write g∼r h at P if, with
respect to some local coordinates at P and g(P), we have g(P) = h(P), and
all partial derivatives of order ≤ r of g and h at P agree. By the lemma, this
is independent of the chosen coordinate system. Clearly, ∼r is an equivalence
relation for maps defined on a neighbourhood of P. An equivalence class is
called an r-jet of maps from V to M at P. The set of all jets of maps of V to M
is the jet space Jr(V,M).
Each jet is a jet of a smooth map at some P ∈ V , so there is a natural

projection πs : Jr(V,M)→ V . Similarly (since r ≥ 0), since two functions
g, h with the same r-jet at P have g(P) = h(P), there is another projection
πt : Jr(V,M)→ M. We call the point πs( j) ∈ V the source of the jet j and the
point πt ( j) ∈ M its target. The map (πs, πt ) identifies J0(V,M) with the prod-
uct V ×M. For any k ≥ r ≥ 0 there is a natural projection π k

r : Jk(V,M)→
Jr(V,M).
In terms of local coordinates (x1, · · · , xv ) on V at P, (y1, · · · , ym) on M

at Q, since two functions with the same partial derivatives define the same
jet, we may take these partial derivatives as coordinates in Jr(V,M). If ω =
(ω1, · · · , ωv ) is a string of non-negative integers, write

xω = (xω1
1 · · · xωv

v ), ∂ω = (∂/∂x1)ω1 · · · (∂/∂xv )ωv ,

|ω| = ω1 + · · · + ωv , ω! = ω1! · · ·ωv !.

Then if f is a smooth map-germ on (V,P) toM with targetQ, its partial deriva-
tives of order ≤ r are the numbers uωj = ∂ωy j (0 ≤ |ω| ≤ r, 1 ≤ j ≤ m), and
these values determine the r-jet of f at P. We sometimes write y j for the con-
stant term u j.
Conversely, given a set of numbers aωj (where the point (a j ) must lie in the

prescribed neighbourhood of Q), there exists a corresponding smooth map-
germ: we may choose the polynomials y j =

∑
0≤|ω|≤r a

ω
j x

ω/ω!. Hence the set
of r-jets j with source P and target Q is isomorphic to a Euclidean space. We
can take (xi, uωj ) as local coordinate system in Jr(V,M), and coordinate changes
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102 General position and transversality

are smooth (they exhibit, again, the chain rule for partial differentials: we shall
spare the reader a detailed exhibition of them). We conclude that Jr(V,M) is a
smooth manifold, and the projections πs and πt are smooth maps.
The above polynomial is called the polynomial representative of the r-jet (in

the given coordinates). It agrees with the sum of terms of degree ≤ r in the
Taylor series expansion of f in the given coordinates. We are not concerned
here with the question of convergence of this series.
For f : V → M a smooth map, the equivalence class of f at a point P ∈ V

is an r-jet at P, so f defines a cross-section jr f : V → Jr(V,M) to πs, which
is smooth since f (and hence all its partial derivatives) is. Here the restric-
tion to infinitely differentiable maps allows simpler statements: if g is a CN

map (with continuous partial derivatives of order ≤ N), then jrg is CN−r

for r ≤ N.
We can calculate the derivative of jr f : the following result will be used

explicitly below.

dj1 f

(
∂

∂xi

)
= ∂

∂xi
+
∑
j

uij
∂

∂y j
+
∑
j,k

uikj
∂

∂ukj
. (4.4.2)

For dj2 f (∂/∂xi) we add a further sum
∑

j,k,l u
ikl
j ∂/∂u

kl
j , and so on.

Since J0(V,M) ∼= V ×M, j0 f is just the graph of f . A 1-jet with source P
and target Q is determined by these points and a linear map TPV → TQM, and
j1 f (P) = (P, f (P), dfP).
One can also consider jets at more than one point. We define rJk(V,M) to

be the subset of the r-fold direct product (Jk(V,M))r consisting of r-tuples
( j1, . . . , jr ) such that the source points of the ji are all distinct. We do not insist
that the targets are distinct, and indeedwe are largely interested in the casewhen
they are not. Extending the notationM(2) of §4.2, writeV (r) for the set (the con-
figuration space) of ordered r-tuples of distinct points ofV . Then the Cartesian
power ( jk f )r : Vr → (Jk(V,M))r induces a map r jk f : V (r) → rJk(V,M). We
call rJk(V,M) the multijet space and r jk f the multijet of f .
We use jets to define topologies on spaces of smooth maps. One standard

topology on function spaces is the so-called compact-open topology, which we
call the C0 topology. This is the topology on the space C0(X,Y ) of continuous
maps X → Y defined by taking the sets

A(K,U ) := { f | f (K) ⊂ U} with K ⊂ X compact, U ⊂ Y open

as a sub-base of open sets. It can be described as the topology of uniform con-
vergence of f on compact sets.
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4.4 Jet spaces and function spaces 103

There is also the fine topology (or fine C0 topology), which we define by
taking the

B(U ) := { f | (1× f )(X ) ⊂ U} withU open in X × Y

as a base of open sets.
For smoothmanifoldsV v andMm, writeCr(V,M) for the set of mapsV → M

whose restrictions in any local coordinates have continuous partial derivatives
of all orders ≤ r; in particular, C∞(V,M) is the set of smooth maps of V to
M. Taking r-jets gives an injective map jr : Cr(V,M)→ C0(V, Jr(V,M)). The
topology onCr(V,M) induced by regarding it as a subspace ofC0(V, Jr(V,M))
with the compact-open topology is called the Cr topology, and the topology
induced from the fine topology is the fine Cr topology.

The inclusion of C∞(V,M) in Cr(V,M) induces topologies on it, and we
define the C∞ topology to be the union of the Cr topologies, in the sense that
a set is open if it is open in one of these topologies. Correspondingly, the fine
C∞ topology, which we christen theW∞ topology, is the union of the fine Cr

topologies.
Properties of these topologies are discussed in Appendix A.4. We summarise

some key results:
Both topologies onC∞(V,M) are completely regular. They agree ifV is com-

pact.
With the C∞ topology, C∞(V,M) is a complete metric space. However, a

sequence of maps convergent for theW∞ topology is eventually constant out-
side a compact set; hence this topology is neither metrisable nor even locally
countable.
The space C∞pr (V,M) of proper C∞ maps is open in C∞(V,M) in the W∞

topology.
The composition map C∞(V,M)×C∞(M,N)→ C∞(V,N) is continuous

for the C∞ topologies; however for the W∞ topologies this fails unless V is
compact: more precisely, for the W∞ topologies, C∞pr (V,M)×C∞(M,N)→
C∞(V,N) is continuous, and the mapC∞(M,N)→ C∞(V,N) defined by com-
position with f : V → M is continuous if and only if f is proper.

Lemma 4.4.3 If U is open in Jk(V,M), the set of f : V → M with jk f (V ) ⊂
U is open in C∞(V,M) in the W∞ topology. If K is a compact subset of
V , the set of f : V → M with jk f (K) ⊂ U is open in C∞(V,M) in the C∞

topology.

This follows directly from the definitions of the topologies, and explains why
we need the W∞ topology. In particular, since immersions are just the maps
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104 General position and transversality

whose 1-jet takes values in the open subset of J1(V,M) with dfP injective, it
follows that the set Imm(V,M) of immersions is open inC∞(V,M) in theW∞

topology.
It can be shown (see, for example, [73, 2.1.4]) that the set Emb(V,M) of

smooth embeddings is open in C∞(V,M) in theW∞ topology. We will see in
Corollary 4.6.4 that the set of injective immersions is open, which will suffice
for our purposes. It follows from this using the openness ofC∞pr (V,M) that the
set of closed embeddings is open, and hence takingV = M that the set Diff(M)
of diffeomorphisms of M is open.

The following result ties up the notion of approximation in function space
with more geometrical notions of equivalence.

Proposition 4.4.4 If V is a compact manifold and f : V → M an embedding,
there is a neighbourhood U of f in C∞(V,M) such that for any g ∈ U , g is an
embedding and f and g are ambiently diffeotopic.

Proof Choose a neighbourhood W of �(M) in M ×M and a map H :W ×
[0, 1]→ M as in Corollary 2.2.5. Now choose a neighbourhood U of f such
that
(i) for all g ∈ V and all P ∈ V , ( f (P), g(P)) ∈W , so we can define a smooth

map ft by ft (P) = H( f (P), g(P), t ),
(ii) with the same notation, for each t ∈ [0, 1], ft is a smooth embedding.

Then ft is a diffeotopy of f to g, and by Theorem 2.4.2, this diffeotopy is
ambient.

A topological space W is said to have the Baire property, or to be a Baire
space, if the intersection of any countable family of dense open subsets ofW
is dense. By Baire’s Theorem A.4.5, any complete metric space has the Baire
property.
In a Baire space, a countable intersection of dense open sets is called a resid-

ual set. It is not in general open: in examples, to prove openness, further work
is required.
Since it has a complete metric, C∞(V,M) with the C∞ topology has the

Baire property. The result for the fine C∞ topology also holds: by Theo-
rem A.4.9, if F is any subspace of C∞(V,M) which is closed in the C∞ topol-
ogy then F , with either the C∞ topology or the W∞ topology, has the Baire
property.
From now on, unless explicitly stated otherwise, we use the W∞ topology

on function spaces.
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4.5 The transversality theorem 105

4.5 The transversality theorem

Let V v , Mm be smooth manifolds, and let Nn be a submanifold of Mm. We say
that a smooth map f : V → M is transverse to N if for every P ∈ V such that
f (P) = Q ∈ N, we have df (TPV )+ TQN = TQM. Equivalently, this states that
df induces an epimorphism of TPV on TQM/TQN.
If dimV < codimN, the map df cannot be surjective: in that case transver-

sality requires f (V ) to be disjoint from N.
The following result gives some indication of the geometrical meaning of

the condition.

Lemma 4.5.1 Let f : V → M be transverse to a submanifold N of M. Then
f−1(N) =W is a submanifold of V , whose codimension equals that of N in M.
Moreover, dfP : TPV → Tf (P)M induces an isomorphism of the normal space
NP(V/W ) toW in V at P with the normal space Nf (P)(M/N) of N in M at f (P).

Proof Let P ∈ V , f (P) = Q ∈ N, and let N be locally defined at Q by x1 =
· · · = xc = 0, where the xi have linearly independent differentials at Q, and
c = codimN. Then, by transversality, the functions x1 ◦ f , · · · , xc ◦ f have lin-
early independent differentials at P, and their vanishing definesW near P. That
W is a smooth submanifold follows using Corollary 1.2.6, as in the proof of
Proposition 1.2.10. The same calculation gives the isomorphism of the normal
spaces.

We extend the concept as follows. Let N be a submanifold of Jr(V,M). Then
we say that f is transverse to N if jr f is so.

Lemma 4.5.2 If K is a closed subset of V , and N a closed submanifold of
Jr(V,M), the set of maps which are transverse to N at all points of K is open
in C∞(V,M) in the W∞ topology; if K is compact, it is also open in the C∞

topology.

Proof The differential of jr f is determined by the partial derivatives of f of
order ≤ (r + 1), and hence by jr+1 f . Since the set of linear maps Rv → Rm

which fail to be transverse to a given subspace of Rm is defined by the vanish-
ing of some determinants, it is a closed subset. Thus the subset of Jr+1(V,M)
of jets of maps transverse to N is open. The conclusion now follows from
Lemma 4.4.3.

The transversality theorem states that the set of maps transverse toN is dense.
The full proof is somewhat technical, but the following simple idea lies at its
heart.
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106 General position and transversality

Lemma 4.5.3 Let N be a submanifold of M, and let F : V ×U → M be trans-
verse to N (for example, a submersion). Then for a dense set of u ∈ U the map
fu : V → M given by fu(x) = F (u, x) is transverse to N.

Proof Since F is transverse to N, by Lemma 4.5.1, W := F−1(N) is a sub-
manifold of V ×U . Denote by ϕ the compositeW ⊂ V ×U → U . By Sard’s
Theorem 4.1.3, the set of critical values of ϕ is nul, so for a dense set of u ∈ U ,
u is a regular value of ϕ. We claim that for such u, fu is transverse to N.

If u is a regular value of ϕ and fu(P) = Q lies in N, then (P, u) ∈W , so
dϕ(T(P,u)W ) = TuU . Thus W meets V × {u} transversely at (P, u). But this
implies that fu is transverse at P to N.

This leads to a plan for proving the jet transversality result. First define
the partial jet map jr1F : V ×U → Jr(V,M) of a family F : V ×U → M by
jr1F (v, u) := jr fu(v ), where fu(v ) := F (v, u). Then seek to embed f in a fam-
ilyF : V ×U → M such that the partial jet map jr1F is a submersion, and hence
transverse to N. Then the set of u with fu transverse to N is dense inU .
It is not so easy to construct such a family directly, but we can do it near a

point, and will then be able to obtain the full result using the Baire property.
We develop the local results in a lemma.

Lemma 4.5.4 Let f : V v → Mm be a smooth map, jr f (P) = Q. Then we can
find:
a neighbourhoodW of f in C∞(V,M),
a coordinate neighbourhood (U1, ϕ1) of P in V ,
and a coordinate neighbourhood (U2, ϕ2) of Q in Jr(V,M),

such that for each g ∈W there is a family G : V × Y → M with G0 = g, each
gu ∈W , and such that the restriction toU1 × Y of the partial jet map jr1G takes
values in U2 and is a submersion.

Proof Choose coordinate neighbourhoods of P with Ū1 ⊂ U ′
1 and a chart ϕ2 :

U2 → Rm of f (P) inM. LetB be aC∞ function onV to [0, 1], vanishing outside
U ′
1, and with B(U1) = 1.
Let ε be such that y ∈ Rm, ‖y‖ < ε implies that y is in the image of ϕ2. Let

W1 be the set of g ∈ C∞(V,M) such that for all x ∈ U ′
1, ‖ϕ2( f (x))‖ < ε/3.

Let Y be the set of polynomial maps y : Rv → Rm of degree ≤ r, and let Y ′

be the subset such that for x ∈ ϕ1(U ′
1), we have ‖y(x)‖ < ε/3.

For g ∈W define G′ : U ′
1 × Y ′ → Rm by G′(x, y) := g(x)+ B(x)y(x). Since

this takes values y with ‖y‖ < ε, it lifts under ϕ2 to a map G′′ : U ′
1 × Y ′ → M.

Now define G : V × Y ′ → M by G(P, y) = G′′(P, y) if P ∈ U ′
1 and G(P, y) =

g(P) otherwise.
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4.5 The transversality theorem 107

We claim that jr1G restricts to a submersion of U1 × Y ′ to Jr(V,M). For on
this subset,G is given in local coordinates byG(x, y) := g(x)+ y(x). At x = 0,
this has Taylor series the sum of those of g and y. But by construction, the
tangent space toY ′ isY , essentially the same as the fibre of πs : Jr(V,M)→ V ,
so the derivatives with respect to the y-coordinates span the tangent space to
the fibre. Since jrg is a section of πs, the derivatives with respect to the x-
coordinates span the tangent space to V . Thus the sum is indeed a submersion.
The same result holds for points x �= 0 since although the Taylor expansion
at x is not the same as at 0, the space of all polynomials of degree ≤ r is the
same.

Corollary 4.5.5 Let f : V v → Mm be a smooth map, and let N be a subman-
ifold of Jr(V,M) of codimension p. Let jr f (P) = Q ∈ N. Then we can find a
coordinate neighbourhood U1 of P in V , a coordinate neighbourhood U2 of Q
in Jr(V,M), and an open neighbourhoodW of f in C∞(V,M) such that
(a) For g ∈W , jrg(Ū1) ⊂ U2.
(b) For every g ∈W , there are maps h arbitrarily close to g in C∞(V,M)

such that jrh|U1 is transverse to N.

Proof Define W and construct G as above. Since jr1G gives a submersion of
U1 × Y ′ to Jr(V,M), by Lemma 4.5.3, there exist y ∈ Y arbitrarily close to 0
such that jrgy |U1 is transverse to N.

We can now prove the general theorem.

Theorem 4.5.6 (Transversality Theorem) Let N be a submanifold of Jr(V,M).
The set of maps f : V → M transverse to N is dense inC∞(V,M); if N is closed,
it is also open.

Proof First let K be a compact subset of V . Then K can be covered by a finite
number of the neighbourhoods Uα

1 of the lemma. The intersection of the cor-
responding setsWα is an open neighbourhoodW of f , and the subset ofW of
functions g with g|Uα

1 transverse to N is dense in W , by the lemma. Since by
Theorem A.4.10 the open set W has the Baire property, the set of g ∈W with
g|K transverse to N is also dense in W . Since this holds for some neighbour-
hoodW of any f , the set T of g ∈ C∞(V,M) with g|K transverse to N is dense
inC∞(V,M). Also, T is open by Lemma 4.5.2.
SinceV may be covered by a countable family of compact setsK, the density

result follows since C∞(V,M) has the Baire property. Openness is given by
Lemma 4.5.2.
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108 General position and transversality

The following addendum is often useful in applications, usually taking
X = ∂V . For f : V → M and X ⊂ V denote by C∞(V,M; f ,X ) the set of
g ∈ C∞(V,M) with g|X = f |X .

Proposition 4.5.7 Let N be a submanifold of Jr(V,M), X a closed subset of
V , f : V → M transverse to N along X. The set of maps g ∈ C∞(V,M; f ,X )
transverse to N is dense in C∞(V,M; f ,X ); if N is closed, it is also open.

This follows from the same argument on making two changes. First, as well
as the setsUα above, we choose open setsUβ which cover X and are such that f
is transverse toN alongUβ : we then defineWβ to be the open set of g transverse
toN alongUβ . Secondly, note that by TheoremA.4.9,C∞(V,M; f ,X ) is a Baire
space.
The Transversality Theorem is the general tool for proving ‘general position’

arguments in differential topology, and admits a wide variety of applications.
We spend some time giving such examples, beginning with the simplest.
The following easy application seems worth formulating explicitly.

Corollary 4.5.8 Given two embeddings f : V → M and f ′ : V ′ → M, we can
perturb f by an arbitrarily small diffeotopy to a map transverse to f ′.

In general, the set of f satisfying a transversality condition is residual; by
further applications of Baire’s theorem, we see that the set of f satisfying a
finite, or even a countable, number of conditions of the above type is resid-
ual, hence dense. Thus given a countable family of submanifolds of various
Jk(V,M), the set of maps transverse to all of them is a residual set. Moreover,
for those submanifolds of codimension> v , we know that transversality means
that jk f avoids these submanifolds. In particular,

Lemma 4.5.9 Given a finite or countable collection of submanifolds Aα of
M, each of dimension < (m− v ), the set of maps f : V v → Mm with f (V ) ∩⋃

α Aα = ∅ is residual in C∞(V,M).
Any embedding V → M is diffeotopic to one avoiding all the Aα .

The first assertion is an immediate consequence of the theorem, since
transversality to Aα implies that the two are disjoint. The second follows by
Lemma 4.4.4.
The following was an early application of transversality.

Proposition 4.5.10 Let f : V → M be a smooth map, N a submanifold of
Jk(V,M), and suppose F closed in V such that f |F is transverse to N, then
f can be approximated by g, transverse to N, and with g|F = f |F.
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4.5 The transversality theorem 109

Proof First, by Proposition 2.3.4 (i), we can approximate f by a smooth map
g, and by (ii) of that result, we may suppose that g agrees with f on F .
The result now follows from Proposition 4.5.7.

A case of particular importance is where V has boundary and we take F =
∂V . Even the case k = 0, where we seek transversality to submanifolds of M,
is significant, and is useful for applications to cobordism theory.
In many cases, we can show that the intersection is not only dense, but open.

Suppose we have a finite collection of submanifolds Ai of Jk(V,M). To say
that jk f is transverse to Ai can be regarded as having jk+1 f avoid a certain
subset, Ni, say, of Jk+1(V,M). If the set F :=⋃i Ni of non-transverse jets is
closed, then by Lemma 4.5.2, the set of maps transverse to all the Ai is indeed
open.
A collection of submanifolds Ai of a manifold B is said to be A-regular

in the sense of Whitney if for each sequence xn ∈ Ai converging to a limit
y ∈ Aj and such that the tangent spaces TxnAi converge to a limit τ we have
TyAj ⊂ τ .

Lemma 4.5.11 Suppose {Ai} a finite A-regular collection of submanifolds of
Jk(V,M) with

⋃
i Ai closed. Then the set F :=⋃i Ni of non-transverse jets is

closed. Hence the set of maps in C∞(V,M) transverse to all the Ai is open.

Proof Suppose the condition is satisfied but that there is a sequence ξn of jets
in F with limit η �∈ F . Passing to a subsequence, we may suppose that all
the xn = π k+1

k (ξn) belong to the same submanifold Ai and that the sequence
TxnAi of tangent spaces converges to a limit, τ say. Since

⋃
i Ai is closed, the

limit y = π k+1
k (η) of the xn belongs to Aj for some j. Since A-regularity holds,

TyAj ⊂ τ .
Now ξn induces a 1-jet of maps V → Jk(V,M) and hence a map dξn :

Tπs(ξn )V → TxnJ
k(V,M), and since ξn ∈ Ni, we have dξn(Tπs(ξn )V )+ TxnAi �=

TxnJ
k(V,M). Since the ξn converge to η, it follows that dη(Tπs(η)V )+ τ �=

TyJk(V,M). Hence a fortiori dη(Tπs(η)V )+ TyAj �= TyJk(V,M), thus η ∈ Nj ⊂
F , a contradiction.

In the case k = 0, where we are given a collection of submanifolds of M,
there is even a converse result. We do not give the statement; the crucial point
is that any linear map TxV → TyM occurs as a 1-jet. It is however far from true
that any linear map TxV → TyJk(V,M) is induced by a (k + 1)-jet, on account
of the symmetry of higher derivatives.
Stratifications give important examples of collections of submanifolds, and

A-regularity is often defined in this context.
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110 General position and transversality

We now define some submanifolds of jet space: the most important are
spaces of 1-jets. Recall that a 1-jet with source P ∈ V v and target Q ∈ Mm

is determined by the points P, Q and a linear map g : TPV → TQM. We par-
tition these according to the rank of the linear map g: it is traditional to write

i(V,M) for the set of 1-jets (P,Q, g) such that the rank of g is v − i. Write
also 
i( f ) := {P ∈ V | j1 f (P) ∈ 
i(V,M)}. Since the rank takes values from
0 to min(v,m), 
i is empty unless

if v ≥ m, we have v ≥ i ≥ v − m;
if v ≤ m, we have v ≥ i ≥ 0.

Lemma 4.5.12 (i) The set of (v × m) matrices of rank (v − i) is a smooth
submanifold of codimension i(m− v + i) in the space of matrices.
(ii) 
i(V,M) is a smooth submanifold of codimension i(m− v + i) in

J1(V,M).

Proof (i) In an open subset of the space of matrices, the first v − i columns are
linearly independent. The condition for rank v − i is then that the remaining
m− v + i columns each lie in a subspace of Rv of codimension i. The same
argument applies if we use a different set of columns.
(ii) Using local coordinates withU1 ⊂ V andU2 ⊂ M, we see that the result

holds in the preimage of anyU1 ×U2.

Thus the 
i form a stratification of matrix space, and the 
i(V,M) a strati-
fication of J1(V,M). We may think of the closure of 
i as a submanifold with
singularities: it is the union of the 
 j with j ≥ i, and is a variety in the sense
of algebraic geometry. A first step in putting a map f into general position is to
make it transverse to the 
i. This is facilitated by

Lemma 4.5.13 The stratification 
i is A-regular.

Proof It suffices to consider the submanifolds of the space of matrices, since
J1(V,M) is locally a product of V , M, and Hom(TxV,TyM).
We first show that the tangent space to 
i at a map φ ∈ 
i can be decom-

posed as a sum S1 + S2, where S1 is the set of linear mapsψ withψ (Ker φ) = 0
and S2 the set of those with Imψ ⊂ Im φ. We can take coordinates such that the

matrix of φ is in normal form. Then the matrix

(
A B
C D

)
, with A nonsingular

and r × r, has rank r if and only if D = CA−1B. If we take A− I, B, C and D
as infinitesimals, then to the first order this condition becomes D = 0. Thus we
have the sum of the subspaces S1 (B = D = 0) and S2 (C = D = 0).

Consider a sequence ψn → φ with all ψn of the same rank. We may suppose
that both Ker ψn converges to a limit K and Im ψn converges to a limit L.
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4.6 Multitransversality 111

Then K ⊂ Ker φ and Im φ ⊂ L. We need to show that the tangent space at
φ is contained in the limit, which is the sum of the set of maps with kernel
containing K and that with image contained in L. But this now follows.

Corollary 4.5.14 The set of maps f : V → M with j1 f transverse to each 
i

is open in C∞(V,M).

This follows from Lemmas 4.5.13 and 4.5.11.

4.6 Multitransversality

In general, applying the transversality theorem allows us to control the
behaviour of a map f : V → M near a point of V . However, to describe the
image of f we must contemplate pairs of points of V with a common image,
and multitransversality is designed to enable us to do this.
An advantage of the above proof of the transversality theorem is that the

version of Lemma 4.5.4 for multijets is an immediate consequence, so the same
argument now leads to the multitransversality theorem.

Theorem 4.6.1 (Multitransversality Theorem) Let N be a submanifold of

rJk(V,M). The set of maps f : V → M such that r jk f is transverse to N is
residual in C∞(V,M).

Proof We follow the same plan as for Theorem 4.5.6.
Step 1: As for Lemma 4.5.4, given a smooth map f : V v → Mm and points Pj

(1 ≤ j ≤ r) inV , write jk f (Pj ) = Qj. By that lemma, we have neighbourhoods
W j of f in C∞(V,M), coordinate neighbourhoods (UPj , ϕ j ) of Pj in V , and
coordinate neighbourhoods (UQj , ψ j ) of Qj in Jk(V,M) such that for each g ∈
W j there is a family Gj : V × Kj → M with Gj,0 = g, each Gj,u ∈W j, and
such that the restriction toUPj × Kj of the partial jet map jk1Gj takes values in
UQj and is a submersion.

Since the Pj are distinct, we may suppose their neighbourhoods disjoint, and
since Gj agrees with g outside a neighbourhood of Pj, for g ∈W :=⋂ j W j

we may combine these deformations to G : V × K0 → M (with K0 :=
∏

j Kj),
where the value near Pj is given by Gj. Then the restriction to

∏
j UPj × K0 of

the partial jet map r jk1G takes values in
∏

j UQj and is a submersion.
Step 2: follow Corollary 4.5.5. We are now given a submanifold N of

rJk(V,M). Let r jk f (P1, . . . ,Pr ) = (Q1, . . . ,Qr ) ∈ N. For g ∈W we construct
G as above. Now since r jk1G gives a submersion to rJk(V,M), by Lemma 4.5.3
there exist k ∈ K arbitrarily close to 0 such that jrgk |

∏
j Uj is transverse to N.
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112 General position and transversality

Step 3: By Lemma 1.1.6(i) (adapted to r-tuples), a compact subset K of V (r)

can be covered by a finite number of sets
∏

j U
α
j with theU

α
j compact and dis-

joint. The intersection of the corresponding setsWα is an open neighbourhood
W of f , and the subset of W of functions g with g|∏ j U

α
j transverse to N is

dense and open in W . It follows using the Baire property that the subset T of
g with g|K transverse to N is also dense in W , and since this holds for some
neighbourhood W of any f , is dense in C∞(V,M); in fact, a residual set.
The result follows by another application of the Baire property.

Unlike Theorem 4.5.6, the set given by an application of Theorem 4.6.1 is
almost never open. In applications, we often want to prove we have an open
subset of mapping space, not just a dense one. It is thus necessary in some
way to ‘fill in’ the diagonal. This is usually accomplished by combining the
multitransversality condition with a simple transversality condition.

Lemma 4.6.2 Let A be a closed submanifold of 2Jk(V,M) and U an
open neighbourhood of �(V ) in V ×V. Then the set of f ∈ C∞(V,M) with

2 jk f | (V (2) \U ) transverse to A is open in C∞(V,M).

Proof By Lemma 1.1.6(ii), we can find a countable collection of pairs of dis-
joint compact sets (Kα,K′

α ) in V such that {Kα,K′
α} is locally finite in V , and

such that the
⋃

α (Kα × K′
α ) ⊇ V (2) \U .

The condition that 2 jk f is transverse to A at all points of the closed subset
(Kα × K′

α ) \U defines an open set in C∞(Kα × K′
α,M) by Lemma 4.5.2, and

hence in C∞(V,M), since the restriction map C∞(V,M)→ C∞(Kα × K′
α,M)

is continuous (for as Kα × K′
α is compact, its inclusion in V is proper).

Nowwe have a countable family of open conditions on the restrictions of f to
members of a locally finite cover ofV , so by the definition of the fine topology,
the intersection again gives an open set.

We now have

Proposition 4.6.3 Suppose W an open subset of C∞(V,M) and A a closed
submanifold of 2Jk(V,M); writeW∗ for the set of f ∈W with 2 jk f transverse
to A.
Suppose that, for each f ∈W∗, each x ∈ V has a neighbourhood Ux such

that {g ∈W | 2 jkg |U (2)
x is transverse to A} is a neighbourhood of f .

ThenW∗ is open in C∞(V,M).

Proof We first show that, for each f ∈W∗, there exist a neighbourhoodUf of
�(V ) in (V ×V ) and an open neighbourhood W f of f in W such that, for all
g ∈W f , 2 jkg(Uf \�(V )) ∩ A = ∅. By hypothesis we have a neighbourhood
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4.6 Multitransversality 113

Ux for each x ∈ V ; we may suppose these open. Since they cover V , we can
pick a locally finite refinement {Uα}. We setUf :=

⋃
α (Uα ×Uα ). By hypoth-

esis, the set of maps g ∈W satisfying the condition on U (2)
x contains an open

neighbourhood of f ; the same follows for U (2)
α . But by the properties of the

fine topology, the intersection W f of a family of open sets defined by condi-
tions on members of a locally finite family of subsets Uα of V is open in the
W∞ topology.

By Lemma 4.6.2, the set XG of maps with 2 jk f | (V ×V \Uf ) transverse to
A is open in C∞(V,M), so W f ∩ XG is open. But this is a neighbourhood of f
inW∗.

Corollary 4.6.4 The set of injective immersions is open in C∞(V,M).

Proof We can take W as the set of immersions V → M and W∗ as the set
of injective immersions: then it suffices to show that, for each f ∈W∗, each
x ∈ V has a neighbourhoodUx such that {g ∈W | g |Ux is injective} is a neigh-
bourhood of f .

But this is clear: we can take coordinates at x and f (x) in which f |Ux is the
inclusion of the unit disc U in Rv into Rm; then the maps whose restriction to
a closed disc of smaller radius project immersively to Rv form an open set (we
have a compact subset of V and an open subset of J1(V,M)).

Given two subspacesP1, P2 of a vector spaceQ, we say that they are transver-
sal ifP1 + P2 = Q: this condition is stable under perturbations. The correspond-
ing condition for a set of several subspaces Pi of Q is less familiar. We require
each Pi to be transverse to the intersection of the others. The neat formulation is
that the set {Pi} of linear subspaces of Q is mutually transversal if the diagonal
map from Q to

⊕
i(Q/Pi) is surjective; equivalently, if the map from Q

⊕
i Pi

to
⊕

i Q, where the first summand is mapped by the diagonal, is surjective.
All our explicit applications of the multitransversality Theorem 4.6.1 follow

a common pattern. Suppose we have submanifolds Ai (1 ≤ i ≤ r) of jet space
Jk(V,M): then define (A1, . . . ,Ar )� to be the submanifold of rJk(V,M) of mul-
tijets ( j1, . . . , jr ) with each ji ∈ Ai, and all πt ( ji) equal. (For convenience, we
take all submanifolds in the same jet space, but if k < l, the preimage of a
submanifold A ⊂ Jk(V,M) in Jl (V,M) is a submanifold A∗ of the same codi-
mension, and f is transverse to A∗ if and only if it is transverse to A.) Observe
that

codim(A1, . . . ,Ar )� =
∑
i

codim(Ai)+ (r − 1)m.

For f : V → M, write Ai( f ) := {x ∈ V | jk f (x) ∈ Ai}.
Lemma 4.6.5 Suppose Pi ∈ V with jk f (Pi) ∈ Ai and jk f transverse to Ai at
Pi for each i, and each f (Pi) = Q. Then r jk f is transverse at (P1, . . . ,Pr ) to
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114 General position and transversality

(A1, . . . ,Ar )� if and only if the subspaces df (TPiAi f ) of TQM are mutually
transversal.

Proof Write ji := jk f (Pi). The tangent space at ( j1, . . . , jr ) to (A1, . . . ,Ar )�
is the pullback of the diagonal under the projection

⊕
i TjiAi →

⊕
i TQM. Thus

transversality holds, i.e. T (A1, . . . ,Ar )�
⊕

i TPiV maps onto
⊕

i(TjiJ
k ) if and

only if the map TQM
⊕

TPiV
⊕

TjiAi −→
⊕

(TQM ⊕ TjiJ
k ) is surjective.

Since transversality holds at each Pi, TPiV ⊕ TjiAi surjects to TjiJ
k, and we

have TPi (Ai( f )) = Ker(TPiV → TjiJ
k/TjiAi). Thus the condition holds if and

only if TQM
⊕

TPiAi( f ) maps onto
⊕

i TQM, which is equivalent to the stated
condition.

Our first application is a simple general result.

Proposition 4.6.6 The set of self-transverse immersions f : V → M is open
and dense in Imm(V,M).

Proof First consider the submanifold (J0, J0)� of 2J0(V,M) consisting of pairs
of 0-jets with a common target. By Theorem 4.6.1, the set of maps f : V → M
with 2 j0 f transverse to (J0, J0)� is dense inC∞(V,M). By Lemma 4.6.5, 2 j0 f
is transverse to (J0, J0)� at a point (P1,P2) with f (P1) = f (P2) = Q if and only
if df (TP1V )+ df (TP2V ) = TQM, i.e. the branches of f (V ) at P1 and P2 meet
transversely at Q.
Since Imm(V,M) is open inC∞(V,M), it follows that the set of immersions

f with this property is dense in Imm(V,M). Higher intersections are dealt with
in the same way using (J0, . . . , J0)� ⊂r J0(V,M).
For openness we use Proposition 4.6.3. Again we give the details

only for the case r = 2. The result will follow if for each self-
transverse immersion f , each x ∈ V has a neighbourhood Ux such that {g ∈
W | 2 jkg |U (2)

x is transverse to (J0, J0)�} is a neighbourhood of f .
But since f is an immersion, each x ∈ V has a neighbourhoodUx embedded

by f . Since the set of embeddings is open, the set of maps of V restricting to
an embedding ofUx is also open.

4.7 Generic singularities of maps

In this section we apply the general theorems to reduce singularities of maps
to general form. We first give applications of jet transversality, then deal with
multijets. As well as showing that maps with a certain form are dense in the
space of all maps, we also show they form an open set, so that the simplifications
do not disappear under small perturbations. We first consider the case m = 1.
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4.7 Generic singularities of maps 115

Theorem 4.7.1 Non-degenerate functions are dense and open in C∞(V,R).

Proof Asm = 1,
i is empty unless i = v or i = v − 1, and
v−1 is smooth of
codimension v . By Theorem 4.5.6, the set of functions f which are transverse
to 
v−1(V,R) is dense and open.

Now j1 f (P) ∈ 
v−1 if and only if dfP = 0: P is a critical point of f . We
claim that j1 f is transverse to
v−1 if and only if f is non-degenerate: this will
imply the result.
Take local coordinates {xi} at P and y on R, and write ui for the coordinate

on J1(V,R) corresponding to ∂y/∂xi. Now apply the calculation (4.4.2), which

reduces here to dj1 f
(

∂
∂xi

)
= ∂

∂xi
+ ui ∂

∂y +
∑

k u
ik ∂
∂uk . Since


v−1 is defined by
the equations ui = 0, its tangent space is spanned by ∂/∂y and the ∂/∂xi. These

together with the dj1 f
(

∂
∂xi

)
span Tj1 f (P)J1(V,R) if and only if the matrix uik =

(∂2 f /∂xi∂xk )P is nonsingular, i.e. P is a non-degenerate critical point of f .

For the case m = 2, we have

Theorem 4.7.2 Maps f with the following properties form a dense open subset
ofC∞(V v ,M2):
v−2( f ) is empty,
v−1( f ) is a smooth curve, and at each point
of 
v−1( f ), there are local coordinates in which j2 f is given by either

(x1,
∑v

i, j=2 bi jxix j ) with (bi j )
v
i, j=2 nonsingular or

(x1, x1x2 +
∑v

i, j=3 bi jxix j ) with (bi j )
v
i, j=3 nonsingular;

in the latter case, the coefficient of x32 in y2 is non-zero.

Proof ByLemma 4.5.12,
v−2 has codimension 2v and
v−1 has codimension
(v − 1). It thus follows from Theorem 4.5.6 that the set of maps f : V v → M2

such that 
v−2( f ) is empty and f is transverse to 
v−1 is dense, and from
Corollary 4.5.14 that this set is open.
Since f is transverse to
v−1,
v−1( f ) is a smooth curve inV . We now need

to calculate. We choose local coordinates at a point of 
v−1( f ) such that the
1-jet of f is (x1, 0). The 2-jet is then of the form(

x1 +
∑

ai jxix j,
∑

bi jxix j
)
.

Essentially the same calculation as in the preceding proof using (4.4.2) shows
that this 2-jet is transverse to 
v−1( f ) if and only if the vectors

v∑
j=1

bi jx j(2 ≤ i ≤ v )

are independent.
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116 General position and transversality

There are now two cases. In general, the matrix B := (bi j )vi, j=2 is nonsin-
gular. We may then make a linear substitution x′j = x j + λ jx1 to reduce the
b1, j ( j > 1) to zero, and the further change of coordinates x′1 = x1 +

∑
ai jxix j,

y′2 = y2 − b1,1y21 reduces the 2-jet to (x1,
∑v

i, j=2 bi jxix j ). We label this case

v−1,0. For f in this form, the tangent space to 
v−1( f ) is the x1-axis, and
the restriction of f to 
v−1( f ) is an immersion.
Otherwise the matrix B has rank v − 2, so by a change of coordinates

x2, . . . , xv we can reduce to the case when b2,i = 0 for 2 ≤ i ≤ v . The transver-
sality condition now implies that b1,2 �= 0. Coordinate changes as before allow
us to reduce the 2-jet to the form (x1, x1x2 +

∑v
i, j=3 bi jxix j ). We label this case


v−1,1. For f in this form, the tangent space to 
v−1( f ) is the x2-axis, and the
restriction of f to 
v−1( f ) is not an immersion.
We have effectively defined 
v−1,1 as a subspace of J2(V,M): it has codi-

mension 1 in the space of 2-jets defining maps transverse to 
v−1. A further
application of the transversality theorem tells us that for a dense set of maps,
j2 f is also transverse to this.
Since 
v−1,1 was defined as a subset of 
v−1 by the vanishing of det(B),

f is transversal to it if and only if dj2 f (∂/∂x1) maps onto the normal space
to this. In the neighbourhood of a matrix B of rank v − 2 and with b2,i = 0
for 2 ≤ i ≤ v , the normal space is spanned by b2,2. Since the tangent space to

v−1( f ) is the x2-axis, we need to evaluate dj2 f (∂/∂x2). Again using (4.4.2),
we see that the desired condition holds if and only if the coefficient of x32 in y2
is non-zero.
For openness it suffices by Lemma 4.5.11 to prove that the set of submani-

folds of J2 defined by
v−2,
v−1,0 and
v−1,1 is A-regular; the only non-trivial
case is a sequence in 
v−1,1 with limit in 
v−2. But as 
v−2 is the set of jets
with zero 1-jet, the inclusion of tangent spaces follows.

In the final case, the condition that the coefficient of x32 in y2 is non-zero
implies that f (
v−1( f )) has a simple cusp.

Figure 4.2 A cusp singularity
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4.7 Generic singularities of maps 117

In Figure 4.2, we illustrate a cusp singularity of a map M2 → R2 as the
projection of a surface M embedded in R3, together with the discriminant set
f (
1( f )) ⊂ R2.
Finally, we consider cases with m large compared to v .

Theorem 4.7.3 Maps f with the following properties form a dense open subset
of C∞(V v ,Mm):
if m ≥ 2v , f is an immersion,
if 2m ≥ 3v − 3, 
2( f ) is empty and f is transverse to 
1, so 
1( f ) is a

smooth submanifold of V of dimension 2v − m− 1,
if 2m ≥ 3v − 1, the 2-jet of f at any point of 
1( f ) can be reduced to the

form

y1 = 1

2
x21, y j = x j (2 ≤ j ≤ v ), yi+v−1 = x1xi (2 ≤ i ≤ m− v + 1).

(4.7.4)

Proof By Theorem 4.5.6, the maps transverse to all the 
i form a dense set,
and by Corollary 4.5.14 it is also open.
Sincem ≥ v , the codimension of
1 ism− v + 1. Thus ifm ≥ 2v , the maps

avoiding 
1, i.e. immersions, are dense and open in C∞(M,V ). This already
sharpens Theorem 4.2.3.
Next, the codimension of 
2 is 2(m− v + 2), so provided this exceeds v ,

i.e. 2m ≥ 3v − 3, for a dense open set of maps f , we have 
2( f ) = ∅ and f
is transverse to 
1. We choose local coordinates in which the 1-jet of f at P
is given by (0, x2, . . . , xv , 0, . . . , 0), thus ∂/∂x1 spans ker(df ). Thus at j1 f (P),

1 is locally the set of jets such that the first row of (uij ) is a linear combination
of the rest, and the tangent space of 
1 is given by infinitesimal vanishing of
u11 and u

1
j for v < j ≤ m.

From the calculation (4.4.2) we see that the coefficient of ∂/∂u1j in
dj1 f (∂/∂xi) is u1ij , i.e. ∂

2y j/∂x1∂xi.
Now f is transverse to 
1 if and only if dj1 f (TPV ) spans the normal space

to 
1, i.e. the matrix (∂2 f j/∂x1∂xi) j=1,v< j≤m,1≤i≤v has rank m− v + 1.
Consider the subvariety 
1,1 of J2(V,M) consisting of jets in 
1 at P such

that ker(df )P ⊂ TP
1( f ). Since 
1( f ) has codimension m− v + 1, and we
now imposem− v + 1 further conditions,
1,1 has codimension 2(m− v + 1).
By Theorem 4.5.6, provides this exceeds v , i.e. 2m ≥ 3v − 1, the condition that
j2 f (V ) avoids 
1,1, i.e. at each point of 
1( f ), dj1 f (ker df ) is not tangent to

1, holds for a dense set of maps f .
The condition for this tangency is that dj1 f (∂/∂x1) lies in the subspace

where the coefficients of ∂/∂u11 and ∂/∂u1j for v < j ≤ m vanish, i.e. that
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118 General position and transversality

∂2 f1/∂x21 = 0 and ∂2 f j/∂x21 = 0 for v < j ≤ m. If this condition does not hold,
we may suppose, after replacing y1 and the y j for v < j ≤ m by linear combi-
nations, that ∂2 f1/∂x21 = 1 and ∂2 f j/∂x21 = 0 for v < j ≤ m.

It now follows that the matrix (∂2 f j/∂x1∂xi)v< j≤m,2≤i≤v has rank m− v . We
can thus make a linear transformation of the y j with v < j ≤ m to arrange that
∂2 f j/∂x1∂xi = 1 for j = v − 1+ i and vanishes otherwise for v < j ≤ m, 2 ≤
i ≤ v . Thus the 2-jets take the form
y1 = 1

2x
2
1 + Q1(x2, · · · , xv ),

y j = x j + Qj(x1, · · · , xv ), for 2 ≤ j ≤ v ,
yi+v−1 = x1xi + Qi+v−1(x2, · · · , xv ) for 2 ≤ i ≤ m− v + 1,

where the Qj are quadratic. Finally, if we make the coordinate changes
x′j = x j + Qj(x1, · · · , xv ),
y′1 = y1 − Q1(y2, · · · , yv ), and
y′i+v−1 = yi+v−1 − Qi+v−1(y2, · · · , yv ),

the quadratic terms drop out too.
For openness we could seek to show that A-regularity continues to hold when

we throw in
1,1. It is easier to apply the method of Proposition 4.6.3. WriteW
for the set of f ∈ C∞(V,M) transverse to the 
i and W∗ for the set of f ∈W
with j3 f transverse to 
1,1. Since for any f ∈W , j2 f (V ) avoids 
2, it avoids
a neighbourhoodUf of 
2 in J3(V,M), hence there is an open neighbourhood
W f of f inW such that, for all g ∈W f , j2g(V ) avoidsU .

In the complement of U we only need to consider 
2,0 and 
2,1, and here
the A-regularity condition trivially holds (the latter is a smooth submanifold
of codimension 1 in 
2 and the former is its complement). By Lemma 4.5.11,
transversality defines an open subset ofUf . It follows that W∗ ∩Uf is open in
Uf , soW∗ contains an open neighbourhood of f .

We now give applications of multitransversality: we treat the cases in the
same order, so begin with functions f ∈ C∞(V ). Recall that the critical values
of f are the f (P) with P a critical point of f .

Proposition 4.7.5 Non-degenerate functions with all critical values distinct
form a dense open set in C∞(V ).

Proof By Theorem 4.7.1, functions with only non-degenerate critical points
are dense. As the submanifold (
v−1, 
v−1)� of 2J1(V,R) of pairs of singular
jets with the same image has codimension 2v + 1, it follows from the Multi-
transversality Theorem 4.6.1, that functions avoiding it are also dense. As these
are both residual sets, so is their intersection.
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4.7 Generic singularities of maps 119

For openness it suffices, by Proposition 4.6.3, to show that for each non-
degenerate function f with distinct critical values, each x ∈ V has a neigh-
bourhood Ux such that the set of non-degenerate functions gwhose restriction
to Ux has distinct critical values is a neighbourhood of f . Choose a coordi-
nate neighbourhood U ′

x so that f has at most one critical point on U ′
x, and

let Ux be the neighbourhood defined by a disc of half the radius. Then the
set of non-degenerate functions on V with at most one critical point in Ux

is open.

We come to target dimension 2.

Theorem 4.7.6 For any V v , M2, maps with the following properties form a
dense and open subset of C∞(V,M):
the singular set of f is a smooth curve 
( f ) embedded in V ,
f |
( f ) is a smooth embedding except that
(a) for a discrete set of points P ∈ 
( f ), the curve f (
( f )) has a cusp at

f (P),
(b) for a discrete set of pairs (P,Q) of points in 
( f ) (all distinct from the

cusps), f (
( f )) has a transverse self-intersection at f (P) = f (Q).

Proof We give the proof of density: openness is more technical and is best
established using methods described in the Notes §4.9.
Most of the conclusions were obtained in Theorem 4.7.2, but we have yet to

consider double points of f (
( f )).
First apply the multitransversality theorem to the submanifold

(
v−1,1, 
v−1)� of 2J2(V,M). This has codimension v + (v − 1)+ 2, so
is avoided by a dense set of maps; thus cusps will not be double points.
Now apply the theorem to (
v−1, 
v−1)�. This has codimension (v − 1)+

(v − 1)+ 2, so occurs at isolated points. It follows by Lemma 4.6.5 that the
self-intersection of f (
( f )) is transverse at such points.

For the cases of large target dimension, we have

Theorem 4.7.7 Maps f with the following properties form a dense subset of
C∞(V v ,Mm) if V is compact, or of C∞pr (V,M) in general:
(i) If m ≥ 2v + 1, f is an embedding.
(ii) If m = 2v , f is an immersion with isolated points of transverse self-

intersection.
(iii) If 2m ≥ 3v − 3, 
2( f ) is empty and f is transverse to 
1, so 
1( f ) is

a smooth submanifold of V of dimension 2v − m− 1.
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120 General position and transversality

(iv) If 2m > 3v , f is an embedding except as follows. There are double
points, forming a submanifold D( f ) of dimension 2v − m, and singular points,
forming a submanifold
1( f ) of dimension 2v − m− 1. Near
1( f ), f is given
locally by (4.7.4). Hence the closure D̄( f ) of D( f ) is D( f ) ∪
1( f ) and is
smooth, and f (D̄( f )) is a submanifold of M with boundary f (
1( f )).
(v) If 2m = 3v the same holds, except that now D( f ) is immersed with trans-

verse self-intersection, and f (D( f )) can have triple points with transverse self-
intersection.

Proof We extend the results of Theorem 4.7.3. For (i), we may suppose f an
immersion, and apply multijet transversality to (J0, J0)�. Since this has codi-
mension 2v , it is avoided by a dense set of maps. Thus injective immersions
are dense in C∞(V,M); now any proper injective immersion is an embedding
by Proposition 1.2.10.
Now (ii) follows using Proposition 4.6.6.
We make three further applications of the multitransversality Theorem 4.6.1.

First consider the subvariety (
1, J1)� of 2J1(V,M) consisting of pairs of jets
with the same image, one of which (say the first) is singular. As this has codi-
mension m+ (m− v + 1), if 2m ≥ 3v , the set of maps avoiding it is dense.

Next consider (J0, J0)�: by Lemma 4.6.5, 2 j0 f is transverse to this at (P1,P2)
if and only if df (VP1 )+ df (VP2 ) = MQ. By the previous paragraph, neither P1
nor P2 is a singular point, so we have a transverse intersection of smooth pieces
of the image, giving the set D( f ) of double points of f .
Finally consider the subvariety (J0, J0, J0)� of 3J0 of triples of jets with the

same image. Since this has codimension 2m, if 2m > 3v it follows by mul-
titransversality that the set of maps avoiding it is dense. If 2m = 3v , this will
appear at isolated points, and by Lemma 4.6.5, the three branches at such points
are mutually transverse.
We have seen thatD( f ) is an immersed submanifold; when there are no triple

points it is imbedded. That D( f ) remains a manifold near 
1( f ), with 
1( f )
as its frontier, follows from the equations (4.7.4). Now D( f ) is simply given by
xi = 0 (2 ≤ i ≤ m− v + 1) (modulo higher terms). Moreover f (D( f )) is also
a submanifold, except perhaps near f (
1( f )); but there it is locally given by
y1 ≥ 0, yi = 0 (2 ≤ j ≤ m− v + 1) and (v + 1 ≤ j ≤ m).

To prove openness it again suffices by Proposition 4.6.3 to show that, for each
f satisfying the conditions, each x ∈ V has a neighbourhoodUx such that the set
of maps gwhose restriction to 
1(g) ∩Ux is injective is a neighbourhood of f .

By Theorem 4.7.3, we may suppose that at the point x, either f is an immer-
sion (in which case the immersions give a neighbourhood of the desired type),
or the 2-jet of f has the form (4.7.4): y1 = 1

2x
2
1, y j = x j for 2 ≤ j ≤ v , and
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4.7 Generic singularities of maps 121

Figure 4.3 A Whitney umbrella

yi+v−1 = x1xi for 2 ≤ i ≤ m− v + 1; so 
1( f ) is given (to the first order) by
xi = 0 for 1 ≤ i ≤ m− v + 1. Restricting to a small neighbourhood U we see
that for any nearby g, the coordinates xi for i > m− v + 1 are independent on

1(g) and define an injective map of it.

We can now give a fuller statement of Whitney’s Embedding Theorem.

Corollary 4.7.8 For any smoothmanifoldV v there exist proper smooth embed-
dingsV v → Rm whenever m > 2v . The image of such an embedding is a closed
submanifold of Rm.

The existence of proper maps V → Rm is given by Corollary 2.2.10 and of
proper smooth maps follows from Proposition 1.1.7; it follows by the theorem
that there exist proper smooth embeddings. The final statement follows from
Proposition 1.2.10.
It also follows that for a dense open set of maps of a compact smooth sur-

face to 3-dimensional space, the possible types of singularity of the image
are the curves D of (transverse) self-intersections of the surface, triple points
where three sheets meet transversely, and a set S of isolated singular points,
where the map is locally of the form (modulo higher terms, but we will see in
Theorem 4.8.5 that these are unnecessary)

f (x1, x2) = (x21, x2, x1x2),

so here the image is defined by y23 = y1y22 andD is the curve y2 = y3 = 0, y1 >
0. Points of this type are known as Whitney umbrella points: an example is
pictured in Figure 4.3.
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122 General position and transversality

Although the results using multitransversality always give a partial descrip-
tion of the picture of the map in the target manifold M, this should be treated
with caution unless we restrict to the space C∞pr (V,M) of proper maps. We
already saw this in §1.2 when discussing the notion of submanifold. More-
over, though we have proved that the set of such ‘excellent’ maps is open, we
have used theW∞ topology, which is somewhat counterintuitive. For example,
it is possible to construct a non-degenerate function with distinct critical values
which are dense in R: maps nearby in the C∞ topology need no longer have
distinct critical values.

4.8 Normal forms

We show in this section that in each of the cases studied in the preceding section,
we can choose local coordinates to reduce the map f to a precise normal form.
We begin by showing that a mutually transverse set of submanifolds has as

local normal form a set of linear subspaces of a vector space.

Lemma 4.8.1 Suppose the submanifolds Vi of M each contain a point P, and
suppose that the subspaces TPVi of TPM are mutually transverse. Then there
exists a chart ϕ : (U,P)→ (Rm, 0), with U a neighbourhood of P in M, such
that each ϕ(Vi ∩U ) is an open subset of a coordinate subspace of Rm.

Proof For each i, if Vi has codimension ri, we know that there is a set of ri
smooth functions on M, each vanishing on Vi, whose differentials at P are lin-
early independent.
It follows from the definition of mutual transversality that the differentials

of all these functions at P are linearly independent, so we can extend them
to a basis of T∨P M by adjoining the differentials of a further m−∑i ri smooth
functions. It follows from the Inverse Function Theorem that the set of all these
functions defines a chart at P, and by construction, this has the desired property
on some neighbourhood of P.

A normal form theorem for non-degenerate functions is proved as follows.
First take local coordinates with sourceO ∈ Rm and target 0 ∈ R; then by linear
algebra reduce the 2-jet of f to the form

∑m
1 εix

2
i , with each εi = ±1.

Proposition 4.8.2 (Morse Lemma) Let f be a smooth function on a neigh-
bourhood of 0 in Rn with 2-jet

∑n
1 εix

2
i , where each εi = ±1. Then there is a

smooth coordinate change y = y(x) such that y(0) = 0, ∂y
∂x

∣∣∣
0
= In, and near 0,

f (x) =∑n
1 εix

2
i .
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4.8 Normal forms 123

Proof We have f (0) = 0, so by Lemma 1.2.3 there exist near 0 smooth func-

tions fi with f (x) =∑ xi fi(x). Also, fi(0) = ∂ f
∂xi

∣∣∣
0
= 0, so we can apply the

result again to obtain hi j with fi(x) =
∑
x jhi j(x). Write gi, j(x) = 1

2 (hi j(x)+
hji(x)).We think of f (x) =∑i j gi, j(x)xix j as a quadratic form, and diagonalise.
Note that

gi, j(0) = 1

2

∂2 f

∂xi∂x j

∣∣∣∣
0

=
{
0 i �= j

εi i = j.

Set y1 = (ε1g11(x))−1/2(
∑n

j=1 g1 jx j ). Then

∂y1
∂x1

= ±1,
∂y1
∂xi

= 0 if i > 1, and f (x) = ±y21 +
n∑

i, j=2
g′i, j(x)xix j.

We now repeat the reduction, observing only that although g′i, j(x) depends on
x1 we can express x1 by y1, and the dependence is smooth. Eventually we obtain
the required result.

For the remaining cases we require further machinery, which is provided by
the Malgrange Preparation Theorem. To formulate this, we need some nota-
tion. Denote by En the ring of germs at 0 of smooth functions on Rn under
pointwise addition and multiplication. This is a local ring with maximal ideal
mn consisting of germs of functions vanishing at 0. This is closely related
to our introduction of jets: it follows from Lemma 1.2.3 by a simple induc-
tion that a function-germ f on (Rn, 0) has zero r-jet: f ∼r 0: if and only
if f ∈ mr+1

n .

Theorem 4.8.3 (Malgrange Preparation Theorem) For u : Rm → Rn a map-
germ and f1, . . . fp ∈ Em, the following are equivalent:
the fi generate Em as module over En,
the images of the fi generate Em/u∗my.Em as real vector space.

We omit the proof: see Notes §4.9 for references.
By Theorem 4.7.2, for a dense open set of maps f : V v → M2, local coordi-

nates can be taken at any point P ∈ V such that we have either a submersion, a
map with 2-jet (x1,

∑v
i, j=2 bi jxix j ) with (bi j ) nonsingular, or a map with 2-jet

(x1, x1x2 +
∑v

i, j=3 bi jxix j ) with (bi j ) nonsingular, and a non-zero coefficient of
x31 in y2.

Theorem 4.8.4 For a dense open set of maps f : V v → M2, local coordinates
can be taken at any point P ∈ V such that f takes one of the forms
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(x1, x2),
(x1,

∑v
i=2 εix

2
i ), or

(x1, x1x2 + x32 +
∑v

i=3 εix
2
i ).

We give the proof only for v = 2.

Proof In each case, y1 has 1-jet x1. First simplify by taking x′1 = y1(x1, x2),
x′2 = x2. By the Inverse Function Theorem 1.2.5, this is an allowed coordinate
change, and it reduces us to the case y1 = x1.

We recall that by Lemma 1.2.3, if g is a smooth function and g(0) = 0, there
exist near 0 smooth functions gi with g(x) =

∑
xigi(x). We can thus write y2 =

x1A1 + x2A2. As y2 has 2-jet x22, each of A1 and A2 vanishes at 0, so applying
the lemma again gives y2 = x21A11 + x1x2A12 + x22A22.

Thus the ideal f ∗m2.Ev = 〈y1, y2〉 = 〈x1, x21A11 + x1x2A12 + x22A22〉 =
〈x1, x22A22〉. But A22(0) �= 0, so A22 is invertible, hence the ideal coincides with
〈x1, x22〉, and the quotient Ev/u∗m2.Ev is generated by {1, x2}. In case (iii) a
similar argument shows that the ideal is equal to 〈x1, x32〉, and the quotient is
generated by {1, x2, x22}.

In case (ii), it follows by Theorem 4.8.3 that Ev is generated over E2 by {1, x2}.
Thuswe canwrite y2(x1, x2)− εx22 = A(y1 ◦ u, y2 ◦ u)+ x2B(y1 ◦ u, y2 ◦ u) for
some C∞ functions A,B. Now change coordinates first by x′2 = x2 + ε2

2 B(y1 ◦
u, y2 ◦ u) to eliminate B; then by y′2 = y2 − A(y1, y2) to achieve the desired
normal form.
In case (iii), Ev is generated over E2 by {1, x2, x22}. We can thus write

x32 = (A ◦ f )+ x2(B ◦ f )+ 3x22(C ◦ f ),
where we omit the explicit dependence of A, B and C on y1 and y2. So

(x2 −C)3 = (A+ BC + 2C3)+ (x2 −C)(B+ 3C2).

If we can substitute

x′1 = (B+ 3C2) ◦ f , x′2 = x2 −C ◦ f , y′1 = B+ 3C2, y′2 = A+ BC + 2C3,

we indeed obtain

y′1 = x1, y′2 = x32 − x1x2.

Equating successively coefficients of x1, x1x2 and x32 shows that the 1-jet of A
is y2 and the 1-jet of B has the form−y1 + αy2. Hence by the Inverse Function
Theorem, the change of y coordinates is legitimate. Now the 1-jet of B ◦ f is
−x1 and the 1-jet ofC ◦ f has the form βx1, so also the change of x coordinates
is legitimate.
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4.9 Notes on Chapter 4 125

In Theorem 4.7.3 we saw that if 2m ≥ 3v − 1, maps f with the following
properties form a dense open subset ofC∞(V v ,M2):
2( f ) is empty, f is trans-
verse to
1, and the 2-jet of f at any point of
1( f ) can be reduced to the form

y1 = 1

2
x21, y j = x j for 2 ≤ j ≤ v, yi+v−1 = x1xi for 2 ≤ i ≤ m− v + 1.

Theorem 4.8.5 There exist local coordinates in which f takes precisely this
form.

Proof Here Theorem 4.8.3 gives generators {1, x1}. So we can write
y1 = 1

2x
2
1 + x1A1(y)+ B1(y),

y j = x j + x1Aj(y)+ Bj(y) for 2 ≤ j ≤ v , and
yi+v−1 = x1xi + x1Ai+v−1(y)+ Bi+v−1(y) for 2 ≤ i ≤ m− v + 1;

moreover equating terms of order 2 shows that the B∗ have zero 1-jet, and the
1-jet of each Ai is a linear combination of the yi with i = 1 or i > v .

First substitute x′1 = x1 + (A1 ◦ f ); this reduces the map to a map of the same
form, but with A1 absent. We continue to write Aj, Bj, etc. for the new terms.

Next substitute x′j = x j + x1(Aj ◦ f )+ (Bj ◦ f ) for 2 ≤ j ≤ v; this elimi-
nates Aj and Bj but gives yi+v−1 = x1(x′i − x1Ai(y)− Bi(y))+ x1Ai+v−1(y)+
Bi+v−1(y) for 2 ≤ i ≤ m− v + 1. Now set y′i+v−1 = yi+v−1 + 2y1Ai(y) to elim-
inate the term in x21, and renotate as before.

Thirdly write x′i = xi + (Ai+v−1 ◦ f ) for 2 ≤ i ≤ m− v + 1. We now have
y1 = 1

2x
2
1 + B1(y),

y j = x j − Ai+v−1(y) for 2 ≤ j ≤ v , and
yi+v−1 = x1xi + Bi+v−1(y) for 2 ≤ i ≤ m− v + 1.

By the Inverse Function Theorem 1.2.5, the equations y′1 = y1 − B1(y), y′j =
y j + Ai+v−1(y), y′i+v−1 = yi+v−1 − Bi+v−1(y) can now be solved to give a coor-
dinate transformation; making these substitutions reduces f to the stated
form.

4.9 Notes on Chapter 4

§4.1 Sard’s work followed that of Brown [32] which obtained a weaker result
sufficient for most applications. There is a neat account of the proof in Milnor’s
little book [100].
§4.2 Whitney’s great paper [175], although written in terms of explicit

inequalities, effectively also introduced theW∞ topology on the space of maps.
§4.3 The elementary argument here essentially goes back to Monge. A simi-

lar account is given by Milnor [98, I]. The importance of non-degenerate func-
tions will appear in §5.1.
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126 General position and transversality

§4.4 Jets were first introduced by Ehresmann [48]. Their application to sin-
gularities was pioneered by Whitney, and systematically promoted by Thom
[153].
A general discussion of these function space topologies, with references for

proofs, is given, for example, in [121, §3.4]. A number of proofs are given in
[73, §2.1] (but with a number of errors); another useful reference is [57]. The
account in §A.4 includes proofs for the C0 cases, which can be adapted to the
C∞ case.

There is no general agreement on terminology for these topologies. Some
authors refer to the Thom topology forC∞ and to theWhitney topology forW∞,
though neither of these authors formally introduced these topologies. Indeed,
the first formal use ofW∞ seems to be in [88]. A discussion of their origins is
given on [47, p. 59].
§4.5 The idea and use of transversality was introduced by Thom in [150]. The

original proof was somewhat clumsy, but soon evolved to essentially the one
presented here. An abstract form of the argument was given by Abraham [1].
Direct construction of families allowing use of Lemma 4.5.3 was given in

many cases in [168].
The submanifolds 
i were first introduced by Thom, as were extensions to

higher orders. A precise account, with the notations 
i, j etc., was given by
Boardman [19]. Whitney’s regularity conditions were first formulated in [180].
The transversality Theorem 4.5.6 can be adapted to obtain results about

1-parameter families of mappings. We consider such a family as a map F :
V × R → M × R of the form F (x, t ) = ( f (x, t ), t ): F is compatible with pro-
jection on R; we say that it is level-preserving. If N is a submanifold of
Jr(V × R,M × R), we wish to make jrF transverse to N allowing only per-
turbation of F through level-preserving maps.
The idea of the proof of Theorem 4.5.6 is to embed g in a family G : V ×

U → M such that the partial jet map jr1G : V ×U → Jr(V,M) is a submersion,
and then apply Lemma 4.5.3; moreover we constructed G by piecing together
maps locally constructed as G′ : X × Y → Rm defined by G′(x, y) := g(x)+
B(x)y(x), where X is a coordinate chart for V and Y is the set of polynomial
maps y : Rv → Rm of degree ≤ r.

To adapt this to 1-parameter families, we must replace Y by the set Y lp of
level-preserving polynomial maps Rv+1 → Rm+1 of degree ≤ r. We then need
to require that N is a submanifold of Jr(V × R,M × R) transverse to the set
of level-preserving jets. In practice, it is more efficient to use the methods of
Mather mentioned below.
Consider in particular M = R and N = 
v−1. A generic map f meets this

only at its (isolated) critical points, all non-degenerate. It can be shown that a
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generic homotopy F can be locally put in one of the forms of Theorem 4.7.2:
(x1, x2), (x1,

∑v
i=2±x2i ) or (x1, x1x2 + x32 +

∑v
i=3±x2i ), with x1 = t the param-

eter in R. In the first case, ft has no critical point; in the second there is a crit-
ical point at the origin; in the third, there are no critical points if t > 0, but if
t = −3u2 there are two critical points, at (±u, 0, . . . , 0). This gives the model
for the deformation of a function corresponding to the handle cancellations
considered in §5.4.
In Lemma 4.5.13 I offered a direct proof of A-regularity: however, it fol-

lows from the fact that the strata are the orbits of the natural action of
GL(V )× GL(M) that the stratification is locally trivial, which is stronger than
A-regularity.
§4.6 Versions of transversality involving several source points were current

in the early 1960s (and indeed examples were given in the original version of
these notes) but the formulation in terms of multitransversality is due to Mather
[88] III in 1969. Some of the openness lemmas are new.
§4.7 We have just focussed on the examples needed later. Proving openness,

as well as density, is harder than is often given credit for. A useful general
criterion was given by Looijenga (see [56, p. 146], [47, Theorem 3.4.11]).
We have presented the results in three stages, following the natural progres-

sion. Thom used the term ‘source genericity’ for the results obtained from
transversality (for example, Theorem 4.7.3) and ‘target genericity’ for those
using multitransversality (for example, Theorem 4.7.7); we go on to normal
forms (for example, Theorem 4.8.5). These cases (2m > 3v) are due to Hae-
fliger, who used them in his original proof [60] of Theorem 6.4.11.
§4.8 In general, given v and m, we can think of a generic map of V v to Mm

as one which satisfies all the transversality conditions which can be stated in
terms of v , m alone (using no special facts about V , M).
This vague idea is made precise in §4.7 and §4.8 above in the cases m = 1,

m = 2, and 2m ≥ 3v . In each of these cases we have a class of maps with the
four properties of characterisation, local normal form, density, and stability. It
can be shown [88] that (at least if V is compact) maps with these properties
are C∞ stable in the sense that nearby maps are equivalent up to diffeomor-
phisms of the source and target, and that in these dimensions, C∞ stable maps
are dense in C∞(V,M). The case v = m = 2, motivating the search for results
in higher dimensions was obtained byWhitney [179], and the casem = 2v − 1
by Whitney [176].
A general survey and discussion was given by Thom in [153]. However, he

found that to describe general map-germs R16 → R16 a finite list of normal
forms does not suffice: one needs to allow a parameter. The simplest exam-
ple is for R8 → R6: for a general map in these dimensions, 
4 f consists of
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isolated points, and to describe the 2-jet of f at such a point involves a homo-
geneous quadratic map R4 → R2; and the classification of such maps involves
a parameter.
The above method of direct reduction to normal form is somewhat clumsy.

A more general approach was introduced by Mather [88] III. Here one uses the
Malgrange preparation theorem to construct vector fields, and then integrates
these to find changes of coordinates. I have written an expository account of
this approach in [169]. Malgrange gave a proof of his preparation theorem in
Cartan seminars in 1962–63; full details appear in his book [86]. There have
been many further proofs: four appear in the volume [166].
Mather’s work created a full theory ofC∞ stability: see [88], also [121]. The

final conclusion is that stable maps are dense inC∞(V v ,Mm) (V compact), and
a finite explicit list of normal forms analogous to the above can be given, if
and only if the pair (v,m) belongs to the so-called nice dimensions, which are
given if m− v ≥ 4 by 7v < 6m+ 8; otherwise by

m− v 3 2 1 0 −1 −2 ≤ −3
m < 30 < 23 < 16 < 9 < 8 < 6 < 7.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316597835.005
http:/www.cambridge.org/core


5

Theory of handle decompositions

A handle decomposition is perhaps the simplest way to build a manifold
from elementary pieces. The existence of such decompositions is obtained
by analysing the geometry associated to a non-degenerate function on the
manifold.
In the first section we prove the existence of handle decompositions for com-

pact manifolds: in the next few sections we will show how to operate on such
decompositions. In §5.2 we normalise the decomposition; then, after a sec-
tion on the homology of handles, we manipulate the decompositions: there are
results on adding handles, and on removing or introducing complementary pairs
of handles. The technical details use the results treated in Chapter 2.
The definition of a handle decomposition is analogous to that of a CW com-

plex. Also the results we establish run in parallel with operations on finite CW
complexes that can be performed in homotopy theory. We will see below that
up to a point the theory of handle presentations parallels that of cell decompo-
sitions and even to an important extent to that of algebraic operations on chain
complexes.
The high point of this development is the h-cobordism theorem, which gives

an effective criterion for diffeomorphism of compact manifolds. We prove this
result in §5.5. Then we give a number of applications, discuss what is known
in low dimensions, and outline what modifications need to be made to the the-
ory when the fundamental group is non-trivial. In some places we anticipate
Theorem 6.4.11, but Chapter 6 is independent of this chapter.
In this chapter, all manifolds will be compact unless otherwise stated.

5.1 Existence

LetW be a manifold, and suppose ∂−W and ∂+W disjoint manifolds with union
∂W . Then we call the pair (W, ∂−W ) a cobordism and the pair (W, ∂+W ) the

129
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W

∂−W

∂+W

∂cW ∂cW

Figure 5.1 A cobordism

dual cobordism; we also callW a cobordism of ∂−W to ∂+W , and say that ∂−W
and ∂+W are cobordant. IfW is a manifold with corner, and ∂−W , ∂cW , ∂+W
are parts of the boundary such that ∂−W and ∂+W are disjoint and

∂∂cW = ∠W = ∂ (∂−W ∪ ∂+W ),

we still callW a cobordism of ∂−W to ∂+W . We shall usually denote a cobor-
dism by a single letter and often just call it a manifold. A picture of a cobordism
is offered in Figure 5.1. For example, we usually regard a product M × I as a
cobordism, with ∂−(M × I) = M × 0, ∂+(M × I) = M × 1; ifM has boundary,
write ∂c(M × I) = ∂M × I.

Figure 5.2 A handle

Suppose Wn a cobordism, f : Sr−1 × Dn−r → ∂+W an embedding. Intro-
duce a corner (as in Lemma 2.6.3) along f (Sr−1 × Sn−r−1). Now glue Dr ×
Dn−r to W by f . The result is unique up to diffeomorphism, and is denoted
W ∪ f hr; it has the same corners asW . We describe it asW with an r-handle
attached by f . We call f the attaching map of the handle, and r the dimension
of the handle. Figure 5.2 offers a picture of a handle. We define ∂+(W ∪ hr ) =
(∂+W \ Im f ) ∪ (Dr × Sn−r−1).
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If we have a sequence of attached handles:

W ∗ =W ∪ f1 h
r1 ∪ · · · ∪ fk h

rk ,

we describe this as a handle presentation of W ∗ on W ; if the maps fi are not
specified, as a handle decomposition. In particular, ifW = M × I, we speak of
a handle decomposition ofW ∗ with base M (here, M may be empty).
To prove existence, we use non-degenerate functions.

Lemma 5.1.1 Any cobordismW with ∂cW = ∅ admits a non-degenerate func-
tion f , with all critical values distinct, attaining an absolute minimum on ∂−W
only, and an absolute maximum on ∂+W only. The same holds if ∂cW is a
product M × I.

Proof Let ∂−W × I, ∂+W × I be disjoint collar neighbourhoods of ∂−W and
∂+W . Define g :W → [0, 1] by:

g(x, t ) =
⎧⎨⎩

1
3 t for x ∈ ∂−W ,

1− 1
3 t for x ∈ ∂+W ,

(5.1.2)

and extend to a continuous function taking only values between 1
3 and 2

3 else-
where: this is possible sinceW is normal. By Proposition 1.1.7, we can approx-
imate g by a smooth function h, agreeing with g near ∂W . Now approximate
h by a non-degenerate function f with distinct critical values, agreeing with h,
and so g, near ∂W . This is possible by Proposition 4.5.10 since g and h have no
critical points in a neighbourhood of ∂W .

For the case ∂cW = M × I we use the same argument: here we use Propo-
sition 1.5.6 to find the collars, and to ensure that along ∠W they agree with
the product structure on ∂cW , and Proposition 1.1.7 allows us to suppose that
h and hence f agree onM × I by the projection on I; the proof now concludes
as above.

