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Introduction

Differential topology, like differential geometry, is the study of smooth (or ‘dif-
ferential’) manifolds. There are several equivalent versions of the definition: a
common one is the existence of local charts mapping open sets in the mani-
fold M™ to open sets in R™, with the requirement that coordinate changes are
smooth, i.e. infinitely differentiable.

If M and N are smooth manifolds, a map f: M — N is called smooth if
its expressions by the local coordinate systems are smooth. This leads to the
concept of smooth embedding. If f : M — N and g : N — M are smooth and
inverse to each other, they are called diffeomorphisms: we can then regard M
and N as copies of the same manifold. If f and g are merely continuous and
inverse to each other, they are homeomorphisms. Thus homeomorphism is a
cruder means of classification than diffeomorphism.

The notion of smooth manifold gains in concreteness from the theorem
of Whitney that any smooth manifold M may be embedded smoothly in
Euclidean space R” for any n > 2m + 1, and so may be regarded as a smooth
submanifold of R”, locally defined by the vanishing of (n — m) smooth func-
tions with linearly independent differentials. An important example is the unit
sphere $"~! in R”". The disc D" bounded by $*~! is an example of the slightly
more general notion of manifold with boundary.

Whitney’s result is more precise: it states that (if M is compact) embeddings
are dense in the space of all maps f : M — R”, suitably topologised, pro-
vided n > 2m + 1, and more generally the same holds for maps M — N" for
any manifold N of dimension n. Other ‘general position’ results include the
fact that if m > p+ ¢, amap f : PP — M" will in general avoid any union of
submanifolds of M of dimension < g. These results can be deduced from the
general transversality theorem, which also applies to permit detailed study of
the local forms of singularities of smooth maps.
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2 Introduction

One of the ultimate aims of differential topology is the classification up to
diffeomorphism of (say, compact) smooth manifolds, and while this is algorith-
mically impossible in dimensions > 4 on account of the corresponding result
for finitely presented groups, we can perform it in some cases of interest. The
technique is to reduce first to a problem in homotopy theory, and solve that
using algebraic techniques. A basic requirement is a reasonably intrinsic way
to describe manifolds: this is provided by a handle presentation.

Another central question is the possibility or otherwise of finding an embed-
ding of a given manifold V” in a given manifold M" of larger dimension. Whit-
ney himself found a key technique in the first tricky case m = 2v, and his idea
was extended to general results in a range, roughly m > %v.

Classification results are accompanied by theorems giving methods of con-
structing manifolds: here we prescribe the homotopy type (which must satisfy
Poincaré duality) and further ‘normal’ structure, apply transversality to con-
struct something, and then endeavour to perform surgery to obtain the desired
result.

Classification up to diffeomorphism is very fine, and only available in a
few cases. The equivalence relation given by cobordism is much cruder, but
is generally applicable and computable. Extensive calculations are available,
and indeed through these, differential topology feeds back as a tool in pure
homotopy theory.

Although the foundations have much in common with differential geometry,
we approached the subject from a background in algebraic topology, and this
book is written from that viewpoint. The study of differential topology stands
between algebraic geometry and combinatorial topology. Like algebraic geom-
etry, it allows the use of algebra in making local calculations, but it lacks rigid-
ity: we can make a perturbation near a point without affecting what happens
far away. While the classification results are close to those for combinatorial
manifolds, the differential structure gives access to a rich source of techniques.

While the notion of differentiable manifold had gradually evolved over a
century, differential topology as a subject was to a large extent begun by Whit-
ney, with a major paper [175] in 1936 which, as well as clarifying the notion of
‘differentiable manifold’, established several foundational results. He obtained
further important results in [176] and [177]. Spectacular new ideas were intro-
duced in 1954 by Thom [150] on cobordism and in 1956 by Milnor [92] on
differential structures on S”. From then on, the pace of development was rapid,
with contributions by numerous mathematicians. The author personally was
inspired by lectures and writings of Milnor.

In a somewhat separate development, there was great progress in studying
group actions. The solution of Hilbert’s fifth problem [106], while independent
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Introduction 3

of the study of smooth actions, gave impetus to the whole area. Major results
were established by Montgomery, Mostow, and others in papers (for example,
[104], [111], [112], [105]) in the 1950s. The publication of the seminar notes
[20] was a landmark. The paper [119] extended key results to the case of proper
actions. By 1960 this topic had been absorbed in the mainstream of geometric
topology.

Many of the central problems in the topology of manifolds had been solved
(or reduced to problems in homotopy theory) by 1970: in §7.8 we describe
how to approach diffeomorphism classification and give some examples, and
in Theorem 6.4.8 we give a result dealing with smooth embeddings. As a result,
the focus of current research gradually shifted elsewhere.

The original draft of this book was written at a time when differential topol-
ogy was new and exciting, and there were no books on the topic. While there
now exist introductory accounts and books on particular areas of differential
topology, there does not seem to be any other that does justice to the breadth of
the subject.

This book falls roughly in two halves: introductory chapters with general
techniques, then four chapters, each including a major result. There are also
two appendices.

We begin in Chapter 1 with the definitions of smooth manifold, manifold
with boundary, and tangent bundle. We give equivalent formulations of the def-
inition, and go on to techniques for piecing together local constructions, which
are fundamental for much that follows.

It is often convenient to regard a manifold as formed by fitting pieces
together, and we deal with several aspects of this process in Chapter 2. We
introduce and establish the main results about tubular neighbourhoods, which
form the main pieces. We give the necessary details about cutting and glueing,
including a discussion of corners and how to straighten them.

Chapter 3 opens with basic definitions of Lie groups and of group actions,
and some basic properties. The key to the geometric description of the actions
is the notion of slice. The existence of slices was established in [104] for actions
of compact groups, and was extended to proper group actions by Palais [119].
Slices lead to local models for actions, which allow us to extend many of the
results of the first chapters of this book to the case of group actions: lead-
ing notably to existence of invariant metrics and (with some necessary restric-
tions) equivariant embeddings in Euclidean space. We go on to define and study
the stratification of a proper G-manifold by orbit types, which to some extent
reduces the classification problem for actions to problems not involving the
group, and illustrate by discussing the case when there are at most two orbit

types.
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4 Introduction

In Chapter 4 we treat ‘general position’ arguments, which are of frequent
use in constructions. We can begin with the naive idea that one can push a k-
dimensional subset and a v-dimensional one apart in a manifold of dimension
n > k + v. However — and this is one area where differential topology is much
richer than piecewise linear or ‘pure’ topology — we can apply the same basic
idea at the level of jets to study singularities. The key underlying result is the
transversality theorem. This whole subject has developed enormously, particu-
larly after the work of John Mather in the sequence of papers [88]. We have tried
to steer a middle course, keeping to fairly direct arguments, obtaining details
on the results wanted elsewhere in this book, and giving a brief introduction to
the study of singularities.

If M is a manifold with boundary M and f : "~ x D"~ — 9M an embed-
ding, the union M Uy h" of M and D" x D™, with the copies of S*~' x D"~"
identified by f, is said to be obtained from M by attaching an r-handle (some
care is necessary at the corner §"~! x §"~"~!). A handle can be studied via
the embedding of the sphere f | (S"~! x {0}), and extending to a tubular neigh-
bourhood. Any compact manifold admits a decomposition into finitely many
handles. In Chapter 5 we develop handle theory up to the central result, the
h-cobordism theorem. Here we have taken the approach of forming a mani-
fold by glueing pieces together, rather than manipulating a function on a fixed
manifold: the latter is in some ways more elegant, but the former seems more
perspicuous. The h-cobordism theorem is the key result enabling classification
of manifolds up to diffeomorphism, and we illustrate with a few examples of
explicit diffeomorphism classifications. The absence of any such result for 4-
manifolds means that no such classifications exist here. In the detailed treatment
we restrict to the simply connected case, but describe briefly in a final section
how to modify the theorem for the general case.

In Chapter 6, on immersions and embeddings, we include an account of
Smale—Hirsch theory, which gives a reduction of the classification of immer-
sions to a homotopy problem. We then describe in full Whitney’s method of
removing self-intersections of an n-manifold in a (2n)-manifold, and Hae-
fliger’s extension of the method to obtain a full theory of embeddings and
immersions in the metastable range, giving (when they apply) necessary and
sufficient conditions for a given map to be homotopic to an embedding (or
immersion) or for two homotopic embeddings to be diffeotopic.

Next, Chapter 7 gives a full account of the theory of surgery (in the sim-
ply connected case), with a number of applications. This restriction allows a
much simpler presentation than in my book [167], closer to the original papers,
but the approach is the same. Sections are included on the relevant pieces of
quadratic algebra, and on Poincaré complexes and maps of degree 1. A section
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Introduction 5

on homotopy theory of Poincaré complexes includes a discussion of Spivak’s
theorem and its uses, and a brief account of Brown’s treatment of the Kervaire
invariant.

Finally, in Chapter 8, we tackle the topic of cobordism, describe the main
geometrical ideas, and show how to build up cobordism groups, rings, and bor-
dism as a homology theory. We also give accounts of calculations of unori-
ented, unitary, oriented, and (perhaps rather ambitiously) special unitary bor-
dism. Here we suppress many details which would require an extensive knowl-
edge of homotopy theory; even so, much more is demanded of the reader
than in earlier chapters. A final section ties together much of the preceding
with an account of homotopy spheres and their embedding in the standard
sphere.

Each chapter opens with a summary of its contents and concludes with a
‘Notes’ section consisting of historical remarks, key references, and notes on
additional developments.

There are two appendices. Appendix A opens in §A.1 and §A.2 with a sum-
mary of useful results from analytic topology; §A.3 gives the results we need
about proper group actions; and §A.4 offers a treatment of the requisite results
on the topology of mapping spaces.

I attempt a bird’s eye view of homotopy theory in Appendix B: here I aim to
include the necessary definitions with (I hope) enough connecting material to
make them intelligible, but cannot attempt a full exposition. In §B.1, I give basic
terminology and describe the general framework for homotopy notions. The
next section §B.2 gives definitions and basic properties of (mostly classical) Lie
groups and classifying spaces. In §B.3, I list a number of calculations including
those to which reference is made in the main text. Finally, §B.4 gives very brief
introductions to skeletons, connected covers, Eilenberg—MacLane spaces and
cohomology operations, and spectra.

The focus of this book is on the geometric techniques required for the study
of the topology of smooth manifolds. One important tool I do not use is the
calculus of differential forms, and its application (de Rham) to calculating real
cohomology: for an account in this spirit I refer to the book [23] by Bott and
Tu. I also eschew the technical details required for the comparisons of different
kinds of structure: differential vs. combinatorial, C* vs. C” or vs. real analytic:
these questions are not considered here, though I do pay some attention to com-
paring smooth and topological structures. Although I introduce, and use, Rie-
mannian metrics, I am not concerned with properties of the metric, so feel free
to choose a convenient metric when required. Symplectic structures are outside
the scope of this book: the methods devised in the last 30 years for their study
are of a different nature to those studied here.
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6 Introduction

In keeping with the original setting, I assume elementary analysis, but quote
(with references) some results from analysis that are needed. I will take basic
topological ideas and results as understood (there is a very brief account
in §A.1).

I also assume a certain background in algebraic topology, though this is
not needed in Chapters 1-4, and in Chapter 5 only basic homology theory is
used. All chapters are to a large extent independent (in particular, Chapter 6 is
independent of Chapter 5, so the forward references do not give problems); in
general they are ordered so that later chapters use an increasing knowledge of
homotopy theory.

The first draft of most of the book (Chapters 1-5, 7) was a series of dupli-
cated notes based on seminars in the early 1960s. Chapters 1, 2, and 4 were
originally based on a seminar held in Cambridge 1960-61. For the original
notes, it seemed desirable to elaborate the foundations considerably beyond
the point from which the lectures started, and the notes expanded accordingly.
For these, I am indebted to all the Cambridge topology research students of the
time for participating in the seminar, in particular to P. Baxandall, and to Steve
Gersten for considerable assistance in writing up. For Chapters 1 and 2 this
book remains fairly close to the original notes. However for Chapter 4, the area
has developed enormously in the interim, particularly after Mather’s work. So I
have rewritten most; in doing so I have tried to steer a middle course, keeping to
fairly direct arguments, but obtaining details on the results wanted elsewhere.

The original notes for Chapter 3 were issued a few years later, with thanks
to Peter Whitham. They were an attempt to pull together results from several
sources to get a coherent theory. The main source was the volume [20]. This
focussed on topological (rather than smooth) actions; indeed its first section
was on homology manifolds. Thus much of the emphasis on my notes was also
on questions of analytic topology. The account presented in this chapter is thus
completely rewritten: not only does it go well beyond the content of my old
notes, but has a very different emphasis.

Chapter 5 on handle decompositions, leading up to the h-cobordism theorem,
is based on lectures given and seminars held in Oxford (1962) and Cambridge
(1964). Thanks are due to numbers of the then research students for their par-
ticipation; in particular to the late Charles Thomas and to Denis Barden. I am
indebted to Shu Otsuka for rendering the original notes of these chapters into
IATEX, and to Tain Rendall for drawing the diagrams.

The remainder of the book has been newly written. Chapter 6 follows the
plan I had formed back in the 1960s. Chapter 7, although much simpler in
detail, was informed by the same philosophy as my book [167]. The first part
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Introduction 7

of Chapter 8 is based on my old seminar notes ‘Cobordism: geometric theory’
issued in Liverpool about 1965, but I felt that to give the chapter substance it
was also necessary to include some significant calculations.

Thanks are due to Andrew Ranicki for encouraging me to turn the old notes
into a book: a time-consuming, but agreeable task.
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1

Foundations

If we start from the notions of curve — of dimension 1, locally like the line R
of real numbers, and surface — of dimension 2, locally like the plane R2, the
general term is ‘manifold’. We begin with perhaps the most elegant form of the
definition, but will prove it equivalent to other versions.

We say that a function F defined on R” (or on an open subset thereof) is
smooth if it admits continuous partial derivatives of all orders. We use the term
‘smooth’ in this sense throughout.

In the opening section, we begin with the definition of smooth manifold,
introduce the bump function, and proceed to the construction of partitions of
unity. We then discuss connectedness.

Probably the most important property distinguishing smooth from topologi-
cal manifolds is the existence of tangent vectors. Again we begin with a formal
definition, then give alternative ways to view the concept. We introduce smooth
maps, and discuss concepts of submanifold and embedding.

The tangent vectors to a smooth manifold form a vector bundle, so we next
introduce the notions of Lie group and of fibre bundle, and establish the exis-
tence of a Riemannian structure on any smooth manifold.

An essential tool in the study of smooth manifolds is the integration of
smooth vector fields. This becomes effective when combined with the use of
partitions of unity to construct vector fields. We show how to reformulate the
basic theorem asserting the existence solutions of ordinary differential equa-
tions in geometrical terms to yield flows on smooth manifolds.

Finally we extend the concept of smooth manifold to that of manifold
with boundary, and establish the existence of a collar neighbourhood of the
boundary.
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1.1 Smooth manifolds 9

1.1 Smooth manifolds

A smooth m-manifold is a Hausdorff topological space M™ with a family
F = Fu of continuous real-valued functions defined on M and satisfying the
following conditions:

(M1) Fislocal. If f : M — R is such that each point of M has a neighbour-
hood in which f agrees with a function of F, then f € F.

(M2) F is differentiably closed. If f1, ..., f;y € F, and F is a smooth func-
tion on R”, then F(fi, ..., fi) € F.

(M3) (M, F) is locally Euclidean. For each point P € M, there are m func-
tions fi, ..., fin € F such that Q — (f1(Q), ..., fu(Q)) gives a homeomor-
phism of a neighbourhood U of P in M onto an open subset V of R™. Every
function f € F coincides on U with F(fi, ..., f,n), where F is a smooth func-
tionon V.

(M4) M is a countable union of compact subsets.

We call functions f € F smooth functions of M, and the mapping defined
in (M3) (or, by abuse of language, the set U) a coordinate neighbourhood of
P. Tt follows from (M2) that sums, products, and constant multiples of smooth
functions are also smooth.

The integer m is called the dimension of the manifold M.

We now give some simple examples of smooth manifolds.

The empty set is a smooth m-manifold (the definition is vacuously satisfied).

Euclidean space R™, with smooth functions taken in the ordinary sense, is
a smooth m-manifold. Condition (M1) is trivial, (M2) follows from the rule
for differentiating a composite (a function of a function); for (M3), since the
coordinate functions are smooth, we take the identity map; and R is the union
of the compact subsets given by ||x|| < n.

The disjoint union of a finite or countable set of smooth m-manifolds is
another. Define a function to be smooth if the induced function on each part
is so; the conditions are then all trivial.

Let O be an open subset of R”. Write G, for the restriction to O of functions
of Frn; Fo for the set of functions locally agreeing with a function of Gy. Then
since O is openin R™, (O, Gy ) satisfies conditions (M1), (M3); (O, Fo) satisfies
them and also condition (M2).

For each positive integer i, consider the sets D™ (/m/i)! such that all the
coordinates of ix are integers and which are contained in O. There are only
countably many of these. Forany y € O, some D;” (8) C O.Choosei > 2./m/$.
Then some x with ix € Z™ is within a distance /m/i of y, and

y € DY (/m/i) C D} (2v/m/i) C D}(8) C O.

! For this notation and others, see the Index of Notations on p. 340.
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10 Foundations

Thus the chosen sets cover M, so (M4) also holds, and O is a smooth manifold.

More generally, let M be any smooth m-manifold and O be an open subset
of M. Again write Gy for the restriction to O of functions of F;; Fo for the set
of functions locally agreeing with a function of Gy. We see as above that (M1)-
(M3) hold. Now M is covered by coordinate charts, so any compact subset is
covered by finitely many; hence M is covered by countably many charts U,,.
Thus O is the union of countably many sets O N U,, each of which can be
regarded as an open set in Euclidean space, so by the preceding paragraph is
a countable union of compact sets. Thus (M4) also holds, and the structure of
smooth m-manifold on M induces such a structure on O. We call O an open
submanifold of M.

Let M{", M be smooth manifolds. Then the topological product N"1 1" =
M;“‘ X M’Z"2 has a natural structure of smooth manifold. For let 7, 7, denote
projections on the factors. Then for f; € Fu,, fo» € Fu,, we define f omy,
f> o m; to belong to Fy; any smooth functions of a finite set of these; and any
function locally agreeing with one of these functions. This definition ensures
that conditions (M1) and (M2) are satisfied. But so is (M3), for it now follows
that if ¢; : Uy — R™, ¢, : U, — R™ are coordinate neighbourhoods in M
and M,, then ¢ x ¢, : U; x Uy — R™ 1™ can be taken as a coordinate neigh-
bourhood in M; x M,. And (M4) follows since (see §A.2) the product of two
compact sets is compact.

The first tool for working with our definition is a bump function. Define first
a function B; on R by:

1 .
B = |0 () i 0sxst
0 otherwise.

Then B is smooth, non-negative, and differs from zero when 0 < x < 1. The
bump function Bp(x) is now given by

X 1
Bp(x):f Bl(t)dt/f B, (t)dt.
0 0

Since Bj(x) is smooth, so is Bp(x). Also

Bp(x)=0 if x<0,
0<Bpx)<1 if O0<x<1, and
Bp(x)=1 if x>1.

The bump function is illustrated in Figure 1.1. Although we have given
an explicit construction, the above are the essential properties of the bump
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Figure 1.1 The bump function

function. We also note that since B;(l —x) = B;(x) we have Bp(l —x) =
1 — Bp(x); we also have Bp'(x) > 0if 0 < x < 1. We now have

Proposition 1.1.1 Let ¢ : U — V be a coordinate neighbourhood of P € M,
and let F be a smooth function on'V. Then there is a function f € F, agreeing
with F o ¢ in a neighbourhood of P, and zero outside U.

Proof Without loss of generality, let ¢(P) = 0. Since V is a neighbourhood of
0, we can find r > 0 with Dcm(3r) C V. Define ®(x) = Bp(2 — r~!|x||). Then
®P(x) = 1 for ||x|]| < r, D(x) =0 for ||x|| > 2r, and P is a smooth function on
R™, hence also on V, since Bp is smooth, and |x|| is smooth except at 0. Then
F® is also smooth on V, and F (x)®(x) = 0 if ||x|| > 2r. We define a function
f on M by:

7Py = F(p(P)®(p(P)) if P € M
0 otherwise.
Then, by (M2), f € F, and f agrees with f o ¢ in ¢~ (D™ (r)). O

Another commonly given version of the definition of manifold is as fol-
lows. For a Hausdorff topological space M, a chart is a homeomorphism of
an open subset U of M onto an open subset V of R”. A collection of charts
{@o : Uy — Vyu}is an atlas if the open sets U, cover M. For any pair of charts,
set Vo p 1= @o(Uy N Up); then there is a homeomorphism v/, g : Vo g — Va4
between open sets of Euclidean space induced by ¢g o ¢ !. Then we say that
the atlas is smooth if each y, g is smooth.

Lemma 1.1.2 M is a (smooth) manifold if and only if it has a (smooth) atlas
with countably many charts.


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.002
https:/www.cambridge.org/core

12 Foundations

Proof If (M, F) satisfies (M1)—(M3), the coordinate neighbourhoods form a
smooth atlas. Each compact subset of M is covered by open charts, hence by a
finite subset; it follows from (M4) that a countable number of charts cover M.

Conversely, given a smooth atlas, we define F by letting f € F if, for each «,
f o, !is asmooth function on V,. It is immediate that this satisfies (M1) and
(M2). Asto (M3), foreach P € M, choose « with P € U,; then the functions x; o
0, I are defined near P and, by the proposition, there are functions f;, smooth
on U,, vanishing outside a neighbourhood of P, and agreeing with these on
a smaller neighbourhood. Extend f; to a function on M vanishing outside Uj,.
Then f; € F, and (fi, ..., f) have the desired property. Now (M4) follows
since each coordinate neighbourhood is a countable union of compact sets. [

Using the notion of atlas, we now give further important examples of smooth
manifolds. If V is a vector space over R, with O the origin, the projective
space P(V) is the quotient of V \ {O} by the equivalence relation v ~ kv for
0 # k € R.For (xg, ..., x,) # 0 € R we write (xg : ... : x,) for its image in
P"(R) := P(R"*") (since it is given by the ratios of the x;). We define an atlas
for P"(R) by taking open sets U; given by x; # 0 and defining ¢; : U; — R" by
@ilxo 1 ... 1 x,) 1= (xox; L ) XX, 1Y (with the ith term Xix; ! omitted). The
coordinate transformations are multiplications by xix;l on each coordinate, so
are smooth. We use the same notations with C in place of R, giving the complex
projective space P"(C).

For the next tools we will need condition (M4), and begin with a general
result. First observe that any manifold is locally Euclidean, and hence locally
compact.

Proposition 1.1.3 Suppose that X is locally compact and a countable union of
compact subsets. Then we can find compact subsets C,, and open subsets B
such thatX =, C, and foralln > 1, C, C B,H_% C Cpy1-

n+%

Proof Suppose X the union of compact sets A,,. Define C; := A;. Now suppose
inductively C, defined. Since X is locally compact, each x € (C, U A,41) has
an open neighbourhood U, with compact closure. These open sets cover the
compact set C, U A, ], so we can choose finitely many of them which together
cover this set. Define B, 1 to be the union of these open sets, and C,1 to be
its closure: this is a finite union of compact sets, so is compact. Finally since
X=,A,andA, € C,, X =, C.. O

Theorem 1.1.4 For any manifold M™, we can find a set of coordinate neigh-
bourhoods ¢, : Uy — D"(3) for M™ such that
(i) The sets (p;' (b’") cover M.
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1.1 Smooth manifolds 13

(ii) Each P € M has a neighbourhood in M which meets only a finite number
of sets Uy, i.e., the Uy are locally finite.

Moreover, the covering by the U, may be chosen to refine any given covering
of M.

Proof Choose subsets C, and B, 1 of X as in Proposition 1.1.3. Any x € X
belongs to some C, \ C,—i, so the open set B, +1 \ C,—1 is a neighbourhood

of x: we may choose a coordinate neighbourhood U, = ¢, 1 (ﬁ’”(S)) of x inside
this, and also contained in one of the open sets of the given covering. The neigh-
bourhoods ¢, (D™) cover the compact set C, | \an%, so we may choose a
finite subcovering. The collection of these for all n covers M and refines the
given open covering.

Now any y € X has B,, 4 \ C,,—1 as a neighbourhood for some m, and this
meets BH% \ C,—1 only if |m — n| < 1, hence meets only finitely many of the
U,. O

The support of a continuous function ¥ on M isthe set {x € M | ¥ (x) # 0}. A
set of non-negative continuous functions {y, } on M is called a partition of unity
if their supports U, form a locally finite covering of M and ), ¢, (P) = 1.
(Local finiteness is not strictly necessary, but ensures convergence and conti-
nuity of the infinite sum.) If we are given an open covering {Ug} of M, the
partition {1} of unity is said to be subordinate to the covering if the support
of each v, is contained in some set Ug of the covering.

If the v, are smooth, we have a smooth partition of unity. These will be
key to numerous constructions. It will be useful if we can say that if f, is a
smooth function defined on U,, then the function equal to f,¥, on U, and
zero elsewhere is smooth on M. This holds if moreover the support of ¥, is
contained in a closed set in the interior of U, . If this holds for each o, we will
say that the partition {,} of unity is strictly subordinate to the covering.

Theorem 1.1.5 For any open covering V of a smooth manifold M, there is a
smooth partition of unity strictly subordinate to it.

Proof By Theorem 1.1.4 there is a locally finite refinement of ) by a set of
coordinate neighbourhoods ¢, : U, — Do”’(S) such that the ¢ ! (f)’") cover M.
For each «, set

Bp2 —|lxl)  if PeUy, ¢pu(P) =1,

U, (P) =
“ otherwise.

As in the proof of Proposition 1.1.1, W, (P) is smooth. The above properties
imply that for each P € M, there is an « with ¥, (P) = 1, and that each P ¢ M
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has a neighbourhood on which all but a finite number of functions W, van-
ish. Hence the function £(P) = ), W, (P) can be defined, and is everywhere
smooth. Thus the functions v, (P) = ¥, (P)/X(P) give a partition of unity.
The support of W,, hence also that of V¥, is ¢, 1(D™(2)), which is in the
interior of U, so the partition of unity is strictly subordinate to the given
covering. O

The next result is of the same type, but needs more work. It will be needed for
Theorem 4.6.1 and Lemma 4.6.2. A slight modification of the argument gives
a corresponding result for subsets of Cartesian powers M” with r > 2.

Lemma 1.1.6 (i) There is a countable collection of pairs of disjoint compact
sets (Ky, K,) in M such that for any P, P' € M with P # P’ there exists o with
PeK,and P' € K.

(ii) Let U be an open neighbourhood of the diagonal A(M) in M x M. Then
we can find pairs of disjoint compact sets (Lg, L},) in M such that for any
(P,P") e (M x M\U) there exists 8 with P € Lg and P' € L’ﬂ and moreover
such that {Lg, Ly} is locally finite.

Proof (i) Let §, be a partition of unity constructed as in Theorem 1.1.4. Then
the closure K,, of the support of §, is compact. Given P, P’ € M, either (a) there
exists o with P, P’ € K,, or (b) we can choose P € K, \ Ky, P € Ky \ K,.

In case (a), the points P, P’ lie in the same coordinate patch. Here we have a
problem in Euclidean space, and the disjoint pairs of 13Z(ﬂ/ i) (where ix has
integer coordinates) give what we want.

To deal with (b), define compact sets by Ky, := {P € M |3,(P) > }l} for
each o and n > 2. Then if n > 8, (P)~! and similarly for #/, P and P’ lie in the
disjoint sets Ky ;,, Ko/ -

(ii) First choose a locally finite cover {C,} of M by compact sets — for
example, the sets C,,11 \ an% of Proposition 1.1.3. For (P, P') € (M x M\ U),
choose sets of this cover with P € C,,, P’ € C,.. If C,,, C, are disjoint, we can
choose these as our pair (Lg, L;g ). If not, K = C,, U C,, is compact, hence so
is K x K \ U; thus it is covered by finitely many of the pairs K, x K,, and we
choose these as our (Lg, L};).

Since each C,, meets only finitely many other such sets, it meets only finitely
many of the chosen Lg and Lj. O

We return to partitions of unity, which are an essential tool in numerous
proofs. As first applications, we can approximate continuous functions by
smooth functions.
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Proposition 1.1.7 (i) Let f be a continuous positive function on M. Then we
can find a smooth function g, with 0 < g(P) < f(P) forall P € M.

(ii) For any continuous function f on M and any € > 0 there exists a smooth
function h on M with |h(P) — f(P)| < & for every P € M.

(iii) If f : M — R is continuous, € > 0, and F is a closed subset of M such
that f is smooth on some open set U D F, we can find h such that also h = f
on a neighbourhood of F.

Proof (i) Let {1, } be a smooth partition of unity, and choose §, > 0 less than
the infimum of f on the support of ¥, (since the support has compact clo-
sure, this infimum cannot be zero). Then g := )" (8, ¥, ) has g(P) > 0 since
Y4 (P) > 0 for some «; on the other hand, for each o with ¥, (P) > 0 we have
8a < f(P).50 g(P) < ¥ Yia(P)f(P) = f(P).

(ii) The sets {P e M |n < %f(P) < n+ 2} form an open cover of M. By
Theorem 1.1.5, we may choose a smooth partition {(Uy, ¥, )} of unity strictly
subordinate to this cover. For each « choose P, € U,. Now the function & :=
Zw f(Py)¥q is well defined and smooth. Any Q € M belongs to U,, for a finite,
non-empty set of o, and as each such U, is contained in one of the sets of the
original cover, f(Q) and f(P,) lie in the same interval of length ¢. Thus we

have f(Q) — f(P,) < &, so

h(Q) — FQ = |>_(f(P) — F(Q) e

<Y 1R = F(Q)Ye

< Zetﬁa =¢.

o
(iii) As well as the open sets U,, which we may take disjoint from F', we now
choose open sets Ug C U which cover U, and set fg := f. Piecing together
using a partition of unity now yields the result. O

This approximation technique is very useful. It is also flexible: we will show
in Proposition 2.3.4 that the target can be any smooth manifold.

Our next topic is connectedness of smooth manifolds. A smooth map « :
R — M is called a path in M. Two points P, Q in M are called connected in M
if there is a path in M whose image contains P and Q.

Lemma 1.1.8 Connectedness in M is an equivalence relation.

Proof By definition, the relation is symmetric. It is reflexive, since a con-
stant map is a path. To prove transitivity, first observe that if 2 : 1 — M is a
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smooth path, the normalised path N(h) : R — M given by N(h)(¢t) = h(Bp(t))
is smooth. If now h: (1,0,1) - (M, P,Q) and k: (I,0,1) - (M, Q, R) are
smooth paths, a smooth path joining P to R is given by setting H(t) = N(h)(2t)
for0 <t <landH(t) =N(k)@2t —1)for <t <1 O

The equivalence classes are called the components of M.

Lemma 1.1.9 (i) Each equivalence class is open and closed in M.
(ii) A subset of M is open and closed if and only if it is a union of equivalence
classes.

Proof (1)If ¢ : U — V is a coordinate neighbourhood of P such that V is con-
vex, every point of U can be joined to P using the path corresponding to the
straight line in V (suitably parametrised). Hence an equivalence class contains
a neighbourhood of each of its points, so is open.

Since each equivalence class is the complement of the union of the other
equivalence classes, it is closed in M.

(ii) Sufficiency follows by (i). For necessity, observe that since R is con-
nected, any path which meets an open and closed subset is contained in it, so
such a subset is saturated for the equivalence relation. 0

It follows that M is connected in the usual sense if it only has one component.
We also see that for smooth manifolds, connection and connection by smooth
paths are equivalent. A component of M, being open, is an open submanifold;
and M is the disjoint union of all its components. Thus to study M, it suffices
to take the components separately; we shall frequently do this.

1.2 Smooth maps, tangent vectors, submanifolds

Let M™, V® be smooth manifolds. A mapping ¢ : M — V is called smooth if
foreach f € Fy, fogp € Fy.

In view of (M3) this is equivalent to the requirement that each transformation
of coordinates induced by ¢ between coordinate neighbourhoods in M and in
V be smooth in the usual sense. The above definition is more convenient: for
example, the following are immediate.

If 1 : My — M, and ¢, : M, — M3 are smooth, then so is ¢, o @1 : M] —
M;.

If O is an open submanifold of M, i : O C M is smooth.

A bijective correspondence ¢ : M™ — V"™ between two smooth manifolds
is a diffeomorphism if both ¢ and ¢~' are smooth. M™ and V"™ are called dif-
feomorphic.
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1.2 Smooth maps, tangent vectors, submanifolds 17

Thus a diffeomorphism is a bijective correspondence between the two mani-
folds under which smooth functions correspond: this is the equivalence relation
which classifies manifolds.

A tangent vector at a point P of a smooth manifold M is a derivation on F to
R. In detail, a tangent vector at P € M is amapping & : 7 — R which satisfies:

(i) ifa,a € R, f1, f2 € F, thené(a1fi + arf2) = ai§ (/1) + a26(f2);
(1.2.1)

(i) if f1, f2 € F, then £(f1f2) = E(f1)2(P) + fi(P)s(f2). (1.2.2)

We next study the set of all tangent vectors to M. Since sums and real multiples
of tangent vectors at P are also tangent vectors at P, the tangent vectors to M
at P form a vector space: we call it the tangent space TpM to M at P.

If p: U — M is asmooth path (U open in R), with p(0) = P, the expression
E(fH) = %p(f(t))h:o is defined, and the map & : F — R satisfies (i) and (ii),
so & € TpM. We call £ the tangent to the path. Thus tangent vectors correspond
to displacement along the manifold.

Let ¢ : U — V C R™ be a coordinate neighbourhood of P with ¢(P) = 0.

Let x1, ..., X, be coordinates in R™. Then for each f € F, F := fog 'isa
smooth function on V, so %( f) = i‘ is well defined. Then - is a tangent
X; x; 0x;

vector at P: condition (i) is clear, and (ii) follows by the rule for differentiating
a product. We will prove that the % form a basis for TpM; first, however, we
need a lemma, which will be used again.

Lemma 1.2.3 Let f be a smooth function on an open convex subset V of R™
containing 0, and let f(0) = 0. Then there exist further smooth functions f;
(1 <i<m)onV suchthat f(x) = ZT x; fi(x). Moreover, if f is a smooth func-
tion of additional parameters a;, we may suppose that f; also are.

Proof We may write

1
) 0

FO) = £(x) — £(0) = /O -

But 2L — 371 ;2L (¢4x). Substituting this gives f(x) = Y7 x;fi(x), where

Xi
fitx) == fol g—ﬁ(tx)dt. The last part also follows. O]
3 f) .
Theorem 1.2.4 The tangent vectors AR T form a basis for TpM.

Proof We first remark that a tangent vector is essentially local in nature: if
f = gin a neighbourhood U of P, and £ is a tangent vector at P, then £(f) =
&(g). For by Proposition 1.1.1, we can find a function ® on M, equal to 1 in


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.002
https:/www.cambridge.org/core

18 Foundations

a neighbourhood of P, and zero outside U. Then ®f = ®g, and so f — g=
(f — g)(1 — ®). Thus
ENH—-5@=8(f—-8 =§§(f—00—-2(P)+ (f(P)
—8g(P)E(l — @) =0.
Hence it is sufficient to consider only functions defined and smooth in U, where
¢ : U — Visacoordinate neighbourhood of P with V convex; it will be simpler

to speak directly of functions on V.
For any smooth function f on V, by Lemma 1.2.3, we can put

F@) = £0)+ > xifix).

For any tangent vector £ at P, then,

E(f) =E(fO) + ) Exif)
= fOE1) + Y ECDFHO) + Y x(0E(S).
Buté(1)=£(1-1)=1-&(1)+&(1)-1 =2&(1), and so £(1) = 0. Thus

E(f) =) E@x)fA0).

In particular
9 3
ax ) = 2 g WO = 0 856(0) = £0)

Thus&(f) =Y S(xi)g—;, and as this is true forall f, & = ) S(xi)ai)ﬁ. Hence the
% span TpM. Since %(x_,-) = §;j, they are linearly independent. Hence they
form a basis. O

For example, we may identify the tangent space to R™ at any point a with
R™ itself, by identifying > . k;0/0x; with the vector (ki, . .., k). In particular,
T,R is identified with R.

Now let ¢ : M™ — V* be a smooth mapping, and let ¢(P) = Q. The differ-
ential of ¢ at P, dgp : TpM — T,V is defined by:

dop(E)(f) =E&(fop) for §eTpM, f e Fy.

Since f, ¢ are smooth, so is f o ¢, so the right-hand side is defined. Then
dop(€) is a derivation since & is. Clearly, dgp is a linear mapping of TpM to
THV.

If f € Fy, then f: M™ — R is a smooth mapping, so for any P € M, we
have dfp : TpM — TR = R. Since dfp is linear, it is an element of the dual
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vector space T,’M to TpM. Now, if xi, ..., x,, are local coordinates at P, we
have

dx,-(a/axj) = Bx,-/axj = Sij
so the dx; form the basis of T,'M dual to the basis 9/3x; of TpM.

Theorem 1.2.5 (Inverse Function Theorem) Let fi, .. fn be smooth func-
tions defined in a neighbourhood of O € R", and suppose ‘ ‘ # 0at O. Then

(f1, ..., fn) defines a diffeomorphism of some netghbourhood U of O on an
open subset of R".

A proof can be found, for example, in [40, Theorem 10.2.1].
We can now give a simple test for coordinate neighbourhoods of a point.

Corollary 1.2.6 Let M" be a smooth manifold; f1, ..., f, be smooth functions
on M, P € M. The f; may be taken as coordinate functions for a coordinate
neighbourhood of P if and only if the df; form a basis for TpM” .

Proof Letg : U — R be a coordinate neighbourhood of P. Then the f; o ¢!
are smooth functions on a neighbourhood of ¢(P) € R"; by the theorem, they
define a diffeomorphlsm of some such neighbourhood if and only if the Jaco-
bian determinant | ==— r’(f’ D") ) | # 0 at ¢(P). But the elements of this matrix are just
the coefficients in the df, of basis elements dx; of TpM" . O

Theorem 1.2.7 (Implicit Function Theorem) Let fi, ..., f, be smooth func-
tions defined in a neighbourhood of O € R™ and suppose the determinant
formed by their partial derivatives with respect to xy, . . ., X, is non-zero at O.
Then there are r smooth functions gy, ..., g, defined in a neighbourhood of
O € R® such that within some neighbourhood of O € R, a point satisfies
fi(P) =0 (1 <i<r)ifand only if it satisfies

X =8iXrsts .. Xpys) (1 ZiZT)

Proof 1t follows from the hypothesis that the map defined by

(fl, '-~7frvxr+lv ~'-vxr+s)

on a neighbourhood of O satisfies the hypothesis of the Inverse Function The-
orem 1.2.5. Hence by that result, there is a smooth inverse map. We may
write thismap as (hy, ..., hy, Xp41, . . ., Xr4+5). The result now follows on setting
gilxrity oy xas) =0, 0,0, X000, ey X)) O]

A subset M of a smooth manifold N" is a submanifold (of dimension m and
codimension n — m) if, for each point P € M, there is a coordinate neighbour-
hood ¢ : U — R" of Pin N such that U N M = ¢~ (R™).
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By Corollary 1.2.6, an equivalent requirement is that in a neighbourhood
of each point of M, M is defined by the vanishing of (n — m) functions with
linearly independent differentials. For in the case above, M is defined by the
vanishing of the last (n — m) coordinate functions; while by that corollary, any
set of functions with linearly independent differentials can be taken as functions
of a coordinate neighbourhood. If M is a closed subset of N, we call it a closed
submanifold.

A submanifold M™ of N" has a natural induced structure of smooth m-
manifold: the existence of coordinate neighbourhoods for M and the fact that
overlaps are smooth follow immediately from the definition.

Lemma 1.2.8 IfM is a closed submanifold of N, F)y consists of the restrictions
to M of the functions of Fy.

Proof We have an open covering of N consisting of charts U, as in the defi-
nition of submanifold, and the subset Uy := N \ M. By Theorem 1.1.5 we can
pick a smooth partition of unity ({84}, 89) strictly subordinate to this covering.
Foreach f € Fy, the restriction f | M N U, of f to U, extends to a smooth func-
tion f, on U, using projection in the chart. Now Y_ &, f, is a smooth extension
of f. O

If M is not closed, we can construct smooth functions on M that do not even
extend to continuous functions on N: the simplest example is N =R, M =
{x|x > 0} with f(x) =x"L.

Many important examples of manifolds occur as submanifolds of Euclidean
or projective space, often given (at least locally) by equations with linearly inde-
pendent differentials: for example, we have the unit sphere $"~! C R” defined
by ||lx||> = 1; in particular, the unit circle S'.

There are plenty of examples of smooth manifolds.

Lemma 1.2.9 Any finite simplicial complex X is homotopy equivalent to a
smooth manifold.

This result is proved by first embedding X in Euclidean space of high enough
dimension, then taking a ‘regular’ neighbourhood N of X, which is a compact
manifold with boundary, containing X in its interior, and having X as (strong)
deformation retract, and then rounding the corner to make N a smooth manifold
(for details see [71]). Characterising homotopy types of compact manifolds
without boundary is much more delicate: we will turn to this in §7.8.

A map f: V — M between two smooth manifolds will be called a smooth
embedding if f(V) is a submanifold W of M, and f induces a diffeomorphism
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of V on W, where W has the induced structure. This is more stringent than the
notion of (topological) embedding, where only a homeomorphism is required.

A map f:V — M between two smooth manifolds is called an immersion
if f is smooth and, for each P € V, dfp : TpV — Ty)M is injective. The fol-
lowing criterion uses the notion of proper map, which is defined and studied in
§A.2.

Proposition 1.2.10 (i) Amap f :V — M is a smooth embedding if and only
if it is both a (topological) embedding and an immersion.
(i) Amap f:V — M is an embedding as a closed submanifold if and only

Proof (i) It follows from the definition that if f is a smooth embedding, it is
an embedding. To see that it is an immersion at P, choose a coordinate neigh-

bourhood at Q = f(P), with xi, ..., x,, the coordinate functions on M at Q,
and such that f(V) is given locally by x,.; = ... = x,, = 0. By definition of
the induced structure, x; o f, ..., x, o f define a coordinate neighbourhood of

PinV say y; = x; o f. But then df(d/dy;) = 8/0x; and so df has rank v at Q.

For the converse, let f: V’ — N" be a smooth immersion and an embed-
ding with image W.Let P € V, f(P) = Q, and choose a coordinate neighbour-
hood ¢ : U — R™ of Q in M such that df*(dx,), . .., df*(dx,) form a basis for
T,'V - this is possible since f is an immersion. Write y; = x; o f: then since
dyi, ..., dy, form a basis for T,'V by Corollary 1.2.6, yi, ..., y, may be taken
as coordinates in a neighbourhood of P. Since the other y; are smooth functions,
by the definition of smooth manifold we can write y; = g;(y1, ..., y,) (v <i <
m) in a neighbourhood of P in V. Since f is an embedding, x; = g;(x1, ..., x,)
in a neighbourhood of Q in W. Thus W is locally defined by vanishing of the
n — v smooth functions x; — g;(xi, . .., X, ), which clearly have linearly inde-
pendent differentials. So W is a submanifold, and it now follows that f defines
a diffeomorphism of V on W.

(ii) follows since by Lemma A.2.3, a map is proper and injective if and only
if it is an embedding as a closed subset. O

We have a hierarchy of conditions on a smooth map f: V — M: proper
embedding = smooth embedding = injective immersion = immersion. None
of the implications can be reversed: we now offer examples, which are illus-
trated in Figure 1.2.

The inclusion in R of {x € R |x > 0} is a smooth embedding which is not
proper; another example is a curve (e~ cos ¢, e~ sin ¢) spiralling in to the ori-
gin in the plane.
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%@Q@<

Figure 1.2 Examples which fail to give embeddings

The parametrisation f(6) = (sin(%@), sin(0)) defines a figure eight curve in
the plane, with equation y> = 4x?(1 — x?). As the differential df is nowhere
zero, f is an immersion, but it is not injective. As 8 runs from —27m to 2, the
point f(0) starts at (0, 0), describes a loop in x < O returning to the origin at
6 = 0, then describes a loop in x > 0.

However, if we take t = tan(}—ﬁ) as parameter for the same curve, we have a

map given by g(t) = (%, ‘t’f};{;). As t goes from —oo to 400, 6 increases

from —2m to 2, so g is an injective immersion, but not an embedding.
The map & : R — R? defined by A(t) = (¢, 1) (a cusp) is a (topological)
embedding which is not an immersion.

Theorem 1.2.11 Any compact manifold M™ can be imbedded in a Euclidean
space.

Proof Let{yp;: U; — lB’”(3)} be the coordinate neighbourhoods constructed in
Theorem 1.1.4: since they are locally finite, and M compact, there are only a
finite number. Also as in Theorem 1.1.5, let ®;(P) = Bp(2 — ||¢;(P)||) for P in
the range of ¢;, 0 otherwise. Now define functions f;; by

Sio(P) = @;(P)
fij(P) = ®i(P)xj(¢;(P)) P inrange of ¢;
=0 otherwise.

Then the f;; are all smooth functions of P; if therange of iis 1 < i < N, there are
(m + 1)N of them, so they define a smooth map F : M™ — R"+DN We assert
that F' is an embedding: since M is compact, it suffices by Proposition 1.2.10
to prove that F' is injective and an immersion.

Since the ¢; ! (ﬁ’"(l)) cover M, each P € M belongs to at least one of them.
But in this set, ®; =1, f;;(P) = x;(¢:(P)), and so the df;; with j > 0 form a
basis for Ty’M. Thus dFp : TpM — Tpp)R™ DV is injective, and so F is an
immersion.
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IfF(P)=F(Q),and P € <pi_1(l°)’”(1)), then 1 = ®;(P) = fio(P),andso 1 =
fin(@) = ®:(0), and Q € gol.’l(lo)m(l)) also. But in this set, we can take the
fij(= x;) as coordinates. Since these have the same values for P and Q, we
have P = Q. Thus F is also injective. O

Here we have presented a shortcut to the result: we will give a sharper state-
ment in Theorem 4.2.2 and will see in Corollary 4.7.8 that embeddings are
dense in the space of smooth maps between any manifolds M™ and V’ with
v > 2m;if M is not compact we need V non-compact and must restrict to proper
maps.

1.3 Fibre bundles

A map r : T — M is the projection of an n-vector bundle if M can be covered
by open sets U, such that

(i) There are homeomorphisms ¢, : U, x R"* — 7 ~!(U,) such that, for all
xeUy,yeR", me,(x,y) =x.

(ii) For each pair (o, B) there is a continuous map gqg : Uy N Ug — GL,(R)
such that, for all x e U, N Ug, y € R", pg(x, y) = @u (X, gap(x).y).

The space M is called the base space of the bundle, and T is its total space;
R" is the fibre; more precisely, the fibre over m € M is the preimage 7 ' (m).

If # : T — M is a vector bundle, and V C T is such that 7 |V is a vector
bundle with 7 ~!(x) NV a vector subspace of 7 ~! (x) for each x € M, then V is
called a subbundle of T'.

More generally, we can define fibre bundles. A Lie group is a smooth
manifold G, which is also a group, such that the group operations g +— g~ !,
(g, h) — gh are smooth maps G — G, G x G — G. A smooth action of a Lie
group G on a smooth manifold M is a smooth map ¢ : G x M — M which is
a group action, i.e. which satisfies the identity ¢ (g1, f(g2,x)) = ¢(g142, X).
If the action is understood, it is frequently denoted by a dot: thus ¢(g, x)
becomes g.x. We will discuss Lie groups and smooth actions more fully in
§3.

Given a smooth action of G on F, we define 7 : T — B to be the projection
of a smooth fibre bundle with structure group G and fibre F if B can be covered
by open sets U, such that

(i) There are homeomorphisms ¢, : U, x F — 7~ (U,) such that, for all
x €Uy, yeF,mpu(x,y) =x.

(ii) For each pair («, ) there is a continuous map gup : Uy, N Ug — G such
that forx e U, NUg, y € F, pg(x,y) = @u (X, 8up(X).y).
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The simplest example is a product T = M x F given by a single chart: this
is called a trivial bundle.

The structure of a bundle is determined by the maps g,g; two bundles with
the same g, but different fibres are called associated. If the g, all have images
in a subgroup G’ of G, we say that the group of the bundle reduces to G, and
we say that a bundle with group G’, together with an isomorphism to the given
bundle, defines a reduction of the structure group from G to G’'. A map y :
M — T is called a cross-sectionif m o y = 1.

A trivial vector bundle 7w : T — M is isomorphic to a product M x R". In
this case each fibre of 7 is isomorphic to R", each unit vector e; of R” defines
a section E; : M — M x R" = T, and for each x € M the vectors E;(x) give
a basis of the vector space 7 ~!(x) or, as one sometimes says, a framing of
this vector space. Conversely, a set of sections of a vector bundle = defining a
framing of each fibre gives an isomorphism 7" — M x R", which may be called
a framing or a trivialisation of the bundle; it is also a reduction of the structure
group of 7 to the trivial group.

Giventwo vectorbundles &, = (ry : Ty - M)and & = (1, : T» — M) over
the same base space M we can construct a new vector bundle £ = &; & &, over
M, called the direct sum or Whitney sum of the bundles & and &;: its fibre over
any m € M is the direct sum of the fibres of &, and &, over m. In particular,
the direct sum of & with a trivial line bundle is called the suspension of &. Two
vector bundles &; and &, are said to be stably isomorphic if there exist a trivial
bundle 1 and an isomorphism & & n = & & n.

If we have two fibre bundles 7; : T} — M;, m, : T», — M, with the same
group G and fibre F, a G-bundle map is givenby maps f : Ty — T, b : M| —
M, with 7y o f = b o my such that if U, C M; and Vg C M, are open sets as
above, there exists a continuous map gq g : U N b~ (V) — G such that for x €
(UNb™I(V)), y € F we have gp(b(x), y) = f(¢a(X, 8a.5(X)-y))-

The total space T of a smooth fibre bundle admits a natural structure as
smooth manifold such that the maps ¢,, are diffeomorphisms on open subman-
ifolds. For if we use these to define coordinate neighbourhoods, then we have
smooth transformations of coordinates on the intersections.

The reason for introducing these concepts at this point is that the set of all
tangent vectors to a smooth manifold M has a natural structure of a vector
bundle.

Write T(M) = U{TpM : P € M} for the set of all tangent vectors to M. Define
m:T(M)— Mbyn(TpM) = P.LetH, : U, — V, be aset of local coordinate
systems, with the U, covering M, and for P € U,, v € R™, define ¢, (P, v) as
the tangent vector at P determined by > v;3/dx;. Then for each «, the mapping
¢o 1 Uy x R" — 7~ 1(U,) is bijective. On U, N Ug, denoting the two systems
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of coordinates by x*, xP: we have, by the usual transformation rule,

9/0x = Z(axjf/axf)(a/axjf),

so we define g, : Uy, N Ug — GL,,(R) by

Q) = ]
Bap B Bxf Q.

Then gqp is a smooth mapping, and satisfies the condition above. Now take the
@y (or rather their inverses) as coordinate neighbourhoods, and thus define on
T'(M) the structure of smooth manifold, which in particular gives it a topology,
with the ¢, homeomorphisms. Thus we have a smooth vector bundle.

We say that 7 : T(M) — M is the tangent bundle to M. Write T°(M) for
the zero cross-section, i.e. the set of zero tangent vectors. In general, a smooth
cross-section of T(M) is called a vector field on M. We can identify the set of
smooth vector fields on M with the set of derivations from ), to itself, for if
& is such a derivation then for each P € M, f +— &(f)(P) is a tangent vector at
P.

Any bundle associated to T(M) via a linear representation of GL,,(R) is
called a tensor bundle (and a points of it are tensors, whose type is determined
by the representation). The bundle TV (M) given by the adjoint representation
is the bundle of differential 1-forms on M™; its fibre over P is the dual space
T,’M to TpM.

The bundle whose fibre over P is the set of all positive definite quadratic
forms on TpM is called the Riemann bundle, and any smooth cross-section
of it a Riemannian structure on M. In local coordinates this takes the form
Z’IH gi,j(x)dxidxj.

We now prove the fundamental.

Theorem 1.3.1 Every smooth manifold M™ has a Riemannian structure.

Proof Let {U,} be an open covering such that we have charts ¢, : U, — R™
(see, for example, Theorem 1.1.4). Let W, be a partition of unity strictly sub-
ordinate to this cover. Now R™ has the standard Euclidean Riemannian struc-
ture: Y i dx?. We write ds*> = Y, Wo (31, d(x; 0 9o)?). Since the U, are
locally finite, the sum is defined; since the partition was strictly subordinate to
the cover, the sum is smooth. Since a linear combination of positive definite
quadratic forms is again positive definite, ds* is everywhere positive definite.
Thus it defines a Riemannian structure on M™. O]
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Given a Riemannian structure on M™, we can choose orthonormal bases
in the fibres of T(M) by applying the Gram—Schmidt orthogonalisation pro-
cess. This will modify the maps ¢, : U, x R" — 7~!(U,) so as to preserve
the inner product on the fibres. Indeed, consider ¢, as a map ¢ : R" — R™
depending on certain parameters, and set ¢'(e;) = Z_/g Aijo(e;), where the A;;
with j < i are chosen inductively to make the ¢’(e;) orthogonal and the A; > 0
so as to make the ¢’(e;) unit vectors. Then the A;; are also smooth functions of
the parameters.

A Riemannian structure on M determines a reduction of the group of the
tangent bundle to the orthogonal group O,,; conversely, a reduction to O,, cor-
responds to a Riemannian structure. We also observe that the choice of an inner
product on TpM allows us to identify 7pM with T’ M. For a Riemannian man-
ifold, we shall usually do this.

M™ is called orientable if the group of the tangent bundle is reducible to
GL} (R), oriented if the group is so reduced. Since the coordinate transforma-
tions were given by the matrices (9x7/ Bxﬁs ), the condition is that all the Jacobian
determinants are positive. The total space of the bundle associated to the tan-
gent bundle with fibre GL,,(R)/ GL,*,;(R) = 7, is a double covering M of M,
called the orientation covering. Its projection on M, together with coordinate
neighbourhoods of M, can be taken as coordinate neighbourhoods, so Misa
smooth manifold. By the definition, all the Jacobians occurring are positive, so
this manifold is orientable.

If M itself is orientable, M consists of two copies of M; if M is connected
and non-orientable, M is connected. If M is non-orientable, we can find a closed
chain of coordinate neighbourhoods, each overlapping the next, such that the
number of negative Jacobians is odd.

We can specify an orientation of M at a point P by giving an isomorphism of
R™ on TpM, or equivalently, an ordered basis (e, . . ., e,,) of TpM; another basis
defines the same orientation if the determinant of the basis change is positive.

If M has a Riemannian structure, an orientation gives a reduction of the group
of the tangent bundle from O,, to SO,,.

1.4 Integration of smooth vector fields

We have already seen that a smooth path in a manifold has a tangent vector at
each of its points. We now show that, conversely, a tangent vector field can be
integrated to give a deformation (family of paths) in the manifold. This is an
essential technique for constructing deformations.

The key is Picard’s existence theorem for differential equations.
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Theorem 1.4.1 (Existence Theorem for Ordinary Differential Equations) Let
U be an open subset of R", K a compact subset of U. Given a system of equa-
tions % = X(x), where X is a smooth function on U to R", then for some ¢ > 0
there exists a unique smooth function X = g(Xo,t) = g:(Xo) on K X E to U,
where E is the set |t| < &, satisfying the equation, and such that Xy = go(Xo).

A proof is given in [40, Theorem 10.4.5].

We next translate this from the language of analysis to that of geometry, and
then see how to reformulate it. First write X = (X1, ..., X,,) and define a vector
fieldé onUby & =), Xiaix,-‘ Then the given equation becomes £ (x;) = X;.

For any smooth function f on U, and x = ¢,(X(), we have

d af dx; ad
Iy D)

dt -
so this relation is not restricted to f being a coordinate function x;.

We define a flow on a smooth manifold M™ asamap g : V — M x RwithV
some neighbourhood of M x {0} in M x R, where we write ¢,(P) for ¢(P, t),
such that

(1) po(P) = Pforall P e M,

(i) @s(¢:(P)) = @s1+(P) whenever both are defined.

A flow gives rise to a vector field £ on M as follows. For f € Fy, P € M,
we set

. fleP)—fP) _d
sp(f) = lim =" = — f(pi(P))

t—0 t dt —0
It is clear that &p is a tangent vector to M at P, and that £p varies smoothly with
P, so that & is a vector field. Substituting P = ¢;(Q), and using (ii), it follows

that

d d
so0(f) = Ef(‘ﬂers(Q))lz:o = Ef((pt(Q))b:y

We now show that any vector field defines a flow.

Theorem 1.4.2 Let M™ be a smooth manifold, & a vector field on M. Then
there is a flow ¢ : U — M x R giving rise to &, and any two such flows agree
on some neighbourhood of M x {0}.

Proof Any P € M lies in a compact set K contained in the interior of some V,
where H : V — U is a coordinate neighbourhood. In U, write & in local coordi-
nates as » | X;(x)d/dx;, and consider the system % = X;(x). Apply Theorem
1.4.1: we find ¢ > 0, and a smooth function x = g(xo, t) for xo € K, |t| < ¢,

uniquely determined by the equation. We define ¢, in V by this relation in U.
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The fact that the functions defined by different coordinate neighbourhoods
agree on the intersection follows by the uniqueness, and the fact that the equa-
tions solved are simply derived from each other by change of variables.

The functions ¢, (P) — g(Xo, s + t) satisfy the same equation, with initial
value g(Xo, 5). By the uniqueness, g(xo, s + 1) = g(g(Xo, 5), 1), i.e., @54 (Py) =
©:@s(Py), at least on some neighbourhood of s =t = 0 in M x R2. O

We have seen that, for each point P € M, ¢;(P) is defined for ¢ = 0, and that
if it is defined for r = 1y, then it can be uniquely defined in some neighbourhood
|t — to] < e. There is thus a bound Bp < oo such that ¢,(P) is defined for all
0 <t < Bp, but no further.

Lemma 1.4.3 Either Bp = 00 or the map [0, 00) — M given byt +—> ¢,;(P) is
proper.

Proof We need to show that if Bp < oo and K is a compact subset of M, then
the set of ¢ with ¢,(P) € K is compact, i.e. that it has an upper bound strictly
less than Bp.

It follows from Theorem 1.4.2 and Corollary A.2.4 that there is a number
& > 0 such that ¢,(Q) is defined for all Q € K and all # with |¢| < . Suppose
there exists t > Bp — ¢ with Q = ¢,(P) € K. Then it follows that the definition
of ¢, (P) extends beyond ¢ = Bp, contradicting our hypothesis. O

One sometimes wishes to solve an equation of the form % = X(x,t). This
is not essentially different in nature: merely take ¢ as an additional coordinate,
with % = 1. In geometrical terms, we have a ‘time-dependent vector field’ £(¢)
defined on M, and treat this as a vector field £ + 9, on M x R, i.e. a vector
field on M x R whose projection on R is equal to d;. The corresponding flow
¢V — (M x R) x R then has the property that whenever ¢,(P, t) is defined,
its second component is equal to s + ¢.

If we have a flow on M defined on the whole of M x R and satisfying
0s(0(P)) = @+ (P) everywhere, then each ¢, is a smooth map M — M and
has an inverse map ¢_,, hence is a diffeomorphism. Themap ¢ : M x R - M
thus defines a differentiable group action of the additive group R on M, often
called a 1-parameter group of diffeomorphisms of M. In general, a vector field
on M is called complete if it generates a 1-parameter group of diffeomorphisms
of M. We collect some simple sufficient conditions for completeness.

Proposition 1.4.4 (i) If M™ is compact, each vector field on M is complete.
(ii) The constant vector field 3 /9t on R is complete.
(iii) If € is a complete vector field on V, and M is any manifold, &€ & 0 is
complete on'V x M.
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(iv) If € is complete, and &' agrees with & outside a compact subset of M,
then &' is also complete.
(v) If M has a complete metric, any bounded vector field is complete.

Proof (i) follows from Lemma 1.4.3, since there are no proper maps [0, co) —
M if M is compact.

(i1) and (iii) are trivial.

(iv) ¢,(P) is defined for all P and ¢, by hypothesis; since & and &’ differ only
on a compact set, there is an ¢ > 0 such that ¢(P) is defined for all P and all
|t| < e. It follows that it is defined for all ¢.

(v) Since & is bounded, there is a uniform bound p(¢; (P), ¢s(P)) < Als —t|.
Thus as ¢ converges to any limit B, the points ¢, (P) form a Cauchy sequence, so
converge since the metric is complete. Thus a limit value Bp as in Lemma 1.4.3
cannot exist. O

1.5 Manifolds with boundary

We now extend the notion of manifold by considering manifolds with boundary.
In the sequel these will play as much part as the manifolds already defined; we
have merely deferred the definition till this point to help concentrate ideas.

N" is a smooth manifold with boundary, or bounded manifold, if it satisfies
all the defining conditions of a smooth manifold, with the exception that we
allow coordinate neighbourhoods to map onto open sets in either R" or R’ ,
where R% := {(x, ..., x,) € R"|x; > 0}.

Since we will not always include the phrase ‘with boundary’, we also
use the term closed manifold for a compact manifold without boundary (the
phrase ‘open manifold’ is sometimes used for a non-compact manifold without
boundary).

A point is a boundary point of N if its image by the chart lies on the boundary
{x1 = 0} of R’} : it is clear that this property is preserved on change of coordinate
neighbourhood. The set of such points is the boundary of N, which we always
denote by dN. The restrictions of coordinate charts give dN the structure of a
smooth manifold of dimension n — 1. We write N := N \ ON, the ‘interior’ of
N. This is a manifold, an open submanifold of N. A simple example of manifold
with boundary is the unit disc D", with boundary 9D" = §"~!.

The concept of smooth function on a manifold with boundary is clarified by
the following.

Theorem 1.5.1 (Whitney’s Extension Theorem) Let f be a smooth function
defined on the open set x; > 0 of R", and suppose that f and all its partial
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derivatives extend to continuous functions on R',. Then there is a smooth func-
tion g on R™ which agrees with f in its range of definition.

Whitney’s proof, which establishes results of much greater generality, can
be found in his paper [173].

A function on R, is called smooth if it satisfies the equivalent conditions of
the theorem. With this as the definition on a chart, we extend to a definition of
smooth functions and maps on manifolds with boundary in general.

A diffeomorphism between manifolds with boundary is a smooth bijection
whose inverse is smooth. Necessarily, the two boundaries correspond.

We also say N" is a manifold with corner if it satisfies the defining condi-
tions for a smooth manifold, except that coordinate neighbourhoods may map
into open sets in any of R”, RY and R!, , where R’ , denotes the set of points
(x1, ..., x,) € R" with x; > 0, x, > 0. Topologically, as opposed to differen-
tiably, N is a manifold with boundary; its boundary dN consists of points cor-
responding to x; = 0 (in RY) or to x;x; = 0 (in R ). Points corresponding
to x; =xp =0 in R’ | form the corner /N, which is a smooth manifold of
dimension n — 2.

If My, M, are manifolds with boundary, products of coordinate neighbour-
hoods of M, and M, give coordinate neighbourhoods in M; x M, which (up
to a permutation of coordinates) are appropriate for a manifold N with cor-
ner. We have 0(M; x M) = (dM; x M) U (M x 0M>) and Z(M; x M) =
oM, x OM,. In this, as in most other important cases, /N separates dN into
two parts; of course this is always true locally.

The discussion of orientability and orientations for manifolds with bound-
aries (and perhaps corners) is essentially the same as before. However, at
boundary points P € N, we must distinguish between inward- and outward-
pointing tangent vectors: in terms of a coordinate neighbourhood of P, these are
vectors X A;0/0x; with A; > O resp. A; < 0. If »; = 0, we call the vector tan-
gent to the boundary; indeed, if i : 9N — N is the inclusion map, such vectors
form the image of di, so do come from tangent vectors of dN. If p : RT — N
is a path with p(0) = P, we see by considering local coordinates that the tan-
gent to p at P has A; > 0. Thus the terminology is independent of the choice
of local coordinates. Boundaries of manifolds and submanifolds are pictured in
Figure 1.3.

In the presence of boundaries or corners, there are various corresponding
extensions of the notion of submanifold. A subset M of a manifold N with
boundary is a submanifold if it satisfies the same conditions as when N is not
bounded, except that the coordinate neighbourhood ¢ may map U to R” or
R’ . Thus in a neighbourhood of a point of M, the pair (N, M) is locally like
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Figure 1.3 Boundaries of manifolds and submanifolds

(R", R™) or (R}, R"}). Geometrically, we can say that M meets dN transversely
(for the general notion of transversality, see §4). M has an induced structure
of manifold with boundary, just as above, and we have daM = M N dN. The
definition includes the case when dM is empty, and M is disjoint from 9N;
then M is a submanifold of N. A result corresponding to Proposition 1.2.10
continues to hold.

As before, submanifolds which are not closed may have bad behaviour. We
usually require the condition M N AN = M N 3N, which excludes such exam-
plesas N = {(x,y) e R?|y >0}, M = {(0,y) e R? |y > 0}.

We could go on to consider further cases where the pair (N, M) is modelled
on any product of pairs (R, R), (R, R"), (R, 0), (R*, RT), (R", 0), but restrict
to the following.

If N" is a manifold, perhaps with boundary, we define a closed subset M™
to be a closed submanifold with boundary of N" if each point of M™ has a
neighbourhood U in N and a smooth chart ¢ : U — R” with ¢(U) an open set
in R" or R, and (U N M) its intersection with R™ or with R” N {x|x, > 0}.
Thus in the case when N has a boundary we allow M to have a corner, and ZM
divides 9M into M N 9N and the closure of M N N.

The results on vector fields and flows extend as follows to manifolds with
boundary. First, the local existence theorem adapts as follows.

Lemma 1.5.2 If U is open in R!,, K C U compact, and & a smooth vector
field on U, inward pointing along U N 0R'}, then for some ¢ > 0 there is a
map ¢ : K x [0, e] — U with 0¢(x,t)/0t = & and ¢(x,0) = x for all x € K.

For the global case, if £ is a vector field on M, inward pointing at all points
of dM, it follows as for Theorem 1.4.2 that there is a flow ¢ : V — M x R,
for some neighbourhood V of M x {0} in M x R*.

Now suppose more generally that along some components of M, whose
union we denote by d_M, & is inward pointing, and along the rest (forming
04+ M), it is outward pointing. Then for each P € M we have ¢(x, t) defined for
t in some interval in R containing 0 and with end points Ap, Bp say, and we
have
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Lemma 1.5.3 Either Bp = 0o or ¢(P, Bp) € 0. M or the map [0, 0c0) > M
given by t — @,(P) is proper.

The following result is the first step towards the construction of
diffeomorphisms.

Theorem 1.5.4 Suppose M a compact manifold with boundary 0_M U 9, M,
& a vector field on M, pointing inward on d_M and outward on 0. M, and f :
M — R suchthat E(f) > Oon M. Then M = 9_M x I.

Proof Integrating £ gives a flow ¢ which is defined on a neighbourhood of
0-M x {0} in _M x R, . Now apply Lemma 1.5.3. Since M is compact, there
is no proper map [0, co) — M. Since £(f) > 0 on the compact manifold M,
it has a positive lower bound c, so f(@;+7(P)) > f(¢:(P)) 4+ cT, and as f also
must be bounded, the case Bp = o¢ is ruled out. Thus each orbit of the flow can
terminate only on d4M and likewise (as ¢ decreases) on d_M. There is thus a
smooth positive function g on d_M such that for P € d_M, the flow is defined
at (P, ¢) if and only if 0 < ¢ < g(P). Now the map (P, t) — ¢(P, ﬁ) gives a
diffeomorphism of _M x I on M. U

If N is a manifold with boundary, a collar neighbourhood of dN in N is
an embedding ¢ : IN x I — N as submanifold with boundary, extending the
projection of dN x 0 on dN. The use of collars will often enable us, when
discussing manifolds with boundary, to avoid special difficulties arising at the
boundary. We now establish their existence.

Theorem 1.5.5 For every manifold with boundary, the boundary has a collar
neighbourhood.

Proof Each point P € dN lies in the domain of a coordinate neighbourhood
U, with a map ¢, : Uy, — Df:_ We may suppose these chosen so that the dU,
cover dN. Hence the U, together with Uy := N \ dN form an open cover of
N. By Theorem 1.1.5 we can pick a strictly subordinate locally finite smooth
partition of unity &y, 8.

We next construct a vector field on N which is inward pointing along dN.
The vector field 3/9x; on U™ corresponds under ¢, to a smooth vector field &,
on U,, which is inward pointing. Then §,&, gives a smooth vector field on N,
vanishing outside U,. Now consider the smooth vector field & := > §,&, on
N. Each point P of 9N lies in the support of some §,, so in the chart ¢,, the
coefficient of 9/9x; in §g&p at P is non-negative for every B and positive for c,
hence & is inward pointing at P.

We can now integrate & on some neighbourhood of N x {0} in N x R" to
give a map to N. We are only interested in the restriction v to a neighbourhood
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Figure 1.4 Collars of manifolds and submanifolds

Wo of ON x {0} in N x R*. Along N x {0} the map is the inclusion of N in
N, and by (iii) of the theorem, the derivative with respect to ¢ is the vector field
&. Since £ is inward pointing, it follows from Theorem 1.2.5 that the map v is
a local diffeomorphism. By Corollary A.2.6 there is a (smaller) neighbourhood
Wi of N x {0} on which ¢ is an embedding. By Proposition 1.1.7 (i) we can
choose a smooth positive function gon dN such that W, contains W, := {(x, 1) €

ON xR|x e dN, 0 <t <g)}
The map (x, t) — ¥ (x, tg(x)) now gives the desired collar neighbourhood.
O

Extensions of the argument enable us to establish the existence of collars
compatible with corners and submanifolds. It will be convenient to introduce
the following terminology. For M a manifold with corner, a subset Q of M is
a smooth part if 0Q = Q N /M. Thus the interior of Q is a union of connected
components of IM \ ZM.

Proposition 1.5.6 (i) For N a manifold with corner and Q a smooth part of
dN, there is a smooth embedding of Q x I in N giving a neighbourhood of Q
inN.

(ii) For N a manifold with boundary, M a submanifold, there is a collar neigh-
bourhood of ON whose restriction to dM x I gives a collar neighbourhood for
oM.

(iii) For N a manifold with boundary, M a submanifold with boundary, so /M
separates 0M into doM := M N ON and 0, M, there is a collar neighbourhood
of ON whose restriction to oM X I gives a collar neighbourhood as in (i).

Collars of manifolds and submanifolds are illustrated in Figure 1.4.

Proof Once we have constructed suitable vector fields in coordinate neigh-
bourhoods, the piecing together using partitions of unity and integration of the
vector field to give a local diffeomorphism proceeds in just the same way as
above. But the local vector field can also be taken as d/0x; in each case.

For (i) it is sufficient to consider a chart ¢ : U — R" at P € dQ taking U N
(ON\ Q)tox, =0and U N Q to x; = 0. Integrating d/0dx, gives translation in
the x; direction, which preserves aN \ Q.
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For (ii) we need to consider points P € dM. But here, by definition of sub-
manifold, we have a chart ¢ : U — R" at P taking M to the subspace R"™ where
all but the first m coordinates vanish. Again this is preserved by the vector field
9/0x;.

For (iii), other points of dyM are as in (ii), while at a point P € /M, we have
achart ¢ : U — R” taking M to the subset of R™ with x; > 0 and x, > 0, and
the same vector field remains suitable. O

1.6 Notes on Chapter 1

§1.1 The concept of manifold gradually evolved during the nineteenth cen-
tury, beginning with the cases of curves and surfaces in Euclidean space, with
successive steps taken by Riemann (who considered the n dimensional case)
and Poincaré (who introduced charts). Manifolds not considered as subsets of
Euclidean space first appeared in 1931 in the book [156] by Veblen and White-
head; see also Weyl [172]. A decisive step was taken by Whitney [175] in 1936,
who was the first to prove that any abstract manifold could be regarded as a
manifold embedded in Euclidean space.

The use of atlases allows several variations of the definition giving related
concepts: for example, instead of requiring the coordinate transformations ¥, g
to be smooth, we could have required them merely to be continuous, giving
topological manifolds; or to have all partial derivatives of order < r defined
and continuous, giving C"-manifolds; or had charts as open subsets of C" with
holomorphic coordinate transformations, giving complex manifolds.

Any smooth atlas defines a smooth structure; conversely, the set of all smooth
charts is a unique maximal atlas, and we could take ‘maximal atlas’ as the basic
concept.

Alternatively, for each P € M, we can write JFp for the ring of germs at P
of elements of . The rings Fp fit to give a sheaf, and we can recover F from
the sheaf of rings Fp as the ring of global sections. Axiom (M1) is part of the
definition of sheaf; (M2)-(M3) easily translate into axioms on the sheaf.

Since our main interest is in compact manifolds (where the proofs are easier),
the reader new to the subject can afford to ignore most of the references to
topology, though of course the model example R” is not compact.

It can be shown that in the presence of axioms (M1-M3), the following fur-
ther conditions are equivalent for smooth manifolds which are connected (more
generally if the set of components is (at most) countable):

M 1is a countable union of compact sets (the above condition (M4)),

Every open covering of M has a locally finite refinement (M is paracompact),
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M has a countable base of open sets,

There is an embedding of M in Euclidean space,

The topology of M is metrisable.

We have seen in Theorem 1.1.4 that the first condition implies the second. The
third follows since as M is covered by coordinate neighbourhoods, so any com-
pact subset of M is contained in the union of finitely many, M is covered by
countably many coordinate neighbourhoods. Since R”, and hence any open
subset, has a countable base of open sets, the same follows for M. The other
conditions follow from Theorems 1.2.11 and 2.1.1.

More general results of this kind are also known for topological spaces sat-
isfying appropriate local conditions.

Examples satisfying (M1-M3) but not (M4) can be constructed, but such
examples do not occur naturally. It is hard to obtain results of interest about
such objects, and we do not consider them further.

§1.2 Lemma 1.2.3 is due to Marston Morse.

Proofs of Theorem 1.2.5 can be found in any good book on analysis, for
example in [40].

§1.3 We give here merely the definitions necessary for the first two chapters
of this book. Smooth group actions will be more fully treated in Chapter 3.

We refer the reader to Steenrod’s book [144] for a systematic account of
fibre bundles: this is the classic exposition. Many others have appeared since;
another good reference is [77]. See also Appendix B.

§1.4 Proofs of Theorem 1.4.1 can also be found in any good book on analysis:
in [40] both Theorems 1.2.5 and 1.4.1 are obtained as simple applications of
the Contraction Mapping Theorem. Another reference is Hurewicz [75, 2.5].
The little book [83] gives slick treatments of all the topics up to this point, in a
somewhat abstract framework.

§1.5 Manifolds with boundary were, I believe, first introduced by Poincaré.
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Geometrical tools

We can regard a compact smooth manifold as built up by glueing together
smaller pieces, which are easier to analyse. In this chapter we begin the descrip-
tion of this process. After obtaining some basic results on Riemannian metrics,
we study geodesics for such metrics. The key result is that any two nearby
points are joined by a unique shortest geodesic. This leads us to study the way
in which a closed submanifold lies in a manifold: we describe the structure of
a neighbourhood of the submanifold as having the form of a tube.

A diffeotopy, or differentiable isotopy, can be considered either as deforming
the embedding of one manifold in another or as an embedding of a product with
1. If the deformation can be extended to the whole manifold, the two embed-
dings are equivalent. The diffeotopy extension theorem asserts that under cer-
tain conditions, this extension is possible; it may thus be looked on as a unique-
ness theorem. We apply this result to obtain a uniqueness theorem for tubular
neighbourhoods, which enables us to pass from knowledge of the structure of
a compact submanifold M of a manifold N to knowledge of a neighbourhood
of M: the only extra piece of information needed is the structure of the nor-
mal bundle N(N/M). This contributes to the general aim of building up global
results from merely local ones.

We define inverse procedures for straightening a corner, to yield a manifold
with boundary, and for introducing corners: it will be useful in Chapter 5 to be
able to effectively ignore corners.

Finally we discuss glueing and the inverse process of cutting: these are sim-
ple geometrical constructions which, given some smooth manifolds (perhaps
with boundaries and corners) and additional data where necessary, give rise to
new manifolds. On account of their perspicuity, these methods are traditional
in describing the topology of surfaces, and they remain a very powerful tool in
higher dimensions.

36
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2.1 Riemannian metrics

We recall that if M™ is a smooth manifold, the bundle over M associated to
the tangent bundle and whose fibre over P is the set of all positive definite
quadratic forms on 7pM is called the Riemann bundle, and any cross-section
of it a Riemannian structure on M, in local coordinates this takes the form
ZZIJ‘:I g,-,j(x)dxidxj.

We saw in Theorem 1.3.1 that every smooth manifold M™ has a Riemannian
structure. Such a structure induces an inner product on each 7pM, which we
use to introduce the notion of length of tangent vectors. A (smooth) path in M
is a smooth map p to M with source R or an interval contained in R. For a path
p, we define the length of p between two of its points by

b ds
l = —dt,
(p) /a 7

where (ds/dt)> = Zi, ;&i.jldxi/dr)(dx;/ dt)?, the derivatives being taken along
the path. We set

p(P, Q) = inf{l(p) : p a path joining P to Q};

this is defined if and only if P, Q are in the same component of M. We could also,
for example, define p(P, Q) = 1 whenever P and Q are in different components,
but the case of interest is when M is connected.

We call p the Riemannian metric: we now show that it is a metric.

Theorem 2.1.1 The function p defines a metric on M which induces the given
topology on M.

Proof The triangle inequality follows since, as in Lemma 1.1.8, we can (up to
re-parametrising, which does not alter length) combine smooth paths from P to
Q and from Q to R to give a smooth path from P to R. That p(P, Q) = 0 implies
P = Q follows from the argument below.

To show that the metric induces the given topology, we need to establish that,
for any point P € M,
(i) any neighbourhood of P in M contains {Q € M | p(P, Q) < A} for some A,
(ii) any such set is a neighbourhood of P.

Choose a coordinate neighbourhood ¢ : U — R™ with ¢(P) = O. By a lin-
ear change of coordinates in R™, we can reduce the matrix (g,‘,j (P)) to the iden-
tity, so at P the metric ds* agrees with the Euclidean metric % dxl.z. Hence there
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is a neighbourhood of P on which the ratio is bounded:

% i d)c,-2 < Z gi,j(®dxidx; <2 i dxi2
1 ij 1

for ||x|| < A, say.

Thus if p is a path in M with ¢(p) C ﬁ”(A), and /(¢(p)) denotes the length
of ¢(p) in the Euclidean metric, %l((p(p)) <Il(p) <2Up(p)).

Now (ii) follows since, if B < A, then for any Q = ¢~'(x) with ||x| < g,
taking the path p3 such that ¢(p3) is the straight segment from O to x gives

p(P, Q) < l(p3) < 2l(p(p3)) < B,

so the set {Q | p(P, Q) < B} contains the neighbourhood ¢! {Dom(%B)}.

As to (i), first note that if ¢(Q) = x with ||x|| < %, and p; is a path from Q
with ¢(p;) leaving D"(A), then I(¢(p1)) > 4, hence [(p;) > 4. Thus for any
path p, from P to Q with ¢(p,) leaving D™(A), we have l(p2) = %.

Now for any B < 4, since any path p from P with I(p) < B is contained in
<p‘1{D°m(A)}, it follows that D := {Q € M | p(P, Q) < B} is also contained in
this region; and now since we need only consider paths p in this region, and

I(¢(p)) < 2l(p), D is contained in go‘l{ﬁ'”(2B)}. ]

The basic results about Riemannian metrics: existence of a Riemannian
structure, and the definition and properties of a metric: apply without essen-
tial change also to manifolds with boundary.

Next let V* be a submanifold of a smooth manifold M™. If P € V, the
inclusion i : V — M induces di : TpV — TpM of rank v, hence the dual map
di* : TyM — T,V also has rank v, and its kernel has rank (m — v).

The kernel of di* : T;’M — T,V is called the normal space to'V in M at P;
we will denote it by Np(M/V). The union of these normal spaces is the normal
bundle N(M/V) of V in M. We must check that the normal bundle is indeed
a vector bundle over V. Let ¢ : U — R™ be a coordinate neighbourhood of P
inMwithU NV = go’l(]R“); then in U NV we may take dx,1, ..., dx, as a
basis for the normal space. These give the local product maps ¢, required of a
fibre bundle; as with the tangent bundle, the maps g come from Jacobians on
change of coordinates.

A Riemannian structure on M induces one on V. The distinction between
T,’M and TpM disappears, and in this case we can regard N(M/V) as a sub-
bundle of the restriction T(M)|V of T(M) to V.

Proposition 2.1.2 T(M)|V is the Whitney sum of N(M/V) and T(V),
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Proof Since all the above bundles are defined, and the latter two are sub-
bundles of the first, it is sufficient to verify that at each point the fibre of the
first is the direct sum of the latter two. Since we have a positive definite inner
product, it will be sufficient to verify that the fibre N,(M/V) of N(M/V') over
P is the orthogonal complement of the fibre TpV of T(V) in the fibre TpM of
T (M), or that it is the annihilator of 7TpV in TPVM . But since di* is dual to di,
the kernel of di* is certainly the annihilator of the image of di. O

We say that a submanifold V' of M meets 0M orthogonally if the normal
vectors to V and dM at each point of 9V are perpendicular.

Lemma 2.1.3 Let M be a manifold with boundary, V a submanifold. Then M
has a Riemannian metric in which V meets M orthogonally.

Proof We construct a metric just as in Theorem 1.3.1; the only point to watch is
that V meets 0 M orthogonally in each of the partial metrics to be fitted together.
But since V is a submanifold, at a point of dV/, there is a coordinate map of an
open set of (M, V) to (R, RY), and the Euclidean metric will do. Now when
we fit these together, V continues to meet dM orthogonally. O

2.2 Geodesics

For a connected manifold M™ with a Riemannian structure, we have already
defined the length of a path and the distance function as the infimum of lengths
of paths, and shown in Theorem 2.1.1 that the infimum p(P, Q) of lengths of
paths joining P to Q is a metric defining the topology on M.

We now focus attention on the paths minimising this distance. Recall that
the length of a path p : U — M (U open in R) between two of its points is
defined by /(p) := fab fll—fdt, where (ds/dt)* = Zi,j g[,j(dx,'/dt)(dxj/dt)z, the
derivatives being taken along the path. We now define the energy of p by

b rds\?
E(p) = (b—a)/ (E) drt.

Then a geodesic is defined to be a smooth path p : U — M giving an extremal
value to the energy between any two of its points.
By Schwarz’ inequality,

bds 2 b b rds\? b rds\?
2 __ - - _ _ - —
I(p) = (/a dtdt> gfa dt/a (dt) dt = (b a)/a (dt) dt = E(p),
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with equality if and only if ds/dt is constant, so that the curve is parametrised
proportionately to arc length. Since any curve can be parametrised by arc
length, the geodesic gives an extremal value also to the length of the path.

Proposition 2.2.1 In local coordinates, geodesics are defined by equations

d%x; dxj dxk
=0
dr? +Z *ar dr

Proof Euler’s equation for the variational problem of minimising the integral

— dxjdx, - 3G __ d (3G . .
of G:= ijgjk g S =G (3) ) where y, = l.ThlS gives

dgidx; d d d
s sndyd (s dy
— Ox, dt dt dt dt
Jk J
dzxj 0grj dxj dxy
§rian ax, dt dr
dzx] dxjdx, (0grj = 08k
8% " ar dr \axe | ox; )

=2g

where in the last step we use symmetry under the interchange of j and k. If g'/
is the inverse matrix to g; ;, multiply by g, sum over r and simplify:

dzx,- 1 . Bg,j 8grk 8gjk dxj dxk
— 4 = w22 + =
EREPIL ( o | ox; ) dr dr

The coefficient of the last term is usually abbreviated to F;k. O

Theorem 2.2.2 For any point Q € M, we can find a neighbourhood V of Q in
M and an ¢ > 0 such that for any P € V, and v € Tp(M) with ||v|| < &, there
is a unique geodesic p(t) with

d
0)=P, —p(t =0.
p(0) y tp( ) . v
This is defined for |t| < 2, stays in'V, and depends smoothly on p, v, t.
Proof We take a coordinate neighbourhood ¢ on M at Q mapping onto D" (3)

and apply the Existence Theorem for Ordinary Differential Equations (Theo-
rem 1.4.1). Consider the system

dx;/dt = y;
dy;/dt = T (xX)y;yi
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where x € Dom(3), lyll < 3 corresponds to the U of that theorem, and x €
D"(2), |lyll <2 to its K. Then for some ¢ > 0, we find a unique solution
x = f(xo, o, t) for all ||xo|| <2, [lyoll < 2, || < & depending smoothly on all
its arguments, and lying in ||x|| < 3. Lifting to V by ¢!, this gives a geodesic
in M.