The proof shows that we may suppose that for x close to ∂W , f is defined by
the formula (5.1.2).
Now we giveW a Riemannian structure adapted to the boundary; for conve-

nience we suppose, as in Proposition 2.3.7 that it is a product metric in some
neighbourhood of ∂W . Then the differential 1-form df induces at each P ∈W
an element dfP of TPW∨; using the Riemannian structure, this is identified with
an element of TPW , a tangent vector. Thus df gives a vector field, which we
call ∇ f .
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132 Theory of handle decompositions

In W̊ , we can use Theorem 1.4.2 to integrate f and obtain a flow ϕt (P),
defined for certain values of (t,P). Near a point of ∂−W , we can take coor-
dinates x1, . . . , xn such that W is defined by x1 ≥ 0, x1 is the t-coordinate in
the tubular neighbourhood, so that f (x) = x1 − 1 and the Riemannian structure
is of the form ds2 = dx21 +

∑n
i, j=2 gi, jdxidx j. Hence ∇ f agrees with ∂/∂x1 in

such a neighbourhood, and orbits are of the form

ϕt (x1, . . . , xn) = (x1 + t, x2, . . . , xn) x1 ≥ 0, x1 + t ≥ 0.

Thus for P ∈ ∂−W , ϕt (P) is defined for small positive values of t, and ϕ is
defined on a neighbourhood of ∂−W × 0 in ∂−W × R+ and gives a collar neigh-
bourhood of ∂−W . Similarly for ∂+W .

If we regard ϕt (P) as a point parametrised by t, it is smooth, and we have a
metric, so can speak of speed.

Lemma 5.1.3 We have (a) d
dt f (ϕt (P))|t=0 = ‖dfP‖2,

(b) The speed of ϕt (P) at t = 0 is ‖dfP‖.
Proof (a) d

dt
f (ϕt (P))

∣∣∣∣
t=0

= ∇ f ( f )|P by definition of ϕ

= df (∇ f )|P
= 〈dfP, dfP〉 = ‖dfP‖2

in the Riemannian inner product on TPW , since this defined ∇ f .
(b) Take coordinates (x1, . . . , xm) at P, so that P has coordinates (0, . . . , 0)

and at P the Riemannian metric agrees with the standard metric in Rn. Let df =∑
aidxi: then ∇ f =∑ ai∂/∂xi (at P). Thus, at P,

∂ϕt (P)
∂xi

= ai, so the speed of
ϕt (P) is just (

∑
a2i )

1/2 = ‖dfP‖.
Now suppose P ∈ W̊ , and that the maximum range of t in which ϕt (P) is

defined is (a, b).

Lemma 5.1.4 Suppose W is compact. Then either
a is finite and as t → a, ϕt (P) tends to a point on ∂−W, or
a = −∞ and, for any K, the closure of ϕ−1t (−∞,−K) contains a critical

point of f .
Similarly for b.

Proof If a is finite, by Lemma 5.1.3 (b), the points ϕt (P) form a Cauchy
sequence as t → a (since W is compact, ‖dfP‖ is bounded); since W is com-
plete, they tend to a limit point Q. If Q was interior toW , it would follow that
Q was on the orbit, which could then be extended: thus Q is on ∂W . Since by
Lemma 5.1.3 (a), f increases along each orbit, f (Q) < f (P), so Q is on ∂−W .

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.006
https:/www.cambridge.org/core


5.1 Existence 133

Now let a = −∞. Then by Lemma 5.1.3 (a),∫ 0

−∞
‖dfϕt (P)‖2dt

converges. So ‖dfϕt (P)‖ has infimum zero as t →−∞. Outside any open neigh-
bourhood of the set of critical points, ‖df‖ is non-zero, and attains its lower
bound (by compactness), so ϕt (P) meets any such neighbourhood. But the set
of critical points is compact, and so meets the closure of the orbit.

We are now ready to analyse the function f of Lemma 5.1.1. For a ∈ R, write

Wa = {P ∈W : f (P) ≤ a}
Ma = {P ∈W : f (P) = a}

thus for

a = 0 Wa = ∂−W Ma = ∂−W

a = ε Wa = ∂−W × [0, ε] Ma = ∂−W × ε

a = 1− ε Wa =W \ (∂+W × [0, ε)) Ma = ∂+W × ε

a = 1 Wa =W Ma = ∂+W

provided that ε is so small that ∂ηW × [0, ε] (η = +,−) are contained in the
collar neighbourhoods described earlier. Clearly, for a < b,Wa ⊂Wb; we next
investigate howWb is formed fromWa.

Lemma 5.1.5 Suppose that for a ≤ c ≤ b, c is not a critical value of f . Then
f−1[a, b] is diffeomorphic to Ma × [a, b] and Wb is diffeomorphic to Wa.

Observe that since a, b are not critical values, it follows from Lemma 4.5.1
that Ma, Mb and f−1[a, b] are submanifolds.

Proof The first assertion follows at once by applying Theorem 1.5.4 to the
vector field ∇ f .

ThusWb is obtained fromWa by glueing onMa × I alongMa. The result now
follows from Lemma 2.7.2.

This shows that ‘as long as a does not pass through a critical value, the diffeo-
morphism type ofWa remains constant’. We now have to investigate the critical
value.

Theorem 5.1.6 Suppose that for a ≤ f (P) ≤ b there is just one critical point
Q, which is non-degenerate and with f (Q) = c (a < c < b). ThenWb is diffeo-
morphic to Wa with a handle attached.
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M−ε M−ε

Mε

Mε

W−2ε W−2ε

M2ε

M2ε

Figure 5.3 Level sets

Proof Our discussion of orbits in Theorem 1.5.4 remains valid except for those
orbits with Q as a limit point. We must therefore investigate a neighbourhood
of Q. By the Morse Lemma 4.8.2 there exist local coordinates x1, . . . , xn such
that in a neighbourhood of Q f is given by

f (x) = c− x21 − · · · − x2λ + x2λ+1 + · · · + x2n.

The integer λ is called the index of f of the critical point 0. Using a partition
of unity, we choose a Riemannian structure which agrees with the Euclidean
structure in this coordinate system.With respect to this, the gradient vector field
∇ f is given by

∇ f =
λ∑
1

−xi ∂
∂xi

+
n∑

λ+1

xi
∂

∂xi
.

For example, if f (x) = −x21 + x22, the curvesMa are hyperbolae with asymp-
totes x21 = x22, except forM0 which is this line-pair, and as a increases up to zero,
Wa increases without essential change, but it engulfs the origin when a = 0.
Figure 5.3 shows the evolution of Ma for a = −2ε, −ε, ε, and 2ε.
Choose ε so small so that for ‖x‖ ≤ 5ε, the above formulae are valid. We

nowmodifyW−ε by first introducing a corner, then attaching a handle, to obtain
something close toWε: the procedure is illustrated in Figure 5.4.
More precisely, write x = (ξ, η), where ξ = (x1, . . . , xλ), η =

(xλ+1, . . . , xn), f (x) = c− ‖ξ‖2 + ‖η‖2. Define the handle H to be the set
‖η‖ ≤ ε, ‖ξ‖ ≤ ε. Let V be a smooth manifold with corner which
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Figure 5.4 Attaching a handle

(i) coincides with ‖ξ‖ ≤ ε, ‖η‖ ≥ ε near ‖ξ‖ = ε (this includes the corner
‖ξ‖ = ‖η‖ = ε);
(ii) coincides withW−ε when ‖x‖ ≥ 5ε, and containsW−ε;
(iii) has ∂V everywhere transverse to the orbits of ∇ f .

Such aV may be constructed using a bump function. Then by Proposition 2.6.4,
M−ε is obtained from V by straightening the corner – or equivalently, by
Lemma 2.6.3, V fromM−ε by introducing one. Now H is diffeomorphic to the
product Dλ × Dn−λ, and ∂−H := H ∩V is given by ‖ξ‖ = ε, ‖η‖ ≤ ε, hence
is a copy of Sλ−1 × Dn−λ in ∂H ∩ ∂V . Since the union H ∪V is smooth, and
H and V are defined by cutting it along H ∩V , it follows by Proposition 2.7.3
that H ∪V is obtained by glueing these.
Now H ∪V is a smooth manifold, transverse to the orbits, with no critical

points between it andMb; thus it follows from Theorem 1.5.4 thatWb is diffeo-
morphic to H ∪V . But H ∪V consists ofWa with a λ-handle attached.

The following are immediate consequences.

Corollary 5.1.7 (i) If the Hessian of f at c has index λ, we attach a λ-handle.
(ii) If there are several non-degenerate critical points at level c, we attach

several handles.
(iii) W has a handle decomposition based on ∂−W,

for we can apply the above argument in a neighbourhood of each critical point.
With a little care, the arguments may also be applied to non-compact mani-

folds: we give one sample result.

Lemma 5.1.8 Any manifold W can be expressed as the union of an infinite
sequence of handles attached one at a time.

Proof By Corollary 2.2.10 there is a proper map f :W → R; as before, we
may suppose f smooth and non-degenerate. Then each setWa is compact, and
we may apply the same arguments as above.

It is also possible to proceed in the opposite direction.
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∂+H

∂+H

∂−H ∂−H

∂cH

∂c ∂H cH

∂cH

Figure 5.5 Alternative picture of a handle

Theorem 5.1.9 Given a handle decomposition of W on ∂−W, there is a non-
degenerate function f on W (as in Lemma 5.1.1) with just one critical point of
index λ for each λ-handle.

Proof The result is proved by induction on the number of handles: if there
are none, W ∼= ∂−W × I, and we take f as the projection on I. Now let V be
defined by attaching all but the last handle: by the induction hypothesis, f can
be defined on V , constant on ∂+V . So if we can define f on (∂+V × I) ∪ hλ we
can glue back (using collar neighbourhoods of ∂+V on which f reduces to a
projection) to make f smooth. Hence it suffices to consider the case whenW is
formed from ∂−W × I by attaching one handle.

Now let g : Sλ−1 × Dn−λ → ∂−W be the attaching map of a λ-handle. Write
K for the closure of the complement of the image. Write H for the subset of
Rλ × Rn−λ defined by

−1 ≤ −‖x‖2 + ‖y‖2 ≤ 1, ‖x‖2‖y‖2 ≤ 2.

Then the function defined on H by F (x, y) = −‖x‖2 + ‖y‖2 attains its mini-
mum value −1 on ∂−H, say, and its maximum +1 on ∂+H. Write ∂cH for the
subset given by ‖x‖2‖y‖2 = 2.

We have a diffeomorphism G− : ∂−H → Sλ−1 × Dn−λ given by G−(x, y) =(
x
‖x‖ , y

)
: its inverse is given byG−1

− (u, v ) = ((1+ ‖v‖2)1/2u, v). We also have

a diffeomorphism Gc : ∂cH → Sλ−1 × Sn−λ−1 × [−1, 1] given by Gc(x, y) =(
x
‖x‖ ,

y
‖y‖ ,F (x, y)

)
: its inverse is G−1

c (u, v, t ) = (au, bv ), where b2 − a2 = t

and b2 + a2 = √
t2 + 8. This description goes with the picture of a handle

offered in Figure 5.5.
Now attach H to K × [−1, 1] by the map Gc to form a manifold W ′. The

function f :W ′ → [−1, 1] defined by f |H = F , f |K = projection is a smooth
function, whose only critical point is the non-degenerate one in H. We have a
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5.2 Normalisation 137

diffeomorphism h of ∂−W ′ to ∂−W given by the identity on K ×−1, and by
g ◦ G− on ∂−H.
Finally, we have a diffeomorphism of W ′ on W . For each is obtained by

attaching a λ-handle to the lower boundary:W by hypothesis andW ′ by Theo-
rem 5.1.6. By construction, the attaching maps of the handles correspond under
h, so the identity map of ∂−W extends to a diffeomorphism.

5.2 Normalisation

We could proceed immediately to make various deductions about smooth man-
ifolds from the existence of a handle decomposition. First, however, it is
convenient to normalise a presentation. We have definedW ∪ f hr by attaching
Dr × Dn−r toW using an embedding f : Sr−1 × Dn−r → M := ∂+W ; however
it will usually be more convenient to regard the handleH as consisting of a col-
larM × I to whichDr × Dn−r is attached. The attaching sphere (or a-sphere) of
H is the sphere f (Sr−1 × 0) in ∂−H. The belt sphere (or b-sphere) is the sphere
0× Sn−r−1 in ∂+H. The core is the disc Dr × 0.

It follows at once from Theorem 2.4.2 (diffeotopy extension) that W ∪ f hr

is determined up to diffeomorphism by the diffeotopy class of f , for if g is
a diffeomorphism of W , g induces a diffeomorphism of W ∪ f hr with W ∪gf
hr. By Theorem 2.5.5 (tubular neighbourhood), it is even determined by the
diffeotopy class of f̄ = f |Sr−1 × 0 together with a homotopy class of normal
framing of f (Sr−1 × 0) in ∂+W .

Lemma 5.2.1 Let r ≤ s. Then (W ∪ f hs) ∪g hr is diffeomorphic to manifolds
obtained from W by attaching the handles simultaneously, or in the reverse
order.

Proof Let n = dimW ,Q = ∂+(W ∪ f hs). Then we have inQ the a-sphere Sr−1

of hr and the b-sphere Sn−s−1 of hs. Since

(r − 1)+ (n− s− 1) = n− 1− (s+ 1− r) < n− 1 = dimQ,

by Theorem 4.5.6, Sr−1 may be approximated by a sphere not meeting Sn−s−1:
by Proposition 4.4.4 if the approximation is close enough, we still have an
imbedded sphere, diffeomorphic to the old one. By further diffeotopies, we
may make Sr−1 avoid the tubular neighbourhood Ds × Sn−s−1 (using the dif-
feotopy extension theorem, and the fact that the tubular neighbourhood may
be shrunk to avoid Sr−1) and shrink the tubular neighbourhood Sr−1 × Dn−r so
that, this, too, avoidsDs × Sn−s−1. But now the attaching map of the r-handle is
disjoint from the s-handle: its image lies in ∂W , and the handles may be added
in either order.
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Corollary 5.2.2 AnyW has a handle decomposition on ∂−W with the handles
arranged in increasing order of dimension.

This follows at once by induction.
From now on we shall generally assume that handles have been arranged

in order of increasing dimension: this is in some sense the usual case. Indeed,
since we can always reduce to this case, a handle decomposition without this
property carries extra information.
We now introduce the notation

Wr+ 1
2
= (∂−W × I) ∪ all s− handles for s ≤ r,

where we use Lemma 5.2.1 and attach all r-handles simultaneously. Also set
Mr+ 1

2
= ∂+Wr+ 1

2
.

This is related to our previous notation as follows. It follows from Lemma
5.2.1, in conjunction with the relation between handles and non-degenerate
functions onW , that there exist non-degenerate functions f with the property
that, for each critical point P of f of index λ, we have f (P) = λ. Such func-
tions are called self-indexing. If we use a self-indexing function f on W , the
two definitions ofWr+ 1

2
coincide.

In Mr+ 1
2
we have the a-spheres Sr of the (r + 1)-handles and the b-

spheres Sn−r−1 of the r-handles, which have complementary dimensions. By
Theorem 4.5.6, the embedding of a sphere Sr may be approximated by a map
transverse to Sn−r−1, and if the approximation is close enough, we have merely
altered the embedding by a diffeotopy. Since the dimensions are complemen-
tary, and the map transverse, intersections are isolated points; since Sr is com-
pact, there are only finitely many. We can thus modify the presentation by a
diffeotopy so that all these a-spheres are transverse to all these b-spheres. We
will say that a presentation with this property is in normal position. We have
shown

Lemma 5.2.3 Any handle presentation of (W, ∂−W ) may be modified by dif-
feotopies so that the handles are arranged in increasing order of dimension,
and any two handles of consecutive dimensions are in normal position.

In this situation, for each such transverse intersection P of Sr with Sn−r−1, it
follows from Lemma 4.8.1 that there is a chart forMr+ 1

2
meeting the a-sphere in

Dr × {0} and the b-sphere in {0} × Dn−r−1. Since the tubular neighbourhoods
are unique up to diffeotopy, we may suppose that they both meet this chart in
Dr × Dn−r−1, with the projections being those on the factors.
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Figure 5.6 Retracting a handle on its core

5.3 Homology of handles and manifolds

For each r−handle attached toW , using a deformation retraction of Dr × Dn−r

on (Sr−1 × Dn−r ) ∪ (Dr × {0}) (which may be obtained from a deformation
retraction of I × I on ({1} × I) ∪ (I × {0}) by rotating about both axes), we
have a deformation retraction ofW ∪ f hr =W ∪ f (Dr × Dn−r ) onW ∪ f (Dr ×
{0}). Thus, up to homotopy, attaching a handle is the same as attaching a cell
(its core). The deformation retraction is pictured in Figure 5.6.
This gives a very close connection between handle decompositions and cell

complexes. In particular, we deduce the following from Corollary 5.2.2.

Proposition 5.3.1 If W is closed, it has the homotopy type of a finite CW
complex. In general, (W, ∂−W ) has the homotopy type of a finite CW pair.

Proof The first statement follows by taking a normalised handle decompo-
sition of W and replacing each handle by an equivalent cell. In fact it is
not difficult to show that W is homeomorphic to an appropriate finite CW
complex.
For the second statement, note that by the first, we can regard ∂−W as a finite

cell complex, and again apply Corollary 5.2.2.

Before continuing, it is convenient to recall some basic results about the
homology of manifolds: we focus on the simplest case when Mm is closed,
connected, and oriented. ThenHm(M;Z) is infinite cyclic (this is a special case
of the Poincaré duality Theorem 5.3.5 below). If M is triangulated and we use
simplicial homology, a generator is represented by the sum of the m-simplices,
where each must be given the orientation induced by that ofM. We denote this
generator by [M].
A map f : M → N, whereM and N are both closed, oriented, and connected

has degree d, where d is the integer such that f∗[M] = d[N]. The degree may

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.006
https:/www.cambridge.org/core


140 Theory of handle decompositions

be determined as follows. Suppose f smooth and transverse to a point Q ∈ N.
Then f−1(Q) is a finite set of points Pi and (by Lemma 4.5.1) for each i, the
tangent map induces an isomorphism TPiM → TQN. Set εi = ±1 according as
this map preserves the given orientations or not. Then d =∑i εi.

We can see directly that this is independent of choices: a homotopy F of f0
to f1 may be made transverse to Q, and the preimage of Q is then a collection
of loops (which do not contribute), arcs fromM × 0 toM × 1 (whose two end
points make the same contribution for f0 and f1) and arcs with both ends on
M × 0 (or on M × 1) (whose two end points contribute opposite signs ε, so
cancel each other).
To see that d =∑i εi, choose a disc neighbourhood D of Q such that its

preimage consists of discs Di round the Pi each mapped by a diffeomorphism.
Inclusion induces isomorphisms Hm(D, ∂D)→ Hm(N,N \ D̊→ Hm(N). InM
there are similar isomorphisms, but now Hm(M,M \ f−1(D̊)) is the direct
sum of the Hm(M,M \ D̊i)), and the result follows by adding up the local
contributions.
The same considerations apply to intersection numbers: again we describe

only the simplest case when we have compact oriented submanifolds V1, V2 of
the oriented manifoldM, of dimensions v1 and v2 withm = v1 + v2. At a point
P where V1 and V2 intersect transversely we define a local intersection num-
ber ε(P) to be ±1 according as a base tor TPV1 giving the chosen orientation
of V1, followed by a corresponding base for TPV2 defines the given orienta-
tion of M or not. If V1 and V2 meet transversely everywhere,

∑
P∈V1∩V2 ε(P)

gives the intersection number V1.V2. Again, arguing by making a homotopy
transverse, we see that this depends at most on the diffeotopy classes of V1
and V2.

Each compact oriented submanifold V v of Mm defines a homology
class i∗[V ] ∈ Hv (M : Z) and hence by duality 5.3.5 a cohomology class in
Hm−v (M;Z), which we temporarily denote by {V }. In the situation of the pre-
ceding paragraph, the cup product {V1}{V2} is equal toV1.V2 times the class {P}
of a point. More generally we can see that if V1 and V2 (still closed and ori-
ented, with v1 + v2 ≥ m) intersect transversely along a submanifold W , then
{V1}{V2} = {W }. This principle extends in a natural way (subject to appro-
priate technical conditions) when we allow boundaries and cease to require
orientations.
It follows from the remark preceding Proposition 5.3.1 that, up to homotopy,

we may replace handles by cells, and may calculate homology using the chain
groups

Cr(W, ∂−W ) = ⊕ Z,
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where the summands are indexed by the r-handles. We will denote by αr the
number of r-handles, equal to the rank of Cr(W, ∂−W ). We need to calculate
the boundary homomorphism

∂ : Cr+1(W, ∂−W )→ Cr(W, ∂−W ).

This is determined by incidence numbers, one for each r- and each (r + 1)-
handle.

Lemma 5.3.2 The incidence number of handles hr+1 and hr equals the inter-
section number in Mr+ 1

2
of the a-sphere of hr+1 and the b-sphere of hr.

Proof We need some care with signs: a choice of orientation of the cell
(Dr+1 × 0) in the cell complex induces orientations of the bounding a-sphere Sr

and of the normal bundle of the corresponding b-sphere. If an a-sphere Sr and a
b-sphere Sn−r−1 meet transversely at a point, we take the sign+ or− according
as the orientation of Sr does or does not agree with that in the normal bundle
of Sn−r−1. If W (and hence M) is oriented, orienting the normal bundle of a
b-sphere is equivalent to orienting the sphere, and we can count multiplicities
in the usual way.
We may suppose that Sr meets Sn−r−1 transversely: then the intersection

number agrees with the (local) degree of the projection of Sr on the nor-
mal disc Dr. But this degree coincides with the incidence number in the cell
complex.

If F is a field of coefficients (for example, Q or Z2), we define the Betti
numbers βi (strictly, βi(W, ∂−W ;F )) as the ranks of the F-vector spaces
Hi(W, ∂−W ;F ). Since these may be calculated from the chain groups

Ci(W, ∂−W ;F ) := Ci(W, ∂−W )⊗ F,

which have ranks αi, we have

Lemma 5.3.3 (Morse inequalities) We have

n∑
0

(−1)iαi =
n∑
0

(−1)iβi

and, for each 0 ≤ j ≤ n,

j∑
0

(−1) j−iαi ≥
j∑
0

(−1) j−iβi.

Proof Write ri for the rank of the boundary map

Ci(W, ∂−W ;F )→ Ci−1(W, ∂−W ;F ).
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142 Theory of handle decompositions

The definition of homology gives αi = ri+1 + βi + ri. Hence

j∑
0

(−1) j−iαi = r j+1 +
j∑
0

(−1) j−iβi.

We now discuss duality. Observe that with f , − f is also non-degenerate. Its
critical points coincide with those of f , but if f has index λ at 0, it has locally
the form

f (x) = c− x21 − · · · − x2λ + x2λ+1 + · · · + x2n

and− f has index n− λ. Using the correspondence (Theorems 5.1.6 and 5.1.9)
between non-degenerate functions and handle decompositions, we find the
following.

Proposition 5.3.4 SupposeW has a handle decomposition on ∂−W with αr r-
handles for 0 ≤ r ≤ n. Then it also has one on ∂+W, with αr (n− r)-handles.

If we ignore corners, we may identify the handles in the two cases, and
observe that in the reversal, a- and b-spheres are interchanged.

Theorem 5.3.5 (Lefschetz Duality Theorem)
Suppose either that W is orientable or we use Z2 for coefficients:
then we have isomorphisms Hr(W, ∂−W ) ∼= Hn−r(W, ∂+W ).
In particular, Hr(W ) ∼= Hn−r(W, ∂W ) and Hr(W ) ∼= Hn−r(W, ∂W ).
If ∂W = ∅, then (Poincaré Duality) Hr(W ) ∼= Hn−r(W ).

Proof By Proposition 5.3.4 we can identify the chain groups of (W, ∂−W ) with
the chain or cochain groups of (W, ∂+W ). By Lemma 5.3.2 the incidence num-
bers are the same up to sign (only a-spheres and b-spheres are interchanged) and
the isomorphism identifies the one boundary with the other coboundary.

The proof above is reminiscent of the earliest proofs of the result (see, for
example, the account in [84]), but of course is only valid for compact smooth
manifolds.
As a special case of homology groups, we mention connectivity. We retain

the notation of Lemma 5.3.2. The a-sphere S−1 of a 0-handle is the empty set;
in fact a 0-handle consists precisely of an n-disc, disjoint from ∂−W × I. The
a-sphere S0 of a 1-handle is a pair of points: these may or may not be in the
same component of W1/2. If not, the 1-handle connects the two components;
but if they are, the corresponding handle does not affect connectivity.
If ∂−W is non-orientable then so, of course, isW . If, however, ∂−W is ori-

entable, so is W1
2
, since adding a disjoint set of discs has no effect. Nor does

adding a set of 1-handles which connect different components ofW1
2
(here we
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5.4 Modifying decompositions 143

think of 1-handles as being added in turn, not simultaneously). However, the
attaching map for a 1-handle is a map of S0 × Dn−1 – i.e. of a pair of discs.
If these are mapped into the same component of W1

2
with opposite orienta-

tions, then the orientation ofW1
2
can be extended over the handle; but if with

the same orientation,W1 1
2
is non-orientable. Thus if, say,W1

2
is connected and

orientable, we may speak of orientable and of non-orientable 1-handles. Now
r-handles for r �= 1 do not affect orientability; for they introduce no new (poten-
tially orientation-reversing) elements of the fundamental group.
For a 1-handle with both ends in the same component ofW1

2
, we can deform

both components of S0 × Dn−1 into a disc in M 1
2
: as for the Disc Theorem,

the diffeotopy class is determined by the orientations. Attaching an orientable
1-handle to Dn gives S1 × Dn−1, so we haveW1 1

2
=W1

2
+ (S1 × Dn−1). In the

non-orientable case, we have the sumwith a non-orientable bundle over S1 with
fibre Dn−1.

5.4 Modifying decompositions

In this section we discuss several modifications that can be made to handle
decompositions. We will see that (under suitable hypotheses) any elementary
change of the chain complex C∗(W, ∂−W ) can be effected by a change in the
handle decomposition. The basic moves are introduction or cancellation of a
complementary pair of handles, and addition of handles. We suppose through-
out thatW is a compact manifold, perhaps with boundary.
The results are simplest for 0-handles. If W has αi i-handles, then W1

2

∼=
(∂−W × I) ∪α0 D

n. Attaching a 1-handle affects connectivity only if its a-
sphere S0 has the two points in different components ofW1/2.

Suppose that W is connected: since r-handles for r ≥ 2 do not affect con-
nectedness, W1

2
is connected. Rearrange the 1-handles (Lemma 5.2.1) such

that the first few each connect different components ofW1
2
. For each of these,

we have two manifolds with boundary, and a disc imbedded in the boundary
of each. Attaching Dn−1 × I is the same (§2.7) as glueing along the (n− 1)-
discs, i.e. forming the boundary sum. Moreover, by Proposition 2.7.6, for any
manifold Nn, Nn + Dn ∼= Nn. So the 0-handles are just cancelled out, and the
remaining components of ∂−W × I added together. We observe that each use
of Nn + Dn ∼= Nn to simplify the decomposition removes just one 0-handle and
one 1-handle.
We have shown

Proposition 5.4.1 A connected manifold W admits a handle presentation of
the following kind.
If ∂−W = ∅, there is just one 0-handle Dn.
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144 Theory of handle decompositions

If ∂−W has components M(i), 1 ≤ i ≤ k, there are no 0-handles, then (k − 1)
1-handles connecting the components to give (M(1) × I)+ · · · + (M(k) × I),
then a further number of 1-handles.

We turn to cancellation of handles in general, and first describe a model.

Lemma 5.4.2 Let ϕ : Dn−r−1 → Dn−r be the embedding, by stereographic
projection from (0, . . . , 0,−1) on the boundary of the upper hemisphere. Then
(Sr × Dn−r ) ∪1×ϕ hr+1 ∼= Dn.

Proof If we attach Dr+1 along the boundary to Sr × I, we clearly have another
(r + 1)-disc. Multiplying by Dn−r−1 shows that there exists a homeomorphism
of the desired type. However to obtain a result up to diffeomorphism requires
care with rounding corners systematically.
We first give the proof for r = 0, n = 2. Let E be the ellipse 1

2x
2 + y2 = 1

andH the confocal hyperbola 2x2 − 2y2 = 1. Write Int and Ext for the (closed)
interior and exterior regions of E. We shall show that IntE ∩ ExtH is obtained
from S0 × D2 by introducing a corner along S0 × D1; that IntE ∩ ExtH is dif-
feomorphic toD1 × D1, and that the attaching map 1× ϕ becomes the identity.
It follows that the required manifold is diffeomorphic to IntE, which is diffeo-
morphic toD2 by (x, y) 	→ (2−1/2x, y). Now E meetsH at (±1,±1/

√
2). Con-

sider the component of IntE ∩ ExtH in x > 0; it has the focus (1, 0) as interior
point.
Rays through the focus define a vector field everywhere transverse to the

boundary, which may therefore be used for straightening the corner. A smooth
cross-section is given by (x− 1)2 + y2 = 1/4, which meets the rays through
the corner in (1,±1/2). Thus the disc component is obtained from a disc by
introducing corners at opposite ends of a diameter, as stated. It may be helpful
to imagine these constructions using Figure 5.7.

E

H

Figure 5.7 A confocal ellipse and hyperbola
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5.4 Modifying decompositions 145

In IntE ∩ ExtH we use confocal coordinates. Each point (x, y) of the plane
with xy �= 0 lies on just two of the conics

x2/(λ+ 1)+ y2/λ = 1 :

one hyperbola, given by−1 < λ1 < 0, and one ellipse, given by 0 < λ2. How-
ever, these meet in 4 points. So we write μ2 = a+ λ1, ν2 = λ2, and obtain

x = μ
√
1+ ν2 y = ν

√
1− μ2,

where the positive square roots are to be taken, and −1 < μ < 1. It is easy to
verify that this transformation is smooth, with non-zero Jacobian, injective, and
onto the whole plane except for y = 0, x2 ≥ 1. Hence, in particular, it induces
a diffeomorphism of the rectangle |μ| ≤ 1/

√
2, |ν| ≤ 1 onto IntE ∩ ExtH, as

required.
Now return to the case of general r and n, which is obtained by rotating the

figures about x- and y-axes. Write

x = (x1, . . . , xr+1) y = (y1, . . . , yn−r−1)

μ = (μ1, . . . , μr+1) ν = (ν1, . . . , νn−r−1)

and ‖x‖2 =∑r+1
1 x2i , etc. Then the transformation given by

xi = μi

√
1+ ‖ν‖2, yi = νi

√
1− ‖μ‖2

induces a diffeomorphism of theDr+1 × Dn−r−1 given by ‖μ‖2 ≤ 1/2, ‖ν‖2 ≤
1 onto the intersection 1

2‖x‖2 + ‖y‖2 ≤ 1, 2‖x‖2 − 2‖y‖2 ≤ 1.
Likewise in the intersection 1

2‖x‖2 + ‖y‖2 ≤ 1, 2‖x‖2 − 2‖y‖2 ≤ 1, con-
sider the field formed by rays through the r-sphere y = 0, ‖x‖ = 1 and per-
pendicular to it (and not produced beyond their intersection with x = 0). This
certainly is a vector field (except on the sphere and on x = 0), and is transverse
to the boundary, so can be used for rounding the corner. Rounding it, we obtain
the manifold

(‖x‖ − 1)2 + ‖y‖2 ≤ 1/4,

where the corner is to be introduced along ‖x‖ = 1, ‖y‖ = 1/2 (in fact Sr ×
Sn−r−2).
Consider Sr × Dn−r ⊂ Rr+1 × Rn−r−1 × R1 with coordinates (u,w, t ), so

‖u‖ = 1, ‖w‖2 + |t|2 ≤ 1. We define inverse diffeomorphisms between this
and the manifold above by

u = x/‖x‖ w = 2y t = 2(‖x‖ − 1)

x = u(1+ t/2) y = w/2.
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146 Theory of handle decompositions

Since ‖x‖ is nowhere zero, both it and its inverse are smooth. The corner ‖x‖ =
1, ‖y‖ = 1/2 becomes the locus ‖w‖ = 1, t = 0.

Finally we must identify the attaching map. The sphere Sr × 0 given by
‖μ‖2 = 1/2, ν = 0 maps (via xi = μi) to ‖x‖2 = 1/2, y = 0, then rounding the
corner multiplies xi by 2−1/2 and leaves y at 0. Finally we obtain u = x/‖x‖ =
μ/‖μ‖ and v = (w, t ) = (0,−1); modulo the obvious identifications, we have
the identity map. The attaching map is a tubular neighbourhood of this, and
a normal direction ∂/∂νi maps to some positive multiple of ∂/∂vi; using the
tubular neighbourhood theorem, it follows that the attaching map is, up to a
diffeotopy, as stated.

Theorem 5.4.3 (Handle Cancellation Theorem) Suppose that forWn ∪ f hr ∪g
hr+1, the a-sphere of hr+1 meets the b-sphere of hr transversely in one point.
Then we can suppose ∂+W contains a disc Dn−1 to which both handles are
added. Thus we can write Wn ∼=Wn + Dn, with the handles added to Dn, and
so Wn ∪ hr ∪ hr+1 ∼=Wn + (Dn ∪ hr ∪ hr+1) ∼=Wn + Dn ∼=Wn.

Proof It clearly suffices to consider the case W = M × I. By hypothesis, in
Mr+ 1

2
the a-sphere and b-sphere of the handles meet transversely at a single

point P. It follows from Lemma 4.8.1 that there is a chart forMr+ 1
2
at Pmeeting

the a-sphere in Dr × {0} and the b-sphere in {0} × Dn−r−1. Since the tubular
neighbourhoods are unique up to diffeotopy, we may suppose that they both
meet this chart in Dr × Dn−r−1, with the projections being those on the factors.
The r-handle is attached to M by an embedding f : Sr−1 × Dn−r → M; W

is formed from M × I by attaching Dr × Dn−r to M × {1} by f and rounding
the corner. Here Figure 5.8 represents an r-handle with an (r + 1)-handle being
sewn on as a patch.

Figure 5.8 Cancelling a handle

The (r + 1) handle is attached by an embedding g : Sr × Dn−r−1 → Mr+ 1
2
,

so there is an embedding of Dr as a hemisphere of Sr, which we may take as
Sr+: thus S

r
+ × Dn−r−1 maps onto the outer edge of the r-handle. The closed

complementary region Sr− × Dn−r−1 is mapped to the closed complement inM
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5.4 Modifying decompositions 147

of the image of f . As before, we may choose the maps to identify Dn−r−1 with
a hemisphere Sn−r−1+ .
Thus the subset of M affected by the handles is the union of the embedded

images f (Sr−1 × Dn−r ) and g(Sr− × Dn−r−1), modulo rounding the corner. The
latter image is a disc; since we can isotope Dn−r inside a neighbourhood of
a point X ∈ Sn−r−1

+ and hence Sr−1 × Dn−r inside a neighbourhood of Sr−1 ×
X , there is a disc in M containing both the embedded images. The result now
follows from Lemma 5.4.2.

A pair of handles of consecutive dimensions, with the a-sphere of the second
meeting the b-sphere of the first transversely in one point, is called a comple-
mentary pair.

We can thus paraphrase Theorem 5.4.3 briefly by saying that a complemen-
tary pair of handles may always be cancelled. The converse result is now trivial.

Theorem 5.4.4 At any point of a handle decomposition of a manifold, a com-
plementary pair of handles can be introduced.

Proof ‘At any point’ means when we have constructed some manifoldW , say.
Now W ∼=W + D by Proposition 2.7.5 and by Lemma 5.4.2, we can add a
complementary pair of handles to D, hence also toW .

We will see that adding two complementary handles in succession toW has
the effect on V = ∂+W of performing consecutively spherical modifications
of types (r, n− r), leading to V ′, say, and (r + 1, n− r − 1): returning to V .
‘Reversing’ the second of these shows that we can also go from V to V ′ by a
modification of type (n− r − 1, r + 1). The condition on the first modification
necessary for this replacement to be possible was the existence of a comple-
mentary handle; arguing as above shows that this is equivalent to requiring the
a-sphere to span a disc in V , such that the inward normal vector to the sphere
in the disc agrees with the first vector of the chosen normal framing of the
a-sphere.
Since ∂−W need not be simply-connected, an (r − 1)-sphere in it does not

necessarily have a well-defined homotopy class. Here we will ignore this point
and focus on homology. This allows us to give a much simpler account, and
still obtain full results in the simply-connected case. We reserve comments on
the general case until §5.7.
We next discuss ‘addition’ of handles in a homology sense.

Theorem 5.4.5 (Handle Addition Theorem) Suppose ∂+W = M connected,
2 ≤ r ≤ m− 2. Let f , g : ∂Dr × Dm−r → M be disjoint embeddings, deter-
mining homology classes x, y ∈ Hr−1(M;Z). Then for ε = ±1 there is an
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148 Theory of handle decompositions

embedding hε : ∂Dr × Dm−r → M, disjoint from f , and determining y+ εx ∈
Hr−1(M;Z) such that W ∪ f hr ∪g hr ∼=W ∪ f hr ∪hε hr.
Moreover, if the classes of the handles in Hr(W ∪ f hr ∪g hr,W ;Z) are ξ, η

for the first decomposition, those for the second are ξ, η + εξ .

Proof We observe that x maps to zero in Hr−1(W ∪ f hr;Z); the idea of the
proof is to deform the second handle ‘across’ the first, by a diffeotopy of the
attaching map in ∂+(M ∪ f hr ); we know that this will not affect the diffeomor-
phism class of the result.
SinceM is connected, there is a path λ joining f (1× 1) and g(1× 1) (in the

non-simply-connected case, it is important to note that this path may be taken in
any homotopy class). By the general position arguments of §4.5, we can make
the path an embedding, disjoint from the images of f̄ and ḡ; we can choose it
to start along the outward normals to Im f and Im g, and we can deform it off
tubular neighbourhoods of Im f̄ and Im ḡ, so that it meets Im f and Im g only
at its ends.
Choose a normal framing e1, . . . , em−2 for λ so that e1, . . . , er−1 gives the

standard orientation of g(Sr−1 × 1) at g(1× 1). Since r ≤ m− 2, we can also
change this framing so that e1, . . . , er−1 agrees with the opposite orientation
of the (r − 1)-sphere. By Proposition 1.5.6 (ii) we can choose a Riemannian
metric in which f (Sr−1 × 1) and g(Sr−1 × 1) are totally geodesic. Then expo-
nentiating normal vectors to λ gives an embedding ϕ′ : I × Dr−1 → M with

ϕ′(0× Dr−1) ⊂ g(Sr−1 × 1), ϕ′(1× Dr−1) ⊂ f (Sr−1 × 1).

Extend λ by a diameter of Dr−1 × 1 in ∂+(M ∪ f hr ), and ϕ′ correspondingly to
an embedding ϕ : [0, 2]× Dr−1 → ∂+(M ∪ f hr ).

The properties of the bump function ensure that the formulae

ḡt (x) = x if x /∈ ϕ(0× Dr−1),

ḡtϕ(0, y) = ϕ(2tBp(1− ‖y‖), y)
fit to give a smooth diffeotopy of ḡ. This ‘pulls’ the cell ϕ(0× Dr−1) ⊂
g(Sr−1 × 1) across part of the disc Dr × 1, covering the central point.
This procedure (with r = 1) is illustrated in Figure 5.9: here, to add the han-

dle, deform the attaching sphere of the left handle along the dotted path to give
a new attaching sphere.
Since g(Sr−1 × 0) is diffeotopic to g(Sr−1 × 1), we also obtain a diffeotopy

of ḡ, which we can extend to one of g such that the final embedding h is dis-
joint from 0× Sn−r−1. But we can think of the ( f -) handle as shrunk to a small
neighbourhood of this b-sphere (c.f. proof of 5.2.3), so h(Sr−1 × Dn−r ) lies in
M again.
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5.5 The h-cobordism theorem 149

Figure 5.9 Adding one handle to another

Since our diffeotopy has degree 1 on the attached cell, the homology class
of h is that of g plus or minus that of f , the sign depending on an orientation
chosen earlier.

5.5 Geometric connectivity and the h-cobordism theorem

In the last section we gave methods of changing handle decompositions under
geometric assumptions. We now obtain corresponding results under algebraic
hypotheses: this will enable us to operate with handles using only homo-
topy data. We recall that a CW-pair (Y,X ) is called r-connected if any map
f : (B,A)→ (Y,X ) with dim(B) ≤ r is homotopic relative to A to a map into
X ; equivalently, if the relative homotopy set πi(Y,X ) is trivial for 0 ≤ i ≤ r.
Moreover this holds if and only if the pair (Y,X ) is homotopy equivalent to a
pair with Y ′ obtained from X by attaching cells of dimension > r.
We focus first on results showing the existence of handle decompositions

without i-handles for i ≤ r: if W admits such a decomposition, we say that
(W, ∂−W ) is geometrically r-connected.
We start with a technique of handle replacement. It is interesting to note

that this closely resembles a technique of Whitehead, with CW complexes.
Although it may seem that it would be more efficient to simply cancel han-
dles, handle replacement bypasses arguments involving fundamental groups,
which otherwise would confuse the issue for low-dimensional cases.

Proposition 5.5.1 Suppose n ≥ 2r + 3, Wn = (M × I) ∪ hr ∪ lhr+1, and
πr(W,M) = 0. Then W ∼= (M × I) ∪ lhr+1 ∪ hr+2.

Proof The case r = 0 follows from Proposition 5.4.1; otherwise we may sup-
pose M connected.
We identify hr with Dr × Dm−r. Since n ≥ 2r + 2, we can perform a dif-

feotopy to ensure that the attaching maps of the hr+1 avoid Dr × 1. The disc
Dr × 1 determines an element of πr(W,M), which is zero by the hypothesis.
Hence this disc is homotopic inW (relative to its boundary) to one in M; i.e.
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150 Theory of handle decompositions

there is a map F : Dr+1 →W , which takes the upper hemisphere of Sr onto
Dr × 1 and the lower into M.
Since n ≥ 2r + 3, we may suppose that ImF is disjoint from the cores of the

handles, which have dimensions r and (r + 1). We can therefore also deform
F off tubular neighbourhoods of the cores, and thus suppose ImF ⊂ ∂+W .

We may suppose F | Sr an embedding of Sr in ∂+W : this embedding is
homotopic to zero, hence also diffeotopic (since n ≥ 2r + 3, a map Sr × I →
∂+W × I may be supposed an embedding). So by Theorem 5.4.4, we can use
F (Sr ) for the a-sphere of the first of a complementary pair of handles hr+1A , hr+2B ,
where hr+1A is disjoint from the other hr+1. But hr+1A is also complementary to
hr, so

W ∼= (M × I) ∪ hr ∪ lhr+1 ∪ (hr+1A ∪ hr+2B ) (Theorem 5.4.4)
∼= (M × I) ∪ (hr ∪ hr+1A ) ∪ lhr+1 ∪ hr+2B

∼= (M × I) ∪ lhr+1 ∪ hr+2B (Theorem 5.4.3).

It is possible, with some difficulty, to sharpen the proof of Theorem 5.5.1
to cover also the case n = 2r + 2, r �= 1: the points to be addressed are the
deformation of F off the cores of the hr+1 and obtaining a diffeotopy.

Theorem 5.5.2 If W = V ∪ khr ∪ lhr+1, πr(W,V ) = 0, π1(∂+V ) ∼= π1(V ),
n ≥ 2r + 3, then W ∼= V ∪ lhr+1 ∪ khr+2.
Proof Write V ′ := V ∪ (k − 1)hr, M′ := ∂+(V ′), soW is the union of V ′ and
W ′ := (M′ × I) ∪ hr ∪ lhr+1. Since πr(W,V ) and πr−1(V ′,V ) vanish, so does
πr(W,V ′). If we show that πr(W ′,M′) = 0, we can apply Proposition 5.5.1
to replace the r-handle in W ′ by an (r + 2)-handle, so W ∼= V ∪ (k − 1)hr ∪
lhr+1 ∪ hr+2. Since the (r + 2)-handle does not affect the calculation of πr, the
result will follow by induction.
Now W = V ′ ∪W ′ and M′ = V ′ ∩W ′. Since n ≥ r + 4, the fundamental

groups of ∂+W, W ′, W, M′ and hence ofV ′ are isomorphic. Thus the universal
covers ofW ′,V ′,M′ (which we denote by affixing a tilde) are induced from that
ofW .

Thus by the Hurewicz isomorphism theorem (see B.3 (i)),

πr(W
′,M′) ∼= Hr(W̃

′, M̃′) ∼= Hr(W̃ , Ṽ ) ∼= πr(W,V ) = 0,

where the middle isomorphism holds by excision.

We next extend the result by a more direct application of the Handle Can-
cellation Theorem. To avoid technicalities, we restrict to the simply-connected
case: in §5.7 we indicate what is needed to remove this restriction.
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Proposition 5.5.3 Proposition 5.5.1 continues to hold if the hypothesis ‘n ≥
2r + 3’ is replaced by ‘n ≥ r + 4 and M is simply-connected.’

Proof Since Hr(W,M) = 0, the class y of the r-handle in the chain complex
C∗(W,M) is a boundary, so if the (r + 1)-handles have classes xi, there are
coefficients ci ∈ Z with ∂ (

∑
i cixi) = y.

Use Theorem 5.4.4 to add a complementary pair of handles hr+1A , hr+2B away
from the existing handles. Now use Theorem 5.4.5 to add ci copies of the ith
(r + 1)-handle to hr+1A for each i. The a-sphere of the resulting handle has inter-
section number 1 with the b-sphere Sb of hr.
Hence by Theorem 6.3.2 (i), provided r ≥ 3 and n ≥ r + 4, we can perform

a diffeotopy to reduce the number of intersections to one. But then hr and h
′r+1
A

are complementary, so can be cancelled by Theorem 5.4.3.
The cases r ≤ 1 follow from Proposition 5.5.1, also the case r = 2 except

if n = 6. But if r = 2, we can use (ii) of the theorem, provided we show that
the complement of Sb is simply-connected. But we have a diffeomorphism of
∂+((M × I) ∪ hr ) \ Sb withM \ S1, where S1 is the a-sphere of h2. By hypoth-
esis M is simply-connected, and deleting an embedded circle does not affect
this property.

We can go a little further.

Proposition 5.5.4 The result also holds if n = r + 3, provided r ≥ 3 and ∂+W
is simply connected.

Proof The above argument remains valid, except in the use of Theorem 6.3.2
(i). Again, we can use (ii) of the theorem, provided we show that the comple-
ment of Sa is simply-connected.

In the dual decomposition, we attach to ∂+W first h1B, then a complemen-
tary h2A and other 2-handles, then a 3-handle. Thus the fundamental group
remains trivial at each stage after the second, hence the boundaries are simply-
connected. But the complement of Sa in ∂+((M × I) ∪ hr ) is diffeomorphic to
the complement of the belt sphere (a circle) in ∂+((M × I) ∪ hr ∪ hr+1A ), so is
simply-connected.

Theorem 5.5.5 Suppose (W,V ) r-connected, ∂+V, V and W simply-
connected, and either n ≥ r + 4 or n = r + 3, r ≥ 3 and ∂+W is simply-
connected.
Then W has a handle decomposition on V with no i-handles for i ≤ r.

Proof By induction on r, we may suppose there are no i-handles for i < r.
A second induction shows that it will suffice to remove or replace a single
r-handle.
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Write W ′ for the union of V and all but one of the r-handles, W ′′ for the
union of the remaining r-handle and all (r + 1)-handles, andW ′′′ for the rest.
The conclusion will follow if we show that Proposition 5.5.3 can be applied to
W ′′.

We thus need to show that ∂−W ′′ is simply-connected and Hr(W ′′, ∂−W ′′) =
0. As V is simply-connected andW ′ is obtained from V by attaching r-handles
with r �= 1, W ′ is simply-connected. Since W ′ has no handle of index n− 2,
∂+W ′ = ∂−W ′′ also is simply-connected.
From the exact homology sequence

0 = Hr(W,V )→ Hr(W,W ′)→ Hr−1(W ′,V ) = 0

we see that Hr(W,W ′) = 0; since handles of index > r + 1 do not change Hr,
we have 0 = Hr(W ′ ∪W ′′,W ′) = Hr(W ′′, ∂−W ′′).

The culmination of the theory developed in this chapter is the so-called h-
cobordism theorem. LetW be a cobordism. If the inclusions of ∂−W , ∂+W inW
are homotopy equivalences,W is called an h-cobordism. Provided all of ∂−W ,
∂+W , andW are simply-connected, it suffices if the relative homology groups
Hi(W, ∂−W ;Z) vanish, since by duality theHi(W, ∂+W ;Z) also vanish, so both
inclusions are homotopy equivalences. We have

Theorem 5.5.6 (h-cobordism Theorem) If Wn is a simply-connected h-
cobordism with n ≥ 6, then W ∼= ∂−W × I, so ∂+W ∼= ∂−W.

Proof Take a handle decomposition, and choose rwith 2 ≤ r ≤ n− 3. By The-
orem 5.5.5, we can inductively replace each i-handle for i < r by an (i+ 2)-
handle. Now apply the same argument to the dual handle decomposition to
eliminate all j-handles with j > r + 1. Observe that if r = 2 or r = n− 3 we
need to use Theorem 6.3.2 (ii), so cannot allow both equalities together.
We now only have r- and (r + 1)-handles, so the chain complexC∗(W, ∂−W )

reduces to a single map ∂ : Cr+1 → Cr which, since we have an h-cobordism, is
an isomorphism. Performing handle additions has the effect of row operations
on the matrix of ∂ . Consider the first column: by the Euclidean algorithm, we
can repeatedly subtract smaller from larger entries to reduce until there is a
single non-zero entry, which must be ±1.
This shows that one of the a-spheres and one of the b-spheres have intersec-

tion number±1. Now if 2 < r < n− 3 we can use Theorem 6.3.2 (i) to reduce
the number of intersections to one, and then cancel the corresponding handles
using Theorem 5.4.3. As above if one (but not both) equality holds, we can
instead use (ii). Repeating the argument, we can remove all the handles.
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5.6 Applications of h-cobordism

We can formulate the h-cobordism theorem a little more generally as follows.

Theorem 5.6.1 If V n ⊂Wn is a homotopy equivalence with ∂−V = ∂−W, V ,
∂+V and ∂+W are all simply-connected and n ≥ 6, then Vn ∼=Wn.

Proof We may writeW as the union of two cobordisms V and V ′ with a com-
mon boundary ∂+V ; since this and W are simply-connected, so is V ′. It now
follows as each Hi(V ′, ∂−V ′) ∼= Hi(W,V ) = 0 thatV ′ is an h-cobordism, hence
by Theorem 5.5.6 is diffeomorphic to ∂+V × I. By Lemma 2.7.2,W is diffeo-
morphic to V .
The argument applies even allowing ∂−V to have a boundary X . Here we

need first to adjust corners so that ∂cV ∼= X × I and also ∂cV ′ ∼= X × I.

We have as simple application,

Theorem 5.6.2 (Disc Bundle Theorem) [139] Suppose Mn−c a submanifold
of Wn, ∂M = ∅, c ≥ 3, n ≥ 6, M ⊂W a homotopy equivalence, and M, ∂W
simply-connected. Then W has the structure of a disc bundle with M as zero
cross-section.

Proof Take V as a tubular neighbourhood of M. Since c ≥ 3, ∂V is simply
connected. The result thus follows from the preceding theorem.

Taking M to be a point gives

Corollary 5.6.3 If Wn is contractible, n ≥ 6, π1(∂W ) = 0, then Wn ∼= Dn.

We call a closed manifold a homotopy sphere if it is homotopy equivalent to
a sphere.

Corollary 5.6.4 If 
n is a homotopy sphere, n ≥ 6, then 
n may be obtained
by glueing two discs together along the boundary. Thus 
n is homeomorphic
to Sn.

Proof LetWn be the closure of the complement of a disc Dn in 
n. ThenW is
homotopic to 
n \ {point}, so is simply-connected, and its reduced homology
groups vanish, soW is contractible. By Corollary 5.6.3,Wn ∼= Dn.
Since Dn is homeomorphic to the cone over Sn−1, any homeomorphism of

Sn−1 extends, by taking the cone, to a homeomorphism ofDn. Since
n is home-
omorphic to the union of two copies ofDn glued by a homeomorphism of Sn−1,
it follows that we have a homeomorphism on Sn.
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The Generalised Poincaré Conjecture states that any homotopy sphere 
n

is homeomorphic to the sphere Sn: the original conjecture referred to the case
n = 3. We have just proved this if n ≥ 6. The cases n ≤ 5 are discussed in the
next section §5.7. We will return to the question of diffeomorphism in the final
section §8.8.

Proposition 5.6.5 (i) Suppose M, M′ compact, simply-connected and without
boundary, f : M → M′ a homotopy equivalence and 2c ≥ m. Then M′ × Dc is
a disc bundle over M.
(ii) Suppose in addition that c ≥ m+ 1 and f ∗(T(M′)+ 1) ∼= T(M)+ 1.

Then M × Dc ∼= M′ × Dc.

Proof If c < 3 then m ≤ 1, M and M′ are homotopy equivalent to a circle or
a point, and the result is trivial. Now let c ≥ 3. Then by Theorem 6.4.11, we
can approximate f by an embedding ofM inM′ × Dc. The result now follows
from Theorem 5.6.2.
(ii) In this case, the normal bundle of g(M) in M′ × Dc is stably trivial and

of fibre dimension ≥ m+ 1, hence (by §B.3(xi)) is trivial.

Proposition 5.6.6 Let
n−c be a homotopy sphere embedded in Sn (n ≥ 6, c ≥
3), N a tubular neighbourhood of 
, V the closure of its complement. Then V
is diffeomorphic to Sc−1 × Dn−c+1.

Proof Let N ′ be a tubular neighbourhood of
 with N in its interior,Dc a fibre,
Sc−1 its boundary. Since Sc−1 bounds the contractible Dc, its normal bundle is
trivial. We assert that the inclusion of Sc−1 in V is a homotopy equivalence;
indeed, both are simply-connected (V since Sn is, and Sn \
n−c since c ≥ 3)
and the complement of V ∪ Dc is the interior of N \ Dc, a cell bundle over a
cell and so contractible. By duality, V ∪ Dc is contractible, and 0 = Hr(V ∪
Dc,Dc) = Hr(V,V ∩ Dc). But V ∩ Dc is an annulus with Sc−1 as deformation
retract, hence Hr(V, Sc−1) = 0.
If c �= n− 1, ∂V = ∂N is simply-connected, and n− c+ 1 ≥ 3, so the result

follows by applying Theorem 5.6.2 to Sc−1 ⊂ V . If c = n− 1,
 is a circle, and
unknots, so the result is trivial.

We can adapt some of the above arguments to give a relative result.

Theorem 5.6.7 (i) Suppose Wn a simply-connected h-cobordism, n ≥
6, V n−c a submanifold, c ≥ 3, such that Vn−c ∼= ∂−V × I. Then (W,V ) ∼=
(∂−W, ∂−V )× I.
(ii) Two h-cobordant pairs of homotopy spheres (
n+c

i , 
n
i )(i = 0, 1) with

n ≥ 5, c ≥ 3 are diffeomorphic.
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Proof As in Lemma 5.1.1, we can find a non-degenerate function onW whose
restriction toV has no critical points; the proof of Lemma 5.1.1 is only changed
by using the given product structure to define g near V . We can now carry out
all the handle decomposition and cancellation arguments inW \V .
More precisely, write N for a tubular neighbourhood of V in W , N̊ for its

interior, X =W \ N̊ and Y = N ∩ X = ∂cN = ∂cX .
Since c ≥ 3 is the codimension ofV inW (and of ∂−V in ∂−W , ∂+V in ∂+W ),

removing V does not alter the fundamental groups.
So it is enough to check that ∂−X ⊂ X is a homotopy equivalence, and

so enough to show that H∗(X, ∂−X ) = 0. Since ∂−V is a deformation retract
of V , and N is a disc bundle, ∂−N is a deformation retract of N, also of
∂−N ∪ Y . Hence 0 = H∗(N, ∂−N ∪ Y ) ∼= H∗(W,X ∪ ∂−W ) by excision. But
H∗(W, ∂−W ) is trivial, so using the homology exact sequence of the triple
∂−W ⊂ X ∪ ∂−W ⊂W , we deduce that H∗(X ∪ ∂−W, ∂−W ) is trivial. It fol-
lows by excision that H∗(X, ∂−X ) = 0. The result follows.
(ii) By the h-cobordism theorem, the h-cobordism of the 
n

i is a product, so
the result follows from (i).

A different relative form of these results can also be obtained, giving a topo-
logical unknotting theorem for pairs of spheres.

Proposition 5.6.8 (i) Let Mm ⊂Wm+c be a proper embedding of contractible
manifolds with c ≥ 3, m+ c ≥ 6. Assume that either Mm ∼= Dm or m ≥ 6. Then
the pair (Wm+c,Mm) is diffeomorphic to (Dm+c,Dm).
(ii) Let Tm ⊂ 
m+c be an embedding of homotopy spheres with c ≥ 3, m+

c ≥ 6: assume either that Tm ∼= Sm or that m ≥ 6. Then the pair (
m+c,Tm) is
homeomorphic to (Sm+c, Sm).

Proof (i) Take a tubular neighbourhood V of M inW : then V is contractible,
so we can apply Theorem 5.6.1 (where we set ∂−V = ∂−W = V ∩ ∂W ) to the
inclusion V ⊂W to infer thatW is obtained from V by adding a collar.
(ii) Choose an embedding (Dm+c,Dm)→ (
m+c,Tm) (it is essentially

unique by Lemma 2.5.11), and delete the interior to give a pair as in (i): by
that result, we have another copy of (Dm+c,Dm). These copies are attached by
a diffeomorphism of the boundary (Sm+c−1, Sm−1). But as in Corollary 5.6.4,
any such diffeomorphism extends, taking the cone, to a homeomorphism of
(Dm+c,Dm).

We now proceed to obtain minimal handle decompositions in general.

Theorem 5.6.9 Suppose Wn (n ≥ 6) such that ∂−W, ∂+W andW are simply-
connected. Let Hi(W, ∂−W ) ∼= F + T , where F is a free abelian group of rank
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βi and T is a finite group with τi+ 1
2
generators. Then W has a handle decom-

position on ∂−W with τi− 1
2
+ βi + τi+ 1

2
i-handles for each i.

Proof By Corollary 5.4.1, there is a handle decomposition with no 0- or 1-
handles. Similarly, we can dispense with (n− 1)- and n-handles. This gives a
chain-complex of free abelian groups whose homology is that of H∗(W, ∂−W ).
By making changes of basis of the chain groups, we can put this chain-complex
into normal form, i.e. a direct sum of elementary subcomplexes, each with rank
1 or 2, and differential either

0→ Z → 0 or 0→ Z
θ−→ Z → 0.

Now the required changes of base can be induced by a sequence of ele-
mentary automorphisms of the chain groups, and by Theorem 5.4.5, each of
these can be induced by a change in handle decomposition. It remains only to
remove the elementary subcomplexes with θ = 1. But it follows as above from
Theorem 5.4.3 that such pairs of handles may be cancelled.

This allows us in favourable cases to obtain classifications up to diffeomor-
phism. It follows at once from Theorem 5.6.9 that

Lemma 5.6.10 Suppose Mm, with m ≥ 6, such that M and ∂M are simply-
connected, Hr(M) is free abelian of rank k, and H̃i(M) = 0 for i �= r. Then
M admits a handle decomposition with one 0-handle, k r-handles, and no
others.

Such a manifold is called a handlebody . By Lemma 5.2.1, it can be obtained
from Dm by simultaneous attachment of all k r-handles, so is determined by an
embedding

F :
k⋃
i=1

(Sr−1 × Dm−r )i → Sm−1.

We can take this in two stages: first study the restriction F of F to the union
of the spheres Sr−1 × {0}, and then thicken the spheres up to their tubular
neighbourhoods.
The classification in the case m > 2r is straightforward.

Theorem 5.6.11 A handlebody M with m > 2r is a boundary sum of k (m−
r)−disc bundles over Sr. M is determined up to diffeomorphism by the values of
k, r,m, and the subgroup of πr−1(SO) generated by the classes of the bundles.

Proof Since m > 2r, it follows by general position that any two embeddings
F are diffeotopic. In particular, the components of the image are contained in
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disjoint (m− 1)−discs in Sm−1. It follows that the handlebody is a boundary
sum. Each summand is obtained by attaching a single handle, so (for example,
by Theorem 5.6.2) is a disc bundle over Sr.
Such disc bundles are classified by πr−1(SOm−r ). Since m > 2r, this is iso-

morphic to the stable homotopy group πr−1(SO). Hence the bundle is deter-
mined by the restriction to the central sphere of the (stable) tangent bundle
of M, which in turn is determined by the classifying map M → B(SO). Since
M is homotopy equivalent to a bouquet of r-spheres, this comes to the same
as a collection of maps Sr → B(SO). If we change the handle decomposi-
tion using the Handle Addition Theorem 5.4.5, the elements of πr(B(SO)) add
correspondingly.
We now recall the result of Bott [21] (see §B.3(xii)) that the group πr−1(SO)

is cyclic, infinite if r ≡ 0 (mod 4), of order 2 if r ≡ 1, 2 (mod 8), and zero
otherwise. Thus we can change the basis ofHr(M) to ensure that all but the first
basis element map to zero, and the image of the first generates the subgroup of
πr−1(B(SO)).

In the case m = 2r, there are two extra points: the embedding F is no longer
unique up to diffeotopy, and the group πr−1(SOm−r ) = πr−1(SOr ) lies in exact
sequences (see B.3.2):

Z = πr(S
r )

∂−→ πr−1(SOr )
i∗−→ πr−1(SOr+1) = πr−1(SO).

∂−→ πr−1(SOr−1)
i∗−→ πr−1(SOr )

π∗−→ πr−1(Sr−1) = Z.

If r is even, the first map in the first sequence is injective, and both points are
accommodated by taking into account the intersection pairing on Hr(M). We
have

Theorem 5.6.12 Let M2n be a manifold with M and ∂M simply-connected,
n ≥ 3, with H̃r(M) vanishing for r �= n and free abelian for r = n. The diffeo-
morphism type of M is determined by the following invariants:
a free abelian group H := Hn(M;Z),
a (−1)n-symmetric bilinear map H × H → Z given by intersection

numbers,
a map α : H → πn−1(SOn).

These satisfy
(i) x.x = π (α(x)) for x ∈ H, and
(ii) α(x+ y) = α(x)+ α(y)+ xy(∂ιn) for x, y ∈ H.

Proof We first define α. It follows from Theorem 6.4.11 that each x ∈
Hn(M) ∼= πn(M) is represented by an embedding fx : Sn → M, and that for
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n ≥ 4 such an embedding is unique up to diffeotopy. We may thus define α(x)
as the characteristic class of the normal bundle of fx(Sn). In the case n = 3, the
group πn−1(SOn) = π2(SO3) is trivial, so α is unique.
To see (i), note that π : πn−1(SOn)→ Z coincides with the natural map to

πn−1(Sn−1). Now x.x is the intersection number of fx(Sn) with a nearby per-
turbation. Since fx is an embedding, this is the primary obstruction to finding
a cross-section of the bundle with fibre Sn−1 associated to the normal bundle,
hence with the image of α(x) under π . As to (ii), we may join the embedded
spheres fx and fy by a tube to obtain an immersed sphere representing x+ y.
This has normal bundle given by α(x)+ α(y) and self-intersection x.y. Now as
in §6.3 performing a homotopy to remove a single self-intersection will add ∂ιn
to the normal bundle.
We must now show that these invariants determineM up to diffeomorphism.

Choose a handle presentation as above: it will suffice to show that F is deter-
mined up to diffeotopy. First consider F , and note that classifying embed-
dings into S2n−1 is equivalent to classifying embeddings into R2n−1. It fol-
lows from Theorem 6.4.11 that an embedding Sn−1 → R2n−1 is unique up to
diffeotopy.
According to Corollary 6.4.10, if 2m > 3(v + 1), diffeotopy classes of

smooth embeddings f : V v → Rm correspond bijectively to equivariant homot-
opy classes of equivariant maps V ×V \�(V )→ Sm−1, where an embed-
ding f determines the equivariant map fδ defined by fδ (x, y) = ( f (x)−
f (y))/‖ f (x)− f (y)‖. Taking V =⋃k

i=1 S
n−1
i and m = 2n− 1, we see that the

dimension condition is n > 2; the result for k = 1 shows that we can ignore the
components (Sn−1i × Sn−1i ); and if i �= j, an equivariant homotopy of a map of
(Sn−1i × Sn−1j ) ∪ (Sn−1j × Sn−1i ) is equivalent to a homotopy of (Sn−1i × Sn−1j ).
Since homotopy classes of maps Sn−1 × Sn−1 → S2n−2 are determined by

their degree, an integer, for each pair i �= j we have an integer ci, j, which can
be interpreted as the linking number of Sn−1i and Sn−1j in S2n−1, so is equal to
the intersection number of the corresponding n-spheres in M, and is (−1)n-
symmetric.
For each component, the choice of extension of the map f on Sn−1 to an

embedding f of Sn−1 × Dn is equivalent to choosing an element of πn−1(SOn),
and making an appropriate normalisation, this element coincides with the char-
acteristic class α(xi) of the normal bundle of the corresponding sphere Sn in
M. Hence indeed the invariants determine F up to diffeotopy, hence M up to
diffeomorphism.

It follows by a short calculation that if (and only if) the intersection
form is nonsingular, the boundary of M is homotopy equivalent – and hence
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homeomorphic – to S2n−1. This was the case of prime interest in [159], where
I also considered the question of when ∂M is diffeomorphic to S2n−1.

There is a corresponding classification for handlebodies in the metastable
range. The proof is essentially the same, but the arguments for (i) and (ii) are
somewhat more delicate, and we omit the details.

Theorem 5.6.13 Let Mm be a handlebody with handles of dimension s ≥
2, m ≥ 6, 2m ≥ 3s+ 3. Then the diffeomorphism type of M is determined
by invariants H := Hs(M;Z), a (−1)s-symmetric bilinear map λ : H × H →
πs(Sm−s), and a map α : H → πs−1(SOm−s), satisfying
(i) λ(x, x) = Sπ∗α(x) for x ∈ H, and
(ii) α(x+ y) = α(x)+ α(y)+ ∂∗λ(x, y) for x, y ∈ H.

Here ∂∗ is the boundary map in the homotopy exact sequence (B.3.2) of the
fibre bundle SOm−s → SOm−s+1 → Sm−s; π : SOm−s → Sm−s−1 is the projec-
tion, and S : πs−1(Sm−s−1)→ πs(Sm−s) the suspension map.

5.7 Complements

In this section we first summarise (without proofs) what is known in dimensions
n ≤ 5. Then we indicate what changes need to be made if we drop the simply-
connected hypothesis.
The cases n ≤ 1 are trivial. For n = 2 it follows from Proposition 5.4.1 that

a connected closed 2-manifold M has a handle decomposition with just one 0-
and one 2-handle. Write α1 for the number of 1-handles, so that χ (M) = 2−
α1. In particular, ifM is a homotopy sphere, α1 = 0. Since any diffeomorphism
of S1 is diffeotopic to the identity (or a reflection) and hence extends to one of
D2, it follows that M ∼= S2.

Otherwise we analyse M by induction on α1. If α1 ≥ 1, choose a 1-handle
D1 × D1, join the ends ∂D1 × {0} of the arc D1 × {0} (the a-sphere) by a
smooth arc in D2 to form an embedded circle C, and cut M along this circle
to give N ′. There are three possibilities which are illustrated in Figure 5.10.

(a)C is 1-sided, so ∂N ′ is a circle, the double cover ofC. Adding a disc along
this boundary gives a closed surface N with χ (N) = 1+ χ (M), so α(N) =
α(M)− 1. Moreover the procedure to recoverM from N shows that we have a
connected sum M = N#P2(R).

(b)C is 2-sided and separatesM into two pieces,N ′
1 andN

′
2, each with bound-

ary C. Adding a disc to the boundary yields closed surfaces N1, N2 with M ∼=
N1#N2. Since χ (M) = χ (N1)+ χ (N2)− 2, we have α(M) = α(N1)+ α(N2).
It follows from our construction ofC that neither Ni can be S2, so each α(Ni) <
α(M).
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Figure 5.10 The effect of cutting a surface

(c) C is 2-sided, but does not separate M. Filling each component of ∂N ′

by a disc gives a closed surface N; now we can choose a disc in N containing
each of these in its interior, and so express N as connected sum of N∗, say, with
a manifold obtained from S2 by removing two discs, and identifying the two
boundaries together. This yields a torus S1 × S1 if orientable or a Klein bottle
K2 if not. Calculating as above gives χ (M) = χ (N∗)+ 2.

It follows by induction thatM is the connected sum of a collection (possibly
empty) of copies of P2(R), S1 × S1 and K2. The classification is completed
by the easy proof that K2 ∼= P2(R)#P2(R) and P2(R)#K2 ∼= P2(R)#(S1 × S1).
The conclusion can also be formulated by saying that Theorem 5.6.12 applies
in this case.
For n = 3, a decomposition with just one 0- and one 3-handle is essen-

tially equivalent to a Heegard decomposition, i.e. expressing M as the union
of two handlebodies, which by itself does not tell us much. However the the-
ory of (compact) 3-manifolds is highly developed, and the principal structural
result is Thurston’s Geometrisation Principle, which was established byGrigori
Perelman [120] in 2003, and which includes the original Poincaré Conjecture.
An account of the proof in book form was given by Morgan and Tian [107].
Thurston’s own work [154] gives a more leisurely and very geometric account
giving some insight into how he was led to the Principle.
The case n = 4 is the one where our methods yield the least. To avoid

repetition below, let us write C4 for the class of closed, simply-connected 4-
manifolds. The obvious invariant of any X ∈ C4 is the symmetric bilinear form
λ given by intersection numbers on H2(X;Z); this has rank β2(X ) and signa-
ture σ (λ) = σ (X ); it follows from duality that λ is nonsingular. The type of λ
is even if each λ(x, x) is even (equivalently ifw2(X ) = 0, thus iff X has a spinor
structure) and odd otherwise.
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It is known from the general theory of quadratic forms that two indefinite
nonsingular forms of the same rank, signature, and type are isomorphic (this
fails badly for definite forms), so the matrix of an indefinite odd form can be
diagonalised. For even forms, σ (λ) is divisible by 8 (see Proposition 7.3.3) and
an example with σ = 8 is given by the E8 matrix (7.3.4). A result going back
to Rokhlin, and corresponding to the 4-dimensional case of Proposition 8.8.6,
tells us that for a closed spinor 4-manifold, σ is divisible by 16. A well-known
examplewith σ = 16 (andwithβ2 = 22) is a so-calledK3 surface, for example,
the one given in P3(C) by z40 + z41 + z42 + z43 = 0.