To deduce the theorem, we need only change parameter by ¢’ = %t; this has
the effect of multiplying the initial % p(t) by the inverse factor, and so altering
the condition |o|| <2 to o] < &. O]

It is worth emphasising that though the argument involved defining a flow in
the tangent bundle T (M), the geodesic itself is a path in M.

As for flows in general, the local existence and uniqueness of geodesics given
by Theorem 2.2.2 does not imply global existence, but does imply uniqueness
in the whole range of existence (by applying the result to a sequence of points
along the geodesic), given the initial point and direction.

Let P € M,v € TpM, and suppose that the geodesic with direction v at P can
be defined for |f| < 1. Then we write exp(P, v) for the point at || = 1 on the
geodesic, and call exp the exponential map. We also define the map Exp from a
subset of T(M) to M x M by Exp(P, v) = (P, exp(P, v)). We have shown that
these maps are defined on a neighbourhood V of T°(M) in T(M).

A submanifold V C M is called fotally geodesic if each geodesic in M tan-
gent to V is contained in V. Thus a one-dimensional submanifold is totally
geodesic if and only if it is a geodesic.

We now obtain further properties of the exponential map.

Proposition 2.2.3 The Jacobian determinant of Exp is non-zero on T°(M).

Proof For P € M,lety : U — R™ be a coordinate neighbourhood, and choose

X1, ..., Xy as coordinates in M, dx;, ..., dx,, as coordinates in the fibres TpM;
write the latter as vy, ..., v,, and write coordinates in M x M as xi, ..., X,
21, - - -, Zm- Then we have Exp(x, v) = (x, z), so it remains to compute the par-

tial derivatives of the z; at 0. Now z is the point at # = 1 on the solution of the

equation % = y with initial condition z = x, y = vy, i.e. at the point 7y on the

solution with initial condition z = x, y = vy/fp = v. Hence
Z = x + tyo + smaller terms, where #; is small, v fixed,
and so to find fo, set (vo); = fod;;; then
J ?

9z 9zi(vo)

- .
J
3Dj BIn) 10=0

This proves the result: for later reference note also that g—; = §;j. O
J
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It follows from Proposition 2.2.3 and the Inverse Function Theorem 1.2.5
that T°(M) has a neighbourhood V" in T(M) on which Exp is defined, and is a
local diffeomorphism. It now follows using Corollary A.2.6 that T°(M) has a
neighbourhood V" in T(M) on which Exp is defined, and is a diffeomorphism.

We have an even sharper statement.

Theorem 2.2.4 There is a neighbourhood W of A(M) in M x M such that if
(x,y) € W, there is a unique geodesic from x to 'y of length p(x, y). Hence Exp
defines a diffeomorphism of Exp~ (W) onto W.

Proof For each P € M, it follows from the above that we can find a neigh-
bourhood Vp of P such that Exp_1 defines a diffeomorphism of Vp x Vp on a
neighbourhood of T°(Vp). Then if Up is a sufficiently small neighbourhood of
P, each pair of points in Up is joined by a unique geodesic lying in Up, and (as
in the proof of Theorem 2.1.1) each geodesic going outside Up is longer. Thus
this geodesic gives a minimum length for curves in Up joining the two points.
(In the technical language of Calculus of Variations, the metric is positive defi-
nite, the problem is regular, and we have constructed a semi-field of extremals,
passing through a point and covering a neighbourhood.)

The geodesic gives the global minimum, which we defined as the distance
p(x,y). Thus Exp~! is a diffeomorphism on Up x Up: we take W as the union
of such neighbourhoods. O

This has the following useful application.

Corollary 2.2.5 There exist a neighbourhood W of A(M) in M x M and a C*
map H : W x [0, 1] = M such that for each (P, Q) € W, H(P, Q,0) = P and
HP,Q, 1 —-1)=HQ,P1).

Proof Take W as given by the theorem. Then for each (P, Q) € W there is a
unique geodesic gpp : [0, p(P, Q)] — M with gp(0) = P and gpp(1) = 0.
We can thus take H(P, Q,t) = gpo(t.p(P, Q)). ]

We will need a variant of this below (for Proposition 6.4.4).

Proposition 2.2.6 For M a smooth manifold, the map ey : T(M) — M x M
given by ey (§) = (exp(§), exp(—£)) is a local diffeomorphism along A(M)
and there exist neighbourhoods Ay of TO(M) in T(M) and Oy of AM) in
M x M such that ey gives a diffeomorphism of Ay on Oyy.

For it follows from the proof of Proposition 2.2.3 that, in the natural local
coordinates, the differential of ¢); takes the form (x, v) — (x + v, x — v), sois
an isomorphism. The conclusion now follows as above.

In the region where geodesics are unique, the distance function also has the
expected properties.
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Proposition 2.2.7 On the set W of Theorem 2.2.4, the square p(x, y)* of the
distance is a smooth function.

Proof In view of Theorem 2.2.4, it suffices to show that taking the square of
the length of the geodesic defines a smooth function on a neighbourhood of
TO(M) in T(M). But this function is just the square of the length of the tangent
vector in question, so is a smooth function since the Riemannian structure is
smooth. O

We recall that a metric space is complete if each Cauchy sequence of points
converges to a limit point, or equivalently, if each bounded closed subset is
compact. With this concept, we can give the global forms of the above theorems.

Theorem 2.2.8 M is complete if and only if geodesics may be indefinitely pro-
duced, i.e. if exp and Exp are definable on T(M). Any two points in a complete
manifold may be joined by geodesics: the length of at least one such is the
distance between them.

Proof Suppose first M is complete, and p(¢) a geodesic which exists only for
t < k. Then the points p(t — %) form a Cauchy sequence: since M is complete,
these have a limit point P. But by Theorem 2.2.2, P has a compact neighbour-
hood K such that any geodesic within K may be produced a distance ¢. This
gives a contradiction.

Now suppose exp globally definable, but that there are pairs of points (P, Q)
not joined by a geodesic of length p(P, Q). Let r be the greatest lower bound
of the distance of such points Q from P (by Theorem 2.2.4, r > 0), let K; =
{v e TpM | ||v]|| < r}, and let K = exp(K;). Then K; is compact, hence so is K,
by definition of r, K contains all points at distance less than » from P. Choose
2& < r as the number ¢ in Theorem 2.2.2, and choose Q such that p(P, Q) =
ro < r—+ ¢, but P and Q are not joined by a geodesic of length po(P, Q). Now
let P; be a smooth path from P to Q of length at most ry + 1/i, and let R; be the
point on it at distance r — ¢ from P. The R; lie in the compact set K; let R be a
cluster point. Then

p(P,R) <limsupp(P,R))=r—¢,

PR, Q) < limsup p(R;, Q) =ro —r + ¢,
so by the triangle inequality we have

pPPR)=r—¢, pR O =rg—r+e.

By the definition of r, &; P can be joined to R by a geodesic of length r — ¢;
R to Q by on of length ry — r + €. If these met at an angle at Q, we could
construct a shorter path by rounding the corner in a neighbourhood of Q. Hence
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Figure 2.1 Rounding the corner of a path

they have the same direction at Q, so by the uniqueness theorem form part of
the same geodesic. Thus P is joined to Q by a geodesic of length p(R, Q) : a
contradiction. The idea of this proof is sketched in Figure 2.1.

Finally, suppose exp(7pM) = M. Then a bounded set lies within a finite dis-
tance from P, so is contained in the image of a closed and bounded, hence
compact, subset of TpM. But the image of this set is also compact, so it follows
that M is complete. O

Theorem 2.2.9 Any connected manifold has a Riemannian metric in which it
is complete.

Proof We make a slight refinement of the proof of Theorem 1.3.1, asserting the
existence of Riemannian structures. Let ¢, : U, — Do’”(3) be the coordinate
neighbourhoods constructed in Theorem 1.1.4, and define ®, € F; by

Bp(23 — IIxI) if P € Uy, gu(P) = x

o (P) =
) ifP ¢ U,.

Then write ds> = ) ®4(}_ dx?) o ¢,. As in the earlier proof, we see that this is
ametric. In ¢ N0 e %)), it is greater than or equal to the Euclidean metric, so
the set of points at distance < % from ¢, 1(D'™)is a closed subset of 0, L(D"™(2)),
so is compact. As in Theorem 2.2.8, it follows that all geodesics from a point of
@, ' (D™), and hence from any point of M, may be produced a distance at least
% from any point. Thus they can all be produced indefinitely. 0

Corollary 2.2.10 (i) For any smooth manifold V, there is a proper map V. —
Ry.
(ii) If M is non-compact, there is a proper map V. — M.

Proof (i) Choose a complete Riemannian metric on V; then for any Py € V, the
distance from Py is a proper map p(Py, —) : V — R,. For we saw above that
the preimage of any set [0, K] is compact. The square p(P,, —)* is also proper,
and is smooth.

Since the composite of two proper maps is proper, (ii) will follow if we can
construct a proper map R, — M. Choose a non-compact component M, of
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M and a point Qy € M,. Suppose inductively chosen Q; € M;: then remove
{PeM;|p(P,Qp) < i} from M;, let M;,, be a non-compact component of the
complement, and choose any Q| € M;4,.

Since Q;, Q;y lie in the connected set M;, they can be joined by a path [i, i +
1] — M,;. Joining all these paths givesamap ¢ : R, = [0, oo) — M. Since, for
any P € M;, p(P, Qp) > i — 1, the map ¢ is proper. O

2.3 Tubular neighbourhoods

We will now apply the results of §2.2 in the context of a submanifold V* of
M'™. Then we proceed to consider boundaries.

Proposition 2.3.1 The Jacobian determinant of exp: N(M/V) — M on
TOV) is non-zero.

Proof Let P eV, and let ¢ : U — R”" be a coordinate neighbourhood of P

in M such that U NV = ¢~ /(R™). Then if x,, ..., x, are coordinates in R”,
we can take as local coordinates in N(M/V) xi, ..., x,, (coordinates in V)
and vy41, - - - , Uy (coordinates in the fibre) where v; = dx;. Now refer back to
Proposition 2.2.3, where we showed that if exp(x, v) = z, then g—x; = g—g’] = §jj

so that with respect to our coordinates, the Jacobian matrix is the unit matrix,
so its determinant is non-zero. O]

Theorem 2.3.2 Let V be a submanifold of M. Then

(i) the map exp : N(M/V) — M is a local diffeomorphism at T°(V),

(ii) there is a neighbourhood of T°(V) in N(M/V') on which exp is a diffeo-
morphism to a neighbourhood U of V in M,

(iii) V has a neighbourhood U’ in M such that each point P of U is joined to
V by a unique geodesic of length p(P, V), this meets V orthogonally.

Proof (i) follows from Proposition 2.3.1 and the Inverse Function Theorem
1.2.5.

(i) follows from this by applying Corollary A.2.6.

(iii) Let Q € V, and let U; C Uy be neighbourhoods of Q in M as in the
proof of Theorem 2.2.4: any two points in Uy are joined by a unique geodesic
of minimal length, and the minimal geodesic joining two points of U; lies in
Uy. We may suppose Uy compact.

For P € Uy, let rp be the greatest lower bound of distances of P from points
of V. If we have points Q; € V with p(P, Q;) < %, then for i > D~ we have
Q; € Uy, and since Uy is compact, the points Q; have a cluster point Q; since V is
closed, wehave Q € V,and now p(P, Q) = rp. By the above choice of Uy, P and
Q are joined by a unique geodesic of minimal length. This meets V orthogonally


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.003
https:/www.cambridge.org/core

46 Geometrical tools

for if not, by a small modification near Q, we could make it shorter (take a path
orthogonal to V, and smooth off the corner), giving a shorter path from P to V.
Hence there is a point R’ of N(M/V) lying over Q with exp(R') = P.

We may now take U’ as the union of the U . O

Taking the intersection U N U’ gives a neighbourhood of V on which both
exp is a diffeomorphism and the geodesics give shortest distances from V.

For V? a closed submanifold of a smooth manifold M™, a tubular neigh-
bourhood of V in M consists of a bundle B over V with fibre the disc D"~ and
an embedding ¥ : B — M (as submanifold with boundary) extending the map
taking the centre of each disc to the corresponding point of V.

As with coordinate neighbourhoods, the actual neighbourhood 1 (B) is the
more geometrical concept; but the mapping ¥ is more convenient to work with.
A tubular neighbourhood is pictured in Figure 2.2.

For any tubular neighbourhood, the map i induces an isomorphism of the
normal bundle of V in M with that in B, and hence with the vector bundle
associated to B. If M™ has a Riemannian structure, the normal bundle N(M/V')
has group O,,_,. We may then take B as the associated disc bundle, consisting
of vectors of N(M/V') of at most unit length.

Figure 2.2 Tubular neighbourhood in a manifold and in one with boundary

Theorem 2.3.3 For any submanifold V of a smooth manifold M, there exists
a tubular neighbourhood of V in M.

Proof Choose a Riemannian metric on M. Let W be a neighbourhood of T°(V)
in N(M/V') mapped diffeomorphically by exp: the existence of such W is guar-
anteed by Theorem 2.3.2. Let f be a positive continuous function on V such that
vectors in Np(M/V') of length less than f(P), are contained in W: the existence
of such f follows from Lemma A.2.4 (i). By Proposition 1.1.7, we can find a
positive smooth function g on V such that 0 < g(P) < f(P) forall P € V. We
now define a diffeomorphism 1. Foreach P € V, v € Np(M/V), set

Y (P, V) = exp(P, g(P)v).
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Multiplication by g(P) in the fibre is possible since g(P) # 0, and for ||v| <1
we have |g(P)v| < g(P) < f(P), so (P, g(P)v) € W. O

We will extend this result to the case of manifolds with boundary, but need
first to develop further ideas.

We now combine Whitney’s embedding theorem with the existence of tubu-
lar neighbourhoods to give a general method of constructing maps into smooth
manifolds. We illustrate by showing the existence of smooth approximations,
extending Lemma 1.1.7.

Let V be a compact manifold. By Theorem 1.2.11, there exists a smooth
embeddingi : V — RY for some N. By Theorem 2.3.3 there exist a disc bundle
7 : WN — V and a smooth embedding ¥ : W — RY, extending i, and whose
image is a neighbourhood U of i(V'). Further, we can choose the discs to have
radius €; U is then a e-neighbourhood of i(V). We have a retraction ¢ :=
w oy ! U — V;foreach x € V, the preimage ¢! (x) is a disc of radius e.

Proposition 2.3.4 Let M and V be smooth manifolds with V.C RN compact.
(i) For any continuous f : M — V and any ¢ > 0 there exists a smooth h :
M — V with ||h(x) — f(x)|| < € for every x € M.
(ii) If moreover F is a closed subset of M such that f is smooth on some open
set U D F, we can find h such that also h = f on a neighbourhood of F.

Proof Choose a tubular neighbourhood of V in RY as above. Applying Propo-

sition 1.1.7 to each component of M N V C RY givesasmoothmaph : M —
RY within distance ¢ of f, and hence with image contained in U. Thus ¢ o &
gives amap M — V, and since ¢ moves each point within a disc of radius < ¢,
h is within ¢ of f.

The same argument, but using (iii) of Proposition 1.1.7, gives (ii). O]

For N a smooth manifold with boundary, the discussion of geodesics at non-
boundary points is the same as before. At a boundary point P, we see from the
differential equations that local geodesics can be constructed for all inward-
pointing tangent vectors and for no outward-pointing ones. There are several
possibilities for those tangent to the boundary; as examples, the reader may
consider D? and the closure of R2 \ D?, each with the metric induced from R2,

A Riemannian metric on M is adapted to the boundary if dM is totally
geodesic.

Lemma 2.3.5 Let M™ have a Riemannian metric. Then the product metric for
M x RL is adapted to the boundary.
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Proof Letx,...,x, belocal coordinates in M, and x, the coordinate in RL.
Then for the metric g; ; we have go; = 8o;. Hence one of the defining equations
for geodesics is simply d*xo/dt> = 0. Thus if initially xy = dxo/dt = 0, we
have xy = 0 all along the geodesic, which thus stays in M x {0}. O

A similar argument gives the following.

Lemma 2.3.6 IfV C M is a submanifold whose normal bundle is trivial, then
M has a Riemannian metric in which the submanifold V is totally geodesic.

Proof Tt follows from Theorem 2.3.3 that V has a neighbourhood in M diffeo-
morphic to V x R¢, where c is the codimension of V in M. We may choose
any metric on V and then take the product metric on V x R in any coor-
dinate neighbourhood of V with metric ds* = ) g;. jdx;dx; this is given by
ds? =3 g jdxidx; + Y dy?. A short calculation shows that any geodesic ini-

tially tangent to V x {0} remains in this submanifold.
As in the proof of Theorem 1.3.1, we can now construct a metric on M which
agrees with this metric on some neighbourhood of V in M. The result follows.
O

Proposition 2.3.7 (i) Every manifold M™ with boundary has a Riemannian
metric adapted to the boundary.

(ii) Given a submanifold V' of M™, there is a metric on M such that V
meets IM orthogonally, and the restriction of the metric to 'V is adapted to the
boundary.

Proof (i) By Theorem 1.5.5, 0M has a collar neighbourhood ¢ : oM x [ —
M. Let ¢ be a metric on M, ¢’ the product of some metric on dIM with the
standard metric of /. We define a metric ¢” by

” 2 outside the image of

e+ —0)BpGB—1) aty(P1).

The latter agrees with ¢ in a neighbourhood of ¢ = 1, so is smooth everywhere;
it is a Riemannian structure, as a positive linear combination of positive form
is another, and it agrees with ¢’ near ¢t = 0, so by Lemma 2.3.5, it is adapted to
oM.

(ii) By Proposition 1.5.6(ii), we may suppose that the restriction to dV x [
of the collar neighbourhood of M gives a collar neighbourhood for dV. Then
the metric constructed above has both the desired properties. O

The definition of tubular neighbourhood of a closed submanifold V* of a
manifold M™ with boundary is the same as before: we require a bundle B over
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V with fibre the disc D"~ and an embedding ¥ : B — M (as submanifold with
boundary) extending the map taking the centre of each disc to the corresponding
point of V.

If w : B— V is the projection of a disc bundle, ¥ the boundary sphere-
bundle of B, and C = 7 ~!(3V), then B has the structure of a smooth man-
ifold with corner, and /B = ¥ N C separates 9B into two parts, with clo-
sures X and C. It follows that if (B, ) is a tubular neighbourhood of V,
¥(C) = IM N Y(B).

Theorem 2.3.8 If M is a manifold with boundary, V a submanifold, then there
exists a tubular neighbourhood of V in M.

Proof By Proposition 2.3.7 (ii), we can choose a Riemannian metric for M,
adapted to the boundary, in which V meets M orthogonally. As in the proof of
Theorem 2.3.3, we consider the exponential map of the normal bundle N(M/V').
We need to show that this is well defined. The crucial point is that since the
metric is adapted to the boundary, and the vectors in C are normal to V and
hence tangent to dM, integrating them gives curves in dM and hence, at least
locally, a map C — dM. The previous argument shows that this map is a local
diffeomorphism.

The arguments needed to go from having a local diffeomorphism to the result
are the same as those for Theorem 2.3.3. O

2.4 Diffeotopy extension theorems

Let V?, M™ be smooth manifolds, possibly with boundary. A diffeotopy of V in
M is an embedding i : V x I — M x [ which is level-preserving, i.e. we can
write

h(x,t) = (h(x), 1) meV,tel

It follows that each 4, is also an embedding. We also say that / is a diffeotopy
between Ay and h;.

h is called normalised if it extends to a level-preserving embedding /2 : V x
R — M x R such that h, = ho whent < 0, and , = h; whent > 1.If his any
diffeotopy, the map H : V x R — M x R given by H(m, t) = (hgpt)(m), 1) is
a normalised diffeotopy between &g and £ .

A diffeotopy of M is a diffeomorphism k of M x I which is level-preserving,
thus in particular it is a diffeotopy of M in M. The diffeotopy k of M covers the
diffeotopy h of V in M if, for all x € V, t € I, k;(ho(x)) = h,(x). A diffeotopy
covered by a diffeotopy of M is called an ambient diffeotopy.
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Lemma 2.4.1 Diffeotopy is an equivalence relation.

Proof The definition h(x, t) = (ho(x),t) gives a diffeotopy between h, and
itself. If &’ gives one between kg and hy, then h”, where b’ (x,t) = W' (x, 1 —t)
gives a diffeotopy between h; and hy. Finally, let /', A" be normalised dif-
feotopies between hg and i and h; and h;. Then set

H, (x) ifr <1/2

m _
M= ifr > 1/2;
hy_,(x) ift > 1/2;

this is a smooth embedding, since 7’ and #” are so, and we have h” = h; for

_% <t< %, so that the two parts of the definition fit smoothly. O

One of the basic problems in differential topology is to determine the set of
equivalence classes. We will accomplish this in some cases in Chapter 6.

The support of a diffeomorphism 4 of a smooth manifold M is the closure of
the set of points P with h(P) # P.

The support of a diffeotopy i of V in M is the closure of the set of points
P € V such that &, (P) is not independent of 7.

Theorem 2.4.2 (Diffeotopy Extension Theorem) Let V, M be smooth mani-
folds, perhaps with boundary, and let h : V x R — M x R be a diffeotopy of
V in M, whose support K is compact, and contained in M. Then there is a
diffeotopy k of M, whose support is compact and contained in M, and which
covers h; in particular, h is ambient.

Proof Since K is contained in M, we can ignore the boundary of M, and sup-
pose simply that M is a smooth manifold, for if the result is proved in this case,
the diffeotopy k of M which we obtain, having compact support, equals the
identity on a neighbourhood of 0M x R, and can therefore be extended to the
boundary as the identity.

Let k be a diffeotopy of M x R. Then k defines a vector field on M x R as
follows. Write 9, for the vector field which projects to 0 on M and to d/9f on R,
and define a vector field on M x R by & := dk(9,). Since k is level-preserving,
the projection of &, on the second factor is still d/9d¢. Also, if k has compact
support, & = 9, except at some points of a compact set.

Conversely, suppose given a vector field £ whose projection on R is 9/9z.
If £ is complete, it gives rise to a 1-parameter group (¢,) of diffeomorphisms
of M x R, and hence to the diffeotopy given by k(P, t) = (¢,(P), t). Moreover,
the local uniqueness clause in Theorem 1.4.2 implies that if k gives rise to &,
then we recover the original k.
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Since by Proposition 1.4.4 (ii) and (iii), the vector field 9, on M x R is com-
plete, it follows by (iv) that if £ = 9, except on a compact set, then & is complete.
We conclude that to construct the diffeotopy, it is sufficient to construct the
vector field £. By the above argument, we see that the necessary and sufficient
condition that k covers /4 is that on 2(V x R), we have & = dh(d/dt). Thus the
problem is reduced to the construction of a vector field £ on M x R satisfying:

(1) &€ = 0, outside a compact set,

(ii) the projection of £ on R is everywhere 9/0t,

@iii) on A(V x R), & = dh(9/0t).

We assert that if we can do this in a neighbourhood of each point of 2(V x R),
& can be constructed. For such neighbourhoods, together with the complement
Uy of h(V x R), form an open covering of M x R. By Theorem 1.1.5, there
is a smooth partition {W¥,} of unity strictly subordinate to this covering. If &,
is a function on the support U, of W, which satisfies conditions (i) — (iii), the
function & := ) &,\V, (where & := 9,) will satisfy all the conditions.

Now h(V x R) is a submanifold of M x R, hence in a neighbourhood of
any point of it we can find a coordinate neighbourhood ¢ : U — R™+! with
U N Imh = ¢~ ' (R**1); say for simplicity that the image of U is D”*'. Then
de(dh(d/3t)) =Y a;d/9x; in Dc”“; we define £ by taking the same formula
in D" (ie. by taking the a; independent of the last m — v coordinates).

In the case of boundaries, the a; are only defined on Do’f' . But by Whitney’s
Extension Theorem 1.5.1, they can be extended to smooth functions on Do““,
and then extended to D! as above. This completes the proof of the result. [

Corollary 2.4.3 IfM is a smooth manifold, V a compact submanifold (perhaps
with boundary), then any diffeotopy of the inclusion i : V C M is an ambient

diffeotopy.

Corollary 2.4.4 If M is a smooth manifold with boundary, any diffeotopy of a
compact submanifold (perhaps with boundary) of M is covered by a diffeotopy
of M.

Proof By the theorem, it is covered by a diffeotopy of M with compact support.
Thus dM has a neighbourhood in M fixed by the diffeotopy, which can thus be
extended to M, defining it to be fixed on M. O

Proposition 2.4.5 Any diffeotopy of 0M is covered by a diffeotopy of M.

Proof We shall suppose the diffeotopy s, of M normalised so that i, = 1 for

t < % and h; = hy fort > % Let ¢ : 0M x I — M be a collar neighbourhood

of dM in M (such exist by Theorem 1.5.5). Then we define a covering diffeotopy
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k; of M by

0 if @ ¢ Im(v),
k(@) =10 ifQ=4y(Ps), s=t,
Y(h—s(P),s) ifQ=vy(Ps), s=<t

Thus for s = 0, k, agrees with A, and for s > %, k:(P) = P, so that k is every-

where smooth, and does cover A. O

Theorem 2.4.6 Let M be a manifold with boundary, V a submanifold (perhaps
with boundary). Any diffeotopy of V in M with compact support is covered by
a diffeotopy of M with compact support.

Proof Following the proof of Theorem 2.4.2, we see that it only remains to
show that we can construct £ in a neighbourhood of each point of 2(V x R).
In this case, in a neighbourhood of any point of A(V x R) we can find a
coordinate neighbourhood ¢ : U — R™! with U N Imh = (p’l(R’fl). By
Theorem 1.5.1 we can write do(dh(3/3t)) = Y _ a;0/0dx; in D with the g
smooth in R"*! and define £ by taking the same formula in R™*!, O

We shall need one or two further kinds of diffeotopy extension, when we
come to consider corners, but feel that by now proofs may be left to the reader.
We mention one immediate application of our results.

Proposition 2.4.7 Let M™ be a manifold (perhaps with boundary), V° a com-
pact submanifold with boundary. Then there is a submanifold U® of M™ con-
taining V°.

Proof First suppose that M has no boundary. Let ¢ : 9V x I — V be a tubular
neighbourhood of dV in V. We define a diffeotopy of V by

h(P)=P P ¢Img
hio(P, u) = (P, f(t,u))

where f is chosen with

f@t,u)=uforu>1-—e¢,

FO,u) =u,

f(@,0)>0for0 < ¢,
and df/du > 0O everywhere; so that the diffeotopy ‘pushes’ the boundary a
little way into V: for example, we can take f(¢, u) = u + Bp(t — u) provided
t < k, where in this range Bp'(¢t) < 1. Now #, is a diffeotopy, hence (V being
compact) is ambient, and so covered by H,, say, h (V) C V. We can thus take
U=H'V).
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If M is bounded, we argue similarly, using that part of the boundary of V not
contained in V. O

This result has the effect that to describe a neighbourhood of V in M, we can
use tubular neighbourhoods of U; tubes round V do not give neighbourhoods.

2.5 Tubular neighbourhood theorem

We shall now use our results on diffeotopy extension to complete the discus-
sion in §2.3 of tubular neighbourhoods by showing that these are, essentially,
unique.

We recall the definition. If B is an (m — v)-disc bundle over V, with group
O,,—,, and central cross-section By, then a tubular neighbourhood of V in M is
an embedding ¢ : B — M, as submanifold with boundary, extending the pro-
jection of Byon V.

We say that two tubular neighbourhoods ¢ : B— M and ¢’ : B — M are
equivalent if there is a bundle map x : B — B’ over the identity map of V, and
an ambient diffeotopy of ¢ on ¢;x which is fixed on By.

Our object is to show that any two tubular neighbourhoods are equivalent.
Since we shall use the result of §2.4 we shall have to assume that V is compact.
One might expect that this assumption was unnecessary; however, it cannot be
omitted, as the example of Figure 2.3 illustrates.

i

Figure 2.3 Example of a bad tubular neighbourhood

In the figure, T is the set defined by —3 < y < 3 and 2+ - 2)2 > 1, and
the projection of 7 on R! is defined by straight lines through (0, 3). This gives
a tubular neighbourhood of R! in Ri, which is not a closed subset, so is not
equivalent to a standard one.

The same example thus also shows the necessity of the compactness hypoth-
esis in Theorem 2.4.2.

Let ¢ : B— M be a tubular neighbourhood for V in M. We consider the
bundle E associated to B but with fibre R”~". Then B is a submanifold with
boundary of E. For the tubular neighbourhoods of §2.3, E is simply the normal
bundle N(M/V).
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We say that an embedding ¢ : E — M as open submanifold, extending the
projection of Ey on V, is a open tubular neighbourhood of V in M.

Lemma 2.5.1 Any tubular neighbourhood ¢ : B — M can be extended to an
open tubular neighbourhood ¢ : E — M.

Remember that we are assuming that V is compact. We use the same idea as
for Proposition 2.4.7.

Proof We can define a diffeotopy of ¢ as follows. Recall that over each neigh-
bourhood U in V, Bis a product of U with a vector space; in the sequel, we per-
mit ourselves to form sums and products by scalars in these vector spaces, using
the standard notation. Then our diffeotopy is ¢, (x, v) = @(x, tv) for % <tr<l1
(where x € V, v € D™7"). Since V, and so also B, is compact, the diffeotopy is
ambient: say it is covered by the diffeotopy k; of M. But ¢;,, can be extended
to a open tubular neighbourhood, for example, by the map

AT
‘”(x’”)_‘”(x’ ol '”)’

where y is smooth, y (t) = %t forO<t <1,y (t) >0,and y(t) < 1. We can
now define ¢ = kl_/l2 oqQ.

A suitable y can be constructed by using bump functions, for example, we
may take

y(@) = l/ {1+ (™= 1)Bpx— 1)}dx.
3/ N

Lemma 2.5.2 Let@ : E — M, §' : E' — M be open tubular neighbourhoods
of Vin M such thatIm ¢ C Im @'. Then for some bundle map X : E — E’, there
is a diffeotopy of @ on ¢’ o i which is fixed on By.

/

Proof Let j=¢@ ' o@:E — E', then j is an embedding. Consider the map-
pings j, given by j,(e) =t j(te) for 0 < t < 1, e € E; where the multiplica-
tions by t~!, ¢ are again scalar multiplications in the fibre. Clearly j, = j; we
shall show that the definition of j, can be extended to ¢t = 0, and that jj can be
taken as x: ¢’ o j; will then give the required diffeotopy of ¢ = @' o j on ¢'x;
it is fixed on By.

Take local coordinates x = (xq, ..., X,) in V, and let y, z be Euclidean coor-
dinates in the fibres of E, E’. Then setting j(x, y) = (x(x, y), B(x, y)) we have

JiGe, y) = (alx, ty), 17 B(x, ty)).
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But j carries the zero cross-section of E onto that of E’, so
a(x,0) =x, Bx,0)=0.

Now by Lemma 1.2.3, applied to B (regarded as a function of y with x as a
parameter), there are smooth functions 8; with B(x,y) = Y_ y:Bi(x, y). Then
t71B(x, ty) = 3" yiBi(x, ty), so we can write j; in the form

Jiley) = @, 13), Y yiBilx, 1),

where the left-hand side is a smooth function also at # = 0. This shows that we
have a smooth map J : E x I — E’ x I defined by the j,; to have a diffeotopy,
we must check that the Jacobian is everywhere non-zero. This follows forz # 0,
since j is a diffeomorphic embedding, and multiplication by ¢ or t~! gives a
diffeomorphism. Now

y=0>

Joe ) = (%, D2 i, 0)) = (x, > g—f
induces a linear map of each fibre, with matrix (08;/9y;) = (9z;/9dy;) which is
also the matrix of partial derivatives of j on By. Since jj is an embedding, this
is non-zero. It follows that jj is a GL,,—,-bundle map, hence a diffeomorphism.
We can thus take ¥ = jo. We have also verified by the same token that J is a
diffeotopy. O

Corollary 2.5.3 The result holds also without the assumption Im@ C Im ¢@'.

Proof For Im@ NIm ¢’ is a neighbourhood of V, which thus has a tubular
neighbourhood, hence also a open one ¢”, with Im@” C Im@ N Im @’. Then
there are bundle maps modulo which ¢” is diffeotopic both to ¢ and ¢’, whence
the result follows. O

Lemma 2.54 Let@:E — M, ¢ : E' — M be open tubular neighbourhoods
of V in M where the bundles E, E' have group O,,_,. Then the conclusion of
Lemma 2.5.2 holds, with x an O,,_,-bundle map.

Proof 1t suffices to show that any v : E — E’ which is a GL,,_,(R)-bundle
map is diffeotopic to an O,,_,-bundle map. As above, in coordinates, ¥ is given
by

Yy =(x,2) where z =Y a;(x)y;.

Now since the group is the orthogonal group, we can speak of the length of
a vector in the fibre (compare §1.2). By the Gram—Schmidt orthogonalisation
process, take the vectors b; with components a;;, and write b; =

1
=1 Aijejs
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where the e; are orthonormal, and each A;; > 0. If ¢; has components ¢;;, con-
sider now the diffeotopy

ki, y) = (x,2),  where (z)i =Y (thij + (1 = 1)8;j)e k-
Jk
That this is a diffeotopy follows as no matrix (tA;; + (1 —#)d;;) is singular (for
the matrix is triangular, with non-zero diagonal terms); k; is the given map v,
and ky takes one orthonormal base to another, so is an O,,_,-bundle map. [

Theorem 2.5.5 (Tubular Neighbourhood Theorem) Let M™ be a smooth man-
ifold and V° a compact submanifold. Then any two tubular neighbourhoods of
Vin M are equivalent.

Proof Letg:B— M, ¢’ : B — M be tubular neighbourhoods of V in M. By
Lemma 2.5.1, ¢ and ¢’ extend to open tubular neighbourhoods @, ¢’. By Corol-
lary 2.5.3, there is a bundle map ¥ : E — E’ such that there is a diffeotopy of
@ on ¢ o ¥, fixed on By. By Lemma 2.5.4, we may take ¥ as an O,,_,-bundle
map. Then ¥ maps B into B’, and so we can take y as its restriction. It follows
that x is a bundle isomorphism. Also, by Theorem 2.4.2, the diffeotopy we
have constructed is in fact ambient. O

As a first corollary, we obtain a useful little result.

Theorem 2.5.6 (Disc Theorem) Let M be a connected manifold (perhaps
with boundary), fi, f> : D" — M™ embeddings as submanifold with bound-
ary. Then f| and f, are ambient diffeotopic unless M is oriented and fi, f>
have opposite orientations.

Proof LetP, = f;(0) (i=1,2). Since M is connected, there is a smooth path
connecting Py and P, in M , i.e. a diffeotopy of P, and P,, considered as sub-
manifolds of zero dimension. By the diffeotopy extension theorem, there is an
ambient diffeotopy. Hence we may suppose P; = P, = P. Now fi, f> are tubu-
lar neighbourhoods of P, so by Theorem 2.5.5, there is an orthogonal transfor-
mation x of D™, such that f and f, o x are ambient diffeotopic.

Now if x € SO,,, then f; is diffeotopic, so also ambient diffeotopic to f> o x,
so the result follows. If not, and M is orientable, we have the case excluded by
the theorem. If M is non-orientable, there is an orientation-reversing smooth
path (see the discussion after the definition of orientability), and if we take P
on an ambient diffeotopy round such a path, the sign of the determinant of x
will change. O

We shall use numerous extensions of Theorem 2.5.5 in the sequel; let us
indicate one or two briefly here. The definition of equivalence remains the same.
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Proposition 2.5.7 Any two collar neighbourhoods of 9M in M are equivalent
if M is compact.

Proof The proof follows the same pattern. The analogues of Lemma 2.5.1 and
Lemma 2.5.2 follow as before. In Lemma 2.5.4, note only that our group is not
GL;(R) or Oy, but simply GL]*(R) or SO; — the trivial group. This makes for a
slight simplification in the argument. O

Proposition 2.5.8 The result of Theorem 2.5.5 holds also if M has a boundary.

We note that in proving uniqueness of tubular neighbourhoods, in contrast to
the case where we had to prove existence, no extra difficulties arise in the case
where we have boundaries.

We now present an alternative approach to the existence of tubular neigh-
bourhoods which, while less immediate than the use of the exponential map, is
more flexible for generalisations.

We begin with notation. For 7 : E — B the projection map of a vector bun-
dle, we identify B with the zero cross-section (the zero vectors in the fibres).
The map 7 induces m, : T(E) — T(B), hence for each e € E a linear map
T.E — T,B. Vectors in the kernel are called vertical tangent vectors of E, and
we write T (E) for the bundle of vertical tangent vectors.

Define a partial tubular neighbourhood of a submanifold V of M to consist
of a neighbourhood U of V in the normal bundle N(M/V') together with a map
¥ : U — M such that, for each v € V, ¥r(v) = v and the composite

N,(MV) = T (N(MJV)) 2 T,(M) — N,(M/V)

is the identity. We will construct partial tubular neighbourhoods by piecing
together ones constructed over coordinate neighbourhoods in V. The defini-
tion implies that at each v € V the map dy : T,U — T,M is the identity on
the common subspace 7,V and an isomorphism on the quotient, hence by the
Inverse Function Theorem 1.2.5 that ¢ is a local diffeomorphism. Thus if V
is a closed submanifold with a partial tubular neighbourhood in M, it follows
from Corollary A.2.6 that V has a neighbourhood U’ in U such that ¥ | U’ is
an embedding; and so, by the same argument as in Theorem 2.3.3, that V has a
tubular neighbourhood in M.

Proposition 2.5.9 Any submanifold V of a manifold M has a partial tubular
neighbourhood.

Proof Since V is a submanifold, at any point P € V there is a chart ¢ :
(Up, UpNV)— (R", R"). Identifying R” = R” x R"~" gives a partial tubu-
lar neighbourhood for Up NV
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These open sets Up NV form an open cover {V,} of V; by Theorem 1.1.5,
there is a smooth partition {n,} of unity strictly subordinate to it. Write W, for
the closure of the support of 7n,: thus W, is closed, W, C V,, and the W, cover
V. We will construct a partial tubular neighbourhood over V by extending over
a neighbourhood of one set W, at a time. Arguing as in Proposition 1.1.7, we
can construct a smooth function ¢, on V, vanishing outside V,, taking the value
2 on a neighbourhood of W,, and with all values in [0,2].

First consider two open subsets V,, V;, of V and partial tubular neighbour-
hoods v, : U, — M, ¥, : U, — M. Since each of the images is a neighbour-
hood of V, NV}, in M, the composite @up, := ¥, o Y, is defined on a neighbour-
hood X of the zero cross-section of V,, NV, in N(M/V). Using a trivialisation of
N(M/V) over V;, we can write ¢, Which is a partial map of RF x (V, N'V,) to
itself, as ¢ (x, y) = ({fi(x, y)}, g(x, y)) in a neighbourhood of {0} x (V, NV,).
Since ¢, preserves the zero cross-section, each f;(x, y) vanishes when x = 0.
Hence by Lemma 1.2.3, we can write f;(x, y) = >, x fi(x, ). Define a defor-
mation by

@' (x, y) 1= ({Z X fir (2, y)} , 8(1x, y)) :
k

As in the proof of Lemma 2.5.2, this is well defined and smooth for a range
including t = 0. By definition, ®' = ¢, = vy, o yr,. It follows from the def-
inition of partial tubular neighbourhood that ®° reduces to the identity.

Define € : V, NV, — [ by €(z) = Bp(%(l + e4(z) — €p(2))); thus € =1 if
&qs — & > 1 and € = 0 where ¢, — ¢, < —1. Now define ¥, by

Va(2) ifz€ W \ Xp,
Var(2) = | Y (P9 (2)) ifzeV,NV,,
Y (2) ifz € W)\ X,.

Each formula defines a smooth map on an open set.

On the overlap W, N (V,, \ X;,) we have g,(z) = 2, €,(z) < 1,50€(z) = 1 and
the first two formulae agree. Similarly on W, N (V, \ X,) we have €(z) = 0, and
the latter two formulae agree. Hence v, is defined and smooth on W, U W,.

It remains to check the derivative along the zero section. This reduces to
checking the x-derivative at x = 0 of ) « Xk fi(tx, y), which indeed reduces to
the identity.

By Theorem 1.1.4 we may suppose the covering {V,} locally finite and hence
countable, so label the pairs by n € N. We now construct a partial tubular neigh-
bourhood over V by extending over one set at a time. Suppose a partial tubular
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neighbourhood constructed on a neighbourhood X of U';;ll W,. Then the con-
struction in the first part of the proof yields a partial tubular neighbourhood on
a neighbourhood of Ule W,; moreover, the alteration takes part only inside V;,.
Since the covering is locally finite, each point of V has a neighbourhood which
is only affected by a finite number of steps of the construction, so the sequence
of maps converges, being ultimately constant on a neighbourhood of any given

point. The limit gives the desired partial tubular neighbourhood of V. O

Proposition 2.5.10 Given submanifolds V. C W C M, there exists a partial
tubular neighbourhood W : U — M of V in M such that the restriction of ¥
to UNNW/V) is a partial tubular neighbourhood of V in W. Hence if V
is closed, there exists a tubular neighbourhood  : N(M/V) — M of V in M
whose restriction to N(W/V') is a tubular neighbourhood of V in W.

Proof The proof of Proposition 2.5.9 goes through with the only change being
the requirement on each of the partial tubular neighbourhoods of compatibility
with W. As before, the existence of a tubular neighbourhood follows from that
of a partial tubular neighbourhood. O

This rather weak relative form of Theorem 2.3.3 will be used in §6.3.

Clearly the argument adapts to further cases suchas V C Wy C W, C M or
to having two submanifolds W, and W, of M such that at each v € V there is a
chart with each of the W; mapping to a coordinate subspace of R”. Let us make
one such result explicit.

Lemma 2.5.11 Let V° — M™ be an embedding of connected oriented man-
ifolds. Then there exist orientation preserving embeddings ¢ : (D™, D) —
(M, V), and any two such are isotopic.

2.6 Corners and straightening

We recall that M™ is a manifold with corner if it has an atlas, with charts map-
ping to open sets in R, and that the corner ZM is the set of points mapping
to R”~2. At such a point ZM has two sides in dM: one corresponding locally
to x; = 0, the other to x, = 0. Globally, the two sides define a double covering

of /M, and we say that the corner is two-sided if this covering is trivial.

Lemma 2.6.1 If /M is two-sided, there is a smooth embedding h : /M x
I> = M with h(x,0,0) =x for each x € ZM and h™'(dM) = (I x {0}) U
({0} x I). Moreover, h is unique up to diffeotopy.
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Proof Since we are only interested in a neighbourhood of ZM, we can delete
from oM the complement of a neighbourhood of /M, and thus suppose that
OM consists of such a neighbourhood and hence, since ZM is two-sided, can
be split into two components, d; M and d,M, each with boundary ZM.

Leth; : ZM x I — 9;M be a collar neighbourhood of ZM in 0, M.

By Proposition 1.5.6, there is a smooth embedding &, : (0,M) x I — M giv-
ing a neighbourhood of ;M. We may now set h(x, t;, 1) = hy(hi(x, 11), 1)
forx € ZM and t,, t; € I. Uniqueness up to diffeotopy follows from the corre-
sponding result for collars. O

We can call the map we have constructed a bicollar neighbourhood of ZM.

Define 0°M by cutting M along /M. By the arguments of Proposition 1.5.6,
we can find a map 0°M x I — M which is an embedding except that a bicollar
neighbourhood is covered twice: call the image a semicollar of dM. Both a
bicollar and a semicollar are pictured in Figure 2.4.

Figure 2.4 A bicollar and a semicollar

Proposition 2.6.2 If M is a manifold with corner, there exist a manifold with
boundary N and a homeomorphism h: M — N which is a diffeomorphism
except on /M. Moreover, there is a construction of such an N which gives a
result unique up to diffeomorphism.

Proof Our construction is as follows. N will be M itself, with a different dif-
ferential structure, defined by a new set of coordinate neighbourhoods. At
points of M \ ZM, the differential structure and coordinate neighbourhoods are
unchanged. Let i : /M x I> — M be a bicollar neighbourhood as above. Then
a coordinate neighbourhood for /M, with coordinates x3, ..., x,, determines
one for the neighbourhood with additional coordinates #;, t,.

We define N by the same mapping, but followed by taking the new coordi-
nates as (z1, z2) = (t7 — 13, 2t112). Since t; + it lies in the first quadrant of the
complex plane C, z; + iz = (t; + it,)? lies in the upper half-plane z; > 0. We
thus have the structure of smooth manifold with boundary. Uniqueness up to
diffeomorphism follows from the uniqueness in Lemma 2.6.1. O
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A
Figure 2.5 Rounding a corner

The resulting manifold N is said to be derived from M by straightening the
corner.

We have discussed straightening corners, but may also consider the converse
process, the introduction of corners. Given a manifold with boundary N, and a
submanifold L of dN of codimension 1, we can construct a tubular neighbour-
hood of L in N, and redefine the differentiable structure, again using the change
of coordinates (z1, z2) = (t} — 13, 2111) in R?, to introduce a corner along L.
The resulting M is unique up to diffeomorphism.

Since we have just reversed the above procedure, if we straighten the corner,
we return to a manifold diffeomorphic to N. The procedure is roughly illustrated
in Figure 2.5.

Lemma 2.6.3 If L is a submanifold of N of codimension 1, we can introduce
a corner on L in an essentially unique way. If we straighten it, we recover L.

While the above method of straightening is satisfactory, it is desirable to have
alternative constructions, and be able to recognise when they give the same
result.

We begin with the picture in the case when M has no corner. We can take
a smooth vector field & on M, inward pointing at the boundary, and integrate
to construct a collar neighbourhood ¢ : dM x I — M. A smooth submanifold
L C M of codimension 1, contained in the collar neighbourhood, and transverse
everywhere to £, can be identified with the graph of a smooth map oM — [.If L
lies in the interior of the collar, it separates the collar into two pieces; it follows
from Theorem 1.5.4 (taking the function f = ¢ as the projection on / and the
vector field as d/9¢) that each is diffeomorphic to dM x I. Now L separates M
into an outer part lying between L and dM, and hence diffeomorphic to 0M x 1
and an inner part L*; it follows from Lemma 2.7.2 below that the inner part is
diffeomorphic to M.

We say that a smooth vector field Y | a,-a% is inward pointing in R if
a; > 0onx; =0and a; > 0 on x, = 0. This definition is intrinsic, so passes
to manifolds with corners.
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Proposition 2.6.4 Let & be a smooth vector field on M, inward pointing
at boundaries and corners, L C M a smooth submanifold of codimension I,
contained in a semicollar, and transverse everywhere to &. Then the inner
region of L is diffeomorphic to the manifold N defined by straightening the
corner.

Proof The manifold N is obtained by applying the above change of coordinates
(z1,22) = (t} — 13, 21112) at the corner. The image of the vector field £ is not
smooth at points corresponding to the corner, so we argue as follows.

In N we have a collar neighbourhood of z, = 0 given locally by (z;, ). It
contains a smooth submanifold L, given locally by z, = €. The region between
L. and 9N is a collar, and the inner region for L, is diffeomorphic to N.

The region 0 < z; <& in N becomes 0 <t,f, and 2t;#, < & in M. The
boundary L, given by 2#,t, = ¢ is transverse to &, for we have ) . aia%(2t1t2) =
2a1t; + 2at; > 0 since, at least for ¢ small enough, we have a;, a», t, 1, > 0.

If L is any other submanifold transverse to &, there is an L’ contained in the
collar region, transverse to &, and disjoint from both L and L.. Hence the inner
regions for L, L’ and L, are all diffeomorphic. U

Once we have a semicollar, we can regard a neighbourhood of ZM as the
product of ZM with the region 1 > y > |x| in R? and then construct L as the
graph of a function p(x) defined by smoothing |x|. An example of such a func-
tion can be constructed as follows.

The function e~ 'Bp(1 — ‘j—') is smooth, non-negative, vanishes unless |x| <
e, and has [ 8, (x)dx = 1. Now set pu(x) := [°_|y|8.(x — y)dy. Then p(x)
is smooth, even, p(x) = |x| if |x| > ¢, and u(x) is strictly increasing for x > 0.

Corollary 2.6.5 D’ is derived from D" x D® by straightening the corner:

Proof We can take the vector field in D" x D® to be the radial vector field
f” xi%, which is indeed inward pointing at the corner. We can then take

S"5-1 ag the above L. O

We have given details for rounding corners in the simplest case. It is
not possible to approximate any submanifold (not even any locally tame
one) of a smooth manifold by a smooth submanifold, but the technique of
rounding corners can be extended to the boundary of a submanifold of zero
codimension: we have already mentioned the existence of smooth regular
neighbourhoods.
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2.7 Cutting and glueing

Let M;(i = 1, 2) be manifolds with boundary, 0M; = Q;, and suppose given a
diffeomorphism % : Q; — Q,. Take the disjoint union M; U M,, and identify
points corresponding under / to give a topological space N, and an identifica-
tion map 7 : M; UM, — N. Choose collar neighbourhoods ¢; : Q; x I — M;,
and define a map ¢; : Q; x D' — N by

mei(g,t) ift >0
9(q,1) = .
o (h(g),t)  ifr <0;
these agree on t = 0 since Q; and Q, were identified using 4. Then ¢ is injec-
tive; in fact, it is an embedding. Define a function f on N to be smooth pro-
vided f o is a smooth function on M} U M, and f o ¢ a smooth function on
Q1 x D'. The axioms defining a smooth manifold are now satisfied: coordinate
neighbourhoods in M}, Q; x D!, and in M, give rise to coordinate neighbour-
hoods in N, and where these overlap, they agree.

We have not made full use of the assumption dM; = Q;, and none of the
above argument is affected if dM; is the disjoint union of a certain set of com-
ponents, and Q; the union of a subset of these components. In this case, the
remaining boundary components form the boundary of N.

More generally, suppose given manifolds M;, M, with corner, smooth parts
Q; of 0M;, and a diffeomorphism 4 : Q1 — Q,. Then by Proposition 1.5.6 (i)
we have collar neighbourhoods of each Q;, and the same definition now applies.

We say that N is obtained by glueing M, to M, by h (or, along Q).

Lemma 2.7.1 The manifold defined by glueing M to M, by h is determined
up to diffeomorphism.

Proof The only arbitrary element in the definition was the choice of collar
neighbourhoods of the Q;. The result follows since these are unique up to dif-
feotopy. O

The manifold obtained by glueing M to itself via the identity map oM — M
is said to be obtained by doubling M, and denoted D(M).
Another simple but useful case is the following.

Lemma 2.7.2 The result of glueing M to 0M x I by the map h : OM — dM X
{0} given by h(x) = (x, 0) is diffeomorphic to M.

Proof Letk: 0M x I — M be a collar neighbourhood of M. Define p : M U
(0M x I) — M by:
p is the identity on M \ Im(k),
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Figure 2.6 Cutting and glueing

pk(x, 1)) = k(x, a(t)) forx € oM, t € 1,

plx,t) =k(x, 11 —1)xedM, t €L
This induces a bijection between the manifold obtained by glueing and M pro-
vided that «(t) increases from % to 1 as ¢ increases from O to 1. To make it a
diffeomorphism it will suffice if also «(?) = %(l +t)fort <eand a(t) =t
fort > 1 — ¢, for some small ¢, for example, take «(¢) = %{(t +D+@E—-1)
Bp(3t — 1)}. O

Glueing, and its inverse operation cutting, are both illustrated in Figure 2.6.
Now let 0"! be a submanifold of N, with inclusion map i : Q — N. For each
point P € Q, di(TpQ) is a subspace of TpN of unit codimension, and so sepa-
rates this real vector space into two components. We define a manifold M as
follows. Its points are those of N \ Q, together with two points for each point P
of O, one associated with each complementary component of di(7pQ) in TpN
or, as we shall say, side of Q in N. There is thus a natural projectionw : M — N.
We take for coordinate neighbourhoods in M those induced by 7 from coordi-
nate neighbourhoods in N \ Q; in addition, for each coordinate neighbourhood
f:U — R" with f~'(R"~") = U N Q two coordinate neighbourhoods in M;
induced by 7 from the restriction of f to the inverse images of R, and R”
(in the latter case, we must change the sign of the first coordinate to obtain a
coordinate neighbourhood of standard type). Here, of course, the points of N
corresponding to a certain side of Q in N are mapped by the coordinate neigh-
bourhood for the corresponding side of R"~! in R"; since df is nonsingular, it
preserves the distinction between sides.

We say that the resulting manifold M is obtained by cutting N along Q.

The same definition can be given more generally in the case when N has a
boundary and Q is a submanifold of codimension 1 (so dQ = Q N dN): in this
case the points corresponding to dQ form the corner ZM; this divides dM into
two parts: a part 9;M obtained by cutting ON along dQ and a part d,M which
is a double covering of Q. The double covering is given by the two sides of Q,
or equivalently by the normal bundle, which we can take to have fibre D! with
boundary giving the two points.
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For example, if N \ Q has just two components, with closures M; and M, so
that 9M, = Q = dM,, then cutting N along Q yields the disjoint union of M,
and M,.

Proposition 2.7.3 If N is defined by glueing M, to M, along Q, and we cut
N along w(Qy), we recover M| and M,. Conversely, if N" and its submanifold
0" are connected, Q separates N with parts My and M, and we glue M, to
M, along Q, we recover N.

Proof The first part is immediate from the definition of glueing. For the con-
verse, if the above conditions are satisfied, we obtain M; and M,. Now if
¢ : Q x D' — N is a tubular neighbourhood of Q in N, ¢ defines by restriction
collar neighbourhoods of Q in M, M,. If these are used in the glueing process,
we recover N. The second part of the result now follows from Lemma2.7.1. [

There are alternative definitions of cutting, which yield the same result up to
diffeomorphism. One is to let p be a complete metric on N, and define M as the
metric completion of N \ Q.

We can also define a manifold M’ by deleting from N the interior of a tubular
neighbourhood of Q. We see directly that this is obtained from the manifold M
obtained by cutting N along Q by removing the interior of a collar neighbour-
hood of the boundary, hence by Lemma 2.7.2 is diffeomorphic to M.

We have seen that cutting and glueing are inverse operations, but cutting as
defined above is more general than the inverse of glueing as it includes the case
when the normal covering of Q in N is non-trivial. However we can also define
glueing more generally: let O, Q> be smooth parts of dM, not necessarily dis-
joint, and i : Q) — O, a diffeomorphism. The definition of glueing along 7 is
now, as above, the quotient of M by identifying along i, with smooth structure
defined using a choice of collar neighbourhoods of the Q;. We see easily that
this remains inverse to the cutting operation.

An important application of glueing is the following. Let M{', M}’ be con-
nected smooth manifolds, f; : D™ — M}" embeddings. Delete the interiors of
the images of the f;, and glue the result along the boundary f;(S"~') by f> i I
Since removing a disc does not disconnect M if m > 1, the result is connected:
it is called the connected sum, and written M#M,. The construction is pictured
in Figure 2.7.

Theorem 2.7.4 M #M,; is determined up to diffeomorphism by summands,
unless these are both orientable, when there are two determinations.

Proof By the Disc Theorem 2.5.6, the embeddings f; are unique up to ambi-
ent diffeotopy and a possible change of orientation. By Lemma 2.7.1 the result
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Figure 2.7 The connected sum

of glueing, given f| and f5, is unique up to diffeomorphism. Hence the result
follows, except for considerations of orientation. Now if fi,f, are replaced by
fior, f» or, where r is a reflection, the connected sum is unaltered. If neither
M; is orientable, the result is trivial; if only M, is orientable, using the above
possibility of simultaneous reversal, uniqueness again follows. If both are ori-
entable, the result has two possible cases. O

To make the result precise in the orientable case, we suppose the M; both
oriented, and that one of the f; preserves, the other reverses orientation. The
result is then again unique, and has a canonical orientation inducing the given
ones of the M;.

The connected sum is also defined for manifolds with boundaries and cor-
ners; we simply suppose that the f; map into the interior. However, in this
case we also have a different sum operation. Let f; : D™ ! — dM™ be an
embedding. Introduce a corner along f;(S"~2). We may now glue the f;(D"~")
together by f> f| !, The result is called a boundary sum M, + M» of M; and M,.

Proposition 2.7.5 If MY, M} are connected manifolds with connected bound-
aries, M\ + M, is determined up to diffeomorphism by M, and M, unless oM,
and oM, are both orientable, when there are two sums.

Proof This follows by the Disc Theorem exactly as for Theorem 2.7.4. U

We conclude by summing up the simple properties of those operations.

Proposition 2.7.6 Both operations are commutative and associative, with
units: M"™#S" = M"™, M"™ + D" = M™. We have (M| + M,) = OM #0M,.

Proof Commutativity and associativity are immediate. To form M"#S5™" we
simply delete one disc from M™, and replace it by another disc.

The second result may be seen as follows. D™ is obtained from D"~ ! x I
by straightening the corner. Derive N from M by introducing a corner along
f(S™2) as above; then glueing on D"~! x I does not affect N other than by
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a diffeomorphism by Lemma 2.7.2. The result follows by straightening the
corner.

The last part is merely an observation of what happens to the boundary for
the sum operation. O

2.8 Notes on Chapter 2

§2.1 I have proved a little more than I need at this point, but the existence of a
neighbourhood of A(M) of pairs joined by minimal geodesics allows us to go
further and define a continuous family of paths joining nearby points.

§2.2 These (classical) results on geodesics could be taken as the jumping
off point for further results in differential geometry. Another treatment of this
material is given in Milnor [98, II].

§2.3 It seems that tubular neighbourhoods, along with fibre bundles, were
first introduced by Whitney [174].

§2.4 Our results are restricted to the case of diffeotopies of compact support.
This restriction is necessary; otherwise we have counterexamples; but it may
be possible to improve the result. The result was first proved by Thom [152],
with a sharper version obtained independently by Cerf [36] and Palais [118].

§2.5 The tubular neighbourhood theorem was first proved by Milnor in lec-
tures at Princeton University in 1961; an equivalent result was obtained in [36].

The construction of tubular neighbourhoods by local piecing together of par-
tial tubular neighbourhoods is the method adopted by Cerf [36] and Lang [83];
it gives a proof of Theorem 2.5.10 without using the clumsy hypothesis that the
normal bundle is trivial.

§2.6, §2.7, For a corner which is not two-sided, there is an analogue of a
bicollar neighbourhood which is an embedding of a bundle over /M with fibre
I x I and group Z, interchanging the components.

The disc theorem justifies the definition of connected sum. This seems to be
due to Milnor, in the context of homotopy spheres.

Both these sections are designed for use in Chapter 5 for the theory of handle
decompositions.
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3

Differentiable group actions

We begin by recalling the definitions of Lie groups, of group actions, and of
smooth actions, and establish some elementary properties.

Although the centre of our interest is in actions of compact (including finite)
groups, the geometrical properties extend to all proper group actions. A key step
is the notion of slice. We establish the existence of slices for arbitrary proper
actions. This leads at once to a local model for a proper smooth actions, which
is the basis for all the subsequent results.

We show that the development of basic results in §1.1 can be parallelled
in the group action situation: we have covers by coordinate neighbourhoods,
partitions of unity, an approximation lemma, and invariant Riemannian met-
rics. There is also a theorem on the existence of an equivariant embedding in
Euclidean space (with an orthogonal action), which applies when the group is
compact.

We continue by defining orbit types, and the stratification of the manifold
by orbit types. This stratification is locally finite and smoothly locally trivial.
One consequence is that if the manifold is connected, one orbit type is dense
and open: orbits of this type are called principal orbits. We give a model for a
neighbourhood of a stratum, and proceed to an analysis of the case with two
strata.

We conclude with examples.

3.1 Lie groups

We recall from §1.3 that a Lie group is a smooth manifold G, which is also a
group, such that the group operations g — g~!, (g, h) > gh are smooth maps
G—>G,6xG— G.

68
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Important examples are the general linear groups GL,,(R) and GL,(C)
of nonsingular m x m real, respectively complex, matrices, which are open
submanifolds of the vector space of all matrices. We also use the notation
GL(V) for the group of linear endomorphisms of the vector space V.

A Lie subgroup is a smooth submanifold which is also a subgroup. Any sub-
group of a Lie group G which is a closed subset is a Lie subgroup. This result
is not trivial: a proof is given, for example, in [146, Theorem 4.1] or in [148,
§3.11.

Not every subgroup of a Lie group is a closed subset: a simple example is
the additive subgroup Q of R. However, the closure of any subgroup is also
a subgroup, hence is a Lie subgroup. If H is a Lie subgroup of G, as H is
locally closed, it is open in its closure and hence by homogeneity is equal to its
closure.

Among the Lie subgroups of GL,,(R) are the group GL,*,;(]R) of matrices
with positive determinant, the group SL,,(R) of matrices of determinant 1, the
orthogonal group O,, (orthogonal matrices can be characterised by the equa-
tion AA’ =), and SO,, = SL,,(R) N O,,. Lie subgroups of GL,,(C) include
SL,,(C), U,, (here we have AA =1 ) and SU,,,. Further important examples are
the spinor groups Spin,, (the double covering group of SO,,), and the symplec-
tic group Sp,,, defined like U,,, but using the algebra H of quaternions. We
identify SO, with the multiplicative group S! of complex numbers of modu-
lus 1, and SU, (also Spins and Sp;) with the multiplicative group S* of unit
quaternions.

There is a general classification of compact Lie groups, which has its origin
in the work of Lie and Killing: a convenient recent account is given in [125] (see
Theorem 10.7.2.4). Any connected compact Lie group G has a finite covering
group which is a direct product of copies of groups of the type S', SU,,, Spin,,,
Spm and five other groups denoted G», Fy, Eg, E7, and Eg. We will not use this
in this book, but it opens the way to enumerations of groups and group actions
satisfying prescribed conditions.

For G a Lie group and g € G, the map p, : G — G defined by p,(x) = xg
is a diffeomorphism, with inverse Pg15 it is called right translation by g. Left
translation A, is defined similarly.

If G is a group and H a subgroup, we write G/H for the set of right
cosets {gH |g € G} and 7w : G — G/H for the natural projection given by
m(g) = gH. We also have left cosets Hg := {hg|h € H} and the coset space
H\G :={Hg|g € G}.

If Gis aLie group and H a Lie subgroup, the coset space G/H (with the quo-
tient topology) has a natural structure as a smooth manifold. For at any g € G,
choose a chart ¢ : U — RP™4 such that the submanifold U N gH corresponds
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to the subspace R”; then take the composite R? C RP*Y — U C G — G/H as
achartat gH € G/H.Itis easy to see that transformations between overlapping
charts are smooth, using as guideline the fact that a function ' : G/H — R is
smooth if and only if f o w € Fg is smooth. A similar argument shows that the
projection G — G/H is that of a smooth fibre bundle. More generally, if we
have two Lie subgroups H, C H, C G, the projection G/H, — G/H, is that
of a fibre bundle, with fibre H,/H;.

If G is a Lie group, the tangent space 7;(G) at the identity has the structure
of a Lie algebra. We will not use this in this book.

If H is a Lie subgroup of G we may choose an additive complement Y to
Ti(H) in T1(G). Then the differential at (0, 1) of the map Y x H — G given by
(v, h) — exp(y)h is an isomorphism (here we may use any Riemannian metric
on G to define the exponential map), so by Theorem 1.2.5 the map is a local
diffeomorphism. We can thus choose open neighbourhoods U of 1 in exp(Y)
and V of 1 in H such that U x V — G is an embedding. We will call U a local
section of H in G.

Lemma 3.1.1 There exist local sections U, such that the map u : Uy x H —
G is an embedding.

Proof The fact that the differential of u at any (u, h) € U x H is bijective fol-
lows since this holds at (u, 1) by hypothesis, and (right) translation by # is
a diffeomorphism. It follows (as in the proof of Theorem 2.3.2) from Corol-
lary A.2.6 that there is a neighbourhood of 1 x H such that the restriction of u
to it is an embedding and by Lemma A.2.4 that for ¢ small enough if U, is the
e-neighbourhood of 1 in U, the restriction of  to U; x H is an embedding. [J

It follows that the induced map U; — G/H is an embedding. We can also
argue similarly for H x U — Gand U — H\G.

If G is a Lie group, the connected component of the identity is a subgroup Gy,
as if x(¢) is a path from 1 to g € G and y(¢) a path from 1 to &, then x(¢) ' gives
a path from 1 to g~! and x(¢)y(¢) a path from 1 to gh. As G is a manifold, Gy
is an open subset. Any open subgroup G* of G is closed, since its complement
is a union of cosets of G*, each open, hence is open. Now if p : I — G is any
path, p~'(G*) is open and closed in 7, hence is either I or the empty set. Thus
G* contains all paths from 1 € G, hence contains Gy.

If N is a neighbourhood of 1 in G, then the subgroup G* of G generated by N
contains an open neighbourhood of 1, so by homogeneity is open, so Gy C G*.
Thus if N C Gy we also have G* C Gy, so the two coincide.
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The point Gy/Gy of G/Gy is open; since G acts by homeomorphisms, all
points, hence all subsets, are open, so the coset space G/Gy has the discrete
topology. If G is compact, then G/G also is compact, so is finite.

Proposition 3.1.2 Let G be a compact Lie group and let H # G be a Lie sub-
group. Then either

dimH < dim G or

dim H = dim G, and H has fewer components than G.

Proof Since H C G is a submanifold, we have dimH < dim G.

Suppose dim H = dim G. Then H contains a neighbourhood of 1 in G, so H
contains Gy. As H is a proper subgroup of G, H/Gy is a proper subgroup of
G/Gy, which is compact and discrete, hence finite. But the components of G
are the cosets of Gj. O]

If G is a compact topological group, there is an averaging operator on the
space C°(G) of continuous functions on G: it is the unique linear map fG :
C%G) — R such that

(@) if g.f : G — Ris defined by g.f(x) := f(gx), then [.(g.f) = [;(/),

(ii) if f, is given by f.(g) = c for all g € G, then fG(fC) =g,

(iii) if f(g) > O for all g € G, then [.(f) > 0.

For the reader familiar with integration theory, we can give a quick account as
follows. The bundle of differential n-forms on a smooth manifold M is defined
to be the nth exterior power A"7,Y M. If M has dimension 7, then for any section
w of this bundle with compact support we can integrate w over M: the result is
denoted [, .

If G is a Lie group of dimension n, we choose a form wy at the identity
1 € G to be any element of the exterior power A"T,YG. Now for any g € G, left
translation by g gives a diffeomorphism of G taking 1 to G and hence wy to
an n-form at g € G; assembling these gives an n-form @’ on G invariant under
left translations by elements g € G. For any (smooth or even just continuous)
function f of compact support on G we can now form the integral | cf@.

In the case when G is compact we can now define [,; f := [, fo/ [ : prop-
erties (i)—(iii) follow easily. We will not give the proof of uniqueness; however
from uniqueness follows that if f.¢' : G — R is defined by f.¢'(x) := f(xg),
then |, f&) = fG( f). For since the averaging operator is unique, it suffices
to show that f fG( f.¢) satisfies (i)—(iii). But these follow from the same
results for fG by substitution. It follows similarly that if we define f* by

[ (@)= f(g_l)’ then _/(;f* = f(;f
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A proof of existence of an averaging operator for arbitrary compact groups
(due to Haar) may be found in [68], also a theory of (left invariant) integration
for any locally compact topological group.

3.2 Smooth actions

A (left) action of a group G on a set X is a map ¢ : G x X — X such that
¢(1,x) =xforall x € X and ¢(g, ¢(h,x)) = ¢p(gh,x)forallx e X and g, h €
G. If the action is understood, it is frequently denoted by a dot: thus ¢(g, x)
becomes g.x; we will call X a G-space. If G is a Lie group, X a smooth manifold,
and ¢ a smooth map, we speak of a smooth action and a smooth G-space.

If we have an action of a group G on a set X, and x € X, the isotropy group of
xisdefinedtobe G, := {g € G| g.x = x}. It follows from the definition of group
action that this is a subgroup of G; it is also sometimes called the stabiliser of
x. The orbit of x is defined to be {g.x| g € G}, and is denoted G.x. The action
induces a bijection G/G, — G.x since

gx=hxsh'gx=x&hlgeG, & hG, = gG.,.

Equivalently, the map Op, : G — X defined by Op,(g) := g.x induces an injec-
tion of G/G, into X.

The set of orbits of a left group action is denoted G\ X; in the case of contin-
uous, in particular smooth actions, we give G\X the quotient topology and call
it the orbit space. Even for a smooth action, this is only rarely a manifold.

For a smooth action, any isotropy group is a closed subgroup of G, hence
is a Lie subgroup. A sufficient condition for the injection G/G, — X to be a
smooth embedding will be given in the next section.

A point x € X is fixed under G if g.x = x for all g € G, i.e. if G, = G. The
fixed set of the action is the set of all fixed points, and is denoted X G, At the
opposite extreme to the fixed set, an action is called free if g.x = x implies
g = 1: thus {1} is the only isotropy group. The action is semi-free if the only
isotropy groups are {1} and G.

A subsetY C X is invariant under Gif gy € Y forallge Gandy €Y.

Giventwo actions ¢ : G x X - Xandy :GxY - Y,amap f: X —> Y
is equivariant (more precisely, G-equivariant) if, for all g € G and x € X, we
have f(¢(g, x)) = ¥ (g f(x)).

Given a subgroup H of G and an action of H on X, we define G xy X to
be the quotient of G x X by the relation (gh, x) ~ (g, hx) forallge G,h e H
and x € X: this is an equivalence relation since H is a subgroup. We denote the
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equivalence class containing (g, x) by [g, x]. Setting ¢'.[g, x] := [¢'g, x] defines
an actionof Gon G xy X.

Lemma 3.2.1 The isotropy group of [g,z] € G xy X is gH,g~".

Forif[g, z] € G xy X, wehave ¢.[g, z] = [¢g, z], and this is equal to [g, z] if
and only if, forsome h € H,g'g = ghandh™'.y = y;soh.y = yand g = ghg™".

If these groups and actions are smooth, then by Lemma 3.1.1 we can pick a
local section Y such that Y x H — G is a diffeomorphism onto an open set. It
follows that Y x X — G x g X is a diffeomorphism onto an open set.

We will give many examples of smooth group actions at the end of this chap-
ter, but offer two here.

If H is a subgroup of G, G acts on G/H by left translations: g.¢ H := gg'H.
If G is a Lie group and H a Lie subgroup, this action is smooth.

The group GL(V') acts on the vector space V: for example, GL,,(R) acts on
the space R™ of column vectors by matrix multiplication. If G is any group
and f: G — GL(V) a homomorphism, there is an induced action of G on V
by linear maps; we refer to V as a linear G-space. The action is called a linear
representation of G.

A classical theorem, known as the Peter—Weyl Theorem, states that for any
compact group G there exist a (finite dimensional) real vector space V and
an injective continuous homomorphism G — GL(V'). Moreover, the function
algebra L2(G) is a direct sum of finite dimensional invariant subspaces so, for
example, any smooth function on G can be approximated by functions of the
form g — £(g.x), where x € V for some linear G-space V and £ : V — R is
linear.

Lemma 3.2.2 For any continuous linear action of a compact Lie group H on
a vector space V, there is an inner product on 'V invariant under H.

Proof Choose an inner product V x V — R, and denote it (x,y). Define
(X, =/, {gx, gy). This is linear in each of x and y, and invariant in the
sense that (g.x, g.y)y = (x, y)y for all g € H and x, y € V. Moreover we have
(x, x)g > 0if x # 0, so (x, *)p is an inner product. O

The image of H in GL(V) is a subgroup of the orthogonal group of V with
respect to this product. Since any two inner products on V are equivalent under
the general linear group GL(V), it follows that any compact subgroup of GL(V')
is conjugate to a subgroup of O(V). Extending Lemma 3.2.2, we have

Proposition 3.2.3 For any smooth action of a compact Lie group H on a
smooth manifold M, there is a Riemannian metric on M invariant under H.
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Proof Choose any Riemannian metric on M: we can regard it as a collection of
inner products on all the tangent spaces T,M. The action of g € H takes g~'.x
to x and gives an isomorphism of T,-1 .M on T;M, so transporting the given
inner product (, ) on T,-1 .M gives an inner product (, ), on T,M. Integrating
over H as above gives a new family of scalar products giving a Riemannian
metric invariant under H. O

Since the exponential map Exp : T(M) — M was directly constructed from
the metric, it follows that if we have a G-invariant metric on M, the correspond-
ing exponential map is G-equivariant.

Corollary 3.2.4 The fixed set M" of a smooth action of a compact Lie group
H on a smooth manifold M is a smooth submanifold of M.

Proof By the Proposition, we can choose an H-invariant Riemannian metric
on M. Let x € M be a fixed point, then the exponential map T,M — M is a
local diffeomorphism and is H-equivariant. Since H acts orthogonally on T,M,
the fixed set (T.M)" is a linear subspace, and so a smooth submanifold. The
result follows. O

3.3 Proper actions and slices

The main geometrical results about smooth group actions depend on compact-
ness. The theory is usually written in terms of actions of a compact group G,
but with a little effort, the results extend to arbitrary Lie groups, provided the
action satisfies the following key condition.

An action ¢ : G x X — X is said to be proper if the map

(@, )):GxX—>XxX
given by (g, x) > (g.x, x) is a proper map.

Proposition 3.3.1 Let ¢ : G x X — X be a proper group action and x € X.
Then

(i) the isotropy group G, is compact;

(ii) the map Op, : G — X is proper;

(iii) the orbit G.x is a closed subset of X;

(iv) the induced map G/G, — G.x is a homeomorphism;

(v) for any compact subsets K, L C X, {g € G| g.K N L # @} is compact;

(vi) the orbit space G\X is Hausdorff.
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A fuller discussion is given in §A.3. The above result is contained in Propo-
sitions A.3.1 and A.3.3.

By Lemma A.3.2(i), a smooth group action with G compact is always proper.
So is the action on G by a Lie subgroup H by left translation. More generally,
by (ii) of the Lemma, given two Lie subgroups H, K of G with K compact, the
natural action of H on the coset space G/K is proper.

To illustrate the importance of properness, we give examples where the con-
dition fails, and the geometrical picture is very different from what we obtain
below in the proper case.

First, we can consider Q as a discrete group and let it act additively on R.

Second, take G as R, M := R?/Z? and let o € R be irrational: define an
action by ¢(z, [x, y]) =[x+ 1,y + af].

In these two cases, all isotropy groups are trivial but all orbits are dense in M.
In general, a smooth action of R on M (also called a dynamical system) defines
a vector field on M, and we saw in Theorem 1.4.2 that conversely any vector
field defines a flow and subject to a completeness condition (see, for example,
Proposition 1.4.4) gives a group action.

For a third example take M =R and % =sin 6 (which is certainly
bounded). The fixed set of this action is the set of 6 with sin 8 = 0, so con-
sists of integer multiples of 7.

Theorem 3.3.2 (The Rank Theorem) Let f:R"™ ~~ R" be a smooth map
defined on a neighbourhood A of a € R™ such that, for all x € A, df, has rank
p, for some fixed p > 0. Then there exist open neighbourhoods U C A of a,
V D fU) of f(a), and diffeomorphisms u : U — (Dol Yho:V — (51)” such
that flU = v~ om ou, where w(xy1, -+, Xp) = (X1, -+ , X, 0, -+, 0).

We regard this as an extension of Theorem 1.2.5 and, as for that result, proofs
can be found in [40] and [52]. As for Theorem 1.2.5, the given statement refers
only to a neighbourhood of a point in R™, but the result translates at once to
one valid for any manifold.

Theorem 3.3.3 For any smooth action of G on M and any x € M, the induced
map j: G/G, — M is a smooth immersion with image G.x.
If the action is proper, j is an embedding as a closed submanifold.

Proof We first apply Theorem 3.3.2 to the map Op, : G — M. We claim that
it follows from the group action property that this map has the same rank at all
points. For left translation £ by g € G is a diffeomorphism of G taking a neigh-
bourhood of 1 € G to aneighbourhood of g. The action of g is a diffeomorphism
rq of M taking x to g.x. The diagram
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G- v h—hax
N
G- 6 gh — gh.x

is commutative and the vertical maps are diffeomorphisms. Taking tangent
spaces thus gives a commutative diagram with the vertical maps linear iso-
morphisms. Thus indeed dOp, has the same rank at 1 and at g.

It follows from the rank theorem that the map Op, is locally trivial. Hence
the rank of dOp; is equal to the dimension of the image, namely of the orbit
G.x; and the rank of the kernel is equal to the dimension of the fibre, which is
the isotropy group G,. Thus the induced map G/G, — G.x is an immersion.

By Proposition 3.3.1 (ii), if the action is proper, the map j : G/Gy — M is
proper. It follows from Proposition 1.2.10 that j is an embedding as a closed
submanifold. O

Although the basic idea of taking a slice is simple, the following definition
is important; the existence of slices is key to the structure results that follow.
Given a smooth action of the G on M, and a closed subgroup H of G, a smooth
H-slice to the action is a smoothly embedded submanifold V of M such that
(S1)Forally e V,T\M = T,(G.y) + T,V.
(S2) V is H-invariant.
S3)IfseV,geGandgs eV, theng e H.
The definition includes the case when V is a submanifold with boundary.

Theorem 3.3.4 For any proper smooth action of G on M and any x € M there
exists a smooth Gy-slice V to the action withx € V.

Proof Since the action is proper, the isotropy group G, is compact; write
H := G,. By Proposition 3.2.3 we can choose a Riemannian metric of M invari-
ant under H. Then T,(G.x) is a subspace of T.M; write E for its orthogonal
complement. Then E is also invariant under the induced action of H on T, M.

Since the metric is H-invariant, the exponential map of M is H-equivariant.
Denote by D,,, ﬁa the closed and open discs of radius a in E, and write V,, :=
exp(D,) and \O/a = exp (lo)a ). As in the construction of tubular neighbourhoods, if
a is small enough, the restriction of the exponential map to D, is an embedding.
We will show that for b small enough Vj,, hence also \O/b, is a smooth H-slice.

It follows from the construction that for any b < a, V}, is a smoothly embed-
ded disc and is H-invariant, so satisfies (S2).
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Now choose a local section U to H in G: then UH is an open neighbourhood
of H in G, so its complement is closed. Since by Proposition 3.3.1(ii), Op, is a
closed map, (G \ UH).x is a closed set. It does not contain x, so is at a positive
distance 2¢ from x.

We also have T,V, = E, so TM = T,(G.x) ® T,V,. The action induces a
smooth map G x V, — M whose differential is surjective at (1, x). Hence it
is also surjective on some neighbourhood of this point. If b is small enough,
this neighbourhood contains 1 x V},, thus V}, satisfies (S1).

Since TiU & T1H = T1G, and it follows from the Rank Theorem that
T\G/TiH = T.(G.x),the map T\U — T,(G.x) is anisomorphism. Thus the map
U x V, — M induces an isomorphism 71U @ T,V, — T,M of tangent spaces,
so induces a diffeomorphism of some neighbourhood; shrinking U if neces-
sary, and taking b small enough, we may suppose this neighbourhood contains
UxV, Thenu+#1€Uandy €V, implies u.y € V.

Since the action is proper and V, is compact, it follows from Proposi-
tion 3.3.1(v) that K := {g € G : V,gNV, # &} is compact; note that H C K.
It follows from Lemma A.2.1 that for any ¢ we can find § such that if s € V,,
g€ Kand p(s, x) < § we have p(g.s, g.x) < €.

Now if s € V}, and g.s € Vj, then

plx, gx) < p(x, g.5)+ p(g.s,gx) <b+e < 2e.

Hence g ¢ G\ UH. i.e. g€ UH: say g = uh. Then h.s € V,, and u.(h.s) € V.
It now follows from the above that u = 1, so indeed g = h € H. Thus V,, also
satisfies (S3). O

We now derive a local model giving a description of the neighbourhood of
an orbit in a proper group action.

Theorem 3.3.5 LetV be an H-slice at x to a smooth proper action of G on M,
with H = G,. Then the action induces a smooth map j : G xg 'V — M giving
an equivariant diffeomorphism onto a neighbourhoodY of G.x in M.

IfV is a closed disc, this gives a tubular neighbourhood of G.x in M.

Proof By (S2) V is H-invariant, so G xy V is defined. The action ¢ now
induces a smooth equivariant map j, and it follows from (S3) that j is injective
and from (S1) that j is a submersion, hence a diffeomorphism.

We recall that a tubular neighbourhood of a (closed) submanifold F in M is
defined to consist of a bundle B over F with fibre a disc and an embedding v :
B — M (as submanifold with boundary) extending the map taking the centre
of each disc to the corresponding point of V. Here we take F' = G.x and B =
G xg V. Aprojection G xg V — G/H = G.xis given by [g, s] —> gH — g.x:
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we see at once that this is well defined, and its fibre is V. A local section U for
H in G induces a local trivialisation. O

For a smooth proper group action of G on M, by Theorem 3.3.5 there is
a smooth map j : G xyg V — M giving an equivariant diffeomorphism onto a
G-invariant neighbourhood Y of G.x in M. We constructed V as a metric disc
in the orthogonal complement E of 7,(G.x) in T,M. Moreover, since we have
a diffeomorphism of D™ on R™ which is invariant under rotations, we may
also replace V by E itself, and have an equivariant diffeomorphism of ¥ with
G xpy E. Here E is a real vector space on which H acts orthogonally. This
choice gives a convenient local model, which we use for further analysis below.

3.4 Properties of proper actions

From now on, we suppose M a smooth proper G-space. By Proposition A.3.4,
the quotient space G\M is Hausdorff, locally compact, and a countable union
of compact sets. We can now parallel the development in §1.1.

First, we can apply Proposition 1.1.3 to express G\M as | J, C,, where we
have compact subsets C, and open subsets B, 1 such that foralln > 1, C, C
B, e Coyi1.

The map j : G xyg V — M of Theorem 3.3.5 induces a homeomorphism of
G\(G xpy V) onto a neighbourhood of the image [x] of x in G\M. We will
regard such a map as a coordinate neighbourhood' for G\M. Observe that
G\(G xy V) Z H\V, so this neighbourhood is a quotient of V. We will use
the term ‘nice neighbourhood’ in the case when V is a disc D (we suppress the
affix giving the dimension of the disc, which depends on the slice, and will be
clear from the context). We think of this as a map j : H\D — G\M coming
fromamap j: G xyg D — M.

Theorem 3.4.1 We can find a set of nice coordinate neighbourhoods ¢, :
D°(3) — G\M, with images denoted Uy, such that

(i) The sets @y (ﬁ) cover G\M.

(ii) Each P € G\M has a neighbourhood which meets only a finite number
of sets Uy, i.e. the U, are locally finite.

Moreover, the covering {U,} may be chosen to refine any given covering of
G\M.

The proof of Theorem 1.1.4 goes through here with essentially no change.

! This differs from the notation of 1.1, where the map went from a neighbourhood in the
manifold to one in Euclidean space.
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It follows that the quotient space G\M is locally modelled by quotients H'\ D*
of discs D* by compact subgroups H of Oy: although this is not smooth, it is a
topological space with very good properties (triangulable, semi-algebraic, etc.).

We define a function f : G\M — R to be smooth: if the composite function
fop: M — Rissmooth.

Theorem 3.4.2 For any covering V of M by G-invariant open sets, there is a
smooth partition of unity by invariant functions strictly subordinate to it.

Proof This is an analogue of Theorem 1.1.5, and the proof of the earlier result
carries over with only minor change. The images of the elements of ) define an
open covering U of G\M. By Theorem 3.4.1 there is a locally finite refinement
of U by a set of coordinate neighbourhoods ¢, : DF(3) — G\M such that the
Do (D*) cover G\M. As in the earlier proof, we use these to construct smooth
functions ¥, on G\M, with ¥, supported on the image of ¢,, such that for
each P € G\M, there is an o with W, (P) = 1, and that each P € G\M has a
neighbourhood on which all but a finite number of functions ¥, vanish. Hence
2(P) =), Vy(P) is defined, and is everywhere smooth. Thus the functions
Yy (P) = W, (P)/XZ(P) give a partition of unity; by construction it is strictly
subordinate to ¢/. Now the functions 1, o p are smooth invariant functions on
M giving the desired partition of unity. O

Next we have an equivariant version of Proposition 1.1.7.

Proposition 3.4.3 (i) Let f be a continuous positive invariant function on M.
Then we can find a smooth invariant function g, with 0 < g(P) < f(P) for all
PeM.

(ii) For any continuous invariant function f on M and any ¢ > 0 there exists
a smooth invariant function h on M with |h(x) — f(x)| < € for every x € M.