The author proved in [162] that if X1, X2 ∈ C4 have isomorphic intersection
forms they are h-cobordant, and I deduced that they become diffeomorphic
after taking connected sums with a number of copies of S2 × S2. Up to 1980
it still seemed plausible that this implied diffeomorphism, and that any non-
singular symmetric bilinear form could occur. Indeed the topological trivial-
ity of an h-cobordism of manifolds X1, X2 ∈ C4 (and hence the n = 4 case of
the Generalised Poincaré Conjecture) was proved by Michael Freedman [53]
in 1982, and he also proved that indeed any nonsingular symmetric bilinear
form is the intersection form of some X ∈ C4 (but not in general smooth): see
also [54].
The picture changed dramatically with thework of Donaldson. His first paper

[42] proved that if X ∈ C4 is smooth and its intersection form λ is positive def-
inite, then λ can be diagonalised (and so agrees with the intersection form of
a connected sum of copies of P2(C)); in particular, unless β2 = 0, λ cannot
be even. Next in [43] Donaldson proved non-existence of diffeomorphisms
for certain pairs X1, X2 ∈ C4 of smooth manifolds with isomorphic intersec-
tion forms, and hence h-cobordant: thus the h-cobordism theorem fails for such
manifolds. Donaldson’s techniques are well outside the scope of this book (and
beyond the competence of this author), but here is a brief indication of what is
involved.
Let X be a closed oriented 4-manifold; write β+2 (X ) for the dimension of a

maximal subspace of H2(X;R) which is positive definite for the intersection
form. The details require β+2 (X ) to be odd, and extra complications arise if
β+2 (X ) = 1. Principal SU2-bundles P over X are classified by k = 〈c2(P), [X]〉.
Choose a Riemannian metric g on X ; and consider the space of connections
A on P. The so-called Yang–Mills equations require that the self-dual part
of the curvature tensor of A vanishes. The quotient of the set of solutions of
these equations by the group of bundle automorphisms of P (‘gauge equiva-
lence’) is the moduli space Mk(g). It is shown (with some effort) that for a
generic metric g this moduli space is a smooth manifold of dimension 2dk =
8k − 3(1+ β+2 (X )), An orientation of this maximal subspace induces one of
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162 Theory of handle decompositions

Mk(g), and the homology class of Mk(g) in the space of gauge equivalence
classes of connections determines a symmetric multilinear function q(dk ) of
degree dk on H2(X;R) which is independent of the metric. These functions
give new diffeomorphism invariants for X .
The paper [81] by Kronheimer and Mrowka assembled these invariants into

a generating function q =∑k q(dk )/(dk )! which is regarded as a power series
over H2(X;R); their first main theorem states that if X is 1-connected and
of simple type, there exists a finite list K1, . . . ,Kp ∈ H2(X;Z) and non-zero
a1, . . . , ap ∈ Q such that

q = exp
(
1
2λ
∑p

s=1 ase
Ks
)
,

where λ denotes the intersection form. The ‘simple type’ condition was some-
what ad hoc, but at least allowed large families of examples. The classes Ks
are called basic classes. They all satisfy K.K = 2χ (X )+ 3σ (λ). If X is a min-
imal complex algebraic surface of general type, then the only basic classes are
±K, where K is the canonical class: thus K (up to sign) is a diffeomorphism
invariant, and the basic classes in general can be regarded as a diffeomorphism
invariant version of the canonical class.
A formula relating the invariants of X to those of the blow-up X#P2(C) was

obtained in general by Fintushel and Stern [51]. It involves elliptic functions
which, when X is of simple type, specialise to the trigonometric functions in
the above formula.
Shortly afterwards, a new theory was introduced by Witten [181], based on

the so-called Seiberg–Witten equations. Here there is an additional element
of structure. We start with a Spinc-structure on X : this induces a pair of vec-
tor bundlesW±, a complex line bundle L over X , and isomorphisms �2W+ ∼=
�2W− ∼= L. The Seiberg–Witten equations define a subset of the space of pairs
(A, ψ ) with A a unitary connection on L andψ a section ofW+. Again we form
the space M of equivalence classes of solutions under gauge equivalence into
a moduli space and need to show that for a generic metric on X , M is smooth
of the expected dimension 2s(L), where s(L) = 1

8 (c1(L)
2 − (2χ (X )+ 3σ (λ)))

(there are in fact possible isolated singularities corresponding to ‘reducible
solutions’), compact, oriented, and deforms well under change of metric; in
fact it seems these points are somewhat easier to deal with here than in the pre-
ceding case. There is a canonical class h ∈ H2(M) and we obtain an invariant
nL = 〈hs, [M]〉. There are only finitely many line bundles L with nL �= 0. This
description assumes β+2 > 1; otherwise the invariant depends on a choice of
a chamber in the cohomology of X and there is a wall-crossing formula for
moving to a neighbouring chamber.
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5.7 Complements 163

This method led to a flurry of papers which are surveyed in [45]. The review
of this paper mentions conjectures of Witten that the list of basic classes
coincides with the set of first Chern classes of Spinc-structures on X having
invariant nL �= 0, that the corresponding coefficients as agree (up to a normal-
ising factor) with the Seiberg–Witten invariants, and also hints at a formula for
q valid without restriction. Although nearly twenty years have now elapsed, and
there is by now a large literature in this area, these questions still seem to be
open.
These developments led to refinements of Donaldson’s original theorems

restricting the intersection form, with the simple-connectivity hypothesis weak-
ened. The best result known in 2015 seems to be that of Furuta [55]: that if
the intersection form λ of a spinor 4-manifold X is not definite, then β2(X ) ≥
5
4 |σ (X )| + 2 (if λ is definite, a theorem of Donaldson implies β2(X ) = σ (X ) =
0). (The conjecture that β2(X ) ≥ 11

8 |σ (X )| remains open.)
The second major result in [81], again for X simply-connected and of simple

type, asserts that if 
 is a connected surface of genus g, smoothly embedded
in X , and with
.
 > 0, then 2g− 2 ≥ 
.
+ maxs(Ks.
). This gives a clear
indication that there is no simple substitute for the Whitney trick of §6.3 for
obtaining embeddings of surfaces in 4-folds. In particular it establishes (as was
conjectured by Thom) that no surface smoothly embedded in P2(C) has lower
genus than a smooth projective curve of the same degree.
In contrast to all these results, NO effective general technique is known (in

2015) for proving that two given closed smooth 4-manifolds are diffeomorphic.
For n = 5, in the presence of simple connectivity, we can cancel 1- and 4-

handles, but the Whitney trick does not apply to allow us to cancel 2- and 3-
handles. However any closed oriented 5-manifold with w2 = 0 is the boundary
of a 6-manifold, and (see Chapter 7) we can simplify the 6-manifold by surgery.
In particular, one can show that any homotopy sphere
5 bounds a contractible
W 6, and hence is diffeomorphic to S5. Similar arguments lead to a complete
classification of closed simply-connected 5-manifolds up to diffeomorphism:
see §7.9.
We next give brief indications of the changes needed to be made in the main

results of this chapter to accommodate the fundamental group.
First, where we use the Whitney trick to remove intersections of spheres of

complementary dimensions, it does not suffice to measure intersections inM by
a single number: we must take account of the paths joining intersection points.
Each intersection is then associated to a sign±1 and an element of π1(M), and
we add to obtain an element of the integer group ring � := Z[π1(M)].
In the discussion of the homology of handles, we must now consider chains

in the universal cover ofW , giving chains with coefficients in Z[π1(W )].

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.006
https:/www.cambridge.org/core


164 Theory of handle decompositions

We can partly compensate for this by improving the handle addition
Theorem 5.4.5 to incorporate a path following an arbitrary element of π1(M).
Now Proposition 5.5.2 goes through without the hypothesis of simple con-

nectivity, and Theorem 5.5.5 with the additional requirement π1(∂+V ) ∼=
π1(V ), and if n = r + 3 also π1(∂+W ) ∼= π1(W ).
The Euclidean algorithm used in Theorem 5.5.6 fails. Here we have the

matrix of ∂ over � and moves of the following kinds can be realised
geometrically:
(a) Add somemultiple of a row to another row (use handle addition, Theorem

5.4.5).
(b) Multiply some row by an element of π , or by −1 (change the path from

* to an a-sphere, or the orientation of a cell).
(c) Take the direct sum of the matrix with (1) (insert a complementary pair

of handles, Theorem 5.4.4).
The operations (a) and (b) generate a normal subgroup EN (�) of the gen-

eral linear group GLN (�); we stabilise using (c) to obtain E∞(�)� GL∞(�),
and the quotient defines the Whitehead groupWh(π1(M)). There is an obstruc-
tion in this group to completing the proof of Theorem 5.5.6. An h-cobordism
is called an s-cobordism (and the map ∂−W →W a simple homotopy equiva-
lence) if this obstruction vanishes.
It is known thatWh(π ) vanishes if π is free or free abelian, or an elementary

2-group or if π ∼= Z3,Z4, and many other calculations are known: a survey of
results for π finite is given by Oliver [116].
The results in §5.6 remain valid if the simple connectivity hypotheses are

replaced as follows:
Theorem 5.6.1 (i) ∂+V ⊂ V and ∂+W ⊂W induce isomorphisms of π1; (ii)

M ⊂W a simple homotopy equivalence, and ∂W ⊂W induces an isomorphism
of π1.
For Theorem 5.6.7 it suffices to require thatW is an s-cobordism.
For Theorem 5.6.9 there is no direct analogue: the same argument shows that

any chain complex chain homotopy equivalent to C∗(W, ∂−W ) can be realised
by a handle presentation, subject to compatibility with presentations of π1(W ).
To formulate this precisely comes to saying that we can imitate construction of
a CW-complex of the desired (simple) homotopy type by a handle presentation.
The most satisfactory results in this direction are the following, due to Mazur
[90], which can be regarded as generalisations of Theorem 5.6.1 (ii).
Let Mm be a compact manifold, Kk a finite complex. We call an embedding

f : K ⊂ M tame ifM is covered by coordinate neighbourhoods ϕα : Uα → Rm

such that each ϕα| f−1(Uα ) : f−1(Uα )→ Rm is linear on each simplex.
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5.8 Notes on Chapter 5 165

A submanifoldUm of M̊m is a simple neighbourhood of f (K) if K ⊂ Ů , the
inclusion K ⊂ U is a simple homotopy equivalence, and π1(∂U ) ∼= π1(U \ K).

Theorem 5.7.1 (SimpleNeighbourhood Theorem) (i) A smooth regular neigh-
bourhood is a simple neighbourhood.
(ii) A smooth regular neighbourhood has a finite handle decomposition with

one hi corresponding to each simplex σ i of K.
(iii) Let m ≥ 6, codim K ≥ 3. Then if U1, U2 are simple neighbourhoods of

K, there is a diffeotopy of M, constant near K and away from U1 ∪U2, which
moves U1 to U2.

Theorem 5.7.2 (Non-stable Neighbourhood Theorem) SupposeWn has a han-
dle decomposition with no i-handles for i > n− 2. Assume π1(W ) ∼= π1(∂+W ),
n ≥ 6. Let X be a CW complex with no i-cells for i > n− 2 and f : X →W a
simple homotopy equivalence. Then W has a handle decomposition with cells
corresponding to those of X.

There is also a relative version.

5.8 Notes on Chapter 5

§5.1 Although this decomposition has its roots in the nineteenth century, and a
version was used by Poincaré, the modern version is essentially due to Morse
[108]; however the accurate formulation first appeared in work of Smale [138]
and Wallace [171].
§5.3 The Poincaré duality theorem has its origins in work of Poincaré, though

in his time homology groups had yet to be invented, so the result obtained was
an equality of Betti numbers βr = βn−r. The Morse inequalities 5.3.3 are due
to Morse, who in [109] applied the existence theorem to obtain results on the
homology. See [98, I] for a similar account. The extension of duality to mani-
folds with boundary is due to Lefschetz.
§5.2, §5.4, §5.5 Apparently h-cobordism was first defined by Thom.
This development in these sections is due to Smale [138], [139]: the first

paper proved the Generalised Poincaré Conjecture, the second went on to the
h-cobordism theorem. Smale had been working on dynamical systems, and was
seeking to simplify them.
The preprint version had an error (which was soon corrected but annoying) in

the treatment of the fundamental group; in the above account we have bypassed
the difficulty by using the handle replacement technique (Proposition 5.5.1).
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166 Theory of handle decompositions

Another account of the proof of the h-cobordism theorem (in terms of func-
tions rather than handles) is given in the little book [101] by Milnor.
§5.6 We have included examples to illustrate that the h-cobordism theorem

is an effective tool for obtaining classification results up to diffeomorphism.
These are taken from the author’s papers [159] and [160].
§5.7 In the lecture notes from which this book originated, I was at pains to

obtain results in maximum generality, and in particular, to remove all restric-
tions on the fundamental group. Here I have tried to supply enough to give the
interested reader a taste of what is involved.
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6

Immersions and embeddings

We saw in Chapter 4 that a map V v → Mm in general position is already an
embedding if m > 2v . If this condition fails, we still have effective techniques
for constructing embeddings, and will describe some of the main results in this
chapter.
For immersions, the results give a complete reduction of the problem to a

problem in homotopy theory. The proof of this major result is somewhat tech-
nical, and the details will not be required elsewhere.
We will now need to assume rather more familiarity with homotopy theory

than in earlier chapters, and refer to Appendix B for a summary of the relevant
definitions and results.
The theory of embeddings beginswith a technique introduced byWhitney for

removing pairs of self-intersections of a smooth n-manifolds in a 2n-manifold
(if n ≥ 3). We describe this in some detail in §6.3: it was used as a key tool in
§5.5. We then apply it to discuss embeddings of Sn in 2n-manifolds.

The essential idea of this technique was generalised by Haefliger to maps
V v → Mm whenever 2m ≥ 3(v + 1) – a condition we call themetastable range.
There are several related results giving homotopy theoretic criteria for deform-
ing a map to an immersion, or to an embedding, or for finding a regular homot-
opy of an immersion to an embedding; each one also has a simplified form
when the target is Euclidean space, and also a companion criterion for find-
ing a diffeotopy of the constructed embeddings. We describe these results, but
confine ourselves to an outline of the rather involved proof.

6.1 Fibration theorems

A map f : E → B is said to be a fibration if given a space K, a map a : K →
E and a homotopy b : K × I → B such that b | (K × 0) = p ◦ a, there exists a

167
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168 Immersions and embeddings

homotopy c : K × I → X such that a = c | (K × 0) and b = p ◦ c. We also say
that f has the covering homotopy property (CHP). If this holds for K a finite
CW-complex, it follows for any CW-complex; it also follows if (K,L) is a CW-
pair that c can be chosen to extend a lift already given on L× I. It suffices to
require this condition for pairs (K,L) = (Dn, Sn−1).

If f : E → B is a fibration, ∗ a point of B, and F = f−1(∗) (called the
fibre), there is an exact homotopy sequence . . . πn(F )→ πn(E )→ πn(B)→
πn−1(F ) . . ..
The term ‘fibration’ recalls the fact that (see Lemma B.1.1) the projection

map of a fibre bundle has the CHP.
If p : E → B and p′ : E ′ → B′ are fibrations, a map f : E → E ′ is called a

fibre map if p(e1) = p(e2) implies p′( f (e1)) = p′( f (e2)), so that there is a map
g : B→ B′ with g ◦ p = p′ ◦ f .
In this section I give fibration theorems for spaces of cross-sections and of

(smooth) embeddings to prepare the way for the next section.

Theorem 6.1.1 Let M be a smooth manifold, V ⊂ M a compact submanifold.
Then the map Diff(M)→ Emb(V,M) is a fibration.

This is an upgrading of the Diffeotopy Extension Theorem 2.4.2, and the
same proof goes through with minor changes.

Proof Wemay suppose given a space P, a map f : P→ Diff(M). and a homot-
opy g : P× I → Emb(V,M) of the restriction of f , and need to lift g to a
homotopy of f . Denote by i : V → M the inclusion, f ′ : P×M → M and
g′ : P× I ×V → M the maps associated to f and g (thus f ′(p, x) = f (p)(x)).
Thus for p ∈ P, x ∈ V we have g′(p, 0, x) = f ′(p, x).

For each (p, x) ∈ P×V we have a path g′(p, t, x) in M; denote the tangent
vector to this path at g′(p, t, x) by ξ (p, t, x). We need to construct a tangent
vector field η(p, t, y) toM for each (p, t ) ∈ P× I, depending smoothly on y ∈
M and continuously on p and t, and extending ξ .
The argument of Theorem 2.4.2 now goes through, but (i) allowing the addi-

tional parameter p ∈ P and (ii) not insisting on smoothness as a function of the
variables p and t: these do not significantly affect the argument.

As for Theorem 2.4.2, compactness ofV is essential to the argument. In Cerf
[36] and Palais [118] we find amore precise result: the fibration is locally trivial,
where the spaces of sections have the C∞ topology.

Lemma 6.1.2 Let f : E → B be a fibration; let K ⊂ L ⊂ B be CW-complexes.
Write �(K) for the space of cross-sections of f over K. Then restriction defines
a fibration �(L) → �(K).
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6.2 Geometry of immersions 169

Proof We may suppose given a map P→ �(L) and a homotopy of the
composed map to �(K); i.e. f : P× L→ E and g : P× K × I → E with
g(p, a, 0) = f (p, a) if a ∈ K. We seek to construct a homotopyP× L× I → E
covering the projection on B and also extending g. But this exists since f has
the CHP for the pair (P× L,P× K).

In case K ⊂ L are smooth manifolds, there is a corresponding result for
spaces of smooth sections.
A map f : X → Y is said to be aweak homotopy equivalence if, for any CW-

pair (K,L) and maps a : L→ X and b : K → Y with b | L = f ◦ a there exists
c : K → X with c | L = a and f ◦ c homotopic to b keeping L fixed. For this it
suffices to consider pairs Sk−1 ⊂ Dk instead of L ⊂ K; thus for X connected it
suffices if f induces isomorphisms f∗ : πr(X )→ πr(Y ) of homotopy groups.

Lemma 6.1.3 Suppose given a commutative diagram

with p and p′ fibrations and ga weak homotopy equivalence. Then if h is a weak
homotopy equivalence, so its restriction to each fibre of p.
Conversely, if the fibre map h induces a weak homotopy equivalence on each

fibre, g is a weak homotopy equivalence.

This result is an easy deduction from the homotopy exact sequences of the
fibrations and the five lemma.

6.2 Geometry of immersions

If f : V → M is an immersion, at each P ∈ V the map dfP : TPV → Tf (P)M is
injective.Whenwewere discussing submanifolds, we remarked that the restric-
tion of T(M) to V had T(V ) as a sub-bundle, and described the quotient as
N(M/V ). If f is an immersion, instead of the restriction of T(M) we have its
pullback f ∗T(M) by f , and an embedding of T(V ) as a sub-bundle of f ∗T(M).
The main result about immersions is a converse to this statement.
A homotopy gt : V → M is called a regular homotopy if gt is an immersion

for each t. We also seek to classify immersions up to regular homotopy. In
fact, not only is the main result stated in more precise terms, but the result is a

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316597835.007
http:/www.cambridge.org/core


170 Immersions and embeddings

special case of a principle, formulated by Gromov [59] and called by him the
h-principle, which holds for a variety of other geometric structures as well as
immersions.
Again let f : V → M be an immersion, then j1 f : V → J1(V,M) avoids the

set 
∗(V,M) :=⋃i>0

i(V,M) of singular jets, and so defines a section g to

the projection map π∗
1 : J1(V,M) \
∗(V,M)→ V , and this section carries the

information about bundles. Not every section of π1 : J1(V,M)→ V has the
form j1 f for a map f : V → M: apart from the requirement of differentiability,
these sections satisfy the additional equations given in local coordinates as uij =
∂y j/∂xi. Nevertheless, we will see that in many situations any section of π∗

1 can
be deformed to one of the form j1 f , hence arising from an immersion f .

In fact the proof gives a stronger result, and this strengthening is key to the
proof. Instead of considering a single map, we consider spaces of maps. Taking
1-jets defines a map J from the space Imm(V,M) of immersions to the space
�(V,M) of sections of π∗

1 . We now state the main theorem.

Theorem 6.2.1 Provided that either v < m or V v is open, the map

J : Imm(V,M)→ �(V,M)

is a weak homotopy equivalence.

This will usually only be applied in the following form.

Corollary 6.2.2 Any section of �(V,M) is homotopic to one induced by an
immersion, and two immersions are regularly homotopic if and only if the cor-
responding sections of �(V,M) are homotopic.

The necessity of the condition in the theorem is clear: for example, there is
certainly no immersion S1 → R1, since any map has bounded image, while the
image of an immersion would be open.
We can state the result in a more concrete way. Recall that �(V,M) is the

space of sections of π1 : J1(V,M)→ V , and that a 1-jet with source P and
target Q is determined by these points and a linear map TPV → TQM. Thus a
section σ of �(V,M) assigns to each point P ∈ V a point f (P) = Q ∈ M and
a linear map g(P) : TPV → TQM. The component f is a smooth map V → M,
and g gives a map T(V )→ f ∗T(M), which we require to be injective on each
fibre.
We pause to introduce the Stiefel manifold Vm,v , defined as the set of iso-

metric embeddings Rv → Rm, and hence diffeomorphic to Om/Ov . This is a
deformation retract of the space of linear embeddings Rv → Rm, which we
denote V ′(m, v ) and call the weak Stiefel manifold.
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The above bundle map g is injective on each fibre if and only if it is a section
of a bundle ξ ′f over V with fibre V ′

m,v . Thus the existence part of the criterion
can be formulated as follows.

Proposition 6.2.3 Provided that either v < m or V v is open, a map f : V v →
Mm is homotopic to an immersion if and only if the above bundle ξ ′f over V
admits a section.

A corresponding formulation for the uniqueness part concerns a homotopy
between maps f0, f1 and a homotopy of sections gi lying over this.
Note also that homotopy classes of sections of ξ ′f correspond to classes of

sections of a bundle ξ f over V with fibre Vm,v .
In the case M = Rm, the tangent bundle T(M) is trivial and ξ f is associated

to the normal bundle N(M/V ) of V . An easy application is to the case when
T(V ) is trivial.

Corollary 6.2.4 If V v has trivial tangent bundle, there is an immersion of V
in Rv+1; if V is open, it immerses in Rv .

The idea of the proof of the theorem is to build V up as a union of stages V i

and to show, by induction on i, that the result holds at each stage. At each stage
we attach a k-handle for some k, and need to show that the property remains
true. This step is established by induction on k.
We recall the notation Dk(a) for the disc {x ∈ Rk | ‖x‖ ≤ a}; we now also

write Dk(a, b) := {x ∈ Rk | a ≤ ‖x‖ ≤ b}.
The theorem will be deduced from three lemmas.

Lemma 6.2.5 The theorem holds if V = Dv is a disc.

Lemma 6.2.6 Suppose V+ obtained from V by introducing a corner or
attaching a collar. Then the restriction maps Imm(V+,M)→ Imm(V,M) and
�(V+,M)→ �(V,M) are weak homotopy equivalences.

Lemma 6.2.7 The restriction map Imm(Dk(2)× Dv−k,M)→ Imm(Dk(1, 2)
× Dv−k,M) is a fibration.

Proof of Theorem 6.2.1 By Corollary 5.1.7 (ifV is compact) and Lemma 5.1.8
(if not),V has a handle decomposition. If v < m, this can have nom-handles; if
v = m andV is open we may suppose by Proposition 5.4.1 that there are none.
First suppose V compact.
We will prove by induction on k that the result holds for any V ′ which has

only j-handles for j < k. Lemma 6.2.5 provides the start of the induction. We
also induct on the number of handles of V : write Vi for the manifold with i
handles, and supposeVi+1 obtained by attaching a k-handle. By the description
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in §5.1,Vi+1 is obtained fromVi by first introducing a corner to obtainV+
i , say,

then attaching a copy of Dk × Dv−k, which we take as Dk(2)× Dv−k. Consider
the diagram

Imm(Dk(2)× Dv−k,M)
J−→ �(Dk(2)× Dv−k,M)

↓ ↓
Imm(Dk(1, 2)× Dv−k,M)

J−→ �(Dk(1, 2)× Dv−k,M)

. (6.2.8)

By Lemma 6.2.7, the left-hand downward map is a fibration; the right-hand one
is by Lemma 6.1.2. By Lemma 6.2.5 together with Lemma 6.2.6, the upper map
J is a weak homotopy equivalence. By inductive hypothesis, so is the lower
map J. Hence by Lemma 6.1.3 J induces a weak homotopy equivalence on
each fibre. Now the diagram

Imm(Vi+1,M)
J−→ �(Vi+1,M)

↓ ↓
Imm(V+

i ,M)
J−→ �(V+

i ,M)

(6.2.9)

maps by restriction to diagram (6.2.8). The vertical maps in (6.2.9) are the pull-
backs of the vertical maps in (6.2.8) which are fibrations; hence they too are
fibrations. The restriction of J to each fibre in (6.2.9) is a weak homotopy equiv-
alence. Since the lowermap J is a weak homotopy equivalence by Lemma 6.2.6,
it follows that the upper also is.
For the casewhenV is not compact, sowe have an infinite number of handles,

we note that Imm(V,M) is the inverse limit of the Imm(Vi,M), �(V,M) is the
inverse limit of the �(Vi,M), and apply Lemma B.1.3.

Proof of Lemma 6.2.5 Since the disc is contractible, the space �(Dv ,M) of
sections of π∗

1 : J1(Dv ,M) \
∗(Dv ,M)→ Dv is homotopy equivalent to the
space of sections over the origin, which is the spaceW of injective linear maps
from Rv to the tangent space TQM.

We need to look at a map from Dk to �(Dv ,M) and a lift to Imm(Dv ,M) of
its restriction to Sk−1. So for each x ∈ Dk we have an injective linear map from
Rv to some TQM, i.e. a 1-jet j1x at 0 of a map fx : Dv → M. To see that we can
choose the fx to depend continuously on x, take a closed embedding h : M →
RK (which exists by Corollary 4.7.8), a tubular neighbourhood of its image with
image N, and hence a smooth retraction ρ : N → M, the projection of the tube.
Now j1x , composed with the inclusion h gives a 1-jet of map Rv → RK which
has polynomial (in fact, linear) representative gx. Composing with ρ gives fx =
ρ ◦ gx, defined on a neighbourhood of 0, and depending continuously on x.
Moreover since Dk is compact we can choose the same neighbourhood for all
x ∈ Dk.
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6.2 Geometry of immersions 173

Dk(2)

Dv−k

Figure 6.1 The core of Dk(2)× Dv−k

We have constructed a lift, but on a smaller disc Dv (ε). Composing with a
diffeotopy Jt of Dv , equal to the identity near 0, and compressing Dv inside
Dv (ε) by a diffeotopy, we obtain a lift of maps of the larger disc.
This does not yet agree on the boundary Sk−1 with the given lift. For x ∈ ∂Dk

we have the given immersion gx : Dv → M and the map fx just constructed,
both with the same 1-jet at 0. Working again in RN , we consider the linear
interpolation λgx(y)+ (1− λ) fx(y) and compose with ρ to obtain a homotopy
in M. Since the 1-jets at 0 ∈ Dv are constant, this restricts to a regular homot-
opy on a smaller disc Dv (ε′). Using Jt again, we obtain a regular homotopy
on Dv .

The proof of Lemma 6.2.6 is simple: the second result holds since V ⊂ V+

is a homotopy equivalence; as to the first, we have embeddings V → V+ → V
with composite diffeotopic to the identity.

Proof of Lemma 6.2.7 The proof that

Imm(Dk(2)× Dv−k,M)→ Imm(Dk(1, 2)× Dv−k,M)

is a fibration is the key to the whole result. Define the core (of Dk(2)× Dv−k)
to be C := (Dk(2)× {0}) ∪ (Dk(1, 2)× Dv−k ): this is pictured in Figure 6.1.
The parameter space P plays very little part below (we just use the fact that

P is compact). Nor does M: we have to make sure that each map into M is an
immersion, but can use the fact that immersions form an open set. Let us call
a map φ : A× B→ M, with A a submanifold of Dk(2)× Dv−k, admissible if,
for each b ∈ B, the induced map a→ φ(a, b) is an immersion.
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174 Immersions and embeddings

We are thus given a continuous P-parameter family of immersions giv-
ing an admissible map g : Dk(2)× Dv−k × {0} × P→ M and a homotopy of
its restriction f : Dk(1, 2)× Dv−k × I × P→ M, and seek to extend this to
a homotopy (through admissible maps) of g. The first step is to extend the
maps f and g to a map Dk(2)× Dv−k × I × P→ M. This is not in general
admissible, but by openness of immersions, the restriction f ′ of this map to
Dk(α, 2)× Dv−k × I × P→ M is admissible for some α < 1.

Next define K : Dk(α, 2)× Dv−k × I × P× I → M by setting

K(x, y, t, z,T ) = f ′(x, y, t, z) if T = t or if ‖x‖ > (α + 2)/3

= f ′(x, y,T, z) if |‖x‖ − α| < (1− α)/3

and extending smoothly to other values. This defines an admissible map
on some neighbourhood of T = t, hence for some ε > 0 whenever |t −
T | < ε. We can thus find 0 = t0 < t1 < . . . < ts = 1 such that ki(x, y, t, z) :=
K(x, y, t, z, ti) is admissible for ti ≤ t ≤ ti+1.
We will now inductively construct an admissible extension gn for 0 ≤ t ≤ tn

which is equal to f ′ on ‖x‖ ≥ an, where α = a0 < · · · an−1 < an < 1. We start
the induction by setting

g0(x, y, p, t ) = g(x, y, p, t ) if ‖x‖ ≤ α,

= k0(x, y, p, t ) if ‖x‖ ≥ α.

The key step is now a diffeotopy hn : Dk(2)× Dv−k × [0, tn]→ Dk(2)×
Dv−k such that

(i) hn(x, y, t ) = (x, y) on a neighbourhood of ‖x‖ = an, y = 0, and outside
a neighbourhood of an−1 ≤ ‖x‖ ≤ an+1,
(ii) hn(x, y, t ) = (x, y) if t ≤ tn−1,
(iii) hn(∗, ∗, tn) maps Sk−1(an+1)× {0} onto Sk−1(a)× {0}.

To construct this it is essential that k < v , so that dim Dv−k > 0 and there is
enough space within Dv−k to move one point past another. The effect of using
this diffeotopy is to introduce folds in the immersion, thus giving extra space
to move.
We define gn+1 by

gn+1(x, y, t, z) = gn(x, y, t, z) if 0 ≤ t ≤ tn, ‖x‖ ≤ an

= f ′(hn(x, y, t ), t, z) if 0 ≤ t ≤ tn, an ≤ ‖x‖ ≤ 2

= kn(hn(x, y, tn), t, z) if tn ≤ t ≤ tn+1, an+1 ≤ ‖x‖ ≤ 2

= gn+1(x, y, tn, z) if tn ≤ t ≤ tn+1, ‖x‖ ≤ an+1
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0
0 an an+1 1 2

tn

tn+1

1

gn f ◦ hn

kn ◦ hn

Figure 6.2 Piecing together the construction of gn+1

We offer Figure 6.2 to help follow this ‘piecing together’ construction of
gn+1: note also that gn+1 has already been defined for t = tn by the lines above,
and in the upper left rectangle, the value is independent of t.

We now check that, at least for (x, y) in some neighbourhood C∗ of C, these
formulae agree on the intersections of the different domains of definition.
First consider 0 ≤ t ≤ tn, ‖x‖ = an. Since ht (x, y) is constant near ‖x‖ =

an, y = 0, the second formula here reduces to f ′, as does the first.
Along t = tn, we have

(i) gn(x, y, tn, z) (‖x‖ ≤ an),
(ii) f ′(htn (x, y), tn, z) (an ≤ ‖x‖ ≤ 2),
(iii) kn(htn (x, y), tn, z) = g′(htn (x, y), tn, z, tn) = f ′(htn (x, y), tn, z) (an+1 ≤
‖x‖ ≤ 2), while the final formula agrees by definition, so indeed all match up.
Finally consider tn ≤ t ≤ tn+1, ‖x‖ = an+1. Again we need only check in a

neighbourhood of y = 0, and use (iii) above. The fourth formula is indepen-
dent of t in this range, and we have already checked agreement at t = tn. Now
kn(htn (x, y), t, z) = g′(htn (x, y), t, z, tn), and indeed this is independent of t if tn
is near to a.
Choose a diffeotopy Ht of Dk(2)× Dv−k into itself which is the iden-

tity on a neighbourhood of C and has H1(Dk(2)× Dv−k ) ⊂ C∗. We use
this to re-parametrise our maps to obtain the desired extension: the map
gn+1(H1(x, y), p, t ) is admissible, and allows us to continue the induction.

Since the proof proceeded by attaching successively to V handles of dimen-
sion less than v , it follows without further argument that if we have already
constructed an immersion on a closed submanifoldW ofV of the same dimen-
sion, this can be extended over the rest of V , provided dim V < dim M or no
component ofW \V has compact closure. Applying this to the case whenW is
a collar neighbourhood of ∂V , we deduce that the theorem extends to the case
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176 Immersions and embeddings

of immersions (V, ∂V )→ (M, ∂M): given a map covered by an injective map
of tangent spaces, then if v < m we can construct an immersion.
A similar argument yields a much more general result. Let E(M) be any

bundle over M naturally associated to the differential structure, in the sense
that any diffeomorphismM → N induces an isomorphism E(M)→ E(N) and
for any open setU ⊂ M, the restriction of E(M) toU is naturally isomorphic to
E(U ): for example, for any manifold P we can take E(M) = Jk(M,P). Write
Er(M) for the bundle of r-jets of sections of E(M). Let Er0(M) be an open sub-
bundle of Er(M) with the same invariance property.

Define �Er0(M) to be the space of sections of Er0(M) and �0E(M) to be the
space of sections σ of E(M) whose r-jet is a section of Er0(M). We assign
these spaces the C∞ topologies. The following result is called by Gromov the
h-principle.

Theorem 6.2.10 [59] If M is open, the map jr : �0(M)→ �Er0(M) is a weak
homotopy equivalence.

For example, if we have an immersion V v → Rk with a continuous sec-
tion to the bundle of unit normal vectors, we have an immersion V v → Rk−1.
We will use this to show in Theorem 6.3.6 that any manifold immerses in
R2v−1.
A smooth map f : V → M is called a k-mersion if, at each point P ∈ V , the

map dfP : TPV → TPM has rank ≥ k. The h-principle applies to k-mersions:
given a map f : V → M covered by a map T(V )→ f ∗T(M) having rank ≥ k
at each point then f is homotopic to a k-mersion.

6.3 The Whitney trick

We have seen from general position arguments that any manifold Mm embeds
in R2m+1 and immerses in R2m. It was shown by Whitney [177] that in fact
Mm embeds in R2m and, again by Whitney, in [178] that Mm immerses in
R2m−1.
In this section we explain the construction used byWhitney to establish these

results. It has further applications, which will be frequently used in Chapter 7.
By Corollary 4.5.8 to the transversality theorem, if we have two embeddings

of compact manifolds f : V v → Mm and f ′ : V ′v ′ → Mm with m = v + v ′ we
may suppose, up to a (small) diffeotopy of f , that the images are distinct except
that there are finitely many pairs Pi ∈ V and P′i ∈ V ′ with f (Pi) = f ′(P′i ) = Ri
and the two intersections are transverse.
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6.3 The Whitney trick 177

Similarly, by Theorem 4.7.7, if m = 2v , for a dense set of maps g : V v →
Mm, g is an immersion, and fails to be injective only insofar as there are finitely
many pairs of distinct points (Pi,Qi) inV with g(Pi) = g(Qi) = Ri, but the two
branches of V are transverse.
The so-called Whitney trick is a procedure which, under some conditions,

perturbs the embeddings f and f ′ to be disjoint, or perturbs the map g to obtain
an embedding of V in M. Given orientations, each intersection is assigned (at
least locally) a sign. The construction will enable us to cancel a pair of inter-
sections of opposite signs. Moreover this is achieved by a diffeotopy of f or a
regular homotopy of g.

A second construction, also due to Whitney, allows us to introduce a single
self-intersection (of either sign) of g by taking connected sum with a standard
map inside a coordinate neighbourhood. Combining the two constructions gives
a further chance to modify g to an embedding.
Suppose given orientations of V, V ′ and M. At a point R where V and V ′

intersect transversely, we have TRM = TRV ⊕ TRV ′. Choose bases (e1, . . . , ev )
of TRV and (e′1, . . . , e

′
v ′ ) of TRV ′ defining the given orientations. Then the

local intersection number of V and V ′ at R is defined to be +1 if the basis
(e1, . . . , ev , e′1, . . . , e

′
v ′ ) of TRM defines the given orientation ofM and −1 if it

does not.

Figure 6.3 Model of the deformation

The model picture, which is illustrated in Figure 6.3, is to take the line C :
y = 0 in the plane and the curveC′ : y = x2 − 1 intersecting it at the two points
A1 = (1, 0), A2 = (−1, 0) and deform the curve C′ vertically to Ct given by
y = x2 − 1+ t: for t > 1 the intersections have disappeared. More precisely,
we choose a deformation y(x, t ) for |x| ≤ 1+ 2ε and t ∈ I such that for |x| ≤
1 we have y(x, t ) = x2 − 1+ t and for |x| ≥ 1+ ε we have y(x, t ) = x2 − 1.
Write D∗ for the region spanned by the two arcs, and D+ for a neighbourhood
of D∗ in R2.
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178 Immersions and embeddings

Suppose given connected manifolds V, V ′ of dimensions v, v ′, and embed-
dings φ : V → Mm, φ′ : V ′ → Mm with m = v + v ′ which intersect trans-
versely. The key idea is to embed the above model in the manifold.
Take two points of intersection, say φ(Pi) = φ′(P′i ) = Ri (i = 1, 2). Choose

paths f : (I, 0, 1) → (V,P1,P2) and f ′ : (I, 0, 1) → (V ′,P′1,P
′
2). Since v and

v ′ are each ≥ 3, general position shows that we may take each of f , f ′ to
be a smooth embedding. Taking x as parameter on C and C′ allows us to
regard the paths as maps f : (C,A1,A2)→ (V,P1,P2) and f ′ : (C′,A1,A2)→
(V ′,P′1,P

′
2). Then φ ◦ f and φ′ ◦ f ′ together define a loop F : C ∪C′ → M.

Proposition 6.3.1 Suppose also that V, V ′ and M are all orientable, that the
intersections at R1 and R2 have opposite signs, and that either
(i) v, v ′ ≥ 3 and F defines a nullhomotopic loop in M or
(ii) v > 2 = v ′ and F defines a nullhomotopic loop in M \V.

Then there is an embedding φ : D+ × Rv−1 × Rv ′−1 → M such that φ−1(V ) =
(D+ ∩C)× Rv−1 × {0} and φ−1(V ′) = (D+ ∩C′)× {0} × Rv ′−1.

Proof Since F is nullhomotopic in M, the map of the two arcs extends to a
map of the disc D∗, and hence to a map g of a neighbourhood D+, which we
can take as smooth. We next put the map g in general position. Since m ≥ 5,
we may suppose that g is an embedding.
In case (i) as v, v ′ > 2 we may suppose using general position that the only

intersections of g(D+) with V and V ′ occur along the images of C and C′. In
case (ii) we can avoid V ′ by general position, and the fact that the extension g,
outside a neighbourhood ofC, can be taken to avoidV holds by our hypothesis.

For short, writeC for g(C ∩ D+) andC′ for g(C′ ∩ D+). Write ζ for the tan-
gent vector ζ = d(φ ◦ f )(∂/∂t ) along C. Let η1 be the vector field along C,
normal to C, and inwards tangent to g(D∗). Similarly write ζ ′ for the tangent
along C′ and ξ1 for the normal pointing inwards along g(D∗). Observe that we
have ξ1 = ζ and η1 = ζ ′ at R1, and ξ1 = −ζ , η1 = −ζ ′ at R2. These steps are
illustrated in Figure 6.4.
We next construct smooth vector fields ξi (2 ≤ i ≤ v) and η j (2 ≤ j ≤ v ′) on

g(D+) such that
(i) at each point, they form a base for the normal space to g(D+),
(ii) along C the ξi (2 ≤ i ≤ v) are tangent to V , and
(iii) along C′ the η j (2 ≤ j ≤ v ′) are tangent to V ′.
First choose vectors ξ2, . . . , ξv tangent toV atR1 such that (ζ , ξ2, . . . , ξv ) is a

base defining the orientation ofV . SinceC is contractible, we can extend this to
give a base of TPV at all P ∈ C. We can also extend ξ1, ξ2, . . . , ξv to give a base
of the normal space NP(M/V ′) at all P ∈ C′, but now need compatibility at R2.
Since the intersections at R1 and R2 have opposite signs, the two orientations
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η1

ξ1

η1

ξ1
η1

ξ1
C = f (I)

C = f(I)

Figure 6.4 Using the model to construct a deformation

of TR2V differ. But as ζ = −ξ1 at R2, the two bases ξ2, . . . , ξv at R2 have the
same orientation, so by choosing a different extension above, we may suppose
that they coincide, so these vectors are defined over C ∪C′.
The bundle over D+ of orthonormal (v − 1)-frames orthogonal to D+ is a

trivial bundle whose fibre is the Stiefel manifold Vv+v ′−2,v−1. We have con-
structed a section over a circle; since v ′ ≥ 3, Vv+v ′−2,v−1 is simply connected
(see §B.3(xv)), so we can extend the section over D+.

SinceD+ is contractible, all bundles overD+ are trivial. We may thus extend
η2, . . . , ηv ′ to a base for the bundle of vectors normal to D+ and to the ξi. It
follows from our choice of these that these satisfy (iii) above. We have thus
constructed normal vector fields (ξ2, . . . , ξv , η2, . . . , ηv ′ ) along D+ such that
(ξ2, . . . , ξv ) are tangent toV at all points ofV (η2, . . . , ηv ′ ) are tangent toV ′ at
all points of V ′.
By Theorem 2.5.5, a neighbourhood of D+ is diffeomorphic to a disc bundle

over D+, which must be trivial, hence diffeomorphic to D+ × Rv+v ′−2; corre-
sponding statements hold for C and C′.

By Proposition 2.5.10 there exists a tubular neighbourhood ofC inM whose
restriction gives a tubular neighbourhood of C in V ; by the remark following
that result, we may suppose this neighbourhood compatible with D+. We use
this to define φ on a neighbourhood of C.
We argue similarly for C′; moreover, these neighbourhoods are constructed

by glueing together pieces, so if we begin with charts at P and P′, we can ensure
that these maps agree, thus defining φ on a neighbourhood of C ∪C′.

As above, we can use general position to extend φ over D+. Finally, the
above maps may be regarded as defining a tubular neighbourhood for D+ on
a neighbourhood of C ∪C′, and the proof of Proposition 2.5.10 shows how to
extend this over D+: note that our construction of bases for the normal spaces
shows that these partial tubular neighbourhoods do indeed define an embedding
of our model.
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180 Immersions and embeddings

Theorem 6.3.2 Suppose we have connected orientable manifoldsV v , V ′v ′ and
embeddings φ : V → Mv+v ′ , φ′ : V ′ → Mv+v ′ which intersect transversely,
with two intersection points φ(Pi) = φ′(P′i ) = Ri (i = 1, 2) of opposite signs.
Choose paths giving smooth embeddings f : (C,A1,A2)→ (V,P1,P2) and f ′ :
(C′,A1,A2)→ (V ′,P′1,P

′
2) defining a loop F : C ∪C′ → M. Suppose also that

either
(i) v, v ′ ≥ 3 and F defines a nullhomotopic loop in M or
(ii) v > 2 = v ′ and F defines a nullhomotopic loop in M \V.

Then there is a diffeotopy of φ : V → M, supported on φ(I), such that h1(V ) ∩
V ′ agrees with V ∩V ′ less the points R1, R2.

Proof It suffices to construct a diffeotopy in the model D+ × Rv−1 × Rv ′−1

which is constant near the boundary, then transport it intoM by the embedding
φ.
Begin with the diffeotopy φt : C × I → D+, modified using a bump function

to be the identity outside a neighbourhood of D∗. Now define

� : C × Rv−1 × I → D+ × Rv−1 × Rv ′−1

by�t (x, y) = (φtα(y)(x), y, 0), where α(y) is equal to 1 when y = 0 and to 0 for
‖y‖ ≥ ε.

Although the details involve local orientations, the hypothesis of global ori-
entability is not needed for this argument. If V , for example, is non-orientable,
by replacing f by its composite with an orientation reversing loop we can
change the local orientation, so in this case we do not need to assume the two
intersections of opposite signs. However the condition that (i) or (ii) holds is
essential.
The same construction is used, takingV = V ′, to eliminate self-intersections

of an n-manifold in a 2n-manifold. Here we can do somewhat more. First sup-
pose n odd. Then the sign of the intersection number is changed if we reverse
the order of the two branches V,V ′ at R. Thus (provided n > 2 and M is sim-
ply connected) we can eliminate any pair of transverse self-intersections by a
regular homotopy, as we can start by joining P1 to P′2 and P

′
1 to P2 instead.

We also have

Proposition 6.3.3 There is a self-transverse immersion ! : Sn → S2n with a
single transverse self-intersection, and with normal bundle isomorphic to the
tangent bundle of Sn.

Proof We begin with the immersion f : S1 → R2 given by f (θ ) =
(sin θ, 1

2 sin 2θ ), where θ denotes the angular coordinate on S1 =
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6.3 The Whitney trick 181

Figure 6.5 An immersed sphere

{(sin θ, cos θ )}. (This is essentially the same as an example already used
in §1.2.) The curve passes through the origin when θ = 0 and when θ = π,
and the two branches are transverse.
Rotating this, define F : Sn−1 × [0, π ]→ R2n by F (ξ, θ ) = (ξ sin θ,

1
2ξ sin 2θ ), where we regard Sn−1 as a subset of Rn and identify R2n with
Rn × Rn. We observe that F (ξ, θ ) = F (−ξ,−θ ). All the points with θ = 0
or π are again mapped to the origin. Hence F factors as F = G ◦ p, where
p : Sn−1 × [0, π ]→ Sn is defined by p(ξ, θ ) = (ξ sin θ, cos θ ). I claim that
G : Sn → R2n is a smooth immersion.

Near the point (0, . . . , 0, 1) on Sn we can write x = ξsin θ : then ‖x‖ = sin θ ,
so y = cos θ =

√
1− ‖x‖2 and G(x, y) = (x, x

√
1− ‖x‖2). Here we can take x

as giving local coordinates, and
√
1− ‖x‖2 is a smooth function of x near x = 0.

Thus the map is smooth at this point, and the image has tangent the diagonal
{(x, x)}. A similar calculation deals with the point (0, . . . , 0,−1) (here θ = π ).
The image (for n = 1) is pictured in Figure 6.5.

For the immersion f , both tangent and normal bundle are trivial. We can
define an isomorphism between them by rotating each tangent vector through
an angle +π

2 in the plane. A corresponding rotation can be made in R2n, using

the matrix (in block form)

(
0 −I
I 0

)
, and again this gives an isomorphism of

the tangent space to G(Sn) on its normal space. That this also works for each
branch at the origin follows from the above calculation of the tangent space
there.
Composing G with an embedding R2n ⊂ S2n given the desired map !.

Given any immersion Vn → M2n we can take a connected sum with J,
at a smooth point of each submanifold, and this produces (up to diffeomor-
phism) another immersionVn → M2n, but now with an additional point of self-
intersection. Moreover, changing the orientation, this point can be supposed to
have intersection number of either sign.
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182 Immersions and embeddings

Theorem 6.3.4 Given compact smooth manifolds with Vn connected, M2n

simply-connected, and n ≥ 3, any map f : Vn → M2n is homotopic to a smooth
embedding.

Proof Wemay suppose by general position that f is an immersion, and is self-
transverse, so that there are finitely many points Pi of self-crossing.

First suppose V orientable. Choose orientations of V and M, and hence a
sign ±1 attached to each Pi. As just observed, we may introduce a further self-
intersection point of either sign. Introduce such points until there are equal
numbers of both signs.
Given two points of opposite sign, we apply Theorem 6.3.2 to construct a dif-

feotopy of the neighbourhood of an arc inV joining the points, hence inducing a
regular homotopy ofV , which removes these intersection points and introduces
no new ones.
If V is non-orientable, we first introduce a self-intersection point, if neces-

sary, to make the number of such points even. Now we can cancel any pair of
Pi by the same construction: we just need to choose the arc in V of the desired
parity.

The hypotheses are necessary. IfV has two components, they may have non-
zero intersection number in M: for example, consider (Sn × ∗) ∪ (∗ × Sn) in
Sn × Sn. If M is not simply-connected, counting self-intersections more care-
fully gives an obstruction lying in the group ring Z[π1(M)]: see [167, §5]. For
a counterexample, we can take the above map ! with M a neighbourhood of
its image. If n = 2, the whole Whitney trick fails.
For any manifoldM2n, we know by general position that any map Sn → M2n

is homotopic to an immersion, and from Theorem 6.2.1 that immersions in a
given homotopy class are classified up to regular homotopy by πn(E ), where
E → M is the bundle associated toTM and with fibre the Stiefel manifoldV2n,n.
We have an exact sequence

πn(V2n,n)→ πn(E )→ πn(M) → {1};

by §B.3(xvi), the first term is cyclic of order∞ or 2 according as n is even or
odd.
If n is even, the immersion φ determines a homology class [φ] with self-

intersection number [φ].[φ]. It also has a normal bundle, with Euler class giving
a number e(φ). We may suppose φ has transverse self-intersections; summing
the intersection numbers at these points gives a further integer I(φ).

Lemma 6.3.5 We have [φ].[φ] = e(φ)+ 2I(φ).
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Proof The homological self-intersection is the intersection number of the
image of φ with a small perturbation of it; this is the sum of the contribution
e(φ) of the self-intersection in the normal bundle and a contribution of 2 from
each point of self-intersection of φ.

Taking the connected sum with the example of Proposition 6.3.3 has the
effect of changing the regular homotopy class by the action of a generator of
πn(V2n,n), and of adding 2 to e(φ) and subtracting 1 from I(φ).

If n is odd, there are two regular homotopy classes of immersions in
each homotopy class of maps Sn → M2n, one in which the number of self-
intersections is even, and one with this number odd: since the parity is invariant
under regular homotopy, the map πn(Vn,n)→ πn(E ) is injective. If also n ≥ 3
and M is simply-connected, just the former regular homotopy class contains
embeddings. The two classes have different normal bundles if T(Sn) is non-
trivial, i.e. if n �= 3, 7.

Similar conclusions to these apply with any Vn in place of Sn.
Now consider immersions of Nn in Euclidean spaces. By Proposition 6.2.3,

a map f : Nn → Mm with n < m is homotopic to an immersion if and only if
a certain bundle η over N with fibre Vm,n admits a section. Obstruction theory
tells us that obstructions to the existence of sections lie in Hi(N;πi−1(Vm,n)),
and by §B.3(xv)Vm,n is (m− n− 1)-connected. So the primary obstruction is in
Hm−n+1(N;πm−n(Vm,n)); and by (xvi), πm−n(Vm,n) is isomorphic toZ if (m− n)
is even and to Z2 if (m− n) is odd. This obstruction is denotedWm−n+1(η); its
image in Hm−n+1(N;Z2) is the Stiefel–Whitney class wm−n+1(η) (see §8.6).
First take m = 2n: sinceV2n,n is (n− 1)-connected, there is (as expected) no

obstruction.

Theorem 6.3.6 For n ≥ 2, any smooth n-manifold immerses in R2n−1.

Proof The result is due to Whitney [178]; we follow the account of Hirsch
[70].
We setm = 2n− 1 in the above. SinceV2n−1,n is (n− 2)-connected, the only

obstruction is the primary obstruction, which lies in Hn(N : πn−1(V2n−1,n)).
If N is non-compact, or has boundary, then the obstruction lies in a zero

group, so vanishes, and immersions exist. Otherwise the obstruction lies in the
groupHn(N;Z), where the coefficients are twisted ifN is non-orientable, hence
the group is isomorphic to Z in both cases.
Now proceed indirectly, and start with an immersion in φ : Nn → R2n. If we

find a non-zero normal vector field to this immersion, this implies the existence
of a section to the bundle with fibreV2n−1,n and hence of an immersion inR2n−1.
Such a normal vector field exists if and only if the normal Euler class e(φ)
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vanishes. (We refer to [103, VIII] for background on this class.) The class e(φ)
also lies in Hn(N;Z) and can be identified with the above obstruction.
If n is even, we recall the equation [φ].[φ] = e(φ)+ 2I(φ). As intersection

numbers in R2n vanish, it follows that e(φ) is even. Taking the connected sum
with a suitable numbers of copies of the example of Proposition 6.3.3 gives an
immersion ψ with e(ψ ) = 0. We can thus find a non-vanishing normal vector
field to ψ (N), and hence obtain an immersion in R2n−1.
If n is odd, the Euler class satisfies 2e(φ) = 0. Since it lies in a group iso-

morphic to Z, it vanishes, so a normal vector field exists.

Some results can be obtained for the problem of immersibility ofNn inR2n−2.
It was shown in [70] that if n ≡ 1 (mod 4), an immersion exists if and only if
Wn−1(η) = 0.

Among the more interesting problems is to determine the lowest dimensions
into which one can immerse or embed the real projective spaces Pn(R). By
studying the conditions on bundles, Atiyah [13] proved that, if we define σ (n)
to be the greatest integer s such that 2s−1

(n+s
s

)
is not divisible by 2φ(n) (where φ

denotes Euler’s phi function) then Pn(R) cannot be immersed in Rn+σ (n)−1 or
embedded in Rn+σ (n).

6.4 Embeddings and immersions in the metastable range

Given an embedding f : V v → Rm, as in §4.2 we associate to any pair of dis-
tinct points P, Q ofV the non-zero vector� f (P,Q) := f (Q)− f (P) ∈ Rm, and
hence the unit vector δ f (P,Q) := u(� f (P,Q)) ∈ Sm−1. Recalling the notation
V (2) for the set of pairs of distinct points ofV , we have a map δ f : V (2) → Sm−1

with the property δ f (Q,P) = −δ f (P,Q). If f is an immersion, the same formula
defines a map onU \�(V ) for some neighbourhoodU of �(V ) in V ×V .
Since we will have a number of similar conditions in this section, let us agree

that we have standard actions of the group Z2 of order 2, given onV ×V or on
V (2) by interchange of the factors, and on a vector bundle by the map which is
minus the identity on each fibre. Thus when we say a map is ‘equivariant’ we
meanwith respect to this action.We also say that an equivariant map α : A→ B
is isovariant if the preimage of the fixed set (of the action) in B is the fixed set
in A.
For any map f : V → M the product f × f : V ×V → M ×M is equivari-

ant. It is isovariant if and only if f (x) = f (y) implies x = y, i.e. if f is injective.
In this case, f × f restricts to an isovariant map f (2) : V (2) → M(2).
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If f is an immersion rather than an embedding, we know at least that it is
locally injective, so there is a neighbourhoodU of the diagonal�(V ) inV ×V
such that the restriction of f × f toU is isovariant and the map f (2) is defined
on U \�(V ). We will thus consider isovariant maps g : U → M ×M defined
on an unspecified neighbourhood U of �(V ) in V ×V ; for such g denote by
g� : V → M the map such that g(x, x) = (g�(x), g�(x)) for x ∈ V . If g, g′ are
isovariant maps defined onU, U ′ we say that they are isovariant germ homot-
opic if there is an isovariant homotopy of their restrictions to some unspecified
neighbourhood of �(V ) in V ×V . We will also refer to equivariant germ ho-
motopy classes for their restrictions to setsU \�(V ).
In this section we will describe results showing that conversely, the exis-

tence of a suitable isovariant map implies existence and uniqueness up to dif-
feotopy or regular homotopy of an embedding or immersion giving rise to a
map homotopic to the given map. These results hold under the condition that
2m > 3v + ε, where ε is a small number (0, 1 or 2) whose exact value depends
on precisely which result is in question. We refer to a dimensional condition
of this type as the metastable range, in contrast to the stable range m > 2v + ε

in which any map is homotopic to an embedding (or immersion), unique up to
diffeotopy (or regular homotopy).
Such results will imply simplified statements for the special case when the

target is Euclidean space as follows.

Lemma 6.4.1 There is a natural bijection between isovariant homotopy
classes of isovariant maps g : V ×V → Rm × Rm and equivariant homotopy
classes of equivariant maps F : V (2) → Sm−1.
There is a natural bijection between isovariant germ homotopy classes of iso-

variant maps defined on some neighbourhood U of �(V ) in V ×V and equiv-
ariant germ homotopy classes of equivariant maps defined on U \�(V ) for
some neighbourhood U of �(V ) in V ×V.

Proof Given an isovariant map g, we define r(g) : V (2) → Sm−1 by
r(g)(P,Q) := u(s(g(P,Q))), where s : Rm × Rm → Rm denotes the subtraction
map s(x, y) = x− y. Conversely, given an equivariant map F : V (2) → Sm−1,
define an isovariant map by

l(F )(P,Q) := ρ(P,Q)(F (P,Q),−F (P,Q)),
where ρ denotes the distance in some Riemannian metric. For any F , we have
r(l(F )) = F . For any g, s(l(r(g))) is a non-zero multiple of s(g), hence l(r(g))
is isovariantly homotopic to g.
The second assertion follows from the same argument, by restricting the

maps to appropriate neighbourhoods of �(V ).
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We first treat immersions, and start from the above Corollary 6.2.2, which
we can restate as:
Any injective bundle map T(V )→ T(M) is homotopic to one induced by

an immersion, and two immersions are regularly homotopic if and only if the
corresponding bundle maps are homotopic through injective maps.
The first step is to choose metrics on V and M, and observe that (by an

easy homotopy argument) the space of injective bundle maps is homotopy
equivalent to the space of bundle maps which preserve distances in the fibres.
Thus in each fibre we have an isometric embedding Rv → Rm and hence a
map f : Rv → Rm with f−1(0) = 0 and having the (equivariance) property that
f (−x) = − f (x). We call fibre maps with this property skew maps, and homot-
opies preserving this condition skew homotopies.
The next step, which will be accomplished in Proposition 6.4.3, is to replace

the space of isometric bundle maps by the space of skew maps.
NowV ′

m,v is the space of injective linear maps Rv → Rm; denote byWm,v the
space of skew maps Rv → Rm, and by ρm,v : V ′

m,v →Wm,v the inclusion.

Lemma 6.4.2 The map ρm,v is (2m− 2v − 1)-connected.

Proof The Stiefel manifold Vm,v is a deformation retract of V ′
m,v ; similarly

the subspace Ym,v ⊂Wm,v of radial skew maps that preserve length along each
radius is a deformation retract: the retraction is given by taking the skew map
f : Rv → Rm to g, where for t > 0, ||x|| = 1, we have g(tx) = t f (x)/|| f (x)||.
A deformation is given by

h(u, tx) =
(

t

|| f (x)||
)1−u

f (tux).

We can identify Ym,v with the space of maps Sv−1 → Sm−1 that commute with
the antipodal map; Vm,v is the subspace of isometric embeddings.
We prove the result by induction on v; for v = 1, we have X1,m = Y1,m =

Sm−1. We have the diagram

Vm,v −→ Ym,v
pX ↓ pY ↓
Vv−1,m −→ Yv−1,m

,

where the vertical arrows are induced by restriction to Sv−2. The map pX is the
projection of a fibre bundle; pY is a fibration (compare Lemma 6.1.2: the cov-
ering homotopy property for pY follows from the homotopy extension property
for Sv−2 ⊂ Sv−1). Let x ∈ Vv−1,m have image y ∈ Yv−1,m: then the result will fol-
low from the homotopy exact sequences of the fibrations if we can show that
p−1X (x)→ p−1Y (y) is (2m− 2v − 1)-connected.
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Now p−1X (x) is homeomorphic to Sm−v . The space p−1Y (y) consists of equivari-
ant maps Sv−1 → Sm−1 agreeing with y on Sv−2, hence determined by the exten-
sion of y to one of the hemispheres bounded by Sv−2. The space of such exten-
sions has the same homotopy type as when the map Sv−2 → Sm−1 is constant,
and hence is homotopy equivalent to the iterated loop space�v−1(Sm−1). Thus
we need to show that Sm−v → �v−1(Sm−1) is (2m− 2v − 1)-connected, or
equivalently that πr(Sm−v )→ πr+v−1(Sm−1) is surjective for r ≤ 2m− 2v − 1
and bijective for r ≤ 2m− 2v − 2. But this is the standard stability property of
the suspension map (see §B.3(vi)).

Now let π : E → B and π ′ : E ′ → B′ be vector bundles over CW-complexes
B, B′ with respective fibres Rv and Rm.

Proposition 6.4.3 (i) If dim(B) ≤ 2m− 2v − 1 and φ : E → E ′ is a skew
map, there is a bundle map ψ : E → E ′, with φ = ψ , skew homotopic to φ.
(ii) If dim(B) < 2m− 2v − 1 and φ0, φ1 : E → E ′ are skew homotopic bun-

dle maps, there is a bundle homotopy of φ0 to φ1, covering the given homotopy
of maps B→ B′.

Proof The skew maps φ : E → E ′ that cover φ are in bijective correspon-
dence with the cross-sections of the bundle W over B whose fibre over x ∈ B
is the space of skew maps of Ex to E ′x, which can be identified withWm,v ; cor-
respondingly for the bundle L of fibrewise injective bundle maps, with V ′

m,v .
By Lemma 6.4.2, we have πr(Wm,v ,V ′

m,v ) = 0 for r < 2m− 2v − 1. Since the
obstructions to deforming a cross-section of W into L lie in these groups, the
results follow.

Now choose a complete metric on V . By Proposition 2.2.6, the map eV :
T(V )→ V ×V given by eV (ξ ) = (exp(ξ ), exp(−ξ )) is a local diffeomorphism
along �(V ) and there exist neighbourhoods AV of T0(V ) in T(V ) and OV of
�(V ) in V ×V such that eV gives a diffeomorphism of AV on OV ; make corre-
sponding choices forM.

Proposition 6.4.4 There is a natural bijection between isovariant germ homot-
opy classes of isovariant maps F : U → M ×M defined on some neighbour-
hood U of �(V ) in V ×V and skew homotopy classes of skew bundle maps
T(V )→ T(M).

Proof Let F : U → M ×M be an isovariant map, with U a neighbourhood
of �(V ) in V ×V . The composite F1 := e−1M ◦ F ◦ eV is an isovariant map
T(V )→ T(M) defined on a neighbourhood of T0(V ). The restriction of F to
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188 Immersions and embeddings

the diagonal defines a map F0 : V → M agreeing with the restriction of F1 to
zero vectors.
We next deform F1 to a fibre map over F0. If we had a trivialisation

T(M) ∼= M × Rm we could separate base and fibre components, write F1(X ) =
(Fb(X ),Ff (X )) and simply define F2 := (F0,Ff ). In general we define a nat-
ural metric on T(M): at a point given by a tangent vector v at x ∈ M we
can identify Tv (T(M) with Tx(M)⊕ Tx(M) and use the Riemann metric on
M twice. For X ∈ T(M) and y ∈ M consider the point σ (X, y) ∈ Ty(M) clos-
est in T(M) to X . It follows from Theorem 2.3.2 that we have a smooth map
σ : T(M)×M � T(M) defined on a neighbourhood of the diagonal. More-
over σ is a submersion along (and hence near) the set of points (X, x) with
X ∈ Tx(M), so the preimage of the zero cross-section is smooth, hence coin-
cides (near the diagonal) with T 0(M)×M.

Now define F2(X ) := σ (F1(X ),F0(π (X ))). It follows that if X is a non-zero
vector, so is F2(X ). Thus F2 is isovariant and, in some neighbourhood of T0(V ),
is homotopic to F1 through isovariant maps.
Using a partition of unity, we construct a positive continuous function εV (X )

on T(V ) such that εV (X ) = 1 for X in a neighbourhood of T0(V ), εV (X )X ∈
U ∩ AV for all X ∈ T(V ), and εV (−X ) = εV (X ) for all X .

Now define F3 : T(V )→ T(M) by F3(X ) = εV (X )−1(F2(εV (X )X )). This is
still isovariant, and is defined on all of T(V ).

The converse procedure is more straightforward: if G : T(V )→ T(M) is a
skew map, eM ◦ G ◦ e−1V already gives an isovariant map on some neighbour-
hood of the diagonal.

Putting these results together, we have

Theorem 6.4.5 (i) If 2m > 3v , UV is a neighbourhood of�(V ) in V ×V and
F : UV → M ×M is isovariant, F� can be approximated by immersions f :
V → M such that F and f (2) are isovariantly germ homotopic.
(ii) If 2m > 3v + 1, two immersions f , g : V → M are regularly homotopic

if and only if f (2) and g(2) are isovariantly germ homotopic.

Proof By Theorem 6.2.1, regularly homotopy classes of immersions V → M
correspond bijectively to homotopy classes of fibrewise injective linear maps
T(V ) → T(M). It follows from Proposition 6.4.3 that if dim(V ) < 2m− 2v −
1 these correspond bijectively to skew homotopy classes of skew bundle maps
T(V ) → T(M). Finally by Proposition 6.4.4 there is a natural bijection between
these and isovariant germ homotopy classes of isovariant maps F : U → M ×
M. A corresponding argument yields (i).
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Corollary 6.4.6 If 2m > 3v + 1 the classification of immersions V → M
depends only on the topology of V and M (not on the differential structure).

In the case when M is Euclidean space, the statement can be simplified
using Lemma 6.4.1. Recall that an immersion f : V → Rm induces a map
f (2) : V (2) → (Rm)(2) whose restriction to some neighbourhood U of �(V ) is
isovariant, hence induces an equivariant map, fδ : U \�(V )→ Sm−1.

Corollary 6.4.7 (i) If 2m > 3v , UV is a neighbourhood of�(V ) in V ×V and
F : UV \�(V )→ Sm−1 is equivariant, there is an immersion f : V → Rm such
that F and fδ are equivariantly germ homotopic.
(ii) If 2m > 3v + 1, two immersions f , g : V → Rm are regularly homotopic

if and only if fδ and gδ are equivariantly germ homotopic.

We come to embeddings. As promised above, the main result is

Theorem 6.4.8 Let V v , Mm be manifolds with the former compact. Then
(i) If 2m ≥ 3(v + 1), a continuous map f : V → M is homotopic to a smooth

embedding if and only if f × f is equivariantly homotopic to an isovariant map.
(ii) If 2m > 3(v + 1), two smooth embeddings f0, f1 : V → M are dif-

feotopic if and only if f0 × f0 and f1 × f1 are isovariantly homotopic.

In view of Theorem 6.4.5, this will be an immediate consequence of

Theorem 6.4.9 Let V v , Mm be manifolds with the former compact. Then
(i) If 2m ≥ 3(v + 1), an immersion f : V → M is regularly homotopic to a

smooth embedding if and only if there is an equivariant homotopy H of f × f
to an isovariant map such that �(V ) is open in H−1

t (�(M)) for each t.
(ii) If 2m > 3(v + 1), a regular homotopy ft between two smooth embed-

dings f0, f1 : V → M is regularly homotopic to a diffeotopy if and only if there
is a map H : V ×V × I × I → M ×M {write Ht,u(v,w) for H(v,w, t, u)}
such that Ht,0 = ft × ft , H0,u = f0 × f0, H1,u = f1 × f1, Ht,1 is isovariant and
�(V ) is open in H−1

t,u (�(M)) for each (t, u).

Proof The proof of this result follows the same lines as that of the Whitney
trick. We need to construct a model for the deformation, then show how to
embed the model in M. As the details are somewhat involved, we confine our-
selves here to an outline of the key points of the proof, and refer to the original
paper [63] for a careful account. We deal only with (i), in the case when V has
no boundary, and try to keep our notation close to that of §6.3.
The core of the model is a smooth manifold C together with an involution

σ of C and a σ -invariant function λ : C→ D̊1. The double point set will be
C0 := λ−1(0). The core C is smoothly embedded in the source manifold V , so
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a tubular neighbourhood is determined by a vector bundle L over C, which we
may take to be an orthogonal bundle, and consists of the set Lε of vectors in L
of length ≤ ε.

Wewill slide the image ofC across the spaceD defined as the quotient ofC ×
D̊1 by identifying, for x ∈ C and −1 < t < 1, (x, t ) ∼ (σ (x),−t ): write [x, t]
for the image of (x, t ). The map φ : C→ D is given by φ(x) = [x, λ(x)] (thus
C0 is indeed the double point set) and the deformation by φ(x, t ) = [x, λ(x)−
tμ(x)] for a suitable μ. Since the first component remains at x, this is a regular
homotopy; provided μ is σ -invariant, the double point set is given by λ(x)−
tμ(x) = 0, so φ1 is an embedding provided μ(x) > λ(x) for all x; we also need
μ(x) < λ(x)+ 1 for the map to be defined.

As before, we expect the normal bundle of D in M to be locally the direct
sum of two bundles, one restricting onC to the isomorphic image of L and the
other to the normal bundle along C of the image of V in M; but the roles of
the summands at C0 interchange. Explicitly, define L⊕σ L to be the pull-
back of the external direct sum L× L over C ×C by the antidiagonal map
x 	→ (x, σ (x)), then let W be the bundle over D given as the quotient of
the bundle (L⊕σ L)× D̊1 over C × D̊1 by the identification (ex, eσ (x), t ) ∼
(−eσ (x),−ex,−t ); again use square brackets to denote a point in the quotient.
The regular homotopy φ now extends to the map � : Lε × I →Wε given

by �t (ex) = [ex, 0, λ(x)− tα(‖ex‖)μ(x)]: here we require α to be a bump
function with α(0) = 1 and α(y) = 0 for |y| ≥ ε: for example, we can take
α(y) = Bp(1− (|y|/ε)2).

This concludes the construction of the model; now we need to embed it in
V and M. We extend the given homotopy H to a map V ×V × [−1, 1] →
M ×M; away from �(V )× [−1, 1], we may suppose by transversality that
H is transverse to �(M), so that X := H−1(�(M)) \�(V ) is a closed sub-
manifold of V ×V × [−1, 1], of dimension 2v + 1− m. The first projec-
tion defines a map p1 : X ⊂ V ×V × [−1, 1] → V . Since v > 2(2v + 1− m),
we may suppose by general position that p1 is an embedding. Since H is
equivariant, the second projection p2 is also an embedding, with the same
image.
Define C to be p1(X ), σ : C→ C to be p2 ◦ p−11 and λ : C→ D̊1 to be

p3 ◦ p−11 . Since H0 = f × f , the double point setC0 of the model is indeed the
double point set of f . Taking L to be the normal bundle of C in V , the choice
of a tubular neighbourhood of C gives an embedding L→ V . This completes
the constructions in V .
We begin the construction of a map ψ : D→ M by defining

ψ[x, t] := p1(H(x, σ (x), λ(x)− t )) whenever 0 ≤ t ≤ λ(x).
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Since the subset 0 ≤ t ≤ λ(x) is a deformation retract ofD, this can be extended
to a continuous map ψ of D. Recalling that 2m ≥ 3(v + 1) and that dimD =
2v − m+ 1, we may suppose in turn
(i) that ψ is smooth,
(ii) that along the image of C, ψ is an embedding not tangent to V (it is

‘transverse’ in the sense that the intersection of the tangent spaces to the images
of D and of V is that of C) this we can ensure using general position since
dimD < m− v ,

(iii) that ψ is an embedding, by general position, since m > 2 dimD,
(iv) that the image of ψ meets V only along C, again by general position,

since m > dimD+ dimV .
Now define ξ : C→ M by ξ (x) = ψ[x, 0].
We now need to identify W with the normal bundle of ψ (D) in M. Since

p1 and p2 are embeddings, the normal bundle N(V ×V × [−1, 1]/X ) splits
into components, leading to an isomorphism of the normal bundle N(V ×V ×
[−1, 1]/X ) onto N(V/C)⊕σ N(V/C)⊕ T(C)⊕ E, where E is a trivial line
bundle. On the other hand, sinceX is the transverse preimage of�(M) it follows
by Lemma 4.5.1 that this normal bundle is the pullback of N((M ×M)/M) ∼=
T(M). We thus have an isomorphism

! : N(V/C)⊕σ N(V/C)⊕ T(C)⊕ E → T(M).

We can identify L with N(V/C) and D as the quotient of C × D̊1 by Z2. We
would now like to identify the summands T(C)⊕ E of T(M) with T(D) and
(hence) the normal bundle N(M/D) with N(V/C)⊕σ N(V/C) ∼= L⊕σ L and
hence withW .
A number of details need attention. The restriction of ! to C0 is equal to

df ⊕σ (−df )⊕ 0 on N(V/C)⊕σ N(V/C)⊕ 0. It is now not difficult to identify
the bundle maps over C0.
If σ denotes the involution of N(V/C)⊕σ N(V/C)⊕ T(C)⊕ E given

by σ (ex, eσ (x), fx, r) = (eσ (x), ex, fσ (x), r), it follows from equivariance of H
that ! ◦ σ = −!. Using again the dimension condition, we can extend
to an embedding η of N(V/C)⊕σ N(V/C) in T(M), covering ξ , with
η(ex, eσ (x) ) = −η(eσ (x), ex) and such that, for x ∈ C0, η(ex, eσ (x) ) = df (ex)−
df (eσ (x) ).
To construct the desired isomorphism χ : L⊕σ L→W over ψ and agree-

ing with η on (L⊕σ L)× [0, 1], we first restrict to (L⊕ 0)× [0, 1], and define
χ (ex, 0, λ(x)) = df (ex) if λ(x) ≥ 0, and check that the obstructions to extend-
ing overC × I lie in zero groups. Then extend usingχ (0,−ex,−λ(x)) = df (ex)
for λ(x) ≤ 0.
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192 Immersions and embeddings

As in the proof of Proposition 6.3.1, we can now use Proposition 2.5.10 to
construct embeddings of a neighbourhood ofC in L intoV and of a neighbour-
hood ofD inW intoM compatible with the given maps.We have already shown
how to construct a regular homotopy to an embedding. A final calculation is
necessary to check compatibility of this embedding with the given isovariant
map.

In view of Lemma 6.4.1, we now have

Corollary 6.4.10 Let V v be a compact manifold.
(i) If 2m ≥ 3(v + 1), there is a smooth embedding f : V → Rm if and only

if there is an equivariant map (V ×V ) \�(V )→ Sm−1.
(ii) If 2m > 3(v + 1), two smooth embeddings f0, f1 : V → Rm are dif-

feotopic if and only if ( f0)δ and ( f1)δ are equivariantly homotopic.

One can also formulate a Euclidean version of Theorem 6.4.9.
The above are not the only important results about embedding in the

metastable range. The following result is also due to Haefliger, and was
originally proved using the normal forms for singularities obtained in
Theorem 4.8.5.

Theorem 6.4.11 LetV v be a compact connected manifold (without boundary),
Mm a manifold and f : V → M a (k + 1)-connected map.
(a) If m ≥ 2v − k and 2m ≥ 3(v + 1), f is homotopic to an embedding.
(b) If m > 2v − k and 2m > 3(v + 1), any two embeddings homotopic to f

are diffeotopic.