(iii) If f: M — R is continuous and invariant, ¢ > 0, and F is a closed
invariant subset of M such that f is smooth on some open invariant set U D F,
we can find h such that also h = f on an invariant neighbourhood of F.

We can carry over the whole proof of the earlier result: it suffices to work
throughout in G\M rather than in M.

For actions of a compact group, it is shown in Proposition A.3.5 that any
neighbourhood of an invariant set contains an invariant neighbourhood. This
is not true in general for proper actions. For an example, consider the trans-
lation action of R x {0} on R2. The subset R x {0} is invariant, and the set
{(x,¥) ] |xy| < 1}is aneighbourhood, but any invariant neighbourhood contains
{Cx, ») |yl < ¢} for some & > 0.
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We turn to the existence of an invariant metric. First we consider Riemannian
metrics on G itself. A positive definite scalar product on the tangent space 771G
at the identity gives rise under left translation A, to a scalar product on 7,G;
collecting these for all g € G gives a Riemannian structure on G, invariant under
left translation by elements of G.

Inner automorphism x — g~ 'xg by g € G is a diffeomorphism of G fixing
the identity, so induces a linear automorphism of 7;G. Collecting these for all
g € Ggivesahomomorphismad; : G — GL(T;G). If H is acompact subgroup
of G, we know by Lemma 3.2.2 that there is an inner product on 7 G invariant
under H. If we begin with such an inner product, it follows that the Riemannian
metric on G is also invariant under right translation by elements of H.

Theorem 3.4.4 A smooth proper G-manifold M has a G-invariant Riemannian
structure.

Proof This is an analogue of Theorem 1.3.1, and the proof is again modelled on
the previous one. As there, we begin with a cover by charts ¢, : D¢(3) —> G\M,
associated to maps j, : G Xp DF3) - M, and a strictly subordinate partition
Yy of unity.

‘We next construct a G-invariant metricon Y := G x g E. Since H is compact
we can, as in Proposition 3.2.3, find an H-invariant Riemannian structure on
the restriction of T(Y) to E = H xy E (an explicit construction can be given
using an H-invariant inner product on E, and a Riemannian metric on G). The
action of G gives a unique G-invariant Riemannian metric on T(Y) extending
this structure over E.

Pulling back this metric by j, gives a metric m, on j,(G Xpg D°k(3)). Then
WM, extends to an invariant section over M of the Riemannian bundle which
is supported in j, (G Xy D¥(2)). Now consider > Wamy. Since the U, are
locally finite, the sum is defined; since the partition was strictly subordinate
to the cover, the sum is smooth. Since a linear combination of positive defi-
nite quadratic forms is again positive definite, the sum is everywhere positive
definite. Thus it defines an invariant Riemannian structure on M™. 0

I expect that the existence of a complete invariant metric can be established,
but have not found a proof.

Under some restrictions, one can prove the existence of equivariant embed-
dings in Euclidean space. We first need a couple of results about linear actions.

Lemma 3.4.5 Let G be a compact Lie group, H a Lie subgroup. Then

(i) if V is a linear H-space, there exist a linear G-space W and an H-
equivariant linear embedding V. — W;

(ii) there exist a linear G-space U and u € U with G, = H.
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We omit the proofs, which can both be deduced from the Peter—Weyl Theo-
rem. For (i) we consider the vector bundle over G/H with fibre V. The space of
[? sections is an infinite-dimensional linear G-space, and one needs to extract
a finite dimensional subspace. For (ii) one similarly begins with the action of
G on the space of functions on G/H (see [20, p. 105]).

Theorem 3.4.6 For any smooth action of a compact group G on a compact
manifold M, there exist a linear G-space E and a G-equivariant embedding
M — E.

Proof By Theorem 3.4.1, we can cover G\M by a finite set of nice coordinate
neighbourhoods U, = j, (G Xp, DDO,(3)) coming from maps ¢, :ﬁa(3) —
G\M, where Doa (3) is the disc of radius 3 in the H,-space E,. We define
a smooth map ®, : G\M — R by &, (¢,(x)) = Bp(2 — ||x||) for x € lo)a(3),
®, (P) = 0 otherwise.

By Lemma 3.4.5 (i) we can choose an H,-linear embedding f, :
E, - W, with W, a linear G-space. By (ii) of the Lemma we can
choose a linear G-space U, and u, € U, with G,, = H,. Now define
G0 :GXEy —> W, ®U, by ¢,(g,s) = (g.fa(s), gUy). Then for h € H,,
Do (gh, s) = (gh.fo(s), gh.uy); since G,, = Hy, h.ty =ty SO gh.uy = g.Uy;
since f is Hy-equivariant, gh. f,(s) = g.h.f,(s) = g.f«(h.s). Thus ¢, (gh, s) =
(8. fa(h.s), g.uy) = Pu(g, h.s), so ¢, factors through Yy : G xpy, E, — W, @
U,. By construction, ¥, is a G-equivariant map.

The map ¥, is injective since as G,, = H,, g.uy = g.u, implies g = gh
for some h € Hy; thus if ¢y(g, s) = ¢ (g, s') then ¢u(g, s) = ¢pu(g, hs') so
g.fu(s) = g.fy(hs') and as f is injective, s = hs’. A corresponding argument
on tangent spaces proves ¥, a smooth embedding.

Now define W, : M — W, @ U, @R by ¥, (Q) = (Pu(p(Q)¥u(lg, s]),
o, (p(Q))) if O = j,([g, s]) with s € Doa(3), and W, (Q) = 0 otherwise. Since
Y, 1s G-equivariant, so is this, where G acts trivially on R. In view of the def-
inition of ®,, ¥, is a smooth map. It now follows exactly as in the proof of
Theorem 1.2.11 that the product map

[[¥:M—> PW.oU, oR)

is a smooth embedding. O

3.5 Orbit types

If we denote by p the (orthogonal) representation of H on E, then by The-
orem 3.3.5 the structure of M in a neighbourhood of the orbit is determined
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by the pair (H C G, p). In turn, this pair is determined by the action and the
point x € M. If we replace x by another point g.x on the same orbit, H = G,
is replaced by G' = G,, = gHg™' and p by an action p’ of G’ on E’, where
there is an isomorphism A : E — E’ with A(p(h).e) = p'(ghg™").A(e) for all
h € H, e € E. We will call two such pairs equivalent: then the equivalence class
of the pair (H, p) depends only on the orbit G.x. We call it the orbit type of the
orbit.

We may also define the weak orbit type of an orbit G.x to be the conjugacy
class of the isotropy group G, of x. Since G, = g~ Gg, this too is determined
by the orbit. Two orbits have the same weak orbit type if and only if there
is an equivariant bijection between them. Write M) := {x € X | G, = H} for
the set of points with isotropy group H. For M a proper smooth G-space,
Theorem 3.3.5 describes the neighbourhood of an orbit as Y = j(G xy E).

Lemma 3.5.1 [In the notation of Theorem 3.3.5,
Y# =Y = j(N(H) xu E") = j(Ng(H)/H) x E™).
Thus M) is an open submanifold of M".

Proof By Lemma 3.2.1, the isotropy group of [g, z] is gH.g~!. For this to be
conjugate to H, we need H, = H, so z € E¥; otherwise the isotropy group is
strictly smaller (in the sense of Proposition 3.1.2). The calculation follows. [

The manifold M is not in general closed; nor need it be dense in M": if H
does not itself occur as an isotropy group, the open subset M) of M* will be
empty.

Different components of M, or of M), may well have different dimen-
sions. A simple example is given by the action of Z, on the projective plane
P%(R) defined by T.(xp : X1 : x2) = (—xp : X1 : x2). The fixed point set consists
of the point (1 : 0 : 0) and the projective line xo = 0. Thus it is not convenient
to partition M according to weak orbit type, and we focus on the study of orbit
types.

Having the same orbit type is an equivalence relation on orbits, which we
use to define partitions of G\M and of M. We will study these partitions, and
begin with a key finiteness result.

Theorem 3.5.2 Let ¢ be a proper smooth action of G on M. Then M has locally
a finite number of orbit types.

Proof We prove the result by induction on the dimension of M. If M is 0-
dimensional, for each x € M, the point {x} is a neighbourhood of x and con-
tains just one orbit type. So the assertion holds in this case. Now suppose M of
dimension m and the result proved for manifolds of dimension k < m.


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.004
https:/www.cambridge.org/core

3.5 Orbit types 83

Letx € M, set H = G, and let V be an H-slice at x. By Theorem 3.3.5, G.x
has an invariant neighbourhood diffeomorphic to G xy V. Every orbit in this
neighbourhood meets V, so it is sufficient to show that there are only a finite
number of orbit types in V.

We may also suppose D¥ = V C E adisc, and the action of H on E linear. All
points on the same open radius have the same isotropy group, so the different
orbit types occur at 0 and on the boundary of D, which is a sphere S¥~!, for
some k < m. By the inductive hypothesis, there are only a finite number of orbit
types on S¥~!; and there is just one orbit type at 0. Thus D¥ = V has a finite
number of orbit types. O

Let T denote an orbit type, and write M* for the union of orbits of type 7.
Proposition 3.5.3 M" is a smooth submanifold of M.

Proof Let x € M*, and consider the neighbourhood j(G xy V) of x con-
structed in Theorem 3.3.5. By Lemma 3.5.1 the points with the same weak
orbit type as x in this neighbourhood form j(G xy V), which is isomorphic
to (G/H) x V¥, and hence smooth. For v € V¥, the translation in E by v is H-
equivariant and takes a neighbourhood of O to one of v; thus we have the same
orbit type. It follows that the set of points of orbit type t in j(G xy V) is also
j(G xy V). Thus M® is a smooth neighbourhood of each of its points. [

It follows from this proof that the orbit type is locally constant along M,
hence also along the space G.M“! of points of the same weak orbit type: thus
is constant on each connected component of this set.

A stratification of a manifold is a locally finite partition into smooth sub-
manifolds. The preceding two results show that given a smooth proper action
of G on M, the partition by orbit types is a stratification. We next show that this
partition has a local triviality property.

For a stratification to be used geometrically one usually imposes some con-
dition on the way strata fit together; in particular on the behaviour of a bigger
stratum near a smaller one. The strongest such condition is local triviality. We
say a stratification S = {S,} of M is locally trivial if at each point x € M there
is a neighbourhood W of x in M and a diffeomorphism ¢ : W — A x B with
A, B smooth manifolds such that if S,, is the stratum containing x, ¢(S, " W) =
A x {xo} for some xg € B and for any other stratum Sg, ¢(Sg " W) = A x By
for some smooth submanifold Bg of B.

Theorem 3.5.4 The stratification of M by orbit types is locally trivial.

Proof Again we use the model given by Theorem 3.3.5, and work in a neigh-
bourhood Y = j(G xy E) of G.x in M. The orbit type « of the point [g, y] is
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determined by that of y under the action of H on V. Now split E as a direct
sum E¥ @ E%, where E® is the orthogonal complement to E* in E. Then the
orbit type of y under H depends only on the component of y in E%. The result
follows, taking E* as the B in the above definition. O

We defined above the stratification of M by orbit types: the strata M* are
smooth submanifolds of M, and are locally finite. Thus at least one must have
the same dimension as M. More precisely,

Theorem 3.5.5 (Principal Orbit Theorem) For any smooth proper group
action on a connected manifold M, there is one orbit type stratum which is
open and dense in M.

Proof We use the model given by Theorem 3.3.5: an invariant neighbourhood
of a point x with H = G, is equivariantly diffeomorphic to G xy E for some
H-vector space E. The set M* of points with the same orbit type « as x locally
form G x g E¥. Thus if dim E* > 2, M* has codimension at least 2 and does
not separate M. Now consider the case dim E“ = 1. Since the action of H on
E“ is orthogonal and non-trivial, there is a subgroup H™ of index 2 which acts
trivially, and H acts by reflection. In this case M* does locally separate M, but
points on opposite sides lie on the same orbit. So here also G\M* does not
separate G\M, so the complement of the union of the G\M® with dim E* > 0
is connected, and so is a single orbit type stratum. O

There is a natural partial order on the set of orbit types which is defined as
follows. An orbit type o determines (up to equivalence) a subgroup H, of G
and a linear H,-space E,. Then a neighbourhood of an orbit of this type is
equivariantly diffeomorphic to Ny := G xp, E,. If B is an orbit type occurring
in N,, we write 8 < «.

Lemma 3.5.6 The relation < is a partial order. If B < « then M® C MB. For
any « there are only finitely many types  with B < «. For M connected, the
principal orbit type of M is the least o with M* # ().

Proof Ttfollows from the definition thatif 8 < « there is an equivariant embed-
ding of N# in N, so the relation is transitive. Moreover, by Proposition 3.1.2
HP has either a lower dimension than H* or the same dimension and fewer
components, so the relation is antisymmetric.

The second clause also follows from the definition; the third from
Theorem 3.5.2; and the fourth is the definition of ‘principal’. 0

There is scope for confusion here: if 8 < o then H? is ‘smaller’ than H*
but the stratum M? is ‘larger’ than M%. If A is a set of orbit types we say
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that A is closed if « € A and B < « imply B € A: thus the set of orbit types
with M* non-empty is always closed. If A is a closed set of orbit types, then
Ugea M is an open subset of M. We observe that if « and 8 are distinct orbit
types with the same class of isotropy groups H* = H”, then neither precedes
the other.

We return to the problem of equivariant embedding in a linear G-space L.
We see from Theorem 3.5.2 that there are only finitely many orbit types for the
action of G on L (they all appear in any neighbourhood of the origin), and it
follows that there are only finitely many orbit types on any G-submanifold of
L: thus the hypothesis in Theorem 3.4.6 that M be compact cannot simply be
removed. However we do have

Theorem 3.5.7 For any smooth action of a compact group G on M with only
finitely many orbit types, there exist a linear G-space E and a G-equivariant
embedding M — E.

Proof Write T for the set of orbit types «. As before, we cover G\M by a set of
nice coordinate neighbourhoods {U; | i € I}, sothereisamapa : I — T and for
eachi € I,U; = ji(G xp,, Dug)) coming fromamap ¢; : Dy;) — G\M, where
D,y is a disc in the H,;y-space E,;). Define ®; : G\M — R by ®;(¢;(P)) =
Bp(2 — |P|) for P € Dy(3), ®,(Q) = 0 otherwise.

In the former proof, for each o we chose an H,-linear embedding f, : E, —
W, with W, a linear G-space, and a linear G-space U, and u, € U, with
G,, = H,, and then formed the G-equivariant embedding ¥, : G Xp, Ey —
W, @ U,. Here we need to separate the different ¢; for the different i with the
same a(i) = «; the difficulty is that these neighbourhoods U; overlap.

The images ¢;(D, N Ef«) with a(i) = « give an open covering of B*. Since
B* is finite dimensional, it follows from Proposition A.2.9 that this covering has
a finite dimensional refinement. More precisely, there exist an open covering
{S;1j e J} of B¥, with each S; contained in ¢;(Dy N EHa) for some i(j), and a
mapd : J — {0,..., N}suchthatifd(j) # d(j'),thenS; N S; = ¢. Choose an
opensetC;in Dy suchthat C; N Efe = (pi_l (8;); then by shrinking the C; if nec-
essary, we may suppose that if d(j) # d(j’), then also go,-(j)_(Cj) N go,-(jr)_(er) =
.

Now for each r with0 < r < N wedefineamap F,,, : E, x d~'(r) = W, x
R as follows. Choose an injective map n : d~!(r) — Z and set

Fa,r(xa 5) 1= (fa(x), Py (x) + 3n(s)).

Since the f,, are injective and the values of @, lie in [0, 1], this is injective; since
®,, is invariant, this is equivariant (where G acts trivially on R). As above we
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can now form a G-equivariant embedding W, , : G x g, (Ud(j):r(cj x {j})) —
W, @ U, ®R.

Since we now have a finite set of embeddings, we can piece them together
as before. O

There is also an equivariant embedding theorem when G is not compact.
It is clear that some restriction on G is needed, as there exist Lie groups
with no faithful finite dimensional linear G-space. A notorious example is the
so-called Weil-Heisenberg group, which can be considered as the group of

1 a b
matrices | 0 1 ¢ | witha, ce Randb € R/Z.
0 0 1

Palais gives a result in [119] using only the hypothesis that there exists a
faithful finite dimensional linear G-space.

If A% is a stratum of the orbit type stratification of M, the quotient B* :=
G\A® is a smooth manifold. We next give a model for the action of G in a
neighbourhood of A”.

Theorem 3.5.8 A neighbourhood of A* in M is equivariantly diffeomorphic
to a bundle over B* with fibre G xy E*.

Proof By Theorem 3.4.4 since the action is proper we can choose a G-invariant
metric for M: this induces metrics on the submanifold A* and, by Proposi-
tion A.3.6, on G\M; it also induces a reduction of the structure group of the
normal bundle N* to the orthogonal group.

By Proposition 2.3.1, the exponential map e* for the normal bundle N(M/A%)
has non-zero Jacobian along the zero cross-section of N*, so is a local diffeo-
morphism at A%; since the metric is invariant, ¢* is equivariant. We now follow
the proof of Theorem 2.3.3: we know some neighbourhood of the zero cross-
section A% is embedded, but need an invariant one.

In the model given by Theorem 3.3.5, we can choose the slice at x as the
image of the normal space by the exponential map; by equivariance, the same
holds at each point on the orbit G.x. In the model G xy (E” @ E%), we can
identify A% with G xy E!; by Lemma 3.5.1 the normal space at x to A% can be
identified with E*, the normal bundle N* is identified with the projection with
kernel E“; and e” is represented by the identity map.

Now factorout G: ¢* : N* — M yields G\e* : G\N* — G\M. Near the zero
cross-section G\A% = B this too is represented by the identity map (of EX x
H\E®); thus it is a local homeomorphism. It follows from Corollary A.2.6 that
there is a neighbourhood W of B* on which G\e® is an embedding. Hence also
the restriction of ¢* to Z := ¢~ (W) is an embedding.
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We have a function ® : N* — R measuring the length of the normal vector.
Define f : A — R by

f@) =infl{p(x,y) + @) |z € N\ 2), 7(z) = y}.

Since each x € A* has a neighbourhood disjoint from Z, we have f(x) > 0. It
follows from the definition that | f(x) — f(y)| < p(x, y), so f is continuous; and
clearly f is invariant. By Proposition 3.4.3 there is a positive smooth invariant
function F on A* with F(x) < f(x) for all x. The proof is completed, as for
Theorem 2.3.3, by writing down a diffeomorphism of the bundle with fibre the
unit disc to the submanifold ®(z) < F((z)). O

3.6 Actions with few orbit types

We can decompose a G-manifold M into orbit types and then build it up piece
by piece. We begin with a stratum A“ of least dimension: this is a compact
smooth manifold, and has a neighbourhood N* given by a bundle over A* with
fibre E%. The next piece A? overlaps this bundle; the details are made precise
by the local structure theorem. We now explore how M is built up in the case
when there are at most two strata.

For the principal orbit type o we have E“ = 0, A* is open in M, and is equiv-
ariantly diffeomorphic to a bundle over B* with group G and fibre G/H*.

If there is only one stratum, it is necessarily principal: the orbit map M —
G\M is a fibration with fibre G/H. To regard this as a bundle, first consider
the submanifold M*) = M* of points with isotropy subgroup equal to H. This
meets all orbits, and g.M" is equal to M" if g7'Hg = H, and is disjoint from
M*™ otherwise. The elements g € G satisfying g~' Hg = H form a subgroup of
G, called the normaliser of H in G and denoted Ng(H). The action of Ng(H)
on M* factors through Ng(H)/H (since H acts trivially here). We thus see that
Ng(H)/H acts freely on M¥ and the quotient is just G\M, so we have a principal
bundle.

If in particular M is a sphere, we have a fibration of a sphere. The possibilities
for fibrations of spheres are strictly limited: the standard examples are the Hopf
fibrations S! — §2*~! — P~ 1(C), §* — §*~! — p'~I(H),and 7 — S5 —
S8. It follows from a result of Browder [29] that for any non-trivial fibration of
a sphere with connected fibres, the fibre is homotopy equivalent to S', S°, or
S7. In the case of manifolds it follows from the generalised Poincaré conjecture
(see §5.6 and discussion following) that the fibre is homeomorphic to a sphere
and, except perhaps for S7, diffeomorphic.

In the present situation we can be even more precise.
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Theorem 3.6.1 If H is a non-trivial compact connected Lie group, acting on
S" (n > 2) with just one weak orbit type, then either (a) the action is transitive
or (b) H has rank 1 and the action is free.

We refer to Borel [20, p 185] for the proof which, after several preliminaries,
is homological in nature, so Borel’s result is stated in more general terms.

It was shown by Poncet [122] that the only faithful transitive actions on
spheres are the classical actions of SO, and O, on $"~!, U, and SU, on §?"~1,
and Sp, on $*~!; also three exceptional cases S¢ = G,/SUs, S = Spin;/Ga,
and S = Spino/Spin;.

Now consider groups H acting freely on spheres; first suppose H finite. Then
(see [35, Chapter XII]) H has periodic cohomology, and hence all Sylow sub-
groups of G are cyclic or generalised quaternionic. The classification up to iso-
morphism of such groups is known: see [170], which also gives the latest known
results about the classification of these actions.

In particular, Z, @ Z, cannot act freely on a sphere, hence neither can a torus
S' x §'. Thus if H acts freely, it has rank at most 1. The only connected groups
of rank 1 are S', §3, and SOs, and SO; has a subgroup isomorphic to Z, & Z,,
so is excluded.

If H # Hy = S' and g € H \ Hy, conjugation of Hy by gis an automorphism,
hence is either the identity or the map x — x~!.If g centralises Hy, the subgroup
(Hp, g) is isomorphic to a direct sum S' @ 7Z; for some k, hence contains a
subgroup Z; @ Zy; hence this case does not occur. Thus H/Hj has order 2 and H
is isomorphic to the subgroup S' U jS' of §. (This group can also be identified
with the group Pin, of [15].)

IfHy = S?and g € H \ Hy, g'S'gis acircle subgroup of S*, hence conjugate
in $3 to S, so for some & € S* gh normalises S'. Arguing as above now yields
a contradiction.

There are many free actions of S L on spheres; the classification is described,
for example, in §14C of my surgery book [167]; a similar analysis holds for
actions of S3. The same methods could be applied to the S U jS! case, but to
the author’s knowledge this has not been attempted.

We next consider the case of just two orbit types « (principal) and f.
Choose x € MP and set H := G, (= H?). By Theorem 3.3.5, a neighbourhood
of G.x is equivariantly diffeomorphic to G xy E, where H acts orthogonally
on E (= EP) and the only fixed point is the origin. Thus there is only one orbit
type for the action of H on the unit sphere S*~! in E (where we choose an iso-
morphism of E with R¥) and we can apply the classification just discussed; so
by Theorem 3.6.1, either (a) H acts transitively on S¥~! or (b) H has rank at
most 1.
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In the present situation these H-spaces are the restrictions to S¥~! of linear
H-spaces, so the list of cases is shorter. For (b) if H is finite a complete list of
fixed point free representations (and of groups) was given by Wolf [182] (the
list is repeated in a simpler notation in [170]). For H = S' any fixed point free
representation is isomorphic (over R) to the action on C" for some 7; and for
$3 and S' U jS! to H".

By Theorem 3.5.8, a neighbourhood N(M?) of M? in M is equivariantly dif-
feomorphic to a bundle over Bf with fibre G x y EP: here M itself corresponds
to choosing 0 € E#. Choose y € M* to lie in the fibre over x corresponding to
a point in E# \ {0}, and set K := G, (= HY).

The isomorphism Ef — R¥ induces Ef \ {0} = S¥~!x]0, oo[. Thus we can
identify M* N N(MP#) with the bundle over B? with fibre (G x g $¥1)x]0, ool.
Factoring out G gives an identification of B* N N(B?) with the bundle over B?
with fibre (H\S*"!)x]0, co[: note that this projection indeed has fibre G/K.
Now B is the union of B* and N(B?) modulo this identification on the intersec-
tion. Correspondingly, M is the union of M and N(M*) modulo an identifica-
tion on the intersection of bundles with fibre G/K over the above. In principle,
this reduces the classification problem to a problem about manifolds (with no
group action) and bundles over them.

In case (a), H acts transitively on S*~!: here B = G\M is a smooth mani-
fold with boundary: B? is the boundary and B* its complement; the identifica-
tion takes place over a collar neighbourhood of the boundary. This necessarily
occurs if a principal orbit has codimension 2. Here some classifications have
been effectively done. If also M = R™, it was shown by Borel (see [20, XIV])
that G has a fixed point P, so the whole action is modelled by the induced linear
action on the tangent space at P.

Interesting examples were given by Bredon [25]. Begin with the linear action
of SO, on R" @ R". Then (see example (vb) below) there are just two orbit
types; the isotropy subgroups are SO,_; and SO,_,. Next restrict to D" x $"~!.
For x € §"~! define 6, € O, to be the reflection in the radius through x. Then
the map of $"~! x §"~! given by ¥ (x,y) := ((6:0,)'x, (6:6,)"y) is a diffeo-
morphism equivariant for the action of SO,; it acts on H,_;(5"~! x $"~') by

2k+1 2k e

ok | — 2k> (if n is even).
Now glue two copies of D" x S"~! together using the diffeomorphism . We
obtain a closed manifold M with an action of SO,; it still has just the two orbit
types. If n is odd, M has the homology of S?*~!; if nis even, H,_; (M) = Zy,,.
For n = 3 this coincides with the manifold denoted My in §7.8.

In [26], Bredon goes on to give a classification of actions of compact Lie
groups G on manifolds with the homology of S and just two orbit types, one

the identity (if n is odd) and by the matrix <
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with orbits of codimension 2, and one with orbits of lower dimension. He proves
that m = 2n — 1 is odd and either G = SO, with one of the above actions (so
if n is even we have k = 0); or we have the action restricted to the subgroup
Spin; of SOg or the subgroup G, of SO;. We do not give the proof: a large part
of it is devoted to identifying the possibilities for the group G and the isotropy
subgroups H* and H”.

3.7 Examples of smooth proper group actions

Most of the following examples are linear actions; each of these induces also
an action on the unit sphere in the vector space, also one on the corresponding
projective space. Write, for n € N, ¢, 1= e27/",

(ia) The symmetric group &, acts on R"” by permutation of the coordi-
nates. For each partition A :n = Ay + Ay + ...+ A, (with A} < A,...) there
is an orbit type with isotropy subgroup [[; &;,. The orbit type containing
(x1,...,x,) is given by the partition defined by i ~ j < x; = x;. For a prin-
cipal orbit, the x; are distinct; each A; = 1; and the isotropy group is trivial.

The orbit space R" /G, can be identified with the subset x; < x; < ... < x;,.

(ib) If we replace R” by C”" in example (i), the description of orbit types
is the same, but now the orbit space C"/&,, is isomorphic (using elementary
symmetric functions) with C".

(ic) The orthogonal group O, acts on the space of symmetric n X n matrices
by PA := PAP' (where the affix ¢ denotes transpose). Each orbit contains a
diagonal matrix; to calculate the isotropy group we partition the eigenvalues
(as above) into sets of equal ones: say this gives n = Y A;. Then the isotropy
group is (conjugate to) [ [; O,,. Principal orbits occur where all eigenvalues are
distinct: here the isotropy group is O} = {£1}". The orbit space is as in (i)
the simplicial cone x; < x; < ... < x,. In this example, we can interpret the
corresponding projective space as the space of (central) quadrics.

(id) A similar example is the action of the unitary group U, on the set of
self-adjoint n x n matrices over C. Here the eigenvalues can be any non-zero
complex numbers; the orbit space is all of C".

(ie) The unitary group U, acts on itself by conjugation: x.y = xyx~!. As any
unitary matrix is conjugate to a diagonal matrix, we again have a similar situ-
ation: here the eigenvalues satisfy || = 1.

(iia) The circle group S' acts on the sphere S? by rotations, say €?.(x, y, z) =
(xcosf + ysinf, ycosd — xsinf, 7). We have two fixed points at the poles
(0, 0, £1), and the remaining orbits are principal, with trivial isotropy group.
We can identify the orbit space with [—1, 1]and ¢ : S — S"\S?> withz: S* —
[—1, 1].
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(iib) The group S> acts on itself by conjugation. The isotropy group of %1 is
§3; of other points in S' is §! and at other points is conjugate to S'. The orbit
space is [—1, 1].

(iii) For any sequence a = (ag, a1, . . . , a,) of integers, the circle group §' :=
{t € C||t| =1} actson C*™ ! by t.(z0, 21, - . . » 20) = (%20, 197, ..., 1¥7,); the
induced actionon P*(C)isthusz.(zg : 21 : ... : 2p) = (%70 : %71 ¢ ... t%"Z,).

A point zis fixed under ¢ € S' if and only if, for all values of i with z; # 0, the
corresponding t“ are equal. Thus if # has multiplicative order r, we need the a;
for these i to be congruent mod r to each other; and, for the isotropy subgroup
to have order r, no more. The isotropy action is then given by the 1%~ for the
j with a j ;ﬁ ai.

(iva) The quaternion group of order 4n has a presentation {f,u|t*" =
1, u> =", u'tu = t~'}. There is a semi-free action on C? with 7.(x|, x,) =
(&onx1, {2_"1x2), u.(xy, x2) = (x2, —x1). The ring of invariants is generated by
Y = x%" + x%", Z = x%x% and W = xlxz(x%” — x%”); these have the unique
syzygy Y2Z — W? = 47"+,

(ivb) Let G = {u, v |u’ = v3 = 1,0 'uv = u?}. The subgroup U = (u) has
a 1-dimensional representation u — ¢7. The induced representation of G takes
u to the diagonal matrix ({7, £7, ¢4) and v to the matrix which cyclically per-
mutes the coordinates. Thus v fixes the line x; = x, = x3.

(ive) Let G = {u, v |u’ =0° = 1,0 'uv = u?}. The subgroup U = (u, v°)
is cyclic and has a 1-dimensional representation u — {7, 3 — 3. In this case,
the induced representation of G on C3 is semi-free, and we have a free action
of G on the unit sphere S°.

(va) Consider the natural action of SO, C SO, on "1 C R" x R”. The
isotropy subgroup of (x,y) is trivial, and the orbit an (n — 1)-sphere unless
x = 0, when we have a fixed point, so the action is semi-free. The orbit space
is homeomorphic to D".

(vb) The diagonal subgroup SO, C SO, x SO, acts on §"~! Cc R" x R".
For (x,y) € $?"~!, if x and y are independent we have a principal orbit; the
isotropy subgroup is (conjugate to) SO,_, and the orbit a Stiefel manifold V,, 5.
If x and y are linearly dependent, the isotropy subgroup is SO,_; and the orbit
§"~1. The orbit space is homeomorphic to D?.

(via) The group SL,(R) acts on the upper half-plane H> = {z € C |Imz > 0}

by

a b =% +b

c d Ccz+d
This action is transitive, and the isotropy subgroup of i is the rotation group
SO,: thus we have a diffeomorphism of SO,\SL,(R) on H? and the action is
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proper. The action is not effective: —1 acts trivially, so the action factors through
PSLy(R).

(vib) The restriction of the action in (via) to an action of SL,(Z) is thus also
proper. There are only two non-principal orbits for this action: they are the
orbits of i, with isotropy group of order 4, and of a cube root ¢3 of 1, with
isotropy group of order 6. The orbit space is usually identified with a sphere S?
with one point deleted (puncture).

3.8 Notes on Chapter 3

§3.1 and §3.2 contain little more than basic definitions and terminology.

There are many introductory books on these subjects: for Lie groups: [37],
for example, has an algebraic approach; and [6] gives an excellent account for
topologists.

A good general reference for (compact) differentiable group actions is [27].
An early account is in [20], which is a good source for early references.

§3.3: Although slices in the sense of a submanifold transverse to an orbit had
appeared long before, the use of ‘slice’ in the precise sense needed here perhaps
appeared first in Montgomery and Yang [104], where existence is proved for
actions of compact groups; for proper actions the result is due to Palais [119].

The concept of proper group action developed from special cases and seems
to have been first formalised about 1960. It appears in the later revisions of
Bourbaki (not yet in [24]): the first reference I have is [119]. (The volume [20]
only considers actions of compact groups.)

We commented in §1.6 that (M4) was equivalent to various other conditions.
A similar situation exists here. It is shown in Proposition A.3.1 that the action
¢ : G x X — X is proper if and only if

(1) the map (¢, w) : G x X — X x X (where 7 denotes the projection) is a
proper map;

(i) (¢, ) is closed and all isotropy groups G, are compact;

(iii) for any compact subsets K, L € X, Tx; :={g€ G|g.KNL# @} is
compact;
further equivalent conditions are mentioned in Proposition 3.3.1:

(iv) for any compact subsets K, L € X, {g € G| g.K N L # (} is compact;

(v) the orbit space G\ X is Hausdorff.

§3.4 Most of the results in this section are fairly easy for actions of compact
groups; the extension to proper actions is again in [119], though his emphasis
is on continuous actions on metric spaces.

§3.5 Several results on weak orbit type appear in [20]. The Principal Orbit
Theorem is due to Montgomery and Yang [105]. However, orbit types in our
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sense are what is required in the study of cobordism of group actions. The
Atiyah-Singer fixed point theorem gives formulae expressed in terms of sums
where the character of the representation of H on E plays arole. The local finite-
ness theorem is due to Mostow [112]. The earlier literature does not explicitly
mention the stratification.

There was an explosion of papers on group actions in the 1960s: see, for
example, the conference proceedings [110].
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4

General position and transversality

We open our discussion of the deeper properties of smooth manifolds with
Whitney’s embedding theorem for two reasons. The first is historical: smooth
manifolds were originally considered as submanifolds of Euclidean spaces, and
this theorem reconciled this approach with the abstract form of definition which
we prefer. Secondly, the proof is quite simple, and opens the way to our later
discussion of the general transversality theorem.

In Chapter 5 we will give a method for describing compact manifolds up to
diffeomorphism. The method consists in defining a smooth function f : M™ —
R; and then we can regard M as ‘filtered’ by the subset f~!'(—o0,a] as a
increases. In order to carry out this process in detail, it is necessary to sup-
pose f non-degenerate. Thus we next give a direct proof of the existence of
non-degenerate functions.

We proceed to techniques for moving a smooth map into ‘general position’.
The language of jet spaces, which is basic to the study of singularities of smooth
maps, is introduced in §4.4. Jets are also used to define topologies on function
space (we give some proofs of properties of these topologies in §A.4).

The fundamental technical general position result is the transversality the-
orem, which is stated and proved in §4.5, and extended in the following
section to multitransversality, to deal with the interaction of two maps with
a common target. The development of transversality as a tool is due to
Thom [150]; the very flexible formulation of multitransversality is due to
Mather [88].

The main theorems include ‘general position’ results which we will often
use in later chapters. In particular, a map f : V® — M"™ may be supposed an
embedding if m > 2o (or an immersion if m = 2v); it may be deformed to avoid
any subset of M of dimension < (m — v), and to be transverse to any given
submanifold of M.

94
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However the results allow a much wider range of application: for example,
dealing with transversality to submanifolds of jet space rather than just of M;
and establishing that the set of smooth maps satisfying such conditions is open
and dense in function space. We thus spend some time in §4.7 applying the
main results to describe the singularities of a dense open set of maps when the
target dimension is either small (< 2) or large (> %m). The main results also
lead to local normal forms for smooth maps, and in §4.8 we obtain these in the
same cases. The details here are somewhat technical, and the reader may prefer
to pass over them and just read the statements of the theorems to get a feel for
what can be proved.

4.1 Nul sets

We say that a subset A of R” is nul if for each ¢ > 0, A can be enclosed in a
countable union of discs of total volume (i.e. the sum of the volumes) < ¢. The
useful terminology ‘nul’ is now out of fashion; it is equivalent to saying that A
has Lebesgue measure zero.

It is trivial that a countable union of nul sets is nul; also that a nul set has no
interior: its complement is everywhere dense.

Lemma 4.1.1 Suppose U open in R", f: U — R" smooth, and A C U nul.
Then f(A) is nul.

Proof Let K be a compact subset of U. Then in K the partial derivatives of f
of first order are bounded, so infinitesimal lengths are multiplied by a bounded
factor: let ¢ be a bound. Then the image of a ball of radius r is contained in a
ball of radius cr. If A C K is nul, for any ¢ > 0 it is contained in a number of
balls in K of total volume less than ¢, so f(A) is contained in a union of balls
of total volume less than ¢"¢, so is nul.

Now as in Theorem 1.1.4, we may find a countable set of discs K; = D (24;)
contained in U, with the ﬁ;’i(éi) covering U. As K; is compact, and A; := A N K;
is nul, f(A;) is nul. Hence so is the countable union f(A) = |J; f(A)). O]

We say that a subset A of a smooth manifold N is nul if, for each coordinate
neighbourhood ¢ : U — R", (U NA) is nul. Since by the lemma, nul sets
are preserved by smooth maps, it is sufficient to verify the condition for a set
(Uq, ¢o) of coordinate neighbourhoods with the U, covering N.

Corollary 4.1.2 (i) IfA C Ny is nul, and f : N — N} smooth, f(A) is nul.
(ii) Suppose U open in R, v < n, f : U — R" smooth. Then f(U) is nul.
(iii) Ifv < nand f : V® — N" is smooth, f(V) is nul.
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Proof (i) follows at once from Lemma 4.1.1 and the definition. For (ii) define
F:UXxR"™ — R"by F(x,y) = f(x). Then f(U) = F(U x 0),but U x O
is nul in R”. Similarly for (iii). O

These give the basic properties of nul sets: we now go on to the deeper result
which we will need. If f : V® — M™ is a smooth map, a point P € V is a regular
point of fif df : Typ\V — TypyM has rank m. Otherwise P is a critical point,
and f(P) a critical value of f.

Theorem 4.1.3 (Sard’s Theorem) Let f : V® — M™ be a smooth map. Then
the set of critical values of f is nul.

We give the proof here only for v < m. For v > m, we refer the reader to the
original paper of Sard [132] or to Milnor’s account [100].

Proof We observe that it is sufficient to consider values in a coordinate neigh-
bourhood of M, and further that, since V is a countable union of coordinate
neighbourhoods, we may also restrict attention to a coordinate neighbourhood
of V. This reduces the proof to the case M = R™, V an open subset of R". For
v < m, the result follows by Corollary 4.1.2 (ii).

Now let m = v. If P is a critical point, the Jacobian determinant of f van-
ishes at P, so given §, we can find a ball containing P with |[J(f)| < § in
the ball. Hence the volume of the image is at most é times the volume of
the original ball, so it can be contained in balls of at most twice this total
volume.

If K is a compact submanifold of R”, A the set of critical points in K, we
enclose these in small balls of total volume less than 2u(K), say. Then f(A)
can be enclosed in balls of total volume less than 45 (K). But § is arbitrarily
small, so f(A) is nul. The set of critical values is a countable union of sets f(A),
hence also is nul. O

4.2 Whitney’s embedding theorem

The proof of the embedding theorem 1.2.11 is very simple, but the result is
rather weak. We shall now obtain a stronger version, with a bound on the dimen-
sion of the Euclidean space, and an approximation clause. It is possible by sim-
ilar methods to give a proof for non-compact manifolds; we defer this exten-
sion till Corollary 4.7.8. First remark that the result extends to manifolds with
boundary, as if M has boundary, form the double D(M): then any embedding
of D(M) restricts to give an embedding of M.
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Each non-zero vector in R” determines the parallel unit vector from the ori-
gin, and hence its end-point, which lies on §"~!. Define u : (R" \ {0}) — §"~!
by u(x) := ”i—“

Lemma 4.2.1 Let f : M — R" be an embedding. Then the set of points of
S parallel to a tangent of M™ is nul if n > 2m + 1, and the set of those
parallel to a chord is nul if n > 2m + 2.

Proof Any tangent of M™ is parallel to a unit tangent. Let B be the sub-bundle
of T(M) consisting of unit vectors. Then df : T(M) — T(R") restricts to df :
B — T(R"), and the identification of tangent spaces to R” with R" defines a
smooth map T : T(R") — R". Moreover, since B consists of unit vectors, T o
df maps B to S"~!. Hence the set of points in $"~! whose vectors are parallel to
a tangent of M is the image of B under a smooth map. Since B has dimension
2m — 1, the first result follows from Corollary 4.1.2 (iii).

For chords we proceed similarly. Let M x M be the product manifold, A(M)
the diagonal, and write M® for M x M \ A(M): this is a smooth manifold.
Since f is an embedding, any two distinct points have distinct images, so if we
define Ay : M — R" by As(P, Q) = f(P) — f(Q) (vector subtraction), the
image does not contain O. Thus we can define §; :==uo Ay : M@ — §"~1.
Again we see that the set of points of S"~! whose vectors parallel to a chord of
M is the image under a smooth map; this time of M®. Since M® has dimension
2m, the result follows as before. L]

Theorem 4.2.2 (Whitney’s Embedding Theorem) Let M™ be a smooth com-
pact manifold. Any map of M™ to R*"*1 may be approximated arbitrarily
closely by an embedding.

Since we have not yet discussed topologies for mapping spaces (see §4.4
below), approximation is here to be understood in the sense of pointwise
convergence.

Proof Let f; : M™ — R>"*+! be the given map; by Proposition 1.1.7 (applied
to each component), we may suppose f; a smooth map. By Theorem 4.2.2,
we can choose an embedding f, : M™ — R” for some n. The product map f3 :
M" — RZn+1+n ig an embedding, for since f, is an immersion and injective,
S0 is f3.

By Lemma 4.2.1, the set E of points of $*"*" whose vector is parallel to
a tangent or chord is nul, thus its complement is everywhere dense. Choose a
point x, close to the unit point on the last axis, and not in E, and project f3(M)
orthogonally in the direction x to R?"*", The first 2m + 1 coordinates of the
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projected map f; differ from those of f3, and hence of f;, by an amount which
can be made arbitrarily small by choice of x.

We claim that f; is an embedding. For since x is parallel to no chord of
f3(M™), no two distinct points of M have the same image under f4; and since
x is parallel to no tangent vector, there is no tangent vector which is mapped to
zero by dfy. Thus f4 is an immersion and injective, hence an embedding.

We may now repeat the projection process a further (n — 1) times, obtaining
ultimately an embedding in R>"+! with coordinates differing by arbitrarily little
from those of fi. O

Theorem 4.2.3 Any map of a compact smooth manifold M™ to R*™ may be
approximated by an immersion.

Proof As for Theorem 4.2.2, we obtain an embedding in R*"*!, and then
choose x € §", arbitrarily close to the unit point on the last axis, and parallel to
no tangent vector (which is possible, as before, using Lemma 4.2.1). Projecting
parallel to x, we obtain the desired immersion. O

4.3 Existence of non-degenerate functions

Let f be a smooth function on M, and P a critical point of f, so that df (TpM) =
0. If we take local coordinates with P as origin, we have f(O) = 0 and 9 f/dx;
vanishes at O for 1 < i < m. It is now natural to consider the Hessian matrix
(32f/0x;0x ;) of second derivatives of f at O. We regard the Hessian as a sym-
metric bilinear form H(f) : TpM x TpM — R, given in local coordinates by

3 32 f
1 (Sage gy ) = et

We can also formulate an equivalent definition without referring to coordinates:
given u, v € TpM, extend v to a local vector field v defined (at least) in a neigh-
bourhood of P; then H(f)(u, v) = u(v(f)) is independent of the extension v of
o (since P is a critical point). (Recall here that a tangent vector is a mapping of
functions on M to the reals, and a vector field maps functions to functions.)
We say that P is a degenerate (resp. non-degenerate) critical point of f if
H(f) is a singular (resp. nonsingular) bilinear form. Thus P is singular if and
only if the matrix az—f is; equivalently, if the rows are linearly dependent, i.e.

0%,
if for some constants A not all zero we have ), A;j7—— ax ax = 0 for all j.

We call f non-degenerate if it has no degenerate critical point. Many authors
call such functions ‘Morse functions’.


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316597835.005
http:/www.cambridge.org/core

4.3 Existence of non-degenerate functions 99

For i : M — R" an embedding, since we identify T(R") with R"” x R", we
may identify N(R"/M) with the submanifold of R"” x R" given by

N(R"/M) = {(P,v) : P € M, v orthogonal to di(TpM)}.

Here the exponential map is given by exp(P, v) = P + v (vector addition).

In general, if M is a submanifold of the complete Riemannian manifold N, a
critical value of exp : N(N/M) — N is called a focus of M if the corresponding
critical point is a vector at P, it is a focus of M at P. It follows from Sard’s
theorem 4.1.3 that the set of foci of M in N is nul.

Figure 4.1 A focus

The existence of non-degenerate functions will now follow from the theorem
below. Let M be a smooth submanifold of R”*"; for P € R"™" define Lp :
M — Rby Lp(Q) := |P — Q|*.

Theorem 4.3.1 Lp has a critical point at Q € M if and only if the vector Q — P

is normal to M at Q. Q is a degenerate critical point if and only if P is a focus
of M at Q.

Proof The first statement is clear. For the second, first suppose M is a curve in
R2. Then a focus must be a point of intersection of consecutive normals, i.e. a
centre of curvature. But Lp has a degenerate critical point at Q if and only if
|P — X||? is constant to the second order at X = Q, i.e. again if and only if P is
the centre of curvature of M at Q. The notion of focus of a curve is illustrated
in Figure 4.1.

The result holds in general for essentially the same reasons, but for clar-
ity we calculate in convenient coordinates. We may suppose M given in the
neighbourhood of Q as the graph B of a map A : R” — R” with A(0) =0
and dpA = 0: thus A has components a, whose Taylor expansions at 0 begin
a, = ZZZ’:I p",’jx,-xj, where p’}’j is symmetric in i and j. Differentiating B with
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respect to x; gives a vector o; whose jth component is §; ; (i.e. 1 if i =j, 0

if not) and with rth component %i These span T,M, hence a base for N.M is

Xi
given by the vectors g, with ith component — ‘3/““ and sth component §, ;.

We now have exp(x, v) = B(x) + >, v,8,. Its derivative with respect to v, is
B,; the derivative with respect to x; has the last n coordinates zero. Thus at a sin-
gular point of exp there must be a linear relation of the form ) A; % exp(x,v) =
0 with the A; not all zero. This reduces to ), k[%(xj IR gjj) for each j,
sooccurs atx = O if and only if A; — 23", Aiv,pi,’j = 0 for each j.

On the other hand, the square of the distance of B(x) from a typical point
on NoM, with coordinates (0, ..., 0,cy,...,c,)is Y1 x2 + > 1(c, — a,(x))?,
whose Taylor expansion at 0 is Yy ¢; + >_1'x; =23, P xix;.

The quadratic form ¢g(x) := Txlz -2 Zr_’ ij Cr pi,’j x;x; is degenerate if and
only if, for some A; not all zero, the derivative Zi kig—z vanishes identically,
ie 2) A —4 Zm._j )\,-c,p’;jxj =0,ie 21 —4 an )\ic,p’}"i =0 for each
i. This coincides with the previous condition on setting ¢, = v,. The result
follows. O

Corollary 4.3.2 Any compact manifold M admits non-degenerate functions.

Proof By Theorem 4.2.2, M can be imbedded in Euclidean space. By Sard’s
theorem, the set of foci, which are critical values of a smooth map, is nul. So we
can choose P ¢ M not a focus, and then by the theorem Lp is a non-degenerate
function. O

We remark that compactness is inessential, and also that using the approxi-
mation clause in Theorem 4.2.2, we could obtain one here.
If P ¢ M, we can also replace Lp = ||P — 0|1 by the distance function

1P — 0l

4.4 Jet spaces and function spaces

We now introduce the methods for studying smooth mappings in general. We
begin by introducing the language for describing a mapping locally, near a
point.

Two functions f, g each defined on some neighbourhood of a point x of a
topological space X have the same germ at x if there is a neighbourhood of x
on which they take the same value. The definition applies whether the values
are real numbers or lie in any space. We talk of germs, or map-germs at (X, x).
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Lemma 4.4.1 Let f, g: R” — R™ be smooth map-germs at O such that the
values of f and all its partial derivatives of orders < r agree with those of g
at O. Let ¢, Y be diffeomorphisms of R®, R" keeping O fixed. Then the values
of ¥ o fo@ and all its partial derivatives of orders < r agree with those of

YogogpatO.

Proof The result is an immediate consequence of the chain rules for differen-
tiating a composite: ‘a function of a function’. O

For g, h: (V’, P) - M™ smooth map-germs, write g ~, h at P if, with
respect to some local coordinates at P and g(P), we have g(P) = h(P), and
all partial derivatives of order < r of g and & at P agree. By the lemma, this
is independent of the chosen coordinate system. Clearly, ~, is an equivalence
relation for maps defined on a neighbourhood of P. An equivalence class is
called an r-jet of maps from V to M at P. The set of all jets of maps of V to M
is the jet space J"(V, M).

Each jet is a jet of a smooth map at some P € V, so there is a natural
projection m, : J"(V, M) — V. Similarly (since r > 0), since two functions
g, h with the same r-jet at P have g(P) = h(P), there is another projection
7, J'(V,M) — M. We call the point 7r4(j) € V the source of the jet j and the
point 7,(j) € M its target. The map (ny, 7;) identifies J°(V, M) with the prod-
uct V x M. For any k > r > 0 there is a natural projection nf IRV, M) —
J'(V,M).

In terms of local coordinates (xj,---,x,) on V at P, (y1,--+,ym) on M
at Q, since two functions with the same partial derivatives define the same
jet, we may take these partial derivatives as coordinates in J"(V, M). If v =

(w1, - -+, w,) is a string of non-negative integers, write
X = (), 0 = (8/0x1)*" -+ (3/0x, )™,
ol =01+ -+ w,, W' =w!--w!

Then if f is a smooth map-germ on (V, P) to M with target Q, its partial deriva-
tives of order < r are the numbers u‘;’ =0,y; 0 <|w| =r1=j<m)and
these values determine the r-jet of f at P. We sometimes write y; for the con-
stant term u;.

Conversely, given a set of numbers a% (where the point (a;) must lie in the
prescribed neighbourhood of Q), there exists a corresponding smooth map-
germ: we may choose the polynomials y; = ZOSMS, ax”/w!. Hence the set
of r-jets j with source P and target Q is isomorphic to a Euclidean space. We
can take (x;, uj’) as local coordinate system in J"(V, M), and coordinate changes
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are smooth (they exhibit, again, the chain rule for partial differentials: we shall
spare the reader a detailed exhibition of them). We conclude that J"(V, M) is a
smooth manifold, and the projections 7y and 77, are smooth maps.

The above polynomial is called the polynomial representative of the r-jet (in
the given coordinates). It agrees with the sum of terms of degree < r in the
Taylor series expansion of f in the given coordinates. We are not concerned
here with the question of convergence of this series.

For f : V — M a smooth map, the equivalence class of f at a point P € V
is an r-jet at P, so f defines a cross-section j'f : V — J"(V, M) to m, which
is smooth since f (and hence all its partial derivatives) is. Here the restric-
tion to infinitely differentiable maps allows simpler statements: if g is a C¥
map (with continuous partial derivatives of order < N), then j'g is CV ™"
forr < N.

We can calculate the derivative of j” f: the following result will be used
explicitly below.

dj f(ax) —i—Zu +Z J% (4.4.2)
g u;

For dj? f(9/8x;) we add a further sum )~ , u'9/9u!', and so on.

Since JO(V, M) =V x M, j°f is just the graph of f. A 1-jet with source P
and target Q is determined by these points and a linear map 7pV — TpM, and
JUf(P) = (P, f(P), dfp).

One can also consider jets at more than one point. We define ,J*(V, M) to
be the subset of the r-fold direct product (J*(V, M))" consisting of r-tuples
(j1, - - ., Jr) such that the source points of the j; are all distinct. We do not insist
that the targets are distinct, and indeed we are largely interested in the case when
they are not. Extending the notation M® of §4.2, write V" for the set (the con-
figuration space) of ordered r-tuples of distinct points of V. Then the Cartesian
power (¥ ) : V" — (JX(V, M))" induces a map ,j*f : V) — L JKV, M). We
call ,.J*(V, M) the multijet space and , j* f the multijet of f.

We use jets to define topologies on spaces of smooth maps. One standard
topology on function spaces is the so-called compact-open topology, which we
call the C° topology. This is the topology on the space C°(X, Y) of continuous
maps X — Y defined by taking the sets

AK,U):={f|f(K) cU} with K C X compact, U C Y open

as a sub-base of open sets. It can be described as the topology of uniform con-
vergence of f on compact sets.
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There is also the fine topology (or fine C° topology), which we define by
taking the

BU):={f1(1x fH)X)cU} withUopeninX xY

as a base of open sets.

For smooth manifolds V” and M™, write C"(V, M) for the setof maps V — M
whose restrictions in any local coordinates have continuous partial derivatives
of all orders < r; in particular, C*°(V, M) is the set of smooth maps of V to
M. Taking r-jets gives an injective map j" : C"(V, M) — C°(V, J"(V, M)). The
topology on C"(V, M) induced by regarding it as a subspace of C°(V, J*(V, M))
with the compact-open topology is called the C” fopology, and the topology
induced from the fine topology is the fine C" topology.

The inclusion of C*°(V, M) in C"(V, M) induces topologies on it, and we
define the C* ropology to be the union of the C” topologies, in the sense that
a set is open if it is open in one of these topologies. Correspondingly, the fine
C® topology, which we christen the W topology, is the union of the fine C"
topologies.

Properties of these topologies are discussed in Appendix A.4. We summarise
some key results:

Both topologies on C*°(V, M) are completely regular. They agree if V is com-
pact.

With the C* topology, C*°(V, M) is a complete metric space. However, a
sequence of maps convergent for the W topology is eventually constant out-
side a compact set; hence this topology is neither metrisable nor even locally
countable.

The space C2(V, M) of proper C*° maps is open in C*(V, M) in the W™
topology.

The composition map C*(V, M) x C*(M,N) — C*(V, N) is continuous
for the C* topologies; however for the W topologies this fails unless V is
compact: more precisely, for the W topologies, C/(V, M) x C*(M, N) —
C>(V, N) is continuous, and the map C*(M, N) — C*°(V, N) defined by com-
position with f : V. — M is continuous if and only if f is proper.

Lemma 4.4.3 IfU is open in J*(V, M), the set of f : V. — M with j*f(V) C
U is open in C*°(V,M) in the W™ topology. If K is a compact subset of
V, the set of f:V — M with j*f(K) C U is open in C*°(V,M) in the C*®
topology.

This follows directly from the definitions of the topologies, and explains why
we need the W topology. In particular, since immersions are just the maps
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whose 1-jet takes values in the open subset of J!'(V, M) with dfp injective, it
follows that the set Imm(V, M) of immersions is open in C*°(V, M) in the W
topology.

It can be shown (see, for example, [73, 2.1.4]) that the set Emb(V, M) of
smooth embeddings is open in C*°(V, M) in the W* topology. We will see in
Corollary 4.6.4 that the set of injective immersions is open, which will suffice
for our purposes. It follows from this using the openness of C2(V, M) that the
set of closed embeddings is open, and hence taking V = M that the set Diff(M)
of diffeomorphisms of M is open.

The following result ties up the notion of approximation in function space
with more geometrical notions of equivalence.

Proposition 4.4.4 [fV is a compact manifold and f : V — M an embedding,
there is a neighbourhood U of f in C*(V, M) such that for any g € U, g is an
embedding and f and g are ambiently diffeotopic.

Proof Choose a neighbourhood W of A(M) in M x M and a map H : W x
[0, 1] = M as in Corollary 2.2.5. Now choose a neighbourhood U/ of f such
that

(i)forallge Vandall P € V, (f(P), g(P)) € W, so we can define a smooth
map f; by f,(P) = H(f(P), g(P), 1),

(ii) with the same notation, for each ¢ € [0, 1], f; is a smooth embedding.
Then f; is a diffeotopy of f to g, and by Theorem 2.4.2, this diffeotopy is
ambient. O

A topological space W is said to have the Baire property, or to be a Baire
space, if the intersection of any countable family of dense open subsets of W
is dense. By Baire’s Theorem A.4.5, any complete metric space has the Baire
property.

In a Baire space, a countable intersection of dense open sets is called a resid-
ual set. It is not in general open: in examples, to prove openness, further work
is required.

Since it has a complete metric, C*°(V, M) with the C* topology has the
Baire property. The result for the fine C* topology also holds: by Theo-
rem A.4.9, if F is any subspace of C*°(V, M) which is closed in the C* topol-
ogy then F, with either the C*° topology or the W topology, has the Baire
property.

From now on, unless explicitly stated otherwise, we use the W topology
on function spaces.
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4.5 The transversality theorem

Let V®, M™ be smooth manifolds, and let N* be a submanifold of M™. We say
that a smooth map f : V — M is transverse to N if for every P € V such that
f(P)=Q € N, we have df (TpV) + TyN = TyM. Equivalently, this states that
df induces an epimorphism of 7pV on TpM/TpN.

If dimV < codim N, the map df cannot be surjective: in that case transver-
sality requires f(V) to be disjoint from N.

The following result gives some indication of the geometrical meaning of
the condition.

Lemma 4.5.1 Let f:V — M be transverse to a submanifold N of M. Then
F~Y(N) = W is a submanifold of V, whose codimension equals that of N in M.
Moreover, dfp : TpV — TypyM induces an isomorphism of the normal space
Np(V/W)toW inV at P with the normal space Nypy(M/N) of N in M at f(P).

Proof Let PeV, f(P)=Q € N, and let N be locally defined at Q by x; =
--- =x, = 0, where the x; have linearly independent differentials at Q, and
¢ = codimN. Then, by transversality, the functions x| o f, - - - , x. o f have lin-
early independent differentials at P, and their vanishing defines W near P. That
W is a smooth submanifold follows using Corollary 1.2.6, as in the proof of
Proposition 1.2.10. The same calculation gives the isomorphism of the normal
spaces. O

We extend the concept as follows. Let N be a submanifold of J"(V, M). Then
we say that f is transverse to N if j" f is so.

Lemma 4.5.2 If K is a closed subset of V, and N a closed submanifold of
J"(V, M), the set of maps which are transverse to N at all points of K is open
in C*®°(V, M) in the W topology; if K is compact, it is also open in the C*®
topology.

Proof The differential of j"f is determined by the partial derivatives of f of
order < (r 4+ 1), and hence by j"*! . Since the set of linear maps R — R
which fail to be transverse to a given subspace of R” is defined by the vanish-
ing of some determinants, it is a closed subset. Thus the subset of J"*!(V, M)
of jets of maps transverse to N is open. The conclusion now follows from
Lemma 4.4.3. O

The transversality theorem states that the set of maps transverse to N is dense.
The full proof is somewhat technical, but the following simple idea lies at its
heart.
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Lemma4.5.3 Let N be a submanifold of M, andlet F : V x U — M be trans-
verse to N (for example, a submersion). Then for a dense set of u € U the map
fu: V. — M given by f,(x) = F(u, x) is transverse to N.

Proof Since F is transverse to N, by Lemma 4.5.1, W := F~Y(N) is a sub-
manifold of V x U. Denote by ¢ the composite W C V x U — U. By Sard’s
Theorem 4.1.3, the set of critical values of ¢ is nul, so for a dense set of u € U,
u is a regular value of ¢. We claim that for such u, f, is transverse to N.

If u is a regular value of ¢ and f,(P) = Q lies in N, then (P,u) € W, so
do(Tip,yW) = T,U. Thus W meets V x {u} transversely at (P, u). But this
implies that f, is transverse at P to N. U

This leads to a plan for proving the jet transversality result. First define
the partial jet map jiF : V x U — J'(V,M) of a family F : V x U — M by
JiF (v, u) := j f,(v), where f,(v) := F(v, u). Then seek to embed f in a fam-
ily F' : V x U — M such that the partial jet map j| F is a submersion, and hence
transverse to N. Then the set of u with f, transverse to N is dense in U.

It is not so easy to construct such a family directly, but we can do it near a
point, and will then be able to obtain the full result using the Baire property.
We develop the local results in a lemma.

Lemmad4.54 Let f:V’ — M™ be a smooth map, j" f(P) = Q. Then we can
find:

a neighbourhood W of f in C*(V, M),

a coordinate neighbourhood (Uy, 1) of PinV,

and a coordinate neighbourhood (U, ;) of Q in J"(V, M),
such that for each g € W there is a family G : V x Y — M with Gy = g, each
8u € W, and such that the restriction to Uy x Y of the partial jet map j|G takes
values in U, and is a submersion.

Proof Choose coordinate neighbourhoods of P with Uy C U and a chart ¢, :
U, — R"of f(P)inM.Let Bbe aC* functionon V to [0, 1], vanishing outside
Uj, and with B(U;) = 1.

Let ¢ be such that y € R™, ||y|| < ¢ implies that y is in the image of ¢,. Let
W be the set of g € C*°(V, M) such that for all x € U], ||o2(f(x))|| < &/3.

Let Y be the set of polynomial maps y : R* — R™ of degree < r, and let Y’
be the subset such that for x € ¢;(U;), we have ||y(x)|| < &/3.

For g € Wdefine G’ : U] x Y' — R" by G'(x, y) := g(x) + B(x)y(x). Since
this takes values y with ||y|| < ¢, it lifts under ¢ toamap G” : U{ x Y’ — M.
Now define G:V x Y — M by G(P,y) = G"(P,y) if P € U] and G(P,y) =
g(P) otherwise.
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We claim that j| G restricts to a submersion of U; x Y’ to J"(V, M). For on
this subset, G is given in local coordinates by G(x, y) := g(x) + y(x). Atx = 0,
this has Taylor series the sum of those of g and y. But by construction, the
tangent space to Y’ is Y, essentially the same as the fibre of 7r; : J(V, M) — V,
so the derivatives with respect to the y-coordinates span the tangent space to
the fibre. Since j"g is a section of m;, the derivatives with respect to the x-
coordinates span the tangent space to V. Thus the sum is indeed a submersion.
The same result holds for points x # O since although the Taylor expansion
at x is not the same as at 0, the space of all polynomials of degree < r is the
same. O

Corollary 4.5.5 Let f:V® — M™ be a smooth map, and let N be a subman-
ifold of J"(V, M) of codimension p. Let j" f(P) = Q € N. Then we can find a
coordinate neighbourhood Uy of P in'V, a coordinate neighbourhood U, of Q
inJ"(V, M), and an open neighbourhood W of f in C*°(V, M) such that

(a) For g e W, j g(Uy) C U,.

(b) For every g € W, there are maps h arbitrarily close to g in C*°(V, M)
such that j"h|U, is transverse to N.

Proof Define WV and construct G as above. Since jjG gives a submersion of
Uy x Y’ to J'(V, M), by Lemma 4.5.3, there exist y € Y arbitrarily close to 0
such that j"g, | U, is transverse to N. O

We can now prove the general theorem.

Theorem 4.5.6 (Transversality Theorem) Let N be a submanifold of J"'(V, M).
The set of maps f : V. — M transverse to N is dense in C*°(V, M), if N is closed,
it is also open.

Proof First let K be a compact subset of V. Then K can be covered by a finite
number of the neighbourhoods U} of the lemma. The intersection of the cor-
responding sets W, is an open neighbourhood W of f, and the subset of W of
functions g with g|U}* transverse to N is dense in W, by the lemma. Since by
Theorem A.4.10 the open set YV has the Baire property, the set of g € VV with
g|K transverse to N is also dense in W. Since this holds for some neighbour-
hood W of any f, the set T of g € C*°(V, M) with g|K transverse to N is dense
in C*(V, M). Also, T is open by Lemma 4.5.2.

Since V may be covered by a countable family of compact sets K, the density
result follows since C*°(V, M) has the Baire property. Openness is given by
Lemma 4.5.2. O
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The following addendum is often useful in applications, usually taking
X =09V.For f:V—- M and X C V denote by C*(V, M; f,X) the set of
g € C®(V,M) with g|X = f|X.

Proposition 4.5.7 Let N be a submanifold of J'(V, M), X a closed subset of
V, f:V — M transverse to N along X. The set of maps g € C*°(V,M; f, X)
transverse to N is dense in C*°(V, M; f, X); if N is closed, it is also open.

This follows from the same argument on making two changes. First, as well
as the sets U,, above, we choose open sets Ug which cover X and are such that f
is transverse to N along Ug: we then define Wy to be the open set of g transverse
to N along Ug. Secondly, note that by Theorem A.4.9, C*(V, M; f, X)is a Baire
space.

The Transversality Theorem is the general tool for proving ‘general position’
arguments in differential topology, and admits a wide variety of applications.
We spend some time giving such examples, beginning with the simplest.

The following easy application seems worth formulating explicitly.

Corollary 4.5.8 Given two embeddings f -V — M and ' : V' — M, we can
perturb f by an arbitrarily small diffeotopy to a map transverse to f'.

In general, the set of f satisfying a transversality condition is residual; by
further applications of Baire’s theorem, we see that the set of f satisfying a
finite, or even a countable, number of conditions of the above type is resid-
ual, hence dense. Thus given a countable family of submanifolds of various
JX(V, M), the set of maps transverse to all of them is a residual set. Moreover,
for those submanifolds of codimension > v, we know that transversality means
that j* f avoids these submanifolds. In particular,

Lemma 4.5.9 Given a finite or countable collection of submanifolds A, of
M, each of dimension < (m — v), the set of maps f : V® — M™ with f(V)N
U, A = 9 is residual in C*®(V, M).

Any embedding V. — M is diffeotopic to one avoiding all the A,.

The first assertion is an immediate consequence of the theorem, since
transversality to A, implies that the two are disjoint. The second follows by
Lemma 4.4.4.

The following was an early application of transversality.

Proposition 4.5.10 Let f:V — M be a smooth map, N a submanifold of
JNV, M), and suppose F closed in V such that f|F is transverse to N, then
f can be approximated by g, transverse to N, and with g|F = f|F.
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Proof First, by Proposition 2.3.4 (i), we can approximate f by a smooth map
g, and by (ii) of that result, we may suppose that g agrees with f on F.
The result now follows from Proposition 4.5.7. O

A case of particular importance is where V has boundary and we take F' =
dV. Even the case k = 0, where we seek transversality to submanifolds of M,
is significant, and is useful for applications to cobordism theory.

In many cases, we can show that the intersection is not only dense, but open.
Suppose we have a finite collection of submanifolds A; of J*(V, M). To say
that j*f is transverse to A; can be regarded as having j**!f avoid a certain
subset, N;, say, of JHLV, M). If the set F := U[]Vi of non-transverse jets is
closed, then by Lemma 4.5.2, the set of maps transverse to all the A; is indeed
open.

A collection of submanifolds A; of a manifold B is said to be A-regular
in the sense of Whitney if for each sequence x, € A; converging to a limit
y € A; and such that the tangent spaces T, A; converge to a limit T we have
TyA jCrT.

Lemma 4.5.11 Suppose {A;} a finite A-regular collection of submanifolds of
JEV, M) with (U, A closed. Then the set F :=|_J; N; of non-transverse jets is
closed. Hence the set of maps in C*°(V, M) transverse to all the A; is open.

Proof Suppose the condition is satisfied but that there is a sequence &, of jets
in F with limit n ¢ F. Passing to a subsequence, we may suppose that all
the x, = n,f“(én) belong to the same submanifold A; and that the sequence
T, A; of tangent spaces converges to a limit, t say. Since |J; A; is closed, the
limity = n,f“(n) of the x, belongs to A; for some j. Since A-regularity holds,
TA; Cr.

Now £, induces a l-jet of maps V — J¥(V, M) and hence a map d&, :
Tnie)V — T, J(V, M), and since &, € N;, we have d&,(Ty,¢,)V) + T, Ai #
Y}HJ"(V, M). Since the &, converge to n, it follows that dn(Ty,)V)+ t #
Y}J"(V, M). Hence a fortiori dn(Ty,)V) + T,A; # Tka(V, M), thusn € N; C
F, a contradiction. O]

In the case k = 0, where we are given a collection of submanifolds of M,
there is even a converse result. We do not give the statement; the crucial point
is that any linear map 7,V — T,M occurs as a 1-jet. It is however far from true
that any linear map T,V — T,J*(V, M) is induced by a (k + 1)-jet, on account
of the symmetry of higher derivatives.

Stratifications give important examples of collections of submanifolds, and
A-regularity is often defined in this context.
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We now define some submanifolds of jet space: the most important are
spaces of 1-jets. Recall that a 1-jet with source P € V* and target Q € M"
is determined by the points P, Q and a linear map g: TpV — ToM. We par-
tition these according to the rank of the linear map g: it is traditional to write
iV, M) for the set of 1-jets (P, Q, g) such that the rank of g is v — i. Write
also Xi(f) := {P € V| j' f(P) € Z/(V, M)}. Since the rank takes values from
0 to min(v, m), £ is empty unless

ifo > m,wehavev >i>0v —m;
ifo <m,wehaveov >i> 0.

Lemma 4.5.12 (i) The set of (v x m) matrices of rank (v — i) is a smooth
submanifold of codimension i(m — v + i) in the space of matrices.

(ii) X'V, M) is a smooth submanifold of codimension i(m —v +1i) in
J'(V, M).

Proof (i) In an open subset of the space of matrices, the first v — i columns are
linearly independent. The condition for rank » — i is then that the remaining
m — v + i columns each lie in a subspace of R” of codimension i. The same
argument applies if we use a different set of columns.

(ii) Using local coordinates with U; C V and U, C M, we see that the result
holds in the preimage of any U; x Us,. O

Thus the X form a stratification of matrix space, and the S{(V, M) a strati-
fication of J' (V, M). We may think of the closure of ¢ as a submanifold with
singularities: it is the union of the >J with j =1, and is a variety in the sense
of algebraic geometry. A first step in putting a map f into general position is to
make it transverse to the X', This is facilitated by

Lemma 4.5.13 The stratification X' is A-regular.

Proof Tt suffices to consider the submanifolds of the space of matrices, since
JY(V, M) is locally a product of V, M, and Hom(7.V, T,M).

We first show that the tangent space to %/ at a map ¢ € X' can be decom-
posed as a sum S; + S, where S is the set of linear maps ¥ with ¢ (Ker ¢) = 0
and S the set of those with Im ¢ C Im ¢. We can take coordinates such that the

matrix of ¢ is in normal form. Then the matrix (2 g), with A nonsingular

and r x r, has rank r if and only if D = CA~'B.If wetake A — I, B, Cand D
as infinitesimals, then to the first order this condition becomes D = 0. Thus we
have the sum of the subspaces S; (B =D =0)and S, (C =D = 0).

Consider a sequence ¥, — ¢ with all ¥, of the same rank. We may suppose
that both Ker ¢, converges to a limit K and Im 1, converges to a limit L.
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Then K C Ker ¢ and Im ¢ C L. We need to show that the tangent space at
¢ is contained in the limit, which is the sum of the set of maps with kernel
containing K and that with image contained in L. But this now follows. O

Corollary 4.5.14 The set of maps f : V — M with j' f transverse to each %'
is open in C*°(V, M).

This follows from Lemmas 4.5.13 and 4.5.11.

4.6 Multitransversality

In general, applying the transversality theorem allows us to control the
behaviour of a map f : V — M near a point of V. However, to describe the
image of f we must contemplate pairs of points of V with a common image,
and multitransversality is designed to enable us to do this.

An advantage of the above proof of the transversality theorem is that the
version of Lemma 4.5.4 for multijets is an immediate consequence, so the same
argument now leads to the multitransversality theorem.

Theorem 4.6.1 (Multitransversality Theorem) Let N be a submanifold of
JEV, M). The set of maps f:V — M such that ,j*f is transverse to N is
residual in C*°(V, M).

Proof We follow the same plan as for Theorem 4.5.6.

Step 1: As for Lemma 4.5.4, given a smooth map f : V* — M™ and points P;
(1 <j<r)inV,write j*f (Pj) = Q;. By that lemma, we have neighbourhoods
W; of f in C*(V, M), coordinate neighbourhoods WUp;, 9)) of P; in V, and
coordinate neighbourhoods (Up,, ¥;) of Q; in J¥(V, M) such that for each g €
W; there is a family G; : V x K; — M with G;o = g, each G;, € W;, and
such that the restriction to Up, x K of the partial jet map j{ G, takes values in
Up, and is a submersion.

Since the P; are distinct, we may suppose their neighbourhoods disjoint, and
since G; agrees with g outside a neighbourhood of P;, for g € W=, W;
we may combine these deformationsto G : V x Ky — M (with Ky := ]_[j K;),
where the value near P; is given by G;. Then the restriction to [ | ;Up; x Ko of
the partial jet map , j’l‘G takes values in [ | ;Ug; and is a submersion.

Step 2: follow Corollary 4.5.5. We are now given a submanifold N of
JEV, M), Let . j*f(Py,...,P.)=(Q1,...,0,) € N.For g € W we construct
G as above. Now since . j’l‘G gives a submersion to TRV, M, by Lemma 4.5.3
there exist k € K arbitrarily close to 0 such that j"g; | [] ;Ujis transverse to N.
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Step 3: By Lemma 1.1.6(i) (adapted to r-tuples), a compact subset K of V"
can be covered by a finite number of sets ] ;U ;" with the Uj‘?‘ compact and dis-
joint. The intersection of the corresponding sets W, is an open neighbourhood
W of f, and the subset of W of functions g with g| [ ] j U;" transverse to N is
dense and open in W. It follows using the Baire property that the subset 7 of
g with g|K transverse to N is also dense in VWV, and since this holds for some
neighbourhood W of any f, is dense in C*°(V, M); in fact, a residual set.

The result follows by another application of the Baire property. 0

Unlike Theorem 4.5.6, the set given by an application of Theorem 4.6.1 is
almost never open. In applications, we often want to prove we have an open
subset of mapping space, not just a dense one. It is thus necessary in some
way to ‘fill in’ the diagonal. This is usually accomplished by combining the
multitransversality condition with a simple transversality condition.

Lemma 4.6.2 Let A be a closed submanifold of WJNV, M) and U an
open neighbourhood of A(V) in V x V. Then the set of f € C*(V, M) with
2751 (VO N\ U) transverse to A is open in C*(V, M).

Proof By Lemma 1.1.6(ii), we can find a countable collection of pairs of dis-
joint compact sets (K, K,) in V such that {K,, K,} is locally finite in V, and
such that the | J, (K, x K,) 2 V@ \ U.

The condition that 5 j* f is transverse to A at all points of the closed subset
(Ky x K,) \ U defines an open set in C*(K, x K,, M) by Lemma 4.5.2, and
hence in C*(V, M), since the restriction map C*(V, M) — C*(K, x K, M)
is continuous (for as K, x K, is compact, its inclusion in V' is proper).

Now we have a countable family of open conditions on the restrictions of f to
members of a locally finite cover of V, so by the definition of the fine topology,
the intersection again gives an open set. O

We now have

Proposition 4.6.3 Suppose VW an open subset of C*°(V, M) and A a closed
submanifold of ,J*(V, M); write W* for the set of f € W with , j* f transverse
to A.

Suppose that, for each f € W*, each x € V has a neighbourhood U, such
that {g € W |, j*g| U® is transverse to A} is a neighbourhood of f.

Then W* is open in C*°(V, M).

Proof We first show that, for each f € W*, there exist a neighbourhood Uy of
A(V)in (V x V) and an open neighbourhood Wy of f in W such that, for all
geEWy, zjkg(Uf \ A(V)) N A = (. By hypothesis we have a neighbourhood
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U, for each x € V; we may suppose these open. Since they cover V, we can
pick a locally finite refinement {U,}. We set Uy := | J, (U, x Uy). By hypoth-
esis, the set of maps g € W satisfying the condition on U{® contains an open
neighbourhood of f; the same follows for U{». But by the properties of the
fine topology, the intersection Wy of a family of open sets defined by condi-
tions on members of a locally finite family of subsets U, of V is open in the
W topology.

By Lemma 4.6.2, the set X of maps with 5 j*f | (V x V' \ Uy) transverse to

A is open in C*°(V, M), so Wy N Xg is open. But this is a neighbourhood of f
in W*. O
Corollary 4.6.4 The set of injective immersions is open in C*(V, M).
Proof We can take W as the set of immersions V — M and W* as the set
of injective immersions: then it suffices to show that, for each f € WW*, each
x € V has a neighbourhood U, such that {g € W | g|U, is injective} is a neigh-
bourhood of f.

But this is clear: we can take coordinates at x and f(x) in which f| U, is the
inclusion of the unit disc U in R” into R™; then the maps whose restriction to
a closed disc of smaller radius project immersively to R” form an open set (we
have a compact subset of V and an open subset of J!(V, M)). O

Given two subspaces Py, P, of a vector space Q, we say that they are transver-
salif P; + P, = Q: this condition is stable under perturbations. The correspond-
ing condition for a set of several subspaces P; of Q is less familiar. We require
each P; to be transverse to the intersection of the others. The neat formulation is
that the set {P;} of linear subspaces of Q is mutually transversal if the diagonal
map from Q to P,(Q/P,) is surjective; equivalently, if the map from Q ), P;
to P, O, where the first summand is mapped by the diagonal, is surjective.

All our explicit applications of the multitransversality Theorem 4.6.1 follow
a common pattern. Suppose we have submanifolds A; (1 < i < r) of jet space
J¥(V, M): then define (A, ..., A,)a to be the submanifold of ,J*(V, M) of mul-
tijets (ji, ..., jr) with each j; € A;, and all 7,(j;) equal. (For convenience, we
take all submanifolds in the same jet space, but if k < [, the preimage of a
submanifold A C J*(V, M) in J'(V, M) is a submanifold A* of the same codi-
mension, and f is transverse to A* if and only if it is transverse to A.) Observe
that

codim(A;,...,A)a = Zcodim(Ai) + (r— Dm.

For f:V — M, write A;(f) := {x € V| j* f(x) € A;}.
Lemma 4.6.5 Suppose P; € V with j*f(P;)) € A; and j*f transverse to A; at
P, for each i, and each f(P)) = Q. Then ,j*f is transverse at (Py, ..., P.) to
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(A1, ...,A)a if and only if the subspaces df (TpA;f) of ToM are mutually
transversal.

Proof Write j; := jkf(Pl-). The tangent space at (ji, ..., j,) to (A1, ..., A)A
is the pullback of the diagonal under the projection @, T;,A; — €, ToM. Thus
transversality holds, i.e. T(Ay, ..., A,)a €D; TpV maps onto @i(T/}Jk) if and
only if the map ToM @ TV P T;A: —> D(ToM @ T;J*) is surjective.
Since transversality holds at each P;, Tp,V @ T;A; surjects to T;J*, and we
have Tp (Ai(f)) = Ker(TpV — T,-,.Jk /T;A;). Thus the condition holds if and
only if ToM P TpA;(f) maps onto €P,; TpM, which is equivalent to the stated
condition. O

Our first application is a simple general result.

Proposition 4.6.6 The set of self-transverse immersions f :V — M is open
and dense in Imm(V, M).

Proof First consider the submanifold (J°, J%) A of ,J°(V, M) consisting of pairs
of 0-jets with a common target. By Theorem 4.6.1, the set of maps f : V — M
with 5 jO f transverse to (J°, J°), is dense in C*®°(V, M). By Lemma 4.6.5, , j° f
is transverse to (J°, J%), at a point (P, P,) with f(P}) = f(P,) = Q if and only
it df(Tp, V) + df (Tp,V) = TyM, i.e. the branches of f(V) at P; and P, meet
transversely at Q.

Since Imm(V, M) is open in C*°(V, M), it follows that the set of immersions
f with this property is dense in Imm(V, M). Higher intersections are dealt with
in the same way using J°, ..., 0% . IOV, M).

For openness we use Proposition 4.6.3. Again we give the details
only for the case r=2. The result will follow if for each self-
transverse immersion f, each x € V has a neighbourhood U, such that {g
W zjkg| Uf) is transverse to (J°, J%)A} is a neighbourhood of f.

But since f is an immersion, each x € V has a neighbourhood U, embedded
by f. Since the set of embeddings is open, the set of maps of V restricting to
an embedding of U, is also open. O

4.7 Generic singularities of maps

In this section we apply the general theorems to reduce singularities of maps
to general form. We first give applications of jet transversality, then deal with
multijets. As well as showing that maps with a certain form are dense in the
space of all maps, we also show they form an open set, so that the simplifications
do not disappear under small perturbations. We first consider the case m = 1.
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Theorem 4.7.1 Non-degenerate functions are dense and open in C*°(V, R).

Proof Asm =1, X"isempty unlessi = v ori = v — 1, and £°~! is smooth of
codimension v. By Theorem 4.5.6, the set of functions f which are transverse
to X*~!(V, R) is dense and open.

Now j'f(P) € =1 if and only if dfp = 0: P is a critical point of f. We
claim that j' f is transverse to £~ if and only if f is non-degenerate: this will
imply the result.

Take local coordinates {x;} at P and y on R, and write u; for the coordinate
on J!'(V, R) corresponding to dy/dx;. Now apply the calculation (4.4.2), which
reduces here to dj' f (%) = % + u’% + Y u* 52 Since £°~! is defined by
the equations u; = 0, its tangent space is spanned by d/dy and the d/9x;. These
together with the dj' f <%) span T ¢p)J 1(V, R) if and only if the matrix u’* =

(3% f/dx;0x;)p is nonsingular, i.e. P is a non-degenerate critical point of f. [

For the case m = 2, we have

Theorem 4.7.2 Maps f with the following properties form a dense open subset
of C>*(V?, M?): x02 (f) is empty, so-l (f) is a smooth curve, and at each point
of Z~1(f), there are local coordinates in which j? f is given by either

(x1, Zf’j:z bjjxix;) with (b,»j);”j:2 nonsingular or

(x1, x1%0 + Zf’j:\; bjjxix;) with (bij)ﬁj:3 nonsingular;
in the latter case, the coefficient of x% in y, is non-zero.

Proof ByLemma4.5.12, £~ has codimension 20 and %"~! has codimension
(v — 1). It thus follows from Theorem 4.5.6 that the set of maps f : V¥ — M?
such that X°~2(f) is empty and f is transverse to X"~! is dense, and from
Corollary 4.5.14 that this set is open.

Since f is transverse to 7!, £*~!(f) is a smooth curve in V. We now need
to calculate. We choose local coordinates at a point of X°~!(f) such that the
1-jet of fis (x1, 0). The 2-jet is then of the form

(X1 + Zaijxixj, Zb,’jxix]') .

Essentially the same calculation as in the preceding proof using (4.4.2) shows
that this 2-jet is transverse to X°~!(f) if and only if the vectors

v
Zb,-jxj(2 <i<wo)

J=1

are independent.
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There are now two cases. In general, the matrix B := (b;;); ;_, is nonsin-
gular. We may then make a linear substitution x; = Xx; + A;x; to reduce the
bi,j (j > 1) to zero, and the further change of coordinates x| = x; + Y a;;x:x;,
Vo =y — bl,ly% reduces the 2-jet to (x, Z?_j:z bijxix;). We label this case
>o-10 For f in this form, the tangent space to E”’l(f) is the x;-axis, and
the restriction of f to £°~!(f) is an immersion.

Otherwise the matrix B has rank v — 2, so by a change of coordinates
X2, ..., X, we can reduce to the case when b, ; = 0 for 2 < i < v. The transver-
sality condition now implies that b; » # 0. Coordinate changes as before allow
us to reduce the 2-jet to the form (xy, x;x; + Zf =3 bjjx;x ;). We label this case
»v~L1 For f in this form, the tangent space to X°~!(f) is the x,-axis, and the
restriction of f to X°~!(f) is not an immersion.

We have effectively defined X°~!! as a subspace of J>(V, M): it has codi-
mension 1 in the space of 2-jets defining maps transverse to X°~!. A further
application of the transversality theorem tells us that for a dense set of maps,
j2f is also transverse to this.

Since X*~!! was defined as a subset of X°~! by the vanishing of det(B),
f is transversal to it if and only if dj%f(9/dx;) maps onto the normal space
to this. In the neighbourhood of a matrix B of rank » — 2 and with b, ; =0
for 2 < i < v, the normal space is spanned by b, ,. Since the tangent space to
XU~ 1(f) is the x,-axis, we need to evaluate d;? f(d/dx,). Again using (4.4.2),
we see that the desired condition holds if and only if the coefficient of x% iny,
is non-zero.

For openness it suffices by Lemma 4.5.11 to prove that the set of submani-
folds of J? defined by £°~2, £°~19 and =¥~ !! is A-regular; the only non-trivial
case is a sequence in X°~ 1! with limit in £*~2. But as X"~ is the set of jets
with zero 1-jet, the inclusion of tangent spaces follows. O

In the final case, the condition that the coefficient of xg in y, is non-zero
implies that f(X°~!(f)) has a simple cusp.

A -

Figure 4.2 A cusp singularity
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In Figure 4.2, we illustrate a cusp singularity of a map M> — R? as the
projection of a surface M embedded in R3, together with the discriminant set
FE()) C R

Finally, we consider cases with m large compared to v.