This is deduced in [62] from Theorem 6.4.8 and the following

Proposition 6.4.12 If f : V → M is (2v − m+ 1)-connected, V is closed and
m > v , then f × f is equivariantly homotopic to an isovariant map.

This Proposition is proved by an obstruction theory argument. Some appli-
cations of Theorem 6.4.11 were given in §5.6: we now give others following
[62]. Taking M to be Euclidean space, we deduce

Corollary 6.4.13 Let V v be a compact k-connected manifold (without
boundary).
(a) If m ≥ 2v − k and 2m ≥ 3(v + 1), V embeds in Rm.
(b) If m > 2v − k and 2m > 3(v + 1), any two embeddings of V in Rm are

diffeotopic.

Corollary 6.4.14 If 2m > 3(v + 1), any two embeddings of Sv in Rm are
diffeotopic.
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For the equivariant homotopy class of (Sv × Sv ) \�(Sv )→ Sm−1 is unique.
We will see in §8.8 that this result is best possible.

Corollary 6.4.15 Provided 2m > 3max(p, q)+ 1, the isotopy classes of
embeddings of Sp ∪ Sq in Rm correspond bijectively to πp+q(Sm−1).

For, using the preceding result, we just need isovariant homotopy classes
of (Sp × Sq) ∪ (Sq × Sp)→ Sm−1, i.e. homotopy classes [Sp × Sq : Sm−1] =
πp+q(Sm−1).
In some situations, the results of Corollary 6.4.13 can be sharpened: we refer

the interested reader to [72]. In particular ([72, Theorem 8]).

Proposition 6.4.16 Let V v be a compact k-connected manifold and N ≥
max(2v − 2k − 1, 1

2 (3v − k), v + 2). Then V embeds in RN if and only if
WN−v+1 = 0.

6.5 Notes on Chapter 6

§6.1 The main result in the following section is best stated at the level of func-
tion spaces. We have collected here some fundamental definitions and results,
so as not to interrupt the exposition in the next section.
§6.2 The breakthrough in obtaining a general theory of immersionswasmade

by Steve Smale – his lecture at the International Congress in 1958 was one I
found particularly exciting. His work appeared in [137], and was quickly gen-
eralised by Moe Hirsch [70]. This theory is often referred to as Smale–Hirsch
theory.
The next major step was taken by Misha Gromov [58], who created a gen-

eral theory. The account given above follows closely the version in lectures by
André Haefliger [65]. Another account is given in [2].
§6.3 Whitney had used general position arguments to show in [175] that any

m-manifold embeds in R2m+1 and immerses in R2m. He introduced the ‘Whit-
ney trick’ in [177] to show that any m-manifold embeds in R2m. In the same
paper he gave a construction of an m-sphere immersed in R2m with a single
self-intersection. He went on in [178] to show that any m-manifold immerses
in R2m−1.
The Whitney trick fails if m = 2: here finding the embedding of the 2-disc

required for Proposition 6.3.1, which is given by general position if m ≥ 3, is a
problem of the same type as the theorem it seeks to establish. Not only the proof
but the result fails: see Section 5.7 for more details. As a result of this failure,
the study of 4-manifold topology has a completely different nature to that in
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194 Immersions and embeddings

higher dimensions. In studying the Whitney trick, Casson was led to introduce
an infinite sequence of such problems, leading to the notion of ‘grope’, and to
new results in topological topology. Smooth manifolds behave differently and
require new techniques, for which we refer to [46].
Theorem 6.3.4 becomes trivial if n = 1: here V must be I or S1 andM = S2.

I do not know what happens if n = 2.
§6.4 The first major result on embeddings in the metastable range was

obtained by Haefliger [60]. In this impressive paper Haefliger, following the
idea of the proof of the Whitney trick, uses the description in Theorem 4.7.3 of
singularities of maps in the metastable range to construct a model for a defor-
mation of a map to an embedding.
All the results in this section are due to Haefliger, some in collaboration with

Hirsch. For this account we have followed [66] to construct immersions, and
[63] for embeddings. A different approach is used in [67]. These theorems are
so powerful that much of the subsequent literature is devoted to calculations
required for applications. We will return to embeddings of spheres in Euclidean
space in the final section §8.8.
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7

Surgery

In this chapter we discuss a method of constructing manifolds, or more pre-
cisely, of adapting a given manifold to satisfy certain conditions. This method
is due to Milnor and Kervaire. In the paper [102] where they introduced the
method, the objective was to simplify the homotopy type of the manifold, so the
procedure was called ‘killing homotopy groups’. However since the procedure
can be seen as removing a piece of a manifold and replacing it by something
else, it has come to be known as ‘surgery’.
It was observed by Novikov that the method could be applied to the more

general situation, given a manifold M and a map f : M → X , to change both
M and f to make f more like a homotopy equivalence, by killing the homotopy
groups of f . The method was then codified and further extended by Browder
and by the author.
In more detail, the manifold M will be changed by a cobordism. As we saw

in §5.1, we may choose a handle decomposition of this cobordism, so the pro-
cedure is broken into a sequence of operations, each corresponding to a single
handle. Although we may think ofM as a closed manifold, the discussion will
apply to any compact manifold M.
In the first section we analyse a single step in the procedure: both the con-

ditions for performing the step and its effect. In §7.2, we show how to modify
a map f : M → X to kill all homotopy groups of f in dimensions below the
middle.
In view of duality, any change to the homology ofM is reflected by a corre-

sponding change in the dual dimension. We next discuss the algebraic results
we need on bilinear and quadratic forms, then in §7.4 formulate duality in the
setting of CW-complexes.
In order to perform surgery to make f a homotopy equivalence, we must also

require X to satisfy duality and it is convenient to suppose f a ‘normal map’. As

195
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in Chapter 5, we discuss in detail in this book only the case when X is simply-
connected. We treat in turn the cases when the dimension of M is even (when
there is an obstruction in Z or Z2 to performing surgery) or odd (when there is
none).
The finer details of the results depend on deeper results in homotopy theory,

which we give in §7.7. Here we show how Spivak’s fibration theorem permits
a reformulation of the classification of normal maps. We proceed to Brown’s
interpretation of the Kervaire invariant.
In §7.8 we apply the results to discuss the homotopy types of smooth mani-

folds: the aim (not quite fully accomplished) is to reduce the problem of clas-
sification of smooth manifolds entirely to homotopy theory.
The author has already written a monograph [167] on surgery, in which no

restriction is placed on the fundamental group. The account here is intended to
be introductory rather than complete but is, of course, informed by the same
view of the topic.

7.1 The surgery procedure: a single surgery

Let Mm be a compact manifold M (perhaps with boundary), φ : Sr−1 ×
Dm−r+1 → M \ ∂M an embedding. The operation of removing the interior of
the image of φ, and attaching Dr × Sm−r to the result by φ|(Sr−1 × Sm−r ) is
called a simple surgery, or spherical modification ofM, of type (r,m− r + 1).
The aim of surgery is to perform a series of spherical modifications on M to
simplifyM in a way to be made explicit.
The effect of a spherical modification is determined by φ, and even by the

diffeotopy class of φ (by Theorem 2.4.2). The modification gives a manifold
M′ with the same boundary as M: in particular, ifM is closed so isM′.
ThemanifoldW = (M × I) ∪ f hr (with corner, ifM has a boundary) thus has

∂−W = M, ∂+W = M′: it is a cobordism betweenM andM′, called the support-
ing manifold of the modification. Also, ∂cW = ∂M × I. IfM′ is obtained from
M by a spherical modification of type (r,m− r + 1), we can obtainM fromM′

by one of type (m− r + 1, r). We have the same supporting manifold for both
modifications. It follows from the existence (see §5.1) of handle decomposi-
tions that M and N are cobordant if and only if one may be obtained from the
other by a series of spherical modifications.
The procedure begins with a manifold M and a continuous map f : M →

X . Let W be obtained by attaching an r-handle to M × I, with attaching map
φ : Sr−1 × Dm−r+1 → M \ ∂M. If we can extend f to a map F :W → X , we
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7.1 The surgery procedure: a single surgery 197

say that the manifold M′ := ∂+W and the map f ′ := F|M′ are obtained from
(M, f ) by surgery.
We write φ0 for the restriction of φ to Sr−1 × {0}. Up to homotopy, W

is obtained from M by attaching an r-cell, and extending f over the handle
amounts to giving a map g : Dr → X whose restriction to the boundary is
f ◦ φ0. The pair (φ, f ) defines an element of the relative homotopy groupπr( f ).
Conversely, suppose given an element ξ ∈ πr( f ). For this to arise as above,

the class ∂ξ ∈ πr−1(M) must be represented by an embedding of Sr−1 in M.
The existence of such embeddings is guaranteed by general position if m >

2(r − 1); otherwise more work is required. Moreover, we need to extend the
embedding of Sr−1 to an embedding of Sr−1 × Dm−r+1, so need the normal
bundle of the embedded sphere to be trivial. Provided m ≥ 2r − 1 this follows
if the bundle is stably trivial, hence if the restriction to the sphere of the tangent
bundle T(M) is trivial. Since the sphere is nullhomotopic in X , a neat way to
ensure this is to require that T(M) is itself induced from a bundle over X . It is
convenient to weaken this slightly, giving the following definition.
A normal map consists of a map f : M → X , a vector bundle ν over X and

a trivialisation T of the bundle T(M)⊕ f ∗ν. A normal cobordism is a normal
map (g :W → X, ν,T ) with the manifoldW a cobordism. We can extend this
definition in a natural way to the case of a manifold with boundary.

Theorem 7.1.1 Let ( f : M → X, ν,T ) be a normal map. Then any ξ ∈ πr( f )
determines a regular homotopy class of immersions φ : Sr−1 × Dm−r+1 → M,
and given any embedding in this class we can do surgery to obtain another
normal map.

Proof Suppose φ an embedding whose restriction to Sr−1 × {0} represents ∂ξ :
then we can use φ to attach an r-handle toM × I and use ξ to extend f to a map
g : (M × I) ∪ hr → X (more precisely, we first use ξ to extend f to the union
of M × I and the disc Dr × {0}, and then use a retraction of Dr × Dm−r+1 on
(Sr−1 × Dm−r+1) ∪ (Dr × {0}) – see Figure 5.6 – to extend to the rest of the
handle).
Since the handle Dr × Dm−r+1 is contractible, the restriction to it of g∗ν is

trivial, so extending T ⊕ 1 to a trivialisation of T(W )⊕ g∗ν is equivalent to
trivialising the sum of a trivial bundle with the restriction to Sr−1 × Dm−r+1 of
T(M). Using stability, such trivialisations correspond to those of this restric-
tion, and hence to isomorphisms of it to T(Sr−1 × Dm−r+1). But by Corol-
lary 6.2.2, such isomorphisms correspond bijectively to regular homotopy
classes of immersions φ : Sr−1 × Dm−r+1 → M.
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There are two approaches to analysing the effect on homology of a spherical
(r,m− r + 1)-modification: we can use the supporting manifold W = (M ×
I) ∪ f hr or the intersection X = M ∩M′ (obtained from M by removing the
interior of the image of φ). Up to homotopyW is obtained fromM by attaching
an r-cell, and from M′ by attaching an (m− r + 1)-cell. On the other hand, M
is obtained from X by attaching an (m− r + 1)- and an m-cell, andM′ from X
by attaching an r- and an m-cell.
The inclusions (M′,X ) ⊂ (W,M × I) ⊃ (W,M) induce isomorphisms of

relative homology groups in dimensions �= m. For the inclusions

(Dr × Sm−r, Sr−1 × Sm−r ) ⊂ (M′,X );

(Dr × Dm+1−r, Sr−1 × Dm+1−r ) ⊂ (W,M × I)

induce homology isomorphisms by excision. Thus it suffices to consider

(Dr × Sm−r, Sr−1 × Sm−r ) ⊂ (Dr × Dm+1−r, Sr−1 × Dm+1−r ),

and here both relative groups vanish except in dimensions r, m; in dimension r
we have an isomorphism. It follows that

Lemma 7.1.2 Let r ≤ m− r. Then M and M′ have the same (r − 2)-type (in
particular, if r ≥ 3, the same fundamental group). If r < m− r, and x is the
homology class of the a-sphere f (Sr−1 × 0) in M, then Hr−1(M′) is the quotient
of Hr−1(M) by the subgroup generated by x.

We can now express the homology relations by a single diagram.

Proposition 7.1.3 We have the following exact sequences for i < m− 1:

Proof Since we can identify Hj(M′,X ) = Hj(W,M) and dually Hj(M,X ) =
Hj(W,M′) for j ≤ m− 1, it suffices to write out the homology exact sequences
of the four pairs (M,X ), (M′,X ), (W,M), and (W,M′).
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7.2 Surgery below the middle dimension

We now show how we can perform surgery on a normal map f : M → X to
make the homotopy type of M closer to that of X .

Theorem 7.2.1 If X is a finite CW-complex and m ≥ 2k, any normal map ( f :
M → X, ν,T ) is normally cobordant to a normal map ( f ′ : M′ → X, ν,T ′)
such that f ′ is k-connected.

Proof Let X ′ be the mapping cylinder of f , obtained from the disjoint union
(M × I) ∪ X by identifying each point (x, 1) ∈ M × {1} with f (x) ∈ X . The
inclusion X ⊂ X ′ is a homotopy equivalence, so ν extends to a bundle ν ′ over
X ′. The inclusion ofM asM × {0} is homotopic to f . Thus replacing X by X ′,
ν by ν ′ and T by the induced trivialisation, we have made no essential change,
but may now take f to be an inclusion.
Set X0 := M, and let Xi be a sequence of subcomplexes of X formed by

attaching one at a time to X0 the cells of X of dimension ≤ k not already in
X0. As X is finite, this process terminates, in XK , say.
We now show, by induction on i, that we can add to M × I a sequence of

handles yielding manifolds Ni and extend the inclusion of M in X to homot-
opy equivalences fi : Ni → Xi and normal cobordisms ( f ′i : Ni → X, ν,Ti),
where f ′i is the composite of fi and the inclusion. We have ∂−Ni = M and set
Mi := ∂+Ni. We start the induction with N0 = M × I; f ′0 is f composed with
the projection; similarly for T0.
Suppose inductively (Ni, fi,Ti) already constructed; let Xi+1 be obtained

from Xi by attaching an r-cell. This cell defines an element of πr(X,Xi) hence,
since fi is a homotopy equivalence, of πr( f ′i ). Denote by f ′′i : Mi → X the
restriction of f ′i : we claim that the map πr( f ′′i )→ πr( f ′i ) is an isomorphism.
Since Ni is obtained from M × I by attaching handles of dimension ≤

k, it is obtained from Mi by attaching handles of dimensions ≥ m+ 1− k;
hence (Ni,Mi) is (m− k)-connected and hence, since r ≤ k < m− k, it is r-
connected. The claim thus follows from the exact sequence

πr(Ni,Mi)→ πr( f
′′
i )→ πr( f

′
i )→ πr−1(Ni,Mi).

The r-cell thus defines an element of πr( f ′′i ) and hence, by Theorem 7.1.1,
a regular homotopy class of immersions Sr−1 × Dm−r+1 → Mi. Since m >

2(r − 1), it follows from Theorem 4.7.7 that this class contains embeddings.
We may thus perform surgery to obtain a normal cobordism. Since the r-cell
of the cobordism maps to the homotopy class of the cell in Xi+1, the homot-
opy equivalenceNi → Xi extends to a homotopy equivalenceNi+1 → Xi+1. The
induction is complete.
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At the final step, sinceX is obtained fromXK by attaching cells of dimensions
≥ k + 1, the map XK → X , hence also f ′K : NK → X , is k-connected. Since,
as we have just seen, (NK,MK ) is (m− k)-connected, the map f ′′K is also k-
connected.

An important special case is when X is a point.

Corollary 7.2.2 IfT(M) is stably trivial, and m ≥ 2k, we can perform surgery
on M to make it (k − 1)-connected.

For we apply the theorem, taking X to be a point; then since M′ → X is
k-connected, M′ is (k − 1)-connected.
In general the tangent bundle of M is induced by a map M → B(Om). Sup-

pose given a bundle νs and a framing T of T(M)⊕ ν (so ν is a normal bundle
for M). Choose a classifying map f : M → B(Os), so that if υ is the universal
bundle over B(Os) we have ν ∼= f ∗υ. Then ( f : M → B(Os), υ,T ) is a normal
map, so we can perform surgery on M to obtain a k-connected map f ′ : M′ →
B(Os). The mod 2 Betti numbers ofM′ below the middle dimension thus coin-
cide with those of B(Os), hence with those of B(O); those above the middle are
determined by duality. It follows, for example, that if w ∈ H j(B(O);Z2) (with
2 j > m+ 1) is such that for any w′ ∈ Hm− j(B(O);Z2) the Stiefel–Whitney
number f ′∗(ww′)[M′] vanishes, then also f ′∗w = 0. Corresponding remarks
hold for oriented manifolds with B(O) replaced by B(SO) and the coefficient
field Z2 by Q.
A different type of application arises by fixing k. If our object is to make f ′

induce an isomorphism π1(M′)→ π1(X ), it suffices to have f ′ 2-connected,
and we can achieve this provided m ≥ 4.

With a little more care, we can construct embeddings. The following result
includes a characterisation of possible fundamental groups of complements in
Sm of embedded copies of Sm−2 (provided m ≥ 5).

Theorem 7.2.3 Let (K,L) be a CW pair of dimension k ≥ 3 with K con-
tractible and K obtained from L by adding a 2-cell. Then provided m ≥ 2k − 1
there exist a smooth embedding of Sm−2 in Sm with complement C and an
(m− k)-connected map C→ L.

Proof SetM := S1 × Dm−1, X = L, and define f : M → X to be projection on
S1 composed with the attaching map of the 2-cell. We define a normal map by
taking ν to be trivial and using a trivialisation of T(M).
Now apply the result proved inductively in Theorem 7.2.1. We obtain a

manifold N formed by attaching handles of dimensions ≤ k to M × I and a
normal cobordism (g : N → L, ν,T ) which is a homotopy equivalence. Set
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M′ := ∂+N. SinceN is formed fromM′ × I by attaching handles of dimensions
≥ m+ 1− k ≥ k ≥ 3, π1(M′)→ π1(N) is an isomorphism.
Define W by attaching D2 × Dm−1 along M × {0}. Up to homotopy we

have attached a 2-cell, so the homotopy equivalence g : N → L extends to a
homotopy equivalence W → L ∪ e2 = K; thusW is contractible. Now ∂W =
(D2 × Sm−2) ∪ ∂cN ∪M′, so π1(∂W ) ∼= π1(M′ ∪ e2) ∼= π1(N ∪ e2), so is triv-
ial. Since m ≥ 5, it follows from Corollary 5.6.3 thatWm+1 ∼= Dm+1.

We now have Sm−2 × {0} ⊂ Sm−2 × D2 ⊂ ∂W ∼= Sm, and its closed comple-
ment may be taken as ∂cN ∪M′ or as M′; the inclusion M′ ⊂ N is (m− k)-
connected and g : N → L is a homotopy equivalence.

Corollary 7.2.4 Given m ≥ 5 and a group G, there exist a smooth embedding
f : Sm−2 → Sm and an isomorphism G→ π1(Sm \ f (Sm−2)) if and only if G is
finitely presented, H1(G) ∼= Z, H2(G) = 0, and there is an element x ∈ Gwhose
conjugates generate the whole group.

Here, and in the proof, all homology has coefficient group Z.

Proof If f : Sm−2 → Sm is a smooth embedding and C := Sm \ f (Sm−2), then
Sm is obtained fromC by attaching a 2-cell and anm-cell. The 2-cell is attached
by amap S1 → Cwith homotopy class x, say: the fundamental group is changed
by factoring out the normal closure of x (them-cell has no effect), and becomes
trivial. If G := π1(C), then H1(G) ∼= H1(C) ∼= Z and H2(G) is a quotient of
H2(C), which is zero.
Conversely, given G and x ∈ G, choose a finite presentation of G and con-

struct a CW-complex with L′ with π1(L) ∼= G by taking 1-cells given by gen-
erators and attaching 2-cells corresponding to relators. Adding a further 2-cell
e2 along x gives a simply-connected space K′; since this is 2-dimensional, it is
homotopy equivalent to a bouquet of 2-spheres.
In the sequence 0→ H2(L′)→ H2(K′)→ H2(K′,L′)→ H1(L′) the group

H2(K′,L′) is infinite cyclic, generated by the class of e, hence maps isomor-
phically to H1(L′) = H1(G). Hence H2(L′) ∼= H2(K′) is free abelian, and we
can pick a free basis {yi}. It now follows from the exact sequence π2(L′)→
H2(L′)→ H2(G) = 0 that we can represent the yi by maps fi : S2 → L′. Define
L by attaching 3-cells to L′ by the fi. Then H2(L), H3(L) and all higher homol-
ogy groups vanish. The space K = L ∪ e2 is now simply-connected with van-
ishing homology, hence is contractible.
We can now apply Theorem 7.2.3, taking k = 3. This yields a smooth

embedding of Sm−2 in Sm with complement C and an (m− k)-connected
mapC→ L. Sincem ≥ 2k − 1,m− k ≥ k − 1 ≥ 2, so π1(C) ∼= π1(L) ∼= G as
required.
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7.3 Bilinear and quadratic forms

In order to proceed further with surgery, we need to take account of duality.
In this section we will introduce the purely algebraic notions, and thus make
a digression to discuss results about symmetric and skew-symmetric bilinear
forms which will play a role below. I aim to give enough details for the discus-
sion to make sense, but will not give full details of all proofs.
We consider abelian groupsG,G′, . . ., a value groupV , and bilinear maps λ :

G× G′ → V , which we sometimes call pairings. Denote by G∨ the dual group
Hom(G,V ), by λt : G′ × G→ V the transpose, given by λt (g′, g) = λ(g, g′)
and by Aλ : G→ G′∨ the associated homomorphism given by Aλ(g)(g′) =
λ(g, g′). The map λ is called nonsingular if Aλ is an isomorphism.

If G′ = G and ε = ±1, we call λ ε-symmetric if λt = ελ. From now on we
consider only pairings which are either symmetric (ε = 1) or skew-symmetric
(ε = −1).
We also suppose that the natural map G→ (G∨)∨ is an isomorphism: this

holds, for example, in the following situations:
V a field, G a finite dimensional vector space,
V = Z, G a finitely generated free abelian group,
V = Q/Z or the circle group R/Z, G a finite abelian group.

We call g, g′ ∈ G orthogonal if λ(g, g′) = 0; for any subgroupH ⊂ G, its anni-
hilator is defined byHo := {g ∈ G | ∀g′ ∈ G, λ(g, g′) = 0}. ThusH ⊆ Ho if and
only if λ(H × H ) = 0. If Ho = H, H is called Lagrangian. We have

Lemma 7.3.1 If λ : G× G→ V is nonsingular and ε-symmetric, and H ⊂ G
such that λ |H × H is nonsingular, then G splits as H ⊕ Ho.

We say that the form λ is even if, for each g ∈ G, there exists v ∈ V with
λ(g, g) = v + εv .

Lemma 7.3.2 If λ : G× G→ V is nonsingular, ε-symmetric and even, and
H ⊂ G is Lagrangian, then there is a Lagrangian subgroup H∗ such that G =
H ⊕ H∗. We can identify H∗ with H∨, so that λ is given by

λ((g, h), (g′, h′)) = h(g)+ εh′(g).

Thus in this case, the form is determined up to isomorphism by H.
For symmetric bilinear forms over R, it is well known that one can choose a

basis {ei | 1 ≤ i ≤ r} for G such that λ(ei, e j ) = 0 for i �= j; if the form is non-
singular then each ai = λ(ei, ei) �= 0, and the form is classified up to isomor-
phism by the signature, which is given by σ (λ) = #{i | ai > 0} − #{i | ai < 0}.
There is a Lagrangian subspace if and only if σ (λ) = 0.
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For symmetric bilinear forms over Z, we can tensor with R to obtain a form
over R and thus define a signature. The following are known.

Proposition 7.3.3 A nonsingular symmetric bilinear form λ over Z has a
Lagrangian subspace if and only if σ (λ) = 0.
If λ is a nonsingular even symmetric bilinear form over Z, then σ (λ) is divis-

ible by 8.

Necessity of the condition σ (λ) = 0 is trivial. An example of an even form
with signature 8 is given by the form with the matrix (the ‘E8 matrix’)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.3.4)

The skew-symmetric case is easily handled.

Proposition 7.3.5 Let λ be a skew-symmetric bilinear form over Z. Then H
has a basis {ei, fi | 1 ≤ i ≤ r} {gj} such that λ(x, y) = 0 for all pairs of basis
elements except that λ(ei, fi) = ai for each i.

Proof WriteHo := {x | ∀y ∈ H, λ(x, y) = 0} for the radical of λ. Since, for 0 �=
k ∈ Z, nx ∈ Ho implies x ∈ Ho,Ho is a direct summand ofH. Wemay thus take
a basis {g j} of Ho and extend to a basis for H.
We have reduced to the case when Ho is trivial, so Aλ is injective, with

finite cokernel. Choose e1 ∈ H with coset modulo Aλ(H ) of maximal order
a1. Then a1 is the highest common factor of the λ(e1, x) for x ∈ H. Choose
f1 ∈ H with λ(e1, f1) = a1. Now for any x ∈ H we can write λ(e1, x) = pa1
and λ( f1, x) = qa1: then x+ qe1 − p f1 is orthogonal to both e1 and f1. Thus
H is the orthogonal direct sum of Z〈e1, f1〉 and its orthogonal complement and
we can proceed by induction.

In particular,

Lemma 7.3.6 Any nonsingular skew-symmetric bilinear form overR or Z has
a Lagrangian subspace.
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Thus we may take a basis {ei, fi | 1 ≤ i ≤ r} of H such that λ(ei, e j ) =
λ(ei, f j ) = λ( fi, f j ) = 0 for all i, j except that λ(ei, fi) = 1 for each i: such
a basis is called a symplectic basis.
Now suppose given a nonsingular skew-symmetric bilinear form λ on a free

abelian groupH together with a mapμ : H → Z2 withμ(0) = 0 and satisfying
the identity

μ(x+ x′) = μ(x)+ μ(x′)+ λ(x, x′) (λ(x, x′) taken mod 2). (7.3.7)

The classification is given by

Lemma 7.3.8 Given (H, λ, μ) as above, choose a symplectic basis {ei, fi | 1 ≤
i ≤ r} of (H, λ). Then the number Arf(μ) :=∑i μ(ei)μ( fi) ∈ Z2 is an invari-
ant of (H, λ, μ), and two such triples (of the same rank) are isomorphic if and
only if the invariants Arf(μ) agree.
Moreover, Arf(μ) = 0 if and only if H has a Lagrangian subgroup on which

μ vanishes.

Proof If μ(ei) = 1 and μ( fi) = 0, replacing ei by e′i := ei + fi changes μ(ei)
to 0 without affecting the other values; similarly with ei and fi interchanged;
thus we may reduce to the case μ(ei) = μ( fi) for each i.
If μ(e1) = μ( f1) = μ(e2) = μ( f2) = 1 we substitute e′1 := e1 + e2, f ′2 :=

− f1 + f2, preserving λ, with μ(e′1) = μ( f ′2) = 0, and then deal with μ( f1) and
μ(e2) as above. We may thus reduce to a normal form where μ vanishes on all
basis elements except perhaps e1 and f1.

To prove Arf(μ) an invariant, we note that μ : H → Z2 factors through
H/2H = H ⊗ Z2, and can check using the normal form that the number of
elements of H/2H on which μ takes the value 1 is 22r−1 + 2r−1 if Arf(μ) = 1
and 22r−1 − 2r−1 if Arf(μ) = 0.
The final result follows by inspection.

We now consider the case when G is a finite group and λ takes values in
Q/Z. Here instead of working with a free basis, we write G as the direct sum
of subgroups of prime power order; each of these is a direct sum of cyclic
subgroups.

Proposition 7.3.9 Given a nonsingular skew-symmetric form λ on a finite
group G, we may express G as a direct sum of mutually orthogonal sub-
groups, each of which is either of order 2 with λ(x, x) = 1

2 or is isomorphic
to Zpk ⊕ Zpk (for some prime p and integer k), with generators x, x

′ satisfying
λ(x, x) = 0 or 1

2 , λ(x
′, x′) = 0, λ(x, x′) = p−k.

Further, we may suppose there is at most one summand of order 2.
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Proof For each p, choose x ∈ G of order pk with k maximal. Since the form is
nonsingular, we can find x′ ∈ Gwith λ(x, x′) = p−k. If p is odd, since λ(x, x) =
λ(x′, x′) = 0, the form λ is nonsingular on 〈x, x′〉, so by Lemma 7.3.1 (G, λ) is
the orthogonal direct sum of this and another subgroup, so we can proceed by
induction.
If p = 2 and k > 1, each of λ(x, x) and λ(x′, x′) may be either 0 or 1

2 , but
the same argument applies; if each is 1

2 we can substitute x+ x′ for x′ to reduce
λ(x′, x′) to 0.

If pk = 2 and λ(x, x) = 0, we may proceed as above, but if λ(x, x) = 1
2 , λ

is already nonsingular on 〈x〉, so we can split this off as an orthogonal direct
summand.
Finally observe that if we have two such summands λ(x, x) = λ(y, y) =

1
2 and λ(x, y) = 0, we can start with z = x+ y to reduce to the preceding
case.

Proposition 7.3.10 Given a nonsingular symmetric form λ on a finite group
G, we may express G as a direct sum of mutually orthogonal subgroups, each
of which is either cyclic of prime power order or is isomorphic to Z2k ⊕ Z2k

(for some k), with generators x, x′ satisfying 2k−1λ(x, x) = 2k−1λ(x′, x′) = 0,
λ(x, x′) = 2−k.

Proof Again it suffices to consider the case when G is a p-group. Let k be the
greatest integer such thatG has an element of order pk: choose such an element
x. If λ(x, x) has order pk, the restriction of λ to the subgroup H generated by x
is nonsingular, and we may apply Lemma 7.3.1. Otherwise, choose an element
y with λ(x, y) = p−k: then y has order pk. If p is odd, either z = y or z = x+ y
is such that λ(z, z) has order pk and we may proceed as above.
If p = 2, it may be that λ(y, y) and λ(x+ y, x+ y) both have order < 2k.

In this case, the restriction of λ to the subgroup H generated by x and y is
nonsingular, and we may again apply Lemma 7.3.1.

One can now proceed to further analysis of each of these types of summand.
We define a nonsingular quadratic form on the finite group G to be a pair

(λ,μ) with λ : G× G→ Q/Z and μ : G→ Q/2Z satisfying

� λ is nonsingular symmetric bilinear,
� μ(0) = 0, μ(−x) = μ(x) and
� 2λ(x, y) = μ(x+ y)− μ(x)− μ(y).

It follows that μ(x) ≡ λ(x, x) (mod 1). Note that λ(x, y) ∈ Q/Z determines
2λ(x, y) modulo 2. The classification of quadratic forms is close to that of sym-
metric bilinear forms (if |G| is odd, there is no essential difference). In analogy

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.008
https:/www.cambridge.org/core


206 Surgery

with the above, call a subgroup H ⊂ G Lagrangian if μ vanishes on H (and
hence λ vanishes on H × H) and |G| = |H|2. As before, H then coincides with
its annihilator under λ and Aλ induces an isomorphism of G/H on H∨.

Here there is a new feature. We define the Gauss sumG(μ) :=∑x∈G e
iπμ(x).

Theorem 7.3.11 Suppose (λ,μ) a nonsingular quadratic form on the finite
group G. Then G(μ) has the form A(μ)

√|G|, with A(μ)8 = 1. If there is a
Lagrangian subgroup H, G(μ) = |H| and A(μ) = 1.

Proof We prove the second statement first. We split the sum over G
into a sum over cosets of H. There are two cases. For the triv-
ial coset,

∑
h∈H e

iπμ(h) =∑h∈H e
0 = |H|. For any other coset, we have∑

h∈H e
iπμ(y+h) = eiπμ(y)

∑
h∈H e

iπλ(y,h). Now if y has order k in G/H, as λ is
nonsingular, there exists z ∈ H with λ(y, z) = 1

k , and as z varies, each value j
k

is taken |H|/k times. But the sum
∑

j mod k e
2π i j/k vanishes unless k = 1. Thus

the sum over H vanishes. Summing over all cosets, we just have |H|.
Given two triples (G, λ, μ) and (G′, λ′, μ′) we can form the direct sumG′′ :=

G⊕ G′ and define λ′′((x, x′), (y, y′)) := λ(x, y)+ λ′(x′, y′) and μ′′(x, x′) :=
μ(x)+ μ′(x′). This has the above properties, and we see that G(μ′′) =
G(μ)G(μ′).
Now takeG′ = G, λ′ = −λ andμ′ = −μ: thenG(μ′) = G(μ). In the direct

sum G′′ := G⊕ G′, the diagonal is a Lagrangian subgroup. Hence |G(μ)|2 =
G(μ)G(μ) = G(μ′′) = |G|.
The calculation of the argument is more sophisticated. For p an odd prime, it

was shown by Gauss that the sum
∑

j mod p e
2π i j2/p is equal to i

√
p: other cases

when G is cyclic of order a power of p follow easily. The calculations for the
case p = 2 can be done ad hoc: for example, if G has order 2, and λ(x, x) = 1

2 ,
μ(x) = 1

2 , we have G(μ) = 1+ i = eiπ/4
√
2.

Lemma 7.3.12 For (λ,μ) a nonsingular quadratic form on G, the function
μz(x) := μ(x)+ 2λ(x, z) is a quadratic form if and only if 2z = 0. We have
G(μz) = e−iπμ(z)G(μ).

Proof For necessity note that μz(x)− μz(−x) = μ(x)− μ(−x)+ 2λ(x, 2z),
and since λ is nonsingular, 2λ(x, 2z) ∈ 2Z for all x if and only if 2z = 0.
Now since μz(x) := μ(x)+ 2λ(x, z) = μ(x+ z)− μ(z), we can write

G(μz) =
∑

x∈G e
iπμz(x) =∑x∈G e

iπ (μ(x+z)−μ(z)) = e−iπμ(z)
∑

x∈G e
iπμ(x+z),

which equals e−iπμ(z)G(μ).

In Lemma 7.3.8 we considered pairs (λ,μ) with λ : H × H → Z a non-
singular skew-symmetric form and μ : H → Z2 satisfying (7.3.7). If we set
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G := H/2H and define λS : G× G→ Q/Z by λS(g, g′) = 1
2λ(x, x

′) and μS :
G→ Q/2Z by μS(g) = μ(x) (where x, x′ are lifts of g, g′), then (λS, μS) is a
nonsingular quadratic form on the finite group G. Using a symplectic basis, we
see at once that A(μ) = (−1)Arf(μS ).

Now consider an ε-symmetric pairing λ : H × H → Z, but now suppose
only that Aλ : H → H∨ is injective; denote by G its cokernel. We can tensor
with Q to embed λ in a nonsingular pairing λQ on HQ to Q: denote by H ′ the
subgroup of HQ corresponding to H∨: thus G is identified with H ′/H.
We can lift elements g, g′ ∈ G to elements x, x′ ∈ H ′ and form λQ(x, x′):

denote its image in Q/Z by λ(g, g′).

Lemma 7.3.13 The class of λ(g, g′) inQ/Z depends only on g, g′. This defines
a nonsingular ε-symmetric pairing λ : G× G→ Q/Z.

Proof It is immediate that λ is well defined, bilinear, and ε-symmetric. If
Aλ(g) = 0, so for each g′ ∈ G, λ(g, g′) = 0, then the lift x of g is such that for
each x′ ∈ H ′ we have λ(x, x′) ∈ Z, so Aλ(x) ∈ H ′∨ so x ∈ H and g= 0. Since
Aλ : G→ G∨ is injective, and both these finite groups have the same order, it
is an isomorphism.

In the case ε = −1, we note the additional property λ(g, g) = 0 for all g ∈ G.
If the above form λ is even as well as symmetric, we can enhance λ by defin-

ing μ : G→ Q/2Z by μ(g) = λ(x, x) (mod 2Z), where x is a lift of g. It is
immediate that μ is a quadratic form in the sense defined above. The following
is a deeper result.

Theorem 7.3.14 Let the even symmetric bilinear form λ on H induce the
quadratic map (λ,μ) on G = H∨/H as above. Then G(μ) = eiπσ (λ)/4

√|G|.
This result is given by van der Blij [155], together with a short proof that

depends on manipulation of divergent integrals. We observe that it ties in with
the result in Proposition 7.3.3 that if λ is nonsingular (soG is trivial), then σ (λ)
is divisible by 8.

7.4 Poincaré complexes and pairs

As noted above, we cannot expect to improve the result of Theorem 7.2.1 with-
out imposing some conditions on X . If we can construct a homotopy equiv-
alence M → X with M a closed manifold, then X also must satisfy Poincaré
duality as in Theorem 5.3.5. A corresponding conclusion applies for manifolds
with boundary. We begin with a formal definition of the duality property, then
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explore some consequences in the form of pairings on its homology groups.
We turn to the study of homological properties of maps of degree 1.
Wemake the following definitions. A Poincaré complex of formal dimension

m consists of a finite CW-complex X and a homology class [X] ∈ Hm(X;Z)
(which we call the fundamental class) such that cap product with [X] induces
isomorphisms Hr(X;Z)→ Hm−r(X;Z) for all r ∈ Z.

Thus a first necessary condition for a finite CWcomplexX to have the homot-
opy type of a closed manifold is that X be a Poincaré complex. We will see
that, if X is simply-connected, there is a natural way to enhance this to obtain
a sufficient condition.
We have defined Poincaré complexes in terms of homology. We will see in

§7.8 how they can be defined from a homotopy theoretic viewpoint.
The above definition is not adequate if X is not simply-connected, and does

not even include non-orientable closed manifolds. For the definition in the gen-
eral case, see [164].
A Poincaré pair consists of a finite CW-pair (Y,X ) and a homology class

[Y ] ∈ Hm+1(Y,X ) such that cap product with [Y ] induces isomorphisms

Hr(Y ;Z)→ Hm+1−r(Y,X;Z), Hr(Y,X;Z)→ Hm+1−r(Y ;Z)

for all r. It follows that if [X] := ∂[Y ] ∈ Hm(X;Z), then (X, [X]) is a Poincaré
complex. Indeed, in view of the five lemma, the commutative diagram of exact
sequences

Hr−1(X ) → Hr(Y,X ) → Hr(Y ) → Hr(X ) → Hr+1(Y,X )
[X] ↓ [Y ] ↓ [Y ] ↓ [X] ↓ [Y ] ↓

Hm+1−r(X ) → Hm+1−r(Y ) → Hm+1−r(Y,X ) → Hm−r(X ) → Hm−r(Y )

shows conversely that if we assume X a Poincaré complex, the two conditions
defining Poincaré pairs are equivalent.
We regard Poincaré complexes and pairs as the homotopy-theoretic analogue

to compact manifolds. Many theorems valid for manifolds have analogues in
this context. Corresponding to the Disc Theorem 2.5.6, we have

Lemma 7.4.1 Let Z be a Poincaré complex of formal dimension n ≥ 3. Then
there exist a Poincaré pair (Y,X ) and a homotopy equivalence f : Sn−1 → X
such that the space Y ∪ f en obtained by glueing (Y,X ) to (Dn, Sn−1) is homot-
opy equivalent to Z.

Proof ([164, Theorem 2.4]) We give details here only in the simply connected
case. Then Z is homotopy equivalent to a finite CW-complex, and we may
suppose that this has no cell of dimension greater than n, and only one n-
cell. Now pick an embedding of Dn in the interior of this cell, and define
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Y by deleting its interior. Thus inclusions induce isomorphisms Hn(Z)→
Hn(Z,Y ), Hn(Dn, Sn−1)→ Hn(Z,Y ) preserving the fundamental classes [Z]
and [Dn, Sn−1]. Cap products with the fundamental class give maps of the
Mayer–Vietoris cohomology sequence of (Z;Y,Dn; Sn−1) to the homology
sequence; these are isomorphisms for Z and for (Dn, Sn−1), hence also for
(Y, Sn−1).

For any X , cup product gives a (−1)k-symmetric bilinear pairing

Hk(X;Z)× Hk(X;Z)→ H2k(X,Z).

If X is a Poincaré complex of formal dimension 2k, we have H2k(X,Z) ∼= Z,
and so a bilinear pairing ofHk(X;Z), which is (−1)k-symmetric. Since themap
[X]∩ : Hk(X;Z)→ Hk(X;Z) is an isomorphism, we also obtain a pairing on
Hk(X;Z). The pairing is obtained by composing [X]∩ with the natural map
Hk(X;Z)→ Hom(Hk(X;Z),Z). If we extend coefficients from Z to Q this
becomes an isomorphism, so the pairings become nonsingular. When X is a
2k-manifold, the self-pairing of Hk(X;Z) can be geometrically interpreted as
intersection numbers.
When k is even, the question arises whether the form on Hk(X;Z) is even,

in the sense that for each x ∈ Hk(X;Z), x.x[X] is even. If we reduce mod 2, we
obtain the cup product pairing on Hk(X;Z2). We have the Wu relations (see
§B.4) x2[X] = xvk[X] for x ∈ Hk(X;Z2). Thus the vanishing of the character-
istic class vk is necessary and sufficient for the form on Hk(X;Z) to be even.

If (Y,X ) is a Poincaré pair of formal dimension 2k + 1, in the exact sequence

Hk(Y ;Q)→ Hk(X;Q)→ Hk+1(Y,X;Q)

the two maps are dual to each other, so have the same rank, and the pairing
vanishes on the image of Hk(Y ;Q) since this factors through the zero map
H2k(Y ;Q) → H2k(X;Q): thus this image is a Lagrangian subspace. In the case
when k is even, it follows from Lemma 7.3.2 that the pairings have signature
σ = 0.
Now let X be a Poincaré complex of odd formal dimension 2k + 1; first

suppose Hk(X;Q) = 0, so that Hk(X;Z) is a finite group. Since by dual-
ity Hk+1(X;Q) = 0, the map Hk+1(X;Q/Z)→ Hk(X;Z) is an isomorphism,
while by duality

Hk+1(X;Q/Z) ∼= Hk(X;Q/Z) ∼= Hom(Hk(X;Z),Q/Z).

Composing these maps gives a nonsingular pairing of Hk(X;Z) with itself to
Q/Z.
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When X is a (2k + 1)-manifold, this too can be interpreted geometrically. If
x ∈ Hk(X;Z) has order θ , we represent x by a k-cycle ξ ; then θξ is a bound-
ary, say θξ = ∂ζ . Given another class y ∈ Hk(X;Z) represented by a cycle η
disjoint from ξ , we may suppose η transverse to ζ and count the intersections.
Then λ(x, y) = 1

θ
(ζ .η) (mod Z).

Either from the algebraic or geometric approach we can see that when the
hypothesisHk(X;Q) = 0 is dropped we obtain a nonsingular pairing of the tor-
sion subgroup Tors Hk(X;Z) with itself to Q/Z. It follows from the symmetry
property of cup products over Q that this form is (−1)k+1-symmetric. Thus if
k is even, x 	→ b(x, x) defines a homomorphism c : Tors Hk(X;Z)→ 1

2Z/Z. It
can be shown that we have c(x) = 〈vk, x〉.
We saw in §7.1 that to facilitate surgery it is natural to consider normal maps

( f : M → X, ν,T ). We now suppose X a Poincaré complex and impose the
further condition f∗[M] = [X] or, as we will say, that f has degree 1. Observe
that if (g : N → X, ν,U ) is a normal cobordism of f to f ′ and f has degree 1,
then so has f ′. We thus study the homology of maps of degree 1.

Proposition 7.4.2 Letφ : M → X be amap of degree 1 of Poincaré complexes.
Then the diagram

Hr(M;Z)

[M]∩
��

Hr(X;Z)
φ∗��

[X]∩
��

Hm−r(M;Z)
φ∗ �� Hm−r(X;Z)

is commutative, so .[M]∩ induces an isomorphism of the cokernel Kr(M;Z) of
φ∗ on the kernel Km−r(M;Z) of φ∗. In particular, if φ is k-connected, φ∗ and
φ∗ are isomorphisms for r < k and for r > m− k.
A map φ : (N,M)→ (Y,X ) of degree 1 of Poincaré pairs induces split sur-

jections of homology groups M → X, N → Y and (N,M)→ (Y,X ) with ker-
nels K∗ and split injections of cohomology groups with cokernels K∗. The dual-
ity map .[N]∩ induces isomorphisms

K∗(N)→ K∗(N,M), K∗(N,M)→ K∗(N).

The homology (cohomology) exact sequence of (N,M) is isomorphic to the
direct sum of the sequence for (Y,X ) and a sequence of groups K∗(K∗).

Commutativity of the diagram follows from naturality of cap products. Since
the vertical maps are isomorphisms, φ∗ is a split injection and φ∗ a split surjec-
tion. The other assertions are immediate consequences. The same holds if Z is
replaced by any coefficient group.
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If φ : (M, ∂M)→ (X, ∂X ) is a map of degree 1 of Poincaré pairs inducing
a homotopy equivalence ∂M → ∂X , it follows that, as in the case of closed
manifolds, .[M]∩ induces an isomorphism of the cokernel Kr(M;Z) of φ∗ on
the kernel Km−r(M;Z) of φ∗.
It follows that if M has dimension 2k, we have a (−1)k-symmetric bilinear

form on Kk(M;Z) to Z. If moreover the map f : M → X is k-connected, so
the groups K∗ vanish in lower dimensions, this pairing is nonsingular. It fol-
lows from the commutative diagrams and the characteristic property of vk that
vk(M) = φ∗vk(X ). Hence if k is even, the self-pairing of Kk(M;Z) is even.
IfM has odd dimension 2k + 1, we have a (−1)k+1-symmetric bilinear form

on Tors Kk(M;Z) to Q/Z. Again, if the map f : M → X is k-connected, this
pairing is nonsingular.
Now suppose given a Poincaré complex X of formal dimension m, and

a normal map ( f : M → X, ν,T ) of degree 1 (or more generally (X, ∂X ) a
Poincaré pair and f : (M, ∂M)→ (X, ∂X ) inducing a homotopy equivalence
∂M → ∂X). By Theorem 7.2.1, if m ≥ 2k, we may perform surgery to make
f k-connected. Then Kr(M) vanishes for r < k. It now follows from Proposi-
tion 7.4.2, together with duality, that ifm = 2k,Kr(M) vanishes except if r = k,
while if m = 2k + 1, the exceptions are r = k, k + 1.

Now let (Y,X ) be a Poincaré pair of formal dimension n and φ : (N,M)→
(Y,X ) a normal map of degree 1. We may first apply Theorem 7.2.1 to φ |M,
extend to a normal cobordism of φ, and then apply the Theorem to φ. This kills
all the K groups except those in the sequence: if n = 2k,

0→ Kk(M)→ Kk(N)→ Kk(N,M)→ Kk−1(M)→ 0 :

and if n = 2k + 1,

0→ Kk+1(N)→ Kk+1(N,M)→ Kk(M)→ Kk(N)→ Kk(N,M)→ 0.

The following extension of Theorem 7.2.1 will be useful.

Proposition 7.4.3 ([167, p. 15]) Suppose n = 2k + 1, k ≥ 2, and both X and
Y are simply-connected; then φ is normally cobordant to a k-connected normal
map such that Kk(N,M) = 0.

Proof We may suppose φ k-connected. Since k ≥ 2 and a 2-connected map
induces an isomorphism of fundamental groups, both M and N are simply-
connected. Thus Kk(N,M) ∼= πk+1(φ). Choose a finite set {ei} of generators.
As in Theorem 7.1.1 we can represent each ei by a framed immersion fi :
(Dk, Sk−1)→ (N,M). By general position, we may suppose the fi disjoint
embeddings.We extend these to disjoint embeddingsFi : (Dk, Sk−1)× Dk+1 →
(N,M).
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Since these represent elements of πk+1(φ), they are nullhomotopic in (Y,X ),
so φ is homotopic to a map taking the image of each Fi to a point. We obtain
(N ′,M′) from (N,M) by deleting the interiors of the images of the Fi and
rounding the corners. We inherit a normal map φ′ : (N ′,M′)→ (Y,X ), and
a normal cobordism of φ′ to φ is obtained from φ × I by adjusting the cor-
ners as in Figure 8.1. Although this has not been described as a surgery, it can
equivalently be obtained by first performing surgery on the boundary using the
Fi : Sk−1 × Dk+1 → M to add handles, then interior surgery on the k-spheres
created by this.
Denote byA the free abelian groupwith basis {ei}.We have an exact sequence

A→ Kk(N,M)→ Kk(N ′,M′)→ 0; since the first map is surjective, we have
Kk(N ′,M′) = 0.

Lemma 7.4.4 In the above situation, if Kk(N,M) = 0, Kk+1(N,M) is a
Lagrangian subspace of Kk(M).

Proof We again relativise the arguments of Lemma 7.1.1. We have an isomor-
phismπk+2(φ)→ Kk+1(N,M), so each element α ofKk+1(N,M) is represented
by a map gα : (Dk+1, Sk )→ (N,M) together with a nullhomotopy of the com-
posed map to (Y,X ). Now Dk+1 is contractible, so has trivial tangent bundle,
and the nullhomotopy shows that g∗αT(N) is trivial. We thus have a stable iso-
morphism of T(Dk+1) with g∗αT(N), which restricts to a stable isomorphism of
T(Sk ) with g∗αT(M). By the remark following the proof of Theorem 6.2.1, such
isomorphisms correspond bijectively to regular homotopy classes of framed
immersions iα : (Dk+1, Sk )→ (N,M).
We have now shown that α is represented by a framed immersion iα . By

Proposition 4.6.6, we may suppose this immersion self-transverse; the same
goes for the immersion iα ∪ iβ of the union of two discs. The double point set
is then a 1-manifold, so consists of a collection of embedded circles and arcs
whose end points are the (self)-intersection points of the boundary spheres inM.
Now if α �= β, each intersection arc has two end points, which make contri-

butions of opposite signs to the intersection number of the two spheres inM. It
follows that ∂α.∂β = 0, so indeed the image of Kk+1(N,M) in Kk(M) is self-
annihilating. For k even, this proves the result; if k is odd,μ(α) is the number of
self-intersection points of iα (Sk ), and this vanishes by the same argument.

7.5 The even dimensional case

Suppose X a Poincaré complex of formal dimension m = 2k, and ( f : M →
X, ν,T ) a k-connected normalmap, ormore generally that (X, ∂X ) is a Poincaré
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pair and f a normal map inducing a homotopy equivalence ∂M → ∂X . It fol-
lows from Proposition 7.4.2 that all Kr(M) and Kr(M) vanish except for r = k.
Duality implies further that these groups are free abelian, and the isomorphism
[M]∩, together with the dual pairing, gives a nonsingular bilinear form

λ : Kk(M)× Kk(M)→ Z,

which is symmetric if k is even and skew-symmetric if k is odd.
From now on we make the further assumption that X is simply-connected.

Then the Hurewicz Theorem gives an isomorphism h : πk+1( f ) ∼= Kk(M;Z).
By Theorem 7.1.1, any ξ ∈ πk+1( f ) induces a regular homotopy class of
immersions Sk × Dk → M, and given any embedding in this class we can per-
form surgery. Write x := h(ξ ). Then

Lemma 7.5.1 In this situation, if k ≥ 3 is even, surgery on ξ is possible if and
only if λ(x, x) = 0.
If k is odd, there is an invariant μ(x) ∈ Z2, and if k ≥ 3, surgery on ξ is

possible if and only if μ(x) = 0.

Proof We recall the discussion in §6.3.2 of immersions φ of Sk in 2k-
manifolds.
For k even, if e(φ) denotes the number given by the Euler class of the normal

bundle and I(φ) the signed sum of the intersection numbers at points of self-
intersection of φ(Sk ) (which we may assume transverse), then by Lemma 6.3.5,
we have [φ].[φ] = e(φ)+ 2I(φ). In the present situation, we have an immer-
sion of Sk × Dk, so e(φ) = 0. Since x := s(ξ ) is the homology class [φ], we
have λ(x, x) = 2I(φ). Finally by Theorem 6.3.2, provided k ≥ 3, if I(φ) = 0,
φ is regularly homotopic to an embedding.
For k odd, there are two regular homotopy classes of immersions in each

homotopy class of maps Sk → M2k, which are distinguished by the parity of
the number I(φ) of self-intersection points of φ. Define μ(x) to be I(φ) mod
2, where φ is in the regular homotopy class determined by ξ . The conclusion
again follows from the results in §6.3.2.

We now calculate the effect of a surgery on homology. Let (g : N →
X, ν,T ′′) be a normal cobordism of ( f : M → X, ν,T ) to ( f ′ : M → X, ν,T ′).
Since we may regard g as a map (N,M,M′)→ (X × I,X × {0},X × {1}), we
may use the groups K∗ defined above. Observe that K∗(N,M) ∼= H∗(N,M).
Thus for a single surgery as above, the K∗ exact sequence of (N,M) reduces
to

0→ Kk+1(N)→ Kk+1(N,M)→ Kk(M)→ Kk(N)→ 0,
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in which Kk+1(N,M) ∼= Z, and a generator maps to x ∈ Kk(M). Thus for x �= 0,
Kk(N) is the quotient of Kk(M) by the class of x.
We have an exact sequence

0→ Kk(M
′)→ Kk(N)→ Kk(N,M

′)→ Kk−1(M′)→ 0,

with Kk(N,M′) ∼= Z. The map Kk(N)→ Kk(N,M′) can be identified with
Kk+1(N, ∂N)→ Kk+1(N,M), so is induced by intersection with the (k + 1)-
cell representing a generator of Kk+1(N,M) or with x, its boundary. Thus pro-
vided for some x′ ∈ Kk(M) we have λ(x, x′) = 1, this map is surjective, and
hence Kk−1(M′) = 0.
If k is even, the intersection pairing λ on Hk(X;R) is symmetric, so deter-

mines a signature invariant σ (X ) ∈ Z. We saw above that if (Y,X ) is a Poincaré
pair, then σ (X ) = 0. The main result here is

Theorem 7.5.2 If ( f : M → X, ν,T ) is a normal map of degree 1 with X a
simply-connected Poincaré pair of formal dimension 2k with k ≥ 4 even, and
∂M → ∂X a homotopy equivalence, then surgery to obtain a homotopy equiv-
alence is possible if and only if σ (M) = σ (X ). Moreover, it then suffices to
perform surgeries on spheres of dimension ≤ k.

Proof First suppose (g : N → X, ν,T ′′) a normal cobordism of f to a homot-
opy equivalence ( f ′ : M′ → X, ν,T ′). Since ∂N is the disjoint union ofM′ and
M with orientation reversed, 0 = σ (∂N) = σ (M′)− σ (M) = σ (X )− σ (M).
Conversely, suppose σ (M) = σ (X ). We may suppose by Theorem 7.2.1 that

f is k-connected. It follows from the proof of Theorem 7.4.2 that in the decom-
positionHk(M) ∼= Kk(M)⊕ Hk(X ) the two summands are mutually orthogonal
for the intersection form. Hence the induced pairing λ on Kk(M) has signature
zero.
It follows from Proposition 7.3.3 that if λ is a nonsingular symmetric bilinear

form on H over Z, of signature zero, there exists a basis {ei, fi} (1 ≤ i ≤ r) of
H such that λ(ei, e j ) = λ(ei, f j ) = 0 for all i, j except that λ(ei, fi) = 1 for
each i.
Since λ(e1, e1) = 0, by Lemma 7.5.1, we can do surgery on e1. It follows

from the above calculations that for the resulting normal cobordism, Kk(N) is
the quotient of Kk(M) by the class of e1, and that Kk(M′) is the subgroup of
Kk(N) which is the quotient of the subgroup of Kk(M) consisting of classes
orthogonal to e1: viz. with λ(y, e1) = 0. Hence Kk(M′) looks like Kk(M) but
with base corresponding to {ei, fi} (2 ≤ i ≤ r). Thus at the end of r simple
surgeries we have arrived at a situation with Kk = 0 and hence a homotopy
equivalence.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.008
https:/www.cambridge.org/core


7.5 The even dimensional case 215

The details for k odd are somewhat subtler. We first need a closer study of
μ, which we defined as a map Kk(M)→ Z2. First we have

Lemma 7.5.3 For x, x′ ∈ Kk(M), we have μ(x+ x′) = μ(x)+ μ(x′)+
λ(x, x′), where λ(x, x′) has to be reduced modulo 2.

Proof Set x = h(ξ ), x′ = h(ξ ′): then ξ, ξ ′ determine immersions φ, φ′ : Sk ×
Dk → M up to regular homotopy.

Wemay think of two disjoint (k + 1)-discs inRk+1 joined by a thickened arc:
the boundary of the union is a model for the connected sum of two k-spheres.
Now ξ, ξ ′ give maps of the spheres to M which extend to maps of the discs to
X : joining along the arc gives maps representing ξ + ξ ′. The ingredients (ν,T )
of the normal maps also pass to the union. We conclude that an immersion φ′′

representing ξ + ξ ′ may be obtained from φ and φ′ by joining the spheres along
the neighbourhood of an arc (which may be taken disjoint from the spheres).
The self-intersections of φ′′ thus consist of those of the two spheres together

with their mutual intersections. The result follows by counting up.

We thus have a nonsingular skew-symmetric bilinear form λ on a free abelian
group H := Kk(M) together with a map μ : H → Z2 satisfying the identity
μ(x+ x′) = μ(x)+ μ(x′)+ λ(x, x′). According to Lemma 7.3.8, the classi-
fication of such triples (H, λ, μ) is given by the rank of H and the invariant
Arf(μ) ∈ Z2.
We are now ready to give a first version of the main result for the case k odd.

Theorem 7.5.4 If ( f : M → X, ν,T ) is a normal map of degree 1 with X a
simply-connected Poincaré pair of formal dimension 2k with k ≥ 3 odd, and
∂M → ∂X a homotopy equivalence, then surgery to obtain a homotopy equiv-
alence is possible provided that Arf(μ) = 0. If surgery is possible, it suffices to
perform surgeries on spheres of dimension ≤ k.

Proof We may suppose after preliminary surgery that f is k-connected, so
Kk(M) is free abelian and supports a nonsingular skew-symmetric intersec-
tion form λ. Choose a symplectic basis {ei, fi | 1 ≤ i ≤ r} of (Kk(M), λ). Since
Arf(μ) = 0, the proof of Lemma 7.3.8 shows that we may adjust this basis so
that μ vanishes on each basis element.
Thus by Lemma 7.5.1, we may perform surgery on e1. As in the proof of

Theorem 7.5.2, Kk(M′) for the resulting manifold M′ is the quotient by 〈e1〉 of
the subgroup of Kk(M) orthogonal to e1, thus has basis {ei, fi | 2 ≤ i ≤ r}. The
result now follows by induction on r.

Theorem 7.5.4 is incomplete: we have neither given an à priori definition of
Arf(μ) nor proved necessity of its vanishing for completing surgery. We will
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offer an invariant form of Arf(μ) in §7.7 after introducing further concepts. We
now take up the other point.
Consider a normal map ( f : M → X, ν,T ) of degree 1 with X a simply-

connected Poincaré pair of formal dimension 2k with k odd, and ∂M → ∂X a
homotopy equivalence: we can perform surgery to replace f by a k-connected
map f ′ : M′ → X , and then define λ and μ on Kk(M′) as above.

Proposition 7.5.5 In the above situation, Arf(μ) is an invariant of the normal
cobordism class of ( f , ν,T ).

Proof It suffices to consider two normally cobordant normal maps and show
that the corresponding values of Arf are the same. Denote by F :W → X × I
the normal cobordism; we may suppose each of ∂−W → X and ∂+W → X k-
connected.
We next wish to use Proposition 7.4.3 to allow us to do surgery to kill

Kk(W, ∂W ). There is a minor technical point: if X has no boundary, ∂W is
disconnected. To deal with this, use Lemma 7.4.1 to write X = X0 ∪g e2k, with
(X0, S2k−1) a Poincaré pair and correspondingly delete the interior of an embed-
ded disc from ∂±W . This reduces to the case when ∂X0 = S2k−1, and now ∂W
is connected.
The result of the surgery is a manifoldW ′ withKk(∂W ′) the orthogonal direct

sum of Kk(∂−W ), Kk(∂+W ) and a number of copies of Z⊕ Z, with one pro-
duced by each surgery on the boundary. Its Arf invariant is the sum of those of
the summands, which are respectively equal to Arf(∂−W ), Arf(∂+W ) and zero.
But now Kk+1(W ′, ∂W ′) provides a Lagrangian subspace, so the Arf invariant
is zero. Hence indeed Arf(∂−W ) = Arf(∂+W ) as required.

The invariant Arf(μ) of a normal cobordism is known as the Kervaire invari-
ant, and denoted Kerv( f , ν,T ). By Theorem 7.5.4, if k ≥ 3 it is the only
obstruction to completing surgery.

7.6 The odd dimensional case

Let X be a simply-connected Poincaré complex of formal dimension m =
2k + 1, and suppose again that ( f : M → X, ν,T ) is a k-connected normal
map inducing a homotopy equivalence ∂M → ∂X . Again the Hurewicz The-
orem gives an isomorphism h : πk+1( f ) ∼= Kk(M;Z); by Theorem 7.1.1, any
ξ ∈ πk+1( f ) induces a regular homotopy class of immersions Sk × Dk+1 → M,
given any embedding in this class we can perform surgery, and we write
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x := h(ξ ). In this case, for any x ∈ Kk(M : Z) we can find such embeddings,
but these are not unique up to diffeotopy. The object of this section is to prove:

Theorem 7.6.1 Let ( f : M → X, ν,T ) be a normal map of degree 1, inducing
a homotopy equivalence ∂M → ∂X, with X a simply-connected Poincaré com-
plex of formal dimension 2k + 1, with k ≥ 2. Then surgery to obtain a homotopy
equivalence is possible. Moreover, it suffices to perform surgeries on spheres
of dimension ≤ k.

We first calculate the effect of a single surgery on homology. If N is a nor-
mal cobordism of M to M′ we have the diagram of Proposition 7.1.3, and by
Proposition 7.4.2, we may simplify this by replacing terms H∗ by K∗. The only
ones which remain non-zero are those in the diagram

Here the groups Kk+1(N,M;Z) and Kk+1(N,M′;Z) are isomorphic to Z. If
we take coefficients Q, the isomorphism [N, ∂N]∩, together with dual pairings,
shows that groups symmetrically placed in the diagram have equal ranks. Writ-
ing r for the rank of Kk(N;Q) we find just three possibilities for the ranks of
all groups in the diagram: either
(i) Kk(M), Kk(M′), Kk(N) and their duals have rank r, Kk+1(N, ∂N) and

Kk+1(N) have rank r + 1;
(ii) Kk(M), Kk(N) and their duals have rank r, Kk(M′), Kk+1(N, ∂N) and their

duals have rank r + 1; or
(ii’) as (ii) but withM and M′ interchanged.

Moreover themapKk+1(N)→ Kk+1(N, ∂N) induced by the intersection pairing
has rank 1 in case (i) and 0 in cases (ii), (ii’). Since the intersection pairing is
skew-symmetric if k is even, it follows that here case (i) cannot arise.
We now consider the torsion in Kk(M) in more detail. In the following we

use coefficients Z for homology throughout.

Lemma 7.6.2 Let x ∈ Kk(M) be indivisible, so that there is a homomorphism
φ : Kk(M)→ Z with φ(x) = 1. Then if we perform surgery on x, the map
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Kk(M′)→ Kk(N) is an isomorphism, so Kk(M′) is the quotient of Kk(M) by
the class of x.

Proof We can identify φ with a class in Kk(M), hence by duality with a class
y in Kk+1(M). We claim that the image of y in Kk+1(N,M′) is a generator, so
that the map Kk+1(N,M′)→ Kk+1(N, ∂N) and hence also the map to Kk(M′)
vanishes, which implies the result.
To calculate this image, we may consider the intersection of y with a gener-

ator z of Kk+1(N,M). This equals the intersection in M of y with the boundary
of z, namely x. But by hypothesis this is 1.

We can now give the proof of Theorem 7.6.1 in the case when k is even.

Proof First perform preliminary surgeries to make f k-connected: as k ≥ 2, all
manifolds we encounter from now on are simply-connected. Next perform an
induction on the rank r of Kk(M). If r > 0, choose x ∈ Kk(M) of infinite order
and not divisible by an integer> 1, and perform surgery on x. By Lemma 7.6.2,
Kk(M′) is isomorphic to the quotient of Kk(M) by the class of x, so has lower
rank. By induction, we may reduce the rank to 0.
We now have Kk(M) finite, and conclude with a second induction on the

order |Kk(M)|. Choose any non-zero x ∈ Kk(M) and perform surgery. Here we
have case (ii), so Kk(N) is the quotient of Kk(M) by the class of x, so has lower
order than Kk(M), and we have a short exact sequence

0→ Z ∼= Kk+1(N,M′)→ Kk(M
′)→ Kk(N)→ 0.

Thus Kk(M′) is isomorphic to the direct sum of Z and a finite group G, and as
the map G→ Kk(N) is injective, we have |G| ≤ |Kk(N)| < |Kk(M)|.
Take a generator y of the summand Z of Kk(M′) and perform surgery on y.

This yields a normal cobordism N ′, say, of M′ to M′′; Kk(N ′) is the quotient
of Kk(M′) by the class of y, so is isomorphic to G, and by Lemma 7.6.2, the
map Kk(M′′)→ Kk(N ′) is an isomorphism. Since Kk(M′′) has lower order than
Kk(M), the desired result follows by induction.

The case when k is odd requires further arguments. We consider the effect
of a single surgery and recall the commutative diagram (7.6). The handle H
is a smooth submanifold H of N with H ∩M = ∂−H ∼= (Sk × Dk+1), ∂cH ∼=
(Sk × Sk × [−1, 1]), andH ∩M′ = ∂+H ∼= (Dk+1 × Sk ) (compare Figure 5.5).
Write V for the closure of N \ H; then V ∼= ∂−V × I. We can extend the K∗
notation toV , etc., by expressing X as the union of a complex X∗ with a 2k-cell
attached, so that f maps V to X∗ and H to the extra cell.
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We have an exact sequence

Ki+1(N,V ∪M ∪M′) → Ki(V, ∂−V ∪ ∂+V )→ Ki(N,M ∪M′)

→ Ki(N,V ∪M ∪M′),

and since by excision Hi(N,V ∪M ∪M′) ∼= Hi(H, ∂H ), so vanishes except
for i = 2k + 2, we have an isomorphismKk+1(V, ∂−V ∪ ∂+V )→ Kk+1(N,M ∪
M′).
We may thus replace the term Kk+1(N, ∂N) in (7.6) by Kk+1(V, ∂−V ∪

∂+V ) ∼= Kk(∂−V ). We have an a-sphere Sk × {0} ⊂ Sk × Dk+1 ∼= ∂−H dif-
feotopic in H to Sk × ∗ × {−1} ⊂ ∂cH which bounds a disc in M′ and a b-
sphere {0} × Sk ⊂ Dk+1 × Sk ∼= ∂+H diffeotopic in H to ∗ × Sk × {1} which
bounds a disc in M. Denote the corresponding classes in Kk+1(N, ∂N) by xa
and xb.

Further calculations depend on the self-pairing λ of Kk(M;Z) to Q/Z.

Lemma 7.6.3 Suppose we perform surgery on a sphere representing x ∈
Kk(M;Z). Then in the exact sequence

Z (∼= Kk+1(N,M′))→ Kk(∂−V ) (∼= Kk+1(N, ∂N)) → Kk(M)→ 0,

the generator 1 ofZmaps to xb, and if y ∈ Kk(M) has order q, p/q ∈ Q projects
to λ(x, y) ∈ Q/Z, and w ∈ Kk(∂−V ) maps to y, we have qw = p′xb for some
p′ ≡ p (mod q).

Proof Represent y by a k-cycle η and let qη = ∂φ for some (k + 1)-chain φ

inM. The class x is represented by the a-sphere Sk × ∗, and by definition of λ,
this has p′ intersections with φ for some p′ ≡ p (mod q). Wemay suppose these
transverse; then each one is the centre of a disc ∗ × Dk+1 (in H). Removing
these discs gives a chain φ∗ in ∂−V with boundary consisting of qη and p′

spheres ∗ × Sk each parallel to the b-sphere, andwith reversed orientation. Thus
qw − p′xb vanishes in Hk(∂−V ).

We now give the proof of Theorem 7.6.1 in the case when k is odd.

Proof As in the case when k is even, we may suppose preliminary surgeries
performed so that f is k-connected and moreover that Kk(M) is finite; again we
proceed by induction on |Kk(M)|.

Wewill perform surgery on x ∈ Kk(M). Since r = 0we cannot have case (ii’)
above, so the first map in the exact sequence of 7.6.3 is injective. That Lemma
calculates the extension, but does not determine the class xa.
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In fact, the class is not determined by the choice of x: the embedding φ : Sk ×
Dk+1 → M is determined up to regular homotopy, but not up to diffeotopy. For
anymap g : Sk → SOk+1 wemay form the twistφg by φg(x, y) := φ(x, g(x)(y)).
If g is nullhomotopic in SOk+2, φ and φg define homotopic embeddings of the
tangent bundle of Sk × Dk+1 in that of M, and hence, by Corollary 6.2.2, reg-
ularly homotopic immersions. Since SOk+2/SOk+1 = Sk+1, we have an exact
sequence

πk+1(Sk+1)→ πk(SOk+1)→ πk(SOk+2),

so may twist by any element in the image of πk+1(Sk+1) ∼= Z. Since k is odd,
twisting by the image of s ∈ Z induces the self-map of Hk(Sk × Sk ) with xa 	→
xa + 2sxb, xb 	→ xb.
First suppose x of order q and that λ(x, x) = p/q with p prime to q: then

Kk(M) is the direct sum of the group Zq generated by x and its orthogonal
complement, G, say. By Lemma 7.6.3, Kk(∂−V ) is the direct sum of an infinite
cyclic group with generator z, say, where qz = xb and a group isomorphic to G.
Write xa in the form mz+ gwith m ∈ Z, g ∈ G. Taking xa for w and x for y in
the lemma, we see m ≡ p (mod q).
Twisting as above, we may suppose |m| < q. Now Kk(M′) is (isomorphic to)

the quotient of Kk(∂−V ) by the class of xa. It thus has orderm|G|, so as |m| < q
we have reduced the order.
In view of Proposition 7.3.10, we see that it will now suffice to con-

sider the case when x, y ∈ Kk(M) have order 2k, λ(x, y) = 1
2k , and 2kλ(x, x) =

2kλ(y, y) = 0. Then Kk(M) is the orthogonal direct sum of the group generated
by x and y and a finite group G. Applying Lemma 7.6.3, we can write Kk(∂−V )
in the form Z⊕ Z2k ⊕ G, where the first summand is generated by a class z
which projects to y, the second by v say, we have 2kz = xb, and xa = mz+ v

with m even. Twisting, we may suppose |m| ≤ 2k.
If m = 0, we obtain for Kk(M′) the direct sum of Z and G; by Lemma 7.6.2

a further surgery will kill the Z, so we have reduced the order of Kk. If m �= 0,
Kk(M′) has order 2km|G|, so if |m| < 2k we have again reduced the order.
Finally if m = 2k, although we have not reduced the order we have the direct
sum of G and a cyclic group of order 22k, so we have reduced to the first
case.

7.7 Homotopy theory of Poincaré complexes

In this section we prepare for the reformulation in the next of the results of
surgery in more general terms. We also complete our discussion of the Kervaire
obstruction. The proofs of these results involve somewhat technical homotopy
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theory arguments. We will present an outline of the ideas, but give references
for the detailed proofs.
First consider an orthogonal vector bundle ξ , with fibre dimension k and base

B. Write Aξ for the associated disc bundle: the set of vectors in the total space of
ξ of length≤ 1, and Sξ for its boundary sphere bundle. The space obtained from
Aξ by identifying the subspace Sξ to a point is called the Thom space of ξ and
denoted T (ξ ). There is a natural isomorphism, called the Gysin isomorphism

Hr(X )→ Hk+r(Aξ , Sξ ) ∼= H̃k+r(T (ξ )).

The class in Hk(T (ξ );Z) corresponding to the unit in H0(X;Z) is called the
Thom class, and traditionally denoted byU . Geometrically, if B is a CW com-
plex, T (ξ ) has a natural decomposition with just one (k + r)-cell for each r-cell
of B, as well as the base point.
If V is a submanifold of M, we can choose a tubular neighbourhood of V ,

which consists of an orthogonal vector bundle ξ overV together with an embed-
ding h of Aξ in M. Composing h−1 with the map Aξ → T (ξ ) gives a map of
h(Aξ ) which sends its boundary h(Sξ ) to the base point, and hence extends to
a mapM → T (ξ ) which sends the rest ofM to this point. This is known as the
Thom construction. As it is the foundation of the study of cobordism, we will
treat it more fully in §8.1.
In particular, if V v is a compact submanifold of Euclidean space Rv+k with

normal bundle ν, since we can regard Rv+k as obtained from Sv+k by deleting
a point, we obtain a map F : Sv+k → T (ν); moreover, this map has degree 1 in
the sense that it induces an isomorphism on the top non-vanishing homology
group Hv+k.