Theorem 4.7.3 Maps f with the following properties form a dense open subset
of CX(VY, M™):

ifm > 2o, fis an immersion,

if 2m > 3v — 3, 2(f) is empty and f is transverse to %', so L'(f) is a
smooth submanifold of V of dimension 2o —m — 1,

if 2m > 3v — 1, the 2-jet of f at any point of X' (f) can be reduced to the
form

1 . .
V=24, y =% 2 < j<0), it =05 2 <i<m—v+1).

2
4.7.4)

Proof By Theorem 4.5.6, the maps transverse to all the >/ form a dense set,
and by Corollary 4.5.14 it is also open.

Since m > v, the codimension of X! ism — v + 1. Thus if m > 20, the maps
avoiding >! i.e. immersions, are dense and open in C*°(M, V). This already
sharpens Theorem 4.2.3.

Next, the codimension of X2 is 2(m — v + 2), so provided this exceeds v,
i.e. 2m > 3v — 3, for a dense open set of maps f, we have Ez(f) =@ and f
is transverse to X!. We choose local coordinates in which the 1-jet of f at P
is given by (0, x, ..., x,, 0, ..., 0), thus d/9dx; spans ker(df). Thus at j'f(P),
%! is locally the set of jets such that the first row of (uj,) is a linear combination
of the rest, and the tangent space of X! is given by infinitesimal vanishing of
uj andu} forv < j < m.

From the calculation (4.4.2) we see that the coefficient of 9/ 814_} in
dj' f(3/3x;) is u}i, ie. Bzyj/axlaxi.

Now f is transverse to X! if and only if dj' f(TpV) spans the normal space
to T', i.e. the matrix (82 f;/0x10X;)j=1,p<j<m,1<i<p has rank m — v + 1.

Consider the subvariety £ ! of J2(V, M) consisting of jets in X! at P such
that ker(df)p C TpX'(f). Since %'(f) has codimension m — v + 1, and we
now impose m — v + 1 further conditions, X! has codimension 2(m — v + 1).
By Theorem 4.5.6, provides this exceeds v, i.e. 2m > 3v — 1, the condition that
J2f(V) avoids £, i.e. at each point of Z'(f), dj' f(ker df) is not tangent to
%!, holds for a dense set of maps f.

The condition for this tangency is that dj' f(3/dx;) lies in the subspace
where the coefficients of 3/du; and 8/duj for v < j < m vanish, i.e. that
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3%f1/0x; = 0and 82 f;/dx} = 0forv < j < m.If this condition does not hold,
we may suppose, after replacing y; and the y; for v < j < m by linear combi-
nations, that 3% f; /0x] = 1 and 8°f;/0x; = 0 forv < j < m.

It now follows that the matrix (3> fi/0%10x;)p < j<m,2<i<, has rank m — v. We
can thus make a linear transformation of the y; with v < j < m to arrange that
Bzfj/axlaxi = 1 for j = v — 1 4+ i and vanishes otherwise forv < j <m,2 <
i < v. Thus the 2-jets take the form

yi =35+ 01(x2, -+, %),

yi=x;+Qi(x1, - ,x,),for2 < j <o,
Yito—1 = X1% + Qigp—1(x2, -+ ,x,)for2 <i<m—ov+1,
where the Q; are quadratic. Finally, if we make the coordinate changes
Xy =xj+ Qjlxr, -+, x),
Yi=y1—0i(y2, -+, y), and
Y;+1)_1 = Yitv—1 — Qito—1(V2, ==+, W),

the quadratic terms drop out too.

For openness we could seek to show that A-regularity continues to hold when
we throw in 1!, It is easier to apply the method of Proposition 4.6.3. Write W
for the set of f € C®(V, M) transverse to the £/ and W* for the set of f € W
with j3 f transverse to 1!, Since for any f € W, j2f(V) avoids X2, it avoids
a neighbourhood Uy of £? in J3(V, M), hence there is an open neighbourhood
Wy of fin W such that, for all g € Wy, j2g(V) avoids U.

In the complement of U we only need to consider £*° and £?!, and here
the A-regularity condition trivially holds (the latter is a smooth submanifold
of codimension 1 in 2 and the former is its complement). By Lemma 4.5.11,
transversality defines an open subset of Uy. It follows that W* N Uy is open in
Uy, so W* contains an open neighbourhood of f. O

We now give applications of multitransversality: we treat the cases in the
same order, so begin with functions f € C*°(V). Recall that the critical values
of f are the f(P) with P a critical point of f.

Proposition 4.7.5 Non-degenerate functions with all critical values distinct
form a dense open set in C*°(V).

Proof By Theorem 4.7.1, functions with only non-degenerate critical points
are dense. As the submanifold (£°~!, £?~1), of ,J'(V, R) of pairs of singular
jets with the same image has codimension 2v + 1, it follows from the Multi-
transversality Theorem 4.6.1, that functions avoiding it are also dense. As these
are both residual sets, so is their intersection.
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For openness it suffices, by Proposition 4.6.3, to show that for each non-
degenerate function f with distinct critical values, each x € V has a neigh-
bourhood U, such that the set of non-degenerate functions g whose restriction
to U, has distinct critical values is a neighbourhood of f. Choose a coordi-
nate neighbourhood U; so that f has at most one critical point on U/, and
let U, be the neighbourhood defined by a disc of half the radius. Then the
set of non-degenerate functions on V with at most one critical point in U,
is open. O

We come to target dimension 2.

Theorem 4.7.6 For any V°, M?, maps with the following properties form a
dense and open subset of C*°(V, M):

the singular set of f is a smooth curve X(f) embedded in'V,

f1Z(f) is a smooth embedding except that

(a) for a discrete set of points P € X(f), the curve f(X(f)) has a cusp at
f(p),

(b) for a discrete set of pairs (P, Q) of points in X(f) (all distinct from the
cusps), f(X(f)) has a transverse self-intersection at f(P) = f(Q).

Proof We give the proof of density: openness is more technical and is best
established using methods described in the Notes §4.9.

Most of the conclusions were obtained in Theorem 4.7.2, but we have yet to
consider double points of f(XZ(f)).

First apply the multitransversality theorem to the submanifold
(zv~b1 s, of ,J*(V, M). This has codimension v 4+ (v — 1)+ 2, so
is avoided by a dense set of maps; thus cusps will not be double points.

Now apply the theorem to (zv-!, =v=1),. This has codimension (v — 1) +
(v — 1)+ 2, so occurs at isolated points. It follows by Lemma 4.6.5 that the
self-intersection of f(X(f)) is transverse at such points. O

For the cases of large target dimension, we have

Theorem 4.7.7 Maps f with the following properties form a dense subset of
C=(V?, M™) if V is compact, or of C;7(V, M) in general:

(i) If m > 2v + 1, fis an embedding.

(ii) If m = 2o, f is an immersion with isolated points of transverse self-
intersection.

(iii) If 2m > 3v — 3, 22(f) is empty and f is transverse to X', so L' (f) is
a smooth submanifold of V of dimension 2v — m — 1.
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(iv) If 2m > 3v, f is an embedding except as follows. There are double
points, forming a submanifold D(f) of dimension 2v — m, and singular points,
forming a submanifold X' (f) of dimension 2v — m — 1. Near ='(f), f is given
locally by (4.7.4). Hence the closure D(f) of D(f) is D(f) U ='(f) and is
smooth, and f(D(f)) is a submanifold of M with boundary f(Z'(f)).

(v) If 2m = 3o the same holds, except that now D(f) is immersed with trans-
verse self-intersection, and f(D(f)) can have triple points with transverse self-
intersection.

Proof We extend the results of Theorem 4.7.3. For (i), we may suppose f an
immersion, and apply multijet transversality to (J°, J%)A. Since this has codi-
mension 20, it is avoided by a dense set of maps. Thus injective immersions
are dense in C*°(V, M); now any proper injective immersion is an embedding
by Proposition 1.2.10.

Now (ii) follows using Proposition 4.6.6.

We make three further applications of the multitransversality Theorem 4.6.1.
First consider the subvariety (X!, J')a of »J'(V, M) consisting of pairs of jets
with the same image, one of which (say the first) is singular. As this has codi-
mension m + (m — v + 1), if 2m > 3o, the set of maps avoiding it is dense.

Next consider (J°, J%)o: by Lemma 4.6.5, , j° f is transverse to this at (P;, P)
if and only if df (Vp, ) + df (Vp,) = M. By the previous paragraph, neither P
nor P, is a singular point, so we have a transverse intersection of smooth pieces
of the image, giving the set D(f) of double points of f.

Finally consider the subvariety (J°, J°, J%)A of 3J° of triples of jets with the
same image. Since this has codimension 2m, if 2m > 3o it follows by mul-
titransversality that the set of maps avoiding it is dense. If 2m = 3o, this will
appear at isolated points, and by Lemma 4.6.5, the three branches at such points
are mutually transverse.

We have seen that D(f) is an immersed submanifold; when there are no triple
points it is imbedded. That D(f) remains a manifold near X'(f), with !(f)
as its frontier, follows from the equations (4.7.4). Now D(f) is simply given by
x; =02 <i<m-—o+ 1) (modulo higher terms). Moreover f(D(f)) is also
a submanifold, except perhaps near f(X'(f)); but there it is locally given by
y120,y,=02=<j<m—-v+Dand (0 +1=<j=<m).

To prove openness it again suffices by Proposition 4.6.3 to show that, for each
[ satisfying the conditions, each x € V has a neighbourhood U, such that the set
of maps g whose restriction to %' (g) N U, is injective is a neighbourhood of f.

By Theorem 4.7.3, we may suppose that at the point x, either f is an immer-
sion (in which case the immersions give a neighbourhood of the desired type),
or the 2-jet of f has the form (4.7.4): y; = %xf, yj=x;for2<j<v,and
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Figure 4.3 A Whitney umbrella

Vigo—1 =X1X; for2 <i <m—ov+1; so El(f) is given (to the first order) by
x; =0for 1 <i <m— v+ 1. Restricting to a small neighbourhood U we see
that for any nearby g, the coordinates x; for i > m — v 4 1 are independent on
% !(g) and define an injective map of it. O

We can now give a fuller statement of Whitney’s Embedding Theorem.

Corollary 4.7.8 For any smooth manifold V" there exist proper smooth embed-

dings V® — R™ whenever m > 2v. The image of such an embedding is a closed
submanifold of R™.

The existence of proper maps V — R™ is given by Corollary 2.2.10 and of
proper smooth maps follows from Proposition 1.1.7; it follows by the theorem
that there exist proper smooth embeddings. The final statement follows from
Proposition 1.2.10.

It also follows that for a dense open set of maps of a compact smooth sur-
face to 3-dimensional space, the possible types of singularity of the image
are the curves D of (transverse) self-intersections of the surface, triple points
where three sheets meet transversely, and a set S of isolated singular points,
where the map is locally of the form (modulo higher terms, but we will see in
Theorem 4.8.5 that these are unnecessary)

Flx1, %) = (7, x2, x1%2),

so here the image is defined by y3 = y;y3 and D is the curve y, = y3 = 0, y; >
0. Points of this type are known as Whitney umbrella points: an example is
pictured in Figure 4.3.
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Although the results using multitransversality always give a partial descrip-
tion of the picture of the map in the target manifold M, this should be treated
with caution unless we restrict to the space C;2(V, M) of proper maps. We
already saw this in §1.2 when discussing the notion of submanifold. More-
over, though we have proved that the set of such ‘excellent’ maps is open, we
have used the W™ topology, which is somewhat counterintuitive. For example,
it is possible to construct a non-degenerate function with distinct critical values
which are dense in R: maps nearby in the C* topology need no longer have
distinct critical values.

4.8 Normal forms

We show in this section that in each of the cases studied in the preceding section,
we can choose local coordinates to reduce the map f to a precise normal form.

We begin by showing that a mutually transverse set of submanifolds has as
local normal form a set of linear subspaces of a vector space.

Lemma 4.8.1 Suppose the submanifolds V; of M each contain a point P, and
suppose that the subspaces TpV; of TpM are mutually transverse. Then there
exists a chart ¢ : (U, P) — (R™,0), with U a neighbourhood of P in M, such
that each (V; N U) is an open subset of a coordinate subspace of R™.

Proof For each i, if V; has codimension r;, we know that there is a set of r;
smooth functions on M, each vanishing on V;, whose differentials at P are lin-
early independent.

It follows from the definition of mutual transversality that the differentials
of all these functions at P are linearly independent, so we can extend them
to a basis of 7, M by adjoining the differentials of a further m — ), r; smooth
functions. It follows from the Inverse Function Theorem that the set of all these
functions defines a chart at P, and by construction, this has the desired property
on some neighbourhood of P. O

A normal form theorem for non-degenerate functions is proved as follows.
First take local coordinates with source O € R™ and target 0 € R; then by linear
algebra reduce the 2-jet of f to the form ) ;' sixiz, with each ¢; = £1.

Proposition 4.8.2 (Morse Lemma) Let f be a smooth function on a neigh-

bourhood of 0 in R" with 2-jet y | aixiz, where each ¢; = 1. Then there is a
dy
),

smooth coordinate change y = y(x) such that y(0) = 0
fx) =Y ext

= 1,, and near 0,
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Proof We have f(0) = 0, so by Lemma 1.2.3 there exist near 0 smooth func-
tions f; with f(x) = > x;fi(x). Also, f;(0) = %
result again to obtain h;; with fi(x) = > x;h;(x). Write g; j(x) = %(h,-j(x) +
hji(x)). We think of f(x) = > ij &, j(x)x;x; as a quadratic form, and diagonalise.

0= 0, so we can apply the

Note that
1 0%f 0 i#j
8.0 = 2 0x0x; | { =]
i0%jlo & 1=1].
Sety, = (Slgn(x))_l/z(Z?:l g1;x;)- Then
W, g ifi= 1, and fe) =12 + Z ¢ (e,
ax; 0x; ij

i j=2

We now repeat the reduction, observing only that although g’” (x) depends on
X1 we can express x1 by y;, and the dependence is smooth. Eventually we obtain
the required result. U

For the remaining cases we require further machinery, which is provided by
the Malgrange Preparation Theorem. To formulate this, we need some nota-
tion. Denote by &, the ring of germs at 0 of smooth functions on R” under
pointwise addition and multiplication. This is a local ring with maximal ideal
m,, consisting of germs of functions vanishing at 0. This is closely related
to our introduction of jets: it follows from Lemma 1.2.3 by a simple induc-
tion that a function-germ f on (R”,0) has zero r-jet: f ~, 0: if and only
if fem/tL

Theorem 4.8.3 (Malgrange Preparation Theorem) For u : R™ — R" a map-
germand fi, ... f, € En, the following are equivalent:

the f; generate &,, as module over &,,

the images of the f; generate £, /u*m,.E,, as real vector space.

We omit the proof: see Notes §4.9 for references.

By Theorem 4.7.2, for a dense open set of maps f : V* — M?, local coordi-
nates can be taken at any point P € V such that we have either a submersion, a
map with 2-jet (xi, Zf j=2 bijxixj) with (b;;) nonsingular, or a map with 2-jet
(x1, x1x%0 + Zf =3 b;jx;x ;) with (b;;) nonsingular, and a non-zero coefficient of
x? in 2.

Theorem 4.8.4 For a dense open set of maps f : V' — M?, local coordinates
can be taken at any point P € V such that f takes one of the forms
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(x1, x2),
(X1, D0, &ix?), or
(v, X120 4+ 23 + Y05 &)

We give the proof only for v = 2.

Proof In each case, y; has 1-jet x;. First simplify by taking x| = y;(x1, x2),
x, = x,. By the Inverse Function Theorem 1.2.5, this is an allowed coordinate
change, and it reduces us to the case y; = x;.

We recall that by Lemma 1.2.3, if g is a smooth function and g(0) = 0, there
exist near 0 smooth functions g; with g(x) = ) x;g;(x). We can thus write y, =
X1A| + xA;. As y, has 2-jet x%, each of A; and A, vanishes at 0, so applying
the lemma again gives y, = x%A“ + x1%0A12 + x%Azz.

Thus the ideal f*my.E, = (y1,y2) = (xl,x%An + X124 12 +X§A22) =
(x1, x%An). But A5, (0) # 0, so Ay, is invertible, hence the ideal coincides with
(xl,xg), and the quotient &, /u*m,.E, is generated by {1, x;}. In case (iii) a
similar argument shows that the ideal is equal to (x|, x3), and the quotient is
generated by {1, x, x3}.

In case (ii), it follows by Theorem 4.8.3 that &, is generated over &, by {1, x,}.
Thus we can write y,(x1, x2) — x5 = A(y) o u, y2 o u) + x2B(y1 o u, y; o u) for
some C* functions A, B. Now change coordinates first by x), = x, + ZB(y; o
u,y, ou) to eliminate B; then by ¥, =y, — A(y1, ¥2) to achieve the desired
normal form.

In case (iii), &, is generated over &, by {1, x,, x%}. We can thus write

B =(Acf)+xBof)+35(Cof),
where we omit the explicit dependence of A, B and C on y; and y,. So
(x, —C)> = (A4 BC +2C?) + (x, — C)(B + 3C?).
If we can substitute
X, =(B+3C)of, x,=x,—Cof, y,=B+3C? y,=A+BC+2C°,

we indeed obtain

Yi=x, =% —xxn.
Equating successively coefficients of x;, x;x, and x3 shows that the 1-jet of A
is y» and the 1-jet of B has the form —y; 4 ay,. Hence by the Inverse Function
Theorem, the change of y coordinates is legitimate. Now the 1-jet of Bo f is
—x; and the 1-jet of C o f has the form x|, so also the change of x coordinates
is legitimate. O
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In Theorem 4.7.3 we saw that if 2m > 30 — 1, maps f with the following
properties form a dense open subset of C*(V?, M?): £2(f) is empty, f is trans-
verse to X!, and the 2-jet of f at any point of £'(f) can be reduced to the form

1
i :Ex%’ yj=xjfor2 <j<wo, yiyp_1=xixifor2<i<m-—o+1.

Theorem 4.8.5 There exist local coordinates in which f takes precisely this
form.

Proof Here Theorem 4.8.3 gives generators {1, x;}. So we can write

yi = 323 +x141(0) + B1(),

Yy =xj+x1A;(y)+ Bj(y)for2 < j <wv,and

Yito—1 = X1% + X1Ai4o—1() + Bip—1() for2 <i<m—o + 1;
moreover equating terms of order 2 shows that the B, have zero 1-jet, and the
1-jet of each A; is a linear combination of the y; withi = 1 ori > v.

First substitute x] = x; + (A1 o f); this reduces the map to a map of the same
form, but with A; absent. We continue to write A ;, B}, etc. for the new terms.

Next substitute x/j =x;j+x1(Aj0 f)+ (Bjo f) for 2 < j < ; this elimi-
nates A; and B; but gives yi,—1 = x1(x; — x14;(y) — Bi(y)) + x1Air0—1(y) +
Bipy_1(y)for2 <i<m—v+1.Nowsety, , | =yiro—1 + 2y14;(y) to elim-
inate the term in x%, and renotate as before.

Thirdly write x; = x; + (Aj;p—1 0 f) for 2 < i <m — v + 1. We now have

Y1 =35+ Bi(y),

i =x; —Ajp-1(y)for2 < j <o, and

Yito—1 = X1%; + Bipp(y)for2 <i<m—ov+ 1
By the Inverse Function Theorem 1.2.5, the equations y| =y — Bi(y), Y, =

Vi +Aio-100s Yipy_1 = Yito—1 — Biyp—1(y) can now be solved to give a coor-
dinate transformation; making these substitutions reduces f to the stated
form. &

4.9 Notes on Chapter 4

§4.1 Sard’s work followed that of Brown [32] which obtained a weaker result
sufficient for most applications. There is a neat account of the proof in Milnor’s
little book [100].

§4.2 Whitney’s great paper [175], although written in terms of explicit
inequalities, effectively also introduced the W topology on the space of maps.

§4.3 The elementary argument here essentially goes back to Monge. A simi-
lar account is given by Milnor [98, I]. The importance of non-degenerate func-
tions will appear in §5.1.
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§4.4 Jets were first introduced by Ehresmann [48]. Their application to sin-
gularities was pioneered by Whitney, and systematically promoted by Thom
[153].

A general discussion of these function space topologies, with references for
proofs, is given, for example, in [121, §3.4]. A number of proofs are given in
[73, §2.1] (but with a number of errors); another useful reference is [57]. The
account in §A.4 includes proofs for the C” cases, which can be adapted to the
C® case.

There is no general agreement on terminology for these topologies. Some
authors refer to the Thom topology for C*° and to the Whitney topology for W,
though neither of these authors formally introduced these topologies. Indeed,
the first formal use of W seems to be in [88]. A discussion of their origins is
given on [47, p. 59].

§4.5 The idea and use of transversality was introduced by Thom in [150]. The
original proof was somewhat clumsy, but soon evolved to essentially the one
presented here. An abstract form of the argument was given by Abraham [1].

Direct construction of families allowing use of Lemma 4.5.3 was given in
many cases in [168].

The submanifolds X! were first introduced by Thom, as were extensions to
higher orders. A precise account, with the notations X%/ etc., was given by
Boardman [19]. Whitney’s regularity conditions were first formulated in [180].

The transversality Theorem 4.5.6 can be adapted to obtain results about
1-parameter families of mappings. We consider such a family as a map F :
V xR — M x R of the form F(x,t) = (f(x,t),t): F is compatible with pro-
jection on R; we say that it is level-preserving. If N is a submanifold of
J'(V x R, M x R), we wish to make j F transverse to N allowing only per-
turbation of F through level-preserving maps.

The idea of the proof of Theorem 4.5.6 is to embed g in a family G : V x
U — M such that the partial jet map jiG : V x U — J"(V, M) is a submersion,
and then apply Lemma 4.5.3; moreover we constructed G by piecing together
maps locally constructed as G’ : X x ¥ — R” defined by G'(x, y) := g(x) +
B(x)y(x), where X is a coordinate chart for V and Y is the set of polynomial
maps y : R” — R” of degree < r.

To adapt this to 1-parameter families, we must replace Y by the set Y7 of
level-preserving polynomial maps R**! — R™*! of degree < r. We then need
to require that N is a submanifold of J"(V x R, M x R) transverse to the set
of level-preserving jets. In practice, it is more efficient to use the methods of
Mather mentioned below.

Consider in particular M = R and N = %"~!. A generic map f meets this
only at its (isolated) critical points, all non-degenerate. It can be shown that a
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generic homotopy F can be locally put in one of the forms of Theorem 4.7.2:
(X1, X%2), (x1, Yoy EX?) OF (X1, X1X2 + X3 + Y5 £x7), with x; = # the param-
eter in R. In the first case, f; has no critical point; in the second there is a crit-
ical point at the origin; in the third, there are no critical points if ¢ > 0, but if
t = —3u? there are two critical points, at (u, 0, ..., 0). This gives the model
for the deformation of a function corresponding to the handle cancellations
considered in §5.4.

In Lemma 4.5.13 T offered a direct proof of A-regularity: however, it fol-
lows from the fact that the strata are the orbits of the natural action of
GL(V) x GL(M) that the stratification is locally trivial, which is stronger than
A-regularity.

§4.6 Versions of transversality involving several source points were current
in the early 1960s (and indeed examples were given in the original version of
these notes) but the formulation in terms of multitransversality is due to Mather
[88] I in 1969. Some of the openness lemmas are new.

§4.7 We have just focussed on the examples needed later. Proving openness,
as well as density, is harder than is often given credit for. A useful general
criterion was given by Looijenga (see [56, p. 146], [47, Theorem 3.4.11]).

We have presented the results in three stages, following the natural progres-
sion. Thom used the term ‘source genericity’ for the results obtained from
transversality (for example, Theorem 4.7.3) and ‘target genericity’ for those
using multitransversality (for example, Theorem 4.7.7); we go on to normal
forms (for example, Theorem 4.8.5). These cases (2m > 3v) are due to Hae-
fliger, who used them in his original proof [60] of Theorem 6.4.11.

§4.8 In general, given v and m, we can think of a generic map of V* to M"™
as one which satisfies all the transversality conditions which can be stated in
terms of v, m alone (using no special facts about V, M).

This vague idea is made precise in §4.7 and §4.8 above in the cases m = 1,
m = 2, and 2m > 3v. In each of these cases we have a class of maps with the
four properties of characterisation, local normal form, density, and stability. It
can be shown [88] that (at least if V is compact) maps with these properties
are C* stable in the sense that nearby maps are equivalent up to diffeomor-
phisms of the source and target, and that in these dimensions, C* stable maps
are dense in C*°(V, M). The case v = m = 2, motivating the search for results
in higher dimensions was obtained by Whitney [179], and the case m = 2v — 1
by Whitney [176].

A general survey and discussion was given by Thom in [153]. However, he
found that to describe general map-germs R'® — R!6 a finite list of normal
forms does not suffice: one needs to allow a parameter. The simplest exam-
ple is for R® — RS: for a general map in these dimensions, £*f consists of
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isolated points, and to describe the 2-jet of f at such a point involves a homo-
geneous quadratic map R* — R?; and the classification of such maps involves
a parameter.

The above method of direct reduction to normal form is somewhat clumsy.
A more general approach was introduced by Mather [88] III. Here one uses the
Malgrange preparation theorem to construct vector fields, and then integrates
these to find changes of coordinates. I have written an expository account of
this approach in [169]. Malgrange gave a proof of his preparation theorem in
Cartan seminars in 1962—-63; full details appear in his book [86]. There have
been many further proofs: four appear in the volume [166].

Mather’s work created a full theory of C* stability: see [88], also [121]. The
final conclusion is that stable maps are dense in C*°(V*, M™) (V compact), and
a finite explicit list of normal forms analogous to the above can be given, if
and only if the pair (v, m) belongs to the so-called nice dimensions, which are
given if m — v > 4 by 7o < 6m + 8; otherwise by

m—v| 3 2 1 0 -1 -2 <-3
m [<30 <23 <16 <9 <8 <6 <17.
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5

Theory of handle decompositions

A handle decomposition is perhaps the simplest way to build a manifold
from elementary pieces. The existence of such decompositions is obtained
by analysing the geometry associated to a non-degenerate function on the
manifold.

In the first section we prove the existence of handle decompositions for com-
pact manifolds: in the next few sections we will show how to operate on such
decompositions. In §5.2 we normalise the decomposition; then, after a sec-
tion on the homology of handles, we manipulate the decompositions: there are
results on adding handles, and on removing or introducing complementary pairs
of handles. The technical details use the results treated in Chapter 2.

The definition of a handle decomposition is analogous to that of a CW com-
plex. Also the results we establish run in parallel with operations on finite CW
complexes that can be performed in homotopy theory. We will see below that
up to a point the theory of handle presentations parallels that of cell decompo-
sitions and even to an important extent to that of algebraic operations on chain
complexes.

The high point of this development is the h-cobordism theorem, which gives
an effective criterion for diffeomorphism of compact manifolds. We prove this
result in §5.5. Then we give a number of applications, discuss what is known
in low dimensions, and outline what modifications need to be made to the the-
ory when the fundamental group is non-trivial. In some places we anticipate
Theorem 6.4.11, but Chapter 6 is independent of this chapter.

In this chapter, all manifolds will be compact unless otherwise stated.

5.1 Existence

Let W be a manifold, and suppose d_W and 9 W disjoint manifolds with union
oW. Then we call the pair (W, a_W) a cobordism and the pair (W, 0, W) the

129
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LW

oawl w O T aw

o_W
Figure 5.1 A cobordism

dual cobordism; we also call W a cobordism of d_W to 9, W, and say that 9_W
and 04 W are cobordant. If W is a manifold with corner, and o_W, o.W, 0, W
are parts of the boundary such that 9_W and 9, W are disjoint and

W = /W = d(0_W U, W),

we still call W a cobordism of d_W to 0, W. We shall usually denote a cobor-
dism by a single letter and often just call it a manifold. A picture of a cobordism
is offered in Figure 5.1. For example, we usually regard a product M x [ as a
cobordism, withd_(M x I) =M x 0,0.(M x I) = M x 1;if M has boundary,
write 0.(M x I) = oM x I.

Figure 5.2 A handle

Suppose W" a cobordism, f:S! x D" — 3, W an embedding. Intro-
duce a corner (as in Lemma 2.6.3) along f(S"~! x $""~1). Now glue D" x
D"™" to W by f. The result is unique up to diffeomorphism, and is denoted
W Uy h'; it has the same corners as W. We describe it as W with an r-handle
attached by f. We call f the attaching map of the handle, and r the dimension
of the handle. Figure 5.2 offers a picture of a handle. We define d,.(W U h") =
(0, W\ Im f) U (D" x §"" 1),
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If we have a sequence of attached handles:
W =W Uy, KU U B,

we describe this as a handle presentation of W* on W if the maps f; are not
specified, as a handle decomposition. In particular, if W = M x I, we speak of
a handle decomposition of W* with base M (here, M may be empty).

To prove existence, we use non-degenerate functions.

Lemma 5.1.1 Any cobordism W with 0.W = () admits a non-degenerate func-
tion f, with all critical values distinct, attaining an absolute minimum on 0_W
only, and an absolute maximum on 0.W only. The same holds if o.W is a
product M x I.

Proof Let 0_W x I, 34 W x I be disjoint collar neighbourhoods of 9_W and
0+ W.Define g: W — [0, 1] by:

it forx e o_W,
glx, 1) = (5.1.2)
1-— 3t forx e 0, W,

and extend to a continuous function taking only values between % and % else-
where: this is possible since W is normal. By Proposition 1.1.7, we can approx-
imate g by a smooth function 4, agreeing with g near 9W. Now approximate
h by a non-degenerate function f with distinct critical values, agreeing with 4,
and so g, near dW. This is possible by Proposition 4.5.10 since g and 4 have no
critical points in a neighbourhood of aW.

For the case 9.W = M x I we use the same argument: here we use Propo-
sition 1.5.6 to find the collars, and to ensure that along /W they agree with
the product structure on d.W, and Proposition 1.1.7 allows us to suppose that
h and hence f agree on M x I by the projection on I; the proof now concludes
as above. O

The proof shows that we may suppose that for x close to W, f is defined by
the formula (5.1.2).

Now we give W a Riemannian structure adapted to the boundary; for conve-
nience we suppose, as in Proposition 2.3.7 that it is a product metric in some
neighbourhood of dW. Then the differential 1-form df induces at each P € W
an element dfp of TpW"; using the Riemannian structure, this is identified with
an element of 7pW, a tangent vector. Thus df gives a vector field, which we
call Vf.
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In W, we can use Theorem 1.4.2 to integrate f and obtain a flow ¢,(P),
defined for certain values of (¢, P). Near a point of d_W, we can take coor-
dinates xi, ..., x, such that W is defined by x; > 0, x; is the 7-coordinate in
the tubular neighbourhood, so that f(x) = x; — 1 and the Riemannian structure
is of the form ds* = dx7 + )} ._, g jdxidx;. Hence V f agrees with 9/dx, in
such a neighbourhood, and orbits are of the form

Or(X1, X)) = (X1 F 1 X2, 00, X) x1>0,x+1>0.

Thus for P € 0_W, ¢,(P) is defined for small positive values of ¢, and ¢ is
defined on a neighbourhood of 3_W x 0in d_W x R* and gives a collar neigh-
bourhood of d_W. Similarly for 9, W.

If we regard ¢,(P) as a point parametrised by ¢, it is smooth, and we have a
metric, so can speak of speed.

Lemma 5.1.3 We have (a) 4 f(9,(P)|i=0 = lldfp|*,
(b) The speed of ¢, (P) att = 0 is ||dfp||.

Proof (a) % f(@(P)| =Vf(f)lp by definitionof ¢

0
=df(Vf)lp
= (dfp. dfe) = ldfe|*

in the Riemannian inner product on 7pW, since this defined V f.

(b) Take coordinates (xi, ..., X,,) at P, so that P has coordinates (0, ..., 0)
and at P the Riemannian metric agrees with the standard metric in R". Let df =
> adx;: then Vf = > a;0/9x; (at P). Thus, at P, ag,_;m = a;, so the speed of
@:(P)is just 3" a})'/* = ||dfpll. O

Now suppose P € W, and that the maximum range of ¢ in which ¢,(P) is
defined is (a, b).

Lemma 5.1.4 Suppose W is compact. Then either

a is finite and as t — a, ¢;(P) tends to a point on o_W, or

a = —oo and, for any K, the closure of ¢, (=00, —K) contains a critical
point of f.

Similarly for b.

Proof If a is finite, by Lemma 5.1.3 (b), the points ¢,(P) form a Cauchy
sequence as t — a (since W is compact, ||dfp|| is bounded); since W is com-
plete, they tend to a limit point Q. If Q was interior to W, it would follow that
Q was on the orbit, which could then be extended: thus Q is on dW. Since by
Lemma 5.1.3 (a), f increases along each orbit, f(Q) < f(P),so Qison d_W.
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Now let a = —o0o. Then by Lemma 5.1.3 (a),

0
/ f o2t
)

converges. So ||dfy, |l has infimum zero ast — —o0. Outside any open neigh-
bourhood of the set of critical points, ||df]|| is non-zero, and attains its lower
bound (by compactness), so ¢,(P) meets any such neighbourhood. But the set
of critical points is compact, and so meets the closure of the orbit. O

We are now ready to analyse the function f of Lemma5.1.1. Fora € R, write

Wo={PeW:f(P)<al
M, ={PeW: f(P)=a}

thus for
a=0 W, =03_W M, =0_W
a=¢ W, =0_W x [0, €] M, =0_W x ¢
a=1—¢ W, =W\ (0:W x [0, ¢)) M,=0.W x ¢
a:l Wa:W Ma:8+W

provided that ¢ is so small that 3,W x [0, €] (n = 4, —) are contained in the
collar neighbourhoods described earlier. Clearly, for a < b, W, C W,; we next
investigate how W, is formed from W,.

Lemma 5.1.5 Suppose that for a < ¢ < b, c is not a critical value of f. Then
fa, bl is diffeomorphic to M, x [a, b] and W, is diffeomorphic to W,.

Observe that since a, b are not critical values, it follows from Lemma 4.5.1
that M,, M}, and f ~!a, b] are submanifolds.

Proof The first assertion follows at once by applying Theorem 1.5.4 to the
vector field Vf.

Thus W, is obtained from W, by glueing on M, x I along M,. The result now
follows from Lemma 2.7.2. O

This shows that ‘as long as a does not pass through a critical value, the diffeo-
morphism type of W, remains constant’. We now have to investigate the critical
value.

Theorem 5.1.6 Suppose that for a < f(P) < b there is just one critical point
Q, which is non-degenerate and with f(Q) = c (a < ¢ < b). Then W}, is diffeo-
morphic to W, with a handle attached.
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Ma.

Me

W_o. M_., M_, W_ac

A'[2 €

Figure 5.3 Level sets

Proof Our discussion of orbits in Theorem 1.5.4 remains valid except for those
orbits with Q as a limit point. We must therefore investigate a neighbourhood
of 0. By the Morse Lemma 4.8.2 there exist local coordinates xi, ..., x, such
that in a neighbourhood of Q f is given by

f(x):c—x%—--~—x,2\+x%+l+~-~~|—xi.

The integer A is called the index of f of the critical point 0. Using a partition
of unity, we choose a Riemannian structure which agrees with the Euclidean
structure in this coordinate system. With respect to this, the gradient vector field
V f is given by

n

S 9
Vf: El _Xia_x,'_'_)? xia—Xi.
+1

For example, if f(x) = —x] + x3, the curves M,, are hyperbolae with asymp-
totes x% = x%, except for M which is this line-pair, and as a increases up to zero,
W, increases without essential change, but it engulfs the origin when a = 0.
Figure 5.3 shows the evolution of M, for a = —2¢, —e¢, €, and 2e¢.

Choose ¢ so small so that for ||x|| < 5¢, the above formulae are valid. We
now modify W_, by first introducing a corner, then attaching a handle, to obtain
something close to W;: the procedure is illustrated in Figure 5.4.

More precisely, write x = (&,n), where £¢ = (x,...,x), n=
(Kngls - s %), f(X) =c — ||E|I*> + |nl>. Define the handle H to be the set
Inll < e, €]l <e.LetV beasmooth manifold with corner which
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Figure 5.4 Attaching a handle

(i) coincides with ||&|| < &, |[n]l = € near ||£|| = & (this includes the corner
1§11 =lInll = &);

(ii) coincides with W_, when ||x|| > 5e&, and contains W_;

(iii) has dV everywhere transverse to the orbits of V f.
Such a V may be constructed using a bump function. Then by Proposition 2.6.4,
M_, is obtained from V by straightening the corner — or equivalently, by
Lemma 2.6.3, V from M_, by introducing one. Now H is diffeomorphic to the
product D* x D"™* and 9_H := HNV is given by ||€|| = &, ||5]| < &, hence
is a copy of $*~! x D"~ in 9H N 3V. Since the union H UV is smooth, and
H and V are defined by cutting it along H NV, it follows by Proposition 2.7.3
that H UV is obtained by glueing these.

Now H UV is a smooth manifold, transverse to the orbits, with no critical
points between it and Mp; thus it follows from Theorem 1.5.4 that W, is diffeo-
morphic to H UV. But H UV consists of W, with a A-handle attached. O

The following are immediate consequences.

Corollary 5.1.7 (i) If the Hessian of f at ¢ has index X\, we attach a A-handle.
(ii) If there are several non-degenerate critical points at level ¢, we attach
several handles.
(iii) W has a handle decomposition based on 9_W,

for we can apply the above argument in a neighbourhood of each critical point.
With a little care, the arguments may also be applied to non-compact mani-
folds: we give one sample result.

Lemma 5.1.8 Any manifold W can be expressed as the union of an infinite
sequence of handles attached one at a time.

Proof By Corollary 2.2.10 there is a proper map f : W — R; as before, we
may suppose f smooth and non-degenerate. Then each set W, is compact, and
we may apply the same arguments as above. O

It is also possible to proceed in the opposite direction.
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Figure 5.5 Alternative picture of a handle

Theorem 5.1.9 Given a handle decomposition of W on d_W, there is a non-
degenerate function f on W (as in Lemma 5.1.1) with just one critical point of
index M for each \-handle.

Proof The result is proved by induction on the number of handles: if there
are none, W = 9_W x I, and we take f as the projection on /. Now let V be
defined by attaching all but the last handle: by the induction hypothesis, f can
be defined on V, constant on .. V. So if we can define f on (0.V x I) U h* we
can glue back (using collar neighbourhoods of 9,V on which f reduces to a
projection) to make f smooth. Hence it suffices to consider the case when W is
formed from 0_W x I by attaching one handle.

Now let g : S$*~! x D"* — 3_W be the attaching map of a A-handle. Write
K for the closure of the complement of the image. Write H for the subset of
R* x R"~* defined by

—L< =l + IyI* <1, IelPilyl® < 2.

Then the function defined on H by F(x,y) = —||x||*> + |ly||? attains its mini-
mum value —1 on d_H, say, and its maximum +1 on a1 H. Write d.H for the
subset given by ||x||?|y]? = 2.

We have a diffeomorphism G_ : _H — $*~! x D"~* given by G_(x, y) =
(Ili_H’ y): its inverse is given by G_' (u, v) = ((1 + [[o[|*)!/?u, v). We also have
a diffeomorphism G. : 3.H — S*~! x §"*~1 x [—1, 1] given by G.(x,y) =
(ﬂ P ey y)): its inverse is G- (u, 0. 1) = (au, bv), where b* —a® =1
and b? + a®> = /12 + 8. This description goes with the picture of a handle
offered in Figure 5.5.

Now attach H to K x [—1, 1] by the map G, to form a manifold W’'. The
function f : W — [—1, 1] defined by f|H = F, f|K = projection is a smooth
function, whose only critical point is the non-degenerate one in H. We have a
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diffeomorphism %4 of d_W’ to a_W given by the identity on K x —1, and by
goG_ond_H.

Finally, we have a diffeomorphism of W’ on W. For each is obtained by
attaching a A-handle to the lower boundary: W by hypothesis and W’ by Theo-
rem 5.1.6. By construction, the attaching maps of the handles correspond under
h, so the identity map of _W extends to a diffeomorphism. O

5.2 Normalisation

We could proceed immediately to make various deductions about smooth man-
ifolds from the existence of a handle decomposition. First, however, it is
convenient to normalise a presentation. We have defined W U h" by attaching
D" x D"™" to W using an embedding f : S~! x D"~" — M := 3, W; however
it will usually be more convenient to regard the handle H as consisting of a col-
lar M x Ito which D" x D" is attached. The attaching sphere (or a-sphere) of
H is the sphere f(S"~! x 0)in d_H. The belt sphere (or b-sphere) is the sphere
0 x §""~Vin 3, H. The core is the disc D" x 0.

It follows at once from Theorem 2.4.2 (diffeotopy extension) that W Uy A"
is determined up to diffeomorphism by the diffeotopy class of f, for if g is
a diffeomorphism of W, g induces a diffeomorphism of W U, A" with W U,,
h". By Theorem 2.5.5 (tubular neighbourhood), it is even determined by the
diffeotopy class of f = f|S™! x 0 together with a homotopy class of normal
framing of f(S"~! x 0)in 3, W.

Lemma 5.2.1 Letr <s. Then (W Uy b*) U, h" is diffeomorphic to manifolds
obtained from W by attaching the handles simultaneously, or in the reverse
order.

Proof Letn =dimW, Q = 9, (W Uy h*). Then we have in Q the a-sphere s§1
of h" and the b-sphere S"~*~! of A*. Since

r—1D)+m—s—1)=n—1—(G+1—r)<n—1=dimQ,

by Theorem 4.5.6, S"~! may be approximated by a sphere not meeting §"~5~!:
by Proposition 4.4.4 if the approximation is close enough, we still have an
imbedded sphere, diffeomorphic to the old one. By further diffeotopies, we
may make S"~! avoid the tubular neighbourhood D* x §"~*~! (using the dif-
feotopy extension theorem, and the fact that the tubular neighbourhood may
be shrunk to avoid $"~!) and shrink the tubular neighbourhood §"~! x D"~ so
that, this, too, avoids D* x $"5~!. But now the attaching map of the r-handle is
disjoint from the s-handle: its image lies in 9W, and the handles may be added
in either order. O
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Corollary 5.2.2 Any W has a handle decomposition on d_W with the handles
arranged in increasing order of dimension.

This follows at once by induction.

From now on we shall generally assume that handles have been arranged
in order of increasing dimension: this is in some sense the usual case. Indeed,
since we can always reduce to this case, a handle decomposition without this
property carries extra information.

We now introduce the notation

W

1 = (0_W x I)U all s — handles for s < r,

where we use Lemma 5.2.1 and attach all r-handles simultaneously. Also set
Mr+% = 8+VV/‘+%'

This is related to our previous notation as follows. It follows from Lemma
5.2.1, in conjunction with the relation between handles and non-degenerate
functions on W, that there exist non-degenerate functions f with the property
that, for each critical point P of f of index A, we have f(P) = A. Such func-
tions are called self-indexing. If we use a self-indexing function f on W, the
two definitions of W, , 1 coincide.

In M, 11owe have the a-spheres S of the (r+ 1)-handles and the b-
spheres S"~"~! of the r-handles, which have complementary dimensions. By
Theorem 4.5.6, the embedding of a sphere S” may be approximated by a map
transverse to """, and if the approximation is close enough, we have merely
altered the embedding by a diffeotopy. Since the dimensions are complemen-
tary, and the map transverse, intersections are isolated points; since S” is com-
pact, there are only finitely many. We can thus modify the presentation by a
diffeotopy so that all these a-spheres are transverse to all these b-spheres. We
will say that a presentation with this property is in normal position. We have
shown

Lemma 5.2.3 Any handle presentation of (W, 0_-W) may be modified by dif-
feotopies so that the handles are arranged in increasing order of dimension,
and any two handles of consecutive dimensions are in normal position.

In this situation, for each such transverse intersection P of S” with $"~"1, it
follows from Lemma 4.8.1 that there is a chart for M, 1 meeting the a-sphere in
D" x {0} and the b-sphere in {0} x D"~"~!. Since the tubular neighbourhoods
are unique up to diffeotopy, we may suppose that they both meet this chart in
D" x D", with the projections being those on the factors.
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Figure 5.6 Retracting a handle on its core

5.3 Homology of handles and manifolds

For each r—handle attached to W, using a deformation retraction of D" x D"~"
on (S"~! x D" ") U (D" x {0}) (which may be obtained from a deformation
retraction of 1 x I on ({1} x I) U (I x {0}) by rotating about both axes), we
have a deformation retraction of W Us h" = W Uy (D" x D""")on W Uy (D" x
{0}). Thus, up to homotopy, attaching a handle is the same as attaching a cell
(its core). The deformation retraction is pictured in Figure 5.6.

This gives a very close connection between handle decompositions and cell
complexes. In particular, we deduce the following from Corollary 5.2.2.

Proposition 5.3.1 If W is closed, it has the homotopy type of a finite CW
complex. In general, (W, 0_W) has the homotopy type of a finite CW pair.

Proof The first statement follows by taking a normalised handle decompo-
sition of W and replacing each handle by an equivalent cell. In fact it is
not difficult to show that W is homeomorphic to an appropriate finite CW
complex.

For the second statement, note that by the first, we can regard d_W as a finite
cell complex, and again apply Corollary 5.2.2. O

Before continuing, it is convenient to recall some basic results about the
homology of manifolds: we focus on the simplest case when M" is closed,
connected, and oriented. Then H,,,(M; Z) is infinite cyclic (this is a special case
of the Poincaré duality Theorem 5.3.5 below). If M is triangulated and we use
simplicial homology, a generator is represented by the sum of the m-simplices,
where each must be given the orientation induced by that of M. We denote this
generator by [M].

Amap f: M — N, where M and N are both closed, oriented, and connected
has degree d, where d is the integer such that f,[M] = d[N]. The degree may
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be determined as follows. Suppose f smooth and transverse to a point Q € N.
Then f~!(Q) is a finite set of points P; and (by Lemma 4.5.1) for each i, the
tangent map induces an isomorphism 7pM — TpN. Set ¢; = £1 according as
this map preserves the given orientations or not. Thend = ) ;.

We can see directly that this is independent of choices: a homotopy F of fj
to fi may be made transverse to Q, and the preimage of Q is then a collection
of loops (which do not contribute), arcs from M x 0 to M x 1 (whose two end
points make the same contribution for f; and f;) and arcs with both ends on
M x 0 (or on M x 1) (whose two end points contribute opposite signs &, so
cancel each other).

To see that d = Zi &;, choose a disc neighbourhood D of Q such that its
preimage consists of discs D; round the P; each mapped by a diffeomorphism.
Inclusion induces isomorphisms H,,(D, 0D) — H,,(N, N \ D— H,(N).InM
there are similar isomorphisms, but now H,, (M, M \ f"(Do)) is the direct
sum of the H,,(M, M \ Dc,-)), and the result follows by adding up the local
contributions.

The same considerations apply to intersection numbers: again we describe
only the simplest case when we have compact oriented submanifolds V;, V; of
the oriented manifold M, of dimensions v; and v, with m = v + v,. At a point
P where V| and V, intersect transversely we define a local intersection num-
ber ¢(P) to be £1 according as a base tor 7pV; giving the chosen orientation
of Vi, followed by a corresponding base for 7pV, defines the given orienta-
tion of M or not. If V; and V, meet transversely everywhere, > PV €(P)
gives the intersection number V;.V,. Again, arguing by making a homotopy
transverse, we see that this depends at most on the diffeotopy classes of V)
and V,.

Each compact oriented submanifold V” of M™ defines a homology
class i,[V] € H,(M : Z) and hence by duality 5.3.5 a cohomology class in
H"™"(M; Z), which we temporarily denote by {V'}. In the situation of the pre-
ceding paragraph, the cup product {V; }{V,} is equal to V;.V, times the class {P}
of a point. More generally we can see that if V; and V, (still closed and ori-
ented, with v; + v, > m) intersect transversely along a submanifold W, then
{Vi{V2} = {W}. This principle extends in a natural way (subject to appro-
priate technical conditions) when we allow boundaries and cease to require
orientations.

It follows from the remark preceding Proposition 5.3.1 that, up to homotopy,
we may replace handles by cells, and may calculate homology using the chain
groups

CW,0_W)=6 Z,
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where the summands are indexed by the r-handles. We will denote by «, the
number of r-handles, equal to the rank of C,.(W, 3_W). We need to calculate
the boundary homomorphism

3:Co (W, _W) — C.(W, 3_W).

This is determined by incidence numbers, one for each r- and each (r + 1)-
handle.

Lemma 5.3.2 The incidence number of handles h'*' and I’ equals the inter-
section number in M, 1 of the a-sphere of h"+! and the b-sphere of h'.

Proof We need some care with signs: a choice of orientation of the cell
(D"*!' x 0)in the cell complex induces orientations of the bounding a-sphere S
and of the normal bundle of the corresponding b-sphere. If an a-sphere §” and a
b-sphere S"~"~! meet transversely at a point, we take the sign + or — according
as the orientation of S” does or does not agree with that in the normal bundle
of $""~!. If W (and hence M) is oriented, orienting the normal bundle of a
b-sphere is equivalent to orienting the sphere, and we can count multiplicities
in the usual way.

We may suppose that S” meets S"~"~! transversely: then the intersection
number agrees with the (local) degree of the projection of S” on the nor-
mal disc D". But this degree coincides with the incidence number in the cell
complex. O

If F is a field of coefficients (for example, Q or Z,), we define the Betti
numbers B; (strictly, B;(W,0_W; F)) as the ranks of the F-vector spaces
H;(W, 9_W; F). Since these may be calculated from the chain groups

CW,0_W;F)=C;(W,0_W)QF,
which have ranks «;, we have

Lemma 5.3.3 (Morse inequalities) We have

D (=Diai =Y (=1)8;
0 0

and, for each 0 < j < n,

J

J
D (=1 = Y (=1 7B
0

0

Proof Write r; for the rank of the boundary map

Ci(W, 0_W: F) — Ci_1(W, 3_W: F).
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The definition of homology gives «; = r;+1 + B; + r;. Hence

J J
Y =D =r+ Y (=178 -
0 0

We now discuss duality. Observe that with f, — f is also non-degenerate. Its
critical points coincide with those of f, but if f has index A at 0, it has locally
the form

f(x):c—x%—.-._x§+xi+l+...+xﬁ

and — f has index n — A. Using the correspondence (Theorems 5.1.6 and 5.1.9)
between non-degenerate functions and handle decompositions, we find the
following.

Proposition 5.3.4 Suppose W has a handle decomposition on 0_W with o, r-
handles for 0 < r < n. Then it also has one on 0.W, with a, (n — r)-handles.

If we ignore corners, we may identify the handles in the two cases, and
observe that in the reversal, a- and b-spheres are interchanged.

Theorem 5.3.5 (Lefschetz Duality Theorem)
Suppose either that W is orientable or we use 7, for coefficients:
then we have isomorphisms H.(W,0_W) = H"™"(W, a,.W).
In particular, H.(W) = H*"(W, 0W)and H' (W) = H,,_, (W, aW).
If OW = &, then (Poincaré Duality) H- (W) = H"™"(W).

Proof By Proposition 5.3.4 we can identify the chain groups of (W, _W) with
the chain or cochain groups of (W, 9, W). By Lemma 5.3.2 the incidence num-
bers are the same up to sign (only a-spheres and b-spheres are interchanged) and
the isomorphism identifies the one boundary with the other coboundary. [l

The proof above is reminiscent of the earliest proofs of the result (see, for
example, the account in [84]), but of course is only valid for compact smooth
manifolds.

As a special case of homology groups, we mention connectivity. We retain
the notation of Lemma 5.3.2. The a-sphere S~! of a 0-handle is the empty set;
in fact a 0-handle consists precisely of an n-disc, disjoint from d_W x I. The
a-sphere S° of a 1-handle is a pair of points: these may or may not be in the
same component of Wy ,,. If not, the 1-handle connects the two components;
but if they are, the corresponding handle does not affect connectivity.

If 0_W is non-orientable then so, of course, is W. If, however, 0_W is ori-
entable, so is W%, since adding a disjoint set of discs has no effect. Nor does
adding a set of 1-handles which connect different components of W% (here we
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think of 1-handles as being added in turn, not simultaneously). However, the
attaching map for a 1-handle is a map of S° x D"~! —i.e. of a pair of discs.
If these are mapped into the same component of W% with opposite orienta-
tions, then the orientation of W% can be extended over the handle; but if with
the same orientation, W, 1 is non-orientable. Thus if, say, W% is connected and
orientable, we may speak of orientable and of non-orientable 1-handles. Now
r-handles for » # 1 do not affect orientability; for they introduce no new (poten-
tially orientation-reversing) elements of the fundamental group.

For a 1-handle with both ends in the same component of W%, we can deform
both components of S x D"~! into a disc in M%: as for the Disc Theorem,
the diffeotopy class is determined by the orientations. Attaching an orientable
1-handle to D" gives S' x D"~!, so we have Wi =W, + (S' x D" 1). In the
non-orientable case, we have the sum with a non-orientable bundle over S' with
fibre D"~

5.4 Modifying decompositions

In this section we discuss several modifications that can be made to handle
decompositions. We will see that (under suitable hypotheses) any elementary
change of the chain complex C,(W, d_W) can be effected by a change in the
handle decomposition. The basic moves are introduction or cancellation of a
complementary pair of handles, and addition of handles. We suppose through-
out that W is a compact manifold, perhaps with boundary.

The results are simplest for O-handles. If W has «; i-handles, then W% =
(0_W x I) Uy, D". Attaching a 1-handle affects connectivity only if its a-
sphere S” has the two points in different components of W 5.

Suppose that W is connected: since r-handles for » > 2 do not affect con-
nectedness, Wi is connected. Rearrange the 1-handles (Lemma 5.2.1) such
that the first few each connect different components of W%. For each of these,
we have two manifolds with boundary, and a disc imbedded in the boundary
of each. Attaching D"~! x I is the same (§2.7) as glueing along the (n — 1)-
discs, i.e. forming the boundary sum. Moreover, by Proposition 2.7.6, for any
manifold N, N" + D" = N". So the 0-handles are just cancelled out, and the
remaining components of _W x I added together. We observe that each use
of N* + D" = N" to simplify the decomposition removes just one 0-handle and
one 1-handle.

We have shown

Proposition 5.4.1 A connected manifold W admits a handle presentation of
the following kind.
If 0_W = &, there is just one 0-handle D".
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If 0_W has components M), 1 < i <k, there are no 0-handles, then (k — 1)
1-handles connecting the components to give (My x 1)+ -+ My x I),
then a further number of 1-handles.

We turn to cancellation of handles in general, and first describe a model.

Lemma 5.4.2 Let ¢ : D" ~! — D" be the embedding, by stereographic
projection from (0, ..., 0, —1) on the boundary of the upper hemisphere. Then
(8" x D""") Ujx, K1 = D

Proof 1If we attach D"*! along the boundary to S” x I, we clearly have another
(r + 1)-disc. Multiplying by D"~"~! shows that there exists a homeomorphism
of the desired type. However to obtain a result up to diffeomorphism requires
care with rounding corners systematically.

We first give the proof for r = 0, n = 2. Let E be the ellipse %xz +y*P =1
and H the confocal hyperbola 2x> — 2y?> = 1. Write Int and Ext for the (closed)
interior and exterior regions of E. We shall show that Int E N Ext H is obtained
from S° x D? by introducing a corner along S° x D!; that Int E N Ext H is dif-
feomorphic to D' x D!, and that the attaching map 1 x ¢ becomes the identity.
It follows that the required manifold is diffeomorphic to Int £, which is diffeo-
morphic to D2 by (x, y) — (27'/2x, y). Now E meets H at (+1, £1/+/2). Con-
sider the component of Int E N Ext H in x > 0; it has the focus (1, 0) as interior
point.

Rays through the focus define a vector field everywhere transverse to the
boundary, which may therefore be used for straightening the corner. A smooth
cross-section is given by (x — 1)> 4+ y> = 1/4, which meets the rays through
the corner in (1, £1/2). Thus the disc component is obtained from a disc by
introducing corners at opposite ends of a diameter, as stated. It may be helpful
to imagine these constructions using Figure 5.7.

H

Figure 5.7 A confocal ellipse and hyperbola
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In Int £ N Ext H we use confocal coordinates. Each point (x, y) of the plane
with xy # 0 lies on just two of the conics

¥/ A+D+y/a=1:

one hyperbola, given by —1 < A; < 0, and one ellipse, given by 0 < A,. How-
ever, these meet in 4 points. So we write /12 = a+ A, v2 = Ay, and obtain

x=puv1+1v2 y=vy1—pu?,

where the positive square roots are to be taken, and —1 < u < 1. It is easy to
verify that this transformation is smooth, with non-zero Jacobian, injective, and
onto the whole plane except for y = 0, x> > 1. Hence, in particular, it induces
a diffeomorphism of the rectangle || < 1/ V2, |v] < 1onto IntE NExtH, as
required.

Now return to the case of general r and n, which is obtained by rotating the
figures about x- and y-axes. Write

XZ(XI,...,.xr+1) y=()’1,-~-,)’n7r71)
= (U1, fry1) vV=i,..., Vp_r_1)
and [|x||> = ;7' #2, etc. Then the transformation given by

xi = i/ 1+ ]2, yi=vi/ 1 —|lul?

induces a diffeomorphism of the D"*! x D"="~! given by ||u||*> < 1/2, |[v||* <
1 onto the intersection § [lx[|* + [ly[* < 1, 2]lx]*> = 2|ly[|* < 1.

Likewise in the intersection 1 lx[|* + [ly|> < 1, 2[lx[|*> — 2]lyll* < 1, con-
sider the field formed by rays through the r-sphere y = 0, ||x|| = 1 and per-
pendicular to it (and not produced beyond their intersection with x = 0). This
certainly is a vector field (except on the sphere and on x = 0), and is transverse
to the boundary, so can be used for rounding the corner. Rounding it, we obtain
the manifold

(xll = 1 + [IylI* < 1/4,

where the corner is to be introduced along ||x|| =1, ||y]| = 1/2 (in fact §" x
Sn—r—Z)'

Consider 8" x D" ¢ R™*! x R*7~! x R! with coordinates (u, w, t), so
lul =1, |w||*> + |¢t|*> < 1. We define inverse diffeomorphisms between this
and the manifold above by

u=x/lx| w =2y t=2(|x|| — 1)
x=u(l+1/2) y=w/2.
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Since ||x|| is nowhere zero, both it and its inverse are smooth. The corner ||x|| =
1, |lyll = 1/2 becomes the locus ||w]| = 1, = 0.

Finally we must identify the attaching map. The sphere S” x O given by
lell> = 1/2, v = O maps (viax; = ;) to ||x||> = 1/2,y = 0, then rounding the
corner multiplies x; by 27'/2 and leaves y at 0. Finally we obtain u = x/||x| =
w/llnll and o = (w, t) = (0, —1); modulo the obvious identifications, we have
the identity map. The attaching map is a tubular neighbourhood of this, and
a normal direction 9/9dv; maps to some positive multiple of 9/9v;; using the
tubular neighbourhood theorem, it follows that the attaching map is, up to a
diffeotopy, as stated. O

Theorem 5.4.3 (Handle Cancellation Theorem) Suppose that for W" Uy h" U,
W1, the a-sphere of h"+! meets the b-sphere of h' transversely in one point.
Then we can suppose 0. W contains a disc D"~ to which both handles are
added. Thus we can write W" = W" 4+ D", with the handles added to D", and
soW'UR Ut =W+ (D"UK Uty Z W+ D' =W

Proof 1t clearly suffices to consider the case W = M x I. By hypothesis, in
M, 1 the a-sphere and b-sphere of the handles meet transversely at a single
point P. It follows from Lemma 4.8.1 that there is a chart for M, 1at P meeting
the a-sphere in D’ x {0} and the b-sphere in {0} x D"~"~!. Since the tubular
neighbourhoods are unique up to diffeotopy, we may suppose that they both
meet this chart in D" x D"~"~!, with the projections being those on the factors.

The r-handle is attached to M by an embedding f : S"! x D"" — M; W
is formed from M x I by attaching D" x D"~" to M x {1} by f and rounding
the corner. Here Figure 5.8 represents an r-handle with an (r 4+ 1)-handle being
sewn on as a patch.

Figure 5.8 Cancelling a handle

The (r + 1) handle is attached by an embedding g : S" x D"~ — MH%,
so there is an embedding of D" as a hemisphere of S”, which we may take as
S : thus § x D""~! maps onto the outer edge of the r-handle. The closed

complementary region S x D"~"~! is mapped to the closed complement in M
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of the image of f. As before, we may choose the maps to identify D"~"~! with
a hemisphere S7 """,

Thus the subset of M affected by the handles is the union of the embedded
images f(S"~! x D7) and g(S" x D"~"~!), modulo rounding the corner. The
latter image is a disc; since we can isotope D"~" inside a neighbourhood of
a point X € §%"! and hence $"~! x D"~ inside a neighbourhood of §"~! x
X, there is a disc in M containing both the embedded images. The result now
follows from Lemma 5.4.2. U

A pair of handles of consecutive dimensions, with the a-sphere of the second
meeting the b-sphere of the first transversely in one point, is called a comple-
mentary pair.

We can thus paraphrase Theorem 5.4.3 briefly by saying that a complemen-
tary pair of handles may always be cancelled. The converse result is now trivial.

Theorem 5.4.4 At any point of a handle decomposition of a manifold, a com-
plementary pair of handles can be introduced.

Proof ‘At any point’ means when we have constructed some manifold W, say.
Now W = W + D by Proposition 2.7.5 and by Lemma 5.4.2, we can add a
complementary pair of handles to D, hence also to W. O

We will see that adding two complementary handles in succession to W has
the effect on V = 0, W of performing consecutively spherical modifications
of types (r, n — r), leading to V', say, and (r + 1,n — r — 1): returning to V.
‘Reversing’ the second of these shows that we can also go from V to V' by a
modification of type (n — r — 1, r + 1). The condition on the first modification
necessary for this replacement to be possible was the existence of a comple-
mentary handle; arguing as above shows that this is equivalent to requiring the
a-sphere to span a disc in V, such that the inward normal vector to the sphere
in the disc agrees with the first vector of the chosen normal framing of the
a-sphere.

Since d_W need not be simply-connected, an (» — 1)-sphere in it does not
necessarily have a well-defined homotopy class. Here we will ignore this point
and focus on homology. This allows us to give a much simpler account, and
still obtain full results in the simply-connected case. We reserve comments on
the general case until §5.7.

We next discuss ‘addition’ of handles in a homology sense.

Theorem 5.4.5 (Handle Addition Theorem) Suppose 0. W = M connected,
2<r<m-—2 Let f,g:0D" x D" — M be disjoint embeddings, deter-
mining homology classes x, y € H._i(M; Z\). Then for ¢ = %1 there is an
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embedding h, : D" x D" — M, disjoint from f, and determining y + ex €
H,_((M; Z) such that W Ug h" Ug i =W U h" Uy, 1.

Moreover, if the classes of the handles in H.(W Uy h" U, h", W; Z) are &, n
for the first decomposition, those for the second are &, n + €&.

Proof We observe that x maps to zero in H,_{(W Uy h"; Z); the idea of the
proof is to deform the second handle ‘across’ the first, by a diffeotopy of the
attaching map in 0. (M U h"); we know that this will not affect the diffeomor-
phism class of the result.

Since M is connected, there is a path A joining f(1 x 1) and g(1 x 1) (in the
non-simply-connected case, it is important to note that this path may be taken in
any homotopy class). By the general position arguments of §4.5, we can make
the path an embedding, disjoint from the images of f and g; we can choose it
to start along the outward normals to Im f and Im g, and we can deform it off
tubular neighbourhoods of Im £ and Im g, so that it meets Im f and Im g only
at its ends.

Choose a normal framing ey, ..., e, for A so that e, ..., e,_ gives the
standard orientation of g(S"~! x 1) at g(1 x 1). Since r < m — 2, we can also
change this framing so that ey, ..., e,_; agrees with the opposite orientation

of the (r — 1)-sphere. By Proposition 1.5.6 (ii) we can choose a Riemannian
metric in which £(S"~! x 1) and g(S"~! x 1) are totally geodesic. Then expo-
nentiating normal vectors to A gives an embedding ¢’ : [ x D'~! — M with

POxD N cCgS " x1, P'(IxD™cC (S x1).

Extend A by a diameter of D'~ x 1in 3, (M Us 1"), and ¢’ correspondingly to
an embedding ¢ : [0, 2] x Dl 04 (M Uygh").
The properties of the bump function ensure that the formulae

gx)=x if x¢@eOxD),
89(0,y) = o(2tBp(1 — |lyl), y)

fit to give a smooth diffeotopy of g. This ‘pulls’ the cell ¢(0 x D'™') C
g(8"~! x 1) across part of the disc D" x 1, covering the central point.

This procedure (with r = 1) is illustrated in Figure 5.9: here, to add the han-
dle, deform the attaching sphere of the left handle along the dotted path to give
a new attaching sphere.

Since g(S"~! x 0) is diffeotopic to g(S"~! x 1), we also obtain a diffeotopy
of g, which we can extend to one of g such that the final embedding # is dis-
joint from 0 x §"~"~!. But we can think of the (f-) handle as shrunk to a small
neighbourhood of this b-sphere (c.f. proof of 5.2.3), so A(S"~! x D"~") lies in
M again.
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Figure 5.9 Adding one handle to another

Since our diffeotopy has degree 1 on the attached cell, the homology class
of h is that of g plus or minus that of f, the sign depending on an orientation
chosen earlier. O

5.5 Geometric connectivity and the h-cobordism theorem

In the last section we gave methods of changing handle decompositions under
geometric assumptions. We now obtain corresponding results under algebraic
hypotheses: this will enable us to operate with handles using only homo-
topy data. We recall that a CW-pair (Y, X) is called r-connected if any map
f:(B,A) — (Y, X) with dim(B) < r is homotopic relative to A to a map into
X; equivalently, if the relative homotopy set m;(Y, X) is trivial for 0 <i <r.
Moreover this holds if and only if the pair (Y, X) is homotopy equivalent to a
pair with Y’ obtained from X by attaching cells of dimension > r.

We focus first on results showing the existence of handle decompositions
without i-handles for i < r: if W admits such a decomposition, we say that
(W, 0_W) is geometrically r-connected.

We start with a technique of handle replacement. It is interesting to note
that this closely resembles a technique of Whitehead, with CW complexes.
Although it may seem that it would be more efficient to simply cancel han-
dles, handle replacement bypasses arguments involving fundamental groups,
which otherwise would confuse the issue for low-dimensional cases.

Proposition 5.5.1 Suppose n>2r+3, Wi=M x1) U k" U I, and
7, (W,M)=0.Then W = (M x I) U Ih"*' U 2

Proof The case r = 0 follows from Proposition 5.4.1; otherwise we may sup-
pose M connected.

We identify /" with D" x D™~". Since n > 2r 4+ 2, we can perform a dif-
feotopy to ensure that the attaching maps of the 2"*! avoid D" x 1. The disc
D" x 1 determines an element of (W, M), which is zero by the hypothesis.
Hence this disc is homotopic in W (relative to its boundary) to one in M; i.e.
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there is a map F : D'*! — W, which takes the upper hemisphere of S” onto
D" x 1 and the lower into M.

Since n > 2r + 3, we may suppose that Im F is disjoint from the cores of the
handles, which have dimensions » and (r + 1). We can therefore also deform
F off tubular neighbourhoods of the cores, and thus suppose Im F C 9, W.

We may suppose F |S” an embedding of S” in d.W: this embedding is
homotopic to zero, hence also diffeotopic (since n > 2r +3,amap §" x I —
d+W x I may be supposed an embedding). So by Theorem 5.4.4, we can use
F(S") for the a-sphere of the first of a complementary pair of handles h:" , hg“z,
where A" is disjoint from the other 2"!. But /"' is also complementary to
h", so

W= (M x UK U U@ U Rgt?) (Theorem 5.4.4)
=M x DU R R U LR U R
= (M x I)UI U ngt (Theorem 5.4.3).

It is possible, with some difficulty, to sharpen the proof of Theorem 5.5.1
to cover also the case n = 2r 4+ 2, r # 1: the points to be addressed are the
deformation of F off the cores of the h"*! and obtaining a diffeotopy.

Theorem 5.5.2 IfW =V Ukh" U W+ 7, (W, V) =0, w1 (0LV) ZE m(V),
n>2r+3 then W=V UIKT UKW,

Proof Write V' :=V U (k— 1)h", M’ := 0,(V’), so W is the union of V' and
W =M x I)UR Ul Since w,(W, V) and 7, (V’, V) vanish, so does
7, (W, V"). If we show that 7. (W', M') = 0, we can apply Proposition 5.5.1
to replace the r-handle in W’ by an (r 4 2)-handle, so W =V U (k — 1)h" U
IW 1 U B2, Since the (r + 2)-handle does not affect the calculation of 7, the
result will follow by induction.

Now W =V ' UW’ and M’ =V'NW’. Since n > r + 4, the fundamental
groups of 3, W, W/, W, M’ and hence of V' are isomorphic. Thus the universal
covers of W/, V', M’ (which we denote by affixing a tilde) are induced from that
of W.

Thus by the Hurewicz isomorphism theorem (see B.3 (i)),

oW MYXHW M)YZHMW,V)Zx.W,V)=0,
where the middle isomorphism holds by excision. O

We next extend the result by a more direct application of the Handle Can-
cellation Theorem. To avoid technicalities, we restrict to the simply-connected
case: in §5.7 we indicate what is needed to remove this restriction.
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Proposition 5.5.3 Proposition 5.5.1 continues to hold if the hypothesis ‘n >
2r 4+ 3’is replaced by ‘n > r + 4 and M is simply-connected.’

Proof Since H,(W, M) = 0, the class y of the r-handle in the chain complex
C.(W, M) is a boundary, so if the (r 4+ 1)-handles have classes x;, there are
coefficients ¢; € Z with (3", cixi) = y.

Use Theorem 5.4.4 to add a complementary pair of handles hf\“, hg” away
from the existing handles. Now use Theorem 5.4.5 to add ¢; copies of the ith
(r 4+ 1)-handle to hf\“ for each i. The a-sphere of the resulting handle has inter-
section number 1 with the b-sphere S, of A".

Hence by Theorem 6.3.2 (i), provided » > 3 and n > r 4 4, we can perform
a diffeotopy to reduce the number of intersections to one. But then A" and hX“
are complementary, so can be cancelled by Theorem 5.4.3.

The cases r < 1 follow from Proposition 5.5.1, also the case r = 2 except
if n = 6. But if r = 2, we can use (ii) of the theorem, provided we show that
the complement of S, is simply-connected. But we have a diffeomorphism of
04 ((M x I) UR")\ S, with M \ ', where S is the a-sphere of h2. By hypoth-
esis M is simply-connected, and deleting an embedded circle does not affect
this property. U

We can go a little further.

Proposition 5.5.4 The result also holds ifn = r 4 3, provided r > 3 and 0. W
is simply connected.

Proof The above argument remains valid, except in the use of Theorem 6.3.2
(i). Again, we can use (ii) of the theorem, provided we show that the comple-
ment of S, is simply-connected.

In the dual decomposition, we attach to 0, W first hll;, then a complemen-
tary hﬁ and other 2-handles, then a 3-handle. Thus the fundamental group
remains trivial at each stage after the second, hence the boundaries are simply-
connected. But the complement of S, in 9, ((M x I) U k") is diffeomorphic to
the complement of the belt sphere (a circle) in 3. ((M x I) Uh" U h:fl ), SO 18
simply-connected. O

Theorem 5.5.5 Suppose (W,V) r-connected, 9.V, V and W simply-
connected, and either n>r+4 or n=r+3, r>3 and 9. W is simply-
connected.

Then W has a handle decomposition on 'V with no i-handles fori < r.

Proof By induction on r, we may suppose there are no i-handles for i < r.
A second induction shows that it will suffice to remove or replace a single
r-handle.
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Write W’ for the union of V and all but one of the r-handles, W” for the
union of the remaining r-handle and all (r 4 1)-handles, and W for the rest.
The conclusion will follow if we show that Proposition 5.5.3 can be applied to
w”.

We thus need to show that 3_W" is simply-connected and H,(W", 9_W") =
0. As V is simply-connected and W’ is obtained from V by attaching r-handles
with r # 1, W’ is simply-connected. Since W’ has no handle of index n — 2,
9. W' = 9_W” also is simply-connected.

From the exact homology sequence

0=H,W,V) - HW,W) - H_(W,V)=0

we see that H,(W, W’) = 0; since handles of index > r + 1 do not change H,,
we have 0 = H. (W UW" W) =H,W",9_W"). O

The culmination of the theory developed in this chapter is the so-called h-
cobordism theorem. Let W be a cobordism. If the inclusions of _W, 0, W in W
are homotopy equivalences, W is called an h-cobordism. Provided all of 9_W,
0+ W, and W are simply-connected, it suffices if the relative homology groups
H;(W, 0_W; Z) vanish, since by duality the H;(W, 0, W; Z) also vanish, so both
inclusions are homotopy equivalences. We have

Theorem 5.5.6 (h-cobordism Theorem) If W" is a simply-connected h-
cobordism withn > 6, then W = 90_W x I, so 9, W = 9_W.

Proof Take ahandle decomposition, and choose r with2 < r < n — 3. By The-
orem 5.5.5, we can inductively replace each i-handle for i < r by an (i + 2)-
handle. Now apply the same argument to the dual handle decomposition to
eliminate all j-handles with j > r + 1. Observe thatif r =2 orr =n — 3 we
need to use Theorem 6.3.2 (ii), so cannot allow both equalities together.

We now only have r- and ( + 1)-handles, so the chain complex C,(W, 0_W)
reduces to a single map 9 : C,+; — C, which, since we have an h-cobordism, is
an isomorphism. Performing handle additions has the effect of row operations
on the matrix of 9. Consider the first column: by the Euclidean algorithm, we
can repeatedly subtract smaller from larger entries to reduce until there is a
single non-zero entry, which must be £1.

This shows that one of the a-spheres and one of the b-spheres have intersec-
tion number +1. Now if 2 < r < n — 3 we can use Theorem 6.3.2 (i) to reduce
the number of intersections to one, and then cancel the corresponding handles
using Theorem 5.4.3. As above if one (but not both) equality holds, we can
instead use (ii). Repeating the argument, we can remove all the handles. 0


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.006
https:/www.cambridge.org/core

5.6 Applications of h-cobordism 153

5.6 Applications of h-cobordism
We can formulate the h-cobordism theorem a little more generally as follows.

Theorem 5.6.1 IfV" C W" is a homotopy equivalence with 3_V = d_W, V,
04V and 0. W are all simply-connected and n > 6, then V" = W".

Proof We may write W as the union of two cobordisms V and V’ with a com-
mon boundary 9, V; since this and W are simply-connected, so is V'. It now
follows as each H;(V’, 0_V’) = H;(W, V) = 0 that V' is an h-cobordism, hence
by Theorem 5.5.6 is diffeomorphic to 0.V x I. By Lemma 2.7.2, W is diffeo-
morphic to V.

The argument applies even allowing 9_V to have a boundary X. Here we
need first to adjust corners so that .V = X x [ and also 9.V’ = X x I. O

We have as simple application,

Theorem 5.6.2 (Disc Bundle Theorem) [139] Suppose M"~¢ a submanifold
of W', OM = &, ¢ > 3, n > 6, M C W a homotopy equivalence, and M, oW
simply-connected. Then W has the structure of a disc bundle with M as zero
cross-section.

Proof Take V as a tubular neighbourhood of M. Since ¢ > 3, 9V is simply
connected. The result thus follows from the preceding theorem. O

Taking M to be a point gives
Corollary 5.6.3 IfW" is contractible, n > 6, 7 (0W) = 0, then W" = D",

We call a closed manifold a homotopy sphere if it is homotopy equivalent to
a sphere.

Corollary 5.6.4 If X" is a homotopy sphere, n > 6, then ¥" may be obtained
by glueing two discs together along the boundary. Thus " is homeomorphic
to S".

Proof Let W" be the closure of the complement of a disc D" in X". Then W is
homotopic to X" \ {point}, so is simply-connected, and its reduced homology
groups vanish, so W is contractible. By Corollary 5.6.3, W" = D".

Since D" is homeomorphic to the cone over $"~!, any homeomorphism of
§"~1 extends, by taking the cone, to ahomeomorphism of D", Since " is home-
omorphic to the union of two copies of D" glued by a homeomorphism of §"~!,
it follows that we have a homeomorphism on S". O
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The Generalised Poincaré Conjecture states that any homotopy sphere %"
is homeomorphic to the sphere S”: the original conjecture referred to the case
n = 3. We have just proved this if n > 6. The cases n < 5 are discussed in the
next section §5.7. We will return to the question of diffeomorphism in the final
section $8.8.

Proposition 5.6.5 (i) Suppose M, M’ compact, simply-connected and without
boundary, f : M — M’ a homotopy equivalence and 2¢ > m. Then M’ x D¢ is
a disc bundle over M.

(ii) Suppose in addition that ¢ > m+ 1 and f*(T(M')+ 1) = TWM) + 1.
Then M x D =M’ x D-.

Proof 1f ¢ <3 thenm < 1, M and M’ are homotopy equivalent to a circle or
a point, and the result is trivial. Now let ¢ > 3. Then by Theorem 6.4.11, we
can approximate f by an embedding of M in M’ x D¢. The result now follows
from Theorem 5.6.2.

(ii) In this case, the normal bundle of g(M) in M’ x D¢ is stably trivial and
of fibre dimension > m + 1, hence (by §B.3(xi)) is trivial. O

Proposition 5.6.6 Let X"~ ¢ be a homotopy sphere embeddedin §" (n > 6, ¢ >
3), N a tubular neighbourhood of X, V the closure of its complement. Then V
is diffeomorphic to €71 x D"+,

Proof Let N’ be a tubular neighbourhood of ¥ with N in its interior, D¢ a fibre,
S lits boundary. Since S~ bounds the contractible D¢, its normal bundle is
trivial. We assert that the inclusion of S¢~! in V is a homotopy equivalence;
indeed, both are simply-connected (V since S” is, and §" \ X"~ since ¢ > 3)
and the complement of V U D¢ is the interior of N \ D¢, a cell bundle over a
cell and so contractible. By duality, V U D¢ is contractible, and 0 = H,(V U
D¢, D) = H.(V,V N D). But V N D is an annulus with $°~! as deformation
retract, hence H,(V, S¢~!) = 0.

Ifc #n— 1,0V = 9N is simply-connected, andn — ¢ + 1 > 3, so the result
follows by applying Theorem 5.6.2to ™! C V.Ifc = n — 1, Z is acircle, and
unknots, so the result is trivial. O

We can adapt some of the above arguments to give a relative result.

Theorem 5.6.7 (i) Suppose W" a simply-connected h-cobordism, n >
6, V"¢ a submanifold, ¢ > 3, such that V"¢ =09_V x I. Then (W,V) =
(0_W,0_V)x L

(ii) Two h-cobordant pairs of homotopy spheres (Ef“, XM =0,1) with
n > 5, ¢ > 3 are diffeomorphic.
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Proof AsinLemma 5.1.1, we can find a non-degenerate function on W whose
restriction to V has no critical points; the proof of Lemma 5.1.1 is only changed
by using the given product structure to define g near V. We can now carry out
all the handle decomposition and cancellation arguments in W \ V.

More precisely, write N for a tubular neighbourhood of V in W, N for its
interior, X =W\ NandY = NNX = 3.N = 9.X.

Since ¢ > 3 is the codimensionof Vin W (andof 0_V ind_W, d,V in 0, W),
removing V does not alter the fundamental groups.

So it is enough to check that d_X C X is a homotopy equivalence, and
so enough to show that H,(X, d_X) = 0. Since d_V is a deformation retract
of V, and N is a disc bundle, 0_N is a deformation retract of N, also of
o_NUY. Hence 0 = H,(N,0_NUY)=H,(W,X U0d_W) by excision. But
H,(W,0_W) is trivial, so using the homology exact sequence of the triple
oW Cc XUo_W C W, we deduce that H,(X Ud_W, 9_W) is trivial. It fol-
lows by excision that H, (X, 09_X) = 0. The result follows.

(ii) By the h-cobordism theorem, the h-cobordism of the X is a product, so
the result follows from (i). O]

A different relative form of these results can also be obtained, giving a topo-
logical unknotting theorem for pairs of spheres.

Proposition 5.6.8 (i) Let M™ C W™ be a proper embedding of contractible
manifolds with ¢ > 3, m 4+ ¢ > 6. Assume that either M™ = D" orm > 6. Then
the pair (W™, M™) is diffeomorphic to (D™, D™).

(ii) Let T™ C ™" be an embedding of homotopy spheres with ¢ > 3, m +
¢ > 6: assume either that T™ = S™ or that m > 6. Then the pair (X"™+¢, T™) is
homeomorphic o (§"*¢, ™).

Proof (i) Take a tubular neighbourhood V of M in W: then V is contractible,
so we can apply Theorem 5.6.1 (where we set 0_V = o_W =V N dW) to the
inclusion V. C W to infer that W is obtained from V by adding a collar.

(ii) Choose an embedding (D™*¢, D™) — (Z™*¢, T™) (it is essentially
unique by Lemma 2.5.11), and delete the interior to give a pair as in (i): by
that result, we have another copy of (D¢, D™). These copies are attached by
a diffeomorphism of the boundary (S”+<~!, §"~1). But as in Corollary 5.6.4,
any such diffeomorphism extends, taking the cone, to a homeomorphism of
(D™*¢, D™). O

We now proceed to obtain minimal handle decompositions in general.

Theorem 5.6.9 Suppose W" (n > 6) such that 0_W, 0. W and W are simply-
connected. Let H{(W,d_W) = F + T, where F is a free abelian group of rank
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Bi and T is a finite group with T, 1 generators. Then W has a handle decom-
position on _W with T+ Bi + 7,1 i-handles for each i.

Proof By Corollary 5.4.1, there is a handle decomposition with no 0- or 1-
handles. Similarly, we can dispense with (n — 1)- and n-handles. This gives a
chain-complex of free abelian groups whose homology is that of H,.(W, 9_W).
By making changes of basis of the chain groups, we can put this chain-complex
into normal form, i.e. a direct sum of elementary subcomplexes, each with rank
1 or 2, and differential either

0>Z—->0 o 0->Z%7-0.

Now the required changes of base can be induced by a sequence of ele-
mentary automorphisms of the chain groups, and by Theorem 5.4.5, each of
these can be induced by a change in handle decomposition. It remains only to
remove the elementary subcomplexes with & = 1. But it follows as above from
Theorem 5.4.3 that such pairs of handles may be cancelled. O

This allows us in favourable cases to obtain classifications up to diffeomor-
phism. It follows at once from Theorem 5.6.9 that

Lemma 5.6.10 Suppose M™, with m > 6, such that M and OM are simply-
connected, H.(M) is free abelian of rank k, and H(M) = 0 for i # r. Then
M admits a handle decomposition with one 0-handle, k r-handles, and no
others.

Such a manifold is called a handlebody . By Lemma 5.2.1, it can be obtained
from D™ by simultaneous attachment of all k r-handles, so is determined by an
embedding

k
F: s x Dy — s

i=1

We can take this in two stages: first study the restriction F of F to the union
of the spheres S"~! x {0}, and then thicken the spheres up to their tubular
neighbourhoods.

The classification in the case m > 2r is straightforward.

Theorem 5.6.11 A handlebody M with m > 2r is a boundary sum of k (m —
r)—disc bundles over S". M is determined up to diffeomorphism by the values of
k, r, m, and the subgroup of w,_1(SO) generated by the classes of the bundles.

Proof Since m > 2r, it follows by general position that any two embeddings
F are diffeotopic. In particular, the components of the image are contained in
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disjoint (m — 1)—discs in S”~!. It follows that the handlebody is a boundary
sum. Each summand is obtained by attaching a single handle, so (for example,
by Theorem 5.6.2) is a disc bundle over S”.

Such disc bundles are classified by 7, (SO,,—,). Since m > 2r, this is iso-
morphic to the stable homotopy group 7,_;(SO). Hence the bundle is deter-
mined by the restriction to the central sphere of the (stable) tangent bundle
of M, which in turn is determined by the classifying map M — B(SO). Since
M is homotopy equivalent to a bouquet of r-spheres, this comes to the same
as a collection of maps S” — B(SO). If we change the handle decomposi-
tion using the Handle Addition Theorem 5.4.5, the elements of 7,(B(SO)) add
correspondingly.