If we start with a Poincaré complex, rather than a manifold, there are no
immediately visible bundles. We generalise, replacing sphere bundles Sξ → B
by fibrations π : X → Bwith fibres homotopy equivalent to the sphere Sk−1. In
general we use the term spherical fibration for a fibration with fibres homotopy
equivalent to a sphere. The role of the disc bundle Aξ is now played by the
mapping cylinder of π , and we define T (π ) to be the mapping cone of π .
A decisive step is given by the following result of Spivak [142].

Theorem 7.7.1 If X is a Poincaré complex of formal dimension m, and k >
m+ 1, there exist a fibration π k over X with fibre homotopy equivalent to Sk−1

and a map F : Sm+k → T (π ) of degree 1. Moreover, the pair (π k,F ) is unique
up to suspension and homotopy equivalence.

We describe the construction in the simplest case when X is a finite simply
connected CW complex. Choose an embedding i : X → Rm+k for some k. Take
a regular neighbourhoodN of i(X ), and form the space EN of paths (continuous
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maps) α : I → N. As discussed in §B.1, the projection p0 : EN → N given by
p0(α) = α(0) is a homotopy equivalence, and its fibres are contractible. Thus
if P := p−10 (∂N), p0 gives a homotopy equivalence P→ ∂N.
Now define p1 : P→ N by p1(α) = α(1): this too is a fibration. The key

lemma states that the fibres of p1 are homotopy equivalent to Sk−1 if and only
if X satisfies Poincaré duality with formal dimension n. We omit the proof,
which depends on an examination of the spectral sequence of the fibration. We
can now either use the fact that N is homotopy equivalent to X or restrict to
p−11 (X ) to obtain the desired fibration over X .
Now T (π ) is the mapping cone of π , hence is homotopy equivalent to the

union of X , or equivalently,N, and the cone onP, which is homotopy equivalent
to ∂N. Hence T (π ) is homotopy equivalent to the space formed from N by
identifying ∂N to a point. But this is obtained from Sm+k by identifying ∂N
and everything outside N to a point, so indeed we have a map Sm+k → T (π ) of
degree 1.
The existence proof in the general case depends on the same idea, but there

are more details to check. The result also extends to Poincaré pairs. We will
discuss the uniqueness shortly.
In general the Thom space of an external direct sum of two bundles is

T (ξ ⊕ η) = Aξ⊕η
Sξ⊕η

= Aξ × Aη
(Sξ × Aη ) ∪ (Aξ × Sη )

= T (ξ )× T (η)

({∞} × T (η)) ∪ (T (ξ )× {∞}) ,

and this is a space called the smash product of T (ξ ) and T (η) and denoted
T (ξ ) ∧ T (η). The same goes for spherical fibrations if we interpret ⊕ as the
fibrewise join. Since the bundle ε1 over a point has Thom space S1, we have
T (ξ ⊕ ε1) = T (ξ ) ∧ S1, which is the suspension of T (ξ ), which we denote
ST (ξ ). In particular, a pair (π k,F ) as in Theorem 7.7.1 defines a suspended
pair (π k ⊕ ε1, SF ).

We introduce a related notation: for any space X , write X+ for the disjoint
union of X and a point ∗, which we take as base point. Then if Z has a base
point∞, we have

X+ ∧ Z = {(X ∪ {∗})× Z}/{({∗} × Z) ∪ (X × {∞})} = (X × Z)/(X × {∞});

in particular, X+ ∧ Y+ = (X × Y )+.
Now let X be a Poincaré complex of formal dimensionm, ν a spherical fibra-

tion over X , and F : Sm+k → T (ν) a map of degree 1. If ν = α ⊕ β, we have a
map SN → T (ν) = T (α) ∧ T (β ).
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Theorem 7.7.2 The Thom spaces T (α) and T (β ) are (S,N)-dual in the sense
of Spanier and Whitehead [141].

A proof appears in [14]. Taking slant product with the homology class of the
image of the fundamental homology class [SN] induces a map H̃q(T (α))→
H̃n−q(T (β )). Somewhat as in the proof of Proposition 7.4.2, using the fact that
we have maps in both directions, it can be deduced that these maps are isomor-
phisms. But this is the condition defining (S,N)-duality.
It is more usual to speak of Spanier–Whitehead duality. Here we adhere to

the earlier terminology since it is useful to make the dualising dimension N
explicit. A textbook account of this duality appears in Adams’ book [7].
Essentially the same argument yields the relative case: if (Y,X ) is a Poincaré

pair, ν a bundle or spherical fibration over Y such that there is a map
SN → T (ν)/T (ν |X ) of degree 1, and ν = α ⊕ β, then T (α) is (S,N)-dual to
T (β )/T (β |X ).
In the simply-connected case, the converse follows: if a map SN → T (ν)

induces an S-duality, then X satisfies Poincaré duality.
S-duality is a duality in stable homotopy theory. If X and Y are spaces (finite

CW complexes will suffice here) the set of (based) homotopy classes of maps
X → Y is denoted [X : Y ]. The set of morphisms in stable homotopy theory is
the limit

{X : Y } := limn[S
nX : SnY ],

which is an abelian group. If X and X∗, and Y and Y ∗ are (S,N)-dual, there are
isomorphisms
{X∗ : Y ∗} ∼= {Y : X};
{X : Y } ∼= {SN : X∗ ∧ Y }.
If φ : (N,M)→ (Y,X ) is a normal map of degree 1 of Poincaré pairs, the S-

dual gives a map ψ : TY/X (ν)→ TN/M (ν). Composing with the Gysin isomor-
phism gives the map ψ∗ : H∗(N,M)→ H∗(Y,X ) dual to the homology map
φ∗ which we used in Proposition 7.4.2.
We can now deal with the question of uniqueness in Theorem 7.7.1. Sup-

pose we have spherical fibrations ν and ν ′ over X and maps Sm+k → T (ν) and
Sm+k

′ → T (ν ′), both of degree 1. Since X is a finite CW-complex, if r is large
enough, the suspension ν ⊕ εr is fibre homotopy equivalent to α ⊕ β with α

fibre homotopy equivalent to ν ′. Hence T (α) is (S,(m+ k + r))-dual to T (β ).
The map Sm+k

′ → T (ν ′) # T (α) of degree 1 is (S,(m+ k + r))-dual to a
map T (β )→ Sr+k−k

′
inducing an isomorphism of the homology groupHr+k−k′ .

Now we can obtain T (β ) from the total space of the spherical fibration β ⊕ ε1

by identifying the cross-section in the summand ε1 to a point. We thus have a
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map of this total space to a sphere which induces an isomorphism of Hr+k−k′ ,
and hence a homotopy equivalence on each fibre. But this shows that β ⊕ ε1 is
a fibre homotopically trivial bundle. As ν ⊕ εr+1 is fibre homotopy equivalent
to ν ′ ⊕ β ⊕ ε1, the desired equivalence of ν and ν ′ (together with the maps of
degree 1) is established.
We now turn to the Kervaire invariant. The following account is a simplified

version of [34], with most proofs omitted. DefineWk(n) to be the mapping fibre
of the map K(Z2, k)→ K(Z2, k + n+ 1) given by the cohomology operation
χ (Sqn+1), and define aWu orientation of a bundle ξ n to be amap T (ξ )→Wk(n)
such that the class in dimension k pulls back to the Thom classU .

If X2n is a Poincaré complex, and ν its normal Spivak fibration, the Wu
class vn+1(X ) = 0 since Sqn+1 vanishes on n-dimensional classes. It follows
that χ (Sqn+1)U = 0. Thus ν admits a Wu orientation.
It follows from the (S,2n+ k)-duality between X+ and T (ν) that there are

bijections
{X+ : Sn} → {S2n+k : Sn ∧ T (ν)} and
{X+ : K(Z2, n)} → {S2n+k : T (ν) ∧ K(Z2, n)}.

Homotopy calculations yield isomorphisms
{S2n : K(Z2, n)} ∼= Z2:

we denote by χ the image in {X+ : K(Z2, n)} of the non-zero element;
z : {S2n+k :Wk(n) ∧ K(Z2, n)} ∼= Z4.
Composing the map z with a Wu orientation α for ν gives a homomorphism

{S2n+k : T (ν) ∧ K(Z2, n)} → Z4 and hence, by (S,(2n+ k))-duality, a map h :
{X+ : K(Z2, n)} → Z4. We now define φ : Hn(X )→ Z4 by φ(u) := h({u}).
Further calculations show that, if j : Z2 ⊂ Z4 denotes the (unique) injective

map, h(χ ) = j(1) �= 0 (this key point depends on theWu orientation); next that
(cf. (7.3.7))

φ(u+ v ) = φ(u)+ φ(v )+ j{u.v[X]}.
Thusφ is a quadratic form onHk(X;Z2) in the sense of Theorem 7.3.11. By that
result, the Gauss sum G(φ) :=∑x∈Hk (X;Z2 ) i

φ(x) has the form R(φ)ηX , where

R(φ) =
√
|Hk(X;Z2)| and η8X = 1. Writing ηX as e2π ia(X )/8 defines an invariant

a(X ) ∈ Z8 of (X, α).
It is also shown that if (Y,X ) is a Poincaré pair with a Wu orientation, φ

vanishes on the image of Hk(Y ). Hence this image is a Lagrangian subgroup of
Hk(X ). It follows from Theorem 7.3.11 that in this case a(X ) = 0.
Now suppose given a normalmap ( f : M → X, ν,T ). AWu orientation α for

ν pulls back to one forM, and the abovemap h factors as h : {X+ : K(Z2, n)} →
{M+ : K(Z2, n)} → Z4. Now Hk(M;Z2) = Kk(M;Z2)⊕ Hk(X : Z2), and the
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restriction to Hk(X : Z2) of the map φX coincides with the map φM defined
in the same way for M. A further calculation shows that the restriction
to Kk(M;Z2) corresponds by duality to the map μ : Kk(M;Z2)→ Z2 of
Lemma 7.5.3. From this we deduce the equality

ηM = (−1)A(μ)ηX . (7.7.3)

This gives a calculation of the Kervaire invariant which depends only on the
Wu orientation of X .
It is also shown in [34] that choices ofWu orientation for X correspond bijec-

tively to forms φ satisfying (7.3.7). Since the intersection form is nonsingular,
it follows that a second such form can be written as φz(x) = φ(x)+ j(x.z)[X]
for some z. It follows from Lemma 7.3.12 that G(φz) = e−iπφ(z)G(φ). Now if
M is given the inducedWu orientation, then changing φ to φz will multiply each
of ηM and ηX by the same factor e−iπφ(z). Thus the value of A(μ) is independent
of this choice.
There exist Wu orientations for the universal Spin4n+2 bundles, and

(uniquely) for the universal SU4n+2 bundle. Choosing these give maps of the
corresponding cobordism groups (studied in the next chapter) to Z8.
There is also a choice of a Wu orientation for the universal SO4n bundle such

that the corresponding invariant is just the signature mod 8.
An interesting special case is n = 2. In the case when ν has fibre dimension

1, there is a canonical Wu orientation. Geometrically, we have a framing of
T(M)⊕ ν1, hence an immersion M2 → R3. In this case, the map φ can be
geometrically interpreted by representing u ∈ H1(M;Z2) by an immersion of
S1, and counting the number of half-twists of M in R3 as you go round the
circle.

7.8 Homotopy types of smooth manifolds

A natural problem is to seek to characterise the set of homotopy types of closed
smooth manifolds. The first necessary condition on X for being homotopy
equivalent to a closed manifold is that it be a Poincaré complex. If X is itself a
manifold, the identity map, together with the normal bundle ν of some embed-
ding in Euclidean space and the induced trivialisation of T(X )⊕ ν is a normal
map of degree 1. Thus a second necessary condition is the existence of a nor-
mal map ( f : M → X, ν,T ) of degree 1, with M a smooth manifold. We next
reformulate this condition. Denote by �m(X, νk ) the set of normal cobordism
classes of normal maps ( f : Mm → X, νk,T ). Surgery replaces a normal map
by another normally cobordant to it, and thus in the same class in �m(X, νk ).

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.008
https:/www.cambridge.org/core


226 Surgery

Given a normal map ( f : Mm → X, νk,T ), we can add a trivial bundle ε1 to
νk; then T together with the induced trivialisation of f ∗ε1 induces a trivialisa-
tion T ′ of T(M)⊕ f ∗(νk ⊕ ε1), defining a suspended normal map ( f : Mm →
X, νk ⊕ εr,T ′). The same goes for normal cobordisms, so we have a suspension
map �m(X, νk )→ �m(X, (νk ⊕ ε1)). It is easily shown that this is an isomor-
phism for k > m.

Proposition 7.8.1 For any finite CW-complex X and vector bundle νk over
X, if k > m+ 1 there is a natural bijection �m(X, νk ) from �m(X, νk ) to the
homotopy group πm+k(T (νk )). If X is a Poincaré complex,�m(X, νk ) preserves
degree.

Proof Given an element α ∈ �m(X, νk ), choose a representative ( f : Mm →
X, νk,T ), where T is a trivialisation of T(M)⊕ f ∗νk. Let Em+k be the total
space of a disc bundle associated to f ∗ν: then T defines a trivialisation of T(E ).
By immersion theory (see Corollary 6.2.2), this corresponds to an immersion
Em+k → Rm+k ⊂ Sm+k. Since k > m+ 1 we may suppose by general position
(see, for example, Proposition 4.6.6) that this gives an embedding of M and
hence of a neighbourhood of M in E, which we may choose to be given by
a disc sub-bundle of f ∗ν. As above, identifying the boundary sphere bundle
and all outside to a point gives a map t : Sm+k → T ( f ∗νk ). The map f induces
a map T ( f ) : T ( f ∗νk )→ T (νk ); composing gives a map T ( f ) ◦ t : Sm+k →
T (νk ) defining β ∈ πm+k(T (ν)).
If we begin with a normal cobordism (g : Nm+1 → X, ν,T ∗) between two

normal maps, we can follow through the same construction leading to an
immersion, then an embedding Fm+k+1 → Sm+k × I inducing the chosen
embeddings in Sm+k × {0} and Sm+k × {1}, and a map Sm+k × I → T (g∗νk )→
T (νk ), and conclude that the two maps Sm+k → T (νk ) are homotopic. We may
thus define �m(X, νk ) by setting �m(X, νk )(α) = β.

To prove �m(X, νk ) surjective, we first choose a smooth manifold Y with a
homotopy equivalence h : Y → X : this is possible by Lemma 1.2.9. Under h a
bundle ν over X induces a bundle ν ′ over Y .

A class β ∈ πm+k(T (ν)) is represented by a map Sm+k → T (ν) and so by a
map φ : Sm+k → T (ν ′). The space T (ν ′) is not a smooth manifold, but contains
a point ∗ whose complement is an open disc bundle over Y and so is a smooth
manifold. Using Proposition 2.3.4, we modify the map φ keeping it fixed on
φ−1(∗) so as to make it smooth on the complement. Next by Proposition 4.5.10,
modify φ further to make it transverse toY , embedded as the zero cross-section.
Now set M := φ−1(Y ) and write f = h ◦ (φ|M) : M → X . It follows from

the basic property Lemma 4.5.1 of transversality that M is a smooth manifold
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of dimension m, and its normal bundle in Sm+k is the pullback of ν ′ and hence
of ν: thus a framing of the tangent bundle of Rm+k induces one of T(M)⊕
f ∗ν. We have thus constructed a normal map ( f : M → X, ν,T ), defining α ∈
�m(X, ν). Since we have effectively reversed the above construction, it follows
that �m(X, νk )(α) = β.
We argue similarly to prove �m(X, νk ) injective. Given two normal maps

leading to homotopic maps f ν ◦ t and gν ◦ t, we take a homotopy Sm+k × I →
T (ν ′) and, keeping it fixed at the ends, make it smooth away from the preimage
of * and then transverse toY . The preimage ofY then gives a normal cobordism
between the given normal maps.
The fact that corresponding maps have the same degree follows since T ( f ) :

T ( f ∗νk )→ T (νk ) has the same degree as f : M → X and t : Sm+k → T ( f ∗νk )
has degree 1.

This result reduces us from the somewhat mysterious set of normal cobor-
dism classes of normal maps to an explicit homotopy group. We now make a
further reduction. There is a classifying space for vector bundles (see §B.2):
isomorphism classes of vector bundles νk over X correspond to homotopy
classes of maps X → B(Ok ). There is a corresponding result for (fibre homot-
opy classes of) spherical fibrations, with a classifying space B(Gk ). By Spivak’s
Theorem 7.7.1, if X is a Poincaré complex, there is a well-defined spherical
fibration π over X , which determines a map τX : X → B(Gk ) up to homotopy.

We write (following standard notation) Gk for the monoid of self-homotopy
equivalences of Sk−1. For homotopy purposes, we can treat this as a topological
group, and B(Gk ) as its classifying space.
A normal map ( f : M → X, νk,T ) of degree 1 determines a class of maps

Sm+k → T (νk ) of degree 1, and hence by the uniqueness in Theorem 7.7.1, a
fibre homotopy equivalence ν → π . Thus the map X → B(Ok ) classifying ν is
a lift of the fixed map τX . More precisely, it follows that

Corollary 7.8.2 There is a natural bijection between normal cobordism
classes of normal maps ( f : M → X, νk,T ) of degree 1 of smooth manifolds
to X and homotopy classes of liftings of τX : X → B(Gk ) to B(Ok ).

We write T (X, ν) for the set of these homotopy classes of liftings, which
can thus be identified with the subset of �m(X, ν) of classes of degree 1: we
can regard these as tangential structures on X . Observe that a choice of lifting
induces a bijection of the set T (X, ν) to [X : Gk/Ok].
We now restrict to the simply-connected case and also suppose X has formal

dimension m ≥ 5. We can summarise Theorems 7.5.2, 7.5.4, and 7.6.1 as stat-
ing that surgery on a normal map of degree 1 to obtain a homotopy equivalence
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to Xm is possible if and only if an obstruction belonging to Lm vanishes, where
we define the surgery group Lm ad hoc by

L4k = Z, L4k+1 = 0, L4k+2 = Z2, L4k+3 = 0.

The isomorphism of L4k on Z is given by the signature divided by 8 (the 8
comes from Proposition 7.3.3) and of L4k+2 on Z2 by the Kervaire invariant.

More precisely, if m is odd, by Theorem 7.6.1 we can perform the desired
surgery, so the above necessary condition is sufficient. Ifm = 4p is divisible by
4, by Theorem 7.5.2, surgery to obtain a homotopy equivalence is possible if
and only if σ (M) = σ (X ). Here σ (X ) is determined by the homology of X , but
σ (M) depends on the choice of lift. By Hirzebruch’s signature theorem 8.6.7,
there is a polynomial Lm in Pontrjagin classes such that if we take the classes of
T(M), cap product with the fundamental class gives σ (M) = 〈Lm(T(M)), [M]〉.
We can choose a bundle τ over X such that ν ⊕ τ is trivial. Then f ∗τ is stably
equivalent to T(M), so Lm(T(M)) = f ∗Lp(τ ). Since f has degree 1, f∗[M] =
[X], hence 〈Lm(T(M)), [M]〉 = 〈Lm(τ ), [X]〉. The desired equality of signatures
thus holds if and only if σ (X ) = 〈Lm(τ ), [X]〉.

If m ≡ 2 (mod 4), by Theorem 7.5.4 surgery to obtain a homotopy equiv-
alence is possible if and only if the Kervaire invariant κ := Kerv(φ : M →
X,T ) ∈ Z2 vanishes. Here the choice of a Wu orientation of ν induces Wu ori-
entations of X and M, so by (7.7.3) above we have invariants ηX and ηM with
ηM = (−1)κηX : thus surgery is possible if and only if ηM = ηX .
To show that all elements of the groups Lm effectively arise as obstruc-

tions, we need the plumbing construction, which is best seen in the simplest
case, when X is the Poincaré pair (Dm, Sm−1) and we study normal maps
f : (M, ∂M)→ (Dm, Sm−1) inducing a homotopy equivalence ∂M → Sm−1.
Here ν is necessarily a trivial bundle εr, so T is a framing of T(M)⊕ εr.

Proposition 7.8.3 (i) There exists a framed manifold Z4k, which is a handle-
body obtained by adding eight (2k)-handles to D4k, such that the intersection
matrix on H2k(Z) is the E8 matrix (7.3.4).
(ii) There exists a framed manifold Z4k+2, which is a handlebody obtained

by adding two (2k + 1)-handles to D4k+2, such that the normal map to D4k+2

has Kervaire invariant 1.

Proof (i) Write A for the tangent D2k bundle of S2k: this has Euler class 2, so
the self-intersection of the zero cross-section is 2. Since T(S2k )⊕ ε1 is trivial,
there is a framing of T(A)⊕ ε2.
The E8 matrix P is a positive definite symmetric 8× 8 matrix of determinant

1, with entries 2 on the diagonal and 0 or -1 elsewhere. Take 8 copies Ai of A
indexed by the rows of P, and for each non-zero entry pi, j (i < j) of P, choose
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Figure 7.1 Plumbing

(2k)-discs Di, j ⊂ S2ki , Dj,i ⊂ S2kj , ensuring that any two such discs in the same
sphere S2ki are disjoint. The part of Ai lying over Di, j is a product bundle, so
can be identified with a product Di, j × D2k ∼= Di, j × Dj,i. For each pair (i, j)
we now identify Di, j × Dj,i with Dj,i × Di, j by the map interchanging the fac-
tors. This yields a manifold, containing copies of the Ai, but in which we have
introduced intersections of the spheres so that the intersection matrix is 7.3.4
up to signs, but we can choose orientations of the basis elements to change all
the signs to −1. The construction gives a manifold whose boundary has re-
entrant corners, but these can be smoothed by the same techniques as in §2.6.
The plumbing construction (but not this example) is illustrated in Figure 7.1.
(ii) Here the construction is simpler: we take two copies of the tangent disc

bundle of S2k+1 and perform plumbing just once, so that the intersection matrix

is just

(
0 1
−1 0

)
. We need to choose a framing so that μ takes the value 1 on

each basis element.
We recall the definition of μ for a (2k + 1)-connected normal map f :

(M, ∂M)→ (D4k+2, S4k+1). By Theorem 7.1.1, any ξ ∈ π2k+2( f ) ∼= K2k+1
determines a regular homotopy class of immersions φ : S2k+1 × D2k+1 → M
with homology class x. By §6.3, there are two regular homotopy classes of
immersions in each homotopy class of maps S2k+1 → M4k+2, which are dis-
tinguished by the parity of the number I(φ) of self-intersection points of φ. In
Lemma 7.5.1, we defined μ(x) to be I(φ) mod 2.
Now in Proposition 6.3.3 we constructed an immersion j : S2k+1 → R4k+2

with a single transverse self-intersection and with normal bundle T(S2k+1).
Thus pulling back the standard framing of R4k+2 by j gives a framing of
T(S2k+1) such that the preferred regular homotopy class of immersions indeed
has I(φ) = 1.
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Since the matrices used have determinant ±1, the manifolds constructed
in Proposition 7.8.3 have boundaries with the homology of a sphere. It fol-
lows, except in low dimensions, that the boundary is simply-connected, hence
is homotopy equivalent to a sphere. In fact it follows that the manifold Z2 con-
structed above has boundary S1; the boundary of Z4 can be shown to be homeo-
morphic to Poincaré’s dodecahedral space. In higher dimensions the boundary
is a homotopy sphere, hence by Corollary 5.6.4 is homeomorphic to a sphere.
Write Pm for the set of normal cobordism classes of normal maps ( f :

(Mm, ∂M)→ (Dm, Sm−1),T ) with f |∂M : ∂M → Sm−1 a homotopy equiva-
lence. We observe that the structure of normal map amounts to giving a man-
ifold M, a stable framing T of T(M), and the homotopy equivalence ∂M →
Sm−1.

Proposition 7.8.4 If m > 5, the surgery obstruction gives a bijection β :
Pm → Lm.

Proof Given a normal map, the surgery obstruction is well defined and belongs
to Lm, so we have a map β.
Given two normal maps f1, f2 defining elements of Pm, we can form the

boundary sum M1 +M2 and extend the map and framing. We claim that the
surgery obstruction of the sum is the sum of the surgery obstructions. If m
is odd, there is nothing to prove; if m = 2k, we first perform surgery below
the middle dimension on each of f1 and f2: this induces surgeries on f1 + f2.
We now have Kk(M1 +M2) = Kk(M1)⊕ Kk(M2), and λ and μ split in a nat-
ural way. Since both σ and Arf are additive on direct sums, the claim fol-
lows. Similarly, we can define a normal map f by changing orientation, and
β( f ) = −β( f ).
If β( f1) = β( f2), we form f1 + f2: by what we have just seen, β( f1 + f2) =

0. We may thus perform surgery (keeping the boundary fixed) to construct a
normal cobordism Nm+1 of M1 +M2 to a disc Dm.
The boundary summay also be constructed as the union ofM1,Dm−1 × I and

M2, since attachingDm−1 × [0, 1
2 ] toM1 by a collar on part of its boundary does

not change the diffeomorphism class. Thus we write N as having ∂−N = M1 ∪
(Dm−1 × I) ∪M2 and ∂+N = Dm. Now adjusting corners we may rewrite N
as N ′ with ∂−N ′ = M2, ∂+N ′ = M1 and ∂cN ′ = Dm ∪ ∂cN ∪ (Dm−1 × I). Since
∂cN ∼= (Sm−1 × I), it follows that the same holds for ∂cN ′.
So we have a normal cobordism (keeping the boundary fixed) of M1 to M2.

Thus β is injective.
It follows from Proposition 7.8.3 that the image of β contains a generator

of Lm; now using sums and change of orientation as above it follows that β is
surjective.
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Corollary 7.8.5 Let
n−1 be a homotopy sphere which bounds a framed man-
ifold Nn with n ≥ 6. Then if n is odd, 
 ∼= Sn−1; if n ≡ 0 (mod 4), 
 is deter-
mined up to diffeomorphism by σ (N); if n ≡ 2 (mod 4), there are at most two
diffeomorphism classes of such 
.

We return in Proposition 8.8.6 to the case n ≡ 0 (mod 4), and following that
discuss the delicate question, the ‘Kervaire invariant problem’, of deciding for
which n ≡ 2 (mod 4) 
 is unique (and so is diffeomorphic to Sn−1).
As well as seeking existence of a smooth manifold homotopy equivalent to

X , we can investigate uniqueness by the same method. Consider pairs (M, f )
with M a smooth manifold and f : M → X a homotopy equivalence, and let
(M, f ) ∼ (M′, f ′) if there is a diffeomorphism h : M → M′ with f ′ ◦ h # f .
WriteS (X ) for the set of equivalence classes, whichwemay consider as smooth
manifold structures on the homotopy type of X . There is a natural map S (X )→
T (X ).

Theorem 7.8.6 For X simply-connected and m ≥ 5 there is a sequence

Lm+1 → S (X )→ T (X )→ Lm

which is ‘exact’: the image of S (X ) in T (X ) is the preimage of 0 ∈ Lm, and the
group Lm+1 acts on S (X ) and the orbits are the fibres of S (X )→ T (X ).

Proof The two latter maps, and exactness at T (X ), are given by the above
discussion.
Given an element α ∈ Lm+1 and an element of S (X ) represented by f : M →

X , by Proposition 7.8.4, α corresponds to an element of Pm+1, which we can
represent by a normal map g : (N, ∂N)→ (Dm+1, Sm) which defines a homot-
opy equivalence of the boundary. Choose embeddings of Dm in M and in ∂N
(essentially unique by Theorem 2.5.6), and use them to glue N toM × I to give
N ′, say. A retraction of N onDm induces a mapG : N ′ → M × I → X × I, and
the restriction ofG to ∂+N ′ is a homotopy equivalence, so defines an element of
S (X ). Since N ′ inherits from N the structure of normal map, it gives a normal
bordism between the two elements of S (X ), so they map to the same in T (X ).
Any other choice of g representing α is normally cobordant to g; following this
through gives an h-cobordism between the two choices for ∂+N ′, so the element
of S (X ) is uniquely determined by α.
Conversely, given two elements of S (X ) with the same image in T (X ), there

exists a normal bordism G : N ′ → X × I. If m is even, we can perform surgery
(keeping the boundary fixed) to obtain a homotopy equivalence, and so have
an h-cobordism: it follows that the two elements are equal. If m = 2k − 1, we
can perform surgery to make the map G k-connected. It follows that N ′ can be
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obtained from M := ∂−N ′ by attaching k-handles. Moreover, the a-spheres of
the handles are nullhomotopic in X and so inM. Since k ≥ 3 we can perform a
diffeotopy to take all of these attaching maps inside the disc Dm. But now N ′ is
the boundary sum of M × I and a manifold defining an element of Pm+1.

We have studied framed manifolds with homotopy sphere boundaries; if
we weaken the ‘homotopy sphere’ hypothesis slightly, we still obtain strong
results. SupposeM2n−1 an (n− 2)-connected manifold which bounds a framed
manifold N2n with n ≥ 3. Again we can do surgery to make N (n− 1)-
connected. It follows from the homology exact sequence that Hr(N;Z) ∼=
H2n−r(N,M;Z) vanishes for 2n− r ≤ k, i.e. for r ≥ n+ 1. The same holds for
other coefficient groups; hence Hn(N;Z) is free abelian. By Lemma 5.6.10, N
is a handlebody, so by Theorem 5.6.12 is determined up to diffeomorphism
by (H, λ, α) where H := Hn(N;Z), λ is the (−1)n-symmetric bilinear map
H × H → Z given by intersection numbers, and α is a map H → πn−1(SOn),
satisfying
(i) λ(x, x) = π (α(x)) for x ∈ H, and
(ii) α(x+ y) = α(x)+ α(y)+ λ(x, y)(∂ιn) for x, y ∈ H.

Moreover since N is framed, α(x) maps to 0 in πn−1(SO). Thus if n is even,
α(x) is determined by π (α(x)), so the classification of N reduces to that of the
symmetric bilinear form λ, which is even since π (α(x)) is even.
In the case n = 3, as π2(SO3) vanishes, N is determined up to diffeo-

morphism by the skew-symmetric bilinear form λ on the free abelian group
H3(N;Z); hence, by Proposition 7.3.5, by the set of integers {ai}. It follows
from the construction that N is the boundary sum of terms of the form of han-
dlebodies of two types:
(i) Nk say, having two handles with intersection number k, and
(ii) diffeomorphic to S3 × D3, having just one handle.
This can be extended to a complete diffeomorphism classification of closed,

simply connected 5-manifolds M. In general, the tangent group of M is sta-
bly trivial provided obstructions in Hr(M;πr−1(SO)) vanish; in the present
case all these groups vanish except H2(M;Z2), and the obstruction here is the
Stiefel–Whitney class w2(M). If w2(M) = 0,M is stably framed, so by Propo-
sition 8.1.4, determines a class in πS

5 and bounds a framed manifold N if and
only if this class vanishes, which it does since (see §B.3(x)), πS

5 = 0. (Alter-
natively we can argue that M has a spinor structure, and since the cobordism
group�Spin

5 = 0,M bounds a spinor manifold.) Now perform surgery on N; by
Corollary 7.2.2, we may suppose N 2-connected. It follows that N is a handle-
body. Hence M is a connected sum of manifolds Mk (the boundary of Nk) and
S3 × S2. This argument is due to Smale [140].
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The case w2(M) �= 0 is more complicated. The invariants of M consist of a
triple (H, b,w), where
H = H2(M;Z) is a finitely generated abelian group,
b is the linking form – a nonsingular skew-symmetric bilinear self-pairing of

the torsion subgroup T of H to Q/Z – and
w : H → Z2 is the homomorphism given by cap product with w2(M);

moreover for x ∈ T , w(x) = b(x, x).
The invariants determine w2(M) ∈ H2(M;Z2), hence also w3 = Sq1w2 and

the Stiefel–Whitney number w2w3[M]. The contributions to w3 ∈ H3(M;Z2)
come only from summands of H of order 2, and it follows that w2w3[M] is
equal to the number (modulo 2) of such summands. The oriented cobordism
group �SO

5 has order 2, and the class ofM in it is determined by w2w3[M].

Theorem 7.8.7 [16] Any system of invariants as above is the set of invariants
of a simply-connected 5-manifold, and two such manifolds with isomorphic
invariants are diffeomorphic.

We will not give the full proof, but merely an outline of the argument. For
existence, first recall that by Proposition 7.3.9, the triple (H, b,w) is a direct
sum of triples with G either Z, Zk ⊕ Zk or Z2; we can construct manifolds as
connected sums correspondingly.
ForG = Z, we takeM as an S3 bundle over S2: the product S3 × S2 ifw = 0,

and the non-trivial bundle S3×̃S2 if not.
For G = Zk ⊕ Zk, if w = 0, we have the manifold Mk constructed above.

This is diffeomorphic to the manifold obtained from S2 × S3 by surgery on a
sphere representing kz, where the class of z generatesH2(S3 × S2); now replac-
ing S3 × S2 by S3×̃S2 gives a suitable manifold in the case w �= 0.
The case G = Z2 is trickier, since here we need a manifold which is not a

boundary. Begin with the Hopf bundle S1 → S3 → S2: this bounds a bundle B1

with fibre D2, which is the tubular neighbourhood of the 2-sphere which is the
zero cross-section, and hence diffeomorphic to the complement of a disc D4 in
P2(C). The associated bundle B2 with fibre S2 is thus split by the original copy
of S3 into two parts, each diffeomorphic to B1, but with one diffeomorphism
reversing the orientation; in turn, B2 is the boundary of the associated bundle
B3 with fibre D3. Now P2(C) admits a diffeomorphism ϕ1 given by complex
conjugation. This induces −1 on H2(P2(C);Z), but is orientation preserving,
hence (by the disc theorem) isotopic to a diffeomorphism leaving a disc D4

pointwise fixed, hence giving a diffeomorphism ϕ′1 of B1. There is thus a dif-
feomorphism ϕ2 of B2 given by ϕ′1 on one copy of B1 and by the identity on the
other. Finally, define Mq by using the diffeomorphism ϕ2 of B2 = ∂B3 to glue
two copies of B3 together. A short calculation shows that indeedH2(Mq) ∼= Z2.
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To establish uniqueness, since we dealt above with the case w2 = 0, one
can suppose w2 non-zero. Given manifolds M, M′ and an isomorphism α :
H2(M)→ H2(M′) compatible with the pairings b and maps w, we know that
there is an oriented cobordism W of M to M′. By Corollary 7.2.2, we can
perform surgery on W to make the map W → B(SO) 2-connected, and so
H2(W ) ∼= Z2. The main part of Barden’s argument now involves surgery on
3-spheres embedded inW to convertW to an h-cobordism. The result follows
by Theorem 5.5.6.

7.9 Notes on Chapter 7

§7.1 The useful terminology of ‘normal maps’ is due to Browder [31]. In an
early paper, Milnor thanks Thom for having described the technique of surgery
to him.
§7.2 This account of surgery below the middle dimension follows that in my

book [167]. As with handlebody theory, the idea is to copy for manifolds what
happens for CW complexes.
The proof of Corollary 7.2.4 fails in lower dimensions. The problem of

embeddings of S2 in S4 is much more delicate, and no simple result is known.
For knots in S3 it follows from Thurston’s geometrisation principle that unless
the knot is a torus knot or a companion knot, the fundamental group of the
complement is isomorphic to a subgroup of SL2(C).

§7.3 The results for forms over Z are classical. A nice survey of nonsingular
quadratic forms was given by Milnor [94].
A convenient reference for forms over finite groups is my paper [161], but

there is a substantial literature; many of the results are older. The general con-
cept of quadratic form is discussed in [165].
The Arf invariant was first introduced in [11]. Invariants of a quadratic form

q on a vector space V over a field k can be extracted from its Clifford algebra
C(q). This admits a mod 2 grading, and ifV has even dimension, the centre Z of
the even Clifford algebra is a quadratic extension of k. Except in characteristic
2, we can write Z in the form k[z]/〈z2 = a〉, and the class of a in k×/(k×)2

is the discriminant of q. In characteristic 2, define ℘(x) := x2 + x: then Z =
k[z]/〈℘(z) = a〉 (where, if the associated bilinear form to q has a symplectic
basis {ei, fi}, we may take z =∑i ei fi), and the class of a in k

+/℘(k+) is Arf’s
invariant in general.
§7.4 Poincaré complexes were first defined in [164]. The definition in the

general case is a little more elaborate than for simply connected spaces. In
this section we only need immediate consequences of duality and properties
of maps of degree 1 following [167].
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The self-pairing of the torsion subgroup is traditionally called the linking
pairing, and was first introduced by Seifert [133].
In [167], the result corresponding to Proposition 7.4.3 was formulated in

homotopy terms, and used to prove that surgery is always possible for Poincaré
pairs (Y,X ) such that the map π1(X )→ π1(Y ) is an isomorphism – the so-
called ‘π − π Theorem’.
§7.5, §7.6 Milnor’s exciting paper [92] constructing differentiable mani-

folds homeomorphic but not diffeomorphic to S7 aroused great interest in
this area. His talk [102] at the 1958 International Congress exhibited inter-
relations of relevant homotopy groups. This was followed by a preprint of
Milnor in 1959 introducing a programme: introduce the group %n of homot-
opy spheres, then show any homotopy sphere is stably framed, then study the
obstruction to bounding a framed manifold, then study the case when it does.
There were preliminary publications [95] and [97]. These included the cal-
culation of P4k, and essentially that of P4k+2. The final proof that P2r+1 = 0
was accomplished by myself [159] and in the full account by Milnor and
Kervaire [79].
The idea that the method extended to arbitrary simply-connected manifolds

was due to Novikov [114] and Browder in 1962. Fuller accounts appeared
in [115], [163], and [30]; both Browder and I gave talks at the international
congress in 1966, and wrote books [31] and [167].
§7.7 Spivak’s ‘homotopy normal bundle’ brought clarity to several previous

results of this nature.
S-duality was introduced and developed in [141].
After the introduction of the Kervaire invariant in 1960 in [78], progress was

made successively in 1966 by Brown and Peterson, then in 1969 by Browder
[30] (his book [31] appeared in 1972). Browder starts from a normal map and
uses the Spanier–Whitehead dual map ψ : TY/X (ν)→ TN/M (ν). For each coho-
mology class x ∈ Hk(N,M) with ψ∗(x) = 0, write h for the composite map
Ssx ◦ ψ : TY/X (ν)→ TN/M (ν)→ SsK(Z2, k). Since h∗ι = Sqk+1ι = 0, one can
form the functional Steenrod square (see §B.4) Sqk+1h (Ssι) ∈ H2k+s(TY/X (ν)),
and evaluate this on the fundamental class to obtain μ(x) ∈ Z2. This gives a
definition of the map μ and hence of its Arf invariant independent of any pre-
liminary surgeries.
A comprehensive study was made in 1972 by Brown [34], which has the

advantage of defining an invariant for Poincaré complexes (with a Wu orienta-
tion) rather than for normal maps. Our account is a simplified version of this.
§7.8 We have given the general form of the reduction of diffeomorphism

classification of (simply-connected) smooth manifolds to homotopy problems:
the account follows the one I gave in [167].
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The plumbing construction seems to have been first introduced by Milnor
[95].
For simply-connected 4-manifolds M, it was observed by Milnor [94] that

the homotopy type is determined by the intersection form on H2(M). A further
step was taken by the author [162] showing that if M and M′ are homotopy
equivalent, then they are h-cobordant, and deducing that they can be made dif-
feomorphic by taking connected sums with a number of copies of S2 × S2. This
is far from establishing diffeomorphism: at the time of writing, no criterion is
known for proving two 4-manifolds diffeomorphic. Another tantalising prob-
lem is finding which quadratic forms appear. For spinor manifolds, these forms
must be even, and it follows from the calculation of spinor cobordism that the
signature is divisible by 16. This value is realised by so-called K3 surfaces
(for example, nonsingular quartic surfaces in P3(C)), but for such a surface M
H2(M) has rank 22 and it is not knownwhether there exist surfaces with σ = 16
but lower rank. See §5.7 for a fuller discussion.
When we drop the hypothesis of simple connectivity, it is necessary, as in

§5.7, to replace the coefficient group Z by Z[π ]. This leads to surgery obstruc-
tion groups Lm(π ), generalising the above group Lm which is Lm(1). The exact
sequence of Theorem 7.8.6 holds in general with Lm replaced by Lm(π1(X )).
There is, however, no direct analogue of Proposition 7.8.4.
The groups Lm(π ) can be defined in an abstract way. When m = 2k is even,

they can be interpreted by equivalence classes of (−1)k-hermitian forms over
Z[π ], by a relatively minor modification of the geometry of the simply con-
nected case, using the results of §6.3 on embeddings of m-spheres in 2m-
manifolds. The odd dimensional case requires a different approach, and the
surgery groups can be interpreted as quotients of the stable unitary group of
such forms. Some calculations of these groups can be made: if π is finite, by
methods of algebraic number theory, and for some infinite groups π using geo-
metrical arguments. A first version of all this was given in [167].
This theory was re-worked in a more satisfactory way by Ranicki in a series

of papers from 1973 on. We refer to his book [128].
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Cobordism

We have already defined the word ‘cobordism’ in §5.1: recall that if W is a
manifold, and ∂−W and ∂+W are disjoint manifolds with union ∂W , we call
the pair (W, ∂−W ) a cobordism and the pair (W, ∂+W ) the dual cobordism;
and also call W a cobordism of ∂−W to ∂+W and say that ∂−W , ∂+W are
cobordant.
In the earlier chapter, we were concerned with the geometry of a particular

cobordism. We now observe that being cobordant is an equivalence relation
amongst diffeomorphism classes of manifolds. ForM × I is a cobordism ofM
to itself; ifW is a cobordism from M0 to M1 then the same manifold, but with
∂±W interchanged, is a cobordism from M1 to M0; and if W0 is a cobordism
from M0 to M1 andW1 is a cobordism from M1 to M2, then glueingW0 toW1

alongM1 gives a cobordism fromM0 toM2. For this relation not to be vacuous,
we insist throughout that the manifoldsW in question be compact: otherwise
the productM × [0, 1) would give a cobordism of any manifoldM to the empty
set.
The simple definition just given already leads to interesting results, but the

concept of cobordism lends itself to a wide variety of possible generalisations
and restrictions, and these lead to a flexible tool in the study of manifolds.
For example, we may choose to restrict the manifolds (and cobordisms) to

be oriented, weakly complex, or k-connected (for a fixed k); we may add the
structure of a map to a fixed space X ; if X is a manifold, we may further require
this map to be an embedding, or an immersion. We may consider pairs (M,V )
withV a submanifold ofM and then cobordisms (N,W ) withW a submanifold
ofN (and ∂−W = V , ∂−N = M), where wemay also fix the group of the normal
bundle.
Next we consider pairs (M, ϕ), whereM is a manifold and ϕ : M × G→ M

defines a smooth action of the compact Lie groupG onM. We may also restrict

237
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the orbit types of the action to lie in an assigned closed set of orbit types - an
extreme example is the class of fixed-point-free actions.
Wemay also allowM to be a manifold with boundary – and then a cobordism

is a manifoldW with ∂W = ∂−W ∪ ∂cW ∪ ∂+W – and impose one restriction
onM andW and another on ∂M and ∂cW . These variants of the definition may
now be combined ad lib.

Lemma 8.0.1 Disjoint union defines an addition which turns the set of cobor-
dism classes (of a given dimension) into an abelian group.

Proof The other kinds of structure pass at once to the disjoint union. Union is
compatible with cobordism: if V , W are cobordisms of ∂−V to ∂+V , ∂−W to
∂+W , then the disjoint union V ∪W is a cobordism of ∂−V ∪ ∂−W to ∂+V ∪
∂+W . Thus we have a binary operation on the set of cobordism classes, which
is commutative and associative since disjoint unions are. The empty manifold
acts as zero.
We obtain an inverse toW wheneverM × I may be regarded as a cobordism

of the disjoint union (M × 0) ∪ (M × 1) to the empty set (the induced structure
onM × 0 must coincide with that on M: on M × 1 it can be different).

For k-connected cobordism, we show in Lemma 8.8.1 that disjoint union can
be replaced by connected sum.
In this chapter, vector bundles will be denoted by lower case Greek letters,

so we write τM for the tangent bundle of M in place of T(M); normal bundles
will usually be denoted by ν; and the trivial bundle of fibre dimension r by εr.

In the first section, we describe the basic Thom construction, leading to a
bijection between certain sets of homotopy classes and certain bordism sets,
and give an application to the problem of realising homology classes by sub-
manifolds. Then we focus on the structure group on the normal bundle, and
stabilisation, and define cobordism groups and rings.
The framework of cobordism lends itself to the construction of exact

sequences, and we next describe this technique, which we will use many times.
Then we treat cobordism of pairs; this leads to an interpretation of some relative
groups.
The next section treats bordism as a homology theory, checks the axioms,

introduces spectra, and dual notions of bordism and cobordism.
We then discuss equivariant cobordism, and show how the techniques of the

preceding sections yield methods of calculation of the equivariant cobordism
groups.
After a brief review of homology of classifying spaces, we describe the cal-

culations of the unoriented bordism ring, and the unitary bordism ring.We hope
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to provide enough detail for the reader to follow the ideas, but refer to the orig-
inal papers for details of calculations. We then attempt the same for oriented
bordism and SU-bordism, with a detour to obtain the Hirzebruch signature the-
orem. We discuss k-connected cobordism, and then pull many results together
in final calculations of groups of homotopy spheres and of knots.
Part of the use of cobordism theory is tomake calculations, and in this chapter

we will assume significantly more knowledge of homotopy theory than in ear-
lier chapters. We attempt to provide enough background definitions and results
for this discussion in Appendix B.

8.1 The Thom construction

We introduce the main tool in cobordism theory by considering the example
which occurs in the earliest work on the subject: the study of submanifoldsMm

of a fixed ambient manifold Em+k.
Let ξ be an orthogonal vector bundle. As in §7.7, writeVξ for the total space

and Bξ for the base; Aξ for the subspace ofVξ of all vectors of length� 1 and Sξ
for its boundary, consisting of vectors of length 1. The Thom space T (ξ ) of ξ is
obtained from Aξ by identifying Sξ to a point (denoted∞): thus T (ξ ) = Aξ /Sξ .
We may identify Bξ with the zero cross-section of the bundle, and hence with
a subspace of T (ξ ). In the same section we met a special case of the Thom
construction. Also Proposition 7.8.1 gave a preview of the next result.
If Bξ is a smooth manifold, we can give ξ the structure of smooth vector

bundle, and Vξ and T (ξ ) \ {∞} then also acquire the structure of smooth man-
ifolds. Note that if Bξ is a finite CW complex, so is T (ξ ); more precisely, if ξ
has fibre dimension k, over each r-cell er of Bξ we have a (k + r)-cell in Aξ part
of whose boundary lies over ∂er and part in Sξ , so this gives a (k + r)-cell of
T (ξ ), and all cells outside∞ arise in this way.
Now letMm be a submanifold of the compact manifold Em+k, ν be its normal

bundle. By Theorem 2.3.8 we can find an imbedding h : Aν → E defining a
tubular neighbourhood of M in V .
The collapsing map Aν → T (ν) defines a map h(Aν )→ T (ν) which extends

to a continuous map cM : E → T (ν) which takes everything outside the tubular
neighbourhood to ∞. This idea is due to Thom [150], and is called the Thom
construction. Observe that if Bν is identified with the zero cross-section of ν,
we have M = c−1M (Bν ).
We introduce one more ingredient. LetMm ⊂ En+k have normal bundle ν, let

ξ be a bundle whose base space Bξ is a smooth manifold, and let φ : ν → ξ be
a map of (orthogonal) vector bundles, hence inducing maps Bφ : Bν → Bξ and
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similarly for A, S and T . As above, identify Aν with a tubular neighbourhood
of M; write cM : E → T (ν) for the collapsing map, and form the composite
FM := Tφ ◦ cM : E → T (ξ ).

The first significant result in cobordism theory is that the Thom construction
can, in a sense, be reversed. Define a cobordism of submanifolds of E to be a
smooth compact submanifoldW of E × I, with M0 = ∂−W =W ∩ (E × {0})
and M1 = ∂+W =W ∩ (E × {1}).

Proposition 8.1.1 The Thom construction induces a bijection τ from the set
of cobordism classes of submanifolds M ⊂ E with normal bundle induced from
ξ to the set of homotopy classes of maps E → T (ξ ).

Proof The construction takes a submanifoldM with a bundle map φM : νM →
ξ and gives a map FM := TφM ◦ cM : E → T (ξ ). To show we have a well-
defined map τ we must show that cobordant submanifolds give rise to homot-
opic maps. Let Wm+1 ⊂ (E × I) be a cobordism, with normal bundle νW

induced via φW : νW → ξ , and suppose the construction already performed for
M0 and M1. It follows from the tubular neighbourhood theorem 2.5.5 that the
chosen tubular neighbourhoods of M0 and M1 can be extended to a tubular
neighbourhood ofW in E × I. Thus the collapsing map cW for this neighbour-
hood extends those on the boundary. Hence TφW ◦ cW is a homotopy between
the maps obtained from M0 and M1. We thus have a well-defined map τ from
cobordism classes to homotopy classes.
To show τ is surjective, suppose given a map F : E → T (ξ ). Since T (ξ ) \

{∞} is a smoothmanifold, it follows fromProposition 2.3.4 that we can approx-
imate F by a map F ′ agreeing with F on F−1(∞) and which is smooth on a
neighbourhood of F−1(Bξ ). If the approximation is close enough, F ′ # F . Next
by Theorem 4.5.6, we can further approximate F ′ by a map F ′′ transverse to
Bξ , and also suppose F ′′ # F ′. Now set M := F ′−1(Bξ ). By Lemma 4.5.1, the
normal bundle ofM is induced from ξ by a map φM : νM → ξ . If we now per-
form the Thom construction onM , the resulting h : Em+k → T (ξ ) agrees with
F ′′, together with its first derivatives, onMm. After a small homotopy, then, we
can suppose F ′′ = h on a neighbourhood of M. But the complement of such a
neighbourhood is mapped, both by F ′′ and by h, to T (ξ ) \ Bξ , which is con-
tractible. It follows that h # F ′′ # F , as desired.

That τ is injective follows by relativising the same arguments. Suppose given
M0 ⊂ E × 0,M1 ⊂ E × 1 giving rise by the Thom construction to maps f0, f1 :
E → T (ξ ), and a homotopy F : E × I → T (ξ ) between f0 and f1. As above,
we can replace F (keeping it fixed on E × ∂I) by a homotopy F ′ of f0 to f1,
which is smooth and transverse to Bξ . Then W := F ′−1(Bξ ) is a submanifold
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8.1 The Thom construction 241

of E × I, and provides a cobordism of M0 to M1; moreover the normal bundle
of N is induced from ξ .

A key point in the above arguments is where we first approximate the map F
by a smooth map, and then make it transverse to a smooth submanifold of the
target. Since we will use this idea several times below, in future we omit the
references to Proposition 2.3.4 and Theorem 4.5.6.
We have described the Thom construction directly in a geometric context.

We next relax the condition that Bξ be a smooth manifold. There is a space
B(Ok ) and a vector bundle γk over B(Ok ) such that, for any k-vector bundle ξ
over a space X , there is a map p : X → B(Ok ) such that ξ is equivalent to p∗γk,
and this induces a bijection between isomorphism classes of vector bundles ξ
and homotopy classes of maps p. (See §8.6 for more about classifying spaces).
Moreover, wemay constructB(Ok ) as the union of GrassmannmanifoldsGrm,k,
and the mapGrm,k → B(Ok ) ism-connected. The bundle γk has associated disc
bundle AOk, say, and Thom space T (Ok ).

Lemma 8.1.2 The Thom construction gives a bijection between cobordism
classes of submanifolds Mm ⊂ Em+k and homotopy classes of maps E →
T (Ok ).

Proof We apply Proposition 8.1.1 taking Grm,k in place of Bξ . For any sub-
manifold Mm of Em+k, the normal bundle is induced by a map to the classify-
ing space B(Ok ), but we may replace these by maps to Gm,k. Since the map
Gm,k → B(Ok ) is m-connected, up to homotopy we can obtain B(Ok ) from
Grm,k by attaching cells of dimension > m. It follows that up to homotopy we
can obtain T (Ok ) from the Thom space ofGrm,k by attaching cells of dimension
> m+ k. The result follows.

We next replace Ok by an arbitrary structure group J (for example, J could
be a Lie group), furnished with a homomorphism J → Ok. There is (again
see §8.6) a classifying space B(J), and isomorphism classes of (vector) bun-
dles over a space X with structure group J correspond bijectively to homotopy
classes of maps X → B(J). There is an induced map B(J)→ B(Ok ) of classi-
fying spaces. There is a universal bundle ξJ over B(J) and a map f : X → B(J)
corresponds to the bundle f ∗ξJ . We write A(J) for the disc bundle, S(J) for its
boundary sphere bundle and T (J) for the Thom space A(J)/S(J).
In fact we do not need J at all: only a space X playing the role of B(J), and

a map X → B(Ok ) (here we can interpret the loop space �(X ) as playing the
role of J). However we adhere to the notation with J.

As in the case J = Ok, although B(J) is rarely itself a smooth manifold,
we can find a sequence of smooth manifolds B(J(r) ) and r-connected maps
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B(J(r) )→ B(J(r+1))→ B(J). The same argument as for Lemma 8.1.2 now
yields

Theorem 8.1.3 The Thom construction induces a bijective map of the set of
cobordism classes of pairs (Em+k,Mm), with E fixed and J as structure group
of the normal bundle, onto the set of homotopy classes [E : T (J)].

We can state this as a slogan: the extra structure defined on E by a sub-
manifold whose normal bundle has group J is equivalent to the extra structure
consisting of a map to T (J).
Taking J = SOk in particular yields a natural bijection between cobordism

classes of submanifolds Mm ⊂ Em+k with oriented normal bundle and homot-
opy classes of maps E → T (SOk ). Even more simply, taking J to be the trivial
group gives

Proposition 8.1.4 There is a natural bijection between cobordism classes of
submanifolds Mm ⊂ Em+k with framed normal bundle and homotopy classes of
maps E → Sk.

One application of Theorem 8.1.3 is to the problem of representing homol-
ogy classes by manifolds. It seems that this problem, raised by Steenrod, was
part of what led Thom to introduce the notion of cobordism. A first formulation
is: let X be a space and x ∈ Hn(X;Z): do there exist a closed oriented manifold
Mn and a map f : M → X such that f∗[M] = x? We can vary this by using Z2

as coefficient group and not having an orientation. We can also take X as a man-
ifold and require f to be an embedding: by general position results, this makes
no difference if dim M > 2n. An affirmative result for manifolds implies one
for spaces, since we can replace X by a manifold E homotopy equivalent to
it; since we can apply such a result to the double D(E ) of E, it will suffice to
consider the case of closed manifolds.
Given an oriented orthogonal vector bundle ξ over E with fibre dimension k,

we have the Thom classU ∈ Hk(T (ξ );Z).

Proposition 8.1.5 Suppose En+k a closed oriented manifold. Then given a
class x ∈ Hk(E;Z), there is an oriented submanifold Mk of E whose funda-
mental homology class maps to x if and only if there is a map F : E → T (SOn)
with F∗U the Poincaré dual of x.

Proof Since E is oriented, orientations of a submanifoldM correspond to ori-
entations of its normal bundle. We already know the correspondence between
submanifolds of E and maps F : E → B(SOk ). It will thus suffice to show that
F∗U = [E] ∩ x.
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In the situation of the Thom construction we have a commutative diagram

so F∗U is the image in Hk(E ) of the class in Hk(T, ∂T ) corresponding to
1 ∈ H0(M). Since the Thom class in Hk(T, ∂T ) is dual to the image of [M]
in Hm(T ), F∗U is indeed the cohomology class dual to the image of [M] in
Hm(E ).

In the cases k = 1, 2 the condition is automatically satisfied: SO1 is trivial
and T (SO1) is D1 with the boundary collapsed to a point, so can be identified
with S1, of type K(Z, 1); similarly T (SO2) and K(Z, 2) can both be identified
with infinite complex projective space P∞(C).

In his paper [149] Thom used his results on cobordism to prove that for any
homology class x ∈ Hn(X;Z2), there exist a closed manifold Mn and a map
f : M → X such that f∗[M] = x. However for integer coefficients, while any
x ∈ Hn(X : Z) with n ≤ 6 is the image of the fundamental class of a closed
orientable manifold, this fails for any n ≥ 7: there is an obstruction, obtained
using the Steenrod reduced cube P1 (see §B.4).

8.2 Cobordism groups and rings

If we are interested in the manifold Mm but not the embedding in an ambient
manifold E, it is natural to take E to be Euclidean space of large dimension
m+ k: by Whitney’s embedding Theorem 4.2.2 we know that for k > m+ 1
such embeddings exist and are unique up to diffeotopy. To apply the preceding
section, we needE to be compact. Since embeddings in Sm+k yield ones inRm+k

by deforming M away from the point at infinity, we can take E as Sm+k.
Identifying Rm+k as a hyperplane in Rm+k+1 leads us to identify Sm+k with

a great sphere in Sm+k+1, and use the composite embedding Mm → Sm+k →
Sm+k+1 to obtain independence of k. We may thus calculate the set �O

m of
cobordism classes of closed m dimensional manifolds by applying the the-
ory of the preceding section to manifolds contained in spheres of large enough
dimension.
We must also discuss the normal bundles. If νk is the normal bundle of Mm

in Sm+k, the normal bundle in Sm+k+1 is νk ⊕ ε1. Before developing the theory
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more fully we present axioms for the ‘stable groups’ which will play the role
of structure groups of the normal bundles.
A stable group J is given by a commutative diagram of groups and homo-

morphisms

(8.2.1)

where the inclusions in the lower row are natural. We impose the stability
condition
(S): There is a function qn of n, increasing (in the weak sense) and tending

to infinity, such that in is qn-connected.
We also need products and impose the following further conditions.
(M): We have a family of maps ψm,n : Jm × Jn → Jm+n such that the follow-

ing diagrams commute up to conjugating by an element in the component of
the identity:

(8.2.2)

(8.2.3)

(A): The following diagram also commutes (in the same sense)

(8.2.4)
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(C): We have commutativity in the diagram

(8.2.5)

where T is the natural interchange of factors, and T ′ means conjugation by an
element whose determinant has sign (−1)mn.

The important examples of stable groups J are the classical groups O, SO,
Spin, U, SU and Sp, and the trivial group {1}. The above properties are imme-
diate in these cases. Of interest also are the groups Spinc, Pin, and Pinc of
[15, pp. 7–10]; however Pin fails to satisfy (M). Further examples can easily
be constructed: for example, products of the above with each other or with any
group of linear operators on a finite dimensional vector space.
We have presented the axioms in a geometrical setting, but note here that it

would in fact suffice to have maps of classifying spaces B(Jk ) throughout; the
map B(Jk ) → B(Ok ) induces an orthogonal vector bundle γ k over B(Jk ) which
is all we will need for our constructions.
An embeddingMm → Sm+k with Jk as structure group of the normal bundle

now gives an embeddingMm → Sm+k+1 with normal bundle with group Jk+1. It
is however more natural to consider the tangent bundle. A weak J-structure on
Mm is prescribed by choosing an integer r and reduction (e, f ) of the group of
τM ⊕ εr to Jm+r; (r, e, f ) and (r′, e′, f ′) are equivalent if the reductions (e, f )
and (e′, f ′) of τM ⊕ εs are so for some s � r, r′. When J = U we call this a
weakly complex structure.
We now show that if (S) holds, we can pass between the structure group on

the stable tangent bundle and the structure group on a normal bundle. This fails
for Pin: ifM has a Pin normal bundle, the tangent bundle is not necessarily Pin:
we have w2 = 0 but w2 = w2

1.

Lemma 8.2.6 Suppose in the diagram (8.2.3) that the map ψo : Jr → Jr+s
induced by ψr,s is c-connected. Let K be a CW complex of dimension d �
min(c, r − 2), and ξ r, ηs vector bundles over K, with a Js-structure on ηs. Then
the function f induce byψ from Jr-structures on ξ r to Jr+s-structures on ξ r ⊕ ηs

is bijective.

Proof Let Xi be the classifying space for Ji(i = r, s or r + s); Ei the total space
of the principal bundle with fibre Oi induced over Xi by ϕi. Write Eξ , Eη, Eξ⊕η
for the spaces of the corresponding principal bundles overK. Then Jr-structures
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of ξ correspond to sections of the bundle over K with total space Eξ ×Or Er;
similarly for ξ ⊕ η. But the Js-structure of η induces a fibrewise map

Eξ ×Or Er → Eξ⊕η ×Or+s Er+s (8.2.7)

and the induced map Er → Er+s of fibres is at least min(c+ 1, r − 1)-
connected since Xr → Xr+s is (c+ 1)-connected and Or → Or+s is (r − 1)-
connected. Thus (8.2.7) is at least (d + 1)-connected, so any map of K to the
second term can be factorised (up to homotopy) through the first, and f is sur-
jective; moreover, the result is unique up to homotopy, so f is bijective. (It
follows from the CHP that sections of a bundle are homotopic only if they are
homotopic through sections.)

Corollary 8.2.8 Let Mm ⊂ Rm+N have a weak J-structure, where the stable
group J satisfies (S), and qN � m. Then the normal bundle has a JN-structure;
conversely, this implies a weak J-structure on M.

Proof In this case, ξ ⊕ η has a standard framing, and hence J-structure. We
use (A) only to identify the ψ0 of the lemma with a composite of maps in.

The definition of a cobordism W of manifolds with weak J-structures
demands a reduction of the structure group of τW . Now τW |∂W ∼= τ∂W ⊕ ε1, so
the induced structure of the boundary is a reduction of the group of τ∂W ⊕ ε1

rather than of τ∂W itself. Here we make the convention (necessary to obtain
an equivalence relation) that the positive vector ε1 is to be identified with
the inward normal to ∂−W in W , but with the outward normal on ∂+W .
Now a weak J-structure on a cobordism W induces weak J-structures on
∂−W , ∂+W : we call it a cobordism between these manifolds with the induced
structures.
We denote by �J

m the set of cobordism classes of m-manifolds with a weak
J-structure.

Lemma 8.2.9 If J satisfies (S), and N ≥ m+ 2, qN � m+ 1, there is a natural
bijection of �J

m to the set of cobordism classes of manifolds Mm ⊂ Sm+N with
JN as group of the normal bundle, and hence to πm+N (T (JN )).

Proof The first statement follows from Corollary 8.2.8, and the second from
the results in the preceding section.

Now let J be a stable group, with γ k the universal bundle over B(Jk ).
The inclusion ik : Jk → Jk+1 induces a bundle map φk : γ k ⊕ ε1 → γ k+1 over
Bik : B(Jk )→ B(Jk+1). Write B(J) for the limit of this sequence (we can
regard the Bik as inclusions and form the union). In view of the identification
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T (ξ ⊕ ε1) = T (ξ ) ∧ S1, the bundle map φk lifts to a map hk : ST (Jk )→
T (Jk+1). The sequence of maps hk : ST (Jk )→ T (Jk+1) defines a spectrum,
which we denote by TJ.

Theorem 8.2.10 For J a stable group we have a bijection

�J
m
∼= lim

k→∞
πm+k(T (Jk )) = πS

m(TJ).

Proof An embedding i : Mm → Rm+k ⊂ Sm+k can be regarded as lying in
a hyperplane (or great sphere) giving an embedding i1 : Mk → Rm+k+1 ⊂
Sm+k+1. Applying the Thom construction to the first gives a map F : Sm+k →
T (Jk ), and to the second gives its suspension SF : Sm+k+1 → T (Jk+1).

By definition, possession of a J-structure is equivalent to having a normal
Jk-structure in Sm+k for some k. If we fix k, then by Lemma 8.2.9 we obtain
the group πm+k(T (Jk )). The desired group is the direct limit of these under the
natural injection maps.

If J satisfies (S), the suspension map πm+k(T (Jk ))→ πm+k+1(T (Jk+1)) is an
isomorphism for k > m+ qm, so no limiting process is necessary.
The cobordism set �J

m has a natural group structure: the sum of the classes
of disjoint manifolds M, M′ is defined to be the class of M ∪M′. Any M′ is
diffeomorphic (hence cobordant) to a manifold disjoint from M. The sum is
well defined since the disjoint union of cobordisms of M with N and of M′

with N ′ is a cobordism of M ∪M′ to N ∪ N ′. Commutativity and associativity
are immediate. Since ∂ (M × I) = (M × {0}) ∪ (M × {1}), we have an inverse
(note that the normal bundle is different in the two cases).
The bijections of Lemma 8.2.9 and Theorem 8.2.10 are group isomorphisms

since both are induced by the Thom construction. We can take manifolds M
andM′ to lie in distinct discs in Sm+k. The map given by the Thom construction
takes the boundaries of these discs to∞. If we then remove discs, and glue the
two spheres together, we obtain the usual sum of homotopy classes.
Products are compatible with cobordism: ifW is a cobordism from ∂−W to

∂+W , thenW ×M is a cobordism from ∂−W ×M to ∂+W ×M. Also, products
are associative, and distributive over disjoint union, and there is a natural diffeo-
morphism ofM′ ×M onM ×M′, which gives rise to a form of commutativity
of multiplication.
If G, H are groups of orthogonal operators on Rq, Rr, then B(G)× B(H ) is

a classifying space for G× H, and ξG × ξH is a universal bundle. As observed
above, T (G× H ) = T (G) ∧ T (H ).
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If J satisfies (M), the products ψm,n : Jm × Jn → Jm+n induce maps ψ ′
m,n :

T (Jm) ∧ T (Jn)→ T (Jm+n), and if (A) holds, these associate up to homotopy.
This provides TJ with the structure of a ring spectrum.

Theorem 8.2.11 If J is a stable group satisfying (M), we have a bilinear prod-
uct �J

m ×�J
n → �J

m+n which corresponds to the pairing in homotopy groups
induced by the maps T (Jm) ∧ T (Jn)→ T (Jm+n). The product is associative if
J satisfies (A), and defines a commutative graded ring if J satisfies (C).

Proof The product of submanifolds M ⊂ V and N ⊂W gives a submanifold
M × N ⊂ V ×W . Using the Thom construction as in Theorem 8.1.3 these
determine elements of [V : T (Jm)] and [W : T (Jn)] and the product is given
by

[V : T (Jm)]× [W : T (Jn)]→ [V ×W : T (Jm × Jn)].

The conclusion follows by taking V and W to be Euclidean spaces (or rather
spheres) and stabilising.

A case of particular simplicity is J = {1}: each Jk consists only of the unit
element, so we can take B(Jk ) to be a point; then T (Jk ) = Sk. For each bundle
occurring we have a specified isomorphism with a trivial bundle, i.e. a framing,
and for clarity write � f r for the cobordism group.

Corollary 8.2.12 Framed cobordism groups are isomorphic to stable homot-
opy groups of spheres: � f r

n
∼= limk→∞ πn+k(Sk ).

This, due to Pontrjagin [123], was the first theorem in the subject.

8.3 Techniques of bordism theory

In this section we introduce a couple of techniques, variants of which will often
be used below. The first is a general method of constructing exact sequences.
Recall from §5.1 that a cobordism of the bounded manifolds M0 and M1 is a
manifoldW with corner ∠W which divides ∂W into three parts, with disjoint
interiors:M0 = ∂−W , ∂cW andM1 = ∂+W , withM0 andM1 disjoint. Thus ∂cW
is a cobordism of ∂M0 to ∂M1.
By itself, this definition gives nothing: any manifold M with boundary is

cobordant to the empty set by themanifoldW obtained fromM × I by rounding
corners atM × {1}. The interesting cases are those in which an extra condition
is imposed on the cobordism ∂cW .
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Suppose two kinds of structure specified, which we call an α-structure
and a β-structure, with the latter stronger than the former. For example, we
may consider structure groups G1 and G2 ⊂ G1, or maps to spaces X1 and
X2 ⊂ X1, or actions of groupsH1 andH2 ⊃ H1, or k1-connectivity and k2(> k1)-
connectivity.
By �α

n and �
β
n we denote the cobordism groups of manifolds with α- (resp.

β-) structure; and by �α,β
n the cobordism group of bounded manifolds with α-

structure, whose boundaries have a β-structure including the given α-structure.
We suppose there are natural group structures, though all we need is the zero
element provided by the empty manifold.

Lemma 8.3.1 There is an exact sequence . . .→ �
β
n

in−→ �α
n

jn−→ �
α,β
n

∂n−→
�

β

n−1
in−1−→ �α

n−1 → . . .

Proof The maps in and jn are the natural ones; ∂n is induced by taking the
boundary.
Exactness at �β

n−1 follows since a β-manifold Mn−1 represents an element
z of Ker in−1 if and only if, as α-manifold, it bounds some Nn. But then N
represents an element y ∈ �

α,β
n with ∂ny = z.

We have ∂n ◦ jn = 0 since an element of �α
n is represented by a manifold

with empty boundary. Now supposeNn represents y ∈ �
α,β
n with ∂ny = 0. Then

∂N bounds a β-manifold N ′. We form a closed manifold N ′′ by glueing N to
N ′ along their common boundary. The α-structures on N and N ′ induce a α-
structure on the union N ′′. We now define a cobordismW by taking N ′′ × I and
introducing a corner along ∂N × {0}, so that ∂−W = N × {0}, ∂cW = N ′ × {0}
and ∂+W = N ′′ × {1}. Here ∂cW has a β-structure, so N ′′ = ∂+W also repre-
sents y and is in the image of jn.

Figure 8.1 A new cobordism obtained by changing the corner

We have jn ◦ in = 0 since for any β-manifoldM, we can interpret N = M ×
I as an (α, β ) cobordism to the empty set by setting ∂−(M × I) = M × {0}
and ∂c(M × I) = M × {1}. Finally, if the closed α-manifoldM has class x with
jnx = 0, there is a (α, β )-cobordism W of M to the empty set. Thus ∂−W =
M, ∂+W = ∅, and N := ∂cW is a closed β-manifold. Now letting V be the
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cobordism, diffeomorphic toW but with ∂−V = M and ∂+V = N, we see N is
α-cobordant toM, so if N has class z we have inz = x.

This procedure of changing the corner is itself a useful technique: we met it
in §7.4 and will encounter it again.
The following addendum is easily proved by the same method.

Lemma 8.3.2 Suppose given three kinds of structure: an α-structure, a β-
structure, and a γ -structure, with γ stronger than β which in turn is stronger
than α. Then there is a commutative diagram including the exact sequences
corresponding to the three inclusions and one with the relative terms.

Lemma 8.3.1 is often applied together with a method of calculating �
α,β
n .

To illustrate this, suppose any manifold Wn with α-structure has an induced
β-structure except on a closed submanifoldMm, and define γ to be the type of
structure induced on M by an α structure on a tubular neighbourhood V of M
inW . This is imprecise; the details need to be clarified in each case where this
is applied.

Lemma 8.3.3 Inclusion induces an isomorphism �
γ
m → �

α,β
n .

Proof The map is defined by taking the class of M in �
γ
m to that of (V, ∂V )

where V is the disc bundle over M which is part of the γ structure: by the
definition of γ , this pair has an (α, β )-structure.
To prove the map surjective, take any (W, ∂W ) with (α, β )-structure, and

construct M, V as above. Then (V, ∂V ) has a (α, β )-structure since ∂V is dis-
joint from M so we have an induced β structure on it. An (α, β )-cobordism
X from (V, ∂V ) to (W, ∂W ) is obtained from W × I by rounding the corner
at ∂W × {0} (using Proposition 2.6.2), and introducing a corner at ∂V × {0}
(using Lemma 2.6.3) as in Figure 8.1: thus ∂cX = ((W \ V̊ × {0}) ∪ (∂W × I).

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.009
https:/www.cambridge.org/core


8.3 Techniques of bordism theory 251

Now supposeM such that (V, ∂V ) is (α, β )-cobordant to the empty set: write
X for a cobordism. The α-structure on X gives a β-structure except on a com-
pact submanifold L with boundary M. Then L has an induced γ -structure, so
the class of M in �γ

m is zero.

Let V be a submanifold of M; then we call (M,V ) a pair. If (N,W ) is a
pair of manifolds with boundary, and N is a cobordism of ∂−N to ∂+N, we
set ∂−W =W ∩ ∂−N, ∂+W =W ∩ ∂+N. Our definition of submanifold then
implies thatW is a cobordism of ∂−W to ∂+W , and we shall call the pair (N,W )
a cobordism of the pair (∂−N, ∂−N) to the pair (∂+N, ∂+W ). Rather than restrict
the structure groups of the stable tangent bundles of M and V independently;
we usually restrict the structure group of the normal bundle of V in M: here
there is no need to speak of weak structures.
We study cobordism of pairs by establishing a principle of ‘extension of

cobordism’ (analogous to homotopy extension). This is illustrated in the next
lemma.
Consider pairs (Mv+q,V v ), where M has a weak J-structure and the normal

bundle an Hq-structure; more generally, consider V v ⊂ Mv+q ⊂ Sv+q+r, where
the structure groups of the normal bundles are Hq and Jr. Then the normal bun-
dleV v ⊂ Sv+q+r has anHq × Jr-structure. Herewe only consider the stable case
r > v + q+ 1 where the imbedding of M in S is irrelevant, so may replace Jr
by J.
Let J be a stable group, and Hq a group mapping to Oq. Then setting (J×

Hq)n = Jn−q × Hq defines a stable group J× Hq, which satisfies (S) if J does.