We now recall the result of Bott [21] (see §B.3(xii)) that the group 7, (SO)
is cyclic, infinite if ¥ = 0 (mod 4), of order 2 if r = 1,2 (mod 8), and zero
otherwise. Thus we can change the basis of H,(M) to ensure that all but the first
basis element map to zero, and the image of the first generates the subgroup of
7,-1(B(SO)). O

In the case m = 2r, there are two extra points: the embedding F is no longer
unique up to diffeotopy, and the group 7, (SO,,—,) = m,—1(SO,) lies in exact
sequences (see B.3.2):

Z=m,(S") = 7,_1(SO,) > 7,1(SO,11) = 7,1 (SO).
s 1 1(80,-1) <5 7, 1(50,) T 7 (ST = Z

If r is even, the first map in the first sequence is injective, and both points are
accommodated by taking into account the intersection pairing on H,(M). We
have

Theorem 5.6.12 Let M*" be a manifold with M and dM simply-connected,
n > 3, with H.(M) vanishing for r # n and free abelian for r = n. The diffeo-
morphism type of M is determined by the following invariants:

a free abelian group H := H,,(M; Z),

a (—1)'-symmetric bilinear map H x H — Z given by intersection
numbers,

amap o : H— 7, 1(S0,).
These satisfy

(i) x.x = mw(a(x)) forx € H, and

(it) a(x +y) = a(x) + a(y) +xy(dt,) forx,y € H.

Proof We first define «. It follows from Theorem 6.4.11 that each x €
H,(M) = m,(M) is represented by an embedding f, : §" — M, and that for
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n > 4 such an embedding is unique up to diffeotopy. We may thus define o (x)
as the characteristic class of the normal bundle of f,(S"). In the case n = 3, the
group 1,1 (SO,) = m(S03) is trivial, so « is unique.

To see (i), note that  : 7,_1(SO,) — Z coincides with the natural map to
7,—1(S"~1). Now x.x is the intersection number of f,(S") with a nearby per-
turbation. Since f, is an embedding, this is the primary obstruction to finding
a cross-section of the bundle with fibre $"~! associated to the normal bundle,
hence with the image of «(x) under 7. As to (ii), we may join the embedded
spheres f, and f, by a tube to obtain an immersed sphere representing x + y.
This has normal bundle given by «(x) 4+ «(y) and self-intersection x.y. Now as
in §6.3 performing a homotopy to remove a single self-intersection will add d¢,,
to the normal bundle.

We must now show that these invariants determine M up to diffeomorphism.
Choose a handle presentation as above: it will suffice to show that F is deter-
mined up to diffeotopy. First consider F, and note that classifying embed-
dings into $?"~! is equivalent to classifying embeddings into R**~!. It fol-
lows from Theorem 6.4.11 that an embedding S"~! — R?>"~! is unique up to
diffeotopy.

According to Corollary 6.4.10, if 2m > 3(v 4 1), diffeotopy classes of
smooth embeddings f : V¥ — R™ correspond bijectively to equivariant homot-
opy classes of equivariant maps V x V \ A(V) — §”~!, where an embed-
ding f determines the equivariant map f; defined by fs(x,y) = (f(x) —
FON/Nfx) — fO). Taking V = Ui.;l Sl'.'_' and m = 2n — 1, we see that the
dimension condition is n > 2; the result for k = 1 shows that we can ignore the
components (Sl’.‘_1 X Sl’.’_1 ); and if i # j, an equivariant homotopy of a map of
(S;l_l X S’}_l) U (S;?_l X S;‘_l) is equivalent to a homotopy of (S;'_1 X S;f_l ).

Since homotopy classes of maps §"~! x §"~! — §?"=2 are determined by
their degree, an integer, for each pair i # j we have an integer ¢; ;, which can
be interpreted as the linking number of Sl’.‘_1 and S;?_l in §2"~1, 50 is equal to
the intersection number of the corresponding n-spheres in M, and is (—1)"-
symmetric.

For each component, the choice of extension of the map f on §"~! to an
embedding f of Sl s D' is equivalent to choosing an element of 7,1 (S0,,),
and making an appropriate normalisation, this element coincides with the char-
acteristic class a(x;) of the normal bundle of the corresponding sphere S” in
M. Hence indeed the invariants determine F up to diffeotopy, hence M up to
diffeomorphism. O

It follows by a short calculation that if (and only if) the intersection
form is nonsingular, the boundary of M is homotopy equivalent — and hence
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homeomorphic — to $?*~!. This was the case of prime interest in [159], where
I also considered the question of when M is diffeomorphic to §2"~ .

There is a corresponding classification for handlebodies in the metastable
range. The proof is essentially the same, but the arguments for (i) and (ii) are
somewhat more delicate, and we omit the details.

Theorem 5.6.13 Let M™ be a handlebody with handles of dimension s >
2, m>6, 2m > 3s + 3. Then the diffeomorphism type of M is determined
by invariants H := H,(M; Z.), a (—1)*-symmetric bilinear map A : H x H —
(8" %), and amap o : H — 7,_1(SO,,_,), satisfying

(i) M(x, x) = S, (x) for x € H, and

(ii) o(x +y) = a(x) + a(y) + A (x, y) for x,y € H.

Here 9, is the boundary map in the homotopy exact sequence (B.3.2) of the
fibre bundle SO,,_; — SOp_ss1 = S™" 5 7 1 SOy — S" 71 is the projec-
tion, and S : 7, (S" ') — m,(S"~*) the suspension map.

5.7 Complements

In this section we first summarise (without proofs) what is known in dimensions
n < 5. Then we indicate what changes need to be made if we drop the simply-
connected hypothesis.

The cases n < 1 are trivial. For n = 2 it follows from Proposition 5.4.1 that
a connected closed 2-manifold M has a handle decomposition with just one 0-
and one 2-handle. Write «; for the number of 1-handles, so that y (M) =2 —
o . In particular, if M is a homotopy sphere, o; = 0. Since any diffeomorphism
of S is diffeotopic to the identity (or a reflection) and hence extends to one of
D?, it follows that M = S2.

Otherwise we analyse M by induction on «;. If o; > 1, choose a 1-handle
D' x D', join the ends dD' x {0} of the arc D' x {0} (the a-sphere) by a
smooth arc in D? to form an embedded circle C, and cut M along this circle
to give N'. There are three possibilities which are illustrated in Figure 5.10.

(a) Cis 1-sided, so dN' is a circle, the double cover of C. Adding a disc along
this boundary gives a closed surface N with x(N) =1+ x(M), so a(N) =
a(M) — 1. Moreover the procedure to recover M from N shows that we have a
connected sum M = N#P*(R).

(b) Cis 2-sided and separates M into two pieces, N{ and Né, each with bound-
ary C. Adding a disc to the boundary yields closed surfaces N;, N, with M =
Ni#N,. Since x (M) = x(N1) + x (N2) — 2, we have (M) = a(N;) + o (V).
It follows from our construction of C that neither N; can be §2, so each a(N;) <
a(M).
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Figure 5.10 The effect of cutting a surface

(¢c) C is 2-sided, but does not separate M. Filling each component of dN’
by a disc gives a closed surface N; now we can choose a disc in N containing
each of these in its interior, and so express N as connected sum of N*, say, with
a manifold obtained from S? by removing two discs, and identifying the two
boundaries together. This yields a torus S' x S! if orientable or a Klein bottle
K2 if not. Calculating as above gives x (M) = x(N*) 4 2.

It follows by induction that M is the connected sum of a collection (possibly
empty) of copies of P*(R), S' x S' and K>. The classification is completed
by the easy proof that K» = P>(R)#P>(R) and P>(R)#K> = P> (R)#(S' x S").
The conclusion can also be formulated by saying that Theorem 5.6.12 applies
in this case.

For n = 3, a decomposition with just one 0- and one 3-handle is essen-
tially equivalent to a Heegard decomposition, i.e. expressing M as the union
of two handlebodies, which by itself does not tell us much. However the the-
ory of (compact) 3-manifolds is highly developed, and the principal structural
result is Thurston’s Geometrisation Principle, which was established by Grigori
Perelman [120] in 2003, and which includes the original Poincaré Conjecture.
An account of the proof in book form was given by Morgan and Tian [107].
Thurston’s own work [154] gives a more leisurely and very geometric account
giving some insight into how he was led to the Principle.

The case n =4 is the one where our methods yield the least. To avoid
repetition below, let us write Cy for the class of closed, simply-connected 4-
manifolds. The obvious invariant of any X € Cy4 is the symmetric bilinear form
A given by intersection numbers on H,(X; Z); this has rank B,(X) and signa-
ture o (A) = o (X); it follows from duality that A is nonsingular. The type of A
is even if each A(x, x) is even (equivalently if w,(X) = 0, thus iff X has a spinor
structure) and odd otherwise.
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It is known from the general theory of quadratic forms that two indefinite
nonsingular forms of the same rank, signature, and type are isomorphic (this
fails badly for definite forms), so the matrix of an indefinite odd form can be
diagonalised. For even forms, o (1) is divisible by 8 (see Proposition 7.3.3) and
an example with o = 8 is given by the Eg matrix (7.3.4). A result going back
to Rokhlin, and corresponding to the 4-dimensional case of Proposition 8.8.6,
tells us that for a closed spinor 4-manifold, o is divisible by 16. A well-known
example with o = 16 (and with 8, = 22)is a so-called K3 surface, for example,
the one given in P*(C) by 75 +z{ + 23 + 23 = 0.

The author proved in [162] that if X;, X, € C4 have isomorphic intersection
forms they are h-cobordant, and I deduced that they become diffeomorphic
after taking connected sums with a number of copies of S? x S2. Up to 1980
it still seemed plausible that this implied diffeomorphism, and that any non-
singular symmetric bilinear form could occur. Indeed the fopological trivial-
ity of an h-cobordism of manifolds X;, X, € C4 (and hence the n = 4 case of
the Generalised Poincaré Conjecture) was proved by Michael Freedman [53]
in 1982, and he also proved that indeed any nonsingular symmetric bilinear
form is the intersection form of some X € C4 (but not in general smooth): see
also [54].

The picture changed dramatically with the work of Donaldson. His first paper
[42] proved that if X € C4 is smooth and its intersection form X is positive def-
inite, then A can be diagonalised (and so agrees with the intersection form of
a connected sum of copies of P2(C)); in particular, unless 8, = 0, A cannot
be even. Next in [43] Donaldson proved non-existence of diffeomorphisms
for certain pairs X;, X, € C4 of smooth manifolds with isomorphic intersec-
tion forms, and hence h-cobordant: thus the h-cobordism theorem fails for such
manifolds. Donaldson’s techniques are well outside the scope of this book (and
beyond the competence of this author), but here is a brief indication of what is
involved.

Let X be a closed oriented 4-manifold; write ﬂ;’ (X) for the dimension of a
maximal subspace of H,(X; R) which is positive definite for the intersection
form. The details require By (X) to be odd, and extra complications arise if
,3; (X) = 1. Principal SU,-bundles P over X are classified by k = (c2(P), [X]).
Choose a Riemannian metric g on X; and consider the space of connections
A on P. The so-called Yang—Mills equations require that the self-dual part
of the curvature tensor of A vanishes. The quotient of the set of solutions of
these equations by the group of bundle automorphisms of P (‘gauge equiva-
lence’) is the moduli space My(g). It is shown (with some effort) that for a
generic metric g this moduli space is a smooth manifold of dimension 2d; =
8k —3(1 + ﬂj (X)), An orientation of this maximal subspace induces one of
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M, (g), and the homology class of M;(g) in the space of gauge equivalence
classes of connections determines a symmetric multilinear function g(dy) of
degree d; on H*(X; R) which is independent of the metric. These functions
give new diffeomorphism invariants for X.

The paper [81] by Kronheimer and Mrowka assembled these invariants into
a generating function ¢ = ), g(dy)/(dy)! which is regarded as a power series
over H,(X; R); their first main theorem states that if X is 1-connected and
of simple type, there exists a finite list K, ..., K, € H 2(X; Z) and non-zero
ai, ..., a, € Qsuch that

q = exp (%)‘ P asek»‘) ,

where A denotes the intersection form. The ‘simple type’ condition was some-
what ad hoc, but at least allowed large families of examples. The classes K;
are called basic classes. They all satisfy K.K = 2y (X) + 30 (A). If X is a min-
imal complex algebraic surface of general type, then the only basic classes are
4K, where K is the canonical class: thus K (up to sign) is a diffeomorphism
invariant, and the basic classes in general can be regarded as a diffeomorphism
invariant version of the canonical class.

A formula relating the invariants of X to those of the blow-up X #P2(C) was
obtained in general by Fintushel and Stern [51]. It involves elliptic functions
which, when X is of simple type, specialise to the trigonometric functions in
the above formula.

Shortly afterwards, a new theory was introduced by Witten [181], based on
the so-called Seiberg—Witten equations. Here there is an additional element
of structure. We start with a Spin‘-structure on X: this induces a pair of vec-
tor bundles W*, a complex line bundle L over X, and isomorphisms A2W* =
A?W~ = L. The Seiberg-Witten equations define a subset of the space of pairs
(A, ) with A a unitary connection on L and v a section of W*. Again we form
the space M of equivalence classes of solutions under gauge equivalence into
a moduli space and need to show that for a generic metric on X, M is smooth
of the expected dimension 2s(L), where s(L) = %(cl (L)? — 2x(X)+35(1)))
(there are in fact possible isolated singularities corresponding to ‘reducible
solutions’), compact, oriented, and deforms well under change of metric; in
fact it seems these points are somewhat easier to deal with here than in the pre-
ceding case. There is a canonical class h € H*(M) and we obtain an invariant
ng = (h*, [M]). There are only finitely many line bundles L with n; # 0. This
description assumes ;" > 1; otherwise the invariant depends on a choice of
a chamber in the cohomology of X and there is a wall-crossing formula for
moving to a neighbouring chamber.
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This method led to a flurry of papers which are surveyed in [45]. The review
of this paper mentions conjectures of Witten that the list of basic classes
coincides with the set of first Chern classes of Spin“-structures on X having
invariant n; # 0, that the corresponding coefficients a, agree (up to a normal-
ising factor) with the Seiberg—Witten invariants, and also hints at a formula for
g valid without restriction. Although nearly twenty years have now elapsed, and
there is by now a large literature in this area, these questions still seem to be
open.

These developments led to refinements of Donaldson’s original theorems
restricting the intersection form, with the simple-connectivity hypothesis weak-
ened. The best result known in 2015 seems to be that of Furuta [55]: that if
the intersection form A of a spinor 4-manifold X is not definite, then $,(X) >
fﬂa(X )| + 2 (if A is definite, a theorem of Donaldson implies 5, (X) = o (X) =
0). (The conjecture that 8,(X) > L|o(X)| remains open.)

The second major result in [81], again for X simply-connected and of simple
type, asserts that if X is a connected surface of genus g, smoothly embedded
in X, and with .2 > 0, then 2g — 2 > X.% + max,(K;.X). This gives a clear
indication that there is no simple substitute for the Whitney trick of §6.3 for
obtaining embeddings of surfaces in 4-folds. In particular it establishes (as was
conjectured by Thom) that no surface smoothly embedded in P?(C) has lower
genus than a smooth projective curve of the same degree.

In contrast to all these results, NO effective general technique is known (in
2015) for proving that two given closed smooth 4-manifolds are diffeomorphic.

For n =5, in the presence of simple connectivity, we can cancel 1- and 4-
handles, but the Whitney trick does not apply to allow us to cancel 2- and 3-
handles. However any closed oriented 5-manifold with w, = 0 is the boundary
of a 6-manifold, and (see Chapter 7) we can simplify the 6-manifold by surgery.
In particular, one can show that any homotopy sphere £° bounds a contractible
WS, and hence is diffeomorphic to S°. Similar arguments lead to a complete
classification of closed simply-connected 5-manifolds up to diffeomorphism:
see §7.9.

We next give brief indications of the changes needed to be made in the main
results of this chapter to accommodate the fundamental group.

First, where we use the Whitney trick to remove intersections of spheres of
complementary dimensions, it does not suffice to measure intersections in M by
a single number: we must take account of the paths joining intersection points.
Each intersection is then associated to a sign =1 and an element of 7r; (M), and
we add to obtain an element of the integer group ring A := Z[m(M)].

In the discussion of the homology of handles, we must now consider chains
in the universal cover of W, giving chains with coefficients in Z[m;(W)].
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We can partly compensate for this by improving the handle addition
Theorem 5.4.5 to incorporate a path following an arbitrary element of 7| (M).

Now Proposition 5.5.2 goes through without the hypothesis of simple con-
nectivity, and Theorem 5.5.5 with the additional requirement m;(9,V) =
m1(V),and if n = r + 3 also (3, W) = 7 (W).

The Euclidean algorithm used in Theorem 5.5.6 fails. Here we have the
matrix of 9 over A and moves of the following kinds can be realised
geometrically:

(a) Add some multiple of a row to another row (use handle addition, Theorem
54.5).

(b) Multiply some row by an element of 7, or by —1 (change the path from
* to an a-sphere, or the orientation of a cell).

(c) Take the direct sum of the matrix with (1) (insert a complementary pair
of handles, Theorem 5.4.4).

The operations (a) and (b) generate a normal subgroup Ey(A) of the gen-
eral linear group GLy(A); we stabilise using (¢) to obtain Eo(A) <t GLy(A),
and the quotient defines the Whitehead group Wh(smr;(M)). There is an obstruc-
tion in this group to completing the proof of Theorem 5.5.6. An h-cobordism
is called an s-cobordism (and the map o_W — W a simple homotopy equiva-
lence) if this obstruction vanishes.

It is known that Wh(rr ) vanishes if 7 is free or free abelian, or an elementary
2-group or if m = Z3, Z4, and many other calculations are known: a survey of
results for  finite is given by Oliver [116].

The results in §5.6 remain valid if the simple connectivity hypotheses are
replaced as follows:

Theorem 5.6.1 (i) 9,V C V and 0.W C W induce isomorphisms of 7r;; (ii)
M C W asimple homotopy equivalence, and dW C W induces an isomorphism
of ;.

For Theorem 5.6.7 it suffices to require that W is an s-cobordism.

For Theorem 5.6.9 there is no direct analogue: the same argument shows that
any chain complex chain homotopy equivalent to C,(W, d_W) can be realised
by a handle presentation, subject to compatibility with presentations of 7 (W).
To formulate this precisely comes to saying that we can imitate construction of
a CW-complex of the desired (simple) homotopy type by a handle presentation.
The most satisfactory results in this direction are the following, due to Mazur
[90], which can be regarded as generalisations of Theorem 5.6.1 (ii).

Let M™ be a compact manifold, K* a finite complex. We call an embedding
[ K C M tame if M is covered by coordinate neighbourhoods ¢, : Uy — R™
such that each ¢, |f~'(U,) : f~'(Uy,) — R™ is linear on each simplex.
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A submanifold U™ of M™ is a simple neighbourhood of f(K) if K C U, the
inclusion K C U is a simple homotopy equivalence, and 7;(0U) = (U \ K).

Theorem 5.7.1 (Simple Neighbourhood Theorem) (i) A smooth regular neigh-
bourhood is a simple neighbourhood.

(ii) A smooth regular neighbourhood has a finite handle decomposition with
one h' corresponding to each simplex o' of K.

(iii) Let m > 6, codim K > 3. Then if Uy, U, are simple neighbourhoods of
K, there is a diffeotopy of M, constant near K and away from Uy U U,, which
moves U, to U,.

Theorem 5.7.2 (Non-stable Neighbourhood Theorem) Suppose W" has a han-
dle decomposition with no i-handles fori > n — 2. Assume w11 (W) = (0, W),
n > 6. Let X be a CW complex with no i-cells fori > n—2and f : X - W a
simple homotopy equivalence. Then W has a handle decomposition with cells
corresponding to those of X.

There is also a relative version.

5.8 Notes on Chapter 5

§5.1 Although this decomposition has its roots in the nineteenth century, and a
version was used by Poincaré, the modern version is essentially due to Morse
[108]; however the accurate formulation first appeared in work of Smale [138]
and Wallace [171].

§5.3 The Poincaré duality theorem has its origins in work of Poincaré, though
in his time homology groups had yet to be invented, so the result obtained was
an equality of Betti numbers 8, = ,,_,. The Morse inequalities 5.3.3 are due
to Morse, who in [109] applied the existence theorem to obtain results on the
homology. See [98, I] for a similar account. The extension of duality to mani-
folds with boundary is due to Lefschetz.

§5.2, §5.4, §5.5 Apparently h-cobordism was first defined by Thom.

This development in these sections is due to Smale [138], [139]: the first
paper proved the Generalised Poincaré Conjecture, the second went on to the
h-cobordism theorem. Smale had been working on dynamical systems, and was
seeking to simplify them.

The preprint version had an error (which was soon corrected but annoying) in
the treatment of the fundamental group; in the above account we have bypassed
the difficulty by using the handle replacement technique (Proposition 5.5.1).
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Another account of the proof of the h-cobordism theorem (in terms of func-
tions rather than handles) is given in the little book [101] by Milnor.

§5.6 We have included examples to illustrate that the h-cobordism theorem
is an effective tool for obtaining classification results up to diffeomorphism.
These are taken from the author’s papers [159] and [160].

§5.7 In the lecture notes from which this book originated, I was at pains to
obtain results in maximum generality, and in particular, to remove all restric-
tions on the fundamental group. Here I have tried to supply enough to give the
interested reader a taste of what is involved.


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.006
https:/www.cambridge.org/core

6

Immersions and embeddings

We saw in Chapter 4 that a map V® — M™ in general position is already an
embedding if m > 2v. If this condition fails, we still have effective techniques
for constructing embeddings, and will describe some of the main results in this
chapter.

For immersions, the results give a complete reduction of the problem to a
problem in homotopy theory. The proof of this major result is somewhat tech-
nical, and the details will not be required elsewhere.

We will now need to assume rather more familiarity with homotopy theory
than in earlier chapters, and refer to Appendix B for a summary of the relevant
definitions and results.

The theory of embeddings begins with a technique introduced by Whitney for
removing pairs of self-intersections of a smooth n-manifolds in a 2rn-manifold
(if n > 3). We describe this in some detail in §6.3: it was used as a key tool in
§5.5. We then apply it to discuss embeddings of S” in 2rn-manifolds.

The essential idea of this technique was generalised by Haefliger to maps
V? — M™ whenever 2m > 3(v + 1) —acondition we call the metastable range.
There are several related results giving homotopy theoretic criteria for deform-
ing a map to an immersion, or to an embedding, or for finding a regular homot-
opy of an immersion to an embedding; each one also has a simplified form
when the target is Euclidean space, and also a companion criterion for find-
ing a diffeotopy of the constructed embeddings. We describe these results, but
confine ourselves to an outline of the rather involved proof.

6.1 Fibration theorems

A map f : E — B is said to be a fibration if given a space K, amapa : K —
E and a homotopy b : K x I — B such that b| (K x 0) = p o a, there exists a

167
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homotopy ¢ : K x I — X suchthata = c¢| (K x 0) and b = p o c. We also say
that f has the covering homotopy property (CHP). If this holds for K a finite
CW-complex, it follows for any CW-complex; it also follows if (K, L) is a CW-
pair that ¢ can be chosen to extend a lift already given on L x [. It suffices to
require this condition for pairs (K, L) = (D", $"~1).

If f:E — B is a fibration, * a point of B, and F = f~'(x) (called the
fibre), there is an exact homotopy sequence ..., (F) — m,(E) — m,(B) —
Tu—1(F) .. ..

The term ‘fibration’ recalls the fact that (see Lemma B.1.1) the projection
map of a fibre bundle has the CHP.

If p: E— Band p/ : E' — B’ are fibrations, a map f : E — E’ is called a
fibre map if p(e;) = p(e,) implies p'(f(e1)) = p'(f(e2)), so that there is a map
g:B— B withgop=pof.

In this section I give fibration theorems for spaces of cross-sections and of
(smooth) embeddings to prepare the way for the next section.

Theorem 6.1.1 Let M be a smooth manifold, V. C M a compact submanifold.
Then the map Diff(M) — Emb(V, M) is a fibration.

This is an upgrading of the Diffeotopy Extension Theorem 2.4.2, and the
same proof goes through with minor changes.

Proof We may suppose given a space P,amap f : P — Diff(M). and a homot-
opy g: P xI— Emb(V, M) of the restriction of f, and need to lift g to a
homotopy of f. Denote by i:V — M the inclusion, ' : P x M — M and
g P xIxV — M the maps associated to f and g (thus f'(p, x) = f(p)(x)).
Thus for p € P, x € V we have ¢'(p, 0, x) = f'(p, x).

For each (p, x) € P x V we have a path ¢ (p, t, x) in M; denote the tangent
vector to this path at g(p, ¢, x) by £(p, t, x). We need to construct a tangent
vector field n(p, t, y) to M for each (p, t) € P x I, depending smoothly ony €
M and continuously on p and ¢, and extending &.

The argument of Theorem 2.4.2 now goes through, but (i) allowing the addi-
tional parameter p € P and (ii) not insisting on smoothness as a function of the
variables p and ¢: these do not significantly affect the argument. 0

As for Theorem 2.4.2, compactness of V is essential to the argument. In Cerf
[36] and Palais [118] we find a more precise result: the fibration is locally trivial,
where the spaces of sections have the C* topology.

Lemma6.1.2 Let f : E — Bbeafibration; let K C L C B be CW-complexes.
Write I'(K) for the space of cross-sections of f over K. Then restriction defines
a fibration I'(L) — T'(K).
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Proof We may suppose given a map P — I'(L) and a homotopy of the
composed map to I'(K); i.e. f:PXxL— E and g: P x K xI — E with
g(p,a,0) = f(p,a)ifa € K. We seek to constructahomotopy P x L x [ — E
covering the projection on B and also extending g. But this exists since f has
the CHP for the pair (P x L, P x K). O]

In case K C L are smooth manifolds, there is a corresponding result for
spaces of smooth sections.

A map f : X — Y issaid to be a weak homotopy equivalence if, for any CW-
pair (K, L)and mapsa : L - X and b : K — Y with b| L = f o a there exists
c: K — X withc|L = aand f o c homotopic to b keeping L fixed. For this it
suffices to consider pairs Sk=1 < D instead of L C K; thus for X connected it
suffices if f induces isomorphisms f, : 7,.(X) — m.(Y) of homotopy groups.

Lemma 6.1.3 Suppose given a commutative diagram

E—h g

|

B . p

with p and p’ fibrations and g a weak homotopy equivalence. Then if h is a weak
homotopy equivalence, so its restriction to each fibre of p.

Conversely, if the fibre map h induces a weak homotopy equivalence on each
fibre, g is a weak homotopy equivalence.

This result is an easy deduction from the homotopy exact sequences of the
fibrations and the five lemma.

6.2 Geometry of immersions

If f:V — M is an immersion, at each P € V the map dfp : TpV — Tpip)M is
injective. When we were discussing submanifolds, we remarked that the restric-
tion of T(M) to V had T(V) as a sub-bundle, and described the quotient as
N(M/V). If f is an immersion, instead of the restriction of T(M) we have its
pullback f*T(M) by f, and an embedding of T(V) as a sub-bundle of f*T(M).
The main result about immersions is a converse to this statement.

A homotopy g, : V — M is called a regular homotopy if g, is an immersion
for each t. We also seek to classify immersions up to regular homotopy. In
fact, not only is the main result stated in more precise terms, but the result is a
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special case of a principle, formulated by Gromov [59] and called by him the
h-principle, which holds for a variety of other geometric structures as well as
immersions.

Againlet f : V — M be an immersion, then j' f : V — J'(V, M) avoids the
set *(V, M) := ;- 2i(V, M) of singular jets, and so defines a section g to
the projection map rr{ : J Y(v, M)\ =*(V, M) — V, and this section carries the
information about bundles. Not every section of 7; : J'(V, M) — V has the
form j! f foramap f : V — M: apart from the requirement of differentiability,
these sections satisfy the additional equations given in local coordinates as u’j =
dy;/dx;. Nevertheless, we will see that in many situations any section of 7z;* can
be deformed to one of the form j! f, hence arising from an immersion f.

In fact the proof gives a stronger result, and this strengthening is key to the
proof. Instead of considering a single map, we consider spaces of maps. Taking
1-jets defines a map J from the space Imm(V, M) of immersions to the space
I'(V, M) of sections of 7;". We now state the main theorem.

Theorem 6.2.1 Provided that either v < m or V° is open, the map
J : Imm(V,M) — T'(V, M)
is a weak homotopy equivalence.
This will usually only be applied in the following form.

Corollary 6.2.2 Any section of I'(V, M) is homotopic to one induced by an
immersion, and two immersions are regularly homotopic if and only if the cor-
responding sections of I'(V, M) are homotopic.

The necessity of the condition in the theorem is clear: for example, there is
certainly no immersion S — R!, since any map has bounded image, while the
image of an immersion would be open.

We can state the result in a more concrete way. Recall that I'(V, M) is the
space of sections of m; : J (V, M) — V, and that a 1-jet with source P and
target Q is determined by these points and a linear map 7pV — TpM. Thus a
section o of I'(V, M) assigns to each point P € V a point f(P) = Q € M and
a linear map g(P) : TpV — TpM. The component f is a smooth map V — M,
and g gives amap T(V) — f*T(M), which we require to be injective on each
fibre.

We pause to introduce the Stiefel manifold V,, ,, defined as the set of iso-
metric embeddings R” — R™, and hence diffeomorphic to O,,/0,. This is a
deformation retract of the space of linear embeddings R* — R™, which we
denote V'(m, v) and call the weak Stiefel manifold.
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The above bundle map g is injective on each fibre if and only if it is a section
of a bundle & } over V with fibre V! . Thus the existence part of the criterion

mo*

can be formulated as follows.

Proposition 6.2.3 Provided that either v < m or V° is open, amap f : V> —
M™ is homotopic to an immersion if and only if the above bundle E} over'V
admits a section.

A corresponding formulation for the uniqueness part concerns a homotopy
between maps fy, fi and a homotopy of sections g; lying over this.

Note also that homotopy classes of sections of E} correspond to classes of
sections of a bundle &¢ over V with fibre V.

In the case M = R™, the tangent bundle T(M) is trivial and & is associated
to the normal bundle N(M/V) of V. An easy application is to the case when
T(V) is trivial.

Corollary 6.2.4 If V" has trivial tangent bundle, there is an immersion of V
in R°*1:if V is open, it immerses in R.

The idea of the proof of the theorem is to build V up as a union of stages V'
and to show, by induction on i, that the result holds at each stage. At each stage
we attach a k-handle for some k, and need to show that the property remains
true. This step is established by induction on k.

We recall the notation D¥(a) for the disc {x € R¥| ||x|| < a}; we now also
write D¥(a, b) := {x € RF|a < ||x|| < b}.

The theorem will be deduced from three lemmas.

Lemma 6.2.5 The theorem holds if V. = D" is a disc.

Lemma 6.2.6 Suppose V't obtained from V by introducing a corner or
attaching a collar. Then the restriction maps Imm(V*, M) — Imm(V, M) and
C(V*, M) — T'(V, M) are weak homotopy equivalences.

Lemma 6.2.7 The restriction map Imm(D*(2) x D% M) — Imm(D*(1, 2)
x D°7* M) is a fibration.

Proof of Theorem 6.2.1 By Corollary 5.1.7 (if V is compact) and Lemma 5.1.8
(if not), V has a handle decomposition. If v < m, this can have no m-handles; if
v = mand V is open we may suppose by Proposition 5.4.1 that there are none.
First suppose V compact.

We will prove by induction on k that the result holds for any V’ which has
only j-handles for j < k. Lemma 6.2.5 provides the start of the induction. We
also induct on the number of handles of V: write V; for the manifold with i
handles, and suppose V| obtained by attaching a k-handle. By the description
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in §5.1, Vi1 is obtained from V; by first introducing a corner to obtain V.*, say,
then attaching a copy of D¥ x D*~*, which we take as D¥(2) x D*~*. Consider
the diagram

Imm(D*(2) x D**, M) L T(DKQ2) x D%, M)

v J . (6.2.8)
Imm(DA(1,2) x D', M) =5 T(D*(1,2) x D", M)

By Lemma 6.2.7, the left-hand downward map is a fibration; the right-hand one
isby Lemma 6.1.2. By Lemma 6.2.5 together with Lemma 6.2.6, the upper map
J is a weak homotopy equivalence. By inductive hypothesis, so is the lower
map J. Hence by Lemma 6.1.3 J induces a weak homotopy equivalence on
each fibre. Now the diagram

mm(Viet, M) =2 T(Vi1, M)
! 1 (6.2.9)
Imm(V:t, M) -5 T(V*, M)

maps by restriction to diagram (6.2.8). The vertical maps in (6.2.9) are the pull-
backs of the vertical maps in (6.2.8) which are fibrations; hence they too are
fibrations. The restriction of J to each fibre in (6.2.9) is a weak homotopy equiv-
alence. Since the lower map J is a weak homotopy equivalence by Lemma 6.2.6,
it follows that the upper also is.

For the case when V is not compact, so we have an infinite number of handles,
we note that Imm(V, M) is the inverse limit of the Imm(V;, M), I'(V, M) is the
inverse limit of the I'(V;, M), and apply Lemma B.1.3. O

Proof of Lemma 6.2.5 Since the disc is contractible, the space I'(D’, M) of
sections of 7| : J (D*, M)\ ©*(D°, M) — D" is homotopy equivalent to the
space of sections over the origin, which is the space W of injective linear maps
from R to the tangent space TpM.

We need to look at a map from D* to I'(D”, M) and a lift to Imm(D", M) of
its restriction to S¥~!. So for each x € D* we have an injective linear map from
R to some TpM, i.e. a 1-jet j! at 0 of a map f, : D — M. To see that we can
choose the f, to depend continuously on x, take a closed embedding 4 : M —
RX (which exists by Corollary 4.7.8), a tubular neighbourhood of its image with
image N, and hence a smooth retraction p : N — M, the projection of the tube.
Now j!, composed with the inclusion % gives a 1-jet of map R — RX which
has polynomial (in fact, linear) representative g,. Composing with p gives f, =
p o gy, defined on a neighbourhood of 0, and depending continuously on x.
Moreover since D¥ is compact we can choose the same neighbourhood for all
x € D,
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Dk:(2)

Figure 6.1 The core of D¥(2) x D*~*

We have constructed a lift, but on a smaller disc D”(¢). Composing with a
diffeotopy J; of D, equal to the identity near 0, and compressing D" inside
D?(¢) by a diffeotopy, we obtain a lift of maps of the larger disc.

This does not yet agree on the boundary S*~! with the given lift. For x € dDF
we have the given immersion g, : D’ — M and the map f; just constructed,
both with the same 1-jet at 0. Working again in RY, we consider the linear
interpolation Ag,(y) + (1 — A)f;(y) and compose with p to obtain a homotopy
in M. Since the 1-jets at 0 € D’ are constant, this restricts to a regular homot-
opy on a smaller disc D’(¢’). Using J; again, we obtain a regular homotopy
on D°. O

The proof of Lemma 6.2.6 is simple: the second result holds since V. C V*
is a homotopy equivalence; as to the first, we have embeddings V — V* — V
with composite diffeotopic to the identity.

Proof of Lemma 6.2.7 The proof that
Imm(D*(2) x D*~%, M) — Imm(D*(1,2) x D%, M)

is a fibration is the key to the whole result. Define the core (of D¥(2) x D)
to be C := (D¥(2) x {0}) U (D*(1,2) x D*~¥): this is pictured in Figure 6.1.

The parameter space P plays very little part below (we just use the fact that
P is compact). Nor does M: we have to make sure that each map into M is an
immersion, but can use the fact that immersions form an open set. Let us call
amap ¢ : A x B — M, with A a submanifold of D¥(2) x D*~¥, admissible if,
for each b € B, the induced map a — ¢(a, b) is an immersion.
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We are thus given a continuous P-parameter family of immersions giv-
ing an admissible map g : D¥(2) x D*~* x {0} x P — M and a homotopy of
its restriction f : D¥(1,2) x D** x I x P — M, and seek to extend this to
a homotopy (through admissible maps) of g. The first step is to extend the
maps f and g to a map D¥(2) x D"~% x I x P — M. This is not in general
admissible, but by openness of immersions, the restriction f’ of this map to
DF(ae,2) x D' x I x P — M is admissible for some o < 1.

Next define K : D*(a, 2) x D'~ x I x P x I — M by setting

Ke,y,t,2,T) = f(x,,1,72) if T =t orif x| > («+2)/3
=f T2 if x| —e] < (1 —a)/3

and extending smoothly to other values. This defines an admissible map
on some neighbourhood of T =t, hence for some ¢ > 0 whenever |t —
T| <e. Wecanthus find 0 =1 <t < ... <t; =1 such that k;(x, y, ¢, 2) :=
K(x,y,t,z t;) is admissible for ; <t < ;1.

We will now inductively construct an admissible extension g, for0 < <t¢,
which is equal to f” on ||x|| > a,, where ¢ = ag < ---a,-1 < a, < 1. We start
the induction by setting

go(x,y, p,t) =gx,y, p,t) if x| < «,
=ko(x,y, p,t) if ||x]| > «a.

The key step is now a diffeotopy 4, : DX(2) x D'~* x [0, t,] — D*(2) x
D'~* such that

@) h,(x, y,t) = (x,y) on a neighbourhood of || x| = a,, y = 0, and outside
a neighbourhood of a,—; < ||x|| < apy1,

(i) A6, y. 1) = (1, y) i 1 < 11,

(i) A, (%, *, t,,) maps S¥~(a,41) x {0} onto S~ (a) x {0}.
To construct this it is essential that k < v, so that dim D*~* > 0 and there is
enough space within D*~* to move one point past another. The effect of using
this diffeotopy is to introduce folds in the immersion, thus giving extra space
to move.

We define g, by

G (e, ¥, 1,2) = gn(x, 3,1, 2) if0<tr=<t, xl <a,
= f'(hy(x,y,1),1,2) if0<t<t,a, <|x| <2
= kn(hn(xv Y, tn)v z, Z) if Iy <t < Iy, Qpy1 = ||.X|| < 2

= gn—t-l(x» ¥, s 2) ift, <t < bt lx|l < ap+1
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1
tn+1
k/n/ ] h"L
ty
In floh,
OO an An+1 1 2

Figure 6.2 Piecing together the construction of g,

We offer Figure 6.2 to help follow this ‘piecing together’ construction of
gn+1: note also that g, has already been defined for t = 7, by the lines above,
and in the upper left rectangle, the value is independent of ¢.

We now check that, at least for (x, y) in some neighbourhood C* of C, these
formulae agree on the intersections of the different domains of definition.

First consider 0 <t <t,, |x|| = a,. Since h:(x, y) is constant near |x|| =
a,, y = 0, the second formula here reduces to f”, as does the first.

Along t = t,,, we have
(@) &n(x, y, 1, 2) (Xl < an),

(1) f'(hy, (x, ), 1, 2) (an < lIx] < 2),
(i) Kn(hy, (x, ), 1w, 2) = & (hy, (X, 9D, ty 2, 10) = [ (By, (6, ¥), 10, 2)  (Angr <
lx|| < 2), while the final formula agrees by definition, so indeed all match up.

Finally consider ¢, <t < t,41, |x|| = a,+1. Again we need only check in a
neighbourhood of y = 0, and use (iii) above. The fourth formula is indepen-
dent of ¢ in this range, and we have already checked agreement at ¢t = t,,. Now
ky(hy, (x,y),t,z) = g (h, (x,),1t,2,t,), and indeed this is independent of ¢ if #,
is near to a.

Choose a diffeotopy H, of D¥(2) x D'~* into itself which is the iden-
tity on a neighbourhood of C and has H;(D*(2) x D*~*) C C*. We use
this to re-parametrise our maps to obtain the desired extension: the map
gnr1(Hi(x,y), p, t) is admissible, and allows us to continue the induction. [J

Since the proof proceeded by attaching successively to V handles of dimen-
sion less than v, it follows without further argument that if we have already
constructed an immersion on a closed submanifold W of V of the same dimen-
sion, this can be extended over the rest of V, provided dim V < dim M or no
component of W \ V has compact closure. Applying this to the case when W is
a collar neighbourhood of 9V, we deduce that the theorem extends to the case
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of immersions (V, dV) — (M, dM): given a map covered by an injective map
of tangent spaces, then if v < m we can construct an immersion.

A similar argument yields a much more general result. Let E(M) be any
bundle over M naturally associated to the differential structure, in the sense
that any diffeomorphism M — N induces an isomorphism E(M) — E(N) and
for any open set U C M, the restriction of E(M) to U is naturally isomorphic to
E(U): for example, for any manifold P we can take E(M) = J*(M, P). Write
E"(M) for the bundle of r-jets of sections of E(M). Let Ej(M) be an open sub-
bundle of E” (M) with the same invariance property.

Define I'Ej(M) to be the space of sections of Ej(M) and I'0E(M) to be the
space of sections o of E(M) whose r-jet is a section of Ej(M). We assign
these spaces the C*° topologies. The following result is called by Gromov the
h-principle.

Theorem 6.2.10 [59] If M is open, the map j" : I'o(M) — T'Ej(M) is a weak
homotopy equivalence.

For example, if we have an immersion V¥ — R¥ with a continuous sec-
tion to the bundle of unit normal vectors, we have an immersion V? — R,
We will use this to show in Theorem 6.3.6 that any manifold immerses in
R>-1,

A smooth map f : V — M is called a k-mersion if, at each point P € V, the
map dfp : TpV — TpM has rank > k. The h-principle applies to k-mersions:
given amap f : V — M covered by a map T(V) — f*T(M) having rank > k
at each point then f is homotopic to a k-mersion.

6.3 The Whitney trick

We have seen from general position arguments that any manifold M™ embeds
in R?"*! and immerses in R*". It was shown by Whitney [177] that in fact
M™ embeds in R?" and, again by Whitney, in [178] that M" immerses in
R2m-1,

In this section we explain the construction used by Whitney to establish these
results. It has further applications, which will be frequently used in Chapter 7.

By Corollary 4.5.8 to the transversality theorem, if we have two embeddings
of compact manifolds £ : V* — M™ and f' : V""" — M"™ withm = v + v’ we
may suppose, up to a (small) diffeotopy of f, that the images are distinct except
that there are finitely many pairs P, € V and P/ € V' with f(P,)) = f'(P)) =R;
and the two intersections are transverse.
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Similarly, by Theorem 4.7.7, if m = 2o, for a dense set of maps g: V’ —
M™, g is an immersion, and fails to be injective only insofar as there are finitely
many pairs of distinct points (P;, Q;) in V with g(P;) = g(Q;) = R;, but the two
branches of V are transverse.

The so-called Whitney trick is a procedure which, under some conditions,
perturbs the embeddings f and f” to be disjoint, or perturbs the map g to obtain
an embedding of V in M. Given orientations, each intersection is assigned (at
least locally) a sign. The construction will enable us to cancel a pair of inter-
sections of opposite signs. Moreover this is achieved by a diffeotopy of f or a
regular homotopy of g.

A second construction, also due to Whitney, allows us to introduce a single
self-intersection (of either sign) of g by taking connected sum with a standard
map inside a coordinate neighbourhood. Combining the two constructions gives
a further chance to modify g to an embedding.

Suppose given orientations of V, V' and M. At a point R where V and V’
intersect transversely, we have TxM = TrV @ TgV’. Choose bases (e, ..., e,)
of TV and (e}, ..., ¢€,,) of TrV’ defining the given orientations. Then the
local intersection number of V and V' at R is defined to be +1 if the basis
(e1,...,e,¢€),...,¢€,)of TrM defines the given orientation of M and —1 if it
does not.

Figure 6.3 Model of the deformation

The model picture, which is illustrated in Figure 6.3, is to take the line C :
y = 0 in the plane and the curve C’ : y = x> — 1 intersecting it at the two points
Ay =(1,0), A, = (—1,0) and deform the curve C’ vertically to C, given by
y=x*>—1+41: fort > 1 the intersections have disappeared. More precisely,
we choose a deformation y(x, t) for |x] < 1+ 2¢ and ¢ € I such that for |x| <
1 we have y(x,t) = x> — 1 4+t and for |x| > 1 4+ & we have y(x, 1) = x> — 1.
Write D* for the region spanned by the two arcs, and D for a neighbourhood
of D* in R
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Suppose given connected manifolds V, V' of dimensions v, v’, and embed-
dings ¢ : V — M", ¢' : V' — M™ with m = v 4+ o’ which intersect trans-
versely. The key idea is to embed the above model in the manifold.

Take two points of intersection, say ¢(P;) = ¢'(P/) = R; (i = 1, 2). Choose
paths f: (/,0,1) = (V, P, P,) and f': (/,0,1) — (V’, P, P;}). Since v and
v’ are each > 3, general position shows that we may take each of f, [ to
be a smooth embedding. Taking x as parameter on C and C’ allows us to
regard the paths as maps f : (C,A;,A2) — (V, P, P,) and f' : (C', A1, Ay) —
(V', P/, P;). Then ¢ o f and ¢’ o f’ together define aloop F : CUC" — M.

Proposition 6.3.1 Suppose also that V, V' and M are all orientable, that the
intersections at Ry and R, have opposite signs, and that either

(i)v, v’ > 3 and F defines a nullhomotopic loop in M or

(ii) v > 2 = v and F defines a nullhomotopic loop in M\ V.
Then there is an embedding ¢ : D* x R*~' x RY~!' — M such that $~" (V) =
(DTNC) xR x {0} and ¢~ (V') = (DT NC') x {0} x RV~

Proof Since F is nullhomotopic in M, the map of the two arcs extends to a
map of the disc D*, and hence to a map g of a neighbourhood D, which we
can take as smooth. We next put the map g in general position. Since m > 5,
we may suppose that g is an embedding.

In case (i) as v, v’ > 2 we may suppose using general position that the only
intersections of g(D™) with V and V' occur along the images of C and C'. In
case (ii) we can avoid V' by general position, and the fact that the extension g,
outside a neighbourhood of C, can be taken to avoid V holds by our hypothesis.

For short, write C for g(C N D) and C’ for g(C' N D). Write ¢ for the tan-
gent vector ¢ = d(¢ o f)(9/0t) along C. Let n; be the vector field along C,
normal to C, and inwards tangent to g(D*). Similarly write ¢’ for the tangent
along C" and & for the normal pointing inwards along g(D*). Observe that we
have &, = ¢ and n; = ¢’ at Ry, and &, = —¢, n; = —¢’ at R,. These steps are
illustrated in Figure 6.4.

We next construct smooth vector fields & (2 < i <v)andn; (2 < j <v’)on
g(D™) such that

(1) at each point, they form a base for the normal space to g(D™),

(ii) along C the &; (2 < i < v) are tangent to V, and

(iii) along C' the n; (2 < j < v’) are tangent to V.

Firstchoose vectors &, . . ., &, tangentto V at R; suchthat (¢, &, ...,&,)isa
base defining the orientation of V. Since C is contractible, we can extend this to
give abase of TpV atall P € C. We can also extend &, &, ..., &, to give a base
of the normal space Np(M/V') at all P € C’, but now need compatibility at R;.
Since the intersections at R; and R, have opposite signs, the two orientations
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C' = (1)

C=f{)

Figure 6.4 Using the model to construct a deformation

of Tr,V differ. But as £ = —& at R,, the two bases &, ..., &, at R, have the
same orientation, so by choosing a different extension above, we may suppose
that they coincide, so these vectors are defined over CU C'.

The bundle over D" of orthonormal (v — 1)-frames orthogonal to D is a
trivial bundle whose fibre is the Stiefel manifold V4, _»,_;. We have con-
structed a section over a circle; since v” > 3, V, 1,5, is simply connected
(see §B.3(xv)), so we can extend the section over D™,

Since D7 is contractible, all bundles over D are trivial. We may thus extend
M2, ..., 7, to a base for the bundle of vectors normal to D" and to the &;. It
follows from our choice of these that these satisfy (iii) above. We have thus
constructed normal vector fields (&, ...,&,, N2, ..., ny) along D' such that
(&2, ..., &) are tangent to V at all points of V (1, ..., n,/) are tangent to V' at
all points of V'.

By Theorem 2.5.5, a neighbourhood of D* is diffeomorphic to a disc bundle
over DT, which must be trivial, hence diffeomorphic to Dt x R*+"'~2; corre-
sponding statements hold for C and C’.

By Proposition 2.5.10 there exists a tubular neighbourhood of C in M whose
restriction gives a tubular neighbourhood of C in V; by the remark following
that result, we may suppose this neighbourhood compatible with D*. We use
this to define ¢ on a neighbourhood of C.

We argue similarly for C’; moreover, these neighbourhoods are constructed
by glueing together pieces, so if we begin with charts at P and P’, we can ensure
that these maps agree, thus defining ¢ on a neighbourhood of C U C'.

As above, we can use general position to extend ¢ over DT. Finally, the
above maps may be regarded as defining a tubular neighbourhood for D" on
a neighbourhood of C U C’, and the proof of Proposition 2.5.10 shows how to
extend this over D™ note that our construction of bases for the normal spaces
shows that these partial tubular neighbourhoods do indeed define an embedding
of our model. O
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Theorem 6.3.2 Suppose we have connected orientable manifolds V®, V' and
embeddings ¢ 1V — M"Y, ¢’ : V' — M**" which intersect transversely,
with two intersection points ¢(P;) = ¢'(P!) = R; (i = 1, 2) of opposite signs.
Choose paths giving smooth embeddings f : (C,Ay,Ay) — (V, P, Py) and f :
(C', A1, Ay) — (V', P, P}) defining aloop F : CUC" — M. Suppose also that
either

(i)v, v’ > 3 and F defines a nullhomotopic loop in M or

(ii) v > 2 = v and F defines a nullhomotopic loop in M\ V.
Then there is a diffeotopy of ¢ : V. — M, supported on ¢(I), such that hy(V) N
V' agrees with V NV’ less the points Ry, R,.

Proof Tt suffices to construct a diffeotopy in the model D* x R*~! x R¥'~!
which is constant near the boundary, then transport it into M by the embedding
@.

Begin with the diffeotopy ¢; : C x I — D™, modified using a bump function
to be the identity outside a neighbourhood of D*. Now define

®:CxR'x1— Dt xR x RY!

by @;(x, ) = (¢ra(y)(x), y, 0), where ae(y) is equal to 1 when y = 0 and to O for
Iyl = e. O

Although the details involve local orientations, the hypothesis of global ori-
entability is not needed for this argument. If V, for example, is non-orientable,
by replacing f by its composite with an orientation reversing loop we can
change the local orientation, so in this case we do not need to assume the two
intersections of opposite signs. However the condition that (i) or (ii) holds is
essential.

The same construction is used, taking V = V’, to eliminate self-intersections
of an n-manifold in a 2n-manifold. Here we can do somewhat more. First sup-
pose n odd. Then the sign of the intersection number is changed if we reverse
the order of the two branches V, V' at R. Thus (provided n > 2 and M is sim-
ply connected) we can eliminate any pair of transverse self-intersections by a
regular homotopy, as we can start by joining P; to P; and P| to P, instead.

We also have

Proposition 6.3.3 There is a self-transverse immersion B : S" — S with a
single transverse self-intersection, and with normal bundle isomorphic to the
tangent bundle of S".

Proof We begin with the immersion f:S'— R?> given by f(0)=
(sin 6, %sin 20), where 6 denotes the angular coordinate on St =
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Figure 6.5 An immersed sphere

{(sin O, cos #)}. (This is essentially the same as an example already used
in §1.2.) The curve passes through the origin when 6 = 0 and when 6 = ,
and the two branches are transverse.

Rotating this, define F:S8" ! x[0,7] — R** by F(£,0)= (£sin6,
1&sin 20), where we regard S"~! as a subset of R” and identify R*" with
R" x R". We observe that F'(¢,0) = F(—&, —0). All the points with § =0
or  are again mapped to the origin. Hence F factors as F = G o p, where
p:S" ! x[0,7] — S" is defined by p(£,60) = (£ sin 6, cos 0). I claim that
G : 8" — R?" is a smooth immersion.

Near the point (0, ..., 0, 1) on §" we can write x = £sin 6: then ||x|| = sin0,
soy=cosf = /1 — ||x|? and G(x, y) = (x, x4/ 1 — ||x||?). Here we can take x
as giving local coordinates, and /1 — ||x||? is a smooth function of x near x = 0.
Thus the map is smooth at this point, and the image has tangent the diagonal
{(x, x)}. A similar calculation deals with the point (0, ..., 0, —1) (here 6 = 7).
The image (for n = 1) is pictured in Figure 6.5.

For the immersion f, both tangent and normal bundle are trivial. We can
define an isomorphism between them by rotating each tangent vector through
an angle +7 in the plane. A corresponding rotation can be made in R?", using

o 0 —I S . .
the matrix (in block form) ( ] ), and again this gives an isomorphism of

0
the tangent space to G(S") on its normal space. That this also works for each
branch at the origin follows from the above calculation of the tangent space
there.

Composing G with an embedding R*" C S given the desired map E. [J

Given any immersion V" — M?" we can take a connected sum with J,
at a smooth point of each submanifold, and this produces (up to diffeomor-
phism) another immersion V" — M?", but now with an additional point of self-
intersection. Moreover, changing the orientation, this point can be supposed to
have intersection number of either sign.
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Theorem 6.3.4 Given compact smooth manifolds with V" connected, M*"
simply-connected, andn > 3, any map f : V" — M*" is homotopic to a smooth
embedding.

Proof We may suppose by general position that f is an immersion, and is self-
transverse, so that there are finitely many points P; of self-crossing.

First suppose V orientable. Choose orientations of V and M, and hence a
sign %=1 attached to each P,. As just observed, we may introduce a further self-
intersection point of either sign. Introduce such points until there are equal
numbers of both signs.

Given two points of opposite sign, we apply Theorem 6.3.2 to construct a dif-
feotopy of the neighbourhood of an arc in V joining the points, hence inducing a
regular homotopy of V, which removes these intersection points and introduces
no new ones.

If V is non-orientable, we first introduce a self-intersection point, if neces-
sary, to make the number of such points even. Now we can cancel any pair of
P; by the same construction: we just need to choose the arc in V of the desired
parity. O

The hypotheses are necessary. If V has two components, they may have non-
zero intersection number in M: for example, consider (§" x %) U (x x S*) in
S" x §*. If M is not simply-connected, counting self-intersections more care-
fully gives an obstruction lying in the group ring Z[x|(M)]: see [167, §5]. For
a counterexample, we can take the above map E with M a neighbourhood of
its image. If n = 2, the whole Whitney trick fails.

For any manifold M?", we know by general position that any map S"* — M>"
is homotopic to an immersion, and from Theorem 6.2.1 that immersions in a
given homotopy class are classified up to regular homotopy by =, (E), where
E — M is the bundle associated to TM and with fibre the Stiefel manifold V5, ,.
We have an exact sequence

7Tn(V2n,n) — m(E) = m,(M) — {1};

by §B.3(xvi), the first term is cyclic of order oo or 2 according as » is even or
odd.

If n is even, the immersion ¢ determines a homology class [¢] with self-
intersection number [¢].[¢]. It also has a normal bundle, with Euler class giving
a number e(¢). We may suppose ¢ has transverse self-intersections; summing
the intersection numbers at these points gives a further integer 1(¢).

Lemma 6.3.5 We have [¢].[¢] = e(¢) + 2I(¢).
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Proof The homological self-intersection is the intersection number of the
image of ¢ with a small perturbation of it; this is the sum of the contribution
e(¢) of the self-intersection in the normal bundle and a contribution of 2 from
each point of self-intersection of ¢. O

Taking the connected sum with the example of Proposition 6.3.3 has the
effect of changing the regular homotopy class by the action of a generator of
7, (Van.n), and of adding 2 to e(¢) and subtracting 1 from /(¢).

If n is odd, there are two regular homotopy classes of immersions in
each homotopy class of maps " — M>", one in which the number of self-
intersections is even, and one with this number odd: since the parity is invariant
under regular homotopy, the map ,(V, ,) — m,(E) is injective. If also n > 3
and M is simply-connected, just the former regular homotopy class contains
embeddings. The two classes have different normal bundles if T(S") is non-
trivial, i.e. if n # 3, 7.

Similar conclusions to these apply with any V" in place of S".

Now consider immersions of N” in Euclidean spaces. By Proposition 6.2.3,
amap f: N" — M™ with n < m is homotopic to an immersion if and only if
a certain bundle n over N with fibre V,, , admits a section. Obstruction theory
tells us that obstructions to the existence of sections lie in H'(N; 7;_; Vinn))s
and by §B.3(xv) V,., is (m — n — 1)-connected. So the primary obstruction is in
H"™ " YN 700 (Vi)); and by (xVi), 72, (Vy.) is isomorphic to Z if (m — n)
is even and to Z; if (m — n) is odd. This obstruction is denoted W,,_,, 1 (n); its
image in H""*!(N; Z,) is the Stiefel-Whitney class w,,_,1 (1) (see §8.6).

First take m = 2n: since Vs, , is (n — 1)-connected, there is (as expected) no
obstruction.

Theorem 6.3.6 For n > 2, any smooth n-manifold immerses in R2n-1,

Proof The result is due to Whitney [178]; we follow the account of Hirsch
[70].

We setm = 2n — 1 in the above. Since V,,,_1 , is (n — 2)-connected, the only
obstruction is the primary obstruction, which lies in H"(N : m,—1 (Vap—1))-

If N is non-compact, or has boundary, then the obstruction lies in a zero
group, so vanishes, and immersions exist. Otherwise the obstruction lies in the
group H"(N; Z), where the coefficients are twisted if N is non-orientable, hence
the group is isomorphic to Z in both cases.

Now proceed indirectly, and start with an immersion in ¢ : N" — R?". If we
find a non-zero normal vector field to this immersion, this implies the existence
of a section to the bundle with fibre V;,,_; , and hence of an immersion in R,
Such a normal vector field exists if and only if the normal Euler class e(¢)
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vanishes. (We refer to [103, VIII] for background on this class.) The class e(¢)
also lies in H"(N; Z) and can be identified with the above obstruction.

If n is even, we recall the equation [¢].[¢] = e(¢) + 2I(¢). As intersection
numbers in R?" vanish, it follows that e(¢) is even. Taking the connected sum
with a suitable numbers of copies of the example of Proposition 6.3.3 gives an
immersion i with e(yy) = 0. We can thus find a non-vanishing normal vector
field to ¥ (V), and hence obtain an immersion in R>*~!.

If n is odd, the Euler class satisfies 2e(¢) = 0. Since it lies in a group iso-
morphic to Z, it vanishes, so a normal vector field exists. O

Some results can be obtained for the problem of immersibility of N” in R?"—2.
It was shown in [70] that if n = 1 (mod 4), an immersion exists if and only if
W.—1(n) = 0.

Among the more interesting problems is to determine the lowest dimensions
into which one can immerse or embed the real projective spaces P"(R). By
studying the conditions on bundles, Atiyah [13] proved that, if we define o (n)
to be the greatest integer s such that 2! (") is no divisible by 2*™ (where ¢
denotes Euler’s phi function) then P"(IR) cannot be immersed in R~ or
embedded in R,

6.4 Embeddings and immersions in the metastable range

Given an embedding f : V® — R™, as in §4.2 we associate to any pair of dis-
tinct points P, Q of V the non-zero vector A (P, Q) := f(Q) — f(P) € R, and
hence the unit vector §7(P, Q) := u(A (P, Q)) € sl Recalling the notation
V® for the set of pairs of distinct points of V, we have amap §; : V@ — g7~
with the property 8 ,(Q, P) = —87(P, Q). If fis animmersion, the same formula
defines a map on U \ A(V) for some neighbourhood U of A(V)inV x V.

Since we will have a number of similar conditions in this section, let us agree
that we have standard actions of the group Z, of order 2, givenon V x V or on
V@ by interchange of the factors, and on a vector bundle by the map which is
minus the identity on each fibre. Thus when we say a map is ‘equivariant’ we
mean with respect to this action. We also say that an equivariant mapo : A — B
is isovariant if the preimage of the fixed set (of the action) in B is the fixed set
inA.

For any map f : V — M the product f x f:V xV — M x M is equivari-
ant. [t is isovariant if and only if f(x) = f(y) implies x = y, i.e. if f is injective.
In this case, f x f restricts to an isovariant map f® : V) — M),
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If f is an immersion rather than an embedding, we know at least that it is
locally injective, so there is a neighbourhood U of the diagonal A(V)inV x V
such that the restriction of f x f to U is isovariant and the map f® is defined
on U \ A(V). We will thus consider isovariant maps g : U — M x M defined
on an unspecified neighbourhood U of A(V) in V x V; for such g denote by
ga : V. — M the map such that g(x, x) = (ga(x), ga(x)) forx e V.If g, ¢ are
isovariant maps defined on U, U’ we say that they are isovariant germ homot-
opic if there is an isovariant homotopy of their restrictions to some unspecified
neighbourhood of A(V) in V x V. We will also refer to equivariant germ ho-
motopy classes for their restrictions to sets U \ A(V).

In this section we will describe results showing that conversely, the exis-
tence of a suitable isovariant map implies existence and uniqueness up to dif-
feotopy or regular homotopy of an embedding or immersion giving rise to a
map homotopic to the given map. These results hold under the condition that
2m > 30 + €, where € is a small number (0, 1 or 2) whose exact value depends
on precisely which result is in question. We refer to a dimensional condition
of this type as the metastable range, in contrast to the stable range m > 2v + €
in which any map is homotopic to an embedding (or immersion), unique up to
diffeotopy (or regular homotopy).

Such results will imply simplified statements for the special case when the
target is Euclidean space as follows.

Lemma 6.4.1 There is a natural bijection between isovariant homotopy
classes of isovariant maps g : V x V. — R™ x R™ and equivariant homotopy
classes of equivariant maps F : V® — §m1,

There is a natural bijection between isovariant germ homotopy classes of iso-
variant maps defined on some neighbourhood U of A(V)in'V x V and equiv-
ariant germ homotopy classes of equivariant maps defined on U \ A(V) for
some neighbourhood U of A(V)inV x V.

Proof Given an isovariant map g, we define r(g):V® — §"! by
r(g)(P, Q) :=u(s(g(P, Q))), where s : R” x R™ — R™ denotes the subtraction
map s(x, y) = x — y. Conversely, given an equivariant map F : V® — §m~1,
define an isovariant map by

I(F)(P, Q) := p(P,O)F (P, Q), —F(P, Q)),

where p denotes the distance in some Riemannian metric. For any F', we have
r(I(F)) = F. For any g, s(I(r(g))) is a non-zero multiple of s(g), hence /(r(g))
is isovariantly homotopic to g.

The second assertion follows from the same argument, by restricting the
maps to appropriate neighbourhoods of A(V). O
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We first treat immersions, and start from the above Corollary 6.2.2, which
we can restate as:

Any injective bundle map T(V) — T(M) is homotopic to one induced by
an immersion, and two immersions are regularly homotopic if and only if the
corresponding bundle maps are homotopic through injective maps.

The first step is to choose metrics on V and M, and observe that (by an
easy homotopy argument) the space of injective bundle maps is homotopy
equivalent to the space of bundle maps which preserve distances in the fibres.
Thus in each fibre we have an isometric embedding R” — R"™ and hence a
map f : R* — R" with f~!(0) = 0 and having the (equivariance) property that
f(—x) = —f(x). We call fibre maps with this property skew maps, and homot-
opies preserving this condition skew homotopies.

The next step, which will be accomplished in Proposition 6.4.3, is to replace
the space of isometric bundle maps by the space of skew maps.

Now V,  is the space of injective linear maps R” — R™; denote by W, , the

space of skew maps R” — R™, and by p,,, : V,, , — Wy, the inclusion.

Lemma 6.4.2 The map p,,, is 2m — 20 — 1)-connected.

Proof The Stiefel manifold V,,, is a deformation retract of Vn/w;
the subspace Y, , C W, , of radial skew maps that preserve length along each
radius is a deformation retract: the retraction is given by taking the skew map
f R — R™to g, where for t > 0, ||x|| = 1, we have g(tx) = tf(x)/||f(X)]].
A deformation is given by

f 1—u .
I’Z(I/t, [)C) = (Hf(—x)H) f(t X).

We can identify Y,,, with the space of maps S*~! — $”~! that commute with
the antipodal map; V,,,,, is the subspace of isometric embeddings.

We prove the result by induction on v; for v = 1, we have X ,, =Y1,, =
S™=1. We have the diagram

similarly

Vm,u I Ym,v
Px 4 pr i,

Vz)—l,m i Yo—l,m

where the vertical arrows are induced by restriction to S°~2. The map py is the
projection of a fibre bundle; py is a fibration (compare Lemma 6.1.2: the cov-
ering homotopy property for py follows from the homotopy extension property
forS*=% c S*~!).Letx Vo—1.m have image y € Y,_; ,,: then the result will fol-
low from the homotopy exact sequences of the fibrations if we can show that
Px' (¥) = py'(y)is (2m — 2v — 1)-connected.
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Now p;(l (x) is homeomorphic to S”~". The space p;l () consists of equivari-
ant maps S"~! — §”~! agreeing with y on $° 2, hence determined by the exten-
sion of y to one of the hemispheres bounded by S"~2. The space of such exten-
sions has the same homotopy type as when the map §*~2 — $"~! is constant,
and hence is homotopy equivalent to the iterated loop space QU~!(S"~!). Thus
we need to show that §"7° — Q~1(§"!) is (2m — 20 — 1)-connected, or
equivalently that 7,.(S"7") — Trao—1 (8™ ) is surjective for r < 2m — 20 — 1
and bijective for r < 2m — 20 — 2. But this is the standard stability property of
the suspension map (see §B.3(vi)). O]

Nowletn : E — Band ' : E' — B’ be vector bundles over CW-complexes
B, B’ with respective fibres R and R”.

Proposition 6.4.3 (i) If dim(B) <2m —2v — 1 and ¢ : E — E' is a skew
map, there is a bundle map - E — E', with ¢ = ¥, skew homotopic to ¢.

(ii) If dim(B) < 2m — 20 — 1 and ¢y, ¢1 : E — E’ are skew homotopic bun-
dle maps, there is a bundle homotopy of ¢g to ¢1, covering the given homotopy
of maps B — B'.

Proof The skew maps ¢ : E — E’ that cover ¢ are in bijective correspon-
dence with the cross-sections of the bundle W over B whose fibre over x € B
is the space of skew maps of E, to E;, which can be identified with W, ,; cor-
respondingly for the bundle £ of fibrewise injective bundle maps, with V, .
By Lemma 6.4.2, we have 7,(W,,,,, V,, ) = 0 for r < 2m — 20 — 1. Since the
obstructions to deforming a cross-section of W into L lie in these groups, the
results follow. O

Now choose a complete metric on V. By Proposition 2.2.6, the map ey :
T(V) — V x Vgivenbyey (&) = (exp(§), exp(—£&)) is alocal diffeomorphism
along A(V) and there exist neighbourhoods Ay of TO(V) in T(V) and Oy of
A(V)inV x V such that ey gives a diffeomorphism of Ay on Oy ; make corre-
sponding choices for M.

Proposition 6.4.4 There is a natural bijection between isovariant germ homot-
opy classes of isovariant maps F : U — M x M defined on some neighbour-
hood U of A(V) in'V x V and skew homotopy classes of skew bundle maps
T(V) - T(M).

Proof Let F : U — M x M be an isovariant map, with U a neighbourhood
of A(V) in V x V. The composite F; := e;,,l o F oey is an isovariant map
T(V) — T(M) defined on a neighbourhood of T°(V'). The restriction of F to
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the diagonal defines a map Fy : V — M agreeing with the restriction of Fj to
Zero vectors.

We next deform F; to a fibre map over Fy. If we had a trivialisation
T(M) = M x R™ we could separate base and fibre components, write F; (X) =
(Fp(X), Fr(X)) and simply define F> := (Fp, Fy). In general we define a nat-
ural metric on T(M): at a point given by a tangent vector v at x € M we
can identify 7,(T(M) with T,(M) ® T.(M) and use the Riemann metric on
M twice. For X € T(M) and y € M consider the point o (X, y) € T,(M) clos-
est in T(M) to X. It follows from Theorem 2.3.2 that we have a smooth map
o :T(M)x M ~» T(M) defined on a neighbourhood of the diagonal. More-
over o is a submersion along (and hence near) the set of points (X, x) with
X € T,(M), so the preimage of the zero cross-section is smooth, hence coin-
cides (near the diagonal) with T°(M) x M.

Now define F>(X) := o (F{(X), Fy(r (X))). It follows that if X is a non-zero
vector, so is F»(X). Thus F; is isovariant and, in some neighbourhood of T(V),
is homotopic to F; through isovariant maps.

Using a partition of unity, we construct a positive continuous function ey (X)
on T(V) such that ey (X) = 1 for X in a neighbourhood of TOV), ey (X)X €
UNAyforall X € T(V), and ey (—X) = ey (X) for all X.

Now define F; : T(V) — T(M) by F3(X) = sy (X))~ (F>(sy(X)X)). This is
still isovariant, and is defined on all of T(V).

The converse procedure is more straightforward: if G : T(V) — T(M) is a
skew map, eyy 0 Goe}, I already gives an isovariant map on some neighbour-
hood of the diagonal. O

Putting these results together, we have

Theorem 6.4.5 (i) If 2m > 3v, Uy is a neighbourhood of A(V)inV x V and
F : Uy — M x M is isovariant, Fn can be approximated by immersions f :
V — M such that F and f® are isovariantly germ homotopic.

(ii) If 2m > 3v + 1, two immersions f, g : V — M are regularly homotopic
if and only if f® and g® are isovariantly germ homotopic.

Proof By Theorem 6.2.1, regularly homotopy classes of immersions V. — M
correspond bijectively to homotopy classes of fibrewise injective linear maps
T(V) — T(M). It follows from Proposition 6.4.3 that if dim(V) < 2m — 2v —
1 these correspond bijectively to skew homotopy classes of skew bundle maps
T(V) — T(M).Finally by Proposition 6.4.4 there is a natural bijection between
these and isovariant germ homotopy classes of isovariant maps F : U — M x
M. A corresponding argument yields (i). O
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Corollary 6.4.6 If 2m > 3v + 1 the classification of immersions V — M
depends only on the topology of V and M (not on the differential structure).

In the case when M is Euclidean space, the statement can be simplified
using Lemma 6.4.1. Recall that an immersion f:V — R” induces a map
f®:v® — (R™)® whose restriction to some neighbourhood U of A(V) is
isovariant, hence induces an equivariant map, f5 : U \ A(V) — sm=1,

Corollary 6.4.7 (i) If2m > 3v, Uy is a neighbourhood of A(V)inV x V and
F : Uy \ A(V) = 8" Visequivariant, there is an immersion f : V. — R™ such
that F and f5 are equivariantly germ homotopic.

(ii) If 2m > 3v + 1, two immersions f, g : V. — R™ are regularly homotopic
if and only if fs and gs are equivariantly germ homotopic.

We come to embeddings. As promised above, the main result is

Theorem 6.4.8 Let V’, M™ be manifolds with the former compact. Then
(i) If2m > 3(v + 1), a continuous map f : V. — M is homotopic to a smooth
embedding if and only if f x f is equivariantly homotopic to an isovariant map.
(ii) If 2m > 3(v + 1), two smooth embeddings fo, f1:V — M are dif-
feotopic if and only if fy x fo and fi x fi are isovariantly homotopic.

In view of Theorem 6.4.5, this will be an immediate consequence of

Theorem 6.4.9 Let V', M™ be manifolds with the former compact. Then

(i) If 2m > 3(v + 1), an immersion f : V. — M is regularly homotopic to a
smooth embedding if and only if there is an equivariant homotopy H of f X f
to an isovariant map such that A(V) is open in HZ_I(A(M )) for each t.

(ii) If 2m > 3(v + 1), a regular homotopy f, between two smooth embed-
dings fo, f1 : V — M is regularly homotopic to a diffeotopy if and only if there
isamap H:V xV xIxI— M xM {write H, ,(v, w) for HQv, w, t, u)}
such that H o = f; X fi, Hou = fo X fo, Hiw = fi X fi, H;,1 is isovariant and
A(V) is open in Htful(A(M))for each (t, u).

Proof The proof of this result follows the same lines as that of the Whitney
trick. We need to construct a model for the deformation, then show how to
embed the model in M. As the details are somewhat involved, we confine our-
selves here to an outline of the key points of the proof, and refer to the original
paper [63] for a careful account. We deal only with (i), in the case when V has
no boundary, and try to keep our notation close to that of §6.3.

The core of the model is a smooth manifold C together with an involution
o of C and a o-invariant function A : C — D'. The double point set will be
Co := A~1(0). The core C is smoothly embedded in the source manifold V, so
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a tubular neighbourhood is determined by a vector bundle L over C, which we
may take to be an orthogonal bundle, and consists of the set L, of vectors in L
of length < ¢.

We will slide the image of C across the space D defined as the quotient of C' x
D! by identifying, forx € Cand —1 < ¢ < 1, (x, 1) ~ (o(x), —t): write [x, t]
for the image of (x, ). The map ¢ : C — D is given by ¢(x) = [x, A(x)] (thus
Cy is indeed the double point set) and the deformation by ¢(x, 1) = [x, A(x) —
tiu(x)] for a suitable p. Since the first component remains at x, this is a regular
homotopy; provided u is o-invariant, the double point set is given by A(x) —
ti(x) = 0, so ¢ is an embedding provided p(x) > A(x) for all x; we also need
(x) < A(x) + 1 for the map to be defined.

As before, we expect the normal bundle of D in M to be locally the direct
sum of two bundles, one restricting on C to the isomorphic image of L and the
other to the normal bundle along C of the image of V in M; but the roles of
the summands at Cy interchange. Explicitly, define L @, L to be the pull-
back of the external direct sum L x L over C x C by the antidiagonal map
X (x,0(x)), then let W be the bundle over D given as the quotient of
the bundle (L @®, L) x D' over C x D' by the identification (ey, eq(y) 1) ~
(—eqs (), —€x, —t); again use square brackets to denote a point in the quotient.

The regular homotopy ¢ now extends to the map ® : L, x I — W, given
by ®;(e;) = [ex, 0, A(x) — tae(|lex || ) (x)]: here we require o to be a bump
function with «(0) = 1 and a(y) = 0 for |y| > ¢: for example, we can take
a(y) = Bp(1 — (lyl/e)?).

This concludes the construction of the model; now we need to embed it in
V and M. We extend the given homotopy H to amap V xV x [—1,1] —
M x M; away from A(V) x [—1, 1], we may suppose by transversality that
H is transverse to A(M), so that X := H~'(A(M))\ A(V) is a closed sub-
manifold of V x V x [—1, 1], of dimension 20 + 1 — m. The first projec-
tiondefinesamapp; : X CV xV x [—1,1] = V.Sincev > 2(2v + 1 — m),
we may suppose by general position that p; is an embedding. Since H is
equivariant, the second projection p; is also an embedding, with the same
image.

Define C to be p;(X), 0 : C — C to be pzopl’l and A :C — D! to be
P30 pl’l. Since Hy = f x f, the double point set Cy of the model is indeed the
double point set of f. Taking L to be the normal bundle of C in V, the choice
of a tubular neighbourhood of C gives an embedding L — V. This completes
the constructions in V.

We begin the construction of a map ¥ : D — M by defining

Ylx, t] := p1(H(x, o(x), A(x) —t)) whenever 0 <t < A(x).
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Since the subset 0 < ¢ < A(x)is a deformation retract of D, this can be extended
to a continuous map ¥ of D. Recalling that 2m > 3(v + 1) and that dim D =
2v — m + 1, we may suppose in turn

(i) that ¥ is smooth,

(i1) that along the image of C, v is an embedding not tangent to V (it is
‘transverse’ in the sense that the intersection of the tangent spaces to the images
of D and of V is that of C) this we can ensure using general position since
dimD < m —v,

(iii) that ¢ is an embedding, by general position, since m > 2 dim D,

(iv) that the image of ¥ meets V only along C, again by general position,
since m > dim D + dim V.

Now define & : C — M by &(x) = ¥[x, O].

We now need to identify W with the normal bundle of ¥ (D) in M. Since
p1 and p, are embeddings, the normal bundle N(V x V x [—1, 1]/X) splits
into components, leading to an isomorphism of the normal bundle N(V x V x
[—1, 1]/X) onto N(V/C) &, N(V/C) ® T(C) ® E, where E is a trivial line
bundle. On the other hand, since X is the transverse preimage of A(M) it follows
by Lemma 4.5.1 that this normal bundle is the pullback of N((M x M)/M) =
T(M). We thus have an isomorphism

2 : N(V/C) ®, N(V/C) & T(C) ® E — T(M).

We can identify L with N(V/C) and D as the quotient of C x D! by Z,. We
would now like to identify the summands T(C) & E of T(M) with T(D) and
(hence) the normal bundle N(M/D) with N(V/C) &, N(V/C) = L &, L and
hence with W.

A number of details need attention. The restriction of E to Cy is equal to
df ®, (—df) ®00onN(V/C) &, N(V/C) & 0. It is now not difficult to identify
the bundle maps over Cp.

If o denotes the involution of N(V/C) @, N(V/C)® T(C) @ E given
by o (ex, es(x), frs ) = (€5(x), €x, fo(x)» 1), it follows from equivariance of H
that E oo = —E. Using again the dimension condition, we can extend
to an embedding n of N(V/C)@®, N(V/C) in T(M), covering &, with
n(ex, ex(x)) = —N(es(x), €x) and such that, for x € Cy, n(eyx, ex(xy) = df (ex) —
df(ea(x))-

To construct the desired isomorphism x : L &, L — W over ¢ and agree-
ing with n on (L @, L) x [0, 1], we first restrict to (L @ 0) x [0, 1], and define
x (ex, 0, A(x)) = df (ey) if A(x) > 0, and check that the obstructions to extend-
ing over C x [ lie in zero groups. Then extend using x (0, —ey, —A(x)) = df (ey)
for A(x) < 0.
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As in the proof of Proposition 6.3.1, we can now use Proposition 2.5.10 to
construct embeddings of a neighbourhood of C in L into V and of a neighbour-
hood of D in W into M compatible with the given maps. We have already shown
how to construct a regular homotopy to an embedding. A final calculation is
necessary to check compatibility of this embedding with the given isovariant
map. O

In view of Lemma 6.4.1, we now have

Corollary 6.4.10 Let V® be a compact manifold.

(i) If 2m > 3(v + 1), there is a smooth embedding f : V — R™ if and only
if there is an equivariant map (V x V) \ A(V) — "1,

(ii) If 2m > 3(v + 1), two smooth embeddings fy, fi :V — R are dif-
feotopic if and only if (fy)s and (f1)s are equivariantly homotopic.

One can also formulate a Euclidean version of Theorem 6.4.9.

The above are not the only important results about embedding in the
metastable range. The following result is also due to Haefliger, and was
originally proved using the normal forms for singularities obtained in
Theorem 4.8.5.

Theorem 6.4.11 Let V® be a compact connected manifold (without boundary),
M™ a manifold and f : V — M a (k + 1)-connected map.

(a) If m > 20 — kand 2m > 3(v + 1), f is homotopic to an embedding.

(b) If m > 20 — k and 2m > 3(v + 1), any two embeddings homotopic to f
are diffeotopic.

This is deduced in [62] from Theorem 6.4.8 and the following

Proposition 6.4.12 [f f:V — M is 2o — m + 1)-connected, V is closed and
m > v, then f X f is equivariantly homotopic to an isovariant map.

This Proposition is proved by an obstruction theory argument. Some appli-
cations of Theorem 6.4.11 were given in §5.6: we now give others following
[62]. Taking M to be Euclidean space, we deduce

Corollary 6.4.13 Let V° be a compact k-connected manifold (without
boundary).

(a) Ifm > 20 —kand 2m > 3(v 4+ 1), V embeds in R™.

(b) If m > 20 — k and 2m > 3(v + 1), any two embeddings of V in R™ are
diffeotopic.

Corollary 6.4.14 [f 2m > 3(v + 1), any two embeddings of S° in R™ are
diffeotopic.


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316597835.007
http:/www.cambridge.org/core

6.5 Notes on Chapter 6 193

For the equivariant homotopy class of (S” x $”) \ A(S®) — §”~! is unique.
We will see in §8.8 that this result is best possible.

Corollary 6.4.15 Provided 2m > 3max(p, q) + 1, the isotopy classes of
embeddings of SP U 87 in R™ correspond bijectively to JT,,+,,(S’"_1 ).

For, using the preceding result, we just need isovariant homotopy classes
of (8P x §7)U (89 x §P) — S"™!, i.e. homotopy classes [S? x §7: §""!] =
Tpig(S"7H).

In some situations, the results of Corollary 6.4.13 can be sharpened: we refer
the interested reader to [72]. In particular ([72, Theorem 8]).

Proposition 6.4.16 Let V° be a compact k-connected manifold and N >
max(2v — 2k — 1, %(30 —k),0+2). Then V embeds in RY if and only if
WN*D+1 =0.

6.5 Notes on Chapter 6

§6.1 The main result in the following section is best stated at the level of func-
tion spaces. We have collected here some fundamental definitions and results,
0 as not to interrupt the exposition in the next section.

§6.2 The breakthrough in obtaining a general theory of immersions was made
by Steve Smale — his lecture at the International Congress in 1958 was one I
found particularly exciting. His work appeared in [137], and was quickly gen-
eralised by Moe Hirsch [70]. This theory is often referred to as Smale-Hirsch
theory.

The next major step was taken by Misha Gromov [58], who created a gen-
eral theory. The account given above follows closely the version in lectures by
André Haefliger [65]. Another account is given in [2].

§6.3 Whitney had used general position arguments to show in [175] that any
m-manifold embeds in R*"*! and immerses in R?". He introduced the ‘Whit-
ney trick’ in [177] to show that any m-manifold embeds in R?". In the same
paper he gave a construction of an m-sphere immersed in R?" with a single
self-intersection. He went on in [178] to show that any m-manifold immerses
in R2m-1,

The Whitney trick fails if m = 2: here finding the embedding of the 2-disc
required for Proposition 6.3.1, which is given by general position if m > 3,is a
problem of the same type as the theorem it seeks to establish. Not only the proof
but the result fails: see Section 5.7 for more details. As a result of this failure,
the study of 4-manifold topology has a completely different nature to that in
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higher dimensions. In studying the Whitney trick, Casson was led to introduce
an infinite sequence of such problems, leading to the notion of ‘grope’, and to
new results in topological topology. Smooth manifolds behave differently and
require new techniques, for which we refer to [46].

Theorem 6.3.4 becomes trivial if n = 1: here V must be  or §! and M = §.
I do not know what happens if n = 2.

§6.4 The first major result on embeddings in the metastable range was
obtained by Haefliger [60]. In this impressive paper Haefliger, following the
idea of the proof of the Whitney trick, uses the description in Theorem 4.7.3 of
singularities of maps in the metastable range to construct a model for a defor-
mation of a map to an embedding.

All the results in this section are due to Haefliger, some in collaboration with
Hirsch. For this account we have followed [66] to construct immersions, and
[63] for embeddings. A different approach is used in [67]. These theorems are
so powerful that much of the subsequent literature is devoted to calculations
required for applications. We will return to embeddings of spheres in Euclidean
space in the final section §8.8.
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7
Surgery

In this chapter we discuss a method of constructing manifolds, or more pre-
cisely, of adapting a given manifold to satisfy certain conditions. This method
is due to Milnor and Kervaire. In the paper [102] where they introduced the
method, the objective was to simplify the homotopy type of the manifold, so the
procedure was called ‘killing homotopy groups’. However since the procedure
can be seen as removing a piece of a manifold and replacing it by something
else, it has come to be known as ‘surgery’.

It was observed by Novikov that the method could be applied to the more
general situation, given a manifold M and a map f : M — X, to change both
M and f to make f more like a homotopy equivalence, by killing the homotopy
groups of f. The method was then codified and further extended by Browder
and by the author.

In more detail, the manifold M will be changed by a cobordism. As we saw
in §5.1, we may choose a handle decomposition of this cobordism, so the pro-
cedure is broken into a sequence of operations, each corresponding to a single
handle. Although we may think of M as a closed manifold, the discussion will
apply to any compact manifold M.

In the first section we analyse a single step in the procedure: both the con-
ditions for performing the step and its effect. In §7.2, we show how to modify
amap f: M — X to kill all homotopy groups of f in dimensions below the
middle.

In view of duality, any change to the homology of M is reflected by a corre-
sponding change in the dual dimension. We next discuss the algebraic results
we need on bilinear and quadratic forms, then in §7.4 formulate duality in the
setting of CW-complexes.

In order to perform surgery to make f a homotopy equivalence, we must also
require X to satisfy duality and it is convenient to suppose f a ‘normal map’. As

195
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in Chapter 5, we discuss in detail in this book only the case when X is simply-
connected. We treat in turn the cases when the dimension of M is even (when
there is an obstruction in Z or Z; to performing surgery) or odd (when there is
none).

The finer details of the results depend on deeper results in homotopy theory,
which we give in §7.7. Here we show how Spivak’s fibration theorem permits
a reformulation of the classification of normal maps. We proceed to Brown’s
interpretation of the Kervaire invariant.

In §7.8 we apply the results to discuss the homotopy types of smooth mani-
folds: the aim (not quite fully accomplished) is to reduce the problem of clas-
sification of smooth manifolds entirely to homotopy theory.