Lemma 8.3.4 The pair (Mv+q,V v ) is (J,Hq)-cobordant to the empty pair if
and only if Mv+q is J-cobordant to zero and V v is J× Hq-cobordant to zero.

Proof The necessity of the condition is evident. To prove sufficiency we give
a construction to extend a J× Hq-cobordism of V v to the empty set to a J×
Hq-cobordism of (M,V ) to a pair (M′, ψ ). Since cobordism is an equivalence
relation, it follows that M′ is J-cobordant to ϕ, say by N ′; then (N ′, ϕ) is the
required (J,Hq)-cobordism of (M′, ψ ) to (ψ, ϕ).
LetW v+1 be the given J× Hq-cobordism ofV to ϕ: then there is an induced

bundle overW with fibreDq, whose total space we denote by Lv+q+1. Note that
the restriction to V of this bundle is the normal bundle of V in M; hence we
can identify a tubular neighbourhood ofV inM with part of the boundary of L.
We form M × I, and attach L to M × 1 by this identification, giving N. Since
L and M × I have J-structures, which agree (by hypothesis,W is a cobordism
of V with the J× Hq-structure induced fromM) on the pair identified, Nv+q+1
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has a weak J-structure. Also,V × I ∪W =W ′ is a submanifold whose normal
bundle has group Hq.

Set M × 0 = ∂−N. Then (N,W ′) is a J× Hq-cobordism, and W ′ ∩ ∂+N =
∅. This completes the proof of the lemma.

Lemma 8.3.5 The cobordism group of pairs (Mv+q,V v ), where M has a weak
J-structure and the normal bundle an Hq-structure is isomorphic to �J

v+q ⊕
�
J×Hq
v .

Proof In Lemma 8.3.4 we defined a map to the direct sum, and proved it a
monomorphism; it clearly respects additive structure. Themap to�J×Hq

v is onto,
for given a (J × Hq)-manifold V v , we construct as above a bundle over V with
fibre Dq, and can take M as the double of this manifold. Finally, the image
contains �J

v+q ⊕ 0: we need only consider pairs with V empty.

8.4 Bordism as a homology theory

For J a stable group, and X any space, we denote by �J
m(X ) the cobordism

group of (closed) manifoldsMm together with a weak J-structure and a map to
X . The arguments of the preceding section generalise easily to this situation.
In fact we go further: given a pair of spacesY ⊆ X we define�J

m(X,Y ) to be
the set of cobordism classes of (compact) manifoldsMm with aweak J-structure
and a map f : M → X with f (∂M) ⊂ Y . The definition of the cobordism rela-
tion is implicit in the above: a cobordism is a compact manifoldW with corner,
with a weak J-structure inducing the given weak J-structures on ∂±W (with the
above convention), together with a map g : (W, ∂cW )→ (X,Y ). Generalising
Theorem 8.1.3, we have

Theorem 8.4.1 If J is a stable group, the Thom construction induces isomor-
phisms

�J
m(X,Y ) ∼= lim

k→∞
πm+k((X+ ∧ T (Jk ),Y

+ ∧ T (Jk ))).

Proof GivenMm, it follows fromWhitney’s embedding theorem and the refine-
ments of Theorem 4.7.3 that for k > m we can find embeddings of (M, ∂M) as
a submanifold of (Dm+k, ∂Dm+k ), and that for k > m+ 1 any two such embed-
dings are diffeotopic. It follows from Lemma 8.2.6 that for k large enough
the weak J-structure on M induces a Jk-structure on the normal bundle ν

of the embedding. Write ∂Aν for the part of the disc bundle Aν lying over
∂M. Then we have a map Aν → A(Jk )→ T (Jk ) and also maps (Aν, ∂Aν )→
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(M, ∂M)→ (X,Y ). Taking the product, we have a map (Aν, ∂Aν )→ (X ×
T (Jk ),Y × T (Jk )), which takes (Sν, ∂Sν ) to (X × {∞},Y × {∞}).

Now collapse everything in Dm+k outside Aν to a point, giving a map of
(Dm+k, ∂Dm+k ) to (T (ν), ∂T (ν)), and hence to

(X × T (Jk )/X × {∞},Y × T (Jk )/Y × {∞}).
Recalling thatX × T (Jk )/X × {∞} = X+ ∧ T (Jk ), we see as in Theorem 8.1.3,
that this construction define a map

�J
m(X,Y )→ limk→∞ πm+k((X+ ∧ T (Jk ),Y+ ∧ T (Jk ))).

The proof of the result now also closely follows that of Theorem 8.1.3. To
establish surjectivity, we start with a map f and letK be the inverse image of∞.
Then f defines amap ofDm+k \ K toA(Jk )× X . We alter the first component by
a small homotopy, to make it smooth and transverse to B(Jk ). This defines also
a homotopy of f , say to f ′. Now setMm = f ′−1(B(Jk )× X ); then f ′ induces a
map (Mm, ∂Mm)→ (X,Y ), and the normal bundle of M has group reduced to
Jk. It follows that the bordism class defined by M maps to the homotopy class
of f .
Again, injectivity follows by a similar but simpler argument, and the proof

that the bijection preserves group structures and the passage to the limit work
as before.

In particular we have an isomorphism�J
m(X ) ∼= limk→∞ πm+k(X+ ∧ T (Jk )).

It follows as in Corollary 8.2.12 that

Corollary 8.4.2 Under the isomorphism of Theorem 8.4.1, the external prod-
ucts �J

m(X )×�J
n(Y )→ �J

m+n(X × Y ) correspond to the homotopy pairings
induced by (X+ ∧ T (Jk )) ∧ (Y+ ∧ T (Jl ))→ (X+ ∧ Y+) ∧ T (Jk+l ).

The maps T (Jk ) ∧ T (Jl )→ T (Jk+l ) give the limit TJ the structure of a ring
spectrum (see §B.4). We can immediately extend Theorem 8.2.11 to

Theorem 8.4.3 The Thom construction induces a natural equivalence between
the functor �J

∗ and homology theory with coefficients in the spectrum TJ; this
respects products in the multiplicative case.

We have shown that�J
∗ defines a homology theory. We prefer to present also

a direct proof of this fact.

Theorem 8.4.4 The groups �J
∗(X ), �

J
∗(X,Y ) satisfy the Eilenberg–Steenrod

axioms [50] for a homology theory.
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We first recall these axioms:
I, II: �J

∗ is a functor from the category of pairs of spaces (X,Y ) and contin-
uous maps to the category of graded abelian groups. We denote �∗(X,∅) by
�∗(X ).
III: For any pair (X,Y ) there is a map ∂ : �m(X,Y )→ �m−1(Y ) which is

natural for maps of pairs.
IV: For any pair (X,Y ), if i : Y → X and j : (X,∅)→ (X,Y ) denote the

inclusions, we have an exact sequence

· · · → �J
m(Y )

i∗−→ �J
m(X )

j∗−→ �J
m(X,Y )

∂m−→ �J
m−1(Y )→ · · ·

V: Homotopic maps ϕ0 and ϕ1 : (X1,Y1)→ (X2,Y2) induce the same map in
bordism: ϕ0,∗ = ϕ1,∗ : �J

∗(X1,Y1)→ �J
∗(X2,Y2).

VI: If U ⊂ X has its closure in the interior of Y , then inclusion induces an
isomorphism �J

∗(X \U,Y \U ) ∼= �J
∗(X,Y ).

Proof I, II: If ϕ : (X1,Y1)→ (X2,Y2) is a map, M has a weak J-structure, and
f : (M, ∂M)→ (X1,Y1) represents a class z ∈ �J

m(X1,Y1), then ϕ ◦ f repre-
sents ϕ∗(z). This is well defined since if F defines a cobordism of f then ϕ ◦ F
defines a cobordism of F . It is clear that the construction respects unions, so
the map is additive.
III. If f : (M, ∂M)→ (X,Y ) gives a bordism class of (X,Y ), then f |∂M

gives a bordism class of Y . If F : (W, ∂cW )→ (X,Y ) is a cobordism, then
F|∂cW is a cobordism between the boundary maps of F|∂−W and F|∂+W : thus
restriction induces a map ∂m : �J

m(X,Y )→ �J
m−1(Y ) which is compatible with

disjoint union and hence a homomorphism. It is immediate that the construction
is natural for maps of pairs.
IV. This is our first illustration of Lemma 8.3.1: here all manifolds have weak

J-structures, and an α-structure consists of a map to X and a β-structure of
a map to Y ⊂ X . Observe that in this case, if we form N ′′ by glueing mani-
folds N, N ′ with α-structure along their common boundary, both the weak J-
structures and the maps to X fit to define a α-structure on N′′.
V: If � : ϕ0 # ϕ1, then for any f : (M, ∂M)→ (X,Y ), we can regard � ◦ f

as defining a cobordism between ϕ0 ◦ f and ϕ1 ◦ f .
VI: To prove surjectivity, we let f : (M, ∂M)→ (X,Y ) represent an ele-

ment of �J
m(X,Y ). It is convenient first to alter f (if necessary) by a homot-

opy on a collar neighbourhood of ∂M so that some smaller neighbourhood is
mapped intoY . Then A = f−1(X \ Y ) and B = ∂M ∪ f−1(U ) have disjoint clo-
sures, so (see §A.2) we can find a continuous map s : M → I with s(A) = 0
and s(B) = 1.
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We now approximate s by a smooth map, and make it transverse to 1
2 . Then

N := s−1[− 1
2 ,

1
2 ] is a smooth submanifold ofM, and f |N determines an element

of�J
m(X \U,Y \U ). ButN andM determine the same class in�J

m(X,Y ). For a
cobordismW , we use f × 1I : M × I → X with a corner introduced at ∂N × 0
and the corner at ∂M × 0 rounded (as in the proof of Lemma 8.3.3). Since (M \
N) ⊂ s−1[1/2, 1], it is disjoint from A, and f (M \ N) ⊂ Y , so we can safely
adjoin (M \ N)× 0 to ∂cW .

The proof of injectivity is similar. If f : (W, ∂cW )→ (X,Y ) is a cobor-
dism of f |∂−W : (∂−W,∠−W )→ (X \U,Y \U ) to ∂+W = ∅, we first adjust
f so that A = f−1(X \ Y ) and B = ∂cW ∪ f−1(U ) have disjoint closures.
Next choose a smooth s : (W,A,B)→ (I, 0, 1), transverse to 1

2 , and set V =
s−1[0, 1

2 ]. ThenV is a cobordism of ∂−V to zero in�J
m(X \U,Y \U ): a cobor-

dism of ∂−V to ∂−W is obtained exactly as above. This completes the proof of
the theorem.

Various standard properties of homology now follow.

Proposition 8.4.5 (i) For any non-empty X, the maps {∗} → X → {∗} induce
a direct sum split �J

∗(X ) ∼= �J
∗ ⊕ �̃J

∗(X ), where �̃
J
m(X ) ∼= limk→∞ πm+k(X ∧

T (Jk )). If CY is the cone on Y , �̃J
∗(CY ) = 0, and ∂ : �J

m(CY,Y ) ∼= �̃J
m−1(Y ).

(ii) If (X,Y ) is a CW pair, or more generally if it has the homotopy extension
property (HEP), �J

∗(X,Y ) ∼= �J
∗(X/Y, pt ) ∼= �̃J

∗(X/Y ).
(iii) If X ⊃ Y ⊃ Z is a triple, we have an exact sequence

· · · → �J
m(Y,Z)→ �J

m(X,Z)→ �J
m(X,Y )→ �J

m−1(Y,Z)→ · · ·

(iv) �̃J
m(S

p) ∼= �J
m−p.

(v) Let X = Y1 ∪ Y2, Z = Y1 ∩ Y2, and suppose inclusion induces isomor-
phisms �J

∗(Yi,Z) ∼= �J
∗(X,Y1−i) (by (i), this holds if the pairs (Yi,Z) have the

HEP). Then we have the exact sequences

· · · → �J
m(Z)→ �J

m(Y1)⊕�J
m(Y2)→ �J

m(X )→ �J
m−1(Z)→ · · ·

· · · → �J
m(Z)→ �J

m(X )→ �J
m(X,Y1)⊕�J

m(X,Y2)→ �J
m−1(Z)→ · · ·

(vi) �J
∗(X ∪ Y ) ∼= �J

∗(X )⊕�J
∗(Y ) for disjoint union; �̃J

∗(X ∨ Y ) ∼=
�̃J
∗(X )⊕ �̃J

∗(Y ).
(vii) If (X,Y ) is a CW pair, �J

m(X
p ∪ Y,X p−1 ∪ Y ) ∼= Cp(X,Y ;�J

m−p).

Proof (i) The splitting follows as we have an additive functor; the isomorphism
follows as we have the same split on both sides of the equation. The next asser-
tion follows from the homotopy axiom, the final one from the exact sequence.
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256 Cobordism

(ii) Under the hypothesis, X/Y has the homotopy type of X with a cone on Y
attached; by excision, this modulo the cone has the same groups as X modulo
Y .

(iii) This is a standard exercise in diagram chasing.
(iv) Follows by induction from (ii) and (iii).
(v) These follow by another standard argument (the same for both).
(vi) Here X ∨ Y denotes the union of spaces X and Y with a single common

point. Since Z = ∅, we can apply (v).
(vii) By (i), �J

m(X
p ∪ Y,X p−1 ∪ Y ) ∼= �J

m(X
p/(X p−1 ∪ (X p ∩ Y ))). But

X p/(X p−1 ∪ (X p ∩ Y )) is a wedge of p-spheres. Now apply (iv) and (vi).

These results all illustrate howwe can begin to calculate the groups�J
m(X,Y )

in terms of the �J
m. We can formalise this process as a spectral sequence.

Theorem 8.4.6 Let (X,Y ) be a CW pair. Then there is a first quadrant �J
∗-

module spectral sequence, converging strongly to �J
∗(X,Y ), which starts with

E2
pq = Hp(X,Y ;�J

q).

Proof By Proposition 8.4.5 (iii), the triple (X p ∪ Y,Xq ∪ Y,Xr ∪ Y ) (r < q <
p) has an exact bordism sequence. All the maps are induced by inclusions
and boundary homomorphisms, so all expected diagrams commute. Such a
collection of exact sequences defines a spectral sequence. We write X∞ = X ,
X−∞ = ∅: then the limit term is�J

∗(X,Y ). The module structure is induced by
natural products �J

m ×�J
n(X

p ∪ Y,Xq ∪ Y )→ �J
m+n(X

p ∪ Y,Xq ∪ Y ): if Mm

is a closed manifold, and f : (N, ∂N)→ (X p ∪ Y,Xq ∪ Y ), then we use the
manifold M × N (with induced J-structure) and the map induced by first pro-
jecting on N.
By Proposition 8.4.5 (vii), the E1 term is

E1
pq = �J

p+q(X
p ∪ Y,X p−1 ∪ Y ) ∼= Cp(X,Y ;�J

q).

The boundary d1 is induced by taking the boundary of a manifold: it is easy
to verify that this coincides with the usual boundary in the chain complex of
(X,Y ). It follows that E2

pq = Hp(X,Y ;�J
q) and hence (since�

J
q = 0 for q < 0)

we have a first quadrant spectral sequence.
As to convergence, we note that

�J
n(X

−∞ ∪ Y ) = �J
n(X

p ∪ Y ) for all p < 0

�J
n(X

p ∪ Y ) = �J
n(X

∞ ∪ Y ) for all p > n,

the first since X−1 = ∅ = X−∞ and the second since (by the cellular approxi-
mation theorem) any map of an n-manifold into X is homotopic to a map into
Xn. These two isomorphisms imply strong convergence of the sequence.
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We have now discussed the homology theory associated with the spectrum
TJ and so with the stable group J. There is also an associated cohomology
theory, defined by

�n
J (X ) := Hn(X;TJ) := lim

N→∞
[SNX : T (JN+n)].

The geometric content of this definition arises again by Theorem 8.4.1. IfM is
a closed smooth manifold, the suspension SNM is obtained from RN ×M by
adding a single point∞. It follows from the Theorem that [SNM : T (JN+n)] cor-
responds bijectively to cobordism classes of submanifolds of RN ×M whose
normal bundles have group reduced to JN+n.

Theorem 8.4.7 Let J satisfy (S). Let Mm have a weak J-structure. Then
�n
J (M) ∼= �J

m−n(M, ∂M).

Proof In this case, RN ×Mm also has a weak J-structure. By Corollary 8.2.8,
a JN+n-structure on the normal bundle of Vm−n in RN ×Mm induces a weak
J-structure on the tangent bundle ofV , and conversely if N is large enough. We
thus have a bijective correspondence between �n

J (M) and cobordism classes
of manifolds Vm−n with weak J-structure and an imbedding in RN ×Mm, for
large enough N. But if N is large, any map to RN ×Mm is homotopic to an
embedding, homotopic embeddings are diffeotopic, and a diffeotopy gives a
cobordism. Hence specifying an imbedding in RN ×Mm up to diffeotopy is
equivalent to specifying a map to RN ×Mm, or indeed toMm, up to homotopy.
It remains only to note that if M has boundary, ∂V is imbedded in RN × ∂M,
so we must insist that it be mapped to ∂M.

This result shows that a manifold with weak J-structure is orientable for the
homology theory�J

∗. We also have a form of the Gysin isomorphism theorem.

Theorem 8.4.8 Let J be a stable group satisfying (S), (M); X a topological
space, ξ a Jk-bundle over X. Then �J

n(X ) ∼= �̃J
n+k(T (ξ )).

Proof Let f : X → B(Jk ) classify ξ , and fN denote the composite

B(JN )× X
1× f−→ B(JN )× B(Jk )

BψN,k−→ B(JN+k ).

Write FN for the map B(JN )× X → B(JN+k )× X whose components are fN
and projection on the second factor. FN is covered by a bundle map of γ N ⊕ ξ

to γ N+k. Also, B(JN ) is mapped by the natural injection i to B(JN+k ), and we
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have a commutative exact diagram

0 → πr(B(JN )) → πr(B(JN )× X ) → πr(X ) → 0
↓ i∗ ↓ FN∗ ‖

0 → πr(B(JN+k )) → πr(B(JN+k )× X ) → πr(X ) → 0.

Thus FN∗ is an isomorphism in the limit as N →∞. We have an induced map
of Thom spaces

T (JN ) ∧ T (ξ )→ T (JN+k ) ∧ X+,

which then also in the limit gives homotopy isomorphisms. Thus

�J
n(X ) ∼= lim

N→∞
πN+n+k(T (JN+k ) ∧ X+)

∼= lim
N→∞

πN+n+k(T (JN ) ∧ T (ξ ))

∼= �̃J
n+k(T (ξ )).

The calculation in Lemma 8.3.5 of cobordism of pairs involves the groups
�
J×Hq
∗ , which admit a natural �J

∗-module structure. We can now ‘compute’
them directly using bordism groups.

Lemma 8.4.9 We have �
J×Hq
n

∼= �J
n+q(T (Hq)), and more generally

�
J×Hq
n (X ) ∼= �J

n+q(T (Hq) ∧ X+).

Proof By Theorem 8.4.1, we have

�
J×Hq
n (X ) = lim

N→∞
πn+N (T (J × Hq)N ∧ X+)

= lim
N→∞

πn+N (T (JN−q × Hq) ∧ X+)

= lim
N→∞

πn+N (T (JN−q) ∧ T (Hq) ∧ X+)

= �J
n+q(T (Hq) ∧ X+).

As with any homology theory, we can define bordism theory with coeffi-
cients. If n > 1 and r > 1 are natural numbers, write ern for a space obtained
from Sn by attaching an (n+ 1)-cell by a map Sn → Sn of degree r; thus
H̃N (ern;Z) is isomorphic to Zr if N = n and is zero otherwise.
We can now define �J

N (X;Zr ) := �̃J
N+n(X ∧ ern). Elementary properties of

this definition are easily deduced from homotopy properties of the spaces ern.
We will not go into further details.
The following construction is also sometimes useful. Let J be a stable group

and H be any topological group. Then we can define a stable group J � H by
setting (J � H )n := Jn × H, operating on Rn via its projection on Jn. (This is
not the same as the J× H defined above.)
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8.5 Equivariant cobordism 259

We have B(Jn � H ) = B(Jn)× B(H ) and T (Jn � H ) = T (Jn) ∧ B(H ). In
particular, if X is any CW complex, the loop space �X is equivalent to a topo-
logical group, and we have

�J��X
n = lim

N→∞
πn+N (T (Jn+N ×�X ))

= lim
N→∞

πn+N (T (Jn+N ∧ X )) = �̃J
n(X ).

Thus the groups �̃J
∗(X ) may be considered as the coefficient groups of the

homology theory �J��X
∗ .

8.5 Equivariant cobordism

The object of this section is to give a method for reducing the calculation of
equivariant cobordism groups to that of the bordism groups of certain classify-
ing spaces.
We begin by formulating the definitions of equivariant cobordism groups.

First define IOm (G) to be the cobordism group of manifolds with a smooth
action of the compact Lie group G. Next, let A be a closed collection of orbit
types (in the sense of §3.5), and write IOm (G;A) for the cobordism group of
those actions such that all orbit types belong to A. Here we identify a type
defined by a pair (H,E ) with the type defined by (H,E ⊕ R), where H acts
trivially on R, to be able to use the same list of types for manifolds and for
cobordisms.
We also wish to incorporate a structure group. Let J be a stable group satis-

fying (M), (A) and (S), andM have a J-structure (on its stable tangent bundle).
We say that a smooth action of G onM respects the J-structure if the following
condition is satisfied. For some n, we are given an action ofG on a principal Jn-
bundle P which defines the J-structure, lifting the given action of G onM. This
defines actions of G on the associated bundles; in particular, on the principal
Jn+1-bundle, so the condition is independent of n. To avoid technicalities we
restrict to three cases: J may be O, SO, orU : in the second case all the bundles
are orientable; in the third all are unitary, in particular E is acted on by a unitary
group which we denoteU (E ).
Write IJm(G;A) for the group of cobordism classes of manifolds Mm with J-

structure and a smoothG-action which respects it, and such that each orbit type
belongs to A.
First consider the case of free actions: we have the single orbit type when H

is trivial; denote it by ‘free’. In this case, the projection M → G\M is a fibre
bundle with group G. Such bundles over X are classified by (homotopy classes
of) maps X → B(G), where B(G) is the classifying space of G.
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Lemma 8.5.1 The cobordism group IJm(G; f ree) is isomorphic to the bordism
group �J

m−g(B(G)), where g= dimG.

Proof We have just observed that a free action on M leads to a map G\M →
B(G); the converse is also immediate. The same remarks apply to manifolds
with boundary, so the correspondence goes over to cobordism.

Now let A be a closed set of orbit types, α ∈ A a maximal element, and write
A′ := A \ {α}: since α is maximal, this too is closed. There is a natural map
IJm(G;A′) → IJm(G;A).
Lemma 8.5.2 There is a natural exact sequence

. . . IJm(G;A′)→ IJm(G;A)→ IJm(G; (A,A′))→ IJm−1(G;A′)→ IJm−1(G;A) . . .
Proof This is a direct application of the general principle of Lemma 8.3.1. Here
the third term is defined as the group of cobordism classes of cobordismsWm

with J-structure and a smooth G-action which respects it, and such that each
orbit type belongs to A and those on ∂W to A′.

This formal result is only of value once we have a way to compute the third
term.
We recall that an orbit type α is associated to a subgroupHα ofG and a repre-

sentation of Hα on a Euclidean space Eα (both defined up to conjugacy). Since
α is maximal in A,W α is a closed submanifold ofW , and by hypothesis is dis-
joint from ∂W . By Theorem 3.5.8, a neighbourhood ofW α inM is equivariantly
diffeomorphic to a bundle over Xα =W α/G with fibre G×Hα Eα . Note that
dimXα = dimW α − dimG+ dimHα , and that dimM − dimW α = dimEα .
According to Lemma 8.3.3, the third term IJm(G; (A,A′)) is isomorphic to

the bordism group of G-manifolds W α together with a G-bundle π : Nα →
W α with fibre Eα on which Hα acts as indicated. To proceed, we let P be the
principal J(Eα )-bundle associated to π : P is the set of isometries of Eα on fibres
of π . On P we have the natural (right) action of J(Eα ), also an induced (left)
action of G which commutes with it, hence an action of G× J(Eα ): this action
has only a single orbit type. The isotropy group is the set of elements

H∗ = {(h−1, ρ(h)) | h ∈ Hα} ⊆ G× J(Eα ).

Recalling the discussion in §3.5 of the structure of a G-manifold with just one
orbit type, we now consider the submanifold PH

∗
and the induced action on it

of

N(H∗) = {(g, r) ∈ G× J(Eα ) : ρ(g−1hg) = r−1ρ(h)r for all h ∈ Hα}.
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Denote by Lα the quotient group N(H∗)/H∗. Then PH
∗
is a principal Lα-bundle

over X . The mechanism of classifying spaces tells us that such bundles corre-
spond to homotopy classes of maps X → BLα .

Theorem 8.5.3 We have

IJm(G; (A,A′) ∼= �J
m−c(BL

α ),

where c = dimG− dimHα + dimEα .

Proof As in the proof of Lemma 8.5.1, the homotopy class of X → BLα deter-
mines the isomorphism class of X and henceW with all its structure. Since the
same applies to bounded manifolds, we can pass to cobordism classes.

This argument extends trivially to the case whenA has twomaximal elements
α, β such that neither α ≺ β nor β ≺ α (for example, the subgroups Hα and
Hβ are conjugate), then if A′′ := A \ {α, β} then

IJm(G; (A,A′′)) ∼= IJm(G; (A′′ ∪ {α},A′′))⊕ IJm(G; (A′′ ∪ {β},A′′)),
for the orbit types Mα and Mβ have disjoint closures. Similarly we can deal
with further such summands.
The simplest example is the group G = Z2 with J = O. Any action is semi-

free; the possible non-trivial orbit types have H = Z2 and E = Rk for some k,
with the antipodal action. In this case, H∗ has order 2 and is central in G× Ok,
so its normaliser is the whole group and L = N(H∗)/H∗ is isomorphic to Ok.
Denote by A the set of all orbit types. It follows from Theorem 8.5.3, together
with the remark following it, that we have

IOm (Z2; (A, f ree) ∼=
⊕
k

�O
m−k(B(Ok )).

Theorem 8.5.4 There is a split short exact sequence
0→ IOm (Z2;A)→

⊕
k�

O
m−k(B(Ok ))→ �m−1(BZ2)→ 0.

Proof By Lemma 8.5.2 we have an exact sequence
IOm (Z2; f ree)→IOm (Z2;A)→IOm (Z2;(A, f ree))→IOm−1(Z2; f ree)→IOm−1(Z2;A).
We claim that the map IOm (Z2; f ree)→ IOm (Z2;A) is trivial. Indeed, given a

free action of Z2 onM, the mapping cylinder of the projectionM → Z2\M can
be identified with a bundle over Z2\M with fibre the interval [−1, 1]. This is a
smooth manifold, with aZ2-action given by−1 in each fibre, and has boundary
M.
The long sequence thus breaks into short exact sequences, and we can

substitute IOm−1(BZ2; f ree) ∼= �m−1(BZ2) by Lemma 8.5.1 and the value of
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IOm (Z2; (A, f ree)) from the calculation preceding the theorem. The fact that the
sequence splits follows since the middle group has exponent 2.

The same approach may be applied to the caseG = Zp, with p an odd prime,
but here the details do not simplify. Here it is more natural to take the structure
group J as SO or U . It is still true that any action is semifree, and we have a
calculation of the bordism group of free actions; although the calculation of
�SO(BZp) and �U (BZp) is less easy than for �O(BZ2), this may be explicitly
done, using the results quoted in the following section. A non-free orbit type
has H = Zp, but to describe the isotropy action we must specify for each r =
1, 2, . . . , p− 1 a multiplicity ar ≥ 0 and then have an action on Cnα with nα =∑

r ar where the generator t of G is represented by the diagonal action with the
eigenvalue ζ rp repeated ar times. In each case, H∗ is isomorphic to Zp, but the
calculation of its normaliser N(H∗) depends very much on α; only in the case
when all ar except one vanish is the corresponding group H∗ central. Nor is
there any reason for the map ISOm (Zp; f ree)→ ISOm (Zp;A) to be trivial.

8.6 Classifying spaces, �O
∗ , �

U
∗

We first describe the cohomology of the classifying spaces, and begin with the
unitary group, where the structure is simplest.
The group Un has a subgroup consisting of diagonal matrices; this is

a torus Tn, a product of n copies of the circle group U1 = S1. The clas-
sifying space B(S1) can be taken to be infinite complex projective space
P∞(C) and H∗(B(S1);Z) is the polynomial ring Z[t] on a single generator
t ∈ H2(B(S1);Z). Thus H∗(B(Tn);Z) is the polynomial ring Z[t1, . . . , tn].

The inclusion induces maps B(Tn)→ B(Un) and H∗(B(Un);Z)→
H∗(B(Tn);Z). It is well known that the map H∗(B(Un);Z)→ H∗(B(Tn);Z)
is injective, and that its image is the subring of polynomials invariant under
the action of the Weyl group W . The Weyl group W of Un is the symmetric
group, and acts by permutations: the invariants form the ring of symmetric
functions in the ti. We can identify this with the polynomial ring generated by
the elementary symmetric functions ci (1 ≤ i ≤ n), which can be defined by
the formal identity

∏n
1(x− ti) = xn +∑n

1(−1)rxn−rcr. The class ci is known
as the Chern class. An additive basis of H∗(B(Un);Z) is given by the elements
si1,i2,... (i1 ≥ i2 . . .), defined as the sum of all the distinct monomials formed
from ti11 t

i2
2 · · · by permuting the variables. To distinguish these from similar

calculations below, we sometimes write sI (c) for emphasis.
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Taking the limit as n→∞ gives H∗(B(U );Z) as the polynomial ring in an
infinite sequence of variables c1, c2, . . .. There is an additive isomorphism of
H∗(B(U );Z) to the cohomology of the Thom spectrum TU.

The multiplicative structure for TU appears in homology, and is induced by
direct sum, which gives maps B(Um)× B(Un)→ B(Um+n) and TUm ∧ TUn →
TUm+n. To evaluate this in cohomology, observe that it comes from the identity
Tm × Tn = Tm+n and hence H∗(Tm;Z)⊗ H∗(Tn;Z) ∼= H∗(Tm+n;Z); we can
identify these as polynomial rings with generators, say, t1, . . . , tm, u1, . . . , un.
The induced map ∇ : H∗(B(Um+n);Z)→ H∗(B(Um);Z)⊗ H∗(B(Un);Z) is
given by ∇(sI ) =

∑
sI1 ⊗ sI2 , where the sum is extended over all partitions of

the set I = {i1, i2, . . .} as a disjoint union I = I1 ∪ I2. This is compatible with
the inclusion maps which increase m and n, so we can pass to the limit, giving
a diagonal map ∇ : H∗(B(U );Z)→ H∗(B(U );Z)⊗ H∗(B(U );Z).
Dualising gives an algebra structure on H∗(B(U );Z). If we define {τI} to be

the dual basis to {sI} it follows that if I1 and I2 are disjoint we have τI1τI2 = τI1,I2
and hence τI = τ

i1
1 τ

i2
2 · · · . Thus H∗(B(U );Z) is a polynomial ring with the τr

as generators.
It follows from theGysin isomorphism theorem that we have an isomorphism

H∗(B(Um);Z)→ H̃∗(TUm : Z) of degree m. Since the diagram

H∗(B(Um);Z)⊗ H∗(B(Un);Z) ∼= H∗(B(Um)× B(Un);Z) → H∗(B(Um+n);Z)
↓ $ ↓ $ ↓ $

H̃∗(TUm;Z)⊗ H̃∗(TUn;Z) ∼= H̃∗(TUm ∧ TUn;Z) → H̃∗(TUm+n;Z)

is commutative, we have an induced isomorphism ofH∗(B(U );Z) on the stable
homology ring H̃∗(TU;Z).
The structure for the orthogonal group On is very similar. The subgroup

Xn of diagonal matrices is a product of n copies of O1
∼= S0: it is a maximal

elementary 2-subgroup. The classifying space B(O1) can be taken to be infi-
nite real projective space P∞(R) and H∗(B(O1);Z2) is the polynomial ring
Z2[t] on a single generator t ∈ H1(B(O1);Z2). ThusH∗(B(Xn);Z2) is the poly-
nomial ring Z2[t1, . . . , tn]. The inclusion induces maps B(Xn)→ B(On) and
H∗(B(On);Z2)→ H∗(B(Xn);Z2); the image is the subring of polynomials
invariant under the action of the group of permutations of the ti, so is the ring of
symmetric functions, and hence the polynomial ring generated by the elemen-
tary symmetric functions. In this case, the class defined by the ith elementary
symmetric function is known as the Stiefel–Whitney class, and is denoted wi,
and we write sI (w) for the symmetric functions defined as above. We refer to
[103] for a good general introduction to Stiefel–Whitney and other character-
istic classes.
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Thus H∗(B(O);Z2) is the polynomial algebra in classes wi. It is additively
isomorphic to H̃∗(TO;Z2). Direct sum of vector bundles induces a diagonal
map for these, hence a multiplication on H̃∗(TO;Z2), given by essentially the
same formulae as in the unitary case.
Returning to the unitary case and applying Proposition B.4.1, we obtain our

first calculation.

Proposition 8.6.1 The ring �U
∗ ⊗Q is a polynomial ring with one generator

in each even dimension, and each group �U
n is finitely generated.

Since we had dual bases above, sn is orthogonal to all the τI such that I has
more than one part, and hence to all decomposable classes in H∗(B(U );Z) (i.e.
classes which can be expressed as sums of products of classes of lower degree).
Thus z ∈ Hn(B(U );Z) is decomposable if and only if 〈z, sn(c)〉 = 0.
Since H∗(B(U );Z) and H̃∗(TU;Z) are polynomial rings, any ring homo-

morphism H̃∗(TU;Z)→ Z is determined by its values on the generators τr,
and these values may be chosen arbitrarily. A corresponding statement holds
with coefficients Q in place of Z. We seek a formula to express this.
Any additive homomorphism φ : H∗(TU;Q)→ Q is given by taking inner

product with an element� of the direct product H∗∗(TU;Q) ∼= H∗∗(B(U );Q)
of the groups Hn(B(U );Q). Dualising, it follows that φ is a ring homomor-
phism if and only if ∇(�) = �⊗�. As above, it is convenient to consider �
as a symmetric element of the power series ring in infinitely many variables ti.
Since ∇(tri ) = tri ⊗ 1+ 1⊗ tri , we see that for any coefficients ar, the infinite
product

� :=
∏
i

(
1+

∞∑
r=1

art
r
i

)

has the desired property. Since this formula allows one arbitrary coefficient at
each stage, it allows independent choices for the φ(τr ), so � is necessarily of
this form.
We have seen that if M2n has a weak U-structure given by a lift f : M →

B(U ) of the map inducing τM , the class ofM in�U
∗ ⊗Q is decomposable if and

only if sn(M) := 〈M, f ∗sn(c)〉 = 0. It will be useful to have some calculations
of these numbers. Denote byYC

m,n a nonsingular hypersurface of degree (1, 1) in

Pm(C)× Pn(C), for example, that given by
∑min(m,n)

i=0 xiyi = 0. These examples
were introduced by Milnor [96]. Write alsoYR

m,n for a nonsingular hypersurface
of degree (1, 1) in Pm(R)× Pn(R).

Proposition 8.6.2 We have sn(Pn(C)) = n+ 1 and sm+n−1(YC
m,n) = −(m+nm ).
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Proof Write λ for the canonical line bundle over Pn(C). Then τPn(C) ⊕ ε ≡
(n+ 1)λ, so the characteristic classes of τPn(C) agree with those of (n+ 1)λ, so
are induced by the map Pn(C)→ B(Tn+1)→ B(Un+1).

Since c1(λ) is the generator x of H2(Pn(C);Z), the generators ti of the coho-
mology groupsH2(;Z) of the factors BT of BTn+1 all map to x. Thus sn, which
is the image of

∑
tni , maps to (n+ 1)xn, and evaluating this on [Pn(C)] gives

(n+ 1).
SetM := Pm(C)× Pn(C) and write λ1, λ2 for the line bundles induced from

the two factors. We have H2(M;Z) ∼= Z⊕ Z: write x1, x2 for the generators
coming from the two factors. Thus τM ⊕ 2ε ≡ (m+ 1)λ1 ⊕ (n+ 1)λ2 and in
calculating characteristic classes we may take (m+ 1) of the ti equal to x1 and
(n+ 1) equal to x2. These all pull back by the inclusion i : YC

m,n ⊂ M, and the
normal bundle νY of Y in M is the pullback of λ1 ⊗ λ2, with first Chern class
i∗(x1 + x2).
Since sn is defined as a sum of contributions coming from summands, we

have in general sn(ξ ⊕ η) = sn(ξ )+ sn(η). Now as
τY ⊕ νY ⊕ 2ε ≡ (m+ 1)i∗λ1 ⊕ (n+ 1)i∗λ2,

and as i∗xm+n−11 [Y ] = 0, it follows that
sn(Y ) = −sn(νY )[Y ] = −i∗(x1 + x2)m+n−1[Y ] = −(x1 + x2)m+n−1[i∗Y ]
= −(x1 + x2)m+n[M] = −(m+nm ).
The same calculations yield

Corollary 8.6.3 We have sn(w)(Pn(R)) ≡ n+ 1 (mod 2)
and sm+n−1(w)(YR

m,n) ≡
(m+n
m

)
(mod 2).

The calculations for (special) orthogonal and symplectic groups are similar
to the unitary case, provided for the orthogonal group we localise away from
the prime 2. The groups SO2n+1 and Sp2n each contain a maximal torus Tn, but
in these cases the action of the Weyl group includes, as well as permutations,
the inversions in each factor. (For SO2n we only allow an even number of inver-
sions.) The ring of invariants thus consists of the symmetric functions in the
variables t2i (also for SO2n the product

∏
ti). The class defined by the ith ele-

mentary symmetric function is known as the Pontrjagin class, and is denoted
p4i. The same arguments apply here to calculate the dual. It now follows as
before from Proposition B.4.1 that

Proposition 8.6.4 The rings�SO
∗ ⊗Q and�Sp

∗ ⊗Q are polynomial rings with
one generator in each dimension divisible by 4.

The unitary structure onPn(C) induces an SO-structure, and the dummy vari-
ables ti play the same role as before. As sn is given by

∑
tni , we see that if n is
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even, the formula for sn in terms of Chern classes is the same as the formula in
terms of Pontrjagin classes, thus it follows from Proposition 8.6.2 that

Lemma 8.6.5 We have s2n(p)(P2n(C)) = 2n+ 1.

Thus we can take the manifolds P2k(C) as generators of �SO
∗ ⊗Q.

It follows from Proposition 8.6.4 that any ring homomorphism �SO
∗ ⊗Q →

Q is determined by its values on a list of generators. The most celebrated exam-
ple of this is the signature. We defined the signature σ (M) of an oriented mani-
foldM of dimension 4k in §7.5 as the signature of the quadratic form given by
intersection numbers on H2k(M;R). We saw in that section that σ (M) vanishes
ifM is an oriented boundary, and σ is clearly additive on disjoint unions, hence
defines an additive homomorphism σ : �SO

∗ → Z.

Lemma 8.6.6 The signature σ is multiplicative for products, hence defines a
ring homomorphism σ : �SO

∗ → Z.

Proof Consider the product Mm × N4k−m of two oriented manifolds. We have
H2k(M × N) = ⊕iHi(M)⊗ H2k−i(N). Under cup product the term Hi(M)⊗
H2k−i(N) is dually paired with Hm−i(M)⊗ H2k−m+i(N), so only the term m =
2i can contribute to the signature. The self-pairing of Hi(M)⊗ H2k−i(N) with
itself to Hm(M)⊗ H4k−m(N) ∼= R is the tensor product of the self-pairings of
Hi(M) and H2k−i(N) to R. If i is odd, there is a Lagrangian subspace K of
Hi(M), so K ⊗ H2k−i(N) is a Lagrangian subspace of Hi(M)⊗ H2k−i(N) and
this has signature zero. If i is even, we can diagonalise the quadratic forms on
Hi(M) and H2k−i(N), and the calculation is trivial.

The value is given by Hirzebruch’s signature theorem [74]. First recall the
expansion

t

tanh(t )
= 1+

∞∑
k=1

(−1)k−1
22k

(2k)!
Bkt

2k,

which we may use to define the Bernoulli numbers Bk

B1 = 1

6
, B2 = 1

30
, B3 = 1

42
, B4 = 1

30
, B5 = 5

66
,

B6 = 691

2730
, B7 = 7

6
, . . .

let us write this as t/tanh(t ) = 1+∑∞
k=1 βkt

2k. Now define the class L∗ ∈
H∗∗(B(O);Q) by the formula L∗ :=

∏
i(1+

∑∞
k=1 βkt

2k
i ), where the ti are the

auxiliary variables introduced above.

Theorem 8.6.7 For M oriented, the signature is given by σ (M) = f ∗Lm[M],
where f : M → B(SO) induces τM.
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Proof We have seen that we can take the manifolds P2k(C) as generators of
�SO
∗ ⊗Q. Thus two ring homomorphisms agreeing on these coincide, so it suf-

fices to verify the formula for M = P2k(C). We see at once that each manifold
P2k(C) has signature 1.

Since p(τM ) = (1+ α2)2k+1, we have

L∗[P2k(C)] =
( α

tanhα

)2k+1
[P2k(C)]

= coefficient of α2k in
( α

tanhα

)2k+1
= 1

2π i

∮
dz

(tanh z)2k+1

= 1

2π i

∮
du

u2k+1(1− u2)
(substituting u = tanh(z))

= Res0(1+ u2 + u4 + . . .)/u2k+1

= 1.

Explicit formulae for the L classes may be calculated: for example,

L1 = 1

3
p1, L2 = 7p2 − p21

45
, L3 = 62p3 − 13p1p2 + 2p31

945
.

We will use the below formula for the leading coefficient (see, for example,
[103]).

Lemma 8.6.8 The coefficient of pk in Lk is 22k(22k−1 − 1)Bk/(2k)!.

For A∗ a graded vector space over a field F , we count the dimensions by the
Poincaré series

P(A∗;F )(t ) :=
∞∑
0

dimF (An)t
n.

Thus if A is a polynomial algebra with the degrees of generators in a set S, we
have P(A)(t ) =∏i∈S(1− ti)−1. In particular, by Proposition 8.6.1,

P(�U
∗ ⊗Q)(t ) = P(H∗(U;Q)(t ) =

∞∏
i=1

(1− t2)−1,

and by Proposition 8.6.4,

P(�SO
∗ ⊗Q)(t ) = P(H∗(SO;Q)(t ) =

∞∏
i=1

(1− t4)−1.

Thom’s great achievement [150] was the calculation

Theorem 8.6.9 The ring �O
∗ is a polynomial ring over Z2 with one generator

in each dimension not of the form 2k − 1. The bordism class of a manifold Mm
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is determined by the Stiefel–Whitney numbers of M. Moreover M qualifies as a
generator if and only if sm(w)[M] �= 0.

Weoutline the steps in the proof. SinceM × I can be regarded as a cobordism
of the union of two copies ofM to the empty set, any element of �O

∗ has order
2. It thus suffices to perform calculations in mod 2 cohomology.
The next step is to calculate the action of the Steenrod algebra S2 on

H∗(B(O);Z2) and hence that on H∗(TO;Z2). This shows that the latter is
a free S2-module, and hence that there is a map ψ : TO →∏

K(Z2, n) to a
product of Eilenberg–MacLane spectra which induces a cohomology isomor-
phism, hence is a (stable) homotopy equivalence, so induces an isomorphism
of�O

∗ to a sum of copies of Z2. This can be formulated as follows. For anyMm

and cohomology class k ∈ Hm(B(O);Z2), the classifyingmap φM : M → B(O)
of τM induces φ∗Mk ∈ Hm(M;Z2) and hence a number φ∗Mk[M] ∈ Z2, called a
Stiefel–Whitney number ofM. The result implies that these numbers determine
the class of M in �O

m.
More generally, ψ induces, for any X , an isomorphism �O

∗ (X )→∏
Hn(X;Z2): given a map f : M → X and a cohomology class k ∈

Hn(B(O);Z2), the map φM induces φ∗Mk ∈ Hn(M;Z2), hence a dual homology
class [M] ∩ φ∗Mk ∈ Hm−n(M;Z2) and a class f∗([M] ∩ φ∗Mk) ∈ Hm−n(X;Z2).
Now the composed map �O

m(X )→⊕nHm−n(X;Z2) is a natural isomorphism.
Further, H∗(TO;Z2) is a free comodule over the dual S2 of S2, and this is a

polynomial ring with one generator in each dimension of the form 2k − 1. Thus

P(S2)(t ) =
∏
k

(1− t2
k−1)−1.

It follows that

P(�O
∗ ;Z2)(t ) =

∏
i not of f orm 2n−1

(1− ti)−1.

For the multiplicative structure we can argue abstractly using the fact that
H∗(TO;Z2) is a polynomial ring, or we can argue as follows.
IfM is such that sm(w)[Mm] �= 0, the class ofM in Hm(TO;Z2) is indecom-

posable, hence so is the class ofM in�O
m. Ifm is even, we can takeM as Pm(R);

otherwise if m+ 1 is not a power of 2, write m+ 1 = 2r−1(2s+ 1) with s > 0,
then by Corollary 8.6.3 we can take M = YR

2r−1,2rs.
Since we have exhibited manifolds Mm with sm(w)[M] �= 0 for each m not

of the form 2k − 1, these indecomposables generate a polynomial ring, and the
above counting argument shows that this is the whole of �O

∗ .
Alternative choices are as follows. Write P(m, n) for the bundle over Pm(R)

with fibre Pn(C) where the structure group Z2 acts by complex conjugation.
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Lemma 8.6.10 If N = 2r−1(2s+ 1) with s > 0, set V 2N−1 := P(2r − 1, 2rs).
Then s2N−1(w)[V 2N−1] = 1.

We omit the proof (an elementary calculation) which, like the construction
of the V 2N−1, is due to Dold [41].
A similar, but more elaborate argument gives the result in the unitary case,

which is due to Milnor [96] and Novikov [113]. Introduce the notation rn by

rn : = p if n is a power of the prime p,

= 1 if n is not a prime power.

Theorem 8.6.11 The ring�U
∗ is a polynomial ring with one generator in each

even dimension. The bordism class of a manifold M2m with weak U-structure is
determined by the Chern numbers of M. Moreover M qualifies as a generator
if and only if sm(c)[M] = ±rm+1.

The argument includes the same steps, but encounters additional technical
difficulties. One must analyse the Steenrod algebras Sp for each prime p and
the corresponding actions on H∗(B(U );Zp) and hence on H∗(TU;Zp). This
time the modules are not free, since the Bockstein βp acts trivially, but are free
over the quotient S p of Sp by the ideal generated by βp. It follows that, for each
p, there is a map of TU to a product of Eilenberg–MacLane spectra K(Z, n)
which induces an isomorphism of (mod p) cohomology.
For themultiplicative structure we find thatH∗(TU;Zp) is a polynomial ring,

it is a free comodule over the dual S p
of S p, and that this is a polynomial ring

with one generator in each dimension of the form 2(pk − 1).
Additional calculations are needed first, to ensure that we can fit these

together for all primes p to obtain a map which is a stable homotopy equiv-
alence, and then to make an analysis of the multiplicative structure.
Again some of this can be bypassed using explicit constructions of mani-

folds. By Proposition 8.6.2 we have sm+n−1(YC
m,n) = −(m+nm ). Thus for mani-

folds of dimension N we have values of sN[M] taking all values −(N+1m ) with
1 ≤ m ≤ N. The highest common factor of these is just rN+1.

8.7 Calculation of �SO
∗ and �SU

∗

We consider two cases:
J = O, SJ = SO, J/SJ = {±1}, d = 1, K = R,
J = U, SJ = SU, J/SJ = S1, d = 2, K = C;

we will present the two theories in parallel as far as possible. We will omit
many details (the account of these results occupies the whole of the memoir
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[39] and 140 pp. of Stong’s book [147]) but aim to describe all the geometrical
ideas involved.
We will focus on geometrical arguments, and begin with certain exact

sequences. Some of the arguments will apply to other cases satisfying simi-
lar conditions: for example, taking (J,SJ) to be (Pin,Spin) or (Spinc,Spin)
or (U× H,SU× H ) with H compact.
In each case, we have Jn/SJn ∼= J/SJ ∼= Sd−1.Wewill writeP forP∞(K) and

Pk for Pk(K). We write γ n for the standard vector bundle over B(Jn) or B(SJn)
and η for the standard line bundle over Pk. We regard P as the classifying space
for the group Sd−1, so the map J→ J/SJ ∼= Sd−1 induces π : BJ → P.

Lemma 8.3.1 gives us an exact sequence in which the third term is the cobor-
dism group �J,SJ

m of bounded J-manifolds with a weak SJ-structure on the
boundary. We first interpret this relative term using Lemma 8.3.3.

Theorem 8.7.1 We have a natural isomorphism �J,SJ
m

∼= �SJ
m−d (P).

Proof This is an instance of the general method of Lemma 8.3.3, but there are
many details to clarify.
We will specify the J-structure of a manifoldM by the classifying map of its

stable normal bundle, νM : M → BJ. We have a fibration B(SJ)→ B(J)
π→ P,

and an SJ-structure of M is determined by a nullhomotopy of π ◦ νM which is
thus covered by a homotopy of νM to a map into B(SJ).
The standard line bundle over P has a J-structure, classified by P

η→ BJd
ι→

BJ; we may assume that π ◦ ι ◦ η is the identity map 1P of P. The section ι ◦ η,
together with the group action, shows that the fibration B(SJ)→ B(J)→ P is
trivial.
Write (−1)P : P→ P for the negative of the identity: this is given in the real

case by the identity, and in the complex case by complex conjugation.Moreover
P is an H-space, and the diagram

BJ × BJ
Bψ−→ BJ

↓ π × π ↓ π

P× P → P

is homotopy commutative; we may choose our model of BJ to make it commu-
tative.
Now suppose Mm a J-manifold such that ∂M is an SJ-manifold. Consider

the map πM := π ◦ νM : M → P; up to homotopy, we may suppose that this
mapsM to a finite dimensional projective subspace Pk. We can make this map
smooth and transverse to the submanifold Pk−1, whose preimage will then be a
smooth submanifold Vm−d ofMm, with normal bundle induced from η. As ∂M
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has an SJ-structure, π ◦ νM is trivial on ∂M (which has trivial normal bundle in
M), so may be assumed to avoid Pk−1. Thus V lies in the interior M̊ of M, and
is closed.
The stable normal bundle νV ofV is the sum of the bundles induced from νM

and from η. We give the second summand minus the obvious structure. So the
normal bundle νV is induced by

V
νM |V−→ BJ

1×π−→ BJ × P
1×−1−→ BJ × P

1×η−→ BJ × BJ
Bψ−→ BJ.

The composite π ◦ νV is thus induced by

V
νM |V−→ BJ

π→ P
(1,−1)−→ P× P→ P.

Thus a null-homotopy of the composite map P→ P defines one for π ◦ νV ,
and hence an SJ-structure for V .
Now choose a tubular neighbourhood W of V in M: this is a bundle over

V , with fibre Dd , associated to (π ◦ ν|V )∗η. It follows as in Lemma 8.3.3
that (M, ∂M) is (J, SJ)-cobordant to (W, ∂W ). We need to verify that the SJ-
structure on ∂M extends to (M \ W̊ ): this follows since π ◦ νM takes (M \ W̊ )
to the contractible set (Pk \ Pk−1).
Thus the (J, SJ)-cobordism class of (M, ∂M) agrees with that of (W, ∂W ),

hence is determined by the class of (V, π ◦ ν|V ) in �SJ
m−d (P). The formula

which determines it is as follows. Let η′ be the bundle induced from η. Then
νV = νM + η̄′, where the bar recalls the sign change above. Thus νV + η′ =
νM + η̄′ + η′ = νM + ε2.
Conversely, given any element of�SJ

m−d (P), represented say by (V, f ), we can
take the bundle E with fibre Dd associated to f ∗η and give it a J-structure. The
stable normal bundle ν∂E of the boundary ∂E is the restriction of νE . But π ◦ νE
is essentially f , by definition, and is covered by a bundle map overV of E to the
disc bundle D(η) associated to η, and hence of ∂E to the corresponding sphere
bundle S(η). But S(η) is contractible, so we have a null-homotopy of ∂E →
S(η)→ P, and so an SJ-structure on ∂E. Since all our constructions carry over
to cobordisms, we have indeed an isomorphism �J,SJ

m
∼= �SJ

m−d (P).

We remarked above that for cobordism theory, the extra structure provided
by a submanifold is equivalent to the extra structure provided by a map to its
Thom space. Moreover P is homeomorphic to the Thom space of η. This leads
to

Theorem 8.7.2 We have a natural isomorphism �SJ
m−d (P) ∼= �SJ

m−d ⊕�J
m−2d.

Proof Given an SJ-manifoldVm−d and amapχV : V → P, wemay supposeχV
maps V into Pk−1. We make this transverse to Pk−2, and write B = χ−1

V (Pk−2).
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Then νB = νV |B+ (χV |B)∗η, and we use this formula to give B a J-structure.
Since the cobordism class of (V, f ) determines the cobordism classes of V and
B, we have a homomorphism �SJ

m−d (P)→ �SJ
m−d ⊕�J

m−2d .
Conversely, the class of (V, f ) is determined by those of V , B, and the map

B→ P inducing the normal bundle of B in V . By Lemma 8.3.5 we can sep-
arate the contributions of B and V , provided the stable normal bundle of B is
induced by B→ B(SJ)× P. But since the fibration B(SJ)→ B(J)→ P is triv-
ial, B(SJ)× P is homotopy equivalent to B(J).

By Lemma 8.3.1 we have an exact sequence

. . . �SJ
m → �J

m → �J,SJ
m → �SJ

m−1 · · ·
and combining Theorem 8.7.1 and Theorem 8.7.2 gives a natural isomorphism
�J,SJ
m

∼= �SJ
m−d ⊕�J

m−2d . We now study the maps in the sequence obtained by
making this substitution.

Theorem 8.7.3 There is an exact sequence

�SJ
n

iS−→ �J
n
(d1,d2 )−→ �SJ

n−d ⊕�J
n−2d

(×α0 )−→ �SJ
n−1 → · · ·

where α is the class of Sd−1 with a twisted framing. Also, there exists s2 :
�J
n−2d → �J

n with (d1, d2) ◦ s2 = (0, 1).

Proof Write (d1, d2) for the components of the map �J
m → �SJ

m−d ⊕�J
m−2d ,

so that the image of the class of M by d1 (resp. d2) is determined by V (resp.
B) in the notation above; also write (q1, q2) for the components of the map
�SJ
m−d ⊕�J

m−2d → �SJ
m−1.

As to q1, we can suppose B empty and χV trivial. Then the disc bundle defin-
ing the class in �J,SJ

m is trivial, and has boundary V × Sd−1. Since we have a
product bundle, we obtainmultiplication by the class, α say, of Sd−1 with appro-
priate SJ-structure. To determine this, we can takeV to be a point andM a disc
Dd . Recall that V was constructed from M by making πM transverse to Pk−1.
Now πM maps ∂M = Sd−1 to a point, so induces a map of Sd = M/∂M which
meets Pk−1 transversely in just one point. This coincides (up to homotopy) with
the inclusion of a projective line P1. So α is the class of Sd−1, with SJ-structure
defined by a framing of the normal bundle, twisted in this way.
We now construct a map s2 : �J

m−2d → �J
m and show that d1 ◦ s2 = 0 and

d2 ◦ s2 = id. From this, and the exactness of the sequence it follows that q2 = 0.
To define s2, suppose that Bm−2d is a J-manifold, and form (π ◦ νB), which

wemay suppose amapB→ Pk for some k.WriteQk+2 for the projective bundle
over Pk associated to η ⊕ ε2. Let Mm be the induced bundle over B, Vm−d the
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sub-bundle corresponding to η ⊕ ε1, and identify B itself with the sub-bundle
of V corresponding to η.
Write f for the map M → B and g for the composite map M → B→ Pk.

Then there is a natural splitting τM ⊕ g∗η ∼= f ∗τB ⊕ g∗(η ⊕ ε1)⊕ (−1 ◦ g)∗ε1.
We give all these bundles the induced J-structures. Since the construction
passes to cobordisms, we have a well-defined map of cobordism classes with
s2(B) := (M).
Consider the decomposition Kk+3 = Kk+1 ⊕K2. Then Pk is the projective

space of Kk+1, so a point x ∈ Pk corresponds to a line �x ⊂ Kk+1 which we can
identify with the fibre of η over x. We now identify the fibre of η ⊕ ε2 over x
with �x ⊕K2, and so Qk+2 with the subspace of Pk × Pk+2 of pairs (x, y) with
�y ⊂ �x ⊕K2.

Now define ζ : Qk+2 → Pk+2 to be the map induced by projection on Pk+2.
Then ζ−1(Pk+1) is the set of pairs (x, y) with �y ⊂ �x ⊕K⊕ 0 and ζ−1(Pk ) is
the set of pairs (x, x) with x ∈ Pk. Thus ζ : Qk+2 → Pk+2 is transverse to Pk+1

and Pk, and these have preimages the sub-bundles associated to η ⊕ ε1 and η.
We claim that ζ ◦ β # π ◦ νM . Since the target of these maps is the

Eilenberg–MacLane space P, this only needs checking on the level of the coho-
mology class. It follows that this map is transverse to Pk+1 and Pk, and these
have preimages V and B. Hence we have d2 ◦ s2 = id.
To see d1 ◦ s2 = 0, we must find an SJ-manifold with boundary V . But V

is a P1(= Sd )-bundle over B, with structure group Z(= Sd−1), so bounds the
associated disc bundle, which is topologically the product by I of the mapping
cylinder of the principal bundle. Since the principal bundle was obtained from
π ◦ νB, this has an SJ-structure.

When d = 1 we have Sd−1 = S0, but each point has the positive orientation:
this twists the standard framing of ∂D1 by changing a sign. In this case J = O
and the map �SO

m−1 → �SO
m−1 is multiplication by 2. If d = 2, we have Sd−1 =

S1, and the twisted framing differs from the standard one. Here (see §B.3(x))
homotopy theory tells us that α ∈ πS

1 is the non-zero element η2, and 2η2 = 0.
We now define RJ as the stable group given by the pullback diagram

B(SJ) → B(RJ) → B(J)
↓ ↓ ↓
P0 → P1 → P

.

Proposition 8.7.4 (i) There is a split short exact sequence

0→ �RJ
n

iR−→ �J
n

d2−→ �J
n−2d → 0 (8.7.5)

split by a map s0 : �J
n → �RJ

n with iR ◦ s0 = 1.
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(ii) The following sequence also is exact:

�SJ
n

iSR−→ �RJ
n

d1−→ �SJ
n−d

×α−→ �SJ
n−1 → · · · (8.7.6)

Here iSR, iR and iS = iR ◦ iSR are the maps induced by the natural inclusions
SJ ⊂ RJ ⊂ J.

Proof (i) It follows from the definition of RJ that d2 ◦ iR = 0, and we have
already proved d2 surjective. For exactness at�n

J , supposeM defines an element
of Kerd2. Thus we may take π ◦ νM as a map to Pk, make it transverse to Pk−2,
and write B for the preimage: then by hypothesis B is cobordant to the empty
set. As in Lemma 8.3.5 we may extend this cobordism to one of (M, π ◦ νM ),
and thus suppose π ◦ νM a map to Pk \ Pk−2. But this is homotopic to a map
into P1. Thus M defines a class in �RJ

n .
It remains to define s0 and prove iR ◦ s0 the identity. We begin as usual with

M
νM−→ BJ

π−→ P; again as usual we may replace the target by Pk. We thus
have a mapM × P1 → Pk × P1 → P2k+1, where the final map is the Veronese
embedding

((x0, . . . , xk ), (y0, y1))→ (x0y0, . . . , xky0, x0y1, . . . , xky1).

The composite is transverse to a generic linear subspace L, say given by x0y1 =
x1y0, of P2k (at a point where transversality failed we would have y0 = y1 = 0),
and we define s0[M] to be the class of the preimage M′ of L.

Adapting the above proof that π ◦ νV is nullhomotopic shows in this case
(where an extra factor P1 appears) that π ◦ νM′ is homotopic to a map to P1, so
M′ defines a class in �RJ

n . Finally, ifM itself defines such a class, we may take
k = 1 above, so that the projection of M′ onM is a diffeomorphism.

Since d2 ◦ s2 = i, 1− s2d2 retracts�J
n on the kernel of d2, which we can now

identify with �RJ
n . We denote this map by ρ : �J

n → �RJ
n .

There are alternative presentations of the above material. One can define�RJ
n

as the kernel of d2. One can also show (cf. Theorem 8.7.1) that there is a natural
isomorphism �J,RJ

m
∼= �J

m−2d . It can also be shown that �RJ
n
∼= �̄SJ

n+d (P
2).

We observe that �J
∗(P) is a free �

J
∗-module with base the classes x j defined

by the inclusions of Pj in P.
We define a module endomorphism � of �J

∗(P) as follows. Given a class
represented by f : M → Pk ⊂ P, we make f transverse to Pk−1, set L :=
f−1(Pk−1) and define �(M, f ) := (L, f |L). It follows that �(x j ) = x j−1.
Write ε : �J

∗(P)→ �J
∗ for the augmentation and μ : �J

∗ → �J
∗(P) for the

map sending [M] to the class of (M, π ◦ νM ). The map P× P→ P which clas-
sifies the tensor product of line bundles induces a multiplication in �J

∗(P) with
respect to which μ is a ring homomorphism.
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We observe that ε ◦� ◦ μ ◦ iR = iS ◦ d1 and that ε ◦�2 ◦ μ = d2. The
retraction s0 is given in this notation by s0(z) = ε�(μ(z).x1) for any z ∈ �J

∗.
We find that �RJ

∗ is a subring of �J
∗ if J = O but not if J = U , so we define

a multiplication on �RJ
∗ by

x ∗ y := s0(xy).

We also define

∂ := iSR ◦ d1 : �RJ
∗ → �RJ

∗ .

Since d1 ◦ iSR = 0 in the exact sequence (8.7.6), we have ∂2 = 0.
For any class a ∈ �RJ

∗ , μ(a) is in the image of �J
∗(P

1), so can be written
μ(a) = αx0 + α′x1 with α, α′ ∈ �J

∗. Then a = εμ(a) = α + α′ε(x1) and we
have ∂a = ε�μa = ε(α′x0) = α′ε(x0) = α′.

Lemma 8.7.7 (i) a ∗ b = a.b+ 2w2.∂a.∂b.
(ii) ∂ (a.b) = a.∂b+ ∂a.b− ε(x1).∂a.∂b.
(iii) ∂ (x.∂ (y)) = ∂x.∂y.
(iv) ∂ (a ∗ b) = a.∂b+ ∂a.b+ w1.∂a.∂b.

Proof (i) Let a, b ∈ �RJ
∗ , andwriteμ(a) = αx0 + α′x1,μ(b) = βx0 + β ′x1, so

s0(a.b) = ε�(αβx1 + (αβ ′ + α′β )x21 + α′β ′x31). Calculations give ε�(x1) =
ε(x0), ε�(x21) = ε(x1) and ε�(x31) = 3ε(x21)− 2ε(x2); thus

s0(a.b) = αβε(x0)+ (αβ ′ + α′β )ε(x1)+ α′β ′(3ε(x21)− 2ε(x2))

= (α + α′ε(x1))(β + β ′ε(x1))+ 2α′β ′(ε(x21)− ε(x2))

= a.b+ 2∂a.∂b.(ε(x21)− ε(x2)).

(ii) With a, b as above, we have

∂ (a.b) = ε�μ(a.b)

= ε�(αβ + (αβ ′ + α′β )x1 + α′β ′x21)

= ε((αβ ′ + α′β )x0 + α′β ′x1)

= (α + α′ε(x1))β ′ + α′(β + β ′ε(x1))− α′β ′ε(x1)

= a.∂b+ ∂a.b− (ε(x1)).∂a.∂b.

(iii) follows from (ii) since ∂2 = 0. (iv) now follows from (i)–(iii).

Here w2 is given by ε(x21)− ε(x2), and w1 = 2∂ (w2)− ε(x1). If d = 2 we
have w2 := [(P1)2]− [P2].
Since ∂2 = 0, (�RJ

∗ , ∂ ) defines a chain complex: denote its homology byHJ
∗ .

Explicitly,

HJ
n := Ker(∂ : �RJ

n → �RJ
n−d )

Im(∂ : �RJ
n+d → �RJ

n )
.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.009
https:/www.cambridge.org/core


276 Cobordism

Although, in the case d = 2, ∂ is not a derivation, it follows from Lemma 8.7.7
that Ker ∂ is a subring of�RU

∗ and that Im ∂ is an ideal in it, so that the quotient
HJ
∗ is a ring.
We next want an exact sequence derived from (8.7.6). The general procedure,

due to Massey [87], is as follows. Suppose given an exact sequence

. . .P
a→ P

b→ Q
c→ P

a→ P . . .

(he calls this an exact couple). Then d := b ◦ c has d2 = 0 since c ◦ b = 0, so
we can form the homology H of Q with respect to d. Set A := a(P) ⊂ P.

Lemma 8.7.8 There is an exact sequence

. . .A
a1→ A

b1→ H
c1→ A . . .

If a, b, c have respective degrees da, db, dc then a1, b1, c1 have degrees da, db −
da, dc.

Observe that this gives another exact couple, called the derived couple.

Proof Define a1 as the restriction of a. For y = a(x) ∈ A define b1(y) as the
class of b(x): we have db(x) = bcb(x) = 0 so do get a class in H. And for an
element ζ ∈ H represented by z ∈ Qwith bc(z) = 0 define c1(ζ ) = c(z): this is
indeed in Ker(b) = Im(a). Any other representative is of form z+ bc(w) and
c(z+ bc(w)) = c(z).
Composites vanish since b1(a1(ax)) is the class of b(a(x)) = 0; c1(b1(ax))

is represented by c(b(x)) = 0; and a1(c1(ζ )) = a(c(z)) = 0.
If y = a(w) and b1(y) = 0, then b(w) = d(x) = b(c(x)) for some x so w −

c(x) ∈ Ker(b) = Im(a); w = c(x)+ a(v ) so y = a2(v ) ∈ Im(a1). If c1(ζ ) = 0,
then z ∈ Ker(c) = Im(b): set z = b(y): then ζ = b1(ay). If a1(x) = 0, then x ∈
Ker(a) = Im(c). This proves exactness.

Write AJn for the image of θ : �SJ
n−d+1 → �SJ

n . Applying Lemma 8.7.8 to
(8.7.6) gives the exact sequence

. . .→ AJn → AJn+d−1 → HJ
n → AJn−d → AJn−1 → . . . (8.7.9)

As in the preceding section, the completion of the calculation of the cobor-
dism rings depends on exhibiting particular examples. We will give these, but
omit the detailed calculations, some of which yield

Lemma 8.7.10 We have sn+2(s2(Md(n+2))) ≡ (n+ 1)cn1[M
dn] (mod 2)

cn+21 [s2(Mdn)] = −cn1[Mdn].
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As in the proof of Theorem 8.6.9, for n not a power of 2, choose integers r, s
with r + s = n and

(n
r

)
odd: for example, write n = 2p(2q+ 1) (so q ≥ 1) and

set r = 2p+1q, s = 2p. Define cobordism classes by
z2dn := ρ(P2r × P2s) ∈ �RJ

2dn,
z2dn−d := d1(P2r × P2s) ∈ �SJ

2dn−d .
It follows using Lemma 8.7.10 that sm(zdm) is odd in both cases, and from the
formulae relating the maps that d1z2dn = z2dn−d .
In case n = 2 j > 1 is a power of 2, first set z2dn := Pn × Pn. In the case d =

1, since Pn(R)× Pn(R) ∼ Pn(C), which is orientable, this gives d1z2n = 0. If
d = 2 we set z2dn−d := d1(Pn × Pn).
In the preceding section we defined Poincaré series and calculated the series

for �U
∗ and �SO

∗ over Q and for �O
∗ over Z2. It now follows from the exact

sequence (8.7.5) that

P(�RO
∗ ;Z2)(t ) = (1− t2)

∏
i not of f orm 2n−1

(1− ti)−1.

Theorem 8.7.11 (i) �SO
∗ /Tors is a polynomial ring.

(ii) All torsion in �SO
∗ has order 2.

(iii) Classes in�SO
∗ are detected by Stiefel–Whitney numbers and Pontrjagin

numbers.
(iv) The image of�SO

∗ in�RO
∗ ⊂ �O

∗ is Ker ∂; the image of Tors �
SO
∗ is Im ∂ .

A presentation of �SO
∗ by generators and relations is not convenient: (iv)

gives a better description.

Proof (i) By Proposition 8.6.4, �SO
∗ ⊗Q is a polynomial ring, with one gen-

erator in each dimension divisible by 4. It follows (again from [96] or [113])
that �SO

∗ ⊗ Z[ 12 ] is a polynomial ring. We next claim that �SO
∗ /Tors is a poly-

nomial ring: it suffices to observe that since by Lemma 8.6.5 sn(p)[P2n(C)] =
2n+ 1 �= 0, so the classes of the P2n(C) are polynomial generators of�SO

∗ ⊗Q

and since also these numbers are odd, their images in�O
∗ generate a polynomial

algebra.
Next observe that�RO

∗ is a subring of�O
∗ . This follows from Lemma 8.7.7 (i)

and the fact that�O
∗ has exponent 2, or more simply from the fact that P1 = S1

can be regarded as a subgroup of P in this case. Next, the map ∂ is a derivation:
this follows from (ii) of the same Lemma, and the fact that ε(x1) is a class of
dimension 1, hence is zero as �O

1 = 0.
We defined classes zn ∈ �RO

n above, for n, n+ 1 not powers of 2, and showed
that in each case, sn(zn) = 1. If n = 2 j ≥ 2, the class xn of Pn(R) has sn(xn) = 1
by Proposition 8.6.3 above. Hence �O

∗ is the polynomial ring in these genera-
tors. Now P2i (R)2 is cobordant to P2i (C), which is orientable. The classes zn
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and x2n thus all belong to�
RO
∗ and generate a polynomial ring. Since this subring

has the same Poincaré polynomial as �RO
∗ , it is the whole ring.

We have now calculated the derivation ∂ on all generators of �RO
∗ , for

as P2i (C) is orientable, ∂ (x2n) = 0. Since we can regard �RO
∗ as the tensor

product of the algebras Z2[zm, zm+1] with m+ 1 = 2p(2q+ 1), p ≥ 1, q ≥ 1
and Z2[x2n], the ring H∗(�RO

∗ ; ∂ ) is the tensor product of the homologies of
these subalgebras, which is the polynomial algebra in the z2m+1 and x2n. Thus
HO
∗ := H∗(�RO

∗ ; ∂ ) is a polynomial ring over Z2, with one generator in each
dimension divisible by 4.
We now recall the exact sequence given by (8.7.9) with J = O:

. . .→ AOn
a1−→ AOn

b1−→ HO
n

c1−→ AOn−1 → AOn−1 → . . .

Since a1 is induced from α it is multiplication by 2. Thus AOn = 2�SO
n . The

torsion-free rank of AO4n is equal to the number p(n) of partitions of n, so the
image of b1, isomorphic to AO4n/2A

O
4n has rank over Z2 at least this. Hence b1 is

surjective in these, hence in all degrees. By exactness, the kernel of multiplica-
tion by 2 on AOn vanishes. Thus AOn is torsion-free. This proves (ii).

By (8.7.6) the kernel of�SO → �RO ⊂ �O is the image of multiplication by
2, so is torsion-free. An element on which all Stiefel–Whitney numbers vanish
is in this kernel, hence of infinite order, hence by Proposition 8.6.4 is detected
by Pontrjagin numbers; thus (iii) holds.
The first assertion of (iv) follows from Proposition 8.7.4 (ii); the second now

follows from the above calculation that�SO
∗ /Tors andKer ∂/Im ∂ have the same

Poincaré polynomial.

Calculations in homology lead to the further results, completing the above.

Lemma 8.7.12 (i) As S2-module, H∗(TSO;Z2) is the direct sum of a free
module and copies of S2/Sq1.S2.
(ii) The spectrum TSO is homotopy equivalent to a wedge of spectra

K(Z2, n) and K(Z, n).
(iii) An element of �O

∗ is in the image of �
SO
∗ (resp. of �RO

∗ ) if and only if all
Stiefel–Whitney numbers with w1 (resp. w2

1) as a factor vanish.

We turn to �SU
∗ . It again follows from Proposition B.4.1 that

P(�RU
∗ ;Q)(t ) = P(H∗(B(RU ) : Q))(t ) = (1− t2)−1

∞∏
i=3

(1− t2i)−1,

P(�SU
∗ ;Q)(t ) = P(H∗(B(SU ) : Q))(t ) =

∞∏
i=2

(1− t2i)−1.
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Since �RU
∗ is a direct summand of �U

∗ , it is torsion-free. Write �
SU
∗ for the

pure subgroup (�SU
∗ ⊗Q) ∩�U

∗ generated by �SU
∗ . It follows by comparing

Poincaré series that an element of �U
∗ is in the image of �

SU
∗ (resp. of �RU

∗ ) if
and only if all Chern numbers with c1 (resp. c21) as a factor vanish.

Calculations at odd primes were made by Novikov [113]. The following is
analogous to Theorem 8.6.11 for �U

∗ .

Theorem 8.7.13 The ring �SU
∗ ⊗ Z[ 12 ] is a polynomial algebra with one gen-

erator in each even dimension �= 2. The class of a manifold M2m is determined
by Chern numbers, and M2m qualifies as a generator if and only if sm(c)[M] is
±rmrm+1 times a power of 2.

The structure at the prime 2 is not simple: a precise description of the torsion-
free quotient is given by [147, p. 265]. The torsion subgroup is described by

Theorem 8.7.14 (i) All torsion in �SU
∗ has order 2. We have

P(Tors �SU
∗ ;Z2)(t ) = (t + t2)

∞∏
i=1

(1− t8i)−1.

(ii) The image of�SU
2 j → �RU

2 j is Ker ∂ if 2 j �≡ 4 (mod 8) and is Im ∂ if 2 j ≡
4 (mod 8).

Proof We outline the main arguments involved in the proof. First recall that by
Proposition 8.7.4, �RU

∗ maps injectively to �U
∗ , so is torsion-free.

Since 2α = 0, in the sequence �SU
∗

α−→ �SU
∗ → �RU

∗ the image of the first
map has exponent 2; the quotient by it embeds in a free group, so there is no fur-
ther torsion. More precisely, as �RU

∗ vanishes in odd dimensions, the sequence
(8.7.6) reduces to

0→ �SU
2k−1

α−→ �SU
2k → �RU

2k → �SU
2k−2

α−→ �SU
2k−1 → 0. (8.7.15)

To calculate the 2-torsion, we again use the derived couple (8.7.9): here
d = 2, J = U , so we have

. . .→ AUn → AUn+1 → HU
n → AUn−2 → AUn−1 → . . .

Also, AUn := θ (�SU
n−1) ⊂ �SU

n has exponent 2. Since �RU
∗ vanishes in odd

dimensions, so does HU
∗ : it follows that the map α : AU2k−1 → AU2k is an isomor-

phism. It thus follows from (8.7.15) that AU2k = Tors(�SU
2k ) and A

U
2k−1 ∼= �SU

2k−1.
We now claim that the map α : AU2k−2 → AU2k−1 vanishes. For AU2k−2 =

θ (�SU
2k−3) and �SU

2k−3 is in the image of the map θ given by multiplication by
η2. Thus the image of α is contained in the image of θ3. However by §B.3(x),
we have η32 = 0.
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The sequence (8.7.9) thus reduces to split short exact sequences

0→ AU2k+1 → HU
2k → AU2k−2 → 0. (8.7.16)

To calculateHU
∗ we use another sequence. Since�RU

∗ is torsion-free we have
a short exact sequence 0→ �RU

∗
2→ �RU

∗ → �RU
∗ ⊗ Z2 → 0, which we regard

as an exact sequence of chain complexes with ∂ as differential. There is thus
an exact homology sequence, which we denote

. . .→ HU
∗

2−→ HU
∗ → HV

∗
∂−→ HU

∗ → . . . .

Now the groups HU
n have exponent 2 since, for each RU-manifoldM, we have

∂[P1(C)×M] = 2[M]. Thus the map 2 : HU
∗ → HU

∗ is zero. The groups HU
n

and HV
n vanish in odd degrees, and ∂ has degree −2, so the sequence reduces

to

0→ HU
2k → HV

2k → HU
2k−2 → 0. (8.7.17)

We next compute HV
∗ . We think of �RU

∗ as a polynomial subring of �U
∗ , and ∂

as a derivation: a correct formulation is given in Lemma 8.7.7.
We have defined elements z2n ∈ �RU

2n for n, n+ 1 not powers of 2 such that
s2n(z2n) is odd. For m = 2 j ≥ 2, define
x4m := ρ(Pm(C)× Pm(C));
x4m−2 := d1(Pm(C)× Pm(C)).

Calculations similar to those in the preceding case yield
sm,m(c)(x4m) ≡ 1 (mod 2) (the class s2m does not suffice here), and
s2m−1(c)(x4m−2) ≡ 2 (mod 4).
It follows that the z2n, x4m−2 and x4m give polynomial generators of �U

∗ ⊗
Z[ 12 ] and �

U
∗ ⊗ Z2 in all dimensions except 2 and 4. Since all are in �RU

∗ , we
only need to add the class x2 of P1(C) to obtain a complete set of generators of
�RU
∗ ⊗ Z2.
We have ∂z4n = z4n−2, ∂x4m = x4m−2 and ∂x2 = 0, so if ∂ were a true deriva-

tion, we would have HV
∗ polynomial with generators x2 and z24n in each dimen-

sion divisible by 8. In fact it follows from Lemma 8.7.7 that the elements
h2 = z2 and h8n := z24n + z2z4n−2z4n (n ≥ 2) are cycles. It follows that HV

∗ is
a polynomial algebra with their classes as generators.
Further calculations using Lemma 8.7.7 exhibit elements of HU

∗ mapping to
h22 and the h8k. ThusH

U
4n → HV

4n is surjective, so by the exact sequence (8.7.17),
HU
4n−2 vanishes and the maps HV

4n+2 → HU
4n → HV

4n are isomorphisms; more-
over,HU

∗ is a polynomial algebra with the classes of h22 and the h8k as generators.
The Poincaré series of HU

∗ is thus given by P(HU
∗ ; t ) = (1− t4)−1

∏∞
k=2(1−

t8k )−1.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.009
https:/www.cambridge.org/core


8.8 Groups of knots and homotopy spheres 281

Since HU
n vanishes unless n is divisible by 4, AUn = 0 unless n ≡ 1 or n ≡ 2

(mod 4). It now follows from the exact sequence (8.7.16) and the isomor-
phism AU2k−1 → AU2k that if PB(t ) denotes the Poincaré series of the even part of
AU∗ , then P(H

U
∗ ; t ) = (t2 + t−2)PB(t ); thus PB(t ) = t2

∏∞
k=1(1− t8k )−1. Hence

P(AU∗ ; t ) = (t + t2)
∏∞

k=1(1− t8k )−1,and the rank of Tors �SU
n is as stated.

Further calculations yield more detailed results.

Theorem 8.7.18 [9] (i) Write S∗
2 := S2/〈Sq1〉. Then as S2-module,

H∗(TSU;Z2) is a sum of copies of S∗
2 and S∗

2/S∗
2 .Sq

2.
(ii) The spectrumTSU is homotopy equivalent to a wedge of copies of spectra

K(Z, n) and spectra BO〈k〉.
(iii) An SU-manifold bounds in �SU

∗ if and only if all its Chern numbers and
KO characteristic numbers vanish.

8.8 Groups of knots and homotopy spheres

We first consider k-connected cobordism, where the manifolds M and cobor-
dismsW are to be k-connected for some integer k � 1. In this case, M is ori-
entable: we make the further convention that M is oriented.
Since the set of k-connected manifolds is not closed under disjoint union,

we define an addition on the set of cobordism classes using connected sum. We
remark that in general, the disjoint union and connected sum of two manifolds
are cobordant: a cobordism of M ∪M′ to M &M′ is given by taking (M × I) ∪
(M′ × I) and attaching a 1-handle to join M × 1 and M′ × 1.

Lemma 8.8.1 Connected sum of k-connected manifolds of a given dimension
n > 2 is a commutative associative operation with unit, compatible with cobor-
dism. The set of equivalence classes thus acquires the structure of an abelian
group �n〈k〉.
Proof The operation is well-defined by Theorem 2.7.4 (with the remark fol-
lowing dealing with orientation); by Proposition 2.7.6, it is commutative and
associative, and the sphere Sn acts as unit. That the connected sumM &M′ is k-
connected ifM andM′ are follows if k = 0 from the definition, if k = 1 from the
fact that for n > 2 removing a point does not introduce a fundamental group,
and if k > 1 from the fact that removing a point does not change homology in
dimension < n.

We must next check that the operation is compatible with cobordism. Let
V andW be connected cobordisms, of dimension n+ 1, and f− : Dn → ∂−V ,
f+ : Dn → ∂+V , g− : Dn → ∂−V , and g+ : Dn → ∂+V be used to define the
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connected sums ∂−V & ∂−W and ∂+V & ∂+W . Join f−(0) to f+(0) by an arc α
in V : a tubular neighbourhood of the arc gives an imbedding F : Dn × I → V
with f− = F|Dn × 0 and f+ = F|Dn × 1. Similarly define G : Dn × I →W .
Now delete the interiors of the images of F and G and glue the boundaries, and
we have a cobordism of ∂−V & ∂−W to ∂+V & ∂+W .

The inverse M of M is as usual obtained by change of orientation. We can
regardM × I as a cobordism ofM ∪M to the empty set. AttachingDn × I with
one end inM and one inM givesW with ∂W = M &M. Now remove a disc from
the interior ofW to obtain a cobordism of M &M to Sm.

For 0-connected cobordism (where we do not assumeM oriented), we noted
above that disjoint union is cobordant to connected sum, so that the map
�n〈0〉 → �O

n is surjective for n � 1; it is easily seen to be bijective.
For k-connected cobordism, we need the connective covers of groups and

classifying spaces. For any X we denote by X 〈k〉 the (k − 1)-connected cover
of X : thus the map πr(X 〈k〉)→ πr(X ) is zero for r < k and an isomorphism for
r ≥ k. Observe that B(J〈k−1〉) = (B(J))〈k〉: we will write BJ〈k〉 for B(J〈k〉), which
is k-connected.
The classifying map τM : M → B(O) of its normal bundle lifts to a map τ kM :

M → BO〈k〉 if M is k-connected, and the lift is unique up to homotopy if M is
(k + 1)-connected. We now claim

Theorem 8.8.2 If m > 2k + 2, there is a natural isomorphism �m〈k〉 →
πS
m(T (O

〈k〉)).

Proof It follows from the remark preceding the theorem that there is a natural
map ψk

m : �m〈k〉 → πS
m(T (O

〈k〉)).
By Theorem 8.1.3 the Thom construction induces a bijection from the set of

cobordism classes ofm-manifolds whose stable normal bundle is induced from
BO〈k〉 with the set πS

m(T (O
〈k〉)).

By Theorem 7.2.1, if X is a finite CW-complex andm ≥ 2r, any normal map
( f : M → X, ν,T ) is normally cobordant to a normal map ( f ′ : M′ → X, ν,T ′)
such that f ′ is r-connected. Applying this with X (a high enough skeleton of)
BO〈k〉 and r = k + 1, we see that if m > 2k + 2 any element of πS

m(T (O
〈k〉)) is

represented by a manifold Mm with f : M → BO〈k〉 (k + 1)-connected. It thus
follows from the exact sequence

πk+1(M)→ πk+1(BO〈k〉)→ πk+1( f )→ πk(M)→ πk(BO
〈k〉)→ . . .

that M is k-connected, so the map ψk
m is surjective.

Similarly, given a cobordism W between two k-connected M, M′ defin-
ing the same element of �m〈k〉, provided m+ 1 > 2k + 2 we can perform

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.009
https:/www.cambridge.org/core


8.8 Groups of knots and homotopy spheres 283

surgery onW , eventually makingW → BO〈k〉 (k + 1)-connected and henceW
k-connected. Hence ψk

m is injective.

Corollary 8.8.3 Excluding small m, we have isomorphisms �m〈1〉 ∼= �SO
m ,

�m〈2〉 ∼= �m〈3〉 ∼= �
Spin
m .

For we have BO〈1〉 = B(SO), BO〈2〉 = BO〈3〉 = B(Spin).
The above argument deals with the cases m > 2k + 2 using surgery below

themiddle dimension. The casesm = 2k andm = 2k + 1 are of special interest.
The case m = 2k was discussed in Theorem 5.6.12.
If m < 2k a k-connected m-manifold is a homotopy sphere (terminology

introduced in §5.6), and the value of k is irrelevant to further study. From now on
we focus on homotopy spheres. We begin our treatment by deriving a number
of exact sequences: in all cases exactness will follow from the general principle
of Lemma 8.3.1. First, however, we list the types of cobordism to be considered.
In each case there is a natural definition of addition by connected sum, which
gives the set a group structure. This is treated in Lemma 8.8.1 for k-connected
cobordism and is similar in other cases. At the centre of our interest are groups
of homotopy spheres:
(θ ) Submanifolds 
m ⊂ Sm+k with a homotopy equivalence 
m → Sm. We

denote the set of cobordism classes by %k
m. We also consider

( f θ ) Submanifolds
m ⊂ Sm+k with a homotopy equivalence
m → Sm and
a framing of the normal bundle (with compatible orientation class). Here we
denote the set of cobordism classes by F%k

m. In parallel with these we consider
(so) The standard submanifold Sm ⊂ Sm+k and a framing of the normal bun-

dle (with compatible orientation class). Framings are classified up to homotopy
by πm(SOk ), and we can identify this with the cobordism group.
(sph) Submanifolds Mm ⊂ Sm+k with a framing of the normal bundle.
For a cobordism we must have a submanifold Wm+1 of Sm+k × I (equal in

case (so) to Sm × I) together in cases (θ ) and ( f θ ) with a homotopy equivalence
Wm+1 → Sm, in cases (so), ( f θ ) and (sph) with a framing of the normal bundle
ofWm+1 in Sm+k × I; in each case inducing the given structures on ∂−W and
∂+W .
A structure of type (so) is stronger than one of type ( f θ ) which in turn

is stronger than one of type (sph). Each of these three inclusions induces by
Lemma 8.3.1 an exact sequence, and by the Corollary to that Lemma we also
have an exact sequence of the three relative groups. We now reinterpret these.
As in §7.8, write B(Gn) for the classifying space for spherical fibrations with

fibre Sn−1 and Gn for the monoid of maps of Sn−1 to itself of degree ±1, with
multiplication given by composition of maps. Fixing the orientation gives a
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submonoid SGn and a classifying space B(SGn). We write Fn ⊂ Gn+1 for the
set of base-point preserving maps Sn → Sn of degree ±1, and SFn for those
of degree +1. The suspension of a self-map of Sn−1 is a self-map of the same
degree of Sn which fixes a base point; thus we have an inclusionGn ⊂ Fn. There
are corresponding classifying spaces B(Fn) and B(SFn). Since all components
of �nSn, including SFn, are homotopy equivalent, we have πr(Fn) ∼= πr+n(Sn).
Further discussion is given in §B.2.
Now (sph) is the cobordism group of submanifoldsMm ⊂ Sm+k with a fram-

ing of the normal bundle; by Proposition 8.1.4 the group of cobordism classes is
identifiedwithπm+k(Sk ) = πm(�kSk ) = πm(SFk ).We now see that the (so, sph)
sequence can be identified with the exact homotopy sequence of (SFk, SOk ).

The relative term for the (so, f θ ) sequence is represented by manifolds
W with boundary, with an assigned embedding Wm+1 ⊂ Dm+k+1, with ∂W =
Sm ⊂ Sm+k, a framing of the normal bundle ofWm+1 inDm+k+1, and a homotopy
equivalence ofW with a point. SinceW is contractible, the framing of its nor-
mal bundle is unique (up to homotopy) and can be ignored. We regard Dm+k+1

as the upper hemisphere of Sm+k+1 and complete W to a closed manifold
W ⊂ Sm+k+1 by attaching the standard discDm+1 ⊂ Dm+k+1 in the lower hemi-
sphere and rounding the corner. There is a natural homotopy equivalence ofW
with Sm+1. Conversely, given a homotopy sphere 
m+1 ⊂ Sm+k+1 we have (by
the Disc Theorem 2.5.6) an essentially unique embedding Dm+1 → 
m+1; its
neighbourhood in Sm+k+1 may be identified with a disc Dm+k+1, and the whole
construction can be reversed. The relative group is thus identified with %k

m+1.
The relative term for the ( f θ, sph) sequence is represented by manifolds

W with boundary, with W ⊂ Dm+k+1, framed normal bundle, and a homot-
opy equivalence ∂W → Sm. We denote the corresponding group of cobordism
classes by P∗km+1.
By Lemma 8.3.2 we now have

Proposition 8.8.4 We have a commutative braid of long exact sequences.
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For each of the above 6 sequences of groups, the natural inclusions Sn+k ⊂
Sn+k+1 and Dn+k+1 ⊂ Dn+k+2 induce maps which increase k by 1. In each case
we see that for k large enough (k > n+ 1 suffices), these maps are isomor-
phisms and the groups stabilise. We denote the limiting groups by omitting k
from the notation (and also the asterisk from P∗). All sequences of Proposi-
tion 8.8.4 thus remain exact when we omit the affix k. We may identify πn(SG)
with the stable homotopy group πS

n and the map πn(SO)→ πn(SG) with the
classical J-homomorphism Jn : πn(SO)→ πS

n .
We now give calculations for the stabilised groups. By §B.3(xi) πn(SO) is

isomorphic to Z for n ≡ −1 (mod 4), to Z2 for n ≡ 0 or n ≡ 1 (mod 8), and is
trivial otherwise. We proved in Proposition 7.8.4 by surgery that Pn is isomor-
phic to Z for n ≡ 0 (mod 4), to Z2 for n ≡ 2 (mod 4), and is trivial otherwise
(provided n > 5). It follows from the stabilised braid (8.8.4) that the groups%n

are closely related to the stable homotopy groups πS
n . A first deduction is

Proposition 8.8.5 All the groups in the stabilised diagram of (8.8.4) with n ≥ 5
are finitely generated abelian groups, and all are finite with the exceptions of
π4r−1(SO), π4r(SF, SO), P4r and F%4r−1, which have rank 1.

For the case n = 4s− 1 we first consider an element y of the group
π4s(SF, SO) of cobordism classes of framed manifolds N with boundary dif-
feomorphic to S4s−1. The boundary x ∈ π4s−1(SO) induces an orthogonal bun-
dle ξ (x) over S4s: we can then form the Pontrjagin class ps(ξ (x)) and eval-
uate on the fundamental class [S4s] giving an integer ps(x), say. Additiv-
ity properties of bundles and classes show that we have a homomorphism
ps : π4s−1(SO) → Z. According to [22], if x0 generates π4s−1(SO) then (up
to sign) ps(x0) = as(2s− 1)!, where we set as = 2 if s is odd and as = 1
if s is even. Thus the image of y in π4s−1(SO) is ps(x)/as(2s− 1)! times a
generator.
On the other hand, attaching a disc to the boundary of N yields a closed man-

ifoldM. The normal bundle ofM is trivial except on the disc, so is induced from
a bundle over S4s which we can identify with the above bundle ξ (x). According
to the signature theorem 8.6.7, the signature ofM is given by Ls(νM )[M]. Since
all the intermediate Pontrjagin classes of νM vanish, it follows by Lemma 8.6.8
that

Ls(νM ) = 22s(22s−1 − 1)Bsps(x)/(2s)!,

so the image of y in P4s is 22s−3(22s−1 − 1)Bsps(x)/(2s)! times a generator.
Thus in some sense the generators in π4s−1(SO) and P4s differ by a factor

as22s−2(22s−1 − 1)Bs/4s. It now follows from exactness of the braid that

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.009
https:/www.cambridge.org/core


286 Cobordism

Proposition 8.8.6 We have |%4s−1| = as22s−2(22s−1 − 1)Bs|πS
4s−1|/4s.

More precisely, according to Adams [5] (see also §B.3(xviii)), KerJ4s−1
is a subgroup of π4s−1(SO) of index den(Bs/4s). Here, if z ∈ Q is
expressed as a fraction p/q with p, q ∈ Z as small as possible, we write
p := num(z) and q := den(z) for the numerator and denominator of z.
Thus |πS

4s−1| = den(Bs/4s)|Coker J4s−1|. It also follows that ps(Ker J4s−1) =
as(2s− 1)!den(Bs/4s), hence the signatures of the manifolds M obtained by
closing elements of π4s(SF, SO) form the group of multiples of
as22s+1(22s−1 − 1)num(Bs/4s).

The integer m(2s) := den(Bs/4s) is given by the following formula (due to
Milnor and Kervaire [102], see also Adams [4]). For n an integer and p a prime,
denote by νp(n) the greatest integer r such that pr divides n. Then

For p odd, νp(m(t )) = 1+ νp(t ) if t ≡ 0 (mod (p− 1)), and = 0 if not.
For p = 2, νp(m(t )) = 2+ ν2(t ) if t is even, and = 1 if t is odd.
Since P4s ∼= Z, with the isomorphism given by σ/8, it follows that the image

of π4s(SF, SO) in P4s, which is the kernel of P4s → %4s−1 is a subgroup of
index as22s−2(22s−1 − 1)num(Bs/4s), so this number is the order of the group
traditionally denoted bP4s, which is the kernel of the epimorphism %4s−1 →
π4s−1(SF, SO), the latter group having order |Coker J4s−1|.

For other values of n, we compare %n with πS
n via the intermediary

πn(SF, SO) (or, if n ≡ 0 (mod 4), its torsion subgroup). It was shown by
Adams [5] that Jn is a (split) monomorphism if n ≡ 0 or 1 (mod 8). Thus if
n �≡ −1 (mod 4) Torsπn(SF, SO) is the cokernel of Jn. Moreover%n maps onto
Torsπn(SF, SO) except perhaps when n ≡ 2 (mod 4). In this last case, πS

n maps
onto πn(SF, SO) and we have the map Kn : πS

n → Pn ∼= Z2, defining the Ker-
vaire invariant of framed manifolds. Thus if n ≡ 0 (mod 4), %n is isomorphic
to Torsπn(SF, SO); if either n ≡ 1 (mod 4) or n ≡ 2 (mod 4) and Kn vanishes,
%n maps isomorphically to πn(SF, SO).
The delicate question of deciding for which values of n Kn is zero, is known

as the ‘Kervaire invariant problem’. It was shown by Browder [30] that Kn
vanishes unless n+ 2 = 2k+2 is a power of 2. There are simple constructions
showing Kn non-zero if k = 0, 1 or 2 (the classical framings of the tangent
bundles of S1, S3 and S7 induce framings of the projective spaces, and one uses
P1(R)× P1(R), P3(R)× P3(R), and P7(R)× P7(R)); there is a somewhat less
simple example for k = 3, and a proof by strenuous calculations [17] if k = 4.
Recently it was shown by Hill, Hopkins, and Ravenel [69] that Kn vanishes for
all k ≥ 6, leaving only the case k = 5 (dimension 126) open.
A modified version of the braid (8.8.4) turns out to have better proper-

ties: we will replace the term SFk by SGk. Now πn(SGk ) is the group of
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homotopy classes of maps Sn × Sk−1 → Sk−1 with the restriction to Sk−1 homo-
topic to the identity. By the Thom construction, we can identify this with cobor-
dism classes of framed manifolds Mn ⊂ Sn × Sk−1 such that Mn has intersec-
tion number 1 with ∗ × Sk−1, or equivalently, the projection of Mn on Sn has
degree 1.
Correspondingly, we can interpret πn(SGk, SOk ) as the group of cobor-

dism classes of framed manifolds (Mn, ∂M) ⊂ (Dn, ∂Dn)× Sk−1 such that the
projection ∂M ⊂ Sn−1 × Sk−1 → Sn−1 is a diffeomorphism and the projection
Sn−1 → Sk−1 is induced by the framing. We have thus interpreted the exact
homotopy sequence of (SGk, SOk ) as an exact cobordism sequence.

We now need a replacement for the group denoted P∗kn above. Write Pkn for
the group of cobordism classes of framed manifolds (Mn, ∂M) ⊂ (Dn, ∂Dn)×
Sk−1 such that the projection ∂M ⊂ Sn−1 × Sk−1 → Sn−1 is a homotopy equiv-
alence and the projection Sn−1 → Sk−1 is induced by the framing. We now
claim

Proposition 8.8.7 We have a commutative braid of long exact sequences.

Proof The exact homotopy sequence of (SGk, SOk ) was described above, and
the exact sequence πn(SOk )→ F%k

n → %k
n is as before. We next describe the

remaining maps.
First consider F%k

n → πn(SGk ). Given a framed homotopy sphere 
n ⊂
Sn+k, take a tubular neighbourhood T . By Proposition 5.6.6, there is a dif-
feomorphism h : ∂T → Sn × ∂Dk: choose h such that the standard framing of
Sn × ∂Dk pulls back to the framing of ∂T induced from that on Sn+k. Now the
first vector of the normal framing of 
n induces a map f : 
n → ∂T , and we
take h( f (
n)) ⊂ Sn × Sk−1, with the framing induced by the remaining vectors
of the normal framing of 
n.

The map %k
n → πn(SGk, SOk ) is defined similarly. We identify %k

n with the
group of framed homotopy discs inDn+k with boundary the standard Sn−1. Now
follow through the same steps as above.
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The map πn(SGk, SOk )→ Pkn is a forgetful map, defined by weakening the
structure.
To define Pkn+1 → F%k

n, we start with a framed manifold (Mn+1, ∂M) ⊂
(Dn+1, ∂Dn+1)× Sk−1 such that the projection ∂M ⊂ Sn × Sk−1 → Sn is a
homotopy equivalence. Map this to ∂M ⊂ Sn × Sk−1 ⊂ Sn+k with the given
framing extended by the normal vector to Sn × Sk−1 in Sn+k.
The maps so far defined form a commutative diagram, and we define the

remaining maps Pkn+1 → %k
n and πn(SGk )→ Pkn as the composites in the

diagram. It follow easily that all four sequences have order 2. The exact-
ness of the two remaining sequences follows again (with a little care) from
Lemma 8.3.1.

Since Gn ⊂ Fn ⊂ Gn+1, the stabilisations as n→∞ have the same homot-
opy groups; it follows that the same goes for the diagrams (8.8.4) and (8.8.7).
The reason why the second braid is an improvement on the first is the

following.

Proposition 8.8.8 The natural map Pkm → Pm is surjective for k ≥ 2 and an
isomorphism for k ≥ 3.

Proof Recall that Pkm is the group of cobordism classes of framed mani-
folds (Mm, ∂M) ⊂ (Dm, ∂Dm)× Sk−1 such that the projection ∂M ⊂ Sm−1 ×
Sk−1 → Sm−1 is a homotopy equivalence and the projection ∂M → Sk−1 is
induced by the framing.
For surjectivity, since P2n+1 = 0, it suffices to consider the casem = 2n even.

By Proposition 7.8.3, generators of P2n are represented by framed manifolds
M constructed by attaching n-handles to D2n. Since changing orientation and
forming boundary sums respect this description, it follows that all elements of
P2n are so represented.

Write ei : Sn−1 × Dn → S2n−1 for the attaching maps of the handles. Since
all embeddings of Sn−1 in S2n−1 are isotopic, there is a diffeomorphism of
the image of ei to the submanifold obtained from ∂Dn × Dn ⊂ ∂ (Dn × Dn) by
rounding the corner. Thus ei extends to an embedding fi : (Dn, ∂Dn)× Dn →
(D2n, ∂D2n) diffeomorphic to that induced by the map Dn × Dn → D2n round-
ing the corner.
We seek to construct a smooth embedding F : (M, ∂M)→ (D2n, ∂D2n)× S1

such that the trivial normal bundle agrees with the given stable framing; in fact
we replace S1 by I and then wrap round by t → e2π it . Choose distinct points
ti ∈ I and a smooth map φ : S2n−1 → I such that the image of φ ◦ ei is the point
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ti. We first define a continuous map F0: it is given on D2n by F0(z) = (z, φ(z))
and on the handle hi (identified with Dn × Dn) by F0(x, y) = ( fi(x, y), ti).

The map F0 is not injective: each handle overlaps the core. Write ν :
(Dn, ∂Dn)→ ([0, 1], 0) for the map given by (1− ‖x‖2), and deform the map
of the handle to F1(x, y) = ( fi(x, y), ti + εν(x)), where ε is small enough that
the handles remain disjoint. Then F1 is injective, but has a corner along each
copy of Sn−1 × Sn−1. We define a map F2 by rounding these corners. This
has the desired effect of deforming the interior part D̊n × Dn of each han-
dle into the interior of D2n × I, and gives the desired smooth embedding in
(D2n, ∂D2n)× S1.

Figure 8.2 Embedding a plumbed manifold

We attempt to illustrate this in Figure 8.2: here the first figure represents
a disc with two handles, pictured as a basket suspended by a couple of han-
dles; the second figure indicates how these fit at the boundary. To prove injec-
tivity, suppose given a framed manifold (Mm, ∂M) ⊂ (V, ∂V ) with (V, ∂V ) =
(Dm, ∂Dm)× Sk−1 and ∂M ⊂ Sm−1 × Sk−1 → Sm−1 a homotopy equivalence,
such that M represents 0 in the stabilised group Pm. Then there is a cobor-
dism W of M to a disc: we seek to extend the embedding of M = ∂−W
to (W, ∂cW )→ (V, ∂V )× I, ideally such that on ∂cW we have a product
embedding. It is enough to consider a single r-handle attached to (the interior
of) M. In view of the clause in Theorems 7.5.2, 7.5.4 (m even), and 7.6.1 (m
odd) stating that for (simply-connected) surgery on manifolds of dimension 2n
or 2n+ 1 it is sufficient to perform surgery on spheres Sr with r ≤ n, we may
suppose here that 2r ≤ m, and that M is (r − 1)-connected.

Using the first vector of the framing, we extend the a-sphere of the handle to
an embedding φ : Sr × I → V such that φ(Sr × {0}) is the a-sphere and the rest
of the image is disjoint fromM.We next show thatφ(Sr × {1}) is nullhomotopic
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in the complement V \M of M. Since M has codimension greater than 2, the
complement is 1-connected.
We now use the hypothesis that Hm(M, ∂M)→ Hm(V, ∂V ) is surjective. It

follows thatHi(V,M ∪ ∂V ) = 0 with possible exceptions i = k, i = m+ k − 1,
r + 1 ≤ i ≤ m+ 1− r. By the universal coefficient theorem, the same holds
for Hi(V,M ∪ ∂V ). By duality, Hi(V \M) = 0 except perhaps for i = m− 1,
i = 0, k + r − 2 ≤ i ≤ m+ k − r − 1. Since k ≥ 2, V \M is r-connected, so
our r-sphere is indeed nullhomotopic in V \M.
We can thus extend the map φ on a collar neighbourhood of the boundary to

a map ψ : (Dr+1, ∂Dr+1)→ (V,M) with ψ−1(M) = ∂Dr+1.
The map ψ is covered by a stable normal framing of the handle. As in the

proof of Theorem 7.1.1, this framing determines a regular homotopy class
of immersions Dr+1 × Dm+k−r−2 → V . We wish the immersion to restrict to
the given embedding Sr × Dm−r → M. Since m ≥ 2r and k ≥ 3, we have
m+ k − r − 2 ≥ r + 1. Thus πr(SOm+k−r−2) maps onto πr(SO), so the stable
framing induces a normal framing. It follows by Theorem 6.2.1 that the map ψ
is homotopic (relative to its boundary) to an immersion.
If m+ k − 1 > 2(r + 1) putting this map in general position makes it an

embedding; in the critical casem = 2r and k = 3, we can use theWhitney trick
(see Theorem 6.3.4 but allow boundaries) to obtain an embedding. Now using
the normal framing on this handle allows us to extend the embedding of M to
the desired embedding of M with the handle.

Inserting this result in the braid diagram (8.8.7) together with results in § B.3
(ix) on homotopy groups of spheres, (xiv) on homotopy groups of orthogonal
groups and (xix) on πr(SOk )→ πr(SGk ), it follows that

Theorem 8.8.9 All groups in the diagram

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.009
https:/www.cambridge.org/core


8.8 Groups of knots and homotopy spheres 291

for k ≥ 3 are finite except for
(A) : n = 4s+ 1, k = 4s+ 2: π (SO)→ F%→ π (SG), of rank 1,

(S) : n = 4s− 1, k > 2s+ 1:
π (SG, SO) → π (SO)

↓ ↓
P → F%

of rank 1,

(O) : n = 4s− 1, k ≤ 2s: P→ F%→ %, of rank 1,
(B) : n = 4s− 1, k = 4s: ‘the direct sum of the diagrams (A) and (S)’,
(C) : n = 4s− 1, k = 2s+ 1: ‘the direct sum of the diagrams (A) and (O)’.

In particular, %k
4s−1 has rank 1 if k ≤ 2s+ 1, and otherwise %k

n is finite.
We can use the above results to investigate groups of embeddings of

spheres in spheres. Denote by 
k
m the set of diffeotopy classes of embed-

dings Sm → Sm+k. Since by Lemma 2.5.11 orientation-preserving embeddings
(Dm+k,Dm)→ (Sm+k, Sm) are unique up to diffeotopy, we can define a con-
nected sum of two embeddings by removing an embedded disc-pair from each,
and glueing along the boundary (with an orientation reversal). It follows that

k
m acquires the structure of a group.
Since diffeotopic embeddings are cobordant, there is a natural forgetful

map σ : 
k
m → %k

m. By Lemma 8.3.1 the map σ lies in an exact sequence
. . .→ Rkm+1 → 
k

m → %k
m → Rkm → . . . The relative term Rkm+1 is the set of

cobordism classes of homotopy discs �m+1 ⊂ Dm+k+1 together with a diffeo-
morphism Sm → ∂�m+1. It follows from Corollary 5.6.3 that for m ≥ 5 �m+1

is diffeomorphic to Dm+1. If also k ≥ 3, it now follows from Theorem 5.6.7
(i) that �m+1 ⊂ Dm+k+1 is diffeomorphic to the standard pair. Thus Rkm+1 is
the cobordism group of standard pairs together with a diffeomorphism of Sm

on the boundary. The embedding now plays no part, thus for m ≥ 5, k ≥ 3
the map Rkm+1 → Rm+1 is an isomorphism. Hence Rkm+1 ∼= Rm+1 ∼= %m+1. This
proves

Proposition 8.8.10 There is an exact sequence . . .→ %m+1 → 
k
m →

%k
m → %m → . . .

Since the groups %m are all finite, it follows that the rank of 
k
m is the same

as that of %k
m: thus is 1 if m = 4s− 1 and k ≤ 2s+ 1, and zero otherwise.

It follows from the Whitney embedding theorem that 
k
m = 0 for k large.

More precisely, by Theorem 6.4.11, any two embeddings of Sm in Sm+k are iso-
topic (and hence 
k

m vanishes) provided 2k > m+ 3. However in the limiting
case 2k = m+ 3 the group does not vanish: if also k is odd, it is infinite by the
above; more precisely, by [61], we have 
2s+1

4s−1 ∼= Z. It was shown in [64] that
in the other critical case, 
2s

4s−3 ∼= Z2.
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8.9 Notes on Chapter 8

§8.1 The first result in this area is due to Pontrjagin [123], who succeeded in
relating framed bordism to homotopy groups of spheres. Thom’s paper [150],
as well as formally introducing the construction, obtained a transversality
theorem.
§8.2 I also believe that at least part of his motivation was the problem of

representing homology classes by embedded submanifolds.
§8.3 I do not know where it was first observed that the definition of bor-

dism naturally leads to exact sequences. The second technique was formally
introduced in [158].
§8.4 In his paper [12], Atiyah introduced bordism as a homology theory,

showed that smooth oriented manifolds are also orientable for this theory, and
made applications to bordism groups.
There are other abstract structures using bordism. Graeme Segal defined in

[134] axioms for quantum field theory, which we can summarise as follows.
A cobordism category is a category with objects (diffeomorphism classes of)
closed manifolds (of a given dimension) and morphisms (diffeotopy classes of)
bordisms: to obtain interesting examples one usually imposes extra structure:
for example, an embedded submanifold of codimension 2.
A ‘topological field theory’ is then a functor φ from such a category to, for

example, the category of vector spaces over C and maps: it is required also to
take disjoint unions to tensor products. Since the empty manifold is mapped to
C, if M is a closed manifold, and so a cobordism from the empty set to itself,
φ(M) is a linear map C → C: multiplication by a number, giving an invariant
α(M) ∈ C. Non-trivial examples are not easy to construct.
§8.5 The main reference for this section is the book [38], which has a

wealth of information about actions of finite cyclic groups. Chapter IV of that
book contains the calculation of equivariant bordism groups of Z2-actions. The
Zp-actions are discussed in Chapter VII: the results are, of course, not com-
plete. However many geometrical consequences of their calculations are given
throughout the book.
§8.6 In his original 1954 paper [150], as well as introducing transversality

and using it to reduce the calculation of cobordism groups to a homotopy prob-
lem, Thomwas able to give the full calculation of�O

∗ , using Serre’s calculation
[135] of cohomology of Eilenberg–MacLane spaces, and to calculate�SO

∗ ⊗Q

using Proposition B.4.1. Milnor’s paper [96] followed in 1960 and Novikov’s
[113] appeared in 1962.Milnor’s book [103] gives an alternative introduction to
characteristic classes, the calculation of the cohomology of classifying spaces,
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cobordism and the calculation of cobordism rings, including the Hirzebruch
signature theorem.
Unitary bordism has more structure than the calculation in Theorem 8.6.11

shows. One aspect of this is:

Theorem 8.9.1 There is an isomorphism of the universal formal group over
Z on �U

∗ .

We explain this statement. If T is a connected 1-dimensional analytic Lie
group with multiplication μ : T × T → T , and x a local coordinate at the unit,
we can expand μ ◦ x as a power series F (x, y) with F ∈ R[[x, y]]. The group
properties are reflected in the identities

F (x, 0) = F (0, x) = x, F (x, y) = F (y, x), F (F (x, y), z) = F (x,F (y, z)).

One thus defines a formal group over a ring R as a formal power series in 2 vari-
ables F (x, y), with constant term 0, satisfying these rules. The simplest exam-
ples are Fr(x, y) = x+ y+ rxy for r ∈ R.

Now consider P := P∞(C) ∼= B(U1). There is a multiplication map μ : P×
P→ P induced, for example, by tensor product of line bundles.
Since P has a cell structure with one cell in each even dimension we can iden-

tify �U
∗ (P) with �

U
∗ [[z]], with a generator z ∈ �U

2 (B(U1)) which can be taken
as defined by the inclusion P1(C) ⊂ P∞(C). Now μ∗(z) ∈ �U

∗ [[x, y]] defines
a formal group.
For the proof of Theorem 8.9.1 we refer to Quillen [127]. This result is the

jumping off point for the use of complex cobordism theory as a tool for elabo-
rate calculations in homotopy theory. It is used to set up the so-called Adams–
Novikov spectral sequence. One can localise �U

∗ homology theory at a prime
p; it then splits into the so-called BP-theories with much smaller coefficient
group (polynomial with generators only in dimensions pr(2p− 2)). We refer
to [129] for an introduction to this area.
§8.7 Certain exact sequences were devised by the author [157] to relate �O

∗
and �SO

∗ , as a means of calculating the latter. A more abstract proof was found
by Atiyah [12] (who invented bordism theory for the purpose). My original
insight was that the apparently complicated structure of�SO

∗ might be the sim-
ilar to the structure of H∗(X;Z) for a space X such that each of H∗(X : Q) and
H∗(X;Z2) is a polynomial ring.
The original exact sequences were extended by Conner and Floyd to the case

of �U
∗ and �SU

∗ , and used in the calculations of the latter, with details in [39].
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Further calculations of �SU were obtained by Anderson, Brown, and Peterson
[9].
The groups �Spin were calculated, also by Anderson, Brown, and Peter-

son, in [10]. They first determine the structure of H∗(TSpin;Z2) as a mod-
ule over the Steenrod algebra: it is a sum of copies of S2, S2/S2(Sq3) and
S2/S2(Sq1, Sq2). They deduce that the Thom spectrum is homotopy equiva-
lent to a wedge of spectra of type K(Z2, n) and BO〈n〉; and thence that cobor-
dism class in �

Spin
∗ is determines by Stiefel–Whitney and KO-characteristic

numbers.
Complete results are also available for Spinc: here cobordism class is deter-

mined by Stiefel–Whitney numbers and characteristic numbers in Q: calcula-
tions for this case can be reduced to those for Spin in view of the isomorphism
�
Spinc
n

∼= �̃
Spin
n−2 (P

∞(C)).
In addition to the original references, Stong’s book [147] aims to give com-

plete details of all the calculations involved in determining the cobordism
groups mentioned above, and their interrelations with each other and with
framed bordism.
For �Sp

∗ , it was again shown in [113] that the tensor product by Z[ 12 ] is a
polynomial algebra. Extensive calculations have been made by Kochman [80].
§8.8 The sequences 8.8.4 were extracted from the methods introduced by

Milnor and Kervaire [79] for calculating the groups %n. Our account follows
the presentation by Levine [85], which in turn combined the earlier work of
Milnor and Kervaire (see, for example, [79]) with ideas of Haefliger [61].
Milnor’s discovery [92] of non-diffeomorphic differential structures on the

topological manifold S7 was a great surprise: up to then, though smooth and
piecewise linear (PL) structures were used, the philosophy was that one was
really studying problems in pure topology. Likewise the existence of non-trivial
embeddings of spheres in spheres contrasts with the theorem of Stallings [143]
(in the topological category) and Zeeman [183] (in the piecewise linear cate-
gory) that embeddings of spheres in spheres, in codimension at least 3, are topo-
logically unknotted. It is thus possible to regard all the results about embeddings
of spheres in spheres as a manifestation of smoothing theory.
Explicit results of this kind were obtained by Rourke and Sanderson. In the

first of the three papers [130] they set out to construct a theory of neighbour-
hoods of locally flat submanifolds of PL manifolds to play the role in PL topol-
ogy of the tubular neighbourhoods in differential topology. By introducing a
notion of ‘block bundles’ they constructed a (simplicial) space BP̃Lk such that
for any PL manifold Mm the set of isomorphism classes of regular neighbour-
hoods of M embedded locally flatly in PL (m+ k)-manifolds maps bijectively
to the homotopy set [M : BP̃Lk].
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In the third paper, after defining various simplicial spaces, in particular a
piecewise differentiable version BP̃Dk of BP̃Lk which is homotopy equivalent
to it, they interpret the braid (8.8.7) as the homotopy braid coming from the
inclusions B(SOk ) ⊂ BS̃PLk ⊂ B(SGk ).
In the subsequent paper [131], Rourke and Sanderson construct a theory of

neighbourhoods of locally flat submanifolds of topological manifolds. A start-
ing point is the notion of microbundle introduced by Milnor [99]. Following a
subsequent idea of Haefliger, they consider a microbundle with fibre dimension
(n+ k) together with a submicrobundle with fibre dimension n. From these they
form a (simplicial) classifying space BTopnn+k and establish the existence of a
(Kan) fibration Topnn+k → Topn, whose fibre is denoted Topn+k,n. An (n+ k)
dimensional neighbourhood of a manifold Nn induces a lift of N → BTopn to
a cross-section of the induced fibration.
They then establish that if i ≤ k and either n ≤ 2 or n+ k ≥ 5 the map

πi(Topn+k,k ) → πi(Topn) is an isomorphism. It follows that with this dimen-
sion restriction, neighbourhoods of N are classified by maps N → BTopk. This
leads to obstruction theories to the existence of normal microbundles or block
bundles with fibre Dk or Rk.

It also follows that the above results in the PL case carry over to the Top case.
Thus one can identify F%k

n with πn(STopk ), %
k
n with πn(STopk, SOk ), and Pkn

with πn(SGk, STopk ). Thus the stability theorem Proposition 8.8.8 establishes
a homotopy pullback diagram

STopk → SGk

↓ ↓
STop → SG

,

and the exact sequence of Proposition 8.8.10 interprets 
k
n as the homotopy

group of the diagram

SOk → STopk
↓ ↓
SO → STop

,

and hence of the diagram

SOk → SGk

↓ ↓
SO → SG

.

This final result had been obtained by Haefliger in [64].
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Appendix A

Topology

A.1 Definitions

A topology on a set X is a collection U of subsets, called open sets, such that
X ∈ U , the union of any subfamily of U belongs to U , and the intersection of
two elements of U also belongs to U . A topology can be defined by prescribing
a set V of subsets of X to be a ‘subbase’ of open sets: then define U to consist
of arbitrary unions of finite intersections of elements of V . A set W is a base
of open sets if every open set is a union of elements of W .

A subset F of X is closed if its complement X \ F is open. If A is any subset
of X (in particular, if A is a point) a subset V of X is a neighbourhood of A if
there is an open setU with A ⊆ U ⊆ V .
If Y ⊂ X is a subset of a space X with a topology U , the subspace topology

on Y is given by taking as open sets theU ∩ Y withU ∈ U .
A topology is said to be Hausdorff if for any x1 �= x2 ∈ X we can find

U1, U2 ∈ U with x1 ∈ U1, x2 ∈ U2 and U1, U2 disjoint, i.e. U1 ∩U2 = ∅. This
is a rather weak condition, and all spaces we will consider are Hausdorff. In a
Hausdorff space, each point is a closed set. There are also stricter separation
conditions (which hold for smoothmanifolds): a topology is completely regular
if any point x and closed set F not containing it are contained in disjoint open
sets, and normal if disjoint closed sets F1, F2 are contained in disjoint open sets
U1, U2 ∈ U .

A mapping f : X → Y between two topological spaces is continuous if
whenever V is open in Y , f−1(V ) is open in X . It is a homeomorphism if f
is bijective and both f and f−1 are continuous. We call f an embedding if it is
injective and gives a homeomorphism between X and f (X ) with the subspace
topology.

296
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An important condition on a topology is the existence of a countable base of
open sets. This holds for Rn since we can take the balls with rational radii and
centres having rational coordinates.
A set U = {Uα |α ∈ A} of subsets of X is a covering if

⋃
α∈AUα = X ; it is

an open covering if each Uα is open in X , and it is locally finite if each point
of X has a neighbourhood intersecting only a finite number of the Uα . A cov-
ering V = {Vβ |β ∈ B} of X refines U if for each β there is an α such that
Vβ ⊆ Uα .

The space X is compact if for every open covering U , a finite subset of U
already covers X . It is locally compact if every neighbourhood of a point con-
tains a compact neighbourhood. Since any point has a neighbourhood which is
a disc, any manifold is locally compact. A space is paracompact if every open
covering has a locally finite refinement by an open covering.
Any compact subset K of a Hausdorff space X is closed. For if x �∈ K, then

for each k ∈ K, x and k have disjoint neighbourhoodsUx, Vx. The K ∩Vx form
an open cover of K, so there is a finite subcover. The intersection of the corre-
spondingUx is an open neighbourhood of x disjoint from K.
If {Ua} is a locally finite family of subsets of X and K ⊂ X is compact, then

K has a neighbourhood intersecting only finitely many of theUa. For each point
k ∈ K has such an open neighbourhood Nk; we may choose a finite subset of
the Nk which cover K, and their union is a neighbourhood of K with the desired
property.
If f : X → Y is continuous and K ⊂ X is compact, the image f (K) is com-

pact. For if {Uα} is an open cover of f (K) we can write Uα = f (K) ∩Vα with
Vα open in Y . Since f is continuous, f−1(Vα ) is open in X , and these give an
open covering of K. Taking a finite subcovering here gives a finite subcover of
{Uα}.
Thus if K is a compact space and f : K → Y is continuous, f takes closed

sets to closed sets, so if f is bijective it is a homeomorphism; if f is injective,
it is an embedding.

Lemma A.1.1 If X is a locally compact space any neighbourhood of a com-
pact set K ⊂ X contains a compact neighbourhood of K.

Proof Let U be the given neighbourhood of K: then U is a neighbourhood of
each x ∈ K, so we can find neighbourhoods Ax, Bx, Cx of x in X with Cx ⊂
Bx ⊂ Ax ⊂ U and Ax,Cx open and Bx compact. Since the open sets Cx cover
the compact set K, there is a finite subcover {Cxn}. The (finite) union of the Bxn
is compact and contains the open neighbourhood

⋃
n Cxn of K.
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Taking K as a point x ∈ X , any open neighbourhood Ax of x ∈ X contains
a compact neighbourhood Bx, which contains an open neighbourhood Cx: and
so on.
The product

∏
Ai of a family of spaces has a topology defined by the subbase

consisting of products
∏
Ui withUi open in Ai for each i andUi = Ai for all but

finitely many. If each Ai is compact, so is
∏

i Ai.

The inverse limit lim←− Ai of a sequenceAi+1
αi−→ Ai (i ≥ 1) is defined to be the

subset of the product
∏
Ai with αi(xi+1) = xi for each i. If the Ai are topological

spaces, it inherits a topology as a subspace of the product.

A.2 Topology of metric spaces

A metric on a set X is a mapping ρ : X × X → R such that ρ(x, y) ≥ 0 for all
x, y ∈ X , ρ(x, y) = 0 if and only if x = y, and ρ(x, z) ≤ ρ(x, y)+ ρ(y, z) for
all x, y and z ∈ X . This defines a topology with a base consisting of the sets
{x | ρ(x, y) < d} for all y ∈ X, d > 0. Equivalently, a subsetU ⊆ X is open if,
for each x ∈ U , there exists ε > 0 such that ρ(x, y) < ε implies y ∈ U .
We have seen in Theorem 2.1.1 that smooth manifolds are metric as topo-

logical spaces.
The prime example of a metric space is Rn, with points x = (x1, . . . , xn) and

distance function ρ(x, y) = ‖x− y‖ = √∑n
1(xi − yi)2. The basic examples of

topological spaces are subsets of Rn with the topology given by the induced
metric.We are not concernedwith arbitrary subsets: more typical are polyhedra,
or subsets defined by vanishing of a certain number of polynomial functions.
However, we will need the general terminology as we will also need to consider
spaces of mappings.
In a metric space X , we define a sequence {xn} of points to converge to a limit

x∞ if ρ(xn, x∞) → 0 as n→∞. The limit, if it exists, is unique, since if ywere
another limit we would have ρ(y, x∞) = 0. We call a metric space X complete
if it satisfies Cauchy’s convergence condition, namely that for any sequence
xn ∈ X such that ρ(xm, xn)→ 0 asm, n→∞ there exists a limit point x∞ ∈ X
such that ρ(xn, x∞)→ 0 as n→∞.

For metric spaces X , topological conditions can be expressed in terms of
convergence of sequences; for example, f : X → Y is continuous iff for all
xi → x ∈ x we have f (xi)→ f (x).
If X is a metric space, x ∈ X , F ⊆ X is closed, and x �∈ F , then x has a

neighbourhood disjoint from F , so there exists ε > 0 such that y ∈ F implies
ρ(x, y) ≥ ε, so ρ(x,F ) := inf{ρ(x, y) | y ∈ F} is strictly positive. For any A ⊂
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X , ρ(x,A) = 0 if and only if x is in the closure of A if and only if there is a
sequence ai ∈ A with ai → x.

Clearly |ρ(x,F )− ρ(y,F )| ≤ ρ(x, y), so the map x 	→ ρ(x,F ) is continu-
ous. If F and F ′ are disjoint closed sets, there are disjoint open neighbourhoods
G := {x | ρ(x,F ) < ρ(x,F ′)} of F and similarly forG′. Hence anymetric space
is normal. It may be that ρ(F,F ′) = 0: for example, consider F = {(x, y) ∈
R2 | xy = 1} and F ′ = {(x, y) ∈ R2 | y = 0}. However if K is compact and dis-
joint from F we have ρ(F,K) > 0, for the image of K by the continuous map
x 	→ ρ(F, x) is a closed subset of R not containing {0}. Even if ρ(F,F ′) = 0,
the formula s(P) := ρ(P,F )/(ρ(P,F )+ ρ(P,F ′)) defines a continuous map
s : X → I with s(F ) = 0 and s(F ′) = 1.

A metric space K is compact if and only if every sequence has a convergent
subsequence. To see this, first observe that if xi → y, then the set whose ele-
ments are the xi and y is compact, for given any open cover, one of the open sets
of the cover contains y, hence all but finitely many of the xi. Now if {xi} has no
convergent subsequence, the set

⋃
i{xi} is closed, its complementU is open, and

{U ∪ {xi}} is an open cover of K with no finite subcover. Conversely, if there is
a cover with no finite subcover, there is a countable one {Ur} and if we choose
xn �∈

⋃
r≤n Ur if a subsequence converged to y ∈ K we would have y ∈ Un for

some n and thenUn would contain all but finitely many of the subsequence.
From this, or directly, it follows that the direct product of two, or indeed of

any family of compact spaces is compact.
We will call a sequence {xn}with no convergent subsequence discrete. If {xn}

is a discrete sequence, the set having these as elements is a closed set.

Lemma A.2.1 Let f : A× B→ C be a continuous map of compact metric
spaces. Then for any ε > 0 there exists δ > 0 such that ρ(b, b′) < δ implies
that ρ( f (a, b), f (a, b′)) < ε for all a ∈ A.
Proof Suppose not. Then there exist ε > 0 and sequences bn, b′n ∈ B with
ρ(bn, b′n) <

1
n and an ∈ A with ρ( f (an, bn), f (an, b′n)) ≥ ε. In view of com-

pactness, these all have convergent subsequences; passing to these, we may
suppose bn → b, b′n → b′ and an → a. It follows that ρ(b, b′) = 0, so b = b′

and by continuity that ρ( f (a, b), f (a, b′)) ≥ ε, a contradiction.

The notion of compactness for spaces is accompanied by the important
notion of properness for maps.

LemmaA.2.2 The following conditions on a map f : X → Y of metric spaces
are equivalent:
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(i) f is closed and for each y ∈ Y , f−1(y) is compact;
(ii) every sequence xi ∈ X such that f (xi) converges has a convergent

subsequence;
(iii) for each compact subset K of Y , f−1(K) is compact.

A map is said to be proper if it satisfies these conditions.

Proof (i)⇒ (ii) Suppose (i) holds, that {xn} is discrete, but that f (xn) con-
verges to a limit y. Since C = {xn | n ∈ N} is closed, so is f (C), and since
f (xn) → y, y ∈ C. The same argument shows that for any subsequence {xnk}
of {xn} we have y = f (xnk ) for some k. Thus y = f (xn) for all but finitely many
n; hence f−1(y) contains a discrete sequence, contradicting its compactness.

(ii)⇒ (iii) Suppose (ii) holds, that K ⊂ Y is compact, and that f−1(K) is
not. Then f−1(K) contains a discrete sequence {xn}. Since { f (xn)} lies in the
compact set K, it has a convergent subsequence. It follows from (ii) that {xn}
has a convergent subsequence, so is not discrete.

(iii)⇒ (i) It follows at once from (iii) that preimages of points are compact.
Let C be closed in X and f (xn) be a sequence of points of f (C) converging
to a limit y. Then the set K consisting of y and the points f (xn) is compact,
so by (iii) f−1(K) is compact. The sequence xn of points in this compact set
has a convergent subsequence xnk with limit x, say; asC is closed, x ∈ C. Thus
f (xnk )→ f (x); hence y = f (x) ∈ f (C).

It follows from the characterisation (iii) that the composite of two proper
maps is proper. Also since the product of compact spaces is compact, for any X
and compactK, the projectionK × X → X is proper. Since every closed subset
of a compact space is compact, any continuousmap f : K → Y withK compact
is proper.

Lemma A.2.3 A proper injective map f : X → Y of Hausdorff spaces is an
embedding.

Proof Replacing Y by f (X ), we may suppose f bijective. But now f takes
closed sets to closed sets, hence also open sets to open sets, so is a homeomor-
phism.

We now give some results for metric spaces which are useful for proving
existence of embeddings when we weaken the requirement of compactness.

Lemma A.2.4 (i) Let Y be a metric space, X a closed subset. For any open
neighbourhoodU of X in Y , there is a positive continuous function f on X such
that if x ∈ X and ρ(x, y) < f (x), we have y ∈ U.
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(ii) If X is a compact subset of the metric space Y , any open neighbourhood
U of X in Y contains an ε-neighbourhood for some ε > 0.

Proof (i) Define f (x) = ρ(x,Y \U ): then | f (x)− f (x′)| ≤ ρ(x, x′), so f is
continuous: it is non-zero and satisfies the condition.
(ii) Take ε = inf f , where f is given by (i).

We may apply this result in particular whenY = X × X with X embedded as
the diagonal�(X ). Thus if X is compact, there exists ε > 0 such that ρ(x, y) <
ε ⇒ (x, y) ∈ U . Combining these ideas gives

Lemma A.2.5 If X is a compact subset of the metric space Y , and U an
open neighbourhood of X × X in Y × Y , then for some ε > 0, if V is the ε-
neighbourhood of X in Y , U contains V ×V.

Proof Take ε = 1
2ρ(X × X, (Y × Y \U )). Then if ρ(v1,X ) < ε, ρ(v2,X ) < ε

we have ρ((v1, v2),X × X ) < 2ε = ρ(X × X, (Y × Y \U )), so (v1, v2) does
not lie in Y × Y \U .

Corollary A.2.6 Let Y be a metric space, f : Y → Z a map such that each
P ∈ Y has a neighbourhood UP with f |UP an embedding, and X ⊂ Y such that
f |X is injective. Then X has a neighbourhood V in Y such that f |V is injective.
If also each f (UP) is open, f |V is an embedding.

Proof Let D = {(y1, y2) : y1 �= y2, f (y1) = f (y2)} ⊂ Y × Y . Since f |X is
injective, D is disjoint from X × X . The closure D̄ is contained in the closed
subset defined by f (y1) = f (y2), which is equal to D ∪�(Y ). But by hypoth-
esis, each point (P,P) has a neighbourhood UP ×UP disjoint from D. Thus
D̄ is disjoint from �(Y ), so D is closed. Now apply Lemma A.2.5, taking
U = Y × Y \ D: this gives a neighbourhood V of X such that V ×V does not
meet D, so f |V is injective.
As each f |UP is an embedding, f induces a homeomorphism between UP

and f (UP) with the subspace topology. Thus the inverse map is continuous on
f (UP), which is open in f (V ). Thus it is continuous at each point of f (V ).

The following can be used to replace Theorem 1.1.4, which we proved for
smooth manifolds.

Proposition A.2.7 Suppose X locally compact and a countable union of com-
pact subsets. Then there exist coverings by sets Fa ⊂ Ga with each Fa compact,
each Ga open, {Ga} locally finite, and

⋃
a Fa = X.

Proof By Proposition 1.1.3, we can find compact subsets Cn and open sub-
sets Bn+ 1

2
such that X =⋃n Cn and for all n ≥ 1, Cn ⊂ Bn+ 1

2
⊂ Cn+1. It now
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suffices to setFn := Cn+1 \ Bn− 1
2
andGn := Bn+ 3

2
\Cn−1: these are locally finite

since any x ∈ X belongs to some Cn \Cn−1, so the open set Bn+ 1
2
\Cn−1 is a

neighbourhood of x, and meets GN only if n− 2 ≤ N ≤ n+ 1.

The relation between paracompactness and countability is given by

Proposition A.2.8 (i) If each component of X is open, X is paracompact if
and only if each component is.
(ii) A connected locally compact space X is paracompact if and only if it is

a countable union of compact subsets.

Proof (i) is immediate since an open cover of X induces (and is induced by)
open covers of each of its components.
(ii) If X is paracompact, the open covering by neighbourhoods of points with

compact closures has a locally finite refinement. Since these sets have compact
closures, each meets only finitely many others. Starting with one such set U0,
only finitely many others meet it; only finitely many meet one of the above, and
so on. But since X is connected, each Uα is connected to U0 by a finite chain.
Thus there are only countably manyUα , and X is the union of their (compact)
closures.
Conversely if X =⋃n≥0Un is a countable union, setting Vn :=

⋃
0≤i≤n Ui,

we may assume the sequence Vn increasing. Any compact subset is covered by
theUn, hence by a finite subset, hence is contained in someVn. Each point ofVn
has a compact neighbourhood;Vn is covered by these neighbourhoods, hence by
finitely many. Their union is compact, so is contained in someVm. Thus, passing
to a subsequence, we may suppose that Vn+1 contains an open neighbourhood
of Vn. Now any open cover of X induces one of the compact set Vn+1 \ IntVn,
which has a finite refinement. The union of all these refines the given cover,
covers all of X , and is locally finite since any point is in some Vn+1 \ IntVn, so
has a neighbourhood contained in Vn+2 and disjoint from Vn−1.

The following useful result has a different nature.

Proposition A.2.9 If X is a finite dimensional metric space, any open covering
{Uα} has a finite dimensional refinement. More precisely, there exist an open
covering {S j | j ∈ J} of X, with each S j contained in Uα for some α, and a map
d : J → {0, . . . ,N} such that if d( j) = d( j′), j �= j′ then S̄ j ∩ S̄ j′ = ∅.
We omit the proof, which is given by Hurewicz and Wallman on [76, p. 54].

To understand the result, the reader should consider the picture of a simplicial
complex K of dimension N: each simplex of dimension r admits coordinates
{x0, . . . , xr}with xi ≥ 0,

∑
i xi = 1, and Sr(K) is a union of sets contained in the
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interior of each r-simplex. Replace this simplicial complex K by its barycentric
subdivision K′: each vertex V of this is labelled by the dimension d(V ) of the
simplex of which V is the barycentre. Now map each point of K′ to the nearest
vertex: more precisely, define an open neighbourhood of the vertex V to be

N(V ) := {x ∈ K′ | (∀W �= V )ρ(x,V ) ≥ ρ(x,W )− 2−N},
whereW runs over the vertices ofK′. Now set Sr(K) :=

⋃{N(V ) | d(V ) = r}: a
disjoint union of the neighbourhoods N(V ) with d(V ) = r. Now if f : X → K,
define Sr(X ) := f−1(Sr(K)) to obtain subsets with the desired properties.

Notes on this section. The results on compactness and proper maps can be
extended to general (not metric) topological spaces (see [24, §12]).
A closer study of the notion of properness is also given in [47, §3.2], using

the following concept. For any map f : X → Y , define the improper set Z( f )
as the set of y ∈ Y such that there is a discrete sequence {xn | n ∈ N} on X with
f (xn)→ y. This is the smallest closed subset of Y such that the restriction of f
to a map X \ f−1(Z)→ Y \ Z is proper: thus is empty if and only if f is proper.

A.3 Proper group actions

A (left) action of a group G on a set X is a map φ : G× X → X such that
φ(1, x) = x for all x ∈ X and φ(g, φ(h, x)) = φ(gh, x) for all x ∈ X and g, h ∈
G. We usually denote φ(g, x) by g.x. We are really only interested in smooth
group actions, so X will be a Hausdorff space throughout.
Given an action φ, the isotropy group of x ∈ X is Gx := {g ∈ G | g.x = x}.

The orbit of x is G.x := {g.x | g ∈ G}. The action induces a bijection G/Gx →
G.x since

g.x = h.x⇔ h−1g.x = x⇔ h−1g ∈ Gx ⇔ hGx = gGx.

Equivalently, the map φx : G→ X defined by φx(g) := g.x induces an injection
of G/Gx into X .

Given a left group action, we denote the set of orbits by G\X and the pro-
jection by q : X → G\X . We give G\X the quotient topology and call it the
orbit space. The map q is open, for ifU is open in X , q−1(q(U )) =⋃g∈G g.U ,
a union of open sets, hence open; by the definition of quotient topology, q(U )
is open.

Proposition A.3.1 Let φ : G× X → X be a group action. Then the following
are equivalent:
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(i) The map (φ, π ) : G× X → X × X (where π denotes the projection) is a
proper map;
(ii) (φ, π ) is closed and all isotropy groups Gx are compact;
(iii) for any compact subsets K,L ⊆ X, TK,L := {g ∈ G | g.K ∩ L �= ∅} is

compact.

Proof (i)⇒ (ii) since Gx × {x} is the preimage of (x, x) under (φ, π ).
(ii)⇒ (i) since the preimage of (y, x) is empty if y �∈ G.x, and if y = g.x is

the coset gGx, homeomorphic to Gx.
Now by Lemma A.2.2, (i) is equivalent to the condition that for any com-

pact subset of X × X , its preimage under (φ, π ) is compact. It is sufficient to
consider subsets of the form L× K, where K and L are compact subsets of X .
We have (φ, π )−1(L× K) = {(g, x) | g.x ∈ L, x ∈ K} ⊆ TK,L × K. Thus if TK,L
is compact, so is this (closed) subset of it; and if this set is compact, so is its
projection on the first factor, which is TK,L.

A group action will be called proper if it satisfies the equivalent conditions
of Proposition A.3.1. It is not true that for any proper group action φ itself is a
closed map: consider, for example, G = X = R with action by translation.

Lemma A.3.2 (i) A group action of a compact group is proper.
(ii) Given two Lie subgroups H, K of G with K compact, the natural action

of H on the coset space G/K is proper.

Proof (i) It will suffice to show that the preimage of a compact C ⊂ X × X is
compact. The second projection C2 of C is compact, and the preimage of C is
a closed subset of the compact set G×C2.
(ii) It is enough to show that the action of G on G/K is proper. Any compact

subset C of G/K × G/K is a subset of some C1 ×C2 with each Ci compact,
and the preimage of Ci in G is a compact set Bi. The image of B1 × B2 by the
map (x, y)→ xy−1 is a compact set B. Now the preimage of C in G× G/K is
a closed subset of the compact set B×C2.

Proposition A.3.3 Let φ : G× X → X be a proper group action and x ∈ X.
Then
(i) the isotropy group Gx is compact;
(ii) the map φx : G→ X given by φx(g) = g.x is proper;
(iii) the orbit G.x is a closed subset of X;
(iv) the induced map G/Gx → G.x is a homeomorphism.

Proof (i) Gx × {x} is the preimage of the point (x, x) (a compact set) under the
proper map (φ, π ).
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(ii) This is a closed map as it is the restriction of (φ, π ) to the closed subset
G× {x}. The preimage of a compact set K is the preimage of K × {x} under
(φ, π ), so is compact.
(iii) It is the image of G under the proper, hence closed map φx.
(iv) This map is bijective by construction, continuous since φx is, and by the

definition of the quotient topology, and closed since φx is.

PropositionA.3.4 Letφ : G× X → X be a smooth proper group action. Then
the quotient space G\X is Hausdorff, locally compact, and paracompact.

Proof Write � for the diagonal in G\X × G\X . Since (φ, π ) is closed, C :=
{(x, g.x) | x ∈ X} is closed in X × X . Now C = (q, q)−1(�), and since G\X ×
G\X has the quotient topology, it follows that� is closed inG\X × G\X . Thus
G\X is Hausdorff.
By Theorem 3.3.5, any point of X has an invariant neighbourhood of the

form j(G×H V ) with H ⊆ G a compact subgroup and V a disc on which H
acts orthogonally. Thus any point of G\X has a neighbourhood of the form
H\V , which is compact. So G\X is locally compact.
By Proposition A.2.8, paracompactness will follow providedG\X is a count-

able union of compact subsets. But this follows since X is such a union, and the
image of a compact set is compact.

For the special case when G is compact, we have

Proposition A.3.5 If φ : G× X → X is a group action with G compact, then
(i) the map φ is a proper map;
(ii) the action is proper;
(iii) the map q : X → X/G is proper;
(iv) for any Y ⊂ X, any neighbourhood of Y contains a G-invariant neigh-

bourhood.

Proof (i) Suppose F a closed subset of G× X : we want to prove that any limit
point x of φ(F ) belongs to φ(F ). Suppose (gi, xi) ∈ F and gi.xi → x. Since G
is compact, {gi} has a convergent subsequence. Passing to this subsequence, we
may write gi → g. Then xi = g−1i .(gi.xi)→ y := g−1.x. Thus (gi, xi)→ (g, y),
so (g, y) ∈ F and x = g.y ∈ φ(F ).
(ii) Similarly if (gi, xi) ∈ F and (gi.xi, xi)→ (y, x) we have xi → x and may

suppose gi → g; thus g.x = y, (g, x) ∈ F and (y, x) = (φ, π )(g, x).
(iii) The preimage under q of a point q(x) is the orbit G.x, which is compact

since G is. Now suppose F is closed in X : then G× F is closed in G× X ;
since by (i) φ is proper, G.F = φ(G× F ) is closed in X . Now by the definition
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of quotient topology, q(F ) is closed in X/G since q−1(q(F )) = G.F is closed
in X .
(iv) Let U be an open set containing Y . Then W := X \ q−1q(X \U ) is G-

invariant and contained in U . Since q is proper X \U is closed, thus W is
open.

A similar argument shows that in general if K ⊂ G is compact then the
restriction of φ to K × X → X is proper, and hence if A ⊆ X is closed (com-
pact) so is K.A.

Proposition A.3.6 Let G act properly on M and ρ be a G-invariant metric on
M. Define ρ : G\M × G\M → R by ρ(G.x,G.y) := in fg∈G ρ(x, g.y). Then ρ
is a metric on G\M.
Proof Since the action is proper, the orbit G.y is closed. Thus if x �∈ G.y,
ρ(x,G.y) > 0, i.e. G.x �= G.y implies ρ(G.x,G.y) �= 0.

For any x, y, z ∈ M and any ε > 0 we can choose g, g′ ∈ G with ρ(x, g.y) <
ρ(G.x,G.y)+ ε and ρ(y, g′.z) < ρ(G.y,G.z)+ ε. Thus
ρ(G.x,G.z) ≤ ρ(x, gg′.z) ≤ ρ(x, g.y)+ ρ(g.y, gg′.z),

and this is equal to
ρ(x, g.y)+ ρ(y, g′.z) < ρ(G.x,G.y)+ ρ(G.y,G.z)+ 2ε.

Since this holds for any ε > 0, we have ρ(G.x,G.z) ≤ ρ(G.x,G.y)+
ρ(G.y,G.z), so the triangle inequality holds.

Note As for the definition of proper maps, one can define and study a ‘bad
set’. If G is a locally compact group acting on a Hausdorff space X , then x ∈ X
is a wandering point if it has a neighbourhoodVx such that {g ∈ G |Vx.g∩Vx �=
∅} has compact closure, or equivalently, if there exists a compact subsetK ⊂ G
such that g /∈ K implies Vx.g∩Vx = ∅. The set �(X ) of all wandering points
is open, and the action of G on �(X ) is proper; the action on X is proper if and
only if �(X ) = X . In the case when G is a discrete group, the term ‘properly
discontinuous’ is often used instead of ‘proper’.

A.4 Mapping spaces

We begin by discussing topologies on the set C0(X,Y ) of continuous maps
between two topological spaces X and Y . We are only interested here in the
case when X and Y are manifolds, and hence metrisable.
Perhaps the most commonly used topology on function spaces is the so-

called compact-open topology, which we call the C0 topology. This is the
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topology on C0(X,Y ) defined by taking the sets

A(K,U ) := { f | f (K) ⊂ U} with K ⊂ X compact, U ⊂ Y open

as a sub-base of open sets. It can be described as the topology of uniform con-
vergence of f on compact sets.
There is also the fine topology (or fine C0 topology), which we define by

taking the

B(U ) := { f | (1× f )(X ) ⊂ U} withU open in X × Y

as a base of open sets.

Lemma A.4.1 (i) The sets I({Kα,Uα}) :=
⋂

α A(Kα,Uα ), with Kα ⊂ X com-
pact, Uα ⊂ Y open, {Kα} locally finite, are a subbase for the fine topology.
(ii) For f ∈ C0(X,Y ) and ρ a metric on Y , the sets

J( f , k) := {g ∈ C0(X,Y ) | (∀x ∈ X ) ρ( f (x), g(x)) < k(x)},
with k ∈ C0(X,R>0), are a base of neighbourhoods of f in the fine topology.

Proof We have J( f , k) = B(U ), where U = {(x, y) ∈ X × Y | ρ(y, f (x)) <
k(x)}, hence J( f , k) is open. That these give a base of neighbourhoods of f
follows by applying Lemma A.2.4 to neighbourhoods of the graph of f in
X × Y .

The set A(Kα,Uα ) is the preimage by 1× f of the open subset

((X \ Kα )× Y ) ∪ (X ×Uα )

of X × Y . Any finite intersection of these subsets is thus also open. But by
hypothesis, any x ∈ X has an open neighbourhoodUx intersecting Kα for only
finitely many α. Thus the intersection ofUx × Y with I({Kα,Uα}) is equal to its
intersection with a finite number of the A(Kα,Uα ) and hence is open. It follows
that I({Kα,Uα}) is open.
For the converse, it will suffice to check that any neighbourhood J( f , k) of

f contains one of the form I({Kα,Uα}). It will suffice if the Kα cover X and z ∈
Kα , y ∈ Uα implies ρ( f (z), y) < k(z). For each x, set Ux := {y | ρ(y, f (x)) <
1
3k(x)}, choose a compact neighbourhood Kx ⊂ f−1(Ux) ∩ {z | k(z) > 2

3k(x)}
now let {Kα} be a locally finite subcover of the sets Kx.