The author has already written a monograph [167] on surgery, in which no
restriction is placed on the fundamental group. The account here is intended to
be introductory rather than complete but is, of course, informed by the same
view of the topic.

7.1 The surgery procedure: a single surgery

Let M™ be a compact manifold M (perhaps with boundary), ¢ : S~ x
D"~ — M\ dM an embedding. The operation of removing the interior of
the image of ¢, and attaching D" x §”~" to the result by ¢|(S"! x §"7") is
called a simple surgery, or spherical modification of M, of type (r,m —r + 1).
The aim of surgery is to perform a series of spherical modifications on M to
simplify M in a way to be made explicit.

The effect of a spherical modification is determined by ¢, and even by the
diffeotopy class of ¢ (by Theorem 2.4.2). The modification gives a manifold
M’ with the same boundary as M: in particular, if M is closed so is M.

The manifold W = (M x I) Uy h" (with corner, if M has a boundary) thus has
9_W = M,d, W = M. itis a cobordism between M and M’, called the support-
ing manifold of the modification. Also, 3.W = dM x I. If M’ is obtained from
M by a spherical modification of type (r, m — r 4+ 1), we can obtain M from M’
by one of type (m — r + 1, r). We have the same supporting manifold for both
modifications. It follows from the existence (see §5.1) of handle decomposi-
tions that M and N are cobordant if and only if one may be obtained from the
other by a series of spherical modifications.

The procedure begins with a manifold M and a continuous map f : M —
X. Let W be obtained by attaching an r-handle to M x I, with attaching map
¢S x D" — M\ M. If we can extend ftoamap F : W — X, we
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say that the manifold M’ := ;W and the map f’ := F|M’ are obtained from
(M, f) by surgery.

We write ¢ for the restriction of ¢ to S"~! x {0}. Up to homotopy, W
is obtained from M by attaching an r-cell, and extending f over the handle
amounts to giving a map g: D" — X whose restriction to the boundary is
f o ¢o. The pair (¢, f) defines an element of the relative homotopy group 7, (f).

Conversely, suppose given an element & € m,.(f). For this to arise as above,
the class 9 € m,_;(M) must be represented by an embedding of S"~! in M.
The existence of such embeddings is guaranteed by general position if m >
2(r — 1); otherwise more work is required. Moreover, we need to extend the
embedding of S"~! to an embedding of S"~! x D"~"*! 5o need the normal
bundle of the embedded sphere to be trivial. Provided m > 2r — 1 this follows
if the bundle is stably trivial, hence if the restriction to the sphere of the tangent
bundle T'(M) is trivial. Since the sphere is nullhomotopic in X, a neat way to
ensure this is to require that T(M) is itself induced from a bundle over X. It is
convenient to weaken this slightly, giving the following definition.

A normal map consists of amap f : M — X, a vector bundle v over X and
a trivialisation T of the bundle T(M) & f*v. A normal cobordism is a normal
map (g: W — X, v, T) with the manifold W a cobordism. We can extend this
definition in a natural way to the case of a manifold with boundary.

Theorem 7.1.1 Let (f : M — X, v, T) be a normal map. Then any & € w,(f)
determines a regular homotopy class of immersions ¢ : =1 x D"+l — M,
and given any embedding in this class we can do surgery to obtain another
normal map.

Proof Suppose ¢ an embedding whose restriction to S"~! x {0} represents 9&:
then we can use ¢ to attach an r-handle to M x I and use £ to extend f to a map
g: (M xI)UHW — X (more precisely, we first use £ to extend f to the union
of M x I and the disc D" x {0}, and then use a retraction of D" x D"~ "*+! on
(S"' x D"y U (D" x {0}) — see Figure 5.6 — to extend to the rest of the
handle).

Since the handle D" x D"™~"*! is contractible, the restriction to it of g*v is
trivial, so extending 7 @ 1 to a trivialisation of T(W) & g*v is equivalent to
trivialising the sum of a trivial bundle with the restriction to S"~! x D"+ of
T(M). Using stability, such trivialisations correspond to those of this restric-
tion, and hence to isomorphisms of it to T(S"~! x D™~"*1). But by Corol-
lary 6.2.2, such isomorphisms correspond bijectively to regular homotopy
classes of immersions ¢ : S~ x D""+1 — M. [
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There are two approaches to analysing the effect on homology of a spherical
(r, m — r + 1)-modification: we can use the supporting manifold W = (M x
I) Uy h" or the intersection X = M N M’ (obtained from M by removing the
interior of the image of ¢). Up to homotopy W is obtained from M by attaching
an r-cell, and from M’ by attaching an (m — r 4 1)-cell. On the other hand, M
is obtained from X by attaching an (m — r + 1)- and an m-cell, and M’ from X
by attaching an - and an m-cell.

The inclusions (M’, X) C (W,M x I) > (W, M) induce isomorphisms of
relative homology groups in dimensions # m. For the inclusions

(D" x §" ", 8 x §"y ¢ (M, X);
(D" x D" g prETy (W M x )
induce homology isomorphisms by excision. Thus it suffices to consider
(D' x §"7, 8 x 8" C (D" x D" S pr,

and here both relative groups vanish except in dimensions r, m; in dimension r
we have an isomorphism. It follows that

Lemma 7.1.2 Letr <m — r. Then M and M’ have the same (r — 2)-type (in
particular, if r > 3, the same fundamental group). If r < m — r, and x is the
homology class of the a-sphere f(S'~! x 0) in M, then H,_, (M) is the quotient
of H,_{ (M) by the subgroup generated by x.

We can now express the homology relations by a single diagram.

Proposition 7.1.3 We have the following exact sequences fori < m — 1:

/\/_\/_\

Hip1 (M) Hi (W, M) H(M') Hy(W, M)
AP NN /
Hi(X) Hiy (W) Hi(X) Hy(W)
NN TN S N
Hiy (M) Hi (W, M) Hy(M) H(W, M)

Proof Since we can identify H;(M', X) = H;(W, M) and dually H;(M, X) =
H;(W, M) for j < m — 1, it suffices to write out the homology exact sequences
of the four pairs (M, X), (M’, X), (W, M), and (W, M"). O
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7.2 Surgery below the middle dimension

We now show how we can perform surgery on a normal map f: M — X to
make the homotopy type of M closer to that of X.

Theorem 7.2.1 IfX is a finite CW-complex and m > 2k, any normal map (f :
M — X, v, T) is normally cobordant to a normal map (f' M — X, v, T")
such that f' is k-connected.

Proof Let X’ be the mapping cylinder of f, obtained from the disjoint union
(M x I) UX by identifying each point (x, 1) € M x {1} with f(x) € X. The
inclusion X C X' is a homotopy equivalence, so v extends to a bundle v’ over
X’. The inclusion of M as M x {0} is homotopic to f. Thus replacing X by X’,
v by V" and T by the induced trivialisation, we have made no essential change,
but may now take f to be an inclusion.

Set Xy := M, and let X; be a sequence of subcomplexes of X formed by
attaching one at a time to X the cells of X of dimension < k not already in
Xo. As X is finite, this process terminates, in Xk, say.

We now show, by induction on i, that we can add to M x I a sequence of
handles yielding manifolds ; and extend the inclusion of M in X to homot-
opy equivalences f;: N; — X; and normal cobordisms (f/ : N; = X, v, T)),
where f; is the composite of f; and the inclusion. We have d_N; = M and set
M; := 9. N;. We start the induction with Ny = M x I; f is f composed with
the projection; similarly for Tj.

Suppose inductively (N, f;, T;) already constructed; let X;;; be obtained
from X; by attaching an r-cell. This cell defines an element of 7,.(X, X;) hence,
since f; is a homotopy equivalence, of 7.(f/). Denote by f : M; — X the
restriction of f: we claim that the map =,(f") — 7.(f]) is an isomorphism.

Since N; is obtained from M x I by attaching handles of dimension <
k, it is obtained from M; by attaching handles of dimensions > m + 1 — k;
hence (N;, M;) is (m — k)-connected and hence, since r < k < m — k, it is r-
connected. The claim thus follows from the exact sequence

7T,-(1Vl', Ml) i nr(.f;‘”) - nr(f;'/) - nr—l(]vi’ Ml)

The r-cell thus defines an element of 7,.( ﬂ’) and hence, by Theorem 7.1.1,
a regular homotopy class of immersions S"~! x D""*! — M;. Since m >
2(r — 1), it follows from Theorem 4.7.7 that this class contains embeddings.
We may thus perform surgery to obtain a normal cobordism. Since the r-cell
of the cobordism maps to the homotopy class of the cell in X;;;, the homot-
opy equivalence N; — X; extends to a homotopy equivalence N;y; — X;; . The
induction is complete.
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At the final step, since X is obtained from Xk by attaching cells of dimensions
>k + 1, the map Xx — X, hence also f; : Ny — X, is k-connected. Since,
as we have just seen, (Ng, Mg) is (m — k)-connected, the map fy is also k-
connected. O

An important special case is when X is a point.

Corollary 7.2.2 IfT(M) is stably trivial, and m > 2k, we can perform surgery
on M to make it (k — 1)-connected.

For we apply the theorem, taking X to be a point; then since M’ — X is
k-connected, M’ is (k — 1)-connected.

In general the tangent bundle of M is induced by a map M — B(O,,). Sup-
pose given a bundle v* and a framing 7 of T(M) & v (so v is a normal bundle
for M). Choose a classifying map f : M — B(0O;), so that if v is the universal
bundle over B(Oy) we have v = f*v. Then (f : M — B(Oy), v, T') is a normal
map, so we can perform surgery on M to obtain a k-connected map f' : M’ —
B(0Oy). The mod 2 Betti numbers of M’ below the middle dimension thus coin-
cide with those of B(Oy), hence with those of B(0); those above the middle are
determined by duality. It follows, for example, that if w € H/(B(O); Z,) (with
2j > m+ 1) is such that for any w’ € H"/(B(0); Z,) the Stiefel-Whitney
number f™*(ww’)[M'] vanishes, then also f*w = 0. Corresponding remarks
hold for oriented manifolds with B(O) replaced by B(SO) and the coefficient
field Z, by Q.

A different type of application arises by fixing k. If our object is to make f
induce an isomorphism 71(M’') — 71(X), it suffices to have f’ 2-connected,
and we can achieve this provided m > 4.

With a little more care, we can construct embeddings. The following result
includes a characterisation of possible fundamental groups of complements in
S™ of embedded copies of §”2 (provided m > 5).

Theorem 7.2.3 Let (K, L) be a CW pair of dimension k > 3 with K con-
tractible and K obtained from L by adding a 2-cell. Then provided m > 2k — 1
there exist a smooth embedding of S"~* in S™ with complement C and an
(m — k)-connected map C — L.

Proof SetM :=S' x D"~!,X = L, and define f : M — X to be projection on
S' composed with the attaching map of the 2-cell. We define a normal map by
taking v to be trivial and using a trivialisation of T(M).

Now apply the result proved inductively in Theorem 7.2.1. We obtain a
manifold N formed by attaching handles of dimensions < k to M x I and a
normal cobordism (g: N — L, v, T) which is a homotopy equivalence. Set
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M’ := 9, N. Since N is formed from M’ x I by attaching handles of dimensions
>m+1—k>k>3, m(M)— m(N)is an isomorphism.

Define W by attaching D?> x D"~ along M x {0}. Up to homotopy we
have attached a 2-cell, so the homotopy equivalence g: N — L extends to a
homotopy equivalence W — LU ¢*> = K; thus W is contractible. Now W =
(D*> x S"2)Ud.NUM’, so 1 (dW) = (M’ U e*) = (N U e?), s0 is triv-
ial. Since m > 5, it follows from Corollary 5.6.3 that wmtl >~ pmtl,

We now have §”~2 x {0} C §"72 x D* C W = §™, and its closed comple-
ment may be taken as 9.N UM’ or as M’; the inclusion M’ C N is (m — k)-
connected and g : N — L is a homotopy equivalence. O

Corollary 7.2.4 Given m > 5 and a group G, there exist a smooth embedding
f:8"2 — " and an isomorphism G — w(S™\ f(S""2)) ifand only if G is
finitely presented, H|(G) = Z, H»(G) = 0, and there is an element x € G whose
conjugates generate the whole group.

Here, and in the proof, all homology has coefficient group Z.

Proof If f : §"~2 — S$™ is a smooth embedding and C := §" \ f(5"~?), then
S is obtained from C by attaching a 2-cell and an m-cell. The 2-cell is attached
byamapS' — C with homotopy class x, say: the fundamental group is changed
by factoring out the normal closure of x (the m-cell has no effect), and becomes
trivial. If G := 7 (C), then H|(G) = H,(C) = Z and H,>(G) is a quotient of
H,(C), which is zero.

Conversely, given G and x € G, choose a finite presentation of G and con-
struct a CW-complex with L’ with 7y (L) = G by taking 1-cells given by gen-
erators and attaching 2-cells corresponding to relators. Adding a further 2-cell
e? along x gives a simply-connected space K’; since this is 2-dimensional, it is
homotopy equivalent to a bouquet of 2-spheres.

In the sequence 0 — H>(L') — Hy(K') — Hy(K', L") — H;(L') the group
H,(K’, L) is infinite cyclic, generated by the class of e, hence maps isomor-
phically to H{(L') = H{(G). Hence H,(L') = H,(K’) is free abelian, and we
can pick a free basis {y;}. It now follows from the exact sequence m,(L') —
H,(L') = H,(G) = 0 that we can represent the y; by maps f; : > — L’. Define
L by attaching 3-cells to L’ by the f;. Then H,(L), H5(L) and all higher homol-
ogy groups vanish. The space K = L U ¢? is now simply-connected with van-
ishing homology, hence is contractible.

We can now apply Theorem 7.2.3, taking k = 3. This yields a smooth
embedding of "2 in §” with complement C and an (m — k)-connected
mapC — L.Sincem >2k—1,m—k>k—1>2,s0m(C) = m (L) = Gas
required. O
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7.3 Bilinear and quadratic forms

In order to proceed further with surgery, we need to take account of duality.
In this section we will introduce the purely algebraic notions, and thus make
a digression to discuss results about symmetric and skew-symmetric bilinear
forms which will play a role below. I aim to give enough details for the discus-
sion to make sense, but will not give full details of all proofs.

We consider abelian groups G, G/, . . ., a value group V, and bilinear maps X :
G x G’ — V, which we sometimes call pairings. Denote by G" the dual group
Hom(G, V), by A' : G' x G — V the transpose, given by A'(¢, g) = A(g, &)
and by AA : G — G"Y the associated homomorphism given by AA(g)(g) =
A(g, &). The map A is called nonsingular if AA is an isomorphism.

If G’ = G and € = £1, we call A e-symmetric if A’ = €A. From now on we
consider only pairings which are either symmetric (¢ = 1) or skew-symmetric
(e =—1).

We also suppose that the natural map G — (G")” is an isomorphism: this
holds, for example, in the following situations:

V afield, G a finite dimensional vector space,

V = Z, G afinitely generated free abelian group,

V = Q/Z or the circle group R/Z, G a finite abelian group.

We call g, ¢ € G orthogonal if A(g, ) = 0; for any subgroup H C G, its anni-
hilatoris definedby H? := {g € G| V¢ € G, A(g, ¢) = 0}. Thus H C H’if and
only if A(H x H) =0.If H° = H, H is called Lagrangian. We have

Lemma 7.3.1 IfA: G x G — V is nonsingular and e-symmetric, and H C G
such that . | H x H is nonsingular, then G splits as H & H°.

We say that the form X is even if, for each g € G, there exists v € V with
r(g, &) =v +ev.

Lemma 7.3.2 IfA: G x G — V is nonsingular, e-symmetric and even, and
H C G is Lagrangian, then there is a Lagrangian subgroup H* such that G =
H ® H*. We can identify H* with H", so that A is given by

A((g, h), (g, 1) = h(g) + €l (g).

Thus in this case, the form is determined up to isomorphism by H.

For symmetric bilinear forms over R, it is well known that one can choose a
basis {e; | 1 <i < r} for G such that A(e;, e;) = 0 for i # j; if the form is non-
singular then each a; = A(e;, e;) # 0, and the form is classified up to isomor-
phism by the signature, which is given by o() = #{i|a; > 0} — #{i| a; < 0}.
There is a Lagrangian subspace if and only if o(1) = 0.
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For symmetric bilinear forms over Z, we can tensor with R to obtain a form
over R and thus define a signature. The following are known.

Proposition 7.3.3 A nonsingular symmetric bilinear form A over Z has a
Lagrangian subspace if and only if o (1) = 0.

If ) is a nonsingular even symmetric bilinear form over 7, then o (1) is divis-
ible by 8.

Necessity of the condition o (1) = 0 is trivial. An example of an even form
with signature 8 is given by the form with the matrix (the ‘Eg matrix’)

2 -1. 0 0 0 O 0 o
-1 2 -1 0 O 0 0 O
o -1 2 -1 0 O O O
o o -1 2 -1 0 0 O
o o o0 -1 2 -1 0 -1 (7.34)
o o o o -1 2 -1 0
o o o o o -1 2 0
o o o o -1 0 o0 2

The skew-symmetric case is easily handled.

Proposition 7.3.5 Let A be a skew-symmetric bilinear form over Z. Then H
has a basis {e;, f; |1 < i < r} {g;} such that A(x,y) = 0 for all pairs of basis
elements except that A(e;, f;) = a; for each i.

Proof Write H := {x|Vy € H, A(x,y) = 0} for the radical of . Since, for 0 #
k € Z,nx € H’ implies x € H°, H? is a direct summand of H. We may thus take
a basis {g;} of H? and extend to a basis for H.

We have reduced to the case when H? is trivial, so A\ is injective, with
finite cokernel. Choose ¢y € H with coset modulo AXL(H) of maximal order
aj. Then a; is the highest common factor of the A(e;, x) for x € H. Choose
f1 € H with A(ey, fi) = a;. Now for any x € H we can write A(ej, x) = pa;
and A(f1, x) = gay: then x + ge; — pfi is orthogonal to both e; and f;. Thus
H is the orthogonal direct sum of Z{e;, fi) and its orthogonal complement and
we can proceed by induction. [

In particular,

Lemma 7.3.6 Any nonsingular skew-symmetric bilinear form over R or Z has
a Lagrangian subspace.
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Thus we may take a basis {e;, f; |1 <i <r} of H such that A(e;, ¢;) =
Alei, i) = A(fi, fj) = 0 for all i, j except that A(e;, fi) = 1 for each i: such
a basis is called a symplectic basis.

Now suppose given a nonsingular skew-symmetric bilinear form A on a free
abelian group H together withamap u : H — Z, with £(0) = 0 and satisfying
the identity

wx+x) = px) + pn@) + rx,x) (Ax,x')taken mod 2).  (7.3.7)
The classification is given by

Lemma 7.3.8 Given (H, A, ) as above, choose a symplectic basis {e;, f; | 1 <
i <r}of (H, ™). Then the number Arf(p) := ), u(e)u(f;) € Zs is an invari-
ant of (H, A, ), and two such triples (of the same rank) are isomorphic if and
only if the invariants Arf(i) agree.

Moreover, Arf(i) = 0 if and only if H has a Lagrangian subgroup on which
W vanishes.

Proof 1f u(e;) = 1 and wu(f;) = 0, replacing e; by ¢! := e; + f; changes j(e;)
to 0 without affecting the other values; similarly with e; and f; interchanged;
thus we may reduce to the case u(e;) = u(f;) for each i.

If pler) = u(fi) = ulex) = u(fr) = 1 we substitute e} 1= e; + ey, f5 :=
—fi + f, preserving A, with (e}) = u(f;) = 0, and then deal with p(f7) and
(er) as above. We may thus reduce to a normal form where @ vanishes on all
basis elements except perhaps e; and fi.

To prove Arf(u) an invariant, we note that u : H — Z, factors through
H/2H = H ® Z,, and can check using the normal form that the number of
elements of H/2H on which u takes the value 1 is 22! +2"~1 if Arf(u) = 1
and 2271 — 2771 if Arf(u) = 0.

The final result follows by inspection. O

We now consider the case when G is a finite group and A takes values in
Q/Z. Here instead of working with a free basis, we write G as the direct sum
of subgroups of prime power order; each of these is a direct sum of cyclic
subgroups.

Proposition 7.3.9 Given a nonsingular skew-symmetric form A on a finite
group G, we may express G as a direct sum of mutually orthogonal sub-
groups, each of which is either of order 2 with A(x,x) = % or is isomorphic
to Zx ® Ly (for some prime p and integer k), with generators x, X' satisfying
A(x,x)=0or 3, A(x,x) =0, A(x, X') = p*.

Further, we may suppose there is at most one summand of order 2.
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Proof For each p, choose x € G of order p* with k maximal. Since the form is
nonsingular, we can find X’ € G with A(x, x') = p~*.If pis odd, since A(x, x) =
A(X', x') = 0, the form A is nonsingular on (x, x'), so by Lemma 7.3.1 (G, 1) is
the orthogonal direct sum of this and another subgroup, so we can proceed by
induction.

If p=2and k > 1, each of A(x, x) and A(x, x') may be either O or 1, but
the same argument applies; if each is % we can substitute x 4+ x” for x’ to reduce
A, x') to 0.

If p* =2 and A(x,x) =0, we may proceed as above, but if A(x, x) = %, A
is already nonsingular on (x), so we can split this off as an orthogonal direct
summand.

Finally observe that if we have two such summands A(x,x) = A(y,y) =
3 and A(x,y) =0, we can start with z =x + y to reduce to the preceding
case. O

Proposition 7.3.10 Given a nonsingular symmetric form A on a finite group
G, we may express G as a direct sum of mutually orthogonal subgroups, each
of which is either cyclic of prime power order or is isomorphic to Zox @ Zk
(for some k), with generators x, x' satisfying 25" 'A(x, x) = 2F" 1A', x¥') = 0,
Ax, X)) =27%

Proof Again it suffices to consider the case when G is a p-group. Let k be the
greatest integer such that G has an element of order p*: choose such an element
x. If A(x, x) has order pF, the restriction of A to the subgroup H generated by x
is nonsingular, and we may apply Lemma 7.3.1. Otherwise, choose an element
y with A(x, y) = p~*: then y has order p*. If pis odd, eitherz = yorz =x+y
is such that A(z, z) has order p* and we may proceed as above.

If p =2, it may be that A(y,y) and A(x + y, x + y) both have order < 2.
In this case, the restriction of A to the subgroup H generated by x and y is
nonsingular, and we may again apply Lemma 7.3.1. O

One can now proceed to further analysis of each of these types of summand.
We define a nonsingular quadratic form on the finite group G to be a pair
A, p)withd : G x G — Q/Z and n : G — Q/27 satisfying

¢ A is nonsingular symmetric bilinear,
e 1(0) =0, u(—x) = p(x) and
o 20(x, y) = plx +y) = px) = p(y).

It follows that wu(x) = A(x, x) (mod 1). Note that A(x, y) € Q/Z determines
21 (x, y) modulo 2. The classification of quadratic forms is close to that of sym-
metric bilinear forms (if |G| is odd, there is no essential difference). In analogy
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with the above, call a subgroup H C G Lagrangian if u vanishes on H (and
hence A vanishes on H x H) and |G| = |[H|?. As before, H then coincides with
its annihilator under A and AA induces an isomorphism of G/H on H" .

Here there is a new feature. We define the Gauss sum &(u) := Y _; e,

Theorem 7.3.11 Suppose (A, () a nonsingular quadratic form on the finite
group G. Then &(u) has the form A(uw)/|G|, with A(p)® = 1. If there is a
Lagrangian subgroup H, () = |H| and A(n) = 1.

Proof We prove the second statement first. We split the sum over G
into a sum over cosets of H. There are two cases. For the triv-
ial coset, Y, €™ =3, e =|H|. For any other coset, we have
Y ey €O = TN, T Now ify has order k in G/H, as A is
nonsingular, there exists z € H with A(y, z) = +, and as z varies, each value J
is taken |H|/k times. But the sum Z, mod k ez”’f/k
the sum over H vanishes. Summing over all cosets, we just have |H|.

Given two triples (G, A, u) and (G’, A’, n’) we can form the direct sum G” :=
G ® G’ and define A" ((x,x), (y,y)) := Alx,y) + A'(X,y) and u”(x,x") :=
u(x) + w'(x'). This has the above properties, and we see that &(u”) =
S()B(u). L

Now take G’ = G, A’ = —Aand &' = —pu: then (') = &(w). In the direct
sum G” := G @ G, the diagonal is a Lagrangian subgroup. Hence |&(u)> =
G(u)&(n) = &u") =|Gl.

The calculation of the argument is more sophisticated. For p an odd prime, it
was shown by Gauss that the sum ", . , €>"/"/ is equal to i /p: other cases
when G is cyclic of order a power of p follow easily. The calculations for the
case p = 2 can be done ad hoc: for example, if G has order 2, and A(x, x) =
w(x) = 1, wehave B(n) =1+ i = ™/*V2.

vanishes unless k = 1. Thus

DI\)l

Lemma 7.3.12 For (7, n) a nonsingular quadratic form on G, the function
U (x) := pu(x) + 2A(x, ) is a quadratic form if and only if 27 = 0. We have
B(1) = eTIB ()

Proof For necessity note that p (x) — p.(—x) = u(x) — u(—x) + 21 (x, 2z),
and since A is nonsingular, 2A(x, 2z) € 27Z for all x if and only if 2z = 0.

Now since p,(x) := w(x) + 2A(x, 7) = u(x + z) — u(z), we can write
Bu) =Y EG () — 3 . T+ =) — p—inp(2) > G eTHtD)
which equals e ™G (). O

In Lemma 7.3.8 we considered pairs (A, w) with A : H x H — Z a non-
singular skew-symmetric form and p : H — Z, satisfying (7.3.7). If we set
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G := H/2H and define Ag : G x G — Q/Z by rs(g, &) = %A(x, x') and g :
G — Q/2Z by us(g) = u(x) (where x, x' are lifts of g, g), then (Ag, us) is a
nonsingular quadratic form on the finite group G. Using a symplectic basis, we
see at once that A(u) = (—1)ATws),

Now consider an e-symmetric pairing A : H x H — Z, but now suppose
only that AL : H — H" is injective; denote by G its cokernel. We can tensor
with Q to embed X in a nonsingular pairing 1y on Hy to Q: denote by H’ the
subgroup of Hy corresponding to H": thus G is identified with H'/H.

We can lift elements g, g € G to elements x,x’ € H' and form Ag(x, x'):
denote its image in Q/Z by A(g, g).

Lemma 7.3.13 The class of A(g, &) in Q/7Z depends only on g, g. This defines
a nonsingular e-symmetric pairing . : G x G — Q/Z.

Proof It is immediate that 2 is well defined, bilinear, and e-symmetric. If
AX(g) = 0, so for each ¢ € G, (g, &) = 0, then the lift x of g is such that for
each x' € H we have A(x,x') € Z, so AA(x) € H" so x € H and g = 0. Since
AX : G — GV is injective, and both these finite groups have the same order, it
is an isomorphism. O

In the case € = —1, we note the additional property A (g, g) = Oforall g € G.

If the above form A is even as well as symmetric, we can enhance A by defin-
ing u:G— Q/2Z by u(g) = A(x, x) (mod 27Z), where x is a lift of g. It is
immediate that w is a quadratic form in the sense defined above. The following
is a deeper result.

Theorem 7.3.14 Let the even symmetric bilinear form . on H induce the
quadratic map (x, ) on G = HY /H as above. Then &) = ™4 /[G.

This result is given by van der Blij [155], together with a short proof that
depends on manipulation of divergent integrals. We observe that it ties in with
the result in Proposition 7.3.3 that if A is nonsingular (so G is trivial), then o (1)
is divisible by 8.

7.4 Poincaré complexes and pairs

As noted above, we cannot expect to improve the result of Theorem 7.2.1 with-
out imposing some conditions on X. If we can construct a homotopy equiv-
alence M — X with M a closed manifold, then X also must satisfy Poincaré
duality as in Theorem 5.3.5. A corresponding conclusion applies for manifolds
with boundary. We begin with a formal definition of the duality property, then
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explore some consequences in the form of pairings on its homology groups.
We turn to the study of homological properties of maps of degree 1.

We make the following definitions. A Poincaré complex of formal dimension
m consists of a finite CW-complex X and a homology class [X] € H,(X; Z)
(which we call the fundamental class) such that cap product with [X] induces
isomorphisms H' (X; Z) — H,,—,(X; Z) for all r € Z.

Thus a first necessary condition for a finite CW complex X to have the homot-
opy type of a closed manifold is that X be a Poincaré complex. We will see
that, if X is simply-connected, there is a natural way to enhance this to obtain
a sufficient condition.

We have defined Poincaré complexes in terms of homology. We will see in
§7.8 how they can be defined from a homotopy theoretic viewpoint.

The above definition is not adequate if X is not simply-connected, and does
not even include non-orientable closed manifolds. For the definition in the gen-
eral case, see [164].

A Poincaré pair consists of a finite CW-pair (Y, X) and a homology class
[Y] € Hy+1(Y, X) such that cap product with [Y] induces isomorphisms

H'(Y;Z) = Hyp1— (Y, X5 2), H'(Y,X;2) = Hpyy1—(Y; 2)

for all r. It follows that if [X] := d[Y] € H,,(X; Z), then (X, [X]) is a Poincaré
complex. Indeed, in view of the five lemma, the commutative diagram of exact
sequences

H'X) - HY,X) - H) —» HX) — HYX)

(X1J (Yni Y1y [(X1J Y1y
Hm+l—r(X) - Hm+l—r(Y) — Hm-‘rl—r(Y’X) - Hm—r(X) - Hm—r(Y)

shows conversely that if we assume X a Poincaré complex, the two conditions
defining Poincaré pairs are equivalent.

We regard Poincaré complexes and pairs as the homotopy-theoretic analogue
to compact manifolds. Many theorems valid for manifolds have analogues in
this context. Corresponding to the Disc Theorem 2.5.6, we have

Lemma 7.4.1 Let Z be a Poincaré complex of formal dimension n > 3. Then
there exist a Poincaré pair (Y, X) and a homotopy equivalence f : S"™' — X
such that the space Y Uy e" obtained by glueing (Y, X) to (D", S"~') is homot-
opy equivalent to Z.

Proof ([164, Theorem 2.4]) We give details here only in the simply connected
case. Then Z is homotopy equivalent to a finite CW-complex, and we may
suppose that this has no cell of dimension greater than n, and only one n-
cell. Now pick an embedding of D" in the interior of this cell, and define
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Y by deleting its interior. Thus inclusions induce isomorphisms H,(Z) —
H,(Z,Y), H,(D",S"')Y — H,(Z,Y) preserving the fundamental classes [Z]
and [D", $"~']. Cap products with the fundamental class give maps of the
Mayer—Vietoris cohomology sequence of (Z; Y, D"; S"~!) to the homology
sequence; these are isomorphisms for Z and for (D", §"=1), hence also for
(v, s"h. O

For any X, cup product gives a (—1)f-symmetric bilinear pairing
HYX;Z) x H*(X; Z) - H*(X, 7).

If X is a Poincaré complex of formal dimension 2k, we have H*(X, Z) = Z,
and so a bilinear pairing of H*(X; Z), which is (—1)f-symmetric. Since the map
[XIN : HY(X; Z) — Hi(X; Z) is an isomorphism, we also obtain a pairing on
H;(X; Z). The pairing is obtained by composing [X]N with the natural map
H*(X;Z) — Hom(Hy(X; Z), Z). If we extend coefficients from Z to Q this
becomes an isomorphism, so the pairings become nonsingular. When X is a
2k-manifold, the self-pairing of H;(X; Z) can be geometrically interpreted as
intersection numbers.

When £ is even, the question arises whether the form on H kK(X: Z) is even,
in the sense that for each x € H*(X; Z), x.x[X] is even. If we reduce mod 2, we
obtain the cup product pairing on H*(X; Z,). We have the Wu relations (see
§B.4) x2[X] = xvi[X] for x € H*(X; Z). Thus the vanishing of the character-
istic class vy is necessary and sufficient for the form on HX(X; Z) to be even.

If (¥, X) is a Poincaré pair of formal dimension 2k + 1, in the exact sequence

HYY; Q) — H"(X; Q) — H*"'(Y, X; Q)

the two maps are dual to each other, so have the same rank, and the pairing
vanishes on the image of H*(Y; Q) since this factors through the zero map
H?*(Y; Q) — H?*(X; Q): thus this image is a Lagrangian subspace. In the case
when k is even, it follows from Lemma 7.3.2 that the pairings have signature
o=0.

Now let X be a Poincaré complex of odd formal dimension 2k + 1; first
suppose Hy(X; Q) =0, so that Hi(X; Z) is a finite group. Since by dual-
ity Hy1(X; Q) = 0, the map Hy.1(X; Q/Z) — Hi(X; Z) is an isomorphism,
while by duality

Hi1(X; Q/Z) = HY(X; Q/Z) = Hom(Hy(X; Z), Q/Z).

Composing these maps gives a nonsingular pairing of Hy(X; Z) with itself to

Q/7Z.
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When X is a (2k 4+ 1)-manifold, this too can be interpreted geometrically. If
X € H(X; Z) has order 6, we represent x by a k-cycle &; then 6& is a bound-
ary, say 8¢ = 9¢. Given another class y € Hy(X; Z) represented by a cycle n
disjoint from &, we may suppose 1 transverse to ¢ and count the intersections.
Then A(x, y) = #(¢.n) (mod Z).

Either from the algebraic or geometric approach we can see that when the
hypothesis H,(X; Q) = 0is dropped we obtain a nonsingular pairing of the tor-
sion subgroup Tors Hy(X; Z) with itself to Q/Z. It follows from the symmetry
property of cup products over Q that this form is (—1)**!-symmetric. Thus if
kis even, x — b(x, x) defines a homomorphism c : Tors Hy(X; Z) — %Z/Z. It
can be shown that we have c(x) = (v, x).

We saw in §7.1 that to facilitate surgery it is natural to consider normal maps
(f:M — X,v,T). We now suppose X a Poincaré complex and impose the
further condition f,[M] = [X] or, as we will say, that f has degree 1. Observe
that if (g : N — X, v, U) is a normal cobordism of f to /" and f has degree 1,
then so has f’. We thus study the homology of maps of degree 1.

Proposition 7.4.2 Let¢ : M — X be amap of degree 1 of Poincaré complexes.
Then the diagram

H (M: 7)< H"(X: 7)

ilMlﬁ i[X]ﬁ

Hy (M Z) % H,_ (X Z)

is commutative, so .[M] N induces an isomorphism of the cokernel K" (M; Z.) of
@* on the kernel K,,_,(M; Z) of ¢.. In particular, if ¢ is k-connected, ¢, and
@* are isomorphisms for r < k and forr > m — k.

Amap ¢ : (N,M) — (Y, X) of degree 1 of Poincaré pairs induces split sur-
Jjections of homology groups M — X, N — Y and (N, M) — (Y, X) with ker-
nels K, and split injections of cohomology groups with cokernels K*. The dual-
ity map .[N]N induces isomorphisms

K*(N) - K.(N, M), K*(N, M) — K.(N).

The homology (cohomology) exact sequence of (N, M) is isomorphic to the
direct sum of the sequence for (Y, X) and a sequence of groups K,(K*).

Commutativity of the diagram follows from naturality of cap products. Since
the vertical maps are isomorphisms, ¢* is a split injection and ¢, a split surjec-
tion. The other assertions are immediate consequences. The same holds if Z is
replaced by any coefficient group.
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If¢:M,dM) — (X, 0X) is a map of degree 1 of Poincaré pairs inducing
a homotopy equivalence dM — 90X, it follows that, as in the case of closed
manifolds, .[M] N induces an isomorphism of the cokernel K" (M; Z) of ¢* on
the kernel K,,,_,(M; 7)) of ¢,.

It follows that if M has dimension 2k, we have a (—1)*-symmetric bilinear
form on Ky(M; Z) to Z. If moreover the map f : M — X is k-connected, so
the groups K, vanish in lower dimensions, this pairing is nonsingular. It fol-
lows from the commutative diagrams and the characteristic property of vy that
vr(M) = ¢*vr(X). Hence if k is even, the self-pairing of Ky (M; Z) is even.

If M has odd dimension 2k + 1, we have a (—1)**!-symmetric bilinear form
on Tors K (M; Z) to Q/Z. Again, if the map f : M — X is k-connected, this
pairing is nonsingular.

Now suppose given a Poincaré complex X of formal dimension m, and
a normal map (f : M — X, v, T) of degree 1 (or more generally (X, 0X) a
Poincaré pair and f : (M, 9M) — (X, 0X) inducing a homotopy equivalence
oM — 0X). By Theorem 7.2.1, if m > 2k, we may perform surgery to make
f k-connected. Then K,.(M) vanishes for r < k. It now follows from Proposi-
tion 7.4.2, together with duality, that if m = 2k, K, (M) vanishes exceptif r = k,
while if m = 2k + 1, the exceptions are r = k, k + 1.

Now let (Y, X) be a Poincaré pair of formal dimension n and ¢ : (N, M) —
(Y, X) a normal map of degree 1. We may first apply Theorem 7.2.1 to ¢ | M,
extend to a normal cobordism of ¢, and then apply the Theorem to ¢. This kills
all the K groups except those in the sequence: if n = 2k,

00— KiM) - Kiy(N) > Ky (N,M) — Ky (M) — 0:
andifn =2k +1,
0 — Kt 1(N) = Kyt (N, M) — Ky(M) — Ki(N) > K (N, M) — 0.
The following extension of Theorem 7.2.1 will be useful.

Proposition 7.4.3 ([167, p. 15]) Suppose n = 2k + 1, k > 2, and both X and
Y are simply-connected; then ¢ is normally cobordant to a k-connected normal
map such that K,(N, M) = 0.

Proof We may suppose ¢ k-connected. Since k > 2 and a 2-connected map
induces an isomorphism of fundamental groups, both M and N are simply-
connected. Thus Ky(N, M) = m41(¢). Choose a finite set {e;} of generators.
As in Theorem 7.1.1 we can represent each e; by a framed immersion f; :
(D%, S¥=1) — (N, M). By general position, we may suppose the f; disjoint
embeddings. We extend these to disjoint embeddings F; : (D, S¥=!) x D¥+! —
(N, M).
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Since these represent elements of 77,11 (¢), they are nullhomotopic in (¥, X),
so ¢ is homotopic to a map taking the image of each F; to a point. We obtain
(N’, M’) from (N, M) by deleting the interiors of the images of the F; and
rounding the corners. We inherit a normal map ¢’ : (N', M") — (¥, X), and
a normal cobordism of ¢’ to ¢ is obtained from ¢ x I by adjusting the cor-
ners as in Figure 8.1. Although this has not been described as a surgery, it can
equivalently be obtained by first performing surgery on the boundary using the
F; : S&1 x D1 — M to add handles, then interior surgery on the k-spheres
created by this.

Denote by A the free abelian group with basis {e;}. We have an exact sequence
A — K (N,M) — Ki(N', M") — 0; since the first map is surjective, we have
Ki(N',M") = 0. O

Lemma 7.4.4 In the above situation, if Kx(N,M) =0, K;1(N,M) is a
Lagrangian subspace of Kp(M).

Proof We again relativise the arguments of Lemma 7.1.1. We have an isomor-
phism 2 (¢) — Kii1 (N, M), so each element o of K1 (N, M) is represented
by amap g, : (D!, S¥) — (N, M) together with a nullhomotopy of the com-
posed map to (¥, X). Now D1 is contractible, so has trivial tangent bundle,
and the nullhomotopy shows that g¥ T(N) is trivial. We thus have a stable iso-
morphism of T(D*) with &+ T(N), which restricts to a stable isomorphism of
T(S*) with g»T(M). By the remark following the proof of Theorem 6.2.1, such
isomorphisms correspond bijectively to regular homotopy classes of framed
immersions i, : (D¥'!, $) — (N, M).

We have now shown that « is represented by a framed immersion i,. By
Proposition 4.6.6, we may suppose this immersion self-transverse; the same
goes for the immersion i, U ig of the union of two discs. The double point set
is then a 1-manifold, so consists of a collection of embedded circles and arcs
whose end points are the (self)-intersection points of the boundary spheres in M.

Now if @ # B, each intersection arc has two end points, which make contri-
butions of opposite signs to the intersection number of the two spheres in M. It
follows that d.d 8 = 0, so indeed the image of K (N, M) in Ky (M) is self-
annihilating. For k even, this proves the result; if k is odd, u(«) is the number of
self-intersection points of i, (S¥), and this vanishes by the same argument. [

7.5 The even dimensional case

Suppose X a Poincaré complex of formal dimension m = 2k, and (f : M —
X, v, T') ak-connected normal map, or more generally that (X, 9X) is a Poincaré
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pair and f a normal map inducing a homotopy equivalence dM — 9X. It fol-
lows from Proposition 7.4.2 that all K, (M) and K" (M) vanish except for r = k.
Duality implies further that these groups are free abelian, and the isomorphism
[M]N, together with the dual pairing, gives a nonsingular bilinear form

A KiM) x Ky(M) — Z,

which is symmetric if k is even and skew-symmetric if k is odd.

From now on we make the further assumption that X is simply-connected.
Then the Hurewicz Theorem gives an isomorphism % : w41 (f) = Ky (M; Z).
By Theorem 7.1.1, any & € my1(f) induces a regular homotopy class of
immersions §¥ x D¥ — M, and given any embedding in this class we can per-
form surgery. Write x := h(£€). Then

Lemma 7.5.1 [n this situation, if k > 3 is even, surgery on & is possible if and
only if A(x,x) = 0.

If k is odd, there is an invariant u(x) € Zy, and if k > 3, surgery on & is
possible if and only if ;1(x) = 0.

Proof We recall the discussion in §6.3.2 of immersions ¢ of S¥ in 2k-
manifolds.

For k even, if e(¢) denotes the number given by the Euler class of the normal
bundle and /(¢) the signed sum of the intersection numbers at points of self-
intersection of ¢(S*) (which we may assume transverse), then by Lemma 6.3.5,
we have [¢].[¢] = e(¢) + 21(¢). In the present situation, we have an immer-
sion of ¥ x D, so e(¢) = 0. Since x := s(£) is the homology class [¢], we
have A(x, x) = 2I(¢). Finally by Theorem 6.3.2, provided k > 3, if I(¢) = O,
¢ is regularly homotopic to an embedding.

For k odd, there are two regular homotopy classes of immersions in each
homotopy class of maps S¥ — M?*, which are distinguished by the parity of
the number 1(¢) of self-intersection points of ¢. Define 1 (x) to be I(¢) mod
2, where ¢ is in the regular homotopy class determined by &. The conclusion
again follows from the results in §6.3.2. O

We now calculate the effect of a surgery on homology. Let (g: N —
X, v, T") be anormal cobordismof (f : M — X, v, T)to (f : M — X, v, T").
Since we may regard g as amap (N, M, M') — (X x I, X x {0}, X x {1}), we
may use the groups K, defined above. Observe that K.(N, M) = H.(N, M).
Thus for a single surgery as above, the K, exact sequence of (N, M) reduces
to

0 = Kir1(N) = K1 (N, M) — Ki(M) — Ki(N) — 0,
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in which K| (N, M) = Z, and a generator maps to x € Ky(M). Thus for x # 0,
Ki(N) is the quotient of K; (M) by the class of x.
‘We have an exact sequence

0— Ki(M'") — Kiy(N) - Kiy(N,M") — Ki,_1(M") — 0,

with K (N,M’') = 7Z. The map Ki(N) — Ki(N, M’) can be identified with
K*1(N, 9N) — K*''(N, M), so is induced by intersection with the (k + 1)-
cell representing a generator of Ky (N, M) or with x, its boundary. Thus pro-
vided for some x’ € K; (M) we have A(x, x') = 1, this map is surjective, and
hence K;_;(M') = 0.

If k is even, the intersection pairing A on H(X; R) is symmetric, so deter-
mines a signature invariant o (X) € Z. We saw above that if (¥, X) is a Poincaré
pair, then o (X) = 0. The main result here is

Theorem 7.5.2 If (f: M — X, v, T) is a normal map of degree 1 with X a
simply-connected Poincaré pair of formal dimension 2k with k > 4 even, and
oM — 90X a homotopy equivalence, then surgery to obtain a homotopy equiv-
alence is possible if and only if c(M) = o(X). Moreover, it then suffices to
perform surgeries on spheres of dimension < k.

Proof First suppose (g : N — X, v, T”) a normal cobordism of f to a homot-
opy equivalence (f' : M’ — X, v, T'). Since 9N is the disjoint union of M’ and
M with orientation reversed, 0 = 6 (IN) =oc(M') —oc (M) = o(X) — o (M).

Conversely, suppose o (M) = o (X). We may suppose by Theorem 7.2.1 that
f is k-connected. It follows from the proof of Theorem 7.4.2 that in the decom-
position Hy(M) = K;.(M) & Hy(X) the two summands are mutually orthogonal
for the intersection form. Hence the induced pairing A on K; (M) has signature
Zero.

It follows from Proposition 7.3.3 that if A is a nonsingular symmetric bilinear
form on H over Z, of signature zero, there exists a basis {e;, f;} (1 <i <r) of
H such that A(e;, e;) = A(e;, f;) = 0 for all i, j except that A(e;, f;) =1 for
each i.

Since A(ej, e;) =0, by Lemma 7.5.1, we can do surgery on e;. It follows
from the above calculations that for the resulting normal cobordism, K;(N) is
the quotient of K;(M) by the class of e, and that K;(M’) is the subgroup of
Ki(N) which is the quotient of the subgroup of K;(M) consisting of classes
orthogonal to e;: viz. with A(y, e;) = 0. Hence K;(M') looks like K; (M) but
with base corresponding to {e;, f;} (2 <i < r). Thus at the end of r simple
surgeries we have arrived at a situation with K; = 0 and hence a homotopy
equivalence. O
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The details for k odd are somewhat subtler. We first need a closer study of
1, which we defined as a map Ky(M) — Z,. First we have

Lemma 7.5.3 For x,x € K,(M), we have u(x+x')= u(x)+ ux)+
A(x, x), where ML(x, x") has to be reduced modulo 2.

Proof Setx = h(£),x = h(g'): then &, & determine immersions ¢, ¢’ : S* x
D¥ — M up to regular homotopy.

We may think of two disjoint (k + 1)-discs in R*! joined by a thickened arc:
the boundary of the union is a model for the connected sum of two k-spheres.
Now &, & give maps of the spheres to M which extend to maps of the discs to
X joining along the arc gives maps representing &€ + &’. The ingredients (v, T')
of the normal maps also pass to the union. We conclude that an immersion ¢”
representing £ + £’ may be obtained from ¢ and ¢’ by joining the spheres along
the neighbourhood of an arc (which may be taken disjoint from the spheres).

The self-intersections of ¢” thus consist of those of the two spheres together
with their mutual intersections. The result follows by counting up. O

We thus have a nonsingular skew-symmetric bilinear form A on a free abelian
group H := K;(M) together with a map u : H — Z, satisfying the identity
wx+x") = pux) + n@&) 4+ Ax, x'). According to Lemma 7.3.8, the classi-
fication of such triples (H, A, i) is given by the rank of H and the invariant
Arf(n) € Z,.

We are now ready to give a first version of the main result for the case k odd.

Theorem 7.54 If (f: M — X,v,T) is a normal map of degree 1 with X a
simply-connected Poincaré pair of formal dimension 2k with k > 3 odd, and
oM — 90X a homotopy equivalence, then surgery to obtain a homotopy equiv-
alence is possible provided that Arf(jt) = 0. If surgery is possible, it suffices to
perform surgeries on spheres of dimension < k.

Proof We may suppose after preliminary surgery that f is k-connected, so
Ky (M) is free abelian and supports a nonsingular skew-symmetric intersec-
tion form A. Choose a symplectic basis {e;, f; | 1 <i < r} of (Kx(M), 1). Since
Arf(n) = 0, the proof of Lemma 7.3.8 shows that we may adjust this basis so
that & vanishes on each basis element.

Thus by Lemma 7.5.1, we may perform surgery on e;. As in the proof of
Theorem 7.5.2, K;(M’) for the resulting manifold M’ is the quotient by {(e;) of
the subgroup of K (M) orthogonal to ey, thus has basis {e;, f; |2 < i < r}. The
result now follows by induction on r. O

Theorem 7.5.4 is incomplete: we have neither given an a priori definition of
Arf(pe) nor proved necessity of its vanishing for completing surgery. We will
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offer an invariant form of Arf(x) in §7.7 after introducing further concepts. We
now take up the other point.

Consider a normal map (f : M — X, v, T) of degree 1 with X a simply-
connected Poincaré pair of formal dimension 2k with k odd, and oM — 90X a
homotopy equivalence: we can perform surgery to replace f by a k-connected
map f’ : M’ — X, and then define A and u on K (M’) as above.

Proposition 7.5.5 In the above situation, Arf(iL) is an invariant of the normal
cobordism class of (f, v, T).

Proof 1t suffices to consider two normally cobordant normal maps and show
that the corresponding values of Arf are the same. Denote by F : W — X x [
the normal cobordism; we may suppose each of 9_W — X and 0, W — X k-
connected.

We next wish to use Proposition 7.4.3 to allow us to do surgery to kill
Kiy(W, 0W). There is a minor technical point: if X has no boundary, oW is
disconnected. To deal with this, use Lemma 7.4.1 to write X = Xy U, %, with
(Xo, %1y a Poincaré pair and correspondingly delete the interior of an embed-
ded disc from 3. W. This reduces to the case when 3X, = S, and now aW
is connected.

The result of the surgery is a manifold W’ with K (dW’) the orthogonal direct
sum of K;(0_W), K (9, W) and a number of copies of Z & Z, with one pro-
duced by each surgery on the boundary. Its Arf invariant is the sum of those of
the summands, which are respectively equal to Arf(d_W), Arf(d. W) and zero.
But now K1 (W', 9W’) provides a Lagrangian subspace, so the Arf invariant
is zero. Hence indeed Arf(d_W) = Arf(d.W) as required. O

The invariant Arf(ut) of a normal cobordism is known as the Kervaire invari-
ant, and denoted Kerv(f, v, T'). By Theorem 7.5.4, if k > 3 it is the only
obstruction to completing surgery.

7.6 The odd dimensional case

Let X be a simply-connected Poincaré complex of formal dimension m =
2k 4 1, and suppose again that (f : M — X, v, T) is a k-connected normal
map inducing a homotopy equivalence 0M — 9X. Again the Hurewicz The-
orem gives an isomorphism £ : w41 (f) = Ky (M; Z); by Theorem 7.1.1, any
£ € m,1(f) induces a regular homotopy class of immersions S x D¥1 — M,
given any embedding in this class we can perform surgery, and we write
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x := h(&). In this case, for any x € Ky(M : Z) we can find such embeddings,
but these are not unique up to diffeotopy. The object of this section is to prove:

Theorem 7.6.1 Let (f : M — X, v, T) be a normal map of degree 1, inducing
a homotopy equivalence 9M — 90X, with X a simply-connected Poincaré com-
plex of formal dimension 2k + 1, with k > 2. Then surgery to obtain a homotopy
equivalence is possible. Moreover, it suffices to perform surgeries on spheres
of dimension < k.

We first calculate the effect of a single surgery on homology. If N is a nor-
mal cobordism of M to M’ we have the diagram of Proposition 7.1.3, and by
Proposition 7.4.2, we may simplify this by replacing terms H, by K. The only
ones which remain non-zero are those in the diagram

/\/\/\

\ Kpy1(M) Kp11(N, M") Kp(M") /0
K 42(N,0N) Kr41(N K41 (N,0N) K (N)
Kpy1(M') K 1(N, M) & (M) 0

Here the groups Ky (N, M; Z) and K;, (N, M'; Z) are isomorphic to Z. If
we take coefficients Q, the isomorphism [V, dN]N, together with dual pairings,
shows that groups symmetrically placed in the diagram have equal ranks. Writ-
ing r for the rank of K;(N; Q) we find just three possibilities for the ranks of
all groups in the diagram: either

1) Ky(M), Ki(M'), K (N) and their duals have rank r, K;, (N, 9N) and
Kj+1(N) have rank r + 1;

(ii) Ky (M), K;.(N) and their duals have rank r, K;,(M"), K1 (N, 0N) and their
duals have rank » + 1; or

(ii’) as (ii) but with M and M’ interchanged.

Moreover the map Kj. (N) — Ki+1 (N, dN) induced by the intersection pairing
has rank 1 in case (i) and O in cases (ii), (ii’). Since the intersection pairing is
skew-symmetric if k is even, it follows that here case (i) cannot arise.

We now consider the torsion in K (M) in more detail. In the following we
use coefficients Z for homology throughout.

Lemma 7.6.2 Let x € K (M) be indivisible, so that there is a homomorphism
¢ Kk(M) — Z with ¢(x) = 1. Then if we perform surgery on x, the map
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Ki (M) — Ki(N) is an isomorphism, so Kiy(M') is the quotient of Ki(M) by
the class of x.

Proof We can identify ¢ with a class in K*(M), hence by duality with a class
y in Kj,1(M). We claim that the image of y in K; (N, M’) is a generator, so
that the map Ky, (N, M') — K;.1(N, dN) and hence also the map to K;(M")
vanishes, which implies the result.

To calculate this image, we may consider the intersection of y with a gener-
ator z of K1 (N, M). This equals the intersection in M of y with the boundary
of z, namely x. But by hypothesis this is 1. O

We can now give the proof of Theorem 7.6.1 in the case when £ is even.

Proof First perform preliminary surgeries to make f k-connected: as k > 2, all
manifolds we encounter from now on are simply-connected. Next perform an
induction on the rank r of K (M). If r > 0, choose x € K; (M) of infinite order
and not divisible by an integer > 1, and perform surgery on x. By Lemma 7.6.2,
K (M) is isomorphic to the quotient of K;(M) by the class of x, so has lower
rank. By induction, we may reduce the rank to 0.

We now have K; (M) finite, and conclude with a second induction on the
order |Ky(M)|. Choose any non-zero x € K (M) and perform surgery. Here we
have case (ii), so K;(N) is the quotient of K;(M) by the class of x, so has lower
order than K (M), and we have a short exact sequence

0~ Z = Kyt (N, M) —> Ki(M') — Ki(N) — 0.

Thus K (M") is isomorphic to the direct sum of Z and a finite group G, and as
the map G — Kj(N) is injective, we have |G| < |Ky(N)| < |Kp(M)|.

Take a generator y of the summand Z of K;(M’) and perform surgery on y.
This yields a normal cobordism N, say, of M’ to M"; Ky(N') is the quotient
of Ki(M") by the class of y, so is isomorphic to G, and by Lemma 7.6.2, the
map Ky(M") — Kiy(N') is an isomorphism. Since K;(M") has lower order than
Ki (M), the desired result follows by induction. O

The case when k is odd requires further arguments. We consider the effect
of a single surgery and recall the commutative diagram (7.6). The handle H
is a smooth submanifold H of N with HNM = d_H = (S* x D), 9.H =
(8F x Sk x [—=1,1]),and H "M’ = 3, H = (D' x §*) (compare Figure 5.5).
Write V for the closure of N\ H; then V = 9_V x I. We can extend the K,
notation to V, etc., by expressing X as the union of a complex X* with a 2k-cell
attached, so that f maps V to X* and H to the extra cell.
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We have an exact sequence

Kit(NNVUMUM') — Ki(V,9_V U 3,V) — KN, MUM)
— KN, VUM UM,

and since by excision H;(N,V UM UM’) = H;(H, 9H), so vanishes except
fori = 2k + 2, we have an isomorphism K;1(V, -V U 0, V) — Kj 1 (N,M U
M).

We may thus replace the term K (N, dN) in (7.6) by Ki+1(V,0_V U
04+V) = K;(0_V). We have an a-sphere Sk x {0} ¢ §k x DM = 9_H dif-
feotopic in H to S* x % x {—1} C 3.H which bounds a disc in M’ and a b-
sphere {0} x S ¢ D**! x S = 9, H diffeotopic in H to % x S* x {1} which
bounds a disc in M. Denote the corresponding classes in K;(N, dN) by x,
and x;.

Further calculations depend on the self-pairing A of K (M; Z) to Q/Z.

Lemma 7.6.3 Suppose we perform surgery on a sphere representing x €
Ki(M; 7). Then in the exact sequence

Z (= Ki1 (N, M) — Ki(3_V) (= K1 (N, 3N)) — Ki(M) — 0,

the generator 1 of Z maps to xp, and if y € Ky(M) has order q, p/q € Q projects
to M(x,y) € Q/Z, and w € Ky(9_V) maps to y, we have quw = p'x;, for some
p = p(mod q).

Proof Represent y by a k-cycle 1 and let gn = d¢ for some (k + 1)-chain ¢
in M. The class x is represented by the a-sphere S¥ x *, and by definition of A,
this has p’ intersections with ¢ for some p’ = p (mod ¢). We may suppose these
transverse; then each one is the centre of a disc * x D**! (in H). Removing
these discs gives a chain ¢* in d_V with boundary consisting of ¢gn and p’
spheres * x S each parallel to the b-sphere, and with reversed orientation. Thus
qw — p'x;, vanishes in Hi(d_V). O

We now give the proof of Theorem 7.6.1 in the case when £ is odd.

Proof As in the case when k is even, we may suppose preliminary surgeries
performed so that f is k-connected and moreover that K (M) is finite; again we
proceed by induction on |Kj(M)|.

We will perform surgery onx € K;(M). Since r = 0 we cannot have case (ii*)
above, so the first map in the exact sequence of 7.6.3 is injective. That Lemma
calculates the extension, but does not determine the class x,,.


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.008
https:/www.cambridge.org/core

220 Surgery

In fact, the class is not determined by the choice of x: the embedding ¢ : S x
D! — M is determined up to regular homotopy, but not up to diffeotopy. For
anymap g : Sk — SOy41 we may form the twist ¢, by ¢, (x, ¥) := @ (x, g(x)()).
If g is nullhomotopic in SOk, ¢ and ¢, define homotopic embeddings of the
tangent bundle of S¥ x D**! in that of M, and hence, by Corollary 6.2.2, reg-
ularly homotopic immersions. Since SOy2/SOy41 = S¥!, we have an exact
sequence

i1 (ST = 1 (SOk41) — T(SOks2),

so may twist by any element in the image of ;. (S*!) = Z. Since k is odd,
twisting by the image of s € Z induces the self-map of H,(S* x S¥) with x,
Xq + 28xp, Xp > Xp.

First suppose x of order ¢ and that A(x, x) = p/q with p prime to g: then
Ky (M) is the direct sum of the group Z, generated by x and its orthogonal
complement, G, say. By Lemma 7.6.3, K;(9_V) is the direct sum of an infinite
cyclic group with generator z, say, where gz = x;, and a group isomorphic to G.
Write x, in the form mz + g with m € Z, g € G. Taking x,, for w and x for y in
the lemma, we see m = p (mod q).

Twisting as above, we may suppose |m| < g. Now K (M’) is (isomorphic to)
the quotient of K;(3_V) by the class of x,. It thus has order m|G|, so as |m| < g
we have reduced the order.

In view of Proposition 7.3.10, we see that it will now suffice to con-
sider the case when x, y € Ki(M) have order 2, A(x, y) = 5, and 2€A(x, x) =
2%A(y, y) = 0. Then Ki(M) is the orthogonal direct sum of the group generated
by x and y and a finite group G. Applying Lemma 7.6.3, we can write K;(0_V')
in the form Z & Z,« & G, where the first summand is generated by a class z
which projects to y, the second by v say, we have 2¥z = x;, and x, = mz + v
with m even. Twisting, we may suppose |m| < 2.

If m = 0, we obtain for K;(M’) the direct sum of Z and G; by Lemma 7.6.2
a further surgery will kill the Z, so we have reduced the order of K. If m # 0,
Ki(M') has order 2¥m|G|, so if |m| < 2¥ we have again reduced the order.
Finally if m = 2, although we have not reduced the order we have the direct
sum of G and a cyclic group of order 2%, so we have reduced to the first
case. O

7.7 Homotopy theory of Poincaré complexes

In this section we prepare for the reformulation in the next of the results of
surgery in more general terms. We also complete our discussion of the Kervaire
obstruction. The proofs of these results involve somewhat technical homotopy
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theory arguments. We will present an outline of the ideas, but give references
for the detailed proofs.

First consider an orthogonal vector bundle &, with fibre dimension k and base
B. Write A¢ for the associated disc bundle: the set of vectors in the total space of
& of length < 1, and S¢ for its boundary sphere bundle. The space obtained from
Ag by identifying the subspace S¢ to a point is called the Thom space of § and
denoted 7'(£). There is a natural isomorphism, called the Gysin isomorphism

H'(X) — H"""(Ag, Se) = H*(T(§)).

The class in H*(T (£); Z) corresponding to the unit in H°(X; Z) is called the
Thom class, and traditionally denoted by U. Geometrically, if B is a CW com-
plex, T'(£) has a natural decomposition with just one (k + r)-cell for each r-cell
of B, as well as the base point.

If V is a submanifold of M, we can choose a tubular neighbourhood of V,
which consists of an orthogonal vector bundle & over V together with an embed-
ding h of Az in M. Composing h~! with the map A — T'(£) gives a map of
h(Ag) which sends its boundary h(S¢) to the base point, and hence extends to
amap M — T (&) which sends the rest of M to this point. This is known as the
Thom construction. As it is the foundation of the study of cobordism, we will
treat it more fully in §8.1.

In particular, if V* is a compact submanifold of Euclidean space R*** with
normal bundle v, since we can regard R** as obtained from S"+* by deleting
a point, we obtain amap F : $*** — T'(v); moreover, this map has degree 1 in
the sense that it induces an isomorphism on the top non-vanishing homology
group H, .

If we start with a Poincaré complex, rather than a manifold, there are no
immediately visible bundles. We generalise, replacing sphere bundles Sz — B
by fibrations 77 : X — B with fibres homotopy equivalent to the sphere S~ In
general we use the term spherical fibration for a fibration with fibres homotopy
equivalent to a sphere. The role of the disc bundle A¢ is now played by the
mapping cylinder of , and we define 7' (;r) to be the mapping cone of .

A decisive step is given by the following result of Spivak [142].

Theorem 7.7.1 If X is a Poincaré complex of formal dimension m, and k >
m 4+ 1, there exist a fibration % over X with fibre homotopy equivalent to S*~!
and a map F : §"YF — T (7) of degree 1. Moreover, the pair (w*, F) is unique
up to suspension and homotopy equivalence.

We describe the construction in the simplest case when X is a finite simply
connected CW complex. Choose an embedding i : X — R”** for some k. Take
aregular neighbourhood N of i(X), and form the space EN of paths (continuous
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maps) « : I — N. As discussed in §B.1, the projection py : EN — N given by
po(a) = a(0) is a homotopy equivalence, and its fibres are contractible. Thus
if P:=p; Y(dN), po gives a homotopy equivalence P — dN.

Now define p; : P — N by p;(«) = a(1): this too is a fibration. The key
lemma states that the fibres of p; are homotopy equivalent to S*~! if and only
if X satisfies Poincaré duality with formal dimension n. We omit the proof,
which depends on an examination of the spectral sequence of the fibration. We
can now either use the fact that N is homotopy equivalent to X or restrict to
Pfl (X) to obtain the desired fibration over X.

Now T'(;r) is the mapping cone of m, hence is homotopy equivalent to the
union of X, or equivalently, N, and the cone on P, which is homotopy equivalent
to dN. Hence T (;r) is homotopy equivalent to the space formed from N by
identifying 9N to a point. But this is obtained from $"** by identifying N
and everything outside N to a point, so indeed we have a map §”+% — T (1) of
degree 1.

The existence proof in the general case depends on the same idea, but there
are more details to check. The result also extends to Poincaré pairs. We will
discuss the uniqueness shortly.

In general the Thom space of an external direct sum of two bundles is

AE@U AE X A’l
T @ = =
ESm Seay  (Se x Ay) U (A; x S,)
TE)xT(n)

({00} x T(m) U (T(&) x {oo])’

and this is a space called the smash product of T(¢) and T (n) and denoted
T (&) A T(n). The same goes for spherical fibrations if we interpret @ as the
fibrewise join. Since the bundle &' over a point has Thom space S, we have
T(E ®e')=T(E)AS', which is the suspension of T(£), which we denote
ST (£). In particular, a pair (7%, F) as in Theorem 7.7.1 defines a suspended
pair (¥ @ ¢!, SF).

We introduce a related notation: for any space X, write X for the disjoint
union of X and a point *, which we take as base point. Then if Z has a base
point co, we have

XTAZ={XU ) x Z}{({*} x 2) U (X x {oo})} = (X x Z)/(X x {o0});

in particular, XT A YT = (X x V)™ .

Now let X be a Poincaré complex of formal dimension m, v a spherical fibra-
tionover X, and F : "% — T(v)a map of degree 1. If v = o @ B, we have a
map SV — T(v) = T(a) A T(B).
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Theorem 7.7.2 The Thom spaces T (a) and T (B) are (S,N)-dual in the sense
of Spanier and Whitehead [141].

A proof appears in [14]. Taking slant product with the homology class of the
image of the fundamental homology class [S"] induces a map H(T (a)) —
H,,,q(T(/B)). Somewhat as in the proof of Proposition 7.4.2, using the fact that
we have maps in both directions, it can be deduced that these maps are isomor-
phisms. But this is the condition defining (S,N)-duality.

It is more usual to speak of Spanier—Whitehead duality. Here we adhere to
the earlier terminology since it is useful to make the dualising dimension N
explicit. A textbook account of this duality appears in Adams’ book [7].

Essentially the same argument yields the relative case: if (¥, X) is a Poincaré
pair, v a bundle or spherical fibration over Y such that there is a map
SV — T(v)/T(v|X) of degree 1, and v = o @ B, then T («) is (S,N)-dual to
T(B)/T(B1X).

In the simply-connected case, the converse follows: if a map S¥ — T'(v)
induces an S-duality, then X satisfies Poincaré duality.

S-duality is a duality in stable homotopy theory. If X and Y are spaces (finite
CW complexes will suffice here) the set of (based) homotopy classes of maps
X — Y is denoted [X : Y]. The set of morphisms in stable homotopy theory is
the limit

(X :Y}:=1lim,[S"X : §"Y],

which is an abelian group. If X and X*, and Y and Y* are (S,N)-dual, there are
isomorphisms

{X*: Yy ={Y: X};

(X:Y)={SV:X*AY)

Ifo : (N,M)— (Y, X)is anormal map of degree 1 of Poincaré pairs, the S-
dual gives a map ¥ : Ty/x (v) — Tym(v). Composing with the Gysin isomor-
phism gives the map ¥* : H*(N, M) — H*(Y, X) dual to the homology map
¢, which we used in Proposition 7.4.2.

We can now deal with the question of uniqueness in Theorem 7.7.1. Sup-
pose we have spherical fibrations v and v’ over X and maps S"** — T'(v) and
§"tK . T(1'), both of degree 1. Since X is a finite CW-complex, if r is large
enough, the suspension v @ ¢” is fibre homotopy equivalent to o @  with «
fibre homotopy equivalent to v’. Hence T («) is (S,(m + k + r))-dual to T(8).

The map §"*¥ — T(V') ~ T(«) of degree 1 is (S,(m + k + r))-dual to a
map 7(8) — S"t** inducing an isomorphism of the homology group H' =,
Now we can obtain 7'(8) from the total space of the spherical fibration 8 @ &'
by identifying the cross-section in the summand &' to a point. We thus have a
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map of this total space to a sphere which induces an isomorphism of H' %%
and hence a homotopy equivalence on each fibre. But this shows that 8 @ &' is
a fibre homotopically trivial bundle. As v @ &"*! is fibre homotopy equivalent
tov @ B @ e, the desired equivalence of v and v’ (together with the maps of
degree 1) is established.

We now turn to the Kervaire invariant. The following account is a simplified
version of [34], with most proofs omitted. Define Wy (n) to be the mapping fibre
of the map K(Z,, k) — K(Z,, k + n + 1) given by the cohomology operation
x(Sg"*"), and define a Wu orientation of a bundle £" to be amap T (£) — W(n)
such that the class in dimension k pulls back to the Thom class U.

If X>* is a Poincaré complex, and v its normal Spivak fibration, the Wu
class v,+1(X) = 0 since Sq’”rl vanishes on n-dimensional classes. It follows
that x (Sq’”r1 )U = 0. Thus v admits a Wu orientation.

It follows from the (S,2n + k)-duality between Xt and T'(v) that there are
bijections

(XT: 8" — {2 . §" A T(v)} and

(Xt : K(Zy, n)} = {S¥*: T(v) A K(Zy, n)}.

Homotopy calculations yield isomorphisms

{S2" : K(Zy, n)} = Zy:
we denote by x the image in {X* : K(Z,, n)} of the non-zero element;

2 ST W) A K(Zy, n)} = Zy.

Composing the map z with a Wu orientation « for v gives a homomorphism
{§?"+% - T(v) A K(Zy, n)} — Z4 and hence, by (S,(2n + k))-duality, a map & :
(X" : K(Zy, n)} — Z4. We now define ¢ : H'(X) — Z4 by ¢ () := h({u}).

Further calculations show that, if j : Z, C Z4 denotes the (unique) injective
map, h(x) = j(1) # 0 (this key point depends on the Wu orientation); next that
(cf. (7.3.7))

Pu+v) = ¢+ ¢@) + j{uv[X]}.

Thus ¢ is a quadratic form on H*(X; Z,) in the sense of Theorem 7.3.11. By that
result, the Gauss sum &(¢) := erHk(X;Zz) ™ has the form R(¢)nx, where
R(¢) = /|H*(X; Z,)| and n§ = 1. Writing nx as e>**)/8 defines an invariant
a(X) € Zg of (X, o).

It is also shown that if (Y, X) is a Poincaré pair with a Wu orientation, ¢
vanishes on the image of H*(Y). Hence this image is a Lagrangian subgroup of
H*(X). It follows from Theorem 7.3.11 that in this case a(X) = 0.

Now suppose given anormal map (f : M — X, v, T'). A Wu orientation « for
v pulls back to one for M, and the above map h factorsas i : (X1 : K(Z,, n)} —
(M* : K(Zy, n)} = Z4. Now H*(M: Z») = K*(M: Z») & H*(X : Z), and the
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restriction to H*(X : Z,) of the map ¢x coincides with the map ¢y, defined
in the same way for M. A further calculation shows that the restriction
to KX(M; Z,) corresponds by duality to the map wu : Kp(M; Zy) — Z, of
Lemma 7.5.3. From this we deduce the equality

= (=1 @y (7.7.3)

This gives a calculation of the Kervaire invariant which depends only on the
Wau orientation of X.

Itis also shown in [34] that choices of Wu orientation for X correspond bijec-
tively to forms ¢ satisfying (7.3.7). Since the intersection form is nonsingular,
it follows that a second such form can be written as ¢,(x) = ¢(x) + j(x.2)[X]
for some z. It follows from Lemma 7.3.12 that &(¢.) = e "?@&(¢). Now if
M is given the induced Wu orientation, then changing ¢ to ¢, will multiply each
of ny and nx by the same factor e="?@_ Thus the value of A(y4) is independent
of this choice.

There exist Wu orientations for the universal Spins,.» bundles, and
(uniquely) for the universal SUs,1, bundle. Choosing these give maps of the
corresponding cobordism groups (studied in the next chapter) to Zg.

There is also a choice of a Wu orientation for the universal SOy, bundle such
that the corresponding invariant is just the signature mod 8.

An interesting special case is n = 2. In the case when v has fibre dimension
1, there is a canonical Wu orientation. Geometrically, we have a framing of
T(M) @ v', hence an immersion M?> — R3. In this case, the map ¢ can be
geometrically interpreted by representing u € H,(M; Z;) by an immersion of
S', and counting the number of half-twists of M in R? as you go round the
circle.

7.8 Homotopy types of smooth manifolds

A natural problem is to seek to characterise the set of homotopy types of closed
smooth manifolds. The first necessary condition on X for being homotopy
equivalent to a closed manifold is that it be a Poincaré complex. If X is itself a
manifold, the identity map, together with the normal bundle v of some embed-
ding in Euclidean space and the induced trivialisation of T(X) € v is a normal
map of degree 1. Thus a second necessary condition is the existence of a nor-
mal map (f : M — X, v, T) of degree 1, with M a smooth manifold. We next
reformulate this condition. Denote by €2,,(X, V%) the set of normal cobordism
classes of normal maps (f : M" — X, vk, T). Surgery replaces a normal map
by another normally cobordant to it, and thus in the same class in €2,,(X, vh).
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Given a normal map (f : M" — X, vk T), we can add a trivial bundle €' to
vk; then T together with the induced trivialisation of f*¢! induces a trivialisa-
tion 77 of T(M) & f*(v* @ €'), defining a suspended normal map (f : M" —
X, vk @ €”, T'). The same goes for normal cobordisms, so we have a suspension
map 2,,(X, vF) = Q,.(X, W* @ €")). It is easily shown that this is an isomor-
phism for k > m.

Proposition 7.8.1 For any finite CW-complex X and vector bundle v* over
X, if k > m + 1 there is a natural bijection ®,,(X, v")from Q. (X, v5) to the
homotopy group 1,11 (T ( v6)). If X is a Poincaré complex, ®,,(X, v6) preserves
degree.

Proof Given an element « € ,,(X, v¥), choose a representative (f : M" —
X, vk, T), where T is a trivialisation of T(M) @ f*v. Let E™** be the total
space of a disc bundle associated to f*v: then T defines a trivialisation of T(E).
By immersion theory (see Corollary 6.2.2), this corresponds to an immersion
Emtk s Rk g%k Since k > m + 1 we may suppose by general position
(see, for example, Proposition 4.6.6) that this gives an embedding of M and
hence of a neighbourhood of M in E, which we may choose to be given by
a disc sub-bundle of f*v. As above, identifying the boundary sphere bundle
and all outside to a point gives a map ¢ : S"** — T(f*v*). The map f induces
a map T(f): T(f*v*) — T(V*); composing gives a map T(f) ot : "+ —
T (W5 defining 8 € 7,1k (T (v)).

If we begin with a normal cobordism (g : N™*! — X, v, T*) between two
normal maps, we can follow through the same construction leading to an
immersion, then an embedding F"***! — §7+k » I inducing the chosen
embeddings in $"** x {0} and §"** x {1}, and a map §"** x I — T(g"*v*) —
T (v%), and conclude that the two maps Stk s T (V) are homotopic. We may
thus define ®,,(X, v¥) by setting ®,,(X, v¥)(a) = B.

To prove ®,,(X, vk surjective, we first choose a smooth manifold ¥ with a
homotopy equivalence / : Y — X: this is possible by Lemma 1.2.9. Under / a
bundle v over X induces a bundle v" over Y.

A class B € 7,4 4(T(v)) is represented by a map S"** — T'(v) and so by a
map ¢ : S"*K — T(v'). The space T'(1') is not a smooth manifold, but contains
a point * whose complement is an open disc bundle over Y and so is a smooth
manifold. Using Proposition 2.3.4, we modify the map ¢ keeping it fixed on
¢~ (*) so as to make it smooth on the complement. Next by Proposition 4.5.10,
modify ¢ further to make it transverse to Y, embedded as the zero cross-section.

Now set M := ¢~ (Y) and write f = ho (¢|M) : M — X. It follows from
the basic property Lemma 4.5.1 of transversality that M is a smooth manifold
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of dimension m, and its normal bundle in $”** is the pullback of " and hence
of v: thus a framing of the tangent bundle of R+ induces one of T(M) @
f*v. We have thus constructed a normal map (f : M — X, v, T), defining @ €
Q,,(X, v). Since we have effectively reversed the above construction, it follows
that ®,,(X, vF)(«) = B.

We argue similarly to prove ®,,(X, v¥) injective. Given two normal maps
leading to homotopic maps f” ot and g" o t, we take a homotopy S"** x I —
T (v") and, keeping it fixed at the ends, make it smooth away from the preimage
of * and then transverse to Y. The preimage of Y then gives a normal cobordism
between the given normal maps.

The fact that corresponding maps have the same degree follows since T'(f) :
T(f*vk) — T (v¥) has the same degree as f : M — X and ¢t : S"F — T(f*vk)
has degree 1. O

This result reduces us from the somewhat mysterious set of normal cobor-
dism classes of normal maps to an explicit homotopy group. We now make a
further reduction. There is a classifying space for vector bundles (see §B.2):
isomorphism classes of vector bundles v* over X correspond to homotopy
classes of maps X — B(Oy). There is a corresponding result for (fibre homot-
opy classes of) spherical fibrations, with a classifying space B(Gy). By Spivak’s
Theorem 7.7.1, if X is a Poincaré complex, there is a well-defined spherical
fibration 7 over X, which determines a map tx : X — B(Gy) up to homotopy.

We write (following standard notation) Gy, for the monoid of self-homotopy
equivalences of S*~!. For homotopy purposes, we can treat this as a topological
group, and B(Gy) as its classifying space.

A normal map (f : M — X, v¥, T') of degree 1 determines a class of maps
§m+k — T (vk) of degree 1, and hence by the uniqueness in Theorem 7.7.1, a
fibre homotopy equivalence v — . Thus the map X — B(Oy) classifying v is
a lift of the fixed map tx. More precisely, it follows that

Corollary 7.8.2 There is a natural bijection between normal cobordism
classes of normal maps (f : M — X, v*, T) of degree 1 of smooth manifolds
to X and homotopy classes of liftings of tx : X — B(Gy) to B(Oy).

We write 7 (X, v) for the set of these homotopy classes of liftings, which
can thus be identified with the subset of €2,,(X, v) of classes of degree 1: we
can regard these as tangential structures on X. Observe that a choice of lifting
induces a bijection of the set 7 (X, v) to [X : G/Ox].

We now restrict to the simply-connected case and also suppose X has formal
dimension m > 5. We can summarise Theorems 7.5.2, 7.5.4, and 7.6.1 as stat-
ing that surgery on a normal map of degree 1 to obtain a homotopy equivalence
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to X" is possible if and only if an obstruction belonging to L,, vanishes, where
we define the surgery group L, ad hoc by

Ly =7, Lagy1 =0, Lypo =7Zy, Layyz =0.

The isomorphism of Ly on Z is given by the signature divided by 8 (the 8
comes from Proposition 7.3.3) and of L4, on Z; by the Kervaire invariant.

More precisely, if m is odd, by Theorem 7.6.1 we can perform the desired
surgery, so the above necessary condition is sufficient. If m = 4p is divisible by
4, by Theorem 7.5.2, surgery to obtain a homotopy equivalence is possible if
and only if 0 (M) = o (X). Here o (X) is determined by the homology of X, but
o (M) depends on the choice of lift. By Hirzebruch’s signature theorem 8.6.7,
there is a polynomial L,, in Pontrjagin classes such that if we take the classes of
T (M), cap product with the fundamental class gives o (M) = (L,,(T(M)), [M]).
We can choose a bundle t over X such that v @ 7 is trivial. Then f*t is stably
equivalent to T(M), so L, (T(M)) = f*L,(z). Since f has degree 1, f,[M] =
[X], hence (L,,(T(M)), [M]) = (L, (), [X]). The desired equality of signatures
thus holds if and only if o(X) = (L,,(7), [X]).

If m =2 (mod 4), by Theorem 7.5.4 surgery to obtain a homotopy equiv-
alence is possible if and only if the Kervaire invariant « := Kerv(¢ : M —
X, T) € Z, vanishes. Here the choice of a Wu orientation of v induces Wu ori-
entations of X and M, so by (7.7.3) above we have invariants nx and 7, with
Ny = (—1)“nx: thus surgery is possible if and only if ny = nx.

To show that all elements of the groups L,, effectively arise as obstruc-
tions, we need the plumbing construction, which is best seen in the simplest
case, when X is the Poincaré pair (D™, $""!') and we study normal maps
f:(M,dM) — (D™, S"™ ') inducing a homotopy equivalence dM — S"~1.
Here v is necessarily a trivial bundle €, so T is a framing of T(M) & €”.

Proposition 7.8.3 (i) There exists a framed manifold Z*, which is a handle-
body obtained by adding eight (2k)-handles to D*, such that the intersection
matrix on Hy (Z) is the Eg matrix (7.3.4).

(ii) There exists a framed manifold Z**2, which is a handlebody obtained
by adding two (2k + 1)-handles to D¥*2, such that the normal map to D**?
has Kervaire invariant 1.

Proof (i) Write A for the tangent D** bundle of S?*: this has Euler class 2, so
the self-intersection of the zero cross-section is 2. Since T(S%*) @ €! is trivial,
there is a framing of T(A) @ €2.

The Eg matrix P is a positive definite symmetric 8§ x 8 matrix of determinant
1, with entries 2 on the diagonal and O or -1 elsewhere. Take 8 copies A; of A
indexed by the rows of P, and for each non-zero entry p; ; (i < j) of P, choose
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Figure 7.1 Plumbing

(2k)-discs D; ; C Si2k, D;; C S?k, ensuring that any two such discs in the same
sphere $?* are disjoint. The part of A; lying over D; ; is a product bundle, so
can be identified with a product D; ; x D* = D; ; x D; ;. For each pair (i, j)
we now identify D; ; x D;; with D;; x D; ; by the map interchanging the fac-
tors. This yields a manifold, containing copies of the A;, but in which we have
introduced intersections of the spheres so that the intersection matrix is 7.3.4
up to signs, but we can choose orientations of the basis elements to change all
the signs to —1. The construction gives a manifold whose boundary has re-
entrant corners, but these can be smoothed by the same techniques as in §2.6.
The plumbing construction (but not this example) is illustrated in Figure 7.1.
(ii) Here the construction is simpler: we take two copies of the tangent disc
bundle of $%*! and perform plumbing just once, so that the intersection matrix

1
is just < Ol 0 ) We need to choose a framing so that p takes the value 1 on

each basis element.

We recall the definition of u for a (2k + 1)-connected normal map f :
(M, dM) — (D¥**2, §%+1) By Theorem 7.1.1, any & € mya(f) = Koy
determines a regular homotopy class of immersions ¢ : S**! x D**+!1 — pm
with homology class x. By §6.3, there are two regular homotopy classes of
immersions in each homotopy class of maps S**! — M*+2 which are dis-
tinguished by the parity of the number /(¢) of self-intersection points of ¢. In
Lemma 7.5.1, we defined (x) to be I(¢) mod 2.

Now in Proposition 6.3.3 we constructed an immersion j : S+ — R#+2
with a single transverse self-intersection and with normal bundle T(S**1).
Thus pulling back the standard framing of R**+2 by j gives a framing of
T(S?**1) such that the preferred regular homotopy class of immersions indeed
has I(¢) = 1. O]
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Since the matrices used have determinant &1, the manifolds constructed
in Proposition 7.8.3 have boundaries with the homology of a sphere. It fol-
lows, except in low dimensions, that the boundary is simply-connected, hence
is homotopy equivalent to a sphere. In fact it follows that the manifold Z* con-
structed above has boundary S'; the boundary of Z* can be shown to be homeo-
morphic to Poincaré’s dodecahedral space. In higher dimensions the boundary
is a homotopy sphere, hence by Corollary 5.6.4 is homeomorphic to a sphere.

Write P, for the set of normal cobordism classes of normal maps (f :
M™, dM) — (D™, S"~"), T) with f |y : M — S"! a homotopy equiva-
lence. We observe that the structure of normal map amounts to giving a man-
ifold M, a stable framing T of T(M), and the homotopy equivalence oM —
sm=1,

Proposition 7.8.4 If m > 5, the surgery obstruction gives a bijection B :
P, — L,.

Proof Given anormal map, the surgery obstruction is well defined and belongs
to L,,, so we have a map .

Given two normal maps fi, f» defining elements of P,, we can form the
boundary sum M; + M, and extend the map and framing. We claim that the
surgery obstruction of the sum is the sum of the surgery obstructions. If m
is odd, there is nothing to prove; if m = 2k, we first perform surgery below
the middle dimension on each of f; and f>: this induces surgeries on f; + f>.
We now have Ky(M; + M) = Ki(M,) @ Ki(M>), and A and p split in a nat-
ural way. Since both o and Arf are additive on direct sums, the claim fol-
lows. Similarly, we can define a normal map f by changing orientation, and
B(f) = —B(S). _ _

If B(f1) = B(f2), we form f; + f>: by what we have just seen, B(f1 + f>) =
0. We may thus perform surgery (keeping the boundary fixed) to construct a
normal cobordism N"™t! of M, + M, to a disc D™.

The boundary sum may also be constructed as the union of M;, D"~ x I and
M, since attaching D! x [0, %] to M by a collar on part of its boundary does
not change the diffeomorphism class. Thus we write N as having _N = M| U
(D! x I)UM, and 3, N = D". Now adjusting corners we may rewrite N
as N’ with _N' = M>, 3. N' = M, and 3.N' = D" U 3.N U (D"~! x I). Since
9.N = (8! x I, it follows that the same holds for 3.N'.

So we have a normal cobordism (keeping the boundary fixed) of M| to M5.
Thus g is injective.