If X is compact, the fine topology, the C0 topology and the topology of uni-
form convergence are the same.
For whenX is compact, the functions k in J( f , k) have positive lower bounds,

so the base of neighbourhoods J( f , k) is equivalent to the base of neighbour-
hoods J( f , c) (c constant), which defines the uniform topology.
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Both topologies are Hausdorff; indeed completely regular.
We will shortly see that the C0 topology is metrisable, hence Hausdorff and

normal.
For the fine topology, any closed set C not containing f is disjoint from

some J( f , k), so J( f , 1
2k) is an open set containing f disjoint from the open

set {g ∈ C0(X,Y ) | (∀x ∈ X ) ρ( f (x), g(x)) > 1
2k(x)} which contains C.

If X is not compact, the fine topology is very large, and the two topologies
are distinct.

Proposition A.4.2 (i) The spaceC0(X,Y )with theC0 topology has a complete
metric.
(ii) A sequence of maps which converges in the fine topology is eventually

constant outside a compact set.
(iii) If X is not compact, the fine topology on C0(X,Y ) is not metrisable, and

does not admit a countable base, even locally.

Proof (i) First suppose X compact, then choose a complete metric ρ on Y and
take the uniform metric ρ( f , g) = supx∈X ρ( f (x), g(x)). This is complete since
if { fn} is a Cauchy sequence, so is each { fn(x)}, which thus converges to a limit
f (x), and f is continuous as the uniform limit of { fn}.
For X not compact, write X =⋃∞

i=1 Xi as a countable union of compact
subsets. Then the topology for C0(Xi,Y ) is defined by a complete metric ρi,
hence also by the bounded metric ρ ′i ( f , g) := min(ρi( f , g), 2−i). The met-
ric ρ :=∑∞

i=1 ρ
′
i defines the product topology on 'iC0(Xi,Y ), and hence the

required topology on the subsetC0(X,Y ).Moreover,C0(X,Y ) is a closed subset
of the complete 'iC0(Xi,Y ) and is thus also complete.
(ii) Assume fn → f and that for no compact K ⊂ X is the sequence fn even-

tually constant outside K. Choose an increasing sequence {Kn} of compact sub-
sets of X with union X . By hypothesis, there exist xn ∈ (X \ Kn) and in > nwith
fin (xn) �= f (xn). Set δn := ρ( fin (xn), f (xn)). Since the sequence xn diverges,
we can find a positive continuous function k on X such that k(xn) = 1

2δn for
infinitely many n. For none of these n is fin ∈ J( f , k), contradicting the assump-
tion that fn → f .
(iii) follows from (ii).

Not only compactness of spaces, but properness of maps is important in dis-
cussing these topologies, and we have

Lemma A.4.3 If Y is a locally compact, paracompact metric space, the set
C0
pr(X,Y ) of proper maps is open in C

0(X,Y ) in the fine topology.
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Proof By Proposition A.2.7, there exist coverings of Y by sets Fa ⊂ Ga with
each Fa compact, each Ga open, {Ga} locally finite, and

⋃
a Fa = Y .

For f : X → Y a proper map, the sets Ka := f−1(Fa) are compact. They
are locally finite, since for any x ∈ X , f (x) has a neighbourhood Ux meeting
only finitely many of the Ga, so f−1(Ux) is a neighbourhood of x meeting only
finitely many of the Ka. Hence by Lemma A.4.1, I({Ka}, {Ga}) is a neighbour-
hood of f in the fine topology.
We claim that any g ∈ I({Ka}, {Ga}) is proper. For any compact subset L ⊂ Y

meets only finitely many Ga, so g−1(L) is contained in the union of the corre-
sponding Ka, so is compact.

We turn to the question of continuity of the composition map.

Proposition A.4.4 (i) The composition mapC0(X,Y )×C0(Y,Z)→ C0(X,Z)
is continuous for the C0 topologies.
(ii) The mapC0(Y,Z)→ C0(X,Z) defined by composition with a continuous

map f is continuous for the fine topologies if and only if f is proper.
(iii) The composition map C0

pr(X,Y )×C0(Y,Z)→ C0(X,Z) is continuous
for the fine C0 topologies.

Proof (i) It will suffice to show that the preimage of a subbasic open set
A(KX ,UZ ) is open, and thus to show that if g ◦ f ∈ A(KX ,UZ ), it contains a
neighbourhood of ( f , g).

Since g ◦ f ∈ A(KX ,UZ ) and f is proper, f (KX ) is a compact subset of Y
and g−1(UZ ) is an open neighbourhood of it. By Lemma A.1.1, this contains
a compact neighbourhood, so we can find a compact KY and an open UY with
f (KX ) ⊂ UY ⊂ KY ⊂ g−1(UZ ).
It follows that the preimage of A(KX ,UZ ) contains the open neighbourhood

A(KX ,UY )× A(KY ,UZ ) of ( f , g).
(ii) If f is not proper, there is a discrete sequence xn ∈ X such that f (xn) con-

verges to a limit y0 ∈ Y . Let g : Y → Z be continuous, and consider a neigh-
bourhood J(g ◦ f , k) of g ◦ f . We want to show that for some k, f ∗J(g ◦ f , k)
is not open, in fact does not contain a neighbourhood J(g, �) of g. For if it does,
ρ(g(y), h(y)) < �(y) for all y implies ρ(g( f (x)), h( f (x))) < k(x) for all x.
Since xn is discrete, we can choose k with k(xn) = n−1 for all n. Now as

f (xn)→ y0, if ρ(g( f (xn)), h( f (xn))) < k(xn) = n−1 for all n, it follows that
ρ(g(y0), h(y0)) = 0. Thus we do not have a neighbourhood of g.

(iii) We copy (i); so start with neighbourhood I({KX
α ,U

Z
α }) of g ◦ f : here

as well as the UZ
α being open, the KX

α are locally finite. Any y has a compact
neighbourhood By: then f−1(By) is compact (as f is proper), so meets only
finitely many of the KX

α . Hence the f (K
X
α ) are locally finite.
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We now have a locally finite family of compact sets f (KX
α ) with neighbour-

hoods g−1(UZ
α ) and seek f (K

X
α ) ⊂ UY

α ⊂ KYα ⊂ g−1(UZ
α ) with the K’s compact,

theU’s open and the KYα locally finite. We restate the problem. First use count-
able compactness to say the set of α is countable.We have a locally finite family
of compact setsAn with open neighbourhoodsDn and seekAn ⊂ Bn ⊂ Cn ⊂ Dn

with the Cn compact, the Bn open and theCn locally finite.
Shrinking the Dn, we may suppose each meets only finitely many of the Ai.

Now by Lemma A.1.1 we can find Bn and Cn as above, but have yet to make
the Cn locally finite. Set

C′n := Cn \
⋃
{Dr | r < n, Dr ∩ An = ∅}.

Since An ⊂ Cn and we have only removed subsets disjoint from An, we have
An ⊂ C′n. IfC

′
r meetsC′n with r < n thenC′n meets Dr so Dr ∩ An �= ∅. For each

r this holds for finitely many n, and there are only finitely many n < r, so C′r
meets only finitely many C′n. It remains only to take B′n as a neighbourhood of
An contained in C′n.

In the original notation, it follows that the preimage of I({KX
α ,U

Z
α }) contains

I({KX
α ,U

Y
α })× I({KYα ,UZ

α }), a product of neighbourhoods of f and g.

We next discuss the Baire property, which is important for many of our
applications.

Theorem A.4.5 (Baire’s Theorem) Let X be a complete metric space. The
intersection of a countable family of dense open subsets of X is dense.

Proof Let the given subsets be {Ui}, and let V be any non-empty open set.
Then V ∩U1 is non-empty and open, and so contains a metric neighbourhood
U (x1, ε1), say. Next,U2 ∩U (x1, ε 1

2
) is non-empty and open, so contains some

U (x2, ε2). We can thus construct a decreasing sequence of neighbourhoods
U (xi, εi) and have εi → 0. Then {xi} is a Cauchy sequence, so has a limit point
x, which lies in each Ū (xi, εi) (since the later x j do) and so in each Ui and
in V .

This result shows that any complete metric space has the Baire property. It
follows fromPropositionA.4.2 thatC0(X,Y ) with theC0 topology has the Baire
property. For the fine topology, we have to work harder.

Theorem A.4.6 If X is paracompact and Y a complete metric space, then
C0(X,Y ) with the fine topology is a Baire space.
Further, if Q ⊂ C0(X,Y ) is closed in the C0 topology, then Q with the fine

topology is a Baire space.
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Proof Let {Ui} be a countable sequence of open dense sets andV a further open
set. Choose f0 ∈ V and a neighbourhood J( f0, k0) of f0 with closure contained
in V .
Now suppose inductively chosen functions f0, . . . , fr and neighbourhoods

J( fi, ki) (0 ≤ i ≤ r) such that fi ∈ V , fi ∈ J( f j, k j ), ki < 2−i and J( fi, ki) ⊂ Ui

for j ≤ i ≤ r. SinceUr+1 is dense, it meets the open set
⋂r

i=0 J( fi, ki): choose
fr+1 in the intersection, and choose a neighbourhood J( fr+1, kr+1) with closure
contained in it and with kr+1 < 2−(r+1).

Since ρ is a complete metric, and the sequence fr converges uniformly, we
can define f to be its limit. Since all fi with i > r belong to J( fr, kr ), f belongs
to its closure, which is contained in Ur (r > 0) or V (r = 0). Thus V ∩⋂r Ur

is non-empty, as required.
Given a countable sequence of open dense subsets Wi of Q, we can take

Ui :=Wi ∪ (C0(X,Y ) \ Q) and argue as above. We only need to note that since
Q ⊂ C0(X,Y ) is closed in the C0 topology, the uniform limit f of the maps
fi ∈ Q also belongs to Q.

For smoothmanifoldsV v andMm, writeCr(V,M) for the set of mapsV → M
whose restrictions in any local coordinates have continuous partial derivatives
of all orders ≤ r; in particular, C∞(V,M) is the set of smooth maps of V to
M. Taking r-jets gives an injective map jr : Cr(V,M)→ C0(V, Jr(V,M)). The
topology onCr(V,M) induced by regarding it as a subspace ofC0(V, Jr(V,M))
with the compact-open topology is called the Cr topology, and the topol-
ogy induced from the fine topology is the fine Cr topology. The image of
jr : Cr(M,N)→ C0(M, Jr(M, n)) is closed in theCr topology.
The inclusion of C∞(V,M) in Cr(V,M) induces topologies on it, and we

define the C∞ topology to be the union of the Cr topologies, in the sense that
a set is open if it is open in one of these topologies. Correspondingly, the fine
C∞ topology, which we christen theW∞ topology, is the union of the fine Cr

topologies.
The properties of these metrics are similar to those for the case r = 0, and

the proofs run in parallel, though with complications of detail (the case r = ∞
requiring a little more effort), so we omit most of them. The discussion extends
to manifolds with boundaries, corners, etc. The following statements hold for
all r ≤ ∞: it is the case r = ∞ which is of prime interest to us.
We have equivalent characterisations of the fine Cr topology if the above

conditions on the images of the maps are replaced by conditions on the r-jets.
However if in the C∞ version of I({Kα,Uα}) we allow the Uα to be open in
jet spaces Jr(V,M) for varying values of r we obtain a new topology, the very
strong topology, which we do not discuss further in this book.
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Both topologies on C∞(V,M) are completely regular. They agree if V is
compact.
For theW∞ topology, a convergent sequence of maps is eventually constant

outside a compact set; hence the topology is neither metrisable nor even locally
countable.

Theorem A.4.7 With the C∞ topology, C∞(V,M) is a complete metric space.

Proof First suppose V is compact. Each jet space Jr(V,M) is a smooth mani-
fold, and admits a complete Riemannian metric ρr, say. The distance function
ρr( f , g) := supP∈V ρ

r( jr f (P), jrg(P)) is well defined since V is compact, and
defines the Cr topology on C∞(V,M).

The same topology on Jr(V,M) is given by the non-Riemannian metric ρ ′r =
inf(ρr, 1), and the metric ρ( f , g) =∑r 2

−rρ
′r( f , g) defines the C∞ topology

on C∞(V,M).
A Cauchy sequence { fi} in C∞(V,M) must à fortiori be Cauchy with the

metric ρr. Since Jr(V,M) is complete, the maps jr fi converge to a limit gr,
which is continuous, since the convergence was uniform.
The coordinates uω, j of jr fi are the partial derivatives of the u0, j. Let ω′ be

derived from ω by increasing ωi by unity, and |ω′| ≤ r: then uω′, j = ∂uω, j/∂xi
and so uω, j is the indefinite integral with respect to xi of uω′, j. Integration com-
mutes with uniform limits, so the relation uω′, j = ∂uω, j/∂xi also holds for gr.
Thus the u0, j = y j are r-times continuously differentiable, gr is the r-jet of aCr

function g, independent of r, so g is smooth, and is the limit of the sequence.
ForV not compact, writeV =⋃∞

i=1Vi as a countable union of compact sub-
manifolds (with boundary). Then the topology for C∞(Vi,M) is defined by a
metric ρi, bounded by 1. Hence the metric ρ =∑∞

i=1 2
−iρi defines the prod-

uct topology on 'iC∞(Vi,M), and hence the required topology on the subset
C∞(V,M).

Now C∞(V,M) is a closed subset of the complete
∏

i C
∞(Vi,M) which is

thus also complete.

Lemma A.4.8 The set C∞pr (V,M) of proper smooth maps is open in C∞(V,M)
in the W∞ topology.

Proof Let f : V → M be a proper map, and {ϕα : Uα → D̊m(3)} a locally finite
open cover of M as in Theorem 1.1.4, so that M is covered by the compact
sets Kα := ϕ−1α (Dm(2)). Since f is proper, Fα := f−1(Kα ) is compact. Then
W := {g | ∀α g(Fα ) ⊂ Uα} is an open neighbourhood of f . For any g ∈W and
any compact L ⊂ M, L meets only finitely manyUα , so g−1(L) is contained in
the union of the corresponding Fα , so is compact.
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The composition map C∞(V,M)×C∞(M,N)→ C∞(V,N) is continuous
for the C∞ topologies; however for the W∞ topologies this fails unless V is
compact: more precisely, C∞pr (V,M)×C∞(M,N)→ C∞(V,N) is continuous,
and the mapC∞(M,N)→ C∞(V,N) defined by composition with f : V → M
is continuous if and only if f is proper.

Theorem A.4.9 (see, for example, [73, 2.4.4], [57, 3.4]) If F is any subspace
of C∞(V,M) which is closed in the C∞ topology, then F (with either the C∞

topology or the W∞ topology) has the Baire property.

For example, if f ∈ C∞(V,M) and K is a closed subset of V , we can take
F = {g ∈ C∞(V,M) | g|K = f |K}.

We also have

TheoremA.4.10 IfW is open inC∞(V,M) with theC∞ orW∞ topology, then
W has the Baire property.

Proof Since C∞(V,M) is completely regular, for any f ∈W we can choose
a neighbourhood U of f whose closure F ⊂W . If now the Ui are dense open
subsets ofW , theUi ∪ (W \ F ) are dense open subsets of X , hence their inter-
section

⋂
Ui ∪ (W \ F ) is dense in X , and hence intersects U . Thus U meets⋂

Ui, and since this holds for any neighbourhood of f contained in U , f is in
the closure of

⋂
Ui. As this holds for all f ∈W ,

⋂
Ui is dense inW .
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Appendix B

Homotopy theory

I do not know any book on homotopy theory which covers all the material to
which I need to refer, but one useful introduction is May’s book [89].

B.1 Definitions and basic properties

A continuous map X × I → Y is said to be a homotopy between the maps
X → Y given by its restrictions to X × {0} and X × {1}. The relation of homot-
opy between maps is an equivalence relation. A major concern of homotopy
theory is the set of homotopy equivalence classes of maps X → Y , which in
this appendix we denote by [X : Y ]. Unless otherwise stated we fix base points
in X and Y and require maps and homotopies to respect the base point. The
base point is usually denoted ∗, but is often suppressed from the notation. A
map X → Y homotopic to the constant map X → ∗ is said to be nullhomo-
topic. We write X+ for the disjoint union of X and a point, taken as base point.

An important type of homotopy occurs when B ⊂ A, h : A× I → A satisfies
h(x, 0) = x for all x ∈ A, h(x, t ) = x for all x ∈ B, t ∈ I and h(A× {1}) = B: B
is then called a deformation retract of A and h is a deformation retraction. A
simple example is when A is a square and B the union of three sides.
Two spaces X, X ′ are said to be homotopy equivalent if there are maps f :

X → X ′ and f ′ : X ′ → X such that each composite f ◦ f ′, f ′ ◦ f is homotopic
to the identity map.
If f : Sn−1 → X is a continuous map, we define a space X ∪ f en: as a set,

we have the disjoint union of X and D̊n; the map g : Dn → X ∪ f en is given
by the identity on D̊n and by f on Sn−1; and we declare a subset to be open
if its preimages by both g and the inclusion of X are open. This process is
called attaching an n-cell to X . We can allow n = 0: S−1 is the empty set, so
X ∪ f e0 = X+ is the disjoint union of X and a point.

314
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A space obtained by attaching a finite number of cells to the empty set is
a cell complex. A CW-complex is obtained by a (possibly infinite) sequence
of attachments of cells to ∅, subject to the condition that each attaching map
has image in a finite subcomplex, and that the topology is given by declaring
a set to be open if its intersection with each finite subcomplex is. A CW-pair
(K,L) consists of a CW-complex L and a CW-complex K obtained from L by
attaching cells. We are mainly interested in finite CW-complexes and pairs, or
at worst those with a finite number of cells of each dimension.
Given a CW-complex (or pair) we can change the attaching maps by homot-

opies (and K by a homotopy equivalence) to ensure that cells are attached in
order of increasing dimension: the argument parallels that of §5.2, which is
modelled on the CW case. The space obtained at the intermediate stage when
all cells of dimension≤ n have been attached, is called the n-skeleton of K and
denoted K (n).
In general, we use the term ‘space’ for a topological space homotopy equiv-

alent to a CW-complex. This class of objects is closed under various natural
constructions, including fibrations and formation of function spaces (with the
compact-open topology).

For any space X and n ≥ 1, the set [Sn : X] has the structure of a group and
is denoted πn(X ). The group is abelian if n ≥ 2; if X is connected, it is inde-
pendent of the base point. The group π1(X ) is called the fundamental group
of X .
Given a spaceY and subspaceX , we can similarly defineπn(Y,X ) usingmaps

f : Dn → Y with f (Sn−1) ⊂ X ; more generally given any map j : X → Y we
define πn( j). There is an exact sequence

. . . πn(X )
j∗−→ πn(Y )→ πn( j)→ πn−1(X ) . . ..

Going one further, given a commutative diagram

� :
A

p−→ B
q ↓ r ↓
C

s−→ D

,

we can define πn(�) by homotopy classes of commutative diagrams of maps of
an n-sphere, the upper and lower hemispheres of its boundary, and the equator
into �: this is a group for n ≥ 3. There are exact sequences

. . . πn(p)→ πn(s)→ πn(�)→ πn−1(p),

. . . πn(q)→ πn(r)→ πn(�)→ πn−1(q).
A space X is contractible if it is homotopy equivalent to a point. It is weakly

contractible if any map K → X , with K a finite CW-complex, is homotopic to
a constant map. It is sufficient to check this for K a sphere, i.e. that πn(X ) is
trivial for all i ≥ 0.
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If we merely suppose that every map K → X , with K a finite CW-complex
of dimension ≤ n, is homotopic to a constant map, X is called n-connected.
For this, it is sufficient that πn(X ) is trivial for all 0 ≤ i ≤ n.
Recall that a map f : X → Y is said to be a weak homotopy equivalence if,

for any CW-pair (K,L) and maps a : L→ X and b : K → Y with b | L = f ◦ a
there exists c : K → X with c | L = a and f ◦ c homotopic to b keeping L fixed.

L
a ��

i
��

X

f
��

K

c

���������� b �� Y

For this it suffices to consider pairs Sk−1 ⊂ Dk instead of L ⊂ K; thus for X con-
nected it suffices if f induces isomorphisms f∗ : πr(X )→ πr(Y ) of homotopy
groups.
The map f : X → Y is said to be n-connected if this condition holds for all

(K,L) with K of dimension ≤ n. If f is the inclusion of a subset, we say that
the pair (Y,X ) is n-connected. For this it is sufficient that πn(Y,X ) is trivial
for all 0 ≤ i ≤ n: equivalently (if n ≥ 2) that X and Y are connected, the map
f∗ : πr(X )→ πr(Y ) is an isomorphism for r < n and surjective for r = n.

For any K, we define the cylinder on K to be the product K × I, the cone
CK on K to be obtained from K × I by identifying the subspace K × {0} to
a point (so there is an inclusion K → CK with x 	→ (x, 1)), and the suspen-
sion SK to be obtained by further identifying (∗ × I) ∪ (K × {1}) to a point.
More generally, for any map f : K → L we define the mapping cone L ∪ f CK
to be obtained from the disjoint union L ∪CK by identifying, for each x ∈ K,
the point (x, 1) ∈ CK with f (x) ∈ L: this generalises the procedure of attach-
ing a cell to L using a map f : Sn−1 → L. We also define the mapping cylinder
Cyl( f ) := L ∪ f (K × I) to be obtained from the disjoint union L ∪ (K × I) by
identifying, for each x ∈ K, the point (x, 1) ∈ (K × I) with f (x) ∈ L: this con-
tains K × {0} as a subspace, and has L as a deformation retract.
The join of two spaces K and L is the space K ∗ L obtained from K × L× I

by identifying each {k} × L× {0} to k ∈ K and each K × {l} × {1} to l ∈ L.
The smash product of spaces K and L is defined to be

K ∧ L := (K × L)/(K × {∗} ∪ {∗} × L).
In particular, the suspension SK = S1 ∧ K.

A map i : K → L is said to have the homotopy extension property
(HEP) if given any map f : L→ Y and homotopy g : K × I → Y such that
g(x, 0) = f (i(x)) for each x ∈ K there is a homotopy h : L× I → Y such that
h(i(x, t )) = g(x, t ) for each (x, t ) ∈ K × I and h ◦ (i× 1I ) = g. This is a typical
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property of inclusionmaps: the inclusion of a subcomplex L in a CW-pair (K,L)
has the HEP. Any map f : K → L is homotopy equivalent to the inclusion
K → Cyl( f ) = L ∪ f (K × I), which has the HEP. If i : K → L has the HEP,
identifying CK to a point gives a homotopy equivalence L ∪i CK → L/K: to
obtain a homotopy inverse, extend the homotopy ofCK which shrinks the cone
to its vertex to a homotopy of the identity map of L ∪i CK: at the end of the
homotopy is a map sending CK to a point, hence factoring through L/K.
For any f : K → L and any X , the sequence

[K : X]← [L : X]← [L ∪ f CK : X]
is exact, for amap L→ X extends to L ∪ f CK if and only if its restriction toK is
nullhomotopic. For any f : K → L, denote by A f the inclusion L→ L ∪ f CK.
Since A f has the HEP, (L ∪ f CK) ∪g CL is homotopy equivalent to CL/(L ∪ f

CK) = SK, so up to homotopy A2 f is a map L ∪ f CK → SK. Iterating once
more gives a map A3 f : SK → SL which differs from the suspension S f by
reversing orientation in I. Thus the sequence Ar f of maps induces, for any X ,
an exact sequence

[K : X] ← [L : X]← [L ∪ f K : X]← [SK : X]← [SL : X] . . .

Each set [SK : X] admits a natural group structure, and [S2K : X] is abelian.

A map p : X → Y is said to be have the covering homotopy property (CHP)
if given a space K, a map a : K → X and a homotopy b : K × I → Y such
that b | (K × 0) = p ◦ a, there exists a homotopy c : K × I → X such that a =
c | (K × 0) and b = p ◦ c.

K × 0 a ��

i
��

X

f

��
K × I

b ��

c

����������
Y

If this holds for K a finite CW-complex, it follows for any CW-complex; it also
follows if (K,L) is a CW-pair that c can be chosen to extend a lift already given
on L× I. It suffices to require this condition for pairs (K,L) = (Dn, Sn−1). We
may regard the CHP as a sort of dual notion to the HEP.
We recall from §1.3 that if G is a Lie group acting on a smooth manifold F ,

a map π : E → B is the projection of a fibre bundle (with base space B, total
space E, and fibre F) if B can be covered by open setsUα such that
(i) There are homeomorphisms ϕα : Uα × F → π−1(Uα ) such that for all

m ∈ Uα , x ∈ F , πϕα (m, x) = m.
(ii) For each pair (α, β ) there is a continuous map gαβ : Uα ∩Uβ → G such

that for m ∈ Uα ∩Uβ, x ∈ F , ϕβ (m, x) = ϕα (m, gαβ (m).x).
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Lemma B.1.1 The projection map π : E → B of a fibre bundle has the CHP.

This is trivial if π is the projection of a product B× F → B, thus we can lift
a homotopy whose image is contained in someUα; and now the result is proved
by subdividing K × I into small pieces.
This result motivates the definition that a map π : E → B is a fibration if it

has the CHP. Given a fibration, write F for the fibre F := π−1(∗). Then for any
space X , the sequence [X : F]→ [X : E]→ [X : B] is exact, for given a map
f : X → B with π ◦ f homotopic to the map to ∗, we can lift the homotopy to
give a homotopy of f to a map into F .
Now let X be a connected space and consider the space EX of continu-

ous maps α : I → X . There are two projections p0, p1 : EX → X given by
p0(α) = α(0) and p1(α) = α(1): each has the CHP. The map p0 is a homotopy
equivalence: a homotopy inverse is given by constant maps c : X → EX with
c(x)(t ) = x; the map h : EX × I → EX given by h(α, t ) = αt with αt (u) =
α(min(t, u)) is a homotopy of c ◦ p0 to the identity. Thus PX := p−10 (∗) is con-
tractible. The restriction q1 := p1 |PX also has the CHP, and �X := q−11 (∗) is
called the loop space of X .
For any map f : K → L we form the pullback

X := {(k, α) ∈ K × EL | f (k) = α(0)};
write i = (i1, i2) for the inclusion of X in K × EL. Since p0 is a homotopy
equivalence, so is the projection i1 : X → K. The composite f ◦ i1 = p0 ◦ i2 :
X → L is homotopic to the map π : p1 ◦ i2.
Lemma B.1.2 The projection π : X → L defined above has the CHP.

Proof Given g : Y → X and a homotopy G : Y × I → L such that G |Y ×
{0} = π ◦ g we need to construct h : Y × I → X with h |Y × {0} = g and
π ◦ h = g. To this end, write i ◦ g= (g1, g2), i ◦ h = (h1, h2); use t as parame-
ter for paths belonging to EL and s as the homotopy parameter in I; thus write
h2 as h2(y, t, s) ∈ L.

Then the conditions that (g1, g2) and (h1, h2) factor through X are
f (g1(y)) = g2(y, 0), f (h1(y, s)) = h2(y, 0, s);

that h extends g is
h1(y, 0) = g1(y), h2(y, t, 0) = g2(y, t ),

and that h lifts G is
h2(y, 1, s) = G(y, s).

We take h1(y, s) = g1(y), and then the equations define h2(y, t, s) if either
t = 0, s = 0 or t = 1: moreover the two values for h2(y, 0, 0) agree since
f (h1(y, 0)) = f (g1(y)) = g2(y, 0) and those for h2(y, 1, 0) do since G(y) =
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π (g(y)) = g2(y, 1). Since the union of 3 sides of the square I × I is a retract
of the whole square, we can extend these values to define h2 for all values.

The fibre of π is called the mapping fibre of f ; we may denote it by Mf .
Thus Mf := {(k, α) ∈ K × EL | f (k) = α(0), α(1) = ∗}. We have seen that if
f has the HEP, L ∪ f K # L/K. Dually, if f : K → L has the CHP, with fibre F ,
then F is homotopy equivalent to Mf . Let us write B f for the map Mf → K:
up to homotopy, if f has the CHP, this agrees with the inclusion F ⊂ K. As
π has the CHP, so does Mf → K, and this has fibre �L, so B2 f : �L→ Mf .
Analogously to the above discussion of A f , up to homotopy we can identify
B3 f with � f : �K → �L. It follows that for any space X , there is an exact
sequence

. . . [X : �K]→ [X : �L]→ [X : Mf ]→ [X : K]→ [X : L].

Composition of loops induces a group structure on the set [X : �K], and there
is a natural bijection of this set on [SX : K]. In particular, πr(�X ) ∼= πr+1(X ).
Taking X a sphere in the exact sequence gives

. . . πn(K)→ πn(L)→ πn−1(Mf )→ πn−1(K)→ πn−1(L).
Here we may identify πn−1(Mf ) with the group πn( f ) and the sequence with
the exact homotopy sequence described above. If also f : K → L has the CHP,
with fibre F , then Mf is homotopy equivalent to F .

LemmaB.1.3 Given a sequence Ai+1
αi−→ Ai where the maps αi are fibrations,

there are natural isomorphisms qn : πn(lim←− Ai) ∼= lim←− πn(Ai).
Given a sequence of maps fi : Ai → Bi between two sequences of fibrations,

with each fi a weak homotopy equivalence and fi ◦ αi = βi ◦ fi+1 for each i,
the induced map lim←− Ai → lim←− Bi is a weak homotopy equivalence.

For a map Sn → lim←− Ai defines a sequence of maps Sn → Ai, so we have a
natural map qn. Since αi is a fibration, if the homotopy class of a map Sn →
Ai lifts to that of a map to Ai+1, so does the map itself. It follows that qn is
surjective; injectivity follows similarly.
The second assertion now follows.

Many of the definitions and results in this section have a formal nature. A
set of axioms for homotopy theory, with a development along these lines, was
given by Quillen [126].

B.2 Groups and homogeneous spaces

We observed in §3.1 that for any Lie group G and Lie subgroup H, we have a
fibre bundle with projection G→ G/H and fibre H; and that if we have two
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Lie subgroups H1 ⊂ H2 ⊂ G, the projection G/H2 → G/H1 is that of a fibre
bundle, with fibre H2/H1, so has the CHP.
The group GLn(R) acts transitively on the space P of positive definite

quadratic forms on Rn, and On is the isotropy group of the usual inner product,
so we have an induced diffeomorphism of GLn(R)/On on P, and hence a fibre
bundleOn → GLn(R)→ P. Since P is a convex subset of a Euclidean space, it
is contractible. Thus GLn(R) is homotopy equivalent to On. It is usually more
convenient to work with the compact group On.
Similarly, any Lie group G has maximal compact subgroups K, any two

are conjugate, and G/K is contractible. Thus for homotopy purposes, we may
replace G by K. In particular, we may replace GLn(C) byUn.

SinceOn acts transitively on the Grassmann manifoldGrn,k of k-dimensional
subspaces ofRn, and the subgroup leavingRk ⊕ {0} can be identifiedwithOk ×
On−k, we can identify Grn,k with the coset space On/(Ok × On−k ). This is a
smooth manifold, and there is a natural vector bundle γn,k over Grn,k whose
fibre is the k dimensional linear subspace.
The space V ′

n,k of injective linear maps Rk → Rn is homotopy equivalent
to the space of isometric linear embeddings Rk → Rn. The latter is called the
Stiefel manifold, and denotedVn,k (we callV ′

n,k theweak Stiefel manifold). It can
be identified with On/On−k, hence with SOn/SOn−k. For any n-vector bundle
ξ : E → B with group On there is an associated bundle with fibre Vn,k: a point
in its total space can be interpreted as an isometry of Rk into some fibre of ξ .

For any Lie group G, there is a contractible space E(G) admitting a free
action ofG. WriteB(G) := E(G)/G and πG : E(G)→ B(G) for the projection.
Then this is a principal G-bundle, and for any principal G-bundle ξ over any
space X there is a map f : X → B(G), unique up to homotopy, such that ξ is
equivalent to f ∗πG. The bundle πG : E(G)→ B(G) is determined uniquely up
to homotopy by this condition.
The space B(G) is called a classifying space for G. Since E(G) is con-

tractible, it follows that G is homotopy equivalent to the loop space �B(G).

The classical construction of a classifying space is based on the Grassmann
manifolds. The natural inclusionGrn,k ⊂ Grn+1,k, is (n− k)-connected, and the
union

⋃
m Grn,k can be taken as a classifying space B(Ok ) for bundles with

group Ok. This construction may be adapted for other Lie groups.
There is an alternative construction, due to Milnor [91], using the sequence

of iterated joins G ∗ G ∗ . . . ∗ G (on which G acts freely), and taking E(G) as
the union.
Yet another approach is axiomatic. The set EG(X ) of equivalence classes of

bundles over X with a given structure group G is a contravariant functor of
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X , and it is not difficult to verify the hypotheses of Brown’s representability
theorem [33]. This shows again that there exists a space B(G) and a bundle
ξG over it with structure group G such that taking a map f : X → B(G) to the
bundle f ∗ξG induces a bijection of [X : B(G)] on EG(X ).

In some sense, we can regard any space X as a classifying space for �X ,
which plays the part of the group, since we have a fibration �X → PX → X
with PX contractible.

An (n− 1)-spherical fibration consists of a fibration π : F → E → X
together with a homotopy equivalence Sn−1 → F . It follows from the axiomatic
approach that there is a classifying space B(Gn) for the set EnS (X ) of homot-
opy equivalence classes of (n− 1)-spherical fibrations over X and a fibra-
tion νn : Sn−1 → S(Gn)→ B(Gn), such that f 	→ f ∗νn gives a bijection [X :
B(Gn)]→ EnS (X ).
This notation goes with writing Gn for the set of maps of Sn−1 to itself of

degree ±1, with the multiplication given by composition of maps. Although
this is not a group, it can be treated as one for the purposes of homotopy theory.
In particular we have a homotopy equivalence Gn → �B(Gn). Restricting to
maps of degree +1, or to fibrations with a fixed orientation of the fibre, gives a
monoid SGn and a classifying space B(SGn). The inclusion On ⊂ Gn gives rise
to a natural map B(On)→ B(Gn).
We write Fn ⊂ Gn+1 for the set of base-point preserving maps Sn → Sn of

degree ±1, and SFn for those of degree +1. The suspension of a self-map of
Sn−1 is a self-map of the same degree of Sn which fixes a base point; thus
we also have an inclusion Gn ⊂ Fn. Since all components of �nSn, including
SFn, are homotopy equivalent, we have πr(Fn) ∼= πr+n(Sn). We have a fibration
SFn−1 → SGn → Sn−1, and hence an exact sequence

. . .→ πr+n−1(Sn−1)→ πr(Gn)→ πr(S
n−1). (B.2.1)

The classifying spaces B(G) are infinite dimensional, and not homotopy equiv-
alent to finite dimensional spaces. They may, however, be approximated by
smooth manifolds. Since the map Grm,k → B(Ok ) is m-connected, for a mani-
foldM of dimension at mostm, the set of homotopy classes ofmapsM → Grm,k
maps bijectively to that of maps M → B(Ok ). In general, we first replace
the original B(G), or indeed any space X , by the (N + 1)-skeleton X1 of
its singular complex. Next, provided the homotopy groups of X are count-
able, we can replace X1 by a countable (N + 1)-simplicial complex X2; then
by a locally finite complex X3, and finally imbed X3 properly in Euclidean
(2N + 3)-space and take an open neighbourhoodX4 of which it is a deformation
retract.
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In the construction of classifying spaces we have emphasised principal bun-
dles. However, for any G-space L we can study bundles with group G and
fibre L, and the classification is the same as for the associated principal bun-
dles: they are induced from the universal bundle E(G)×G L. For example,
using the action of GLn(R) on Rn, we obtain a universal vector bundle over
B(GLn(R)).
Likewise we have a universal orthogonal vector bundle γk over B(Ok ), whose

total space contains the associated unit disc bundle A(Ok ). Writing S(Ok ) for
its boundary sphere bundle, we have the Thom space T (Ok ) = A(Ok )/S(Ok ).
Thus for any group G with a given homomorphism G→ Ok we have induced
bundles S(G) ⊂ A(G) and T (G) is obtained from A(G) by identifying S(G) to
a point.
More generally, since each sphere bundle is a spherical fibration, we have an

inclusion On ⊂ Gn and maps B(On)→ B(Gn), S(On)→ S(Gn). Here the role
of A(Gn) is played by the mapping cylinderCyl(π ), where π : S(Gn)→ B(Gn)
denotes the projection, and we define T (Gn) to be its mapping cone. Again, any
map X → B(Gn) induces a spherical fibration ξ over X and we have a Thom
space. In this situation there is still a natural isomorphism, called the Gysin
isomorphism

Hr(X )→ Hk+r(Aξ , Sξ ) ∼= H̃k+r(T (ξ )).

A summary of calculations of cohomology of classifying spaces is in §8.6.
In general, if x ∈ Hn(B(G);A) is a cohomology class, and π : E → X is a

G-bundle, π is induced by a map f : X → B(G), so we have a class f ∗x ∈
Hn(X;A). Such a class is called a characteristic class of the bundle π , and
denoted x( f ). For example, we haveH∗(B(On) : Z2) ∼= Z2[w1, . . . ,wn], so any
polynomial in w1, . . . ,wn defines a characteristic class for vector bundles of
fibre dimension n.
IfM is a smooth manifold, its tangent bundle T(M) is classified by a map φ :

M → B(O), so a class x ∈ Hn(B(O);A) induces a characteristic class x(M) :=
φ∗(x) ∈ Hn(M;A). If J is a stable group andM has a J structure, wemay replace
O by J here.
If moreover M has the same dimension n, we have φ∗(x)[M] ∈ A: this is

called a characteristic number ofM (ifA = Zwe do just have a number). IfW is
a cobordism ofM toM′, x ∈ Hn(B(G) : A), and ψ :W → B(G) classifies a G-
structure onW , then φ∗(x)[M] = φ

′∗(x)[M′], since ψ restricts to φ and φ′, and
〈ψ∗(x), [M]− [M′]〉 = 0 since [M]− [M′] = 0 in homology, as the boundary
ofW . Thus characteristic numbers are cobordism invariants.

The same argument applies with any non-classical homology theory; for
example, with KO-theory.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.011
https:/www.cambridge.org/core


B.3 Homotopy calculations 323

B.3 Homotopy calculations

In this section we summarise the results of a large number of homotopy calcu-
lations. We have included text intended to make the summary less unreadable,
but make no attempt to give proofs. The results may be found in texts on homot-
opy theory, but the author has not discovered a convenient single reference for
these results.
(i) There are natural maps πn(X )→ Hn(X;Z) and πn(X,Y )→ Hn(X,Y ;Z).

The Hurewicz Isomorphism Theorem states that if X is (n− 1)-connected (and
n ≥ 2), the natural map πn(X )→ Hn(X;Z) is an isomorphism.

It follows that πr(Sn) is zero for r < n and isomorphic to Z for r = n. We
write ιn for the class in πn(Sn) of the identity map.
The Hurewicz theorem has a relative version: if (K,L) is (n− 1)-connected

(and K, L are simply-connected), the natural map πn(K,L)→ Hn(K,L;Z) is
an isomorphism. If we define the homology groups of a map f : A→ B as
those of the pair (Cyl( f ),A) we can write this as: if f is (n− 1)-connected,
πk( f )→ Hk( f ;Z) is an isomorphism for k ≤ n.

(ii) The group SU2 is homeomorphic to the sphere S3, and its action on
P1(C) # S2 gives a fibre bundle map η2 : S3 → S2 called the Hopf map; sim-
ilarly using quaternions or Cayley numbers gives maps η4 : S7 → S4 and η8 :
S15 → S8: using the real numbers gives η1 : S1 → S1 of degree 2, so homotopic
to 2ι1.
(iii) There is a natural homomorphism H : π2n−1(Sn)→ Z, called the Hopf

invariant. Given f : S2n−1 → Sn, form Xf := Sn ∪ f e2n, then Hn(Xf ) and
H2n(Xf ) are infinite cyclic with preferred generators u, v , say, and we set u2 =
H( f )v . This invariant vanishes for n odd (the cup product is skew-symmetric
here), and takes the value 1 for each of η2, η4, η8.
One generalisation of H is defined as follows. The map πr( jn) induced by

the inclusion jn : Sn ∨ Sn → Sn × Sn has a right inverse given by adding the
maps induced by the two projections of Sn × Sn. Then H is the composite

πr(Sn) → πr(Sn ∨ Sn)→ πr+1(Sn × Sn, Sn ∨ Sn)→ πr+1(S2n),

where the first map is induced by collapsing the equator to a point, the second
by the splitting in the exact homotopy sequence of (Sn × Sn, Sn ∨ Sn) and the
third by collapsing Sn ∨ Sn to a point.
(iv) Let f : (Dm, Sm−1)→ (X, ∗) represent α ∈ πm(X ) and g : (Dn, Sn−1)→

(X, ∗) represent β ∈ πn(X ): then theWhitehead product [α, β] ∈ πm+n−1(X ) is
the homotopy class of the map F : ∂ (Dm × Dn)→ X given by F (x, y) = f (x)
if y ∈ ∂Dn and = g(y) if x ∈ ∂Dm.
We have [ιn, ιn] ∈ π2n−1(Sn), andH([ιn, ιn]) is 0 if n is odd, and 2 if n is even.
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(v) The ‘Hopf invariant 1’ problem, the questionwhetherH : π2n−1(Sn)→ Z

is surjective, was solved by Adams [3]: it is surjective only if n is 2, 4, or 8.
This is analogous to the Kervaire invariant problem.
(vi) A further relative version of theHurewicz theorem is theBlakers–Massey

Theorem [18]. Given a commutative square

� :
A

p−→ B
q ↓ r ↓
C

s−→ D

,

of simply-connected spaces, we can define H∗(�,Z) so that there are exact
sequencesH∗(q;Z)→ H∗(r;Z)→ H∗(�,Z)→ H∗−1(q;Z). Then if p is (r −
1)-connected, q is (s− 1)-connected, and H∗(�,Z) = 0, πn(�) vanishes for
n < r + s− 1 and πr+s−1(�) ∼= Hr(p;Z)⊗ Hs(q;Z).

(vii) We can apply (vi) to the square given by the inclusions of Sn in the two
hemispheres En+1

− and En+1+ of Sn+1 (these inclusions are n-connected), and
theirs in Sn+1. This gives πr(�) = 0 for r ≤ 2n and π2n+1(�) ∼= Z. Since the
hemispheres are contractible, the sequence πr(En+1

− , Sn)→ πr(Sn+1,En+1+ )→
πr(�) becomes πr−1(Sn)→ πr(Sn+1)→ πr(�).
The map πr−1(Sn)→ πr(Sn+1) is called the suspension map. It is thus an

isomorphism for r ≤ 2n− 1, so the groups πn+k(Sn) for n ≥ k + 2 are all iso-
morphic; the limit value is denoted πS

k . Also we have an exact sequence

π2n(Sn)→ π2n+1(Sn+1)→ Z → π2n−1(Sn)→ π2n(Sn+1)→ 0.

Here the second map is the Hopf invariant, and 1 ∈ Z maps to [ιn, ιn]. It
follows from the above that if n is even, the second map is zero so we have
an exact sequence 0→ Z → π2n−1(Sn)→ πS

n−1 → 0; if n �= 1, 3, 7 is odd we
must replace Z by Z2 here.
(viii) For the groups πr(Sn) we have a range given by r < nwhere the groups

vanish, and a range n ≤ r < 2n− 1 where they are stable. We get information
in the next ‘metastable’ range 2n− 1 ≤ r < 3n− 2 as follows.

We use the isomorphism of πr(�Sn+1) on πr+1(Sn+1). Up to homotopy,
�Sn+1 has a cell structure with one kn-cell for each k ∈ N. Hence (�Sn+1, Sn) is
(2n− 1)-connected and, by the relative Hurewicz theorem, π2n(�Sn+1, Sn) ∼=
Z. Now applying (vi) to the square

Sn

��

�� �Sn+1

��
∗ �� �Sn+1/Sn # S2n ∪ e3n . . .

,

we find that πr(�Sn+1, Sn)→ πr(S2n) is an isomorphism for r < 3n− 1. This
yields the so-called EHP sequence

πn+k(Sn)
E→ πn+k+1(Sn+1)

H→ πn+k+2(S2n+2)
P→ πn+k−1(Sn)

E→ . . . , (B.3.1)
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B.3 Homotopy calculations 325

generalising the sequence (vii), and valid for a range k < 2n− 1. Here the map
P agrees (up to suspension) with the Whitehead product with ιn: πk(Sn)→
πn+k−1(Sn).
A more general version can be obtained using the fibration Sn → �Sn+1 →

�S2n+1 (after localisation at 2) constructed by James [1] and Toda [6].
(ix) The homotopy group πr(Sn) is finite for r > n except if n is even and

r = 2n− 1 when it is the direct sum of Z and a finite group.
(x) The calculation of the homotopy groups πr(Sn) is a massive enterprise:

see [129] for the state of the art. The stable groups form a ring under compo-
sition; the first few, with generators (here we use the same notation η2 for the
class of the suspension in πS

1 of η2), are given by

πS
1
∼= Z2[η2], πS

2
∼= Z2[η22], π

S
3
∼= Z24[η4], πS

4 = 0, πS
5 = 0.

We have η32 = 0 ∈ πS
3 .

(xi) The group SOn acts transitively on the unit sphere Sn−1 in Rn, and the
stabiliser of the unit point on the xn-axis is the subgroup SOn−1. Thus there
is a fibre bundle SOn−1 → SOn → Sn−1, with an exact homotopy sequence.
Since πi(Sn) vanishes for i < n, we have isomorphisms πr(SOn−1)→ πr(SOn)
for r ≤ n− 3. More generally, if X has dimension ≤ r, the suspension map
[X : BSOn]→ [X : BSOn+1] is bijective for n ≥ r + 1, so stably isomorphic
vector bundles over X of fibre dimension ≥ r + 1 must be isomorphic.

Also all groups πr(SON ) for N ≥ r + 2 are isomorphic; the common value
is denoted πr(SO).
(xii) It was proved by Bott [21] that πr(SO) is infinite cyclic if r ≡ 3 (mod

4), isomorphic to Z2 if r ≡ 0 or r ≡ 1 (mod 8), and zero otherwise. A good
account of Bott’s proof is given in [98].
(xiii) The exact sequence of the fibre bundle SOn−1 → SOn → Sn−1 includes

→ πn−1(SOn−1)
i∗−→ πn−1(SOn)

π∗−→ Z
∂−→ πn−2(SOn−1)

i∗−→ πn−2(SO)→ 0.
(B.3.2)

If x ∈ πn−1(SOn) classifies a bundle ξ , then π∗x can be identified with the Euler
number of ξ . If x = ∂ιn, then ξ is the tangent bundle of Sn, so π∗∂ιn is 2 for n
even, and 0 for n odd. The image of π∗ is 0 for n odd, Z for n = 2, 4, 8 and 2Z

for n even otherwise.
(xiv) Using (ix) and (xi), we see inductively that each group πr(SOk ) is

finitely generated; the rank is 0 except if
(a) k = 2s+ 1, r = 4i− 1, 1 ≤ i ≤ s, or
(b) k = 2s+ 2, either r = 4i− 1 with 1 ≤ i ≤ s or r = 2s+ 1.

In these cases the rank is 1 except if k = 4s and r = 4s− 1 when the rank is 2.
(xv) The Stiefel manifolds Vn,k = SOn/SOn−k occur in fibre bundles

SOn−k → SOn → Vn,k (1 < k < n) and Vn−k,l−k → Vn,l → Vn,k (k < l < n),
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which give further exact homotopy sequences. It now follows that for r ≤
n− k − 1 we have πr(Vn,k ) = 0, i.e. Vn,k is (n− k − 1)-connected.

(xvi) The calculation (xiii), that the kernel of πn−2(SOn−1)→ πn−2(SO) is
isomorphic to Z for n odd, and to Z2 for n even, now implies that the first non-
vanishing homotopy group πn−k(Vn,k ) is isomorphic to Z if (n− k) is even and
to Z2 if (n− k) is odd.
(xvii) There is a homomorphism J : πk(SOn)→ πn+k(Sn), called the

J-homomorphism, defined as follows. An element φ ∈ πk(SOn) is represented
by a map f : Sk × Dn → Dn. Write c : Dn → Sn for a map which collapses
∂Dn to ∗. Write Sn+k as the union of Sk × Dn and Dk+1 × Sn−1, and define
g : Sn+k → Sn to map the first part by c ◦ f and the second to ∗. Then J(φ)
is the class of g in πn+k(Sn). An equivalent definition in the language of cobor-
dism is given in §8.8.
For x ∈ πk(SOn), we have H(J(x)) = Sn(π (x)) ∈ πn+k(S2n−1). Taking k =

2s− 1, n = 2s and x = ∂ι2s, then since π (x) = 2ι2s−1 we deduce H(J(x)) = 2,
so the homomorphism J : π2s−1(SO2s)→ π4s−1(S2s) has rank 1.
(xviii) The image of the stable J homomorphism Jk : πk(SO)→ πS

k was
determined after heroic calculations by Adams [5]; a simpler proof was found
in joint work with Atiyah [8].
(a) If k ≡ 0 or k ≡ 1 (mod 8), the map Jk is a split monomorphism.
(b) If k = 4m− 1 the image of Jk has order equal to den(Bm/4m), and is a

direct summand of π k
S .

(xix) It follows from (vi) that πr(SFn) is finite for r > 0 except if n is even
and r = n− 1 when it is the direct sum of Z and a finite group.

In the exact sequence (B.2.1)

. . .→ πr+n−1(Sn−1)→ πr(SGn)→ πr(S
n−1)→ πr+n−2(Sn−1),

the final map is the Whitehead product with ιn−1, so has infinite image if and
only if n is odd and r = n− 1. Thus πr(SGn) is infinite if and only if either
r = n− 1 and n is even or r = 2n− 3 and n is odd. The image of the map
πr(SOn)→ πr(SGn) has infinite order in each of these cases.
To summarise: the homotopy groups are finite except as follows:

Case r n rank(πr(SOn)) rank(πr(SGn))
A 4s+ 1 4s+ 2 1 1
B 4s− 1 4s 2 1
S 4s− 1 2s+ 1 < n �= 4s 1 0
C 4s− 1 2s+ 1 1 1

(xx) If we take the exact sequence (B.2.1), increase n by 1, replace r by k,
and compare with (B.3.1), we see that if πk(Sn) is stable, i.e. 2n ≥ k + 2, we
have an isomorphism πk(SGn+1) ∼= πk(SFn+1).
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The calculations in (xiv) can be compared with Haefliger’s result [64]
πr(Fn,Gn) ∼= πr−n+1(SO, SOn−1) for r ≤ 3n− 6, which he established by geo-
metrical arguments.

B.4 Further techniques

We have defined CW complexes as built up from spheres by attaching cells.
If these are attached in order of increasing dimension, a complex K has an n-
skeleton K (n): the union of cells of dimension ≤ n. The inclusion i : K (n) → K
has the HEP and is n-connected: the mapHr(K (n) )→ Hr(K) is an isomorphism
for r < n and an epimorphism for r = n; and the mapping cone K ∪i CK (n) is
n-connected.
There is also a dual approach. We may start with K, attach (n+ 1)-cells to K

to kill πn(K); then (n+ 2)-cells to kill πn+1, …, obtaining eventually an inclu-
sion j : K → K(n) with πr( j) an isomorphism for r ≤ n− 1 and πr(K(n) ) = 0
for r ≥ n. Denote the mapping fibre of j by pn : K〈n〉 → K: thenK〈n〉 is (n− 1)-
connected and πr(pn) is an isomorphism for r ≥ n. The pair (K〈n〉, pn) is called
the (n− 1)-connected cover of K, and is determined up to homotopy by these
conditions.
It follows that, up to homotopy, there is for each k a fibration K〈k−1〉 →

K〈k〉 → K(k, πk(K)). For any Y we have an induced map [Y : K〈k〉]→ [Y : K];
this is surjective if Y is k-connected, and bijective if Y is (k + 1)-connected.
The sequence of maps . . .→ K〈2〉 → K〈1〉 → K is called the Postnikov tower
of K.

Given CW complexes K,L and a map f : K (k−1) → L of the (k − 1)-
skeleton, the obstruction to extending f over a k-cell of K is an element of
πk−1(L); collecting these over all k-cells gives a cochain on K, which is neces-
sarily a cocycle. Its class in Hk(K;πk−1(L)) is the obstruction to extending the
restriction of f to K (k−2) over K (k).
If this obstruction vanishes, we can seek to extend over the (k + 1)-skeleton,

and so on. However, the later obstructions will in general depend on choices
made at earlier stages. If k is the least integer such that Hk(K;πk−1(L)) is non-
zero, the obstruction in this group depends on no choices, and is called the
primary obstruction.

If ξ is a vector bundle, and ξ 〈k〉 the associated bundle with fibre Vn,k, the
primary obstruction to finding a section of ξ 〈k〉 is denoted Wn−k(ξ ); it lies in
Hn−k(B;πn−k(Vn,k )). The reductionmodulo 2 ofWn−k(ξ ) is equal to the Stiefel–
Whitney class wn−k(ξ ).
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Given n ≥ 1 and a group π , abelian if n ≥ 2, spaces K(π, n) were con-
structed by Eilenberg and MacLane [49], with the property that πr(K) vanishes
for r �= n and that πn(K) ∼= π : this determines K(π, n) up to homotopy equiva-
lence. For π abelian, there is a natural isomorphism [X : K(π, n)] ∼= Hn(X;π ).
It follows that a map K(π,m)→ K(ρ, n) determines a natural transforma-
tion Hm(X;π )→ Hn(X : ρ). Such a transformation is called a cohomology
operation.
In particular, [K(Zp, n) : K(Zp, n+ k)] ∼= Hn+k(K(Zp, n);Zp). Composing

with an element of this group gives a natural transformation from Hn(X;Zp)
to Hn+k(X : Zp). There are maps

Hn+k(K(Zp, n);Zp)→ Hn+k+1(K(Zp, n+ 1);Zp),
which are isomorphisms for n > k, so the groups with n > k have a com-
mon value Hk(K(Zp);Zp): elements of this give stable operations. Composi-
tion endows the set of these operations with a natural ring structure; this ring
is known as the Steenrod algebra and denoted Sp. Particular such operations
are the Bockstein βp : Hn(X;Zp)→ Hn+1(X : Zp) and Steenrod’s squares
Sqi : Hn(X;Z2)→ Hn+i(X;Z2) and reduced pth powers P r : Hn(X;Zp)→
Hn+2r(p−1)(X : Zp). These operations generate Sp and formulae for their com-
posites (the Adem relations) are well known. There are rules (Cartan formulae)
for evaluating these operations on the cup product of two classes. These define
a diagonal map which furnishes Sp with the structure of a Hopf algebra. It thus
has a canonical anti-automorphism, which is denoted χ .
It was shown byMilnor [93] that the dual algebra S∨

p is a polynomial algebra
on a 1-dimensional generator bp and generators cr (r ≥ 1) of degrees 2(pr − 1).
The quotient S p of Sp by the ideal generated by βp has dual the polynomial
algebra on the cr. A careful and thorough account of this material is given in
[145].
Steenrod squares are related to Stiefel–Whitney classes as follows. If ξ is

a vector bundle, with projection π : E → B and Thom space T (ξ ), we have
the Gysin isomorphism � : H∗(B : Z2)→ H̃∗(T (ξ );Z2), with �(1) = U ,
say: then SqiU = �(wi(ξ )) = wi(ξ ).U . Classes vi ∈ Hi(B(O);Z2) are defined
uniquely by the rulewi = vi +

∑i−1
j=1 Sq

jvi− j, which may be written compactly
as w∗ = Sq∗v∗. In the special case of the tangent bundle of a manifold Mm,
we have the formulae, known as Wu relations, Sqix[M] = xvi[M] for any x ∈
Hm−i(M : Z2): these follow from the above and duality inM (see [103, IX, 5]).

As well as primary operations such as Steenrod squares there are sec-
ondary operations. The general idea is that if something vanishes for two
independent reasons, this leads to a construction. Perhaps the simplest exam-

ple: given maps A0
f1−→ A1

f2−→ A2
f3−→ A3 such that f2 ◦ f1 and f3 ◦ f2 are
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nullhomotopic, choose homotopies h1 : A0 × I → A2 and h2 : A1 × I → A3:
then both h1 ◦ f3 and h2 ◦ f0 are homotopies of f3 ◦ f2 ◦ f1 ◦ f0 to a point.
Glueing these together thus gives a map SA0 → A3. This depends not only on
the homotopy classes of the fi but also on the choices of the homotopies, so
(in the additive case) is unique up to adding elements of f3 ◦ [SA0 : A2] and
[SA1 : A3] ◦ S f1.
For example, if A2 = K(G,m) and A3 = K(H, n), the map f3 defines a coho-

mology operation φ : Hm(X;G)→ Hn(X;H ). Thus if f2 represents a class
ξ ∈ Hm(A1;G) such that f ∗1 ξ = 0 and φ(ξ ) = 0 we obtain an element of
Hn(SA0;H ) ∼= Hn−1(A0;H ), which is denoted φ f1ξ .

If p is a prime, we can localise a (finitely generated) abelian group A at p by
forming the tensor product A⊗ Z(p) with the group of integers localised at p
(i.e. rational numbers with denominator prime to p). An Eilenberg–MacLane
spaceK(A, n) localises toK(A⊗ Z(p), n). Building up using fibrations, one can
define the localisation X(p) at p of any simply-connected space X : it is unique
up to homotopy, and πn(X(p) ) is the localisation of πn(X ) at p. See, for example,
[23] for a textbook account. Similarly we can localise at any set S of primes.
This permits calculations where we can ignore throughout the contribution of
all primes not in S. This technique of ‘mod C’ theory is due to Serre [136].

We define a spectrum A to be a sequence of (based) spaces An (n ∈ Z) and
maps in : SAn → An+1: equivalently, we may require maps An → �An+1. It is
called an�-spectrum if the maps An → �An+1 are all homotopy equivalences.

The map in induces πr+n(An)→ πr+n+1(SAn)→ πr+n+1(An+1) and, for any
C,Hr+n(An;C)→ Hr+n+1(SAn : C)→ Hr+n+1(An+1;C): the limits of these are
defined to be πr(A) and Hr(A;C).

Proposition B.4.1 Let X be a spectrum whose homology groups are finitely
generated. Then the natural map πS

k (X)→ Hk(X;Z) has finite kernel and
cokernel.

This is proved using the methods of mod C theory [136]. It is a very useful
first step in calculation of bordism groups.
We give important examples of spectra. The sphere spectrum S is defined by

the sequence Sn and SSn # Sn+1. The Eilenberg–MacLane spectrum K(A, k) is
defined by the sequence K(A, n+ k) and the homotopy equivalences K(A, n+
k) → �K(A, n+ k + 1). The cohomology ring H∗(K(Zp, k);Zp) is free on
one generator over Sp; H∗(K(Z, k);Zp) is free over S p.

For J a stable group in the sense of §8.2, the sequence of maps hk : ST (Jk )→
T (Jk+1) defines a spectrum, which we denote by TJ.
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A different example is obtained using the homotopy equivalence �U →
B(U ) established by Bott: set A2n = B(U ) and A2n−1 = U . This gives an �-
spectrum BU with π2k(BU) ∼= Z for all n ∈ Z. Similarly using a homotopy
equivalence �8O→ O we define a spectrum BO. For any spectrum A we
can define the (k − 1)-connected cover A〈k〉: as for spaces, A〈k〉 is (k − 1)-
connected and π k : A〈k〉 → A induces isomorphisms of the homotopy groups
πr for r ≥ k. The spectrumBO〈k〉, which is a�-spectrumwith 0-term B(O)〈k〉,
plays a role in Chapter 8.
A spectrumA is a ring spectrum if we are given a system ofmapsAm ∧ An →

Am+n compatible with the in. There is a natural condition of associativity. For
the above examples, S is a ring spectrum, a ring structure on A induces one on
K(A, k), and TJ is a ring spectrum if (M) and (A) hold for J.
Any spectrum A = {An, in} gives rise to a homology theory (satisfying the

axioms discussed in §8.4) on defining

HN (X;A) = lim
N→∞

πn+N (An ∧ X+)

HN (X,Y ;A) = lim
N→∞

πn+N (An ∧ X+,An ∧ Y+)
= lim

N→∞
πn+N (An ∧ X,An ∧ Y ).

If A is a ring spectrum we obtain external products which are associative if
the spectrum is.
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Index of notations

Set theory

∅ is the empty set.
x ∈ X denotes that x is an element of the set X .
X ⊆ Y means that X is a subset of Y .
X̄ denotes the closure of X (in Y ).
{x |A(x)} is the set of objects x satisfying a condition A(x).
X × Y is the set of pairs {(x, y) | x ∈ X, y ∈ Y }.
�(X ) is the diagonal subset �(X ) := {(x, y) ∈ X × X | x = y} of X × X .
f : X → Z means that f is a map from X to Z.
Im f denotes the image of f : { f (x) | x ∈ X}.
| denotes restriction, for example, for Y ⊆ X

f−→ Z, f |Y is the restriction of f
to Y .

◦ denotes composite: the composite g ◦ f is given by g ◦ f (x) := g( f (x)).
R is the set of real numbers,
Rn is the vector space of n-tuples x = (x1, . . . , xn) with each xk ∈ R,
‖x‖ := √

(x21 + · · · + x2n).
Rn
+ is the subset with x1 ≥ 0, Rn

++ the subset with x1 ≥ 0, x2 ≥ 0.
[a, b] is the closed interval {x ∈ R | a ≤ x ≤ b};
[a, b) is the half-open interval a ≤ x < b (allowing b = ∞); similarly (a, b].
Dn
x (r) is the closed disc {y ∈ Rn | ‖x− y‖ ≤ r},

Sn−1x (r) the sphere {y ∈ Rn | ‖x− y‖ = r},
D̊n
x (r) the open disc {y ∈ Rn | ‖x− y‖ < r},

Dn
+(r) := Dn

x (r) ∩ Rn
+ is the closed half-disc

D̊n
+(r) := D̊n

x (r) ∩ Rn
+ the open half-disc.

If x is omitted, the centre is the origin; if r is omitted, the radius is r = 1.
Dk(a, b) := {x ∈ Rk | a ≤ ‖x‖ ≤ b}.
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Thus I := [0, 1] = D1
+ and R+ := R1

+ = [0,∞).
u : Rn \ {0} → Sn−1 is defined by u(x) := x/‖x‖. (§4.2).

Groups, fields, etc.

Z is the ring of integers.
Zn is the additive group of integers modulo the natural number n.
R is the field of real numbers.
Q is the field of rational numbers.
C is the field of complex numbers.
σ (q) is the signature of a quadratic form q defined over R,
Arf(μ) is the Arf invariant of a quadratic form μ defined over Z2.
G(μ) is the Gauss sum of the quadratic form μ on a finite group.
P(A∗;F )(t ) :=

∑∞
0 dimF (An)tn is the Poincaré series of A∗.

|G| is the order of the finite group G.
Tors(A) is the torsion subgroup of the abelian group A.
A⊕ B is the direct sum of A and B;
A⊗ B is the tensor product of A and B.
G∨ is the dual group to G.
Ker(φ) is the kernel of the group homomorphism φ : A→ B;
Coker(φ) is the cokernel of φ : A→ B.
G/H is the quotient (space) of (right cosets) of a group G by a subgroup H. If

H is a normal subgroup of G, this is the quotient group.

GLm(K) is the group of nonsingular (m× m) matrices over the field K.
SLm(K) is the subgroup of matrices of determinant 1.
GL+

m (R) ⊂ GLm(R) is the subgroup of matrices with positive determinant.
Om ⊂ GLm(R) is the orthogonal group, {A ∈ GLm(R) |AAt = I}.
Um ⊂ GLm(C) is the unitary group, {A ∈ GLm(C) |AAt = I}.
SOm := Om ∩ SLm(R).
SUm := Um ∩ SLm(C).
Gn is the monoid of maps of Sn−1 to itself of degree ±1.
Fn ⊂ Gn+1 is the set of base-point preserving maps Sn → Sn.
Topn is defined in §8.9.
SGn, SFn, STopn are the corresponding subsets of orientation-preserving

maps.
For each of the above groups and monoids Cn,

B(Cn) is the classifying space of Cn;
B(Gn) is the classifying space for spherical fibrations with fibre Sn−1;
C is the union of the Cn; and
B(C) is the inductive limit of the sequence B(Cn).
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Manifolds, etc.

Bp(x) is the bump function (§1.1).
TPM is the tangent space at P ∈ M to the smooth manifold M;
T∨P M is the dual vector space.
T(M) is the tangent vector bundle of M; the dual is T∨(M).
T0(M) is the zero cross-section.
N(M/V ) is the normal bundle of the smooth submanifold V ⊂ M.
∂M is the boundary of M: for example, ∂Dn

x (r) = Sn−1x (r).
∠M is the corner ofM.
M̊ := M \ ∂M is the interior ofM.
∂−W , ∂+W and ∂cW are the lower, upper, and middle parts of the boundary ∂W

of a cobordismW .
D(M) is the double of M.
M1 #M2 is the connected sum of manifolds M1 and M2.
M1 + M2 is the boundary sum of M1 and M2 (§2.7).
Pm(R) = P(Rm+1) is the set of lines through the origin in Rm+1;
Pm(C) = P(Cm+1) the set of lines in Cm+1.
P∞(R) :=⋃n∈N P

n(R); P∞(C) :=⋃n∈N P
n(C).

Grm,k is the Grassmann manifold of k-dimensional subspaces of Rm.
Vm,k ∼= Om/Ok is the Stiefel manifold of isometric embeddings Rk → Rm.
V ′
m,k

∼= GLm(R)/GLk(R) is the set of linear embeddings Rk → Rm.
Jk(V,M) is the space of k-jets of maps V → M;
jk f : V → Jk(V,M) is the k-jet of the map f : V → M;
V (r) is the subset of Vr consisting of r-tuples of distinct points of V .

rJk(V,M) is the subset of (Jk(V,M))r lying over V (r).

r jk f : V (r) → rJk(V,M) is the multijet of f : V → M. §4.4.
Cr(V,M) is the set ofCr maps V → M (0 ≤ r ≤ ∞);
Crpr(V,M) is the set of proper Cr maps.
Imm(V,M) is the set of (smooth) immersions V → M;
Emb(V,M) is the set of (smooth) embeddings V → M;
Diff(M) is the set of diffeomorphisms of M.

i, 
i(V,M) ⊂ J1(V,M), 
i f are Thom-Boardman sets: see §4.5.
I(φ) is the number of double points of an immersion φ : Vk → M2k.

Cobordism theory

For ξ an orthogonal bundle (or spherical fibration), we write
Aξ for the associated disc bundle,
Sξ for the sphere bundle,
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T (ξ ) = Aξ /Sξ for the Thom space,
Bξ for the base.

For ξ the universal bundle over B(Cn), these become A(Cn), S(Cn),T (Cn).
�m(X, ν) is the set of normal cobordism classes of maps of degree 1 to X .
Pm := �m(Dm, ε).
Kerv(φ, ν,T ) is the Kervaire invariant of a normal cobordism class.
Lm is Z, 0, Z2 or 0 according as m ≡ 0, 1, 2 or 3 (mod 4).
�G
m is the cobordism group of m-manifolds with (weak) G-structure.

�
f r
m is the framed cobordism group.

%k
m is the group of homotopy spheres 
m ⊂ Sm+k,

F%k
m is the group of framed homotopy spheres 
m ⊂ Sm+k,


k
m is the group of embeddings Sm ⊂ Sm+k.

Bk is the kth Bernoulli number.

Homology theory

Hr(X,Y ;A) is the rth homology group of (X,Y ) with coefficients in A.
If A is omitted, it is taken as Z.

H̃k(X,Y ) is the reduced cohomology group.
Kk(M) := Ker(φ∗ : Hk(M)→ Hk(X )) for φ : M → X a normal map.
[M] is the fundamental homology class of the manifold M.
βp : Hk(X;Zp)→ Hk+1(X;Zp) is the Bockstein homomorphism.
Sp is the mod p Steenrod algebra,
χ its canonical anti-automorphism,
S p := Sp/〈βp〉.
K(π, n) is the Eilenberg–MacLane space.
Jk : πk(SO)→ πS

k is the stable J homomorphism.
wk(ξ ), vk(ξ ) ∈ Hk(X : Z2) are the Stiefel–Whitney, Wu classes of a bundle ξ .
If ξ ⊕ η is trivial, wk(ξ ) = wk(η).
ck ∈ H2k(X;Z) is the kth Chern class,
p4k ∈ H4k(X;Z) are the Pontrjagin classes.

Homotopy theory

∗ is the base point.
X+ is the disjoint union of X and ∗.
X ∧ Y is the smash product of X and Y .
X ∗ Y is the joint of X and Y .
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[X : Y ] is the set of (based) homotopy classes of maps X → Y .
πr(X,Y ) is the rth homotopy group of (X,Y ).
K (n) is the n-skeleton of K.
X 〈k〉 is a (k − 1)-connected cover of X .
SX := S1 ∧ X is the suspension of X .
�X is the loop space of X .
{X : Y } = limn→∞[SnX : SnY ].
πS
r (X ) := {Sr : X}.

S is the sphere spectrum.
K(A, k) is the Eilenberg–MacLane spectrum.
TG is the classifying spectrum of the stable group G (in the sense of §8.2).
BU and BO are the Bott spectra, with connective versions BU〈k〉 and BO〈k〉.
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A-regular, 109
associated bundle, 24
atlas, 11
attaching sphere, 137

Baire property, 104
belt sphere, 137
Bernoulli numbers, 266
boundary, 29
boundary sum, 66
bump function, 10
bundle map, 24

characteristic number, 322
chart, 11
Chern class, 262
closed manifold, 29
cobordism, cobordant, 129
codimension, 19
cohomology operation, 328
collar neighbourhood, 32
compact-open topology, 102, 306
component, 16
cone, 316
connected, 15
connected sum, 65
coordinate neighbourhood, 9
core, 137
corner, manifold with corner, 30
covering homotopy property CHP,

317
critical point, critical value, 96
cross-section, 24
cutting, 64
CW-complex, CW-pair, 315

deformation retract, 314
diffeomorphism, 16
diffeotopy, 49
differential, 18
dimension, 9
double, doubling, 63

embedding, 296
equivalent tubular neighbourhoods, 53
equivariant map, 72
exponential map, 41

fibration, 167, 318
fibre bundle, 23
fibre map, 168
fine topology, 103, 307
flow, 27
focus, 99
framing, 24
fundamental class, 208

geodesic, 39
geometrically r-connected, 149
germ, 100
glueing, 63
Gysin isomorphism, 221

h-cobordism, 152
handle, handle presentation, 130
handlebody, 156
homotopy sphere, 153
homotopy, homotopy equivalent, 314

immersion, 21
index of critical point, 134
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346 Index

inverse limit, 298
isotropy group, 72
isovariant, 184

jet, jet space, 101

Kervaire invariant, 216

Lagrangian, 202
length of path, 37
Lie group, 23
localisation, 329
loop space, 318

manifold with boundary, 29
manifold, smooth m-manifold, 9
mapping cone, mapping cylinder,
316

metastable range, 185
metric adapted to the boundary, 47
multijet, 102
mutually transversal, 113

n-connected map, pair, 316
non-degenerate critical point, 98
nonsingular pairing, 202
normal map, normal cobordism,
197

normal space, normal bundle, 38
nul set, 95

orbit, orbit space, 72
orientable, orientation covering, 26

partition of unity, 13
path, 15
plumbing, 228
Poincaré complex, 208
Poincaré series, 267
Pontrjagin class, 265
primary obstruction, 327
proper group action, 74, 304
proper map, 300

reduction, 24
regular homotopy, 169
regular point, 96
residual set, 104

Riemannian metric, 37
Riemannian structure, 25

side, 64
skeleton, 315
slice, 76
smash product, 222, 316
smooth action, 23, 72
smooth embedding, 20
smooth functions, 9
smooth mapping, 16
smooth part, 33
source, 101
spectrum, 329
spherical fibration, 221
spherical modification, 196
stable group, 244
stably isomorphic, 24
Steenrod algebra, 328
Stiefel manifold, 170
Stiefel–Whitney class, 263
Stiefel–Whitney number, 268
straightening the corner, 61
stratification, 83
strictly subordinate, 13
submanifold, 19
submanifold with boundary, 31
subordinate, 13
support of diffeotopy, 50
support of function, 13
suspension, 316
symplectic basis, 204

tangent bundle, 25
tangent space, tangent vector, 17
target, 101
Thom class, Thom space, 221
Thom construction, 239
totally geodesic, 41
transverse, 105
trivial bundle, 24
tubular neighbourhood, 46

vector bundle, 23
vector field, 25

weak homotopy equivalence, 169, 316
Whitney sum (of vector bundles), 24
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