It follows from Proposition 7.8.3 that the image of B contains a generator
of L,,; now using sums and change of orientation as above it follows that g is
surjective. O
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Corollary 7.8.5 Let "' be a homotopy sphere which bounds a framed man-
ifold N" withn > 6. Then if n is odd, ¥ = §"'; ifn = 0 (mod 4), ¥ is deter-
mined up to diffeomorphism by o (N), if n = 2 (mod 4), there are at most two
diffeomorphism classes of such X.

We return in Proposition 8.8.6 to the case n = 0 (mod 4), and following that
discuss the delicate question, the ‘Kervaire invariant problem’, of deciding for
which n = 2 (mod 4) ¥ is unique (and so is diffeomorphic to $"~1).

As well as seeking existence of a smooth manifold homotopy equivalent to
X, we can investigate uniqueness by the same method. Consider pairs (M, f)
with M a smooth manifold and f : M — X a homotopy equivalence, and let
M, f)~ (M, f') if there is a diffeomorphism 4 : M — M’ with f'oh >~ f.
Write S(X) for the set of equivalence classes, which we may consider as smooth
manifold structures on the homotopy type of X. There is a natural map S(X) —

TX).
Theorem 7.8.6 For X simply-connected and m > 5 there is a sequence
Ly —»> SX)—>TX)— L,

which is ‘exact’: the image of S(X) in T (X) is the preimage of 0 € L,,, and the
group L, .1 acts on S(X) and the orbits are the fibres of S(X) — T (X).

Proof The two latter maps, and exactness at 7 (X), are given by the above
discussion.

Given an elementa € L, and an element of S(X) represented by f : M —
X, by Proposition 7.8.4, o corresponds to an element of P,;, which we can
represent by a normal map g : (N, IN) — (D1, §™) which defines a homot-
opy equivalence of the boundary. Choose embeddings of D™ in M and in N
(essentially unique by Theorem 2.5.6), and use them to glue N to M x I to give
N, say. A retraction of N on D" inducesamapG : N - M x [ — X x I, and
the restriction of G to 9. N’ is a homotopy equivalence, so defines an element of
S(X). Since N’ inherits from N the structure of normal map, it gives a normal
bordism between the two elements of S(X), so they map to the same in 7 (X).
Any other choice of g representing « is normally cobordant to g; following this
through gives an h-cobordism between the two choices for 3, N’, so the element
of S(X) is uniquely determined by «.

Conversely, given two elements of S(X) with the same image in 7 (X), there
exists a normal bordism G : N' — X x I. If m is even, we can perform surgery
(keeping the boundary fixed) to obtain a homotopy equivalence, and so have
an h-cobordism: it follows that the two elements are equal. If m = 2k — 1, we
can perform surgery to make the map G k-connected. It follows that N’ can be
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obtained from M := 9_N' by attaching k-handles. Moreover, the a-spheres of
the handles are nullhomotopic in X and so in M. Since k > 3 we can perform a
diffeotopy to take all of these attaching maps inside the disc D™. But now N’ is
the boundary sum of M x I and a manifold defining an element of P,,;. O

We have studied framed manifolds with homotopy sphere boundaries; if
we weaken the ‘homotopy sphere’ hypothesis slightly, we still obtain strong
results. Suppose M>"~! an (n — 2)-connected manifold which bounds a framed
manifold N> with n > 3. Again we can do surgery to make N (n— 1)-
connected. It follows from the homology exact sequence that H,(N;Z) =
H?*"(N, M; Z) vanishes for 2n — r < k, i.e. for r > n + 1. The same holds for
other coefficient groups; hence H,(N; Z) is free abelian. By Lemma 5.6.10, N
is a handlebody, so by Theorem 5.6.12 is determined up to diffeomorphism
by (H, A, @) where H := H,(N; Z), A is the (—1)"-symmetric bilinear map
H x H — 7 given by intersection numbers, and « is a map H — 7,,_1(50,,),
satisfying

(1) A(x, x) = w(a(x)) forx € H, and

) a(x+y) =alx)+a@) + A, y)(9¢,) forx,y € H.

Moreover since N is framed, «(x) maps to 0 in m,_1(SO). Thus if n is even,
«/(x) is determined by 7 («(x)), so the classification of N reduces to that of the
symmetric bilinear form A, which is even since 7 (c(x)) is even.

In the case n = 3, as m,(S03) vanishes, N is determined up to diffeo-
morphism by the skew-symmetric bilinear form A on the free abelian group
H3(N; Z); hence, by Proposition 7.3.5, by the set of integers {a;}. It follows
from the construction that N is the boundary sum of terms of the form of han-
dlebodies of two types:

(1) Ny say, having two handles with intersection number &, and

(i) diffeomorphic to S* x D?, having just one handle.

This can be extended to a complete diffeomorphism classification of closed,
simply connected 5-manifolds M. In general, the tangent group of M is sta-
bly trivial provided obstructions in H"(M; m,_;(SO)) vanish; in the present
case all these groups vanish except H>(M; Z,), and the obstruction here is the
Stiefel-Whitney class w,(M). If w,(M) = 0, M is stably framed, so by Propo-
sition 8.1.4, determines a class in nss and bounds a framed manifold N if and
only if this class vanishes, which it does since (see §B.3(x)), nSS = 0. (Alter-
natively we can argue that M has a spinor structure, and since the cobordism
group Qg” " — 0, M bounds a spinor manifold.) Now perform surgery on N; by
Corollary 7.2.2, we may suppose N 2-connected. It follows that N is a handle-
body. Hence M is a connected sum of manifolds M; (the boundary of N;) and
S3 x §%. This argument is due to Smale [140].
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The case w, (M) # 0 is more complicated. The invariants of M consist of a
triple (H, b, w), where

H = Hy(M; Z) is a finitely generated abelian group,

b is the linking form — a nonsingular skew-symmetric bilinear self-pairing of
the torsion subgroup 7 of H to Q/Z — and

w : H — Z, is the homomorphism given by cap product with w, (M);
moreover for x € T, w(x) = b(x, x).

The invariants determine w, (M) € H*(M; Z»), hence also w3 = Sqg'w- and
the Stiefel-Whitney number w,w3[M]. The contributions to w3 € H 3(M; Zy)
come only from summands of H of order 2, and it follows that wyws[M] is
equal to the number (modulo 2) of such summands. The oriented cobordism
group ng has order 2, and the class of M in it is determined by w,w3[M].

Theorem 7.8.7 [16] Any system of invariants as above is the set of invariants
of a simply-connected 5-manifold, and two such manifolds with isomorphic
invariants are diffeomorphic.

We will not give the full proof, but merely an outline of the argument. For
existence, first recall that by Proposition 7.3.9, the triple (H, b, w) is a direct
sum of triples with G either Z, Z; & Zj or Z,; we can construct manifolds as
connected sums correspondingly.

For G = Z, we take M as an S° bundle over S?: the product §* x S?if w = 0,
and the non-trivial bundle $* % S? if not.

For G = 7Z; & Zy, if w = 0, we have the manifold M, constructed above.
This is diffeomorphic to the manifold obtained from $? x S* by surgery on a
sphere representing kz, where the class of 7 generates H,(S> x $?); now replac-
ing $ x % by §?X5? gives a suitable manifold in the case w # 0.

The case G = Z, is trickier, since here we need a manifold which is not a
boundary. Begin with the Hopf bundle S' — $* — S this bounds a bundle B,
with fibre D?, which is the tubular neighbourhood of the 2-sphere which is the
zero cross-section, and hence diffeomorphic to the complement of a disc D* in
P%(C). The associated bundle B, with fibre S is thus split by the original copy
of §? into two parts, each diffeomorphic to By, but with one diffeomorphism
reversing the orientation; in turn, B, is the boundary of the associated bundle
B3 with fibre D3. Now P?(C) admits a diffeomorphism ¢; given by complex
conjugation. This induces —1 on H*(P*(C); Z), but is orientation preserving,
hence (by the disc theorem) isotopic to a diffeomorphism leaving a disc D*
pointwise fixed, hence giving a diffeomorphism ¢; of B;. There is thus a dif-
feomorphism ¢, of B, given by ¢; on one copy of B; and by the identity on the
other. Finally, define M, by using the diffeomorphism ¢, of B, = 9B3 to glue
two copies of Bz together. A short calculation shows that indeed Hy(M,;) = Zo.
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To establish uniqueness, since we dealt above with the case w, = 0, one
can suppose w; non-zero. Given manifolds M, M’ and an isomorphism « :
H,(M) — H(M') compatible with the pairings b and maps w, we know that
there is an oriented cobordism W of M to M’. By Corollary 7.2.2, we can
perform surgery on W to make the map W — B(SO) 2-connected, and so
H,(W) = Z,. The main part of Barden’s argument now involves surgery on
3-spheres embedded in W to convert W to an h-cobordism. The result follows
by Theorem 5.5.6.

7.9 Notes on Chapter 7

§7.1 The useful terminology of ‘normal maps’ is due to Browder [31]. In an
early paper, Milnor thanks Thom for having described the technique of surgery
to him.

§7.2 This account of surgery below the middle dimension follows that in my
book [167]. As with handlebody theory, the idea is to copy for manifolds what
happens for CW complexes.

The proof of Corollary 7.2.4 fails in lower dimensions. The problem of
embeddings of §? in §* is much more delicate, and no simple result is known.
For knots in 3 it follows from Thurston’s geometrisation principle that unless
the knot is a torus knot or a companion knot, the fundamental group of the
complement is isomorphic to a subgroup of SL,(C).

§7.3 The results for forms over Z are classical. A nice survey of nonsingular
quadratic forms was given by Milnor [94].

A convenient reference for forms over finite groups is my paper [161], but
there is a substantial literature; many of the results are older. The general con-
cept of quadratic form is discussed in [165].

The Arf invariant was first introduced in [11]. Invariants of a quadratic form
q on a vector space V over a field k can be extracted from its Clifford algebra
C(g). This admits a mod 2 grading, and if V has even dimension, the centre Z of
the even Clifford algebra is a quadratic extension of k. Except in characteristic
2, we can write Z in the form k[z]/(z> = a), and the class of a in k*/(k*)?
is the discriminant of ¢. In characteristic 2, define g(x) := x> + x: then Z =
k[z]/{§(z) = a) (where, if the associated bilinear form to g has a symplectic
basis {e;, f;}, we may take z = ), ¢;f;), and the class of a in k™ /p(k™) is Arf’s
invariant in general.

§7.4 Poincaré complexes were first defined in [164]. The definition in the
general case is a little more elaborate than for simply connected spaces. In
this section we only need immediate consequences of duality and properties
of maps of degree 1 following [167].
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The self-pairing of the torsion subgroup is traditionally called the linking
pairing, and was first introduced by Seifert [133].

In [167], the result corresponding to Proposition 7.4.3 was formulated in
homotopy terms, and used to prove that surgery is always possible for Poincaré
pairs (Y, X) such that the map 7;(X) — 7 (Y) is an isomorphism — the so-
called ‘w — 7 Theorem’.

§7.5, §7.6 Milnor’s exciting paper [92] constructing differentiable mani-
folds homeomorphic but not diffeomorphic to S7 aroused great interest in
this area. His talk [102] at the 1958 International Congress exhibited inter-
relations of relevant homotopy groups. This was followed by a preprint of
Milnor in 1959 introducing a programme: introduce the group ®, of homot-
opy spheres, then show any homotopy sphere is stably framed, then study the
obstruction to bounding a framed manifold, then study the case when it does.
There were preliminary publications [95] and [97]. These included the cal-
culation of Py, and essentially that of Py;4,. The final proof that Py, =0
was accomplished by myself [159] and in the full account by Milnor and
Kervaire [79].

The idea that the method extended to arbitrary simply-connected manifolds
was due to Novikov [114] and Browder in 1962. Fuller accounts appeared
in [115], [163], and [30]; both Browder and I gave talks at the international
congress in 1966, and wrote books [31] and [167].

§7.7 Spivak’s ‘homotopy normal bundle’ brought clarity to several previous
results of this nature.

S-duality was introduced and developed in [141].

After the introduction of the Kervaire invariant in 1960 in [78], progress was
made successively in 1966 by Brown and Peterson, then in 1969 by Browder
[30] (his book [31] appeared in 1972). Browder starts from a normal map and
uses the Spanier—Whitehead dual map v : Ty,x(v) — Ty (v). For each coho-
mology class x € H*(N, M) with ¥*(x) = 0, write & for the composite map
Sxo v Tyx(v) = Tym(v) — S°K(Zy, k). Since h*t = Sq**t1t = 0, one can
form the functional Steenrod square (see §B.4) Sqﬁ“(Sst) € H2k“(Ty/X(v)),
and evaluate this on the fundamental class to obtain p(x) € Z,. This gives a
definition of the map w and hence of its Arf invariant independent of any pre-
liminary surgeries.

A comprehensive study was made in 1972 by Brown [34], which has the
advantage of defining an invariant for Poincaré complexes (with a Wu orienta-
tion) rather than for normal maps. Our account is a simplified version of this.

§7.8 We have given the general form of the reduction of diffeomorphism
classification of (simply-connected) smooth manifolds to homotopy problems:
the account follows the one I gave in [167].
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The plumbing construction seems to have been first introduced by Milnor
[95].

For simply-connected 4-manifolds M, it was observed by Milnor [94] that
the homotopy type is determined by the intersection form on H,(M). A further
step was taken by the author [162] showing that if M and M’ are homotopy
equivalent, then they are h-cobordant, and deducing that they can be made dif-
feomorphic by taking connected sums with a number of copies of > x S2. This
is far from establishing diffeomorphism: at the time of writing, no criterion is
known for proving two 4-manifolds diffeomorphic. Another tantalising prob-
lem is finding which quadratic forms appear. For spinor manifolds, these forms
must be even, and it follows from the calculation of spinor cobordism that the
signature is divisible by 16. This value is realised by so-called K3 surfaces
(for example, nonsingular quartic surfaces in P>(C)), but for such a surface M
H, (M) has rank 22 and it is not known whether there exist surfaces witho = 16
but lower rank. See §5.7 for a fuller discussion.

When we drop the hypothesis of simple connectivity, it is necessary, as in
§5.7, to replace the coefficient group Z by Z[x]. This leads to surgery obstruc-
tion groups L,,(7r), generalising the above group L,, which is L,,(1). The exact
sequence of Theorem 7.8.6 holds in general with L,, replaced by L,,(7;(X)).
There is, however, no direct analogue of Proposition 7.8.4.

The groups L,,(;r) can be defined in an abstract way. When m = 2k is even,
they can be interpreted by equivalence classes of (—1)*-hermitian forms over
Z[r], by a relatively minor modification of the geometry of the simply con-
nected case, using the results of §6.3 on embeddings of m-spheres in 2m-
manifolds. The odd dimensional case requires a different approach, and the
surgery groups can be interpreted as quotients of the stable unitary group of
such forms. Some calculations of these groups can be made: if r is finite, by
methods of algebraic number theory, and for some infinite groups 7 using geo-
metrical arguments. A first version of all this was given in [167].

This theory was re-worked in a more satisfactory way by Ranicki in a series
of papers from 1973 on. We refer to his book [128].
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Cobordism

We have already defined the word ‘cobordism’ in §5.1: recall that if W is a
manifold, and d_W and 9, W are disjoint manifolds with union dW, we call
the pair (W, a_W) a cobordism and the pair (W, 9, W) the dual cobordism;
and also call W a cobordism of d_W to d,W and say that _W, 9, W are
cobordant.

In the earlier chapter, we were concerned with the geometry of a particular
cobordism. We now observe that being cobordant is an equivalence relation
amongst diffeomorphism classes of manifolds. For M x I is a cobordism of M
to itself; if W is a cobordism from M, to M; then the same manifold, but with
0+ W interchanged, is a cobordism from M; to My; and if W is a cobordism
from M, to M| and W, is a cobordism from M| to M,, then glueing W, to W,
along M, gives a cobordism from My to M,. For this relation not to be vacuous,
we insist throughout that the manifolds W in question be compact: otherwise
the product M x [0, 1) would give a cobordism of any manifold M to the empty
set.

The simple definition just given already leads to interesting results, but the
concept of cobordism lends itself to a wide variety of possible generalisations
and restrictions, and these lead to a flexible tool in the study of manifolds.

For example, we may choose to restrict the manifolds (and cobordisms) to
be oriented, weakly complex, or k-connected (for a fixed k); we may add the
structure of a map to a fixed space X; if X is a manifold, we may further require
this map to be an embedding, or an immersion. We may consider pairs (M, V')
with V a submanifold of M and then cobordisms (N, W) with W a submanifold
of N(and 0_W = V,0_N = M), where we may also fix the group of the normal
bundle.

Next we consider pairs (M, ¢), where M is a manifoldand ¢ : M x G - M
defines a smooth action of the compact Lie group G on M. We may also restrict

237
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238 Cobordism

the orbit types of the action to lie in an assigned closed set of orbit types - an
extreme example is the class of fixed-point-free actions.

We may also allow M to be a manifold with boundary — and then a cobordism
is a manifold W with oW = 9_W U 9.W U 9, W — and impose one restriction
on M and W and another on dM and d.W. These variants of the definition may
now be combined ad lib.

Lemma 8.0.1 Disjoint union defines an addition which turns the set of cobor-
dism classes (of a given dimension) into an abelian group.

Proof The other kinds of structure pass at once to the disjoint union. Union is
compatible with cobordism: if V, W are cobordisms of a_V to a,V, a_W to
0+ W, then the disjoint union V U W is a cobordism of 9_V U d_W to 0,V U
0+ W. Thus we have a binary operation on the set of cobordism classes, which
is commutative and associative since disjoint unions are. The empty manifold
acts as zero.

‘We obtain an inverse to W whenever M x I may be regarded as a cobordism
of the disjoint union (M x 0) U (M x 1) to the empty set (the induced structure
on M x 0 must coincide with that on M: on M x 1 it can be different). O

For k-connected cobordism, we show in Lemma 8.8.1 that disjoint union can
be replaced by connected sum.

In this chapter, vector bundles will be denoted by lower case Greek letters,
so we write Ty for the tangent bundle of M in place of T(M); normal bundles
will usually be denoted by v; and the trivial bundle of fibre dimension r by &”.

In the first section, we describe the basic Thom construction, leading to a
bijection between certain sets of homotopy classes and certain bordism sets,
and give an application to the problem of realising homology classes by sub-
manifolds. Then we focus on the structure group on the normal bundle, and
stabilisation, and define cobordism groups and rings.

The framework of cobordism lends itself to the construction of exact
sequences, and we next describe this technique, which we will use many times.
Then we treat cobordism of pairs; this leads to an interpretation of some relative
groups.

The next section treats bordism as a homology theory, checks the axioms,
introduces spectra, and dual notions of bordism and cobordism.

‘We then discuss equivariant cobordism, and show how the techniques of the
preceding sections yield methods of calculation of the equivariant cobordism
groups.

After a brief review of homology of classifying spaces, we describe the cal-
culations of the unoriented bordism ring, and the unitary bordism ring. We hope
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to provide enough detail for the reader to follow the ideas, but refer to the orig-
inal papers for details of calculations. We then attempt the same for oriented
bordism and SU-bordism, with a detour to obtain the Hirzebruch signature the-
orem. We discuss k-connected cobordism, and then pull many results together
in final calculations of groups of homotopy spheres and of knots.

Part of the use of cobordism theory is to make calculations, and in this chapter
we will assume significantly more knowledge of homotopy theory than in ear-
lier chapters. We attempt to provide enough background definitions and results
for this discussion in Appendix B.

8.1 The Thom construction

We introduce the main tool in cobordism theory by considering the example
which occurs in the earliest work on the subject: the study of submanifolds M™
of a fixed ambient manifold E"**.

Let & be an orthogonal vector bundle. As in §7.7, write V¢ for the total space
and B; for the base; A¢ for the subspace of V; of all vectors of length < 1 and S;
for its boundary, consisting of vectors of length 1. The Thom space T'(§) of £ is
obtained from A¢ by identifying S¢ to a point (denoted oo): thus T'(§) = Ag /S;.
We may identify B; with the zero cross-section of the bundle, and hence with
a subspace of T(£). In the same section we met a special case of the Thom
construction. Also Proposition 7.8.1 gave a preview of the next result.

If B: is a smooth manifold, we can give & the structure of smooth vector
bundle, and V; and T'(§) \ {oo} then also acquire the structure of smooth man-
ifolds. Note that if By is a finite CW complex, so is T'(§); more precisely, if &
has fibre dimension &, over each r-cell e” of B; we have a (k + r)-cell in A¢ part
of whose boundary lies over de” and part in Sg, so this gives a (k + r)-cell of
T (£), and all cells outside oo arise in this way.

Now let M be a submanifold of the compact manifold E m+k ) be its normal
bundle. By Theorem 2.3.8 we can find an imbedding % : A, — E defining a
tubular neighbourhood of M in V.

The collapsing map A, — T (v) defines a map h(A,) — T (v) which extends
to a continuous map ¢y : E — T (v) which takes everything outside the tubular
neighbourhood to co. This idea is due to Thom [150], and is called the Thom
construction. Observe that if B, is identified with the zero cross-section of v,
we have M = ¢;;' (B,).

We introduce one more ingredient. Let M™ C E "+k have normal bundle v, let
& be a bundle whose base space B is a smooth manifold, and let ¢ : v — & be
a map of (orthogonal) vector bundles, hence inducing maps By : B, — B and
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similarly for A, S and T'. As above, identify A, with a tubular neighbourhood
of M; write ¢y : E — T (v) for the collapsing map, and form the composite
Fy:=Tyocy : E— T(¢).

The first significant result in cobordism theory is that the Thom construction
can, in a sense, be reversed. Define a cobordism of submanifolds of E to be a
smooth compact submanifold W of E x I, with My = 0_-W =W N (E x {0})
and M, = 0. W =W N (E x {1}).

Proposition 8.1.1 The Thom construction induces a bijection T from the set
of cobordism classes of submanifolds M C E with normal bundle induced from
& to the set of homotopy classes of maps E — T ().

Proof The construction takes a submanifold M with a bundle map ¢y : vy —
& and gives a map Fy =Ty, ocy : E — T(§). To show we have a well-
defined map t we must show that cobordant submanifolds give rise to homot-
opic maps. Let W™+ C (E x I) be a cobordism, with normal bundle vy
induced via ¢y : vy — &, and suppose the construction already performed for
My and M. It follows from the tubular neighbourhood theorem 2.5.5 that the
chosen tubular neighbourhoods of M, and M, can be extended to a tubular
neighbourhood of W in E x I. Thus the collapsing map cy for this neighbour-
hood extends those on the boundary. Hence Ty, o cw is a homotopy between
the maps obtained from M, and M;. We thus have a well-defined map 7 from
cobordism classes to homotopy classes.

To show 7 is surjective, suppose given amap F : E — T(§). Since T(§) \
{oo} is a smooth manifold, it follows from Proposition 2.3.4 that we can approx-
imate F by a map F’ agreeing with F on F~!(c0) and which is smooth on a
neighbourhood of F~!(By). If the approximation is close enough, F’ =~ F. Next
by Theorem 4.5.6, we can further approximate F’ by a map F” transverse to
Bg, and also suppose F” >~ F’. Now set M := F'~!(Bs). By Lemma 4.5.1, the
normal bundle of M is induced from & by a map ¢y, : vyy — &. If we now per-
form the Thom construction on M , the resulting 4 : E"** — T(&) agrees with
F”, together with its first derivatives, on M". After a small homotopy, then, we
can suppose F” = h on a neighbourhood of M. But the complement of such a
neighbourhood is mapped, both by F” and by &, to T(§) \ Be, which is con-
tractible. It follows that 4 >~ F” ~ F, as desired.

That 7 is injective follows by relativising the same arguments. Suppose given
My C E x 0,M; C E x 1 givingrise by the Thom construction to maps fy, fi :
E — T(£), and a homotopy F : E x I — T (&) between fj and f;. As above,
we can replace F (keeping it fixed on E x dI) by a homotopy F’ of f to fi,
which is smooth and transverse to B¢. Then W := F'~!(B;) is a submanifold
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of E x I, and provides a cobordism of M to M;; moreover the normal bundle
of N is induced from &. O

A key point in the above arguments is where we first approximate the map F
by a smooth map, and then make it transverse to a smooth submanifold of the
target. Since we will use this idea several times below, in future we omit the
references to Proposition 2.3.4 and Theorem 4.5.6.

We have described the Thom construction directly in a geometric context.
We next relax the condition that B be a smooth manifold. There is a space
B(Oy) and a vector bundle y; over B(Oy) such that, for any k-vector bundle &
over a space X, there is amap p : X — B(Oy) such that £ is equivalent to p*y,
and this induces a bijection between isomorphism classes of vector bundles &
and homotopy classes of maps p. (See §8.6 for more about classifying spaces).
Moreover, we may construct B(Oy ) as the union of Grassmann manifolds Gr,, x,
and the map Gr,, x — B(Oy) is m-connected. The bundle y; has associated disc
bundle AOy, say, and Thom space T (Oy).

Lemma 8.1.2 The Thom construction gives a bijection between cobordism
classes of submanifolds M™ C E™* and homotopy classes of maps E —
T (O).

Proof We apply Proposition 8.1.1 taking Gry, x in place of B;. For any sub-
manifold M™ of E™**, the normal bundle is induced by a map to the classify-
ing space B(Oy), but we may replace these by maps to G,, ;. Since the map
Gux — B(Oy) is m-connected, up to homotopy we can obtain B(Oy) from
Grpy . by attaching cells of dimension > m. It follows that up to homotopy we
can obtain 7'(Oy) from the Thom space of Gr,, x by attaching cells of dimension
> m + k. The result follows. O

We next replace Oy by an arbitrary structure group J (for example, J could
be a Lie group), furnished with a homomorphism J — Oy. There is (again
see §8.6) a classifying space B(J), and isomorphism classes of (vector) bun-
dles over a space X with structure group J correspond bijectively to homotopy
classes of maps X — B(J). There is an induced map B(J) — B(Oy) of classi-
fying spaces. There is a universal bundle &; over B(J) andamap f : X — B(J)
corresponds to the bundle f*&,. We write A(J) for the disc bundle, S(J) for its
boundary sphere bundle and 7'(J) for the Thom space A(J)/S(J).

In fact we do not need J at all: only a space X playing the role of B(J), and
amap X — B(Oy) (here we can interpret the loop space €2(X) as playing the
role of J). However we adhere to the notation with J.

As in the case J = O, although B(J) is rarely itself a smooth manifold,
we can find a sequence of smooth manifolds B(J?) and r-connected maps
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B(J") — B(J"*D) — B(J). The same argument as for Lemma 8.1.2 now
yields

Theorem 8.1.3 The Thom construction induces a bijective map of the set of
cobordism classes of pairs (E"*, M™), with E fixed and J as structure group
of the normal bundle, onto the set of homotopy classes [E : T (J)].

We can state this as a slogan: the extra structure defined on E by a sub-
manifold whose normal bundle has group J is equivalent to the extra structure
consisting of a map to 7'(J).

Taking J = SOy in particular yields a natural bijection between cobordism
classes of submanifolds M™ C E™** with oriented normal bundle and homot-
opy classes of maps £ — T'(SOy). Even more simply, taking J to be the trivial
group gives

Proposition 8.1.4 There is a natural bijection between cobordism classes of
submanifolds M™ C E™* with framed normal bundle and homotopy classes of
maps E — SF.

One application of Theorem 8.1.3 is to the problem of representing homol-
ogy classes by manifolds. It seems that this problem, raised by Steenrod, was
part of what led Thom to introduce the notion of cobordism. A first formulation
is: let X be a space and x € H,(X; Z): do there exist a closed oriented manifold
M" and amap f : M — X such that f,[M] = x? We can vary this by using Z,
as coefficient group and not having an orientation. We can also take X as a man-
ifold and require f to be an embedding: by general position results, this makes
no difference if dim M > 2n. An affirmative result for manifolds implies one
for spaces, since we can replace X by a manifold £ homotopy equivalent to
it; since we can apply such a result to the double D(E) of E, it will suffice to
consider the case of closed manifolds.

Given an oriented orthogonal vector bundle & over E with fibre dimension &,
we have the Thom class U € H*(T'(¢); Z).

Proposition 8.1.5 Suppose E"™* a closed oriented manifold. Then given a
class x € Hy(E; 7), there is an oriented submanifold M* of E whose funda-
mental homology class maps to x if and only if there isamap F : E — T (S0,,)
with F*U the Poincaré dual of x.

Proof Since E is oriented, orientations of a submanifold M correspond to ori-
entations of its normal bundle. We already know the correspondence between
submanifolds of £ and maps F : E — B(SOy). It will thus suffice to show that
F*U = [E]Nx.
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In the situation of the Thom construction we have a commutative diagram

H*(T,0T) <— H*(T'SOy) ,

| |

HO(M) ~—— H°(BSO,)

so F*U is the image in H*(E) of the class in H*(T, dT) corresponding to
1 € H(M). Since the Thom class in H*(T, dT) is dual to the image of [M]
in H,(T), F*U is indeed the cohomology class dual to the image of [M] in
H,(E). O

In the cases k = 1, 2 the condition is automatically satisfied: SO is trivial
and T(SO;) is D' with the boundary collapsed to a point, so can be identified
with S', of type K(Z, 1); similarly 7(SO,) and K(Z, 2) can both be identified
with infinite complex projective space P>°(C).

In his paper [149] Thom used his results on cobordism to prove that for any
homology class x € H,(X; Z,), there exist a closed manifold M" and a map
f M — X such that f,[M] = x. However for integer coefficients, while any
x € H,(X : Z) with n < 6 is the image of the fundamental class of a closed
orientable manifold, this fails for any n > 7: there is an obstruction, obtained
using the Steenrod reduced cube P! (see §B.4).

8.2 Cobordism groups and rings

If we are interested in the manifold M™ but not the embedding in an ambient
manifold E, it is natural to take E to be Euclidean space of large dimension
m + k: by Whitney’s embedding Theorem 4.2.2 we know that for k > m + 1
such embeddings exist and are unique up to diffeotopy. To apply the preceding
section, we need E to be compact. Since embeddings in $"** yield ones in R+
by deforming M away from the point at infinity, we can take E as S+

Identifying R"** as a hyperplane in R"***! leads us to identify $"** with
a great sphere in S"***! and use the composite embedding M" — S"+k —
S™k+1 to obtain independence of k. We may thus calculate the set Q¢ of
cobordism classes of closed m dimensional manifolds by applying the the-
ory of the preceding section to manifolds contained in spheres of large enough
dimension.

We must also discuss the normal bundles. If v* is the normal bundle of M™
in $"**, the normal bundle in §”**+! is vk @ ¢!. Before developing the theory
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more fully we present axioms for the ‘stable groups’ which will play the role
of structure groups of the normal bundles.

A stable group J is given by a commutative diagram of groups and homo-
morphisms

7;71,—1 ’L’n

Jn—l J’n, Jn-‘rl
l@nl L@n L‘PnJrl
——0,_1 O, Ont1 e 8.2.1)

where the inclusions in the lower row are natural. We impose the stability
condition

(S): There is a function g, of n, increasing (in the weak sense) and tending
to infinity, such that i, is g,-connected.

We also need products and impose the following further conditions.

(M): We have a family of maps ¥, , : Jn X J; = Jitn such that the follow-
ing diagrams commute up to conjugating by an element in the component of
the identity:

/lp'ln sn w'm. ,n

T X Ty o i = T %

limxl liern lein

wm+1,n ¢m,n+1
Jm+1 X Jp —> Jm+n+1 ~—Jn X Jn+1 (8.2.2)

Ym,n
T X T 2 T

l ©Om XPn l Pm+n

Om X Op — Opppn, (8.2.3)

(A): The following diagram also commutes (in the same sense)

d}l,rnXl
S X Ty X Ty ——= T X Iy,
llX’d)m,n Ld)H»m,n
wl,m-‘—n

Ji X Tippn = Jitmn (8.2.4)


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.009
https:/www.cambridge.org/core

8.2 Cobordism groups and rings 245

(C): We have commutativity in the diagram
T X Ty = T X

l(pm,—knw”m,n i‘pfm-ﬂ—nd)’n,m
T

Omtn Omn (8.2.5)

where T is the natural interchange of factors, and 7’ means conjugation by an
element whose determinant has sign (—1)"".

The important examples of stable groups J are the classical groups O, SO,
Spin, U, SU and Sp, and the trivial group {1}. The above properties are imme-
diate in these cases. Of interest also are the groups Spin‘, Pin, and Pin‘ of
[15, pp. 7-10]; however Pin fails to satisfy (M). Further examples can easily
be constructed: for example, products of the above with each other or with any
group of linear operators on a finite dimensional vector space.

We have presented the axioms in a geometrical setting, but note here that it
would in fact suffice to have maps of classifying spaces B(J) throughout; the
map B(J;) — B(0Oy) induces an orthogonal vector bundle yk over B(J;) which
is all we will need for our constructions.

An embedding M™ — S§"** with J; as structure group of the normal bundle
now gives an embedding M™ — $"*+! with normal bundle with group Ji, ;. It
is however more natural to consider the tangent bundle. A weak J-structure on
M'™ is prescribed by choosing an integer r and reduction (e, f) of the group of
Ty @D e to Sy (re, f)and (v, €, f) are equivalent if the reductions (e, f)
and (¢, f') of 7y @ &° are so for some s = r, /. When J = U we call this a
weakly complex structure.

We now show that if (S) holds, we can pass between the structure group on

the stable tangent bundle and the structure group on a normal bundle. This fails
for Pin: if M has a Pin normal bundle, the tangent bundle is not necessarily Pin:
we have w; = 0 but w, = w%.
Lemma 8.2.6 Suppose in the diagram (8.2.3) that the map V¥, : J, — Jris
induced by . is c-connected. Let K be a CW complex of dimension d <
min(c, r — 2), and &”, n° vector bundles over K, with a Js-structure on n°. Then
the function f induce by \ from J,-structures on " to J, g-structures on & @ n’
is bijective.

Proof Let X; be the classifying space for J;(i = r, s or r + s); E; the total space
of the principal bundle with fibre O; induced over X; by ¢;. Write E¢, E,), Er oy
for the spaces of the corresponding principal bundles over K. Then J,-structures
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of £ correspond to sections of the bundle over K with total space Ez x¢, E;;
similarly for & @ 5. But the J;-structure of 1 induces a fibrewise map

EE Xo, Er — E&@’Z X0 Er+s (827)

r+s

and the induced map E, — E,,, of fibres is at least min(c+ 1,7 — 1)-
connected since X, — X,, is (¢ + 1)-connected and O, — O,, is (r — 1)-
connected. Thus (8.2.7) is at least (d + 1)-connected, so any map of K to the
second term can be factorised (up to homotopy) through the first, and f is sur-
jective; moreover, the result is unique up to homotopy, so f is bijective. (It
follows from the CHP that sections of a bundle are homotopic only if they are
homotopic through sections.) O

Corollary 8.2.8 Let M™ C R™™ have a weak J-structure, where the stable
group J satisfies (S), and qy 2 m. Then the normal bundle has a Jy-structure;
conversely, this implies a weak J-structure on M.

Proof In this case, § @ n has a standard framing, and hence J-structure. We
use (A) only to identify the ¥ of the lemma with a composite of maps i,. [J

The definition of a cobordism W of manifolds with weak J-structures
demands a reduction of the structure group of ty. Now ty |[0W = tyy @ el so
the induced structure of the boundary is a reduction of the group of Ty @ &'
rather than of 7,y itself. Here we make the convention (necessary to obtain
an equivalence relation) that the positive vector &' is to be identified with
the inward normal to d_W in W, but with the outward normal on d9,W.
Now a weak J-structure on a cobordism W induces weak J-structures on
d0_W, 0, W: we call it a cobordism between these manifolds with the induced
structures.

We denote by 2/ the set of cobordism classes of m-manifolds with a weak
J-structure.

Lemma 8.2.9 [f] satisfies (S), and N > m + 2, gy = m + 1, there is a natural
bijection of 2!, to the set of cobordism classes of manifolds M™ C S™™ with
Jn as group of the normal bundle, and hence to 7w, n(T (Jy)).

Proof The first statement follows from Corollary 8.2.8, and the second from
the results in the preceding section. O

Now let J be a stable group, with y* the universal bundle over B(J;).
The inclusion i : Jy — Ji41 induces a bundle map ¢y : y* @ &' — y**+! over
Biy : B(Jx) = B(Jig41). Write B(J) for the limit of this sequence (we can
regard the Biy, as inclusions and form the union). In view of the identification
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T(E@®e')=T(E)AS', the bundle map ¢ lifts to a map Ay : ST(Jy) —
T (Ji+1). The sequence of maps hy : ST (J;) — T (Jr+1) defines a spectrum,
which we denote by TJ.

Theorem 8.2.10 For J a stable group we have a bijection

QL ~ klggo Tk (T (Ji)) = ”;fz(m])'

Proof An embedding i : M™ — R™* c §"k can be regarded as lying in
a hyperplane (or great sphere) giving an embedding i; : M*¥ — R" k1
Sm+k+1 - Applying the Thom construction to the first gives a map F : "% —
T (J;), and to the second gives its suspension SF : S"T*+1 — T(J,, ).

By definition, possession of a J-structure is equivalent to having a normal
Jy-structure in S”** for some k. If we fix k, then by Lemma 8.2.9 we obtain
the group 7,,,1+(T (Ji)). The desired group is the direct limit of these under the
natural injection maps. O

If J satisfies (S), the suspension map 7,1+ (T (Ji)) = Tnair1(T (Jk+1)) is an
isomorphism for k > m + ¢,,, S0 no limiting process is necessary.

The cobordism set 2/, has a natural group structure: the sum of the classes
of disjoint manifolds M, M’ is defined to be the class of M UM’. Any M’ is
diffeomorphic (hence cobordant) to a manifold disjoint from M. The sum is
well defined since the disjoint union of cobordisms of M with N and of M’
with N’ is a cobordism of M U M’ to N U N’. Commutativity and associativity
are immediate. Since d(M x I) = (M x {0}) U (M x {1}), we have an inverse
(note that the normal bundle is different in the two cases).

The bijections of Lemma 8.2.9 and Theorem 8.2.10 are group isomorphisms
since both are induced by the Thom construction. We can take manifolds M
and M’ to lie in distinct discs in $"**. The map given by the Thom construction
takes the boundaries of these discs to co. If we then remove discs, and glue the
two spheres together, we obtain the usual sum of homotopy classes.

Products are compatible with cobordism: if W is a cobordism from d_W to
d+W,then W x M is a cobordism from 0_W x M to W x M. Also, products
are associative, and distributive over disjoint union, and there is a natural diffeo-
morphism of M’ x M on M x M’, which gives rise to a form of commutativity
of multiplication.

If G, H are groups of orthogonal operators on R?, R”, then B(G) x B(H) is
a classifying space for G x H, and &£; x &g is a universal bundle. As observed
above, T(G x H) =T(G) AT(H).
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If J satisfies (M), the products ¥, , : Ju X Jy = Jinys induce maps wr/n,n :
TJn) AT(Jy) = T(Jpen), and if (A) holds, these associate up to homotopy.
This provides TJ with the structure of a ring spectrum.

Theorem 8.2.11 If]J is a stable group satisfying (M), we have a bilinear prod-
uct Q) x Q) — Q! 1 Which corresponds to the pairing in homotopy groups

induced by the maps T (J,,) A T(J,) = T (Jynin). The product is associative if
J satisfies (A), and defines a commutative graded ring if J satisfies (C).

Proof The product of submanifolds M C V and N C W gives a submanifold
M x N CV x W. Using the Thom construction as in Theorem 8.1.3 these
determine elements of [V : T'(J,;,)] and [W : T'(J,,)] and the product is given
by

[V:TUDIX[W :TU)] = [VXW:TU, xJy)]

The conclusion follows by taking V and W to be Euclidean spaces (or rather
spheres) and stabilising. O

A case of particular simplicity is J = {1}: each Ji consists only of the unit
element, so we can take B(J;) to be a point; then T (J;,) = S¥. For each bundle
occurring we have a specified isomorphism with a trivial bundle, i.e. a framing,
and for clarity write Q/" for the cobordism group.

Corollary 8.2.12 Framed cobordism groups are isomorphic to stable homot-
opy groups of spheres: Qf,r = limy, o0 Tk (S5).

This, due to Pontrjagin [123], was the first theorem in the subject.

8.3 Techniques of bordism theory

In this section we introduce a couple of techniques, variants of which will often
be used below. The first is a general method of constructing exact sequences.
Recall from §5.1 that a cobordism of the bounded manifolds M, and M, is a
manifold W with corner /W which divides W into three parts, with disjoint
interiors: My = 0_W, 9.W and M; = 9, W, with My and M, disjoint. Thus 9.W
is a cobordism of M to oM.

By itself, this definition gives nothing: any manifold M with boundary is
cobordant to the empty set by the manifold W obtained from M x I by rounding
corners at M x {1}. The interesting cases are those in which an extra condition
is imposed on the cobordism 9. W.
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Suppose two kinds of structure specified, which we call an «-structure
and a S-structure, with the latter stronger than the former. For example, we
may consider structure groups G; and G, C Gy, or maps to spaces X; and
X, C Xj,oractions of groups Hy and H, D Hj, or kj-connectivity and k, (> k)-
connectivity.

By @ and Q” we denote the cobordism groups of manifolds with a- (resp.
B-) structure; and by Q% the cobordism group of bounded manifolds with «-
structure, whose boundaries have a 8-structure including the given a-structure.
We suppose there are natural group structures, though all we need is the zero
element provided by the empty manifold.

Lemma 8.3.1 There is an exact sequence ... —> Qf N Qo N Qz”s i>

Qf Loe -
Proof The maps i, and j, are the natural ones; 9, is induced by taking the
boundary.

Exactness at 9571 follows since a B-manifold M"~! represents an element
z of Ker i, if and only if, as «-manifold, it bounds some N". But then N
represents an element y € QZ”S with 9,y = z.

We have 9, o j, = 0 since an element of QY is represented by a manifold
with empty boundary. Now suppose N” represents y € Q%P with 9,y = 0. Then
dN bounds a B-manifold N'. We form a closed manifold N” by glueing N to
N’ along their common boundary. The «-structures on N and N’ induce a a-
structure on the union N”. We now define a cobordism W by taking N” x I and
introducing a corner along AN x {0}, sothat d_W = N x {0}, 9.W = N’ x {0}
and 9, W = N” x {1}. Here 9.W has a B-structure, so N = 9, W also repre-
sents y and is in the image of j,,.

Figure 8.1 A new cobordism obtained by changing the corner

We have j, o i, = 0 since for any B-manifold M, we can interpret N = M x
I as an (o, B) cobordism to the empty set by setting 0_(M x I) = M x {0}
and 0.(M x I) = M x {1}. Finally, if the closed «-manifold M has class x with
Jnx = 0, there is a («, B)-cobordism W of M to the empty set. Thus 0_W =
M, 9, W =@, and N := 9.W is a closed f-manifold. Now letting V be the
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cobordism, diffeomorphic to W but with 9_V = M and 9,V = N, we see N is
«a-cobordant to M, so if N has class z we have i,z = x. O

This procedure of changing the corner is itself a useful technique: we met it
in §7.4 and will encounter it again.
The following addendum is easily proved by the same method.

Lemma 8.3.2 Suppose given three kinds of structure: an a-structure, a B-
structure, and a y-structure, with y stronger than  which in turn is stronger
than o. Then there is a commutative diagram including the exact sequences
corresponding to the three inclusions and one with the relative terms.

/\/\

AVAVAN
NN

QB’Y
n+1
N \/

Lemma 8.3.1 is often applied together with a method of calculating QP
To illustrate this, suppose any manifold W" with a-structure has an induced
B-structure except on a closed submanifold M™, and define y to be the type of
structure induced on M by an « structure on a tubular neighbourhood V of M
in W. This is imprecise; the details need to be clarified in each case where this
is applied.

Lemma 8.3.3 Inclusion induces an isomorphism Q, — Qz’ﬁ .

Proof The map is defined by taking the class of M in €2}, to that of (V, 3V)
where V is the disc bundle over M which is part of the y structure: by the
definition of y, this pair has an («, 8)-structure.

To prove the map surjective, take any (W, dW) with («, B)-structure, and
construct M, V as above. Then (V, dV) has a («, 8)-structure since dV is dis-
joint from M so we have an induced $ structure on it. An («, 8)-cobordism
X from (V,dV) to (W, W) is obtained from W x I by rounding the corner
at oW x {0} (using Proposition 2.6.2), and introducing a corner at dV x {0}
(using Lemma 2.6.3) as in Figure 8.1: thus 9.X = (W \ V x {0H U (W x I).
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Now suppose M such that (V, V) is («, B)-cobordant to the empty set: write
X for a cobordism. The a-structure on X gives a S-structure except on a com-
pact submanifold L with boundary M. Then L has an induced y -structure, so
the class of M in 2}, is zero. O

Let V be a submanifold of M; then we call (M, V) a pair. If (N, W) is a
pair of manifolds with boundary, and N is a cobordism of d_N to d+N, we
set -W =W NJ_N, 0.W =W N9, N. Our definition of submanifold then
implies that W is a cobordism of _W to 0, W, and we shall call the pair (N, W)
a cobordism of the pair (0_N, d_N) to the pair (35N, 9. W). Rather than restrict
the structure groups of the stable tangent bundles of M and V independently;
we usually restrict the structure group of the normal bundle of V in M: here
there is no need to speak of weak structures.

We study cobordism of pairs by establishing a principle of ‘extension of
cobordism’ (analogous to homotopy extension). This is illustrated in the next
lemma.

Consider pairs (M"14, V?), where M has a weak J-structure and the normal
bundle an H,-structure; more generally, consider V' C M v+q c S*+9tT where
the structure groups of the normal bundles are H, and J,. Then the normal bun-
dleV? C §*T9*" hasan H, x J,-structure. Here we only consider the stable case
r > v + g + 1 where the imbedding of M in S is irrelevant, so may replace J,
by J.

Let J be a stable group, and H, a group mapping to O,. Then setting (J x
H,), = Ju—q x H, defines a stable group J x H,, which satisfies (S) if J does.

Lemma 8.3.4 The pair (M"*1,V") is (J, Hy)-cobordant to the empty pair if
and only if M**4 is J-cobordant to zero and V* is J x H,-cobordant to zero.

Proof The necessity of the condition is evident. To prove sufficiency we give
a construction to extend a J x H,-cobordism of V” to the empty set to a J x
H,-cobordism of (M, V) to a pair (M’, y). Since cobordism is an equivalence
relation, it follows that M’ is J-cobordant to ¢, say by N’; then (N', ¢) is the
required (J, Hy)-cobordism of (M', ¥) to (¥, ).

Let W**! be the given J x H,-cobordism of V to ¢: then there is an induced
bundle over W with fibre D?, whose total space we denote by L"+9*+!, Note that
the restriction to V of this bundle is the normal bundle of V in M; hence we
can identify a tubular neighbourhood of V in M with part of the boundary of L.
We form M x I, and attach L to M x 1 by this identification, giving N. Since
L and M x I have J-structures, which agree (by hypothesis, W is a cobordism
of V with the J x H,-structure induced from M) on the pair identified, Nvtatl
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has a weak J-structure. Also, V x I UW = W’ is a submanifold whose normal
bundle has group H,.

Set M x 0 = d_N. Then (N, W) is a J x H,-cobordism, and W' N9 N =
. This completes the proof of the lemma. O

Lemma 8.3.5 The cobordism group of pairs (M°14, V"), where M has a weak

J-structure and the normal bundle an H,-structure is isomorphic to ., &

Il v+q
X
Q.

Proof In Lemma 8.3.4 we defined a map to the direct sum, and proved it a
monomorphism; it clearly respects additive structure. The map to Q,{XH" is onto,
for given a (J x H,)-manifold V*, we construct as above a bundle over V with
fibre D9, and can take M as the double of this manifold. Finally, the image

contains €2/ +¢ ® 0: we need only consider pairs with V empty. O

8.4 Bordism as a homology theory

For J a stable group, and X any space, we denote by Q7 (X) the cobordism
group of (closed) manifolds M™ together with a weak J-structure and a map to
X. The arguments of the preceding section generalise easily to this situation.
In fact we go further: given a pair of spaces Y C X we define Q/ (X, Y) to be
the set of cobordism classes of (compact) manifolds M™ with a weak J-structure
and amap f : M — X with f(dM) C Y. The definition of the cobordism rela-
tion is implicit in the above: a cobordism is a compact manifold W with corner,
with a weak J-structure inducing the given weak J-structures on . W (with the
above convention), together with a map g : (W, 9.W) — (X, Y). Generalising

Theorem 8.1.3, we have

Theorem 8.4.1 If]J is a stable group, the Thom construction induces isomor-
phisms

Q,(X, ¥) = lim 7 (X AT, YT ATUR)).

Proof Given M™, it follows from Whitney’s embedding theorem and the refine-
ments of Theorem 4.7.3 that for k > m we can find embeddings of (M, dM) as
a submanifold of (D%, D™ +X), and that for k > m + 1 any two such embed-
dings are diffeotopic. It follows from Lemma 8.2.6 that for k large enough
the weak J-structure on M induces a J;-structure on the normal bundle v
of the embedding. Write dA, for the part of the disc bundle A, lying over
oM. Then we have a map A, — A(Jy) — T (Jy) and also maps (4,, 0A,) —
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(M, dM) — (X,Y). Taking the product, we have a map (A,, dA,) = (X X
T(Jx), Y x T(Jy)), which takes (S,, 35,) to (X x {oo}, Y x {o0}).
Now collapse everything in D"** outside A, to a point, giving a map of
(D", 9D Y to (T (v), 3T (v)), and hence to
(X X T(Jx)/X x {00}, Y x T(Jy)/Y x {o0}).
Recalling that X x T(J;)/X x {o0} = X A T(J;), we see as in Theorem 8.1.3,
that this construction define a map
QL(X,Y) = iy 00 Tk (XT AT, YT A TUR))).

The proof of the result now also closely follows that of Theorem 8.1.3. To
establish surjectivity, we start with a map f and let K be the inverse image of co.
Then f defines a map of D"% \ K to A(J;) x X. We alter the first component by
a small homotopy, to make it smooth and transverse to B(J;). This defines also
a homotopy of f, say to f. Now set M" = f'~!(B(J;) x X); then f” induces a
map (M™, aM™) — (X, Y), and the normal bundle of M has group reduced to
Ji. It follows that the bordism class defined by M maps to the homotopy class
of f.

Again, injectivity follows by a similar but simpler argument, and the proof
that the bijection preserves group structures and the passage to the limit work
as before. U

In particular we have an isomorphism an (X) = limg_s 00 Tk (X A TU)).
It follows as in Corollary 8.2.12 that

Corollary 8.4.2 Under the isomorphism of Theorem 8.4.1, the external prod-
ucts 2 (X) x QIY) — Q. (X xY) correspond to the homotopy pairings

m-+n

induced by (X* ATU)) A XY ATU)) = (XHAYT)ATUrs).

The maps T'(Jy) A T(J;) = T (Jy4;) give the limit TJ the structure of a ring
spectrum (see §B.4). We can immediately extend Theorem 8.2.11 to

Theorem 8.4.3 The Thom construction induces a natural equivalence between

J . . . . .
the functor 2, and homology theory with coefficients in the spectrum TJ; this
respects products in the multiplicative case.

We have shown that 2/ defines a homology theory. We prefer to present also
a direct proof of this fact.

Theorem 8.4.4 The groups QL(X), QL(X,Y) satisfy the Eilenberg—Steenrod
axioms [50] for a homology theory.
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We first recall these axioms:

L, Il: ©/ is a functor from the category of pairs of spaces (X, Y) and contin-
uous maps to the category of graded abelian groups. We denote 2,(X, &) by
Q.(X).

III: For any pair (X, Y) there is a map 9 : ©,,(X,Y) — Q,,—1(Y) which is
natural for maps of pairs.

IV: For any pair (X,Y),ifi:Y — X and j: (X, @) - (X,Y) denote the
inclusions, we have an exact sequence

= QL) 5 Ql(X) N QXY Q) -

V: Homotopic maps ¢ and ¢; : (X, Y;) — (X3, Y») induce the same map in
bordism: @o. = @14 : QL(X1, Y1) = QL(Xa, Ya).

VI: If U C X has its closure in the interior of Y, then inclusion induces an
isomorphism QX \ U,Y \U) = Q/(X,Y).

Proof LIL: If ¢ : (X3,Y)) = (Xz, Y») is a map, M has a weak J-structure, and
f:(M,oM) — (X;,Y,) represents a class z € QL(XI,Y] ), then ¢ o f repre-
sents ¢,(z). This is well defined since if F defines a cobordism of f then ¢ o F
defines a cobordism of F. It is clear that the construction respects unions, so
the map is additive.

I If f: (M, 0M) — (X,Y) gives a bordism class of (X,Y), then f|oM
gives a bordism class of Y. If F : (W,d.W) — (X,Y) is a cobordism, then
F|0.W is a cobordism between the boundary maps of F'|0_W and F|d,W: thus
restriction induces a map 9, : an X,Y)— an _,(Y') which is compatible with
disjoint union and hence a homomorphism. It is immediate that the construction
is natural for maps of pairs.

IV. This is our first illustration of Lemma 8.3.1: here all manifolds have weak
J-structures, and an «-structure consists of a map to X and a SB-structure of
amap to Y C X. Observe that in this case, if we form N” by glueing mani-
folds N, N’ with «-structure along their common boundary, both the weak J-
structures and the maps to X fit to define a ¢-structure on N”.

V:If @ : ¢y >~ ¢, then for any f : (M, 9IM) — (X,Y), we can regard ® o f
as defining a cobordism between ¢y o f and ¢; o f.

VI: To prove surjectivity, we let f: (M, 9M) — (X, Y) represent an ele-
ment of QL(X , Y). It is convenient first to alter f (if necessary) by a homot-
opy on a collar neighbourhood of dM so that some smaller neighbourhood is
mappedinto Y. ThenA = f~!(X \ Y)and B = dM U f~!(U) have disjoint clo-
sures, so (see §A.2) we can find a continuous map s : M — [ with s(A) =0
and s(B) = 1.
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We now approximate s by a smooth map, and make it transverse to % Then

N :=s"1[— % s %] is a smooth submanifold of M, and f|N determines an element

of @/ (X \ U,Y \ U).But N and M determine the same class in @/ (X, Y). Fora
cobordism W, we use f x 1; : M x I — X with a corner introduced at 9N x 0
and the corner at dM x 0 rounded (as in the proof of Lemma 8.3.3). Since (M \
N) C s’1[1/2, 1], it is disjoint from A, and f(M \ N) C Y, so we can safely
adjoin (M \ N) x O to 9. W.

The proof of injectivity is similar. If f: (W, 9.W) — (X,Y) is a cobor-
dismof flo_W : O_W,Z_W) - (X\U,Y \U)tod;W = &, we first adjust
f so that A= f~'(X\Y) and B=9.W U f~1(U) have disjoint closures.
Next choose a smooth s : (W, A, B) — (I, 0, 1), transverse to %, and set V =
s~1o0, %]. Then V is a cobordism of 9_V to zero in an(X \U,Y \ U): acobor-
dism of 9_V to 0_W is obtained exactly as above. This completes the proof of
the theorem. O

Various standard properties of homology now follow.

Proposition 8.4.5 (i) For any non-empty X, the maps {x} — X — {x} induce
a direct sum split Qi X)) = Qi ® Qi (X), where an(X) = limg— 00 Tk (X A
T (Jy)). If CY is the cone onY, Qi(CY) =0,and o : QL(CY, Y= an_l(Y).
(ii) If (X, Y)) is a CW pair, or more generally if it has the homotopy extension
property (HEP), QL(X,Y) = QL(X/Y, pt) = QL(X/Y).
(iii) If X DY D Zis a triple, we have an exact sequence

s QA2 - QX2 - QXY Q2 -

(iv) (S = Q)

(v) Let X =Y1 UY,, Z =Y, NYa,, and suppose inclusion induces isomor-
phisms QL(Y;, Z) = QL(X, Y1_;) (by (i), this holds if the pairs (Y;, Z) have the
HEP). Then we have the exact sequences

s Q2 Qe Q) - QLX) - QL (2) - -
s QD)X - QX YR X, ) > Q)

m m

L@

(i) QUXUY)ZQUX)®QUY) for disjoint union; QX VY)=
QLX) @ QLY.
(vii) If (X, Y) is a CW pair, ,(XP UY, X' UY) Z C,(X, Y; ), ).

Proof (i) The splitting follows as we have an additive functor; the isomorphism
follows as we have the same split on both sides of the equation. The next asser-
tion follows from the homotopy axiom, the final one from the exact sequence.
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(i1) Under the hypothesis, X/Y has the homotopy type of X with a cone on Y
attached; by excision, this modulo the cone has the same groups as X modulo
Y.

(iii) This is a standard exercise in diagram chasing.

(iv) Follows by induction from (ii) and (iii).

(v) These follow by another standard argument (the same for both).

(vi) Here X Vv Y denotes the union of spaces X and Y with a single common
point. Since Z = &, we can apply (v).

(vii) By (i), QLXPUY,Xr'uy)=Q/ (XP/(XP~'U(XPNY))). But
XP/(XP~1U (XP NY)) is a wedge of p-spheres. Now apply (iv) and (vi). O

These results all illustrate how we can begin to calculate the groups Q7 (X, Y)
in terms of the Q7 . We can formalise this process as a spectral sequence.

Theorem 8.4.6 Let (X,Y) be a CW pair. Then there is a first quadrant Q-
module spectral sequence, converging strongly to 2/ (X,Y), which starts with
E}, = Hy(X,Y; Q).

Proof By Proposition 8.4.5 (iii), the triple (X? UY, X9UY, X"UY)(r < g <
p) has an exact bordism sequence. All the maps are induced by inclusions
and boundary homomorphisms, so all expected diagrams commute. Such a
collection of exact sequences defines a spectral sequence. We write X*° = X,
X~ = &: then the limit term is 7 (X, Y). The module structure is induced by
natural products €/, x Q/(X?UY,X7UY) —» Q) (XPUY,X70UY): if M™
is a closed manifold, and f: (N, dN) — (X? UY,X9UY), then we use the
manifold M x N (with induced J-structure) and the map induced by first pro-
jecting on N.
By Proposition 8.4.5 (vii), the E! term is

1 _ o/ —1 ~ e VA
El =@l (X"UY, X" 'UY)=CX,Y; Q).

The boundary d' is induced by taking the boundary of a manifold: it is easy
to verify that this coincides with the usual boundary in the chain complex of
(X, Y). It follows that qu =H,(X,Y; Q{I) and hence (since Qé =0forg < 0)
we have a first quadrant spectral sequence.

As to convergence, we note that

QX UY)=Q/(XPUY) forallp <0
QxXPUY)=Q/(X*UY) forallp>n,
the first since X! = @ = X~ and the second since (by the cellular approxi-

mation theorem) any map of an rn-manifold into X is homotopic to a map into
X". These two isomorphisms imply strong convergence of the sequence. [
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We have now discussed the homology theory associated with the spectrum
TJ and so with the stable group J. There is also an associated cohomology
theory, defined by

QLX) = H'(X; T)) := [SYX : T(Inn)].

lim
N—oo
The geometric content of this definition arises again by Theorem 8.4.1. If M is
a closed smooth manifold, the suspension S¥M is obtained from RY x M by
adding a single point oo. It follows from the Theorem that [S¥M : T (Jy,)] cor-
responds bijectively to cobordism classes of submanifolds of RV x M whose
normal bundles have group reduced to Jy,.

Theorem 8.4.7 Let J satisfy (S). Let M™ have a weak J-structure. Then
QM) = Q) (M, dM).

Proof In this case, RN x M™ also has a weak J-structure. By Corollary 8.2.8,
a Jyin-structure on the normal bundle of V" in RY x M™ induces a weak
J-structure on the tangent bundle of V, and conversely if N is large enough. We
thus have a bijective correspondence between €27(M) and cobordism classes
of manifolds V=" with weak J-structure and an imbedding in RN x M™, for
large enough N. But if N is large, any map to RY x M™ is homotopic to an
embedding, homotopic embeddings are diffeotopic, and a diffeotopy gives a
cobordism. Hence specifying an imbedding in RY x M™ up to diffeotopy is
equivalent to specifying a map to RV x M™, or indeed to M™, up to homotopy.
It remains only to note that if M has boundary, 9V is imbedded in RN x oM,
so we must insist that it be mapped to oM. O

This result shows that a manifold with weak J-structure is orientable for the
homology theory Q7. We also have a form of the Gysin isomorphism theorem.

Theorem 8.4.8 Let J be a stable group satisfying (S), (M), X a topological
space, & a Ji-bundle over X. Then Qﬁ(X) = QL,{(T(S)).

Proof Let f : X — B(J;) classify &, and fy denote the composite

BUN) x X 2L BUN) x BUO) 22 BUyar).

Write Fy for the map B(Jy) x X — B(Jy4x) X X whose components are fy
and projection on the second factor. Fy is covered by a bundle map of y" @ &
to YNtk Also, B(Jy) is mapped by the natural injection i to B(Jy,x), and we
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have a commutative exact diagram

0 - mnMBUy) — =wnBUy)xX) —»> 1X) — 0

by 1 Fyx [
0 — mBUNw) — TBUNw) xXX) — m(X) — 0.

Thus Fy, is an isomorphism in the limit as N — oco. We have an induced map
of Thom spaces

TUNATE) = TUn+) AXT,
which then also in the limit gives homotopy isomorphisms. Thus
Q,() = Hm 7y (T Uy ) A X
= lim 7y (T Un) AT (E))
N—oo
= 0 (T(©)). N

The calculation in Lemma 8.3.5 of cobordism of pairs involves the groups
QiXH", which admit a natural Q{F—module structure. We can now ‘compute’
them directly using bordism groups.

Lemma 8.4.9 We have QﬁXH" =Qf +q(T(Hy)), and more generally

Q00 = Q)L (T(H) AXT).
Proof By Theorem 8.4.1, we have
Q Haxy = Jim (T x Hyy AX)
— 00
= lim 7 n(TUy—g X H) AXT)
N—o0
= lim 7w (T Un-g) AT (Hy) A X")
—00

=Q’

nig(T(H) AXT). O

As with any homology theory, we can define bordism theory with coeffi-
cients. If n > 1 and r > 1 are natural numbers, write e/, for a space obtained
from S" by attaching an (n + 1)-cell by a map S" — S" of degree r; thus
I:IN(e;; Z) is isomorphic to Z, if N = n and is zero otherwise.

We can now define Q4(X; Z,) := @, (X A ¢). Elementary properties of
this definition are easily deduced from homotopy properties of the spaces e/,.
We will not go into further details.

The following construction is also sometimes useful. Let J be a stable group
and H be any topological group. Then we can define a stable group J > H by
setting (J > H), := J, x H, operating on R" via its projection on J,,. (This is
not the same as the J x H defined above.)
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We have B(J, > H)=B(J,) x B(H) and T(J, > H) =T(J,) AB(H). In
particular, if X is any CW complex, the loop space 2X is equivalent to a topo-
logical group, and we have

Q" = lim 7§ (TUpgy X QX))

= lim 7Tn+N(T(Jn+N /\X)) = Q‘/i(X)
N—oo

Thus the groups €/(X) may be considered as the coefficient groups of the
homology theory /™%X,

8.5 Equivariant cobordism

The object of this section is to give a method for reducing the calculation of
equivariant cobordism groups to that of the bordism groups of certain classify-
ing spaces.

We begin by formulating the definitions of equivariant cobordism groups.
First define 12(G) to be the cobordism group of manifolds with a smooth
action of the compact Lie group G. Next, let A be a closed collection of orbit
types (in the sense of §3.5), and write 1,{{ (G; A) for the cobordism group of
those actions such that all orbit types belong to A. Here we identify a type
defined by a pair (H, E) with the type defined by (H, E & R), where H acts
trivially on R, to be able to use the same list of types for manifolds and for
cobordisms.

We also wish to incorporate a structure group. Let J be a stable group satis-
fying (M), (A) and (S), and M have a J-structure (on its stable tangent bundle).
We say that a smooth action of G on M respects the J-structure if the following
condition is satisfied. For some n, we are given an action of G on a principal J,-
bundle P which defines the J-structure, lifting the given action of G on M. This
defines actions of G on the associated bundles; in particular, on the principal
Ju.+1-bundle, so the condition is independent of n. To avoid technicalities we
restrict to three cases: J may be O, SO, or U: in the second case all the bundles
are orientable; in the third all are unitary, in particular E is acted on by a unitary
group which we denote U (E).

Write 17 (G; A) for the group of cobordism classes of manifolds M™ with J-
structure and a smooth G-action which respects it, and such that each orbit type
belongs to A.

First consider the case of free actions: we have the single orbit type when H
is trivial; denote it by ‘free’. In this case, the projection M — G\M is a fibre
bundle with group G. Such bundles over X are classified by (homotopy classes
of) maps X — B(G), where B(G) is the classifying space of G.
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Lemma 8.5.1 The cobordism group I (G; free) is isomorphic to the bordism
group Qi_g(B(G)), where g = dim G.

Proof We have just observed that a free action on M leads to a map G\M —
B(G); the converse is also immediate. The same remarks apply to manifolds
with boundary, so the correspondence goes over to cobordism. O

Now let A be a closed set of orbit types, « € A a maximal element, and write
A’ := A\ {a}: since o is maximal, this too is closed. There is a natural map
II(G; A') — [L(G; A).

Lemma 8.5.2 There is a natural exact sequence
(G A - (G A) - (G (AA) - (G A)— I _ (G A)...

Proof This s a direct application of the general principle of Lemma 8.3.1. Here
the third term is defined as the group of cobordism classes of cobordisms W
with J-structure and a smooth G-action which respects it, and such that each
orbit type belongs to A and those on W to A’. O

This formal result is only of value once we have a way to compute the third
term.

We recall that an orbit type « is associated to a subgroup H* of G and a repre-
sentation of H* on a Euclidean space E* (both defined up to conjugacy). Since
o is maximal in A, W¢ is a closed submanifold of W, and by hypothesis is dis-
joint from dW. By Theorem 3.5.8, a neighbourhood of W* in M is equivariantly
diffeomorphic to a bundle over X* = W% /G with fibre G x g« E®. Note that
dim X% = dim W% — dim G + dim H%, and that dimM — dim W% = dim E“.

According to Lemma 8.3.3, the third term I,{,(G; (A, A”)) is isomorphic to
the bordism group of G-manifolds W* together with a G-bundle 7 : N —
W* with fibre E* on which H® acts as indicated. To proceed, we let P be the
principal J(E®)-bundle associated to r: P is the set of isometries of E* on fibres
of . On P we have the natural (right) action of J(E®), also an induced (left)
action of G which commutes with it, hence an action of G x J(E®): this action
has only a single orbit type. The isotropy group is the set of elements

H* = {(h™", p(h) |h € H*} € G x J(E*).

Recalling the discussion in §3.5 of the structure of a G-manifold with just one
orbit type, we now consider the submanifold P#" and the induced action on it
of

NH*) ={(g,r) € G x J(E*) : p(g 'hg) = r ' p(h)r forall h € H*}.


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.009
https:/www.cambridge.org/core

8.5 Equivariant cobordism 261

Denote by L the quotient group N(H*)/H*. Then P*" is a principal L*-bundle
over X. The mechanism of classifying spaces tells us that such bundles corre-
spond to homotopy classes of maps X — BL“.

Theorem 8.5.3 We have
I'(G; (A, A) = Q! (BL"),
where ¢c = dim G — dim HY + dim E*.

Proof As in the proof of Lemma 8.5.1, the homotopy class of X — BL* deter-
mines the isomorphism class of X and hence W with all its structure. Since the
same applies to bounded manifolds, we can pass to cobordism classes. O

This argument extends trivially to the case when A has two maximal elements
o, B such that neither « < 8 nor B < « (for example, the subgroups H* and
HP are conjugate), then if A” := A \ {«, 8} then
L(G; (A, A") Z I(G; (A" Ufa},A") @ I(G; (A" U {B}, A")),

m

for the orbit types M* and M? have disjoint closures. Similarly we can deal
with further such summands.

The simplest example is the group G = Z, with J/ = O. Any action is semi-
free; the possible non-trivial orbit types have H = Z, and E = R¥ for some &,
with the antipodal action. In this case, H* has order 2 and is central in G x Oy,
so its normaliser is the whole group and L = N(H*)/H* is isomorphic to Oy.
Denote by A the set of all orbit types. It follows from Theorem 8.5.3, together
with the remark following it, that we have

I9(Za; (A, free) = €D Q4_(B(OW)).
k

Theorem 8.5.4 There is a split short exact sequence
0 — I9(Za; A) — @, Q0_(B(Oy)) = Q1 (BZy) — 0.

Proof By Lemma 8.5.2 we have an exact sequence
Ig(Zz; free) —>Ig(Zz;A) —>I,(3(Zz; (A, free)) _>In01—1 (Z; free) —>Irg_l (Zy;A).
We claim that the map 19(Zy; free) — I9(Zy; A) is trivial. Indeed, given a
free action of Z, on M, the mapping cylinder of the projection M — Z,\M can
be identified with a bundle over Z,\M with fibre the interval [—1, 1]. This is a
smooth manifold, with a Z,-action given by —1 in each fibre, and has boundary
M.
The long sequence thus breaks into short exact sequences, and we can
substitute ]371 (BZy; free) = Q,,_1(BZ;) by Lemma 8.5.1 and the value of
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Ig (Zy; (A, free)) from the calculation preceding the theorem. The fact that the
sequence splits follows since the middle group has exponent 2. U

The same approach may be applied to the case G = Z,, with p an odd prime,
but here the details do not simplify. Here it is more natural to take the structure
group J as SO or U. It is still true that any action is semifree, and we have a
calculation of the bordism group of free actions; although the calculation of
Q59(BZ,) and QY (BZ,) is less easy than for Q°(BZ,), this may be explicitly
done, using the results quoted in the following section. A non-free orbit type
has H = Z,, but to describe the isotropy action we must specify for each r =
1,2,..., p— 1 amultiplicity a, > 0 and then have an action on C* with n, =
>".a, where the generator ¢ of G is represented by the diagonal action with the
eigenvalue ¢, repeated a, times. In each case, H* is isomorphic to Z,, but the
calculation of its normaliser N(H*) depends very much on «; only in the case
when all a, except one vanish is the corresponding group H* central. Nor is

there any reason for the map I5°(Z,; free) — I3°(Z,; A) to be trivial.

8.6 Classifying spaces, Q9, QU

We first describe the cohomology of the classifying spaces, and begin with the
unitary group, where the structure is simplest.

The group U, has a subgroup consisting of diagonal matrices; this is
a torus T", a product of n copies of the circle group U; = S'. The clas-
sifying space B(S') can be taken to be infinite complex projective space
P>*(C) and H*(B(S"); Z) is the polynomial ring Z[t] on a single generator
t € H*(B(S"); Z). Thus H*(B(T"); Z) is the polynomial ring Z[t1, . .., t,,].

The inclusion induces maps B(T") — B(U,) and H*(B(U,);Z) —
H*(B(T"); Z). It is well known that the map H*(B(U,); Z) — H*(B(T"); Z)
is injective, and that its image is the subring of polynomials invariant under
the action of the Weyl group W. The Weyl group W of U, is the symmetric
group, and acts by permutations: the invariants form the ring of symmetric
functions in the #;. We can identify this with the polynomial ring generated by
the elementary symmetric functions ¢; (1 < i < n), which can be defined by
the formal identity []j(x — ) = x" 4+ >_](—1)x""¢,. The class ¢; is known
as the Chern class. An additive basis of H*(B(U,); Z) is given by the elements
Si ... (i1 > i2...), defined as the sum of all the distinct monomials formed
from t;" téz .-+ by permuting the variables. To distinguish these from similar
calculations below, we sometimes write s;(c) for emphasis.
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Taking the limit as n — oo gives H*(B(U); Z) as the polynomial ring in an
infinite sequence of variables cy, ¢, . ... There is an additive isomorphism of
H*(B(U); Z) to the cohomology of the Thom spectrum TU.

The multiplicative structure for TU appears in homology, and is induced by
direct sum, which gives maps B(U,,) x B(U,) - B(Uy+,) and TU,, A TU, —
TU,+n. To evaluate this in cohomology, observe that it comes from the identity
T™ x T" = T™*" and hence H*(T™; Z) ® H*(T"; Z) = H*(T™*"; Z); we can
identify these as polynomial rings with generators, say, #|, ..., ty, Ui, . .., Uy.
The induced map V : H*(B(Uy41); Z) — H*(B(Uy); Z) @ H*(B(Uy); Z) is
given by V(s;) = ) _ 51, ® sy,, where the sum is extended over all partitions of
the set I = {iy, i», ...} as a disjoint union [ = I} U I,. This is compatible with
the inclusion maps which increase m and n, so we can pass to the limit, giving
a diagonal map V : H*(B(U); Z) — H*(B(U); Z) ® H*(B(U); Z).

Dualising gives an algebra structure on H,(B(U); Z). If we define {t;} to be
the dual basis to {s;} it follows that if /; and I, are disjoint we have 7,7, = 17, 1,
and hence 7; = tli‘ 1:52 --+. Thus H,(B(U); Z) is a polynomial ring with the t,
as generators.

It follows from the Gysin isomorphism theorem that we have an isomorphism
H.(BU,):7Z) — H.(TU, : Z) of degree m. Since the diagram

H,(B(Up); Z) @ H (B(Uy); Z) = H (B(Up) X B(Uyn); Z) — H,(B(Up1n); Z)

12 b R
H.(TU,; Z)® H(TU; Z) = H(TU, ATUy;Z) — Ho(TUpin; Z)

is commutative, we have an induced isomorphism of H,(B(U); Z) on the stable
homology ring H,(TU; 7).

The structure for the orthogonal group O, is very similar. The subgroup
X, of diagonal matrices is a product of n copies of O = S°: it is a maximal
elementary 2-subgroup. The classifying space B(O;) can be taken to be infi-
nite real projective space P*°(R) and H*(B(O); Z,) is the polynomial ring
7Z,[t] on a single generatort € H'(B(0,); Z,). Thus H*(B(X,,); Z) is the poly-
nomial ring Z[ty, ..., t,]. The inclusion induces maps B(X,) — B(O,) and
H*(B(Oy); Z,) — H*(B(X,); Z,); the image is the subring of polynomials
invariant under the action of the group of permutations of the #;, so is the ring of
symmetric functions, and hence the polynomial ring generated by the elemen-
tary symmetric functions. In this case, the class defined by the ith elementary
symmetric function is known as the Stiefel-Whitney class, and is denoted w;,
and we write s;(w) for the symmetric functions defined as above. We refer to
[103] for a good general introduction to Stiefel-Whitney and other character-
istic classes.
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Thus H*(B(O); Z,) is the polynomial algebra in classes w;. It is additively
isomorphic to H*(TQ; Z,). Direct sum of vector bundles induces a diagonal
map for these, hence a multiplication on H,(TQ; Z,), given by essentially the
same formulae as in the unitary case.

Returning to the unitary case and applying Proposition B.4.1, we obtain our
first calculation.

Proposition 8.6.1 The ring QU ® Q is a polynomial ring with one generator
in each even dimension, and each group QU is finitely generated.

Since we had dual bases above, s, is orthogonal to all the t; such that I has
more than one part, and hence to all decomposable classes in H,(B(U); Z) (i.e.
classes which can be expressed as sums of products of classes of lower degree).
Thus z € H,(B(U); Z) is decomposable if and only if (z, s,,(c)) = 0.

Since H,(B(U); Z) and H,(TU; Z) are polynomial rings, any ring homo-
morphism H,(TU; Z) — Z is determined by its values on the generators T,
and these values may be chosen arbitrarily. A corresponding statement holds
with coefficients Q in place of Z. We seek a formula to express this.

Any additive homomorphism ¢ : H,(TU; Q) — Q is given by taking inner
product with an element ® of the direct product H**(TU; Q) = H*(B(U); Q)
of the groups H"(B(U); Q). Dualising, it follows that ¢ is a ring homomor-
phism if and only if V(®) = & ® ®. As above, it is convenient to consider ®
as a symmetric element of the power series ring in infinitely many variables ;.
Since V(1]) =1/ ® 1 + 1 ®1/, we see that for any coefficients a,, the infinite
product

o0
D= 1—[ (1 + Za,t[)
i r=1
has the desired property. Since this formula allows one arbitrary coefficient at
each stage, it allows independent choices for the ¢(z,), so ® is necessarily of

this form.

We have seen that if M>" has a weak U-structure given by a lift f: M —
B(U) of the map inducing 7y, the class of M in QV ® Q is decomposable if and
only if s,(M) := (M, f*s,(c)) = 0. It will be useful to have some calculations
of these numbers. Denote by Y,En anonsingular hypersurface of degree (1, 1) in
P"(C) x P*(C), for example, that given by Z;”:ig(m’") x;y; = 0. These examples
were introduced by Milnor [96]. Write also Ynﬂfn for a nonsingular hypersurface
of degree (1, 1) in P(R) x P*(R).

Proposition 8.6.2 We have 5,(P"(C)) = n + 1 and spin-1(Y,5,) = —("").

m
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Proof Write A for the canonical line bundle over P"(C). Then tpi(c)® & =
(n 4 1)A, so the characteristic classes of tpi(c) agree with those of (n 4 1), so
are induced by the map P"(C) — B(T"*') — B(U,41).

Since ¢ (1) is the generator x of H>(P"(C); Z), the generators ¢; of the coho-
mology groups H>(; Z) of the factors BT of BT"*! all map to x. Thus s,,, which
is the image of ) 1", maps to (n+ 1)x", and evaluating this on [P"(C)] gives
(n+1).

Set M := P"(C) x P"(C) and write A, A, for the line bundles induced from
the two factors. We have H>(M; Z) = 7 @ Z: write x;, x, for the generators
coming from the two factors. Thus 7y @ 2e = (m + 1)A; @ (n 4 1)A; and in
calculating characteristic classes we may take (m + 1) of the #; equal to x; and
(n+ 1) equal to x,. These all pull back by the inclusion i : Y”(En C M, and the
normal bundle vy of Y in M is the pullback of A; ® A, with first Chern class
*(x1 + x2).

Since s, is defined as a sum of contributions coming from summands, we
have in general s,,(§ & n) = 5,(§) + 5,(n). Now as

Ty Dvy D26 = m+ 1)i* A & (n+ 1)i*As,
and as i*x]™"'[Y] = 0, it follows that

sa(V) = =5, (Wp)[Y] = —i* (61 4+ 2x2)" Y] = —(x) + x)" "0, Y]

= —(v +x)" Ml = —(")). O

m

The same calculations yield

Corollary 8.6.3 We have s,(w)(P*(R)) =n+ 1 (mod 2)
and st (0)YE,) = (") (mod 2).

The calculations for (special) orthogonal and symplectic groups are similar
to the unitary case, provided for the orthogonal group we localise away from
the prime 2. The groups SO,,+; and Sp,, each contain a maximal torus 7, but
in these cases the action of the Weyl group includes, as well as permutations,
the inversions in each factor. (For SO,, we only allow an even number of inver-
sions.) The ring of invariants thus consists of the symmetric functions in the
variables ti2 (also for SO, the product []#). The class defined by the ith ele-
mentary symmetric function is known as the Pontrjagin class, and is denoted
p4i. The same arguments apply here to calculate the dual. It now follows as
before from Proposition B.4.1 that

Proposition 8.6.4 The rings Q50 ® Q and Q3" ® Q are polynomial rings with
one generator in each dimension divisible by 4.

The unitary structure on P"(C) induces an SO-structure, and the dummy vari-
ables 7; play the same role as before. As s, is given by ) ", we see that if n is
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even, the formula for s, in terms of Chern classes is the same as the formula in
terms of Pontrjagin classes, thus it follows from Proposition 8.6.2 that

Lemma 8.6.5 We have s,,(p)(P**(C)) =2n + 1.

Thus we can take the manifolds P?*(C) as generators of Q3¢ ® Q.

It follows from Proposition 8.6.4 that any ring homomorphism Q¢ ® Q —
Q is determined by its values on a list of generators. The most celebrated exam-
ple of this is the signature. We defined the signature o (M) of an oriented mani-
fold M of dimension 4k in §7.5 as the signature of the quadratic form given by
intersection numbers on H,, (M; R). We saw in that section that o (M) vanishes
if M is an oriented boundary, and o is clearly additive on disjoint unions, hence
defines an additive homomorphism o : Q3¢ — Z.

Lemma 8.6.6 The signature o is multiplicative for products, hence defines a
ring homomorphism o : Q50 — Z.

Proof Consider the product M™ x N*~" of two oriented manifolds. We have
H*(M x N) = @&;H (M) ® H**~/(N). Under cup product the term H'(M) ®
H?*~{(N) is dually paired with H"~'(M) ® H*~"+(N), so only the term m =
2i can contribute to the signature. The self-pairing of H'(M) ® H*~/(N) with
itself to H™(M) ® H*="™(N) = R is the tensor product of the self-pairings of
H!(M) and H**/(N) to R. If i is odd, there is a Lagrangian subspace K of
H(M), so K ® H*{(N) is a Lagrangian subspace of H'(M) ® H*~(N) and
this has signature zero. If i is even, we can diagonalise the quadratic forms on
H(M) and H*~/(N), and the calculation is trivial. O

The value is given by Hirzebruch’s signature theorem [74]. First recall the
expansion

t G -1 2% 2%
—1 B DUl RS
tanh(t) +’2§;( ) Q) F

which we may use to define the Bernoulli numbers By

Bl=-, By=-—, By=—, By=—, Bs=—,
'Y P30 TP a2 T30 T 66
691 7
®=o730° 7T 6

let us write this as #/tanh(t) = 1 + Z,‘:‘z’l But*. Now define the class L, €
H**(B(0); Q) by the formula L, := [],(1 + Y_p, Bit?), where the #; are the
auxiliary variables introduced above.

Theorem 8.6.7 For M oriented, the signature is given by o (M) = f*L,[M],
where f: M — B(SO) induces ty.
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Proof We have seen that we can take the manifolds P?*(C) as generators of
Q3% ® Q. Thus two ring homomorphisms agreeing on these coincide, so it suf-
fices to verify the formula for M = P2 (C). We see at once that each manifold
P?(C) has signature 1.

Since p(ty) = (1 + a?)*+!

, we have

LIP*O) = (2 )" e

tanh o

= coefficient of «** in ( al >2k+1
tanh o
1 dz
N 2m'§£ (tanh z)*+1
1 du o
= 2_71'1 % m (substituting u = tanh(z))

= Reso(1 + W ut .)/uzk+l

=1. O
Explicit formulae for the L classes may be calculated: for example,
1 Tp2 — p° 62p; — 13 2p3
Li==p1, Lh= D2 Pl’ Ly = D3 pip2 + Pl‘
3 45 945

We will use the below formula for the leading coefficient (see, for example,
[103]).

Lemma 8.6.8 The coefficient of py in Ly is 22(2%~1 — 1)B/(2k)!.

For A, a graded vector space over a field F', we count the dimensions by the
Poincaré series

P(A,: F)(t) == Zdimp(A,,)t”.
0

Thus if A is a polynomial algebra with the degrees of generators in a set S, we
have P(A)(1) = [],g(1 — t')~". In particular, by Proposition 8.6.1,

P! @ Q)(1) = PHU; Q) = [Ja -7,

i=1

and by Proposition 8.6.4,

P @ Q)(t) = P(H.(SO; (1) = [ Ja =7,

i=1

Thom’s great achievement [150] was the calculation

Theorem 8.6.9 The ring Q2 is a polynomial ring over Z, with one generator
in each dimension not of the form 2% — 1. The bordism class of a manifold M™
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is determined by the Stiefel-Whitney numbers of M. Moreover M qualifies as a
generator if and only if s,,(w)[M] # 0.

‘We outline the steps in the proof. Since M x I can be regarded as a cobordism
of the union of two copies of M to the empty set, any element of Q¢ has order
2. It thus suffices to perform calculations in mod 2 cohomology.

The next step is to calculate the action of the Steenrod algebra S, on
H*(B(0); Z3) and hence that on H*(TQ; Z,). This shows that the latter is
a free S;-module, and hence that there is a map ¢ : TO — [[K(Z,, n) to a
product of Eilenberg—MacLane spectra which induces a cohomology isomor-
phism, hence is a (stable) homotopy equivalence, so induces an isomorphism
of Q9 to a sum of copies of Z,. This can be formulated as follows. For any M™
and cohomology class k € H"(B(0); Z,), the classifying map ¢y : M — B(O)
of 7y induces ¢k € H"(M; Z5) and hence a number ¢;,k[M] € Z,, called a
Stiefel-Whitney number of M. The result implies that these numbers determine
the class of M in QY.

More generally, ¥ induces, for any X, an isomorphism Q¢(X) —
[1H.(X; Zy): given a map f:M — X and a cohomology class k€
H"(B(0); Z), the map ¢y induces ¢;,k € H"(M; Z), hence a dual homology
class [M]N ¢k € Hy—y(M; Zo) and a class fi.(IM] N ¢y,k) € Hy (X Zo).
Now the composed map QQ(X ) = @©,H,—n(X; Z) is a natural isomorphism.

Further, H,(TQ; Z,) is a free comodule over the dual S? of S,, and this is a
polynomial ring with one generator in each dimension of the form 2¢ — 1. Thus

PS)() = [Ja -
k

It follows that

PQ%ZY0 =[] a-iH7h

i not of form 2"—1

For the multiplicative structure we can argue abstractly using the fact that
H,.(TQ; Z,) is a polynomial ring, or we can argue as follows.

If M is such that s,,(w)[M™] # 0, the class of M in H,,(TQ); Z,) is indecom-
posable, hence so is the class of M in Q9. If m is even, we can take M as P"(R);
otherwise if m + 1 is not a power of 2, write m + 1 = 2"~'(2s + 1) with s > 0,
then by Corollary 8.6.3 we can take M = Yzﬂ,{l,z,s.

Since we have exhibited manifolds M™ with s,,(w)[M] # 0 for each m not
of the form 2¥ — 1, these indecomposables generate a polynomial ring, and the
above counting argument shows that this is the whole of Q9.

Alternative choices are as follows. Write P(m, n) for the bundle over P"(RR)
with fibre P"(C) where the structure group Z, acts by complex conjugation.
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Lemma 8.6.10 IfN =2""'2s+ 1) withs > 0, set VN1 := P(2" — 1, 2%s).
Then soyy_1 (w)[VN—1] = 1.

We omit the proof (an elementary calculation) which, like the construction
of the V2¥=!_is due to Dold [41].

A similar, but more elaborate argument gives the result in the unitary case,
which is due to Milnor [96] and Novikov [113]. Introduce the notation r, by

r, : = pif nis a power of the prime p,

= 1 if n is not a prime power.

Theorem 8.6.11 The ring QU is a polynomial ring with one generator in each
even dimension. The bordism class of a manifold M*" with weak U-structure is
determined by the Chern numbers of M. Moreover M qualifies as a generator
if and only if s,,(c)IM] = £r,41.

The argument includes the same steps, but encounters additional technical
difficulties. One must analyse the Steenrod algebras S, for each prime p and
the corresponding actions on H*(B(U); Z,,) and hence on H*(TU; Z,). This
time the modules are not free, since the Bockstein 8, acts trivially, but are free
over the quotient 3,, of S, by the ideal generated by 8,. It follows that, for each
p, there is a map of TU to a product of Eilenberg—MacLane spectra K(Z, n)
which induces an isomorphism of (mod p) cohomology.

For the multiplicative structure we find that H,(TU; Z,) is a polynomial ring,
it is a free comodule over the dual S” of 3,,, and that this is a polynomial ring
with one generator in each dimension of the form 2( pF—1.

Additional calculations are needed first, to ensure that we can fit these
together for all primes p to obtain a map which is a stable homotopy equiv-
alence, and then to make an analysis of the multiplicative structure.

Again some of this can be bypassed using explicit constructions of mani-
folds. By Proposition 8.6.2 we have smﬂ,l(Y,Sn) = —(m;:”). Thus for mani-
folds of dimension N we have values of sy[M] taking all values —(NZI) with
1 < m < N. The highest common factor of these is just ry;.

8.7 Calculation of Q¢ and Q5

We consider two cases:
J=0,8J=80,]J/S) ={£1},d=1,K=R,
J=U,8J=S0,)J/S]=5",d=2,K=C;
we will present the two theories in parallel as far as possible. We will omit
many details (the account of these results occupies the whole of the memoir
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[39] and 140 pp. of Stong’s book [147]) but aim to describe all the geometrical
ideas involved.

We will focus on geometrical arguments, and begin with certain exact
sequences. Some of the arguments will apply to other cases satisfying simi-
lar conditions: for example, taking (J, SJ) to be (Pin, Spin) or (Spin¢, Spin)
or (U x H,SU x H) with H compact.

In each case, we have J, /SJ, = J/SJ = §¢~!. We will write P for P®(KK) and
P* for P¥(K). We write " for the standard vector bundle over B(J,) or B(SJ,)
and 7 for the standard line bundle over P*. We regard P as the classifying space
for the group S*~!, so the map J — J/SJ = §%~! induces 7 : BJ — P.

Lemma 8.3.1 gives us an exact sequence in which the third term is the cobor-
dism group Q%7 of bounded J-manifolds with a weak SJ-structure on the
boundary. We first interpret this relative term using Lemma 8.3.3.

Theorem 8.7.1 We have a natural isomorphism Q.5 = Q5 (P).

Proof This is an instance of the general method of Lemma 8.3.3, but there are
many details to clarify.

We will specify the J-structure of a manifold M by the classifying map of its
stable normal bundle, vy, : M — BJ. We have a fibration B(SJ) — B(J) 5P,
and an SJ-structure of M is determined by a nullhomotopy of & o vy, which is
thus covered by a homotopy of vy, to a map into B(SJ).

The standard line bundle over P has a J-structure, classified by P A BJ,; 4
BJ; we may assume that 7 o ¢ o 7 is the identity map 1p of P. The section ¢ o 7,
together with the group action, shows that the fibration B(SJ) — B(J) — Pis
trivial.

Write (—1)p : P — P for the negative of the identity: this is given in the real
case by the identity, and in the complex case by complex conjugation. Moreover
P is an H-space, and the diagram

BIxBJ 2% BJ
lmxm N4
PxP — P

is homotopy commutative; we may choose our model of BJ to make it commu-
tative.

Now suppose M™ a J-manifold such that dM is an SJ/-manifold. Consider
the map my := mw o vy : M — P; up to homotopy, we may suppose that this
maps M to a finite dimensional projective subspace P*. We can make this map
smooth and transverse to the submanifold P*~!, whose preimage will then be a
smooth submanifold V"~4 of M™, with normal bundle induced from n. As oM
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has an SJ-structure, 71 o vy, is trivial on M (which has trivial normal bundle in
M), so may be assumed to avoid P*=1_Thus V lies in the interior M of M, and
is closed.

The stable normal bundle vy of V is the sum of the bundles induced from vy,
and from 5. We give the second summand minus the obvious structure. So the
normal bundle vy is induced by

vy |V Ixm

1x—1 Ixn By
V—BJ]— B/ xP— BJ]xP— BJ] xBJ] — BJ.

The composite 7 o vy is thus induced by

vl s ptlpypsp
Thus a null-homotopy of the composite map P — P defines one for & o vy,
and hence an SJ-structure for V.

Now choose a tubular neighbourhood W of V in M: this is a bundle over
V, with fibre D?, associated to (7 o v|V)*n. It follows as in Lemma 8.3.3
that (M, oM) is (J, SJ)-cobordant to (W, 0W'). We need to verify that the SJ-
structure on oM extends to (M \ Vi/): this follows since o vy, takes (M \ W)
to the contractible set (P \ Pk,

Thus the (J, SJ)-cobordism class of (M, dM) agrees with that of (W, aW),
hence is determined by the class of (V, w ov|V) in Qf{_ +(P). The formula
which determines it is as follows. Let n’ be the bundle induced from 7. Then
vy = vy + 77, where the bar recalls the sign change above. Thus vy + ' =
v+ 7+ =vy+ e

Conversely, given any element of Qﬁqj_ +(P), represented say by (V, f), we can
take the bundle E with fibre D? associated to f*n and give it a J-structure. The
stable normal bundle v, of the boundary dF is the restriction of vg. But w o vg
is essentially f, by definition, and is covered by a bundle map over V of E to the
disc bundle D(#n) associated to 1, and hence of 9E to the corresponding sphere
bundle S(n). But S(n) is contractible, so we have a null-homotopy of JE —
S(n) — P, and so an SJ-structure on dE. Since all our constructions carry over
to cobordisms, we have indeed an isomorphism Q7.5 = Q5 (P). O

We remarked above that for cobordism theory, the extra structure provided
by a submanifold is equivalent to the extra structure provided by a map to its
Thom space. Moreover P is homeomorphic to the Thom space of 7. This leads
to

Theorem 8.7.2 We have a natural isomorphism Qilj_ JP) = anj_ e Q{n _od-

Proof Given an SJ-manifold V""~? andamap xy : V — P, we may suppose xy
maps V into P*~!. We make this transverse to P*~2, and write B = yx,, ' (P2).
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Then vg = vy |B + (xv|B)*n, and we use this formula to give B a J-structure.
Since the cobordism class of (V, f) determines the cobordism classes of V and
B, we have a homomorphism @5/ (P) - Q% o Q/ , .

Conversely, the class of (V, f) is determined by those of V, B, and the map
B — P inducing the normal bundle of B in V. By Lemma 8.3.5 we can sep-
arate the contributions of B and V, provided the stable normal bundle of B is
induced by B — B(SJ) x P.But since the fibration B(SJ) — B(J) — P is triv-
ial, B(SJ) x P is homotopy equivalent to B(J). O

By Lemma 8.3.1 we have an exact sequence
SJ J 7,57 SJ
L = — Q2 = QT

and combining Theorem 8.7.1 and Theorem 8.7.2 gives a natural isomorphism
QLS = QS @ Ql .. We now study the maps in the sequence obtained by
making this substitution.

Theorem 8.7.3 There is an exact sequence

(dy,d>) )

QSJ QJ QSJd D Qn 214 T Qij—l

where « is the class of S4~! with a twisted framing. Also, there exists s :
Q= Q) with (dy, d») 055 = (0, 1).

n

Proof Write (d, d») for the components of the map Q) — Q% & Q/ .
so that the image of the class of M by d; (resp. d») is determined by V (resp.
B) in the notation above; also write (q;, g2) for the components of the map
QSJ iR 0y~ anj—r

Asto g, we can suppose B empty and yy trivial. Then the disc bundle defin-
ing the class in Q7% is trivial, and has boundary V x $?~!. Since we have a
product bundle, we obtain multiplication by the class, « say, of $~! with appro-
priate SJ-structure. To determine this, we can take V to be a point and M a disc
D?. Recall that V was constructed from M by making ), transverse to P*~1.
Now 1, maps M = S¢~! to a point, so induces a map of S = M/dM which
meets P¥~! transversely in just one point. This coincides (up to homotopy) with
the inclusion of a projective line P'. So « is the class of $~!, with SJ-structure
defined by a framing of the normal bundle, twisted in this way.

We now construct a map s, : 2 _,, — €/ and show that d; o 5, = 0 and
d, o s, = id. From this, and the exactness of the sequence it follows that g, = 0.

To define s5, suppose that B" ¢ is a J-manifold, and form (7 o vg), which
we may suppose amap B — P* for some k. Write Oy, , for the projective bundle
over P* associated to 5 @ &2. Let M™ be the induced bundle over B, V"¢ the
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sub-bundle corresponding to n @ ¢!, and identify B itself with the sub-bundle
of V corresponding to 7.

Write f for the map M — B and g for the composite map M — B — Pk,
Then there is a natural splitting 7y ® g7 = f*13 ® g5 (n ® ") ® (=1 0 g)*e.
We give all these bundles the induced J-structures. Since the construction
passes to cobordisms, we have a well-defined map of cobordism classes with
$2(B) 1= (M).

Consider the decomposition K3 = K¥+! @ K2. Then P* is the projective
space of K¥*!, so a point x € P¥ corresponds to a line £, C K¥*! which we can
identify with the fibre of 7 over x. We now identify the fibre of n @ &2 over x
with £, @ K2, and so Qy» with the subspace of P¥ x P**2 of pairs (x, y) with
¢, C K.

Now define ¢ : Qio — P2 to be the map induced by projection on P*+2.
Then ¢ ~!(P¥1) is the set of pairs (x, y) with 4, Ct, @K®0and NP is
the set of pairs (x, x) with x € PX. Thus ¢ : Q,» — P**? is transverse to P¥*+!
and P*, and these have preimages the sub-bundles associated to n @ &' and 7.

We claim that ¢ o 8 >~ m ovy. Since the target of these maps is the
Eilenberg—MacLane space P, this only needs checking on the level of the coho-
mology class. It follows that this map is transverse to P**! and P*, and these
have preimages V and B. Hence we have d; o s, = id.

To see d; o s, = 0, we must find an SJ/-manifold with boundary V. But V
is a P!'(= S)-bundle over B, with structure group Z(= S?~!), so bounds the
associated disc bundle, which is topologically the product by I of the mapping
cylinder of the principal bundle. Since the principal bundle was obtained from
7T o vg, this has an SJ-structure. O]

When d = 1 we have $¢~! = S, but each point has the positive orientation:
this twists the standard framing of dD' by changing a sign. In this case J = O
and the map 3¢  — Q3¢ is multiplication by 2. If d = 2, we have $¢~! =
S', and the twisted framing differs from the standard one. Here (see §B.3(x))
homotopy theory tells us that « € 7% is the non-zero element 1, and 21, = 0.

We now define RJ as the stable group given by the pullback diagram

B(SJ) — B(RJ) — B(U)

\ \ "
e i

Proposition 8.7.4 (i) There is a split short exact sequence
0— QM ol % gl 50 (8.7.5)

split by a map so : Q) — Q) with ig 0 5o = 1.
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(ii) The following sequence also is exact:

i d

QY B QRN L N IS Q8 (8.7.6)

Here isg, ig and is = i o isg are the maps induced by the natural inclusions
SJ CRJCJ.

Proof (i) It follows from the definition of RJ that d> o ix = 0, and we have
already proved d, surjective. For exactness at 2/}, suppose M defines an element
of Kerd,. Thus we may take 7 o vy as a map to P¥, make it transverse to PX=2,
and write B for the preimage: then by hypothesis B is cobordant to the empty
set. As in Lemma 8.3.5 we may extend this cobordism to one of (M, o vy),
and thus suppose 7 o vy, a map to P¥\ P=2, But this is homotopic to a map
into P'. Thus M defines a class in Q~/.

It remains to define 5o and prove ig o s the identity. We begin as usual with
M2 B) 55 P; again as usual we may replace the target by P*. We thus
have amap M x P! — P* x P! — P?**! where the final map is the Veronese
embedding

((x05 -+ -5 Xk), V0, Y1)) = (X0Y05 -+ 5 XkY05 XOV1s + - - » XkY1)-

The composite is transverse to a generic linear subspace L, say given by xoy; =
X1Yo, of P?¥ (at a point where transversality failed we would have y = y; = 0),
and we define so[M] to be the class of the preimage M’ of L.

Adapting the above proof that 7 o vy is nullhomotopic shows in this case
(where an extra factor P' appears) that v o vy is homotopic to a map to P', so
M’ defines a class in %/, Finally, if M itself defines such a class, we may take
k = 1 above, so that the projection of M’ on M is a diffeomorphism. 0

Since d, o s, = i, 1 — s,d, retracts Qﬁ on the kernel of d», which we can now
identify with Q®/. We denote this map by p : @/ — QF/.

There are alternative presentations of the above material. One can define QF/
as the kernel of d,. One can also show (cf. Theorem 8.7.1) that there is a natural
isomorphism Q%% = Q7 Tt can also be shown that QF/ = Q¥  (P?).

We observe that /(P) is a free Q/-module with base the classes x; defined
by the inclusions of P/ in P.

We define a module endomorphism A of ©/(P) as follows. Given a class
represented by f: M — PF c P, we make f transverse to Pl oget L=
F~1(P*"1) and define A(M, f) := (L, f|L). It follows that A(xj) = xj_1.

Write ¢ : Q/(P) — QI for the augmentation and p : Q/ — Q/(P) for the
map sending [M] to the class of (M, o vy). The map P x P — P which clas-
sifies the tensor product of line bundles induces a multiplication in Q7 (P) with
respect to which p is a ring homomorphism.
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We observe that e o Ao poig =isod; and that e 0o Ao u =d,. The
retraction s is given in this notation by so(z) = ¢ A(u(z).x;) for any z € Q7.

We find that Q& is a subring of ! if J = O but not if J = U, so we define
a multiplication on Q& by

X xy 1= 85o(xy).
We also define
d:=isgod : QN - Q.

Since d; o isg = 0 in the exact sequence (8.7.6), we have 92 =0.

For any class a € Q¥ 1u(a) is in the image of Q/(P!), so can be written
wu(a) = axp+ o'x; with o, o’ € QJ. Then a = epu(a) = a + o’e(x;) and we
have da = eApa = e(a'xy) = a’e(xp) = '

Lemma 8.7.7 (i)a*b = a.b+ 2w,.da.0b.

(ii) 9(a.b) = a.0b + da.b — e(x1).0a.db.

(iii) 9(x.9(y)) = 9x.0y.

(iv) 9(a * b) = a.0b+ da.b + w;.0a.db.

Proof (i)Leta, b € Q® and write ju(a) = axy + o'x1, u(b) = Bxo + B'x1,50
so(a.b) = eA(aPBx; + (ap' + a/,B)x% + a/ﬁ’x?). Calculations give eA(x;) =
e(xo), SA()C%) = &(x1) and SA(x?) = 35(x%) — 2¢e(x); thus
so(a.b) = aBe(xo) + (@B + o' Ble(x)) + o' B/ Be(x}) — 26(x2))
= (@ +'e@))(B + B'e(x)) + 2B (e(x7) — £(x2))
= a.b+20a.9b.(e(x}) — £(x2)).
(i) With a, b as above, we have
d(a.b) = eAu(a.b)
= eA(af + (@f +a'Bx) +a'B'x])
=e((aB’ +a'Bxo +a'B'xy)
= (@ +d'e(x)p + ' (B + Be(x1) —a'Be(xr)
= a.0b+ da.b — (&(x;)).0a.0b.

(iii) follows from (ii) since 3> = 0. (iv) now follows from (i)—(iii). O]

Here w; is given by 8(x%) —e(xp), and w; = 20(wy) —e(xy). If d =2 we
have w; := [(P')?*] — [P*].

Since 32 = 0, (2R, 9) defines a chain complex: denote its homology by H.
Explicitly,

;. Ker@:QV — Q¥ )

" Im@@ QN — QR



https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.009
https:/www.cambridge.org/core

276 Cobordism

Although, in the case d = 2, 9 is not a derivation, it follows from Lemma 8.7.7
that Ker 9 is a subring of QY and that Im 9 is an ideal in it, so that the quotient
H! is aring.

We next want an exact sequence derived from (8.7.6). The general procedure,
due to Massey [87], is as follows. Suppose given an exact sequence

PSPLoSpPSAp. .

(he calls this an exact couple). Then d := b o ¢ has d?> =0since cob =0, so
we can form the homology H of Q with respect to d. Set A := a(P) C P.

Lemma 8.7.8 There is an exact sequence
CABABHS AL

Ifa, b, c have respective degrees d,, dy, d. then ay, by, c| have degrees d,,, dj, —
d,, d..

Observe that this gives another exact couple, called the derived couple.

Proof Define a; as the restriction of a. For y = a(x) € A define b;(y) as the
class of b(x): we have db(x) = bcb(x) = 0 so do get a class in H. And for an
element { € H represented by z € Q with be(z) = 0 define ¢;(¢) = c(2): this is
indeed in Ker(b) = Im(a). Any other representative is of form z + bc(w) and
c(z+ be(w)) = ¢(2).

Composites vanish since b;(a;(ax)) is the class of b(a(x)) = 0; ¢y (b;(ax))
is represented by c(b(x)) = 0; and a;(c1(¢)) = a(c(z)) = 0.

If y = a(w) and b (y) = 0, then b(w) = d(x) = b(c(x)) for some x so w —
c(x) € Ker(b) =Im(a); w = c(x) + a() soy = a*>(v) € Im(a;).If¢;(¢) = 0,
then z € Ker(c) = Im(b): set z = b(y): then ¢ = bi(ay). If a;(x) = 0, then x €
Ker(a) = Im(c). This proves exactness. ]

Write A} for the image of 6 : 5, — Q3. Applying Lemma 8.7.8 to
(8.7.6) gives the exact sequence

o A AL S H S AL S AL (8.7.9)

As in the preceding section, the completion of the calculation of the cobor-
dism rings depends on exhibiting particular examples. We will give these, but
omit the detailed calculations, some of which yield

Lemma 8.7.10 We have s,,7(s;(M? ")) = (n + D)cy [M] (mod 2)
Pl = —cf (M),
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As in the proof of Theorem 8.6.9, for n not a power of 2, choose integers r, s
with r + s = n and ('rl) odd: for example, write n = 27(2qg + 1) (so g > 1) and
set r = 2p+1q, s = 2P. Define cobordism classes by

Zdn ‘= p(Pzr x P¥) e Q%n,

Zodn—d ‘= di(P¥ x P¥) e Q%n—d'

It follows using Lemma 8.7.10 that s,,(z4,,) is odd in both cases, and from the
formulae relating the maps that dy 224, = 224n—a-

Incasen =2/ > lisa power of 2, first set zp4, := P" x P".Inthe case d =
1, since P"(R) x P"(R) ~ P*(C), which is orientable, this gives dyz, = 0. If
d =2 we set 2p4,_q := d{(P" x P").

In the preceding section we defined Poincaré series and calculated the series
for QU and Q59 over Q and for Q¢ over Z,. It now follows from the exact
sequence (8.7.5) that

Py =0- [  a-i

i not of form 2"—1

Theorem 8.7.11 (i) Q39 /Tors is a polynomial ring.

(ii) All torsion in Q39 has order 2.

(iii) Classes in Q5© are detected by Stiefel-Whitney numbers and Pontrjagin
numbers.

(iv) The image of Q59 in QRO C Q9 is Ker d; the image of Tors Q5 is Im 3.

A presentation of Q5 by generators and relations is not convenient: (iv)
gives a better description.

Proof (i) By Proposition 8.6.4, 25 ® Q is a polynomial ring, with one gen-
erator in each dimension divisible by 4. It follows (again from [96] or [113])
that 3¢ ® Z[%] is a polynomial ring. We next claim that 3¢ /Tors is a poly-
nomial ring: it suffices to observe that since by Lemma 8.6.5 s,(p)[P*"(C)] =
2n + 1 # 0, so the classes of the P2"(C) are polynomial generators of 3¢ ® Q
and since also these numbers are odd, their images in Q¢ generate a polynomial
algebra.

Next observe that QR is a subring of 9. This follows from Lemma 8.7.7 (i)
and the fact that Q€ has exponent 2, or more simply from the fact that P! = !
can be regarded as a subgroup of P in this case. Next, the map 9 is a derivation:
this follows from (ii) of the same Lemma, and the fact that €(x;) is a class of
dimension 1, hence is zero as Qlo =0.

We defined classes z,, € foo above, forn, n 4+ 1 not powers of 2, and showed
that in each case, s,(z,) = 1.Ifn = 2/ > 2, the class x,, of P"(R) has s, (x,) = 1
by Proposition 8.6.3 above. Hence Q¢ is the polynomial ring in these genera-
tors. Now P* (R)? is cobordant to P* (C), which is orientable. The classes z,
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and x? thus all belong to 289 and generate a polynomial ring. Since this subring
has the same Poincaré polynomial as QR it is the whole ring.

We have now calculated the derivation 9 on all generators of QR0 for
as P?(C) is orientable, d(x2) = 0. Since we can regard QR as the tensor
product of the algebras Zs[zy, zmy1] Withm +1=272qg+ 1), p>1,g>1
and Z,[x2], the ring H,(QR; 9) is the tensor product of the homologies of
these subalgebras, which is the polynomial algebra in the zfn 41 and xﬁ. Thus
H? := H,(QR°; 9) is a polynomial ring over Z,, with one generator in each
dimension divisible by 4.

We now recall the exact sequence given by (8.7.9) with J = O:

a b c
o> A2 L A9 L HO L A0 5 A%

Since a; is induced from « it is multiplication by 2. Thus A9 = 2Q3°. The
torsion-free rank of Afn is equal to the number p(n) of partitions of n, so the
image of by, isomorphic to AS, /2A9 has rank over Z, at least this. Hence by is
surjective in these, hence in all degrees. By exactness, the kernel of multiplica-
tion by 2 on A,? vanishes. Thus A,? is torsion-free. This proves (ii).

By (8.7.6) the kernel of Q50 — QRO ¢ QO is the image of multiplication by
2, so is torsion-free. An element on which all Stiefel-Whitney numbers vanish
is in this kernel, hence of infinite order, hence by Proposition 8.6.4 is detected
by Pontrjagin numbers; thus (iii) holds.

The first assertion of (iv) follows from Proposition 8.7.4 (ii); the second now
follows from the above calculation that 259 /Tors and Ker 8 /Im 9 have the same
Poincaré polynomial. O

Calculations in homology lead to the further results, completing the above.

Lemma 8.7.12 (i) As Sy-module, H*(TSQ; Z,) is the direct sum of a free
module and copies of S,/Sq".S..

(ii) The spectrum TSQ is homotopy equivalent to a wedge of spectra
K(Z,, n) and K(Z, n).

(iii) An element of Q*O is in the image of Qfo (resp. of Qfo) if and only if all
Stiefel-Whitney numbers with w, (resp. w% ) as a factor vanish.

We turn to Q5. It again follows from Proposition B.4.1 that
PQY; Q)(t) = P(H.(BRU) : Q)(1) = (1 =) [Ja =7,
i=3

P@; Q)(t) = P(H.(BSU) : Q)(0) = [ J(1 =)7".

i=2
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Since QR is a direct summand of QU it is torsion-free. Write $2._ for the
pure subgroup (¥ ® Q) N QY generated by Q3U. It follows by comparing
Poincaré series that an element of QU is in the image of & (resp. of Q&) if
and only if all Chern numbers with c; (resp. cf) as a factor vanish.

Calculations at odd primes were made by Novikov [113]. The following is
analogous to Theorem 8.6.11 for QU.

Theorem 8.7.13  The ring @3V ® Z[%] is a polynomial algebra with one gen-
erator in each even dimension # 2. The class of a manifold M™™ is determined
by Chern numbers, and M*" qualifies as a generator if and only if s,,(c)[M] is
+rrme1 times a power of 2.

The structure at the prime 2 is not simple: a precise description of the torsion-
free quotient is given by [147, p. 265]. The torsion subgroup is described by

Theorem 8.7.14 (i) All torsion in QiU has order 2. We have

oo
P(Tors 5V Zo)(t) = (¢ + ) [ (1 = ).
i=1
(ii) The image of 257 — QfY is Kerd if 2j # 4 (mod 8) and is Imd if 2j =
4 (mod 8).

Proof We outline the main arguments involved in the proof. First recall that by
Proposition 8.7.4, QRU maps injectively to QU, so is torsion-free.

Since 2 = 0, in the sequence Q5 —> QU — QU the image of the first
map has exponent 2; the quotient by it embeds in a free group, so there is no fur-
ther torsion. More precisely, as QR vanishes in odd dimensions, the sequence
(8.7.6) reduces to

0>V SV -V 5V, 5oV —0. (8715
To calculate the 2-torsion, we again use the derived couple (8.7.9): here
d=2,J =U,sowe have

U U U U U
oA AL H A, A

Also, AY :=0(25V,) C @3V has exponent 2. Since QR vanishes in odd
dimensions, so does Hf : it follows that the map « : A2Uk_l — AZUk is an isomor-
phism. It thus follows from (8.7.15) that A, = Tors(Q3Y) and AY, | = Q5 .

We now claim that the map « : Ay , — A%, | vanishes. For AY , =
6(Q3Y ;) and Q57 , is in the image of the map 6 given by multiplication by
1>. Thus the image of « is contained in the image of #3. However by §B.3(x),
we have 73 = 0.
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The sequence (8.7.9) thus reduces to split short exact sequences
0— A5y — Hy — Af_, — 0. (8.7.16)

To calculate HY we use another sequence. Since QXU is torsion-free we have
a short exact sequence 0 — QFV 2 QR — QfY © Z, — 0, which we regard
as an exact sequence of chain complexes with 9 as differential. There is thus
an exact homology sequence, which we denote

2 9
co.—>H S HY > H S HY - ...

Now the groups HY have exponent 2 since, for each RU-manifold M, we have
d[P'(C) x M] = 2[M]. Thus the map 2 : H — HY is zero. The groups HY
and H! vanish in odd degrees, and 9 has degree —2, so the sequence reduces
to

0 — Hy — Hy — Hy_, — 0. (8.7.17)

We next compute HY . We think of QR as a polynomial subring of QV, and 9
as a derivation: a correct formulation is given in Lemma 8.7.7.

We have defined elements z,, € Q’;f;’ for n, n + 1 not powers of 2 such that
s2n(22,) is odd. For m = 2/ > 2, define

Xam = p(P"(C) x P"(C));

Xgmm—2 = dl (Pm((C) X Pm((C))

Calculations similar to those in the preceding case yield

Sm.m(€)(x4,) = 1 (mod 2) (the class 5, does not suffice here), and

$2m—1 (C)(x4m—2) =2 (mOd 4)

It follows that the z5,, X4,,—> and x4, give polynomial generators of ka/ ®
Z[%] and QU ® Z, in all dimensions except 2 and 4. Since all are in 8V, we
only need to add the class x, of P!(C) to obtain a complete set of generators of
QfU ® Zs.

We have 0z4, = Z44—2, 0X4 = Xam—2 and 0x, = 0, so if 0 were a true deriva-
tion, we would have H! polynomial with generators x, and z3, in each dimen-
sion divisible by 8. In fact it follows from Lemma 8.7.7 that the elements
hy = zp and hg, = zin ~+ 22Zan—224n (n > 2) are cycles. It follows that Hl/ is
a polynomial algebra with their classes as generators.

Further calculations using Lemma 8.7.7 exhibit elements of HY mapping to
h3 and the hg. Thus HY — H is surjective, so by the exact sequence (8.7.17),
Hj)_, vanishes and the maps H), , — H}, — H,, are isomorphisms; more-
over, HY is a polynomial algebra with the classes of h3 and the hg; as generators.
The Poincaré series of HY is thus given by P(HY; 1) = (1 — ") [[;2,(1 —
851,
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Since HY vanishes unless n is divisible by 4, A = O unlessn =1 orn =2
(mod 4). It now follows from the exact sequence (8.7.16) and the isomor-
phism Agkq — Agk that if PB(¢) denotes the Poincaré series of the even part of
AV, then P(HY; t) = (t* +t72)PB(t); thus PB(t) = t* [ [ =, (1 — t%)~!'. Hence
PAY; 1) = (t + )12, (1 — £3%)~! and the rank of Tors Q3 is as stated. [J

Further calculations yield more detailed results.

Theorem 8.7.18 [9] (i) Write S5 := S,/(Sq"). Then as S;-module,
H*(TSU; Zy) is a sum of copies of S and S; /S5 .Sq”.

(ii) The spectrum TSU is homotopy equivalent to a wedge of copies of spectra
K(Z, n) and spectra BO(k).

(iii) An SU -manifold bounds in Q3Y if and only if all its Chern numbers and
KO characteristic numbers vanish.

8.8 Groups of knots and homotopy spheres

We first consider k-connected cobordism, where the manifolds M and cobor-
disms W are to be k-connected for some integer k = 1. In this case, M is ori-
entable: we make the further convention that M is oriented.

Since the set of k-connected manifolds is not closed under disjoint union,
we define an addition on the set of cobordism classes using connected sum. We
remark that in general, the disjoint union and connected sum of two manifolds
are cobordant: a cobordism of M U M’ to M t M’ is given by taking (M x I) U
(M’ x I) and attaching a 1-handle to join M x 1 and M’ x 1.

Lemma 8.8.1 Connected sum of k-connected manifolds of a given dimension
n > 2 is a commutative associative operation with unit, compatible with cobor-
dism. The set of equivalence classes thus acquires the structure of an abelian
group 2, (k).

Proof The operation is well-defined by Theorem 2.7.4 (with the remark fol-
lowing dealing with orientation); by Proposition 2.7.6, it is commutative and
associative, and the sphere S” acts as unit. That the connected sum M #f M’ is k-
connected if M and M’ are follows if k = O from the definition, if k = 1 from the
fact that for n > 2 removing a point does not introduce a fundamental group,
and if k > 1 from the fact that removing a point does not change homology in
dimension < n.

We must next check that the operation is compatible with cobordism. Let
V and W be connected cobordisms, of dimension n + 1, and f_ : D" — 9_V,
fr+:D'"—> 0.V, g_:D"— 0_V,and g4 : D" — 9,V be used to define the
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connected sums 0_V §0_W and 9,V 9, W. Join f_(0) to f4(0) by an arc «
in V: a tubular neighbourhood of the arc gives an imbedding F' : D" x I — V
with f_ = F|D" x 0 and f; = F|D" x 1. Similarly define G: D" x I — W.
Now delete the interiors of the images of ' and G and glue the boundaries, and
we have a cobordismof _Vgd_Wtod, Vi#a . W.

The inverse M of M is as usual obtained by change of orientation. We can
regard M x I as a cobordism of M U M to the empty set. Attaching D" x I with
one end in M and one in M gives W with 9W = M t M. Now remove a disc from
the interior of W to obtain a cobordism of M t M to S™. O

For 0-connected cobordism (where we do not assume M oriented), we noted
above that disjoint union is cobordant to connected sum, so that the map
©,(0) — QY is surjective for n = 1; it is easily seen to be bijective.

For k-connected cobordism, we need the connective covers of groups and
classifying spaces. For any X we denote by X' the (k — 1)-connected cover
of X: thus the map 77,(X%) — 7,(X) is zero for r < k and an isomorphism for
r > k. Observe that BUJ%~1") = (B(J))*: we will write BJ* for B(J*), which
is k-connected.

The classifying map 7y, : M — B(O) of its normal bundle lifts to a map IA’; :
M — BO™ if M is k-connected, and the lift is unique up to homotopy if M is
(k + 1)-connected. We now claim

Theorem 8.8.2 If m > 2k + 2, there is a natural isomorphism 2,,(k) —
a3(T(0%)).

Proof Tt follows from the remark preceding the theorem that there is a natural
map ¥~ : Q,,(k) — 73(T(O0")).

By Theorem 8.1.3 the Thom construction induces a bijection from the set of
cobordism classes of m-manifolds whose stable normal bundle is induced from
BO®) with the set w3 (T(0%))).

By Theorem 7.2.1, if X is a finite CW-complex and m > 2r, any normal map
(f : M — X, v, T)isnormally cobordant to anormal map (f' : M’ — X, v, T")
such that f” is r-connected. Applying this with X (a high enough skeleton of)
BO™ and r = k + 1, we see that if m > 2k + 2 any element of 75 (T(O%)) is
represented by a manifold M" with f : M — BO*) (k + 1)-connected. It thus
follows from the exact sequence

Tt (M) = m 1 (BOW) — m i (f) — m(M) - m(BOW) — ...

that M is k-connected, so the map /% is surjective.
Similarly, given a cobordism W between two k-connected M, M’ defin-
ing the same element of €2,,(k), provided m + 1 > 2k 4+ 2 we can perform
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surgery on W, eventually making W — BO®) (k + 1)-connected and hence W
k-connected. Hence /X is injective. O

Corollary 8.8.3 Excluding small m, we have isomorphisms (1) = Q39
Qn(2) = Q,(3) = QSpin,

For we have BO" = B(S0), BO'¥ = BO® = B(Spin).

The above argument deals with the cases m > 2k + 2 using surgery below
the middle dimension. The cases m = 2k and m = 2k + 1 are of special interest.
The case m = 2k was discussed in Theorem 5.6.12.

If m < 2k a k-connected m-manifold is a homotopy sphere (terminology
introduced in §5.6), and the value of k is irrelevant to further study. From now on
we focus on homotopy spheres. We begin our treatment by deriving a number
of exact sequences: in all cases exactness will follow from the general principle
of Lemma 8.3.1. First, however, we list the types of cobordism to be considered.
In each case there is a natural definition of addition by connected sum, which
gives the set a group structure. This is treated in Lemma 8.8.1 for k-connected
cobordism and is similar in other cases. At the centre of our interest are groups
of homotopy spheres:

(6) Submanifolds ¥ C §"** with a homotopy equivalence £ — S™. We
denote the set of cobordism classes by ®* . We also consider

(f0) Submanifolds X" C §”*+* with a homotopy equivalence =" — §™ and
a framing of the normal bundle (with compatible orientation class). Here we
denote the set of cobordism classes by F©F . In parallel with these we consider

(s0) The standard submanifold $” C $"** and a framing of the normal bun-
dle (with compatible orientation class). Framings are classified up to homotopy
by 7,,(SOy), and we can identify this with the cobordism group.

(sph) Submanifolds M™ C S"*k with a framing of the normal bundle.

For a cobordism we must have a submanifold W”*! of §"** x I (equal in
case (so) to S x I) together in cases () and (f0) with a homotopy equivalence
Wl — §™ in cases (s0), (f8) and (sph) with a framing of the normal bundle
of W1 in §"*k x I in each case inducing the given structures on 9_W and
I W.

A structure of type (so) is stronger than one of type (f6) which in turn
is stronger than one of type (sph). Each of these three inclusions induces by
Lemma 8.3.1 an exact sequence, and by the Corollary to that Lemma we also
have an exact sequence of the three relative groups. We now reinterpret these.

Asin §7.8, write B(G,,) for the classifying space for spherical fibrations with
fibre $"~! and G, for the monoid of maps of §"~! to itself of degree %1, with
multiplication given by composition of maps. Fixing the orientation gives a
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submonoid SG, and a classifying space B(SG,). We write F,, C G, for the
set of base-point preserving maps S" — §” of degree £1, and SF; for those
of degree +1. The suspension of a self-map of $"~! is a self-map of the same
degree of S” which fixes a base point; thus we have an inclusion G,, C F,,. There
are corresponding classifying spaces B(F,) and B(SF,). Since all components
of Q"S", including SF,, are homotopy equivalent, we have m,(F,) = 7,4,(S").
Further discussion is given in §B.2.

Now (sph) is the cobordism group of submanifolds M™ C §”+* with a fram-
ing of the normal bundle; by Proposition 8.1.4 the group of cobordism classes is
identified with 77,4 (S) = 7,,(Q*S*) = 7,,(SF;). We now see that the (so, sph)
sequence can be identified with the exact homotopy sequence of (SFy, SOy).

The relative term for the (so, f6) sequence is represented by manifolds
W with boundary, with an assigned embedding W”+! ¢ D"t +1 with W =
S™ C St aframing of the normal bundle of W”*+! in D"+*+! and a homotopy
equivalence of W with a point. Since W is contractible, the framing of its nor-
mal bundle is unique (up to homotopy) and can be ignored. We regard D"+ +!
as the upper hemisphere of S”***! and complete W to a closed manifold
W C §"™tk+1 by attaching the standard disc D! ¢ D" *+*+! in the lower hemi-
sphere and rounding the corner. There is a natural homotopy equivalence of W
with §”+1. Conversely, given a homotopy sphere ="+ C §”+*+1 we have (by
the Disc Theorem 2.5.6) an essentially unique embedding D"+! — T+ its
neighbourhood in S”***! may be identified with a disc D"***!, and the whole
construction can be reversed. The relative group is thus identified with @fn Iy

The relative term for the (f6, sph) sequence is represented by manifolds
W with boundary, with W C D"+l framed normal bundle, and a homot-
opy equivalence dW — S™. We denote the corresponding group of cobordism
classes by P

m+1-
By Lemma 8.3.2 we now have

Proposition 8.8.4 We have a commutative braid of long exact sequences.

T T~ T

W,L(SO/C) Fn(SFk) R’;k @fz—l
Foy T (SGr, SO) Fek
P;{il @i ﬂ-n—l(SOk') ﬂ-nfl(SGk)
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For each of the above 6 sequences of groups, the natural inclusions §"** C
§nk+1 and D <+ ¢ D"H*+2 induce maps which increase k by 1. In each case
we see that for k large enough (k > n + 1 suffices), these maps are isomor-
phisms and the groups stabilise. We denote the limiting groups by omitting k
from the notation (and also the asterisk from P*). All sequences of Proposi-
tion 8.8.4 thus remain exact when we omit the affix k. We may identify ,(SG)
with the stable homotopy group 75 and the map 7,(SO) — 7,(SG) with the
classical J-homomorphism J, : 7,(SO) — n,f .

We now give calculations for the stabilised groups. By §B.3(xi) 7,(SO) is
isomorphic to Z for n = —1 (mod 4), to Z, forn = 0 or n = 1 (mod 8), and is
trivial otherwise. We proved in Proposition 7.8.4 by surgery that P, is isomor-
phic to Z for n = 0 (mod 4), to Z, for n = 2 (mod 4), and is trivial otherwise
(provided n > 5). It follows from the stabilised braid (8.8.4) that the groups ®,,
are closely related to the stable homotopy groups 7>. A first deduction is

Proposition 8.8.5 All the groups in the stabilised diagram of (8.8.4) withn > 5
are finitely generated abelian groups, and all are finite with the exceptions of
T4r—1(80), 74,(SF, SO), Py, and F Oy4,_, which have rank 1.

For the case n =4s — 1 we first consider an element y of the group
145(SF, SO) of cobordism classes of framed manifolds N with boundary dif-
feomorphic to $*~!. The boundary x € m4,_1(SO) induces an orthogonal bun-
dle £(x) over S*: we can then form the Pontrjagin class py(£(x)) and eval-
uate on the fundamental class [S*] giving an integer p,(x), say. Additiv-
ity properties of bundles and classes show that we have a homomorphism
Ps : Ta5—1(SO) — Z. According to [22], if xy generates 4, (SO) then (up
to sign) ps(xg) = ay(2s — 1)!, where we set a; =2 if s is odd and a; = 1
if s is even. Thus the image of y in 74, 1(SO) is py(x)/a,(2s — 1)! times a
generator.

On the other hand, attaching a disc to the boundary of N yields a closed man-
ifold M. The normal bundle of M is trivial except on the disc, so is induced from
a bundle over §* which we can identify with the above bundle & (x). According
to the signature theorem 8.6.7, the signature of M is given by L;(vy,)[M]. Since
all the intermediate Pontrjagin classes of vy, vanish, it follows by Lemma 8.6.8
that

Ly(vy) = 2225 — 1)Byps(x)/(29)!,

so the image of y in Py, is 2273(2%~! — 1)B,p,(x)/(2s)! times a generator.
Thus in some sense the generators in 74,1 (SO) and Py, differ by a factor
a2 72(2%~1 — 1)B, /4s. It now follows from exactness of the braid that
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Proposition 8.8.6 We have |Ou,_1| = a,2%72(2%~" — )By|7._,|/4s.

More precisely, according to Adams [5] (see also §B.3(xviii)), KerJys_;
is a subgroup of my_1(SO) of index den(B;/4s). Here, if z€ Q is
expressed as a fraction p/q with p, g € Z as small as possible, we write
p:=num(z) and ¢q :=den(z) for the numerator and denominator of z.
Thus |7rzfy_1| = den(By/4s)|Coker Jy;_1|. It also follows that py(Ker Jys_1) =
as(2s — 1)!den(B,/4s), hence the signatures of the manifolds M obtained by
closing elements of 74,(SF, SO) form the group of multiples of
a2» 1 2% — Dnum(B, /4s).

The integer m(2s) := den(B,/4s) is given by the following formula (due to
Milnor and Kervaire [102], see also Adams [4]). For n an integer and p a prime,
denote by v,(n) the greatest integer r such that p” divides n. Then

For p odd, v,(m(t)) = 1+ v,(¢) if t = 0 (mod (p — 1)), and = 0 if not.

For p =2, v,(m(t)) = 2+ vy(¢) if t is even, and = 1 if ¢ is odd.

Since Py; = 7Z, with the isomorphism given by ¢ /8, it follows that the image
of m4,(SF, SO) in P4, which is the kernel of Py, — ®4,_; is a subgroup of
index a,2>72(2%~! — 1)num(B,/4s), so this number is the order of the group
traditionally denoted bPy,, which is the kernel of the epimorphism ®4,_; —
145—1(SF, SO), the latter group having order |Coker Jy;_1|.

For other values of n, we compare ®, with 75 via the intermediary
7, (SF, SO) (or, if n =0 (mod 4), its torsion subgroup). It was shown by
Adams [5] that J, is a (split) monomorphism if # = 0 or 1 (mod 8). Thus if
n # —1 (mod 4) Tors ,,(SF, SO) is the cokernel of J,. Moreover ®, maps onto
Tors 7, (SF, SO) except perhaps when n = 2 (mod 4). In this last case, 75 maps
onto 1,(SF, SO) and we have the map K, : n,f — P, = Z,, defining the Ker-
vaire invariant of framed manifolds. Thus if » = 0 (mod 4), ®,, is isomorphic
to Tors 7,,(SF, SO); if either n = 1 (mod 4) or n = 2 (mod 4) and K,, vanishes,
®,, maps isomorphically to 7, (SF, SO).

The delicate question of deciding for which values of n K, is zero, is known
as the ‘Kervaire invariant problem’. It was shown by Browder [30] that K,
vanishes unless n 4+ 2 = 2¥2 is a power of 2. There are simple constructions
showing K, non-zero if k =0, 1 or 2 (the classical framings of the tangent
bundles of S', $ and 7 induce framings of the projective spaces, and one uses
P'(R) x P'(R), P2(R) x P3(R),and P’(R) x P’(R)); there is a somewhat less
simple example for k = 3, and a proof by strenuous calculations [17] if k = 4.
Recently it was shown by Hill, Hopkins, and Ravenel [69] that K, vanishes for
all k > 6, leaving only the case k = 5 (dimension 126) open.

A modified version of the braid (8.8.4) turns out to have better proper-
ties: we will replace the term SF; by SGy. Now m,(SGy) is the group of
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homotopy classes of maps " x S~ — §*~! with the restriction to S¥~! homo-
topic to the identity. By the Thom construction, we can identify this with cobor-
dism classes of framed manifolds M" C S" x S~! such that M" has intersec-
tion number 1 with % x S~!, or equivalently, the projection of M" on S" has
degree 1.

Correspondingly, we can interpret m,(SGy, SO;) as the group of cobor-
dism classes of framed manifolds (M", M) C (D", 3D") x S*~! such that the
projection M C §"~! x §¥~! — §"~! is a diffeomorphism and the projection
§"~1 — §¥=1 is induced by the framing. We have thus interpreted the exact
homotopy sequence of (SGy, SOy) as an exact cobordism sequence.

We now need a replacement for the group denoted P* above. Write P for
the group of cobordism classes of framed manifolds (M", 9M) C (D", dD") x
S*=1 such that the projection 9M C §"~! x §¥~! — §"~! is a homotopy equiv-
alence and the projection S"~! — §*~! is induced by the framing. We now
claim

Proposition 8.8.7 We have a commutative braid of long exact sequences.

T (SOk) T (SGr) by S
NN e
For 70 (SGh, SO) POk

/N ~ 7\

Proof The exact homotopy sequence of (SGy, SO) was described above, and
the exact sequence 7,(SO;) — FOF — ©F is as before. We next describe the
remaining maps.

First consider F®f — m,(SGy). Given a framed homotopy sphere ¥, C
§"*k take a tubular neighbourhood 7. By Proposition 5.6.6, there is a dif-
feomorphism 4 : 3T — §" x dDF: choose h such that the standard framing of
S" x 3D pulls back to the framing of T induced from that on S"**, Now the
first vector of the normal framing of ¥” induces a map f : £ — 97, and we
take h(f(=")) C S x S¥=!, with the framing induced by the remaining vectors
of the normal framing of X".

The map @’; — 1,(SGy, SOy) is defined similarly. We identify @’; with the
group of framed homotopy discs in D"** with boundary the standard §"~'. Now
follow through the same steps as above.
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The map =, (SGy, SO;) — P,’f is a forgetful map, defined by weakening the
structure.

To define PX | — FO!, we start with a framed manifold (M"*', 0M) C
(D", 9D™ 1) x §¥1 such that the projection IM C §" x S*°! — §" is a
homotopy equivalence. Map this to dM C " x S¥~! C $"** with the given
framing extended by the normal vector to §" x S¥~! in §"+*,

The maps so far defined form a commutative diagram, and we define the
remaining maps Prlf s ©@* and 7,(SGy) — P* as the composites in the
diagram. It follow easily that all four sequences have order 2. The exact-
ness of the two remaining sequences follows again (with a little care) from
Lemma 8.3.1. O

Since G, C F, C G4, the stabilisations as n — oo have the same homot-
opy groups; it follows that the same goes for the diagrams (8.8.4) and (8.8.7).

The reason why the second braid is an improvement on the first is the
following.

Proposition 8.8.8 The natural map PX — P, is surjective for k > 2 and an
isomorphism for k > 3.

Proof Recall that PX is the group of cobordism classes of framed mani-
folds (M™, dM) C (D™, dD™) x S*~! such that the projection dM C S x
Sk=1 — §m=1 is a homotopy equivalence and the projection M — S*~! is
induced by the framing.

For surjectivity, since Py, = 0, it suffices to consider the case m = 2n even.
By Proposition 7.8.3, generators of P,, are represented by framed manifolds
M constructed by attaching n-handles to D*". Since changing orientation and
forming boundary sums respect this description, it follows that all elements of
P, are so represented.

Write e; : $"~! x D" — §?"~! for the attaching maps of the handles. Since
all embeddings of $"~! in $?*~! are isotopic, there is a diffeomorphism of
the image of e; to the submanifold obtained from 0D" x D" C d(D" x D") by
rounding the corner. Thus e; extends to an embedding f; : (D", dD") x D" —
(D*", 9D*") diffeomorphic to that induced by the map D" x D" — D" round-
ing the corner.

We seek to construct a smooth embedding F : (M, dM) — (D', 3D**) x S!
such that the trivial normal bundle agrees with the given stable framing; in fact
we replace S! by I and then wrap round by r — ¢2™*, Choose distinct points
t; € I and a smooth map ¢ : S**~! — I such that the image of ¢ o ¢; is the point
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t;. We first define a continuous map Fy: it is given on D** by Fy(z) = (z, ¢(2))
and on the handle #; (identified with D" x D") by Fy(x, y) = (fi(x, ), t;).

The map Fp is not injective: each handle overlaps the core. Write v :
(D", 3D") — ([0, 11, 0) for the map given by (1 — ||x||?), and deform the map
of the handle to Fi(x, y) = (fi(x,y), t; + €v(x)), where € is small enough that
the handles remain disjoint. Then Fj is injective, but has a corner along each
copy of §"~! x §"~!. We define a map F> by rounding these corners. This
has the desired effect of deforming the interior part D" x D" of each han-
dle into the interior of D** x I, and gives the desired smooth embedding in
(D>, 9D*) x S'.

€

Figure 8.2 Embedding a plumbed manifold

We attempt to illustrate this in Figure 8.2: here the first figure represents
a disc with two handles, pictured as a basket suspended by a couple of han-
dles; the second figure indicates how these fit at the boundary. To prove injec-
tivity, suppose given a framed manifold (M™, aM) C (V, aV) with (V,dV) =
(D", dD™) x S*~! and M C S x $¥-! — §"! a homotopy equivalence,
such that M represents O in the stabilised group P,. Then there is a cobor-
dism W of M to a disc: we seek to extend the embedding of M = d_W
to (W,d.W) — (V,dV) x I, ideally such that on d.W we have a product
embedding. It is enough to consider a single r-handle attached to (the interior
of) M. In view of the clause in Theorems 7.5.2, 7.5.4 (m even), and 7.6.1 (m
odd) stating that for (simply-connected) surgery on manifolds of dimension 2n
or 2n + 1 it is sufficient to perform surgery on spheres S” with » < n, we may
suppose here that 2r < m, and that M is (» — 1)-connected.

Using the first vector of the framing, we extend the a-sphere of the handle to
anembedding ¢ : S” x I — V such that ¢(S” x {0}) is the a-sphere and the rest
of the image is disjoint from M. We next show that ¢(S” x {1}) is nullhomotopic
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in the complement V \ M of M. Since M has codimension greater than 2, the
complement is 1-connected.

We now use the hypothesis that H,,(M, oM ) — H,,(V, dV) is surjective. It
follows that H;(V, M U dV') = 0 with possible exceptions i = k,i =m + k — 1,
r+1<i<m+1—r. By the universal coefficient theorem, the same holds
for H(V, M U 3V). By duality, H;(V \ M) = 0 except perhaps for i = m — 1,
i=0,k+r—2<i<m+k—r—1.Since k > 2, V\ M is r-connected, so
our r-sphere is indeed nullhomotopic in V \ M.

We can thus extend the map ¢ on a collar neighbourhood of the boundary to
amap ¥ : (D', aD™) — (V, M) with y~!(M) = aD™*!.

The map v is covered by a stable normal framing of the handle. As in the
proof of Theorem 7.1.1, this framing determines a regular homotopy class
of immersions D'*! x D"*k="=2 . V_ We wish the immersion to restrict to
the given embedding S” x D" — M. Since m > 2r and k > 3, we have
m+k—r—2>r+4 1. Thus 7,(S0,,4+x—r—2) maps onto ,(SO), so the stable
framing induces a normal framing. It follows by Theorem 6.2.1 that the map
is homotopic (relative to its boundary) to an immersion.

If m+k— 1> 2(r+ 1) putting this map in general position makes it an
embedding; in the critical case m = 2r and k = 3, we can use the Whitney trick
(see Theorem 6.3.4 but allow boundaries) to obtain an embedding. Now using
the normal framing on this handle allows us to extend the embedding of M to
the desired embedding of M with the handle. U

Inserting this result in the braid diagram (8.8.7) together with results in § B.3
(ix) on homotopy groups of spheres, (xiv) on homotopy groups of orthogonal
groups and (xix) on 7,(SOy) — 7,(SGy), it follows that

Theorem 8.8.9 All groups in the diagram

\,
W

7T/,L+1(SGk,SOk) F@k W,L(SGk,SOk)
n+1

/

N,

\_/
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for k > 3 are finite except for
(A :n=4s+1, k=454 2: 7(SO) - FO — 71 (SG), of rank 1,

m(SG,S0) — m(SO)
(S):n=4s—1,k>2s+1: N J  ofrank I,

P - FO

(0O):n=4s—1,k<2s:P— FO — O, of rank I,
(B) :n=4s — 1, k = 4s: ‘the direct sum of the diagrams (A) and (S)’,
(C):n=4s—1, k =2s+ 1: ‘the direct sum of the diagrams (A) and (O)’.

In particular, ®§s71 has rank 1 if k < 25 + 1, and otherwise @ﬁ is finite.

We can use the above results to investigate groups of embeddings of
spheres in spheres. Denote by an the set of diffeotopy classes of embed-
dings S™ — §"*k_ Since by Lemma 2.5.11 orientation-preserving embeddings
(D"+k D™y — (™K §™) are unique up to diffeotopy, we can define a con-
nected sum of two embeddings by removing an embedded disc-pair from each,
and glueing along the boundary (with an orientation reversal). It follows that
an acquires the structure of a group.

Since diffeotopic embeddings are cobordant, there is a natural forgetful
map o : £} — ©%. By Lemma 8.3.1 the map o lies in an exact sequence
cee— R’:lerl — Efn — @’;1 — R’n‘1 — ... The relative term R’r‘thl is the set of
cobordism classes of homotopy discs A”+! ¢ D" +1 together with a diffeo-
morphism §” — 9 A"™*!_ It follows from Corollary 5.6.3 that for m > 5 A"*!
is diffeomorphic to D"l If also k > 3, it now follows from Theorem 5.6.7
(i) that A™+! C D™+ s diffeomorphic to the standard pair. Thus R, is
the cobordism group of standard pairs together with a diffeomorphism of ™
on the boundary. The embedding now plays no part, thus for m > 5, k >3
the map R’n‘1 1~ Rupi is an isomorphism. Hence R]:n 4l Z Ryt1 = 04 This
proves

Proposition 8.8.10 There is an exact sequence ...—> O,y — LK —
f -0, —> ...

Since the groups ®,, are all finite, it follows that the rank of XF is the same
as that of ®’,‘n: thusis 1 if m =4s — 1 and kK < 2s + 1, and zero otherwise.

It follows from the Whitney embedding theorem that %X = 0 for k large.
More precisely, by Theorem 6.4.11, any two embeddings of $™ in $"* are iso-
topic (and hence X vanishes) provided 2k > m + 3. However in the limiting
case 2k = m + 3 the group does not vanish: if also k is odd, it is infinite by the
above; more precisely, by [61], we have Efjf]l = Z. It was shown in [64] that
in the other critical case, £2° ; = Z,.
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8.9 Notes on Chapter 8

§8.1 The first result in this area is due to Pontrjagin [123], who succeeded in
relating framed bordism to homotopy groups of spheres. Thom’s paper [150],
as well as formally introducing the construction, obtained a transversality
theorem.

§8.2 T also believe that at least part of his motivation was the problem of
representing homology classes by embedded submanifolds.

§8.3 I do not know where it was first observed that the definition of bor-
dism naturally leads to exact sequences. The second technique was formally
introduced in [158].

§8.4 In his paper [12], Atiyah introduced bordism as a homology theory,
showed that smooth oriented manifolds are also orientable for this theory, and
made applications to bordism groups.

There are other abstract structures using bordism. Graeme Segal defined in
[134] axioms for quantum field theory, which we can summarise as follows.
A cobordism category is a category with objects (diffeomorphism classes of)
closed manifolds (of a given dimension) and morphisms (diffeotopy classes of)
bordisms: to obtain interesting examples one usually imposes extra structure:
for example, an embedded submanifold of codimension 2.

A ‘topological field theory’ is then a functor ¢ from such a category to, for
example, the category of vector spaces over C and maps: it is required also to
take disjoint unions to tensor products. Since the empty manifold is mapped to
C, if M is a closed manifold, and so a cobordism from the empty set to itself,
¢(M) is a linear map C — C: multiplication by a number, giving an invariant
a(M) € C. Non-trivial examples are not easy to construct.

§8.5 The main reference for this section is the book [38], which has a
wealth of information about actions of finite cyclic groups. Chapter IV of that
book contains the calculation of equivariant bordism groups of Z,-actions. The
Z,-actions are discussed in Chapter VII: the results are, of course, not com-
plete. However many geometrical consequences of their calculations are given
throughout the book.

§8.6 In his original 1954 paper [150], as well as introducing transversality
and using it to reduce the calculation of cobordism groups to a homotopy prob-
lem, Thom was able to give the full calculation of Q*O, using Serre’s calculation
[135] of cohomology of Eilenberg-MacLane spaces, and to calculate 25¢ @ Q
using Proposition B.4.1. Milnor’s paper [96] followed in 1960 and Novikov’s
[113] appeared in 1962. Milnor’s book [103] gives an alternative introduction to
characteristic classes, the calculation of the cohomology of classifying spaces,
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cobordism and the calculation of cobordism rings, including the Hirzebruch
signature theorem.

Unitary bordism has more structure than the calculation in Theorem 8.6.11
shows. One aspect of this is:

Theorem 8.9.1 There is an isomorphism of the universal formal group over
Zon QY.

We explain this statement. If 7 is a connected 1-dimensional analytic Lie
group with multiplication u : T x T — T, and x a local coordinate at the unit,
we can expand p o x as a power series F(x, y) with F' € R[[x, y]]. The group
properties are reflected in the identities

F(x,0)=F0,x)=x, F(kx,y)=F(@,x), FF(xy),z)=Fx F(@,2).

One thus defines a formal group over a ring R as a formal power series in 2 vari-
ables F'(x, y), with constant term 0, satisfying these rules. The simplest exam-
ples are F,.(x,y) =x+y+ rxyforr € R.

Now consider P := P*°(C) = B(U,). There is a multiplication map u : P x
P — P induced, for example, by tensor product of line bundles.

Since P has a cell structure with one cell in each even dimension we can iden-
tify QU (P) with QU[[z]], with a generator z € QY (B(U,)) which can be taken
as defined by the inclusion P'(C) C P®(C). Now u*(z) € QU[[x, y]] defines
a formal group.

For the proof of Theorem 8.9.1 we refer to Quillen [127]. This result is the
jumping off point for the use of complex cobordism theory as a tool for elabo-
rate calculations in homotopy theory. It is used to set up the so-called Adams—
Novikov spectral sequence. One can localise Y homology theory at a prime
p; it then splits into the so-called BP-theories with much smaller coefficient
group (polynomial with generators only in dimensions p"(2p — 2)). We refer
to [129] for an introduction to this area.

§8.7 Certain exact sequences were devised by the author [157] to relate Q€
and 59, as a means of calculating the latter. A more abstract proof was found
by Atiyah [12] (who invented bordism theory for the purpose). My original
insight was that the apparently complicated structure of 3¢ might be the sim-
ilar to the structure of H*(X; Z) for a space X such that each of H*(X : Q) and
H*(X; Zy) is a polynomial ring.

The original exact sequences were extended by Conner and Floyd to the case
of QU and %Y, and used in the calculations of the latter, with details in [39].
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Further calculations of Q5 were obtained by Anderson, Brown, and Peterson
[9].

The groups QSPin were calculated, also by Anderson, Brown, and Peter-
son, in [10]. They first determine the structure of H*(TSpin; Z,) as a mod-
ule over the Steenrod algebra: it is a sum of copies of S, S»/S»(S¢%) and
S>/8>(8¢", Sq?). They deduce that the Thom spectrum is homotopy equiva-
lent to a wedge of spectra of type K(Z,, n) and BO(n); and thence that cobor-
dism class in 57" is determines by Stiefel-Whitney and KO-characteristic
numbers.

Complete results are also available for Spin: here cobordism class is deter-
mined by Stiefel-Whitney numbers and characteristic numbers in Q: calcula-
tions for this case can be reduced to those for Spin in view of the isomorphism
Q" = (P (C)).

In addition to the original references, Stong’s book [147] aims to give com-
plete details of all the calculations involved in determining the cobordism
groups mentioned above, and their interrelations with each other and with
framed bordism.

For Qi”, it was again shown in [113] that the tensor product by Z[%] is a
polynomial algebra. Extensive calculations have been made by Kochman [80].

§8.8 The sequences 8.8.4 were extracted from the methods introduced by
Milnor and Kervaire [79] for calculating the groups ®,,. Our account follows
the presentation by Levine [85], which in turn combined the earlier work of
Milnor and Kervaire (see, for example, [79]) with ideas of Haefliger [61].

Milnor’s discovery [92] of non-diffeomorphic differential structures on the
topological manifold S7 was a great surprise: up to then, though smooth and
piecewise linear (PL) structures were used, the philosophy was that one was
really studying problems in pure topology. Likewise the existence of non-trivial
embeddings of spheres in spheres contrasts with the theorem of Stallings [143]
(in the topological category) and Zeeman [183] (in the piecewise linear cate-
gory) that embeddings of spheres in spheres, in codimension at least 3, are topo-
logically unknotted. It is thus possible to regard all the results about embeddings
of spheres in spheres as a manifestation of smoothing theory.

Explicit results of this kind were obtained by Rourke and Sanderson. In the
first of the three papers [130] they set out to construct a theory of neighbour-
hoods of locally flat submanifolds of PL manifolds to play the role in PL topol-
ogy of the tubular neighbourhoods in differential topology. By introducing a
notion of ‘block bundles’ they constructed a (simplicial) space BFLk such that
for any PL manifold M™ the set of isomorphism classes of regular neighbour-
hoods of M embedded locally flatly in PL (m 4+ k)-manifolds maps bijectively
to the homotopy set [M : Bﬁk].
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In the third paper, after defining various simplicial spaces, in particular a
piecewise differentiable version BPDy of BPL; which is homotopy equivalent
to it, they interpret the braid (8.8.7) as the homotopy braid coming from the
inclusions B(SOy) C Bﬁk C B(SGy).

In the subsequent paper [131], Rourke and Sanderson construct a theory of
neighbourhoods of locally flat submanifolds of topological manifolds. A start-
ing point is the notion of microbundle introduced by Milnor [99]. Following a
subsequent idea of Haefliger, they consider a microbundle with fibre dimension
(n + k) together with a submicrobundle with fibre dimension n. From these they
form a (simplicial) classifying space BTop), ,, and establish the existence of a
(Kan) fibration Top,_, — Top,, whose fibre is denoted Top,t,,. An (n + k)
dimensional neighbourhood of a manifold N” induces a lift of N — BTop, to
a cross-section of the induced fibration.

They then establish that if { < k and either n <2 or n+ k > 5 the map
wi(Topp+xx) — mi(Topy) is an isomorphism. It follows that with this dimen-
sion restriction, neighbourhoods of N are classified by maps N — BTopy. This
leads to obstruction theories to the existence of normal microbundles or block
bundles with fibre D* or R¥.

It also follows that the above results in the PL case carry over to the Top case.
Thus one can identify FOX with 7,,(STopy), ®F with 7,(STopy, SOy), and P
with 7,,(SGy, STopy). Thus the stability theorem Proposition 8.8.8 establishes
a homotopy pullback diagram

STopr — SG;
! i,
STop — SG

and the exact sequence of Proposition 8.8.10 interprets ¥ as the homotopy
group of the diagram
SO, — STopy

\ b
SO — STop

and hence of the diagram

SOy — SGi
U o
SO — SG

This final result had been obtained by Haefliger in [64].
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Appendix A

Topology

A.1 Definitions

A topology on a set X is a collection U/ of subsets, called open sets, such that
X € U, the union of any subfamily of ¢/ belongs to I/, and the intersection of
two elements of U/ also belongs to /. A topology can be defined by prescribing
a set V of subsets of X to be a ‘subbase’ of open sets: then define U/ to consist
of arbitrary unions of finite intersections of elements of V. A set W is a base
of open sets if every open set is a union of elements of W.

A subset F of X is closed if its complement X \ F is open. If A is any subset
of X (in particular, if A is a point) a subset V of X is a neighbourhood of A if
there is an open set U withA C U C V.

If Y C X is a subset of a space X with a topology U, the subspace topology
on Y is given by taking as open sets the U NY withU € U.

A topology is said to be Hausdorff if for any x| # x, € X we can find
Uy, U, € U with x; € Uy, x, € U, and Uy, U, disjoint, i.e. Uy N U, = @. This
is a rather weak condition, and all spaces we will consider are Hausdorff. In a
Hausdorff space, each point is a closed set. There are also stricter separation
conditions (which hold for smooth manifolds): a topology is completely regular
if any point x and closed set F' not containing it are contained in disjoint open
sets, and normal if disjoint closed sets F}, F; are contained in disjoint open sets
U, Uy € Uu.

A mapping f: X — Y between two topological spaces is continuous if
whenever V is open in Y, f~1(V) is open in X. It is a homeomorphism if f
is bijective and both f and f~! are continuous. We call f an embedding if it is
injective and gives a homeomorphism between X and f(X) with the subspace
topology.

296
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An important condition on a topology is the existence of a countable base of
open sets. This holds for R” since we can take the balls with rational radii and
centres having rational coordinates.

A setU = {U, | € A} of subsets of X is a covering if | J,., Uy = X it is
an open covering if each U, is open in X, and it is locally finite if each point
of X has a neighbourhood intersecting only a finite number of the U,. A cov-
ering V = {Vg | B € B} of X refines U if for each $ there is an o such that
Vg C U,.

The space X is compact if for every open covering U, a finite subset of I/
already covers X. It is locally compact if every neighbourhood of a point con-
tains a compact neighbourhood. Since any point has a neighbourhood which is
a disc, any manifold is locally compact. A space is paracompact if every open
covering has a locally finite refinement by an open covering.

Any compact subset K of a Hausdorff space X is closed. For if x ¢ K, then
for each k € K, x and k have disjoint neighbourhoods U,, V,. The K NV, form
an open cover of K, so there is a finite subcover. The intersection of the corre-
sponding U, is an open neighbourhood of x disjoint from K.

If {U,} is a locally finite family of subsets of X and K C X is compact, then
K has a neighbourhood intersecting only finitely many of the U,,. For each point
k € K has such an open neighbourhood N;; we may choose a finite subset of
the N, which cover K, and their union is a neighbourhood of K with the desired
property.

If f: X — Y is continuous and K C X is compact, the image f(K) is com-
pact. For if {U,} is an open cover of f(K) we can write U, = f(K) NV, with
V, open in Y. Since f is continuous, f~'(V,) is open in X, and these give an
open covering of K. Taking a finite subcovering here gives a finite subcover of
{Ua}.

Thus if K is a compact space and f : K — Y is continuous, f takes closed
sets to closed sets, so if f is bijective it is a homeomorphism; if f is injective,
it is an embedding.

Lemma A.1.1 IfX is a locally compact space any neighbourhood of a com-
pact set K C X contains a compact neighbourhood of K.

Proof Let U be the given neighbourhood of K: then U is a neighbourhood of
each x € K, so we can find neighbourhoods A,, B,, C, of x in X with C, C
B, C A, C U and A,, C, open and B, compact. Since the open sets C, cover
the compact set K, there is a finite subcover {C,,}. The (finite) union of the By,
is compact and contains the open neighbourhood | J, Cy, of K. O
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Taking K as a point x € X, any open neighbourhood A, of x € X contains
a compact neighbourhood B,, which contains an open neighbourhood C,: and
SO on.

The product [ | A; of a family of spaces has a topology defined by the subbase
consisting of products [ ] U; with U; open in A; for each i and U; = A; for all but
finitely many. If each A; is compact, so is [ [; A;.

The inverse limit l(ln A;of asequence A 4 LN A; (i = 1)isdefined to be the
subset of the product [ A; with «;(x;41) = x; for each i. If the A; are topological
spaces, it inherits a topology as a subspace of the product.

A.2 Topology of metric spaces

A metric on a set X is a mapping p : X x X — R such that p(x, y) > 0 for all
x,y € X, p(x,y)=01if and only if x =y, and p(x, z) < p(x,y) + p(y, 2) for
all x, y and z € X. This defines a topology with a base consisting of the sets
{x|p(x,y) <d}forall y € X, d > 0. Equivalently, a subset U C X is open if,
for each x € U, there exists ¢ > 0 such that p(x, y) < ¢ implies y € U.

We have seen in Theorem 2.1.1 that smooth manifolds are metric as topo-
logical spaces.

The prime example of a metric space is R", with points x = (x, ..., x,) and
distance function p(x, y) = |lx — y|| = />_j(x; — y;)*. The basic examples of
topological spaces are subsets of R” with the topology given by the induced
metric. We are not concerned with arbitrary subsets: more typical are polyhedra,
or subsets defined by vanishing of a certain number of polynomial functions.
However, we will need the general terminology as we will also need to consider
spaces of mappings.

In a metric space X, we define a sequence {x, } of points to converge to a limit
Xoo if p(Xy, Xoo) = 0 asn — oo. The limit, if it exists, is unique, since if y were
another limit we would have p(y, xoo) = 0. We call a metric space X complete
if it satisfies Cauchy’s convergence condition, namely that for any sequence
X, € X such that p(x,,, x,) — 0asm, n — oo there exists a limit point xo, € X
such that p(x,, Xoo) — 0 as n — oo.

For metric spaces X, topological conditions can be expressed in terms of
convergence of sequences; for example, f : X — Y is continuous iff for all
Xx; — x € x we have f(x;) — f(x).

If X is a metric space, x € X, F C X is closed, and x ¢ F, then x has a
neighbourhood disjoint from F, so there exists ¢ > 0 such that y € F implies
px,y) > ¢,s0 p(x, F) := inf{p(x, y) | y € F} is strictly positive. For any A C
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X, p(x,A) = 0 if and only if x is in the closure of A if and only if there is a
sequence a; € A with a; — x.

Clearly |p(x, F) — p(y, F)| < p(x,y), so the map x — p(x, F) is continu-
ous. If F and F’ are disjoint closed sets, there are disjoint open neighbourhoods
G :={x|p(x, F) < p(x, F")} of F and similarly for G’. Hence any metric space
is normal. It may be that p(F, F') = 0: for example, consider F = {(x,y) €
R? | xy = 1} and F’ = {(x, y) € R? |y = 0}. However if K is compact and dis-
joint from F we have p(F, K) > 0, for the image of K by the continuous map
x = p(F, x) is a closed subset of R not containing {0}. Even if p(F, F’) = 0,
the formula s(P) := p(P, F)/(p(P, F) + p(P, F')) defines a continuous map
s:X — I'withs(F)=0and s(F') = 1.

A metric space K is compact if and only if every sequence has a convergent
subsequence. To see this, first observe that if x; — y, then the set whose ele-
ments are the x; and y is compact, for given any open cover, one of the open sets
of the cover contains y, hence all but finitely many of the x;. Now if {x;} has no
convergent subsequence, the set _J ;{x;} is closed, its complement U is open, and
{U U {x;}} is an open cover of K with no finite subcover. Conversely, if there is
a cover with no finite subcover, there is a countable one {U,} and if we choose
X, € U, <, U, if a subsequence converged to y € K we would have y € U, for
some 7 and then U, would contain all but finitely many of the subsequence.

From this, or directly, it follows that the direct product of two, or indeed of
any family of compact spaces is compact.

We will call a sequence {x,,} with no convergent subsequence discrete. If {x,}
is a discrete sequence, the set having these as elements is a closed set.

Lemma A.2.1 Let f:A X B— C be a continuous map of compact metric
spaces. Then for any € > O there exists § > O such that p(b,b') < § implies
that p(f(a, b), f(a, b)) < e forall a € A.

Proof Suppose not. Then there exist ¢ > 0 and sequences b,, b, € B with
p(by, b)) < L and a, € A with p(f(an, by), f(an. b)) > &. In view of com-
pactness, these all have convergent subsequences; passing to these, we may
suppose b, — b, b, — b’ and a, — a. It follows that p(b,b') =0, so b = V'
and by continuity that p(f(a, b), f(a, b)) > ¢, a contradiction. O]

The notion of compactness for spaces is accompanied by the important
notion of properness for maps.

Lemma A.2.2 The following conditions on amap f : X — Y of metric spaces
are equivalent:
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(i) f is closed and for eachy € Y, f~'(y) is compact;

(ii) every sequence x; € X such that f(x;) converges has a convergent
subsequence;

(iii) for each compact subset K of Y, f~(K) is compact.

A map is said to be proper if it satisfies these conditions.

Proof (i) = (ii) Suppose (i) holds, that {x,} is discrete, but that f(x,) con-
verges to a limit y. Since C = {x,, |n € N} is closed, so is f(C), and since
f(x,) = ¥,y € C. The same argument shows that for any subsequence {x,,}
of {x,} we have y = f(x,,) for some k. Thus y = f(x,) for all but finitely many
n; hence f~!(y) contains a discrete sequence, contradicting its compactness.

(if) = (iii) Suppose (ii) holds, that K C Y is compact, and that FU(K) is
not. Then £~ '(K) contains a discrete sequence {x,}. Since {f(x,)} lies in the
compact set K, it has a convergent subsequence. It follows from (ii) that {x,}
has a convergent subsequence, so is not discrete.

(iii) = (i) It follows at once from (iii) that preimages of points are compact.
Let C be closed in X and f(x,) be a sequence of points of f(C) converging
to a limit y. Then the set K consisting of y and the points f(x,) is compact,
so by (iii) f~!(K) is compact. The sequence x, of points in this compact set
has a convergent subsequence x,, with limit x, say; as C is closed, x € C. Thus

f(xn,) = f(x); hencey = f(x) € f(C). O

It follows from the characterisation (iii) that the composite of two proper
maps is proper. Also since the product of compact spaces is compact, for any X
and compact K, the projection K x X — X is proper. Since every closed subset
of a compact space is compact, any continuous map f : K — Y with K compact
is proper.

Lemma A.2.3 A proper injective map f : X — Y of Hausdorff spaces is an
embedding.

Proof Replacing Y by f(X), we may suppose f bijective. But now f takes
closed sets to closed sets, hence also open sets to open sets, so is a homeomor-
phism. O

We now give some results for metric spaces which are useful for proving
existence of embeddings when we weaken the requirement of compactness.

Lemma A.2.4 (i) Let Y be a metric space, X a closed subset. For any open
neighbourhood U of X in'Y, there is a positive continuous function f on X such
that ifx € X and p(x,y) < f(x), we have y € U.
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(ii) If X is a compact subset of the metric space Y, any open neighbourhood
U of X inY contains an e-neighbourhood for some & > 0.

Proof (i) Define f(x) = p(x,Y \ U): then |f(x) — f(X')| < p(x,x'), so f is
continuous: it is non-zero and satisfies the condition.
(ii) Take &€ = inf f, where f is given by (i). O

We may apply this result in particular when ¥ = X x X with X embedded as
the diagonal A(X). Thus if X is compact, there exists ¢ > 0 such that p(x, y) <
& = (x,y) € U. Combining these ideas gives

Lemma A.2.5 [f X is a compact subset of the metric space Y, and U an
open neighbourhood of X x X in Y x Y, then for some ¢ > 0, if V is the e-
neighbourhood of X in Y, U contains V x V.

Proof Take e = %p(X x X, ¥ xY\U)). Thenif p(v;,X) <&, p(v2,X) < ¢
we have p((01,02), X X X) <2 =pX x X, (Y xY \U)), so (v, v2) does
notlieinY x Y\ U. O

Corollary A.2.6 Let Y be a metric space, f :Y — Z a map such that each

P €Y has a neighbourhood Up with f|Up an embedding, and X C Y such that

f1X is injective. Then X has a neighbourhoodV inY such that f|V is injective.
If also each f(Up) is open, f|V is an embedding.

Proof Let D ={(y1,y2) :y1 # 2, f(y1) = f(y2)} CY x Y. Since fIX is
injective, D is disjoint from X x X. The closure D is contained in the closed
subset defined by f(y;) = f(32), which is equal to D U A(Y). But by hypoth-
esis, each point (P, P) has a neighbourhood Up x Up disjoint from D. Thus
D is disjoint from A(Y), so D is closed. Now apply Lemma A.2.5, taking
U =Y x Y\ D: this gives a neighbourhood V of X such that V x V does not
meet D, so f|V is injective.

As each f|Up is an embedding, f induces a homeomorphism between Up
and f(Up) with the subspace topology. Thus the inverse map is continuous on
f(Up), which is open in f(V). Thus it is continuous at each point of f(V). [

The following can be used to replace Theorem 1.1.4, which we proved for
smooth manifolds.

Proposition A.2.7 Suppose X locally compact and a countable union of com-
pact subsets. Then there exist coverings by sets F, C G, with each F, compact,
each G, open, {G,} locally finite, and | J, F, = X.

Proof By Proposition 1.1.3, we can find compact subsets C,, and open sub-
sets B, 1 such that X = J, G, and foralln > 1, G, C B, ;1 C Gy It now
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sufficestoset F;, := C41 \ B, _ 1 andG, =B, 3 \ C,,—1: these are locally finite
since any x € X belongs to some C, \ C,—_1, so the open set Bn+% \C,_1is a
neighbourhood of x, and meets Gy only if n —2 < N <n+ 1. O

The relation between paracompactness and countability is given by

Proposition A.2.8 (i) If each component of X is open, X is paracompact if
and only if each component is.

(ii) A connected locally compact space X is paracompact if and only if it is
a countable union of compact subsets.

Proof (i) is immediate since an open cover of X induces (and is induced by)
open covers of each of its components.

(ii) If X is paracompact, the open covering by neighbourhoods of points with
compact closures has a locally finite refinement. Since these sets have compact
closures, each meets only finitely many others. Starting with one such set U,
only finitely many others meet it; only finitely many meet one of the above, and
so on. But since X is connected, each U, is connected to Uy by a finite chain.
Thus there are only countably many U,, and X is the union of their (compact)
closures.

Conversely if X = J,. U, is a countable union, setting V,, := |y, Ui
we may assume the seque;lce V, increasing. Any compact subset is covered by
the U,, hence by a finite subset, hence is contained in some V;,. Each point of V,,
has a compact neighbourhood; V;, is covered by these neighbourhoods, hence by
finitely many. Their union is compact, so is contained in some V,,. Thus, passing
to a subsequence, we may suppose that V,,; contains an open neighbourhood
of V,,. Now any open cover of X induces one of the compact set V., \ IntV,,
which has a finite refinement. The union of all these refines the given cover,
covers all of X, and is locally finite since any point is in some V,.;1 \ IntV,, so
has a neighbourhood contained in V,,, and disjoint from V,,_;. O

The following useful result has a different nature.

Proposition A.2.9 If X is a finite dimensional metric space, any open covering
{Uy} has a finite dimensional refinement. More precisely, there exist an open
covering {S; | j € J} of X, with each S; contained in U, for some o, and a map
d:J—{0,...,N}such thatifd(j) = d(j'), j # j thenS;NS; = 0.

‘We omit the proof, which is given by Hurewicz and Wallman on [76, p. 54].
To understand the result, the reader should consider the picture of a simplicial
complex K of dimension N: each simplex of dimension r admits coordinates
{x0, ..., x} withx; > 0, Zi x; = 1,and S, (K) is a union of sets contained in the
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interior of each r-simplex. Replace this simplicial complex K by its barycentric
subdivision K’: each vertex V of this is labelled by the dimension d(V') of the
simplex of which V is the barycentre. Now map each point of K’ to the nearest
vertex: more precisely, define an open neighbourhood of the vertex V to be

N(V):={x e K'| (YW # V)p(x,V) = p(x, W) = 27V},

where W runs over the vertices of K'. Now set S(K) := J{N(V) |d(V) =r}:a
disjoint union of the neighbourhoods N(V) withd(V) = r. Nowif f : X — K,
define S,(X) := f~!(S.(K)) to obtain subsets with the desired properties.

Notes on this section. The results on compactness and proper maps can be
extended to general (not metric) topological spaces (see [24, §12]).

A closer study of the notion of properness is also given in [47, §3.2], using
the following concept. For any map f : X — Y, define the improper set Z(f)
as the set of y € Y such that there is a discrete sequence {x, | n € N} on X with
f(x,) — . This is the smallest closed subset of Y such that the restriction of f
toamap X \ f~'(Z) — Y \ Zis proper: thus is empty if and only if f is proper.

A.3 Proper group actions

A (left) action of a group G on a set X is a map ¢ : G X X — X such that
¢(1,x) =xforall x € X and ¢(g, ¢(h,x)) = ¢p(gh,x)forallx e X and g, h €
G. We usually denote ¢(g, x) by g.x. We are really only interested in smooth
group actions, so X will be a Hausdorff space throughout.

Given an action ¢, the isotropy group of x € X is G, :={g € G| gx = x}.
The orbit of x is G.x := {g.x| g € G}. The action induces a bijection G/G, —
G.x since

gx=hxeh'gx=xo h'ge G, & hG, = gG,.

Equivalently, the map ¢, : G — X defined by ¢,(g) := g.x induces an injection
of G/G, into X.

Given a left group action, we denote the set of orbits by G\X and the pro-
jection by ¢ : X — G\X. We give G\X the quotient topology and call it the
orbit space. The map g is open, for if U is open in X, ¢~ (q¢(U)) = UgEG gU,
a union of open sets, hence open; by the definition of quotient topology, g(U)
is open.

Proposition A.3.1 Let ¢ : G x X — X be a group action. Then the following
are equivalent:
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(i) The map (¢, ) : G x X — X x X (where w denotes the projection) is a
proper map;

(ii) (¢, ) is closed and all isotropy groups G, are compact;

(iii) for any compact subsets K, L C X, Tx :={ge G|gKNL # ¥} is
compact.

Proof (i) = (ii) since G, x {x} is the preimage of (x, x) under (¢, 7).

(if) = (i) since the preimage of (y, x) is empty if y & G.x, and if y = g.x is
the coset gG,, homeomorphic to G,.

Now by Lemma A.2.2, (i) is equivalent to the condition that for any com-
pact subset of X x X, its preimage under (¢, ) is compact. It is sufficient to
consider subsets of the form L x K, where K and L are compact subsets of X.
We have (¢, 1) '(L x K) = {(g,x)| gx € L,x € K} C T x K. Thus if Tx 1
is compact, so is this (closed) subset of it; and if this set is compact, so is its
projection on the first factor, which is Tk .. O

A group action will be called proper if it satisfies the equivalent conditions
of Proposition A.3.1. It is not true that for any proper group action ¢ itself is a
closed map: consider, for example, G = X = R with action by translation.

Lemma A.3.2 (i) A group action of a compact group is proper.
(ii) Given two Lie subgroups H, K of G with K compact, the natural action
of H on the coset space G/K is proper.

Proof (i) It will suffice to show that the preimage of a compact C C X x X is
compact. The second projection C;, of C is compact, and the preimage of C is
a closed subset of the compact set G x C,.

(ii) It is enough to show that the action of G on G/K is proper. Any compact
subset C of G/K x G/K is a subset of some C; x C, with each C; compact,
and the preimage of C; in G is a compact set B;. The image of B; x B, by the
map (x,y) — xy~! is a compact set B. Now the preimage of C in G x G/K is
a closed subset of the compact set B x C,. O

Proposition A.3.3 Let ¢ : G x X — X be a proper group action and x € X.
Then

(i) the isotropy group G, is compact;

(ii) the map ¢, : G — X given by ¢.(g) = g.x is proper;

(iii) the orbit G.x is a closed subset of X;

(iv) the induced map G/G, — G.x is a homeomorphism.

Proof (i) G, x {x} is the preimage of the point (x, x) (a compact set) under the
proper map (¢, 7).
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(i) This is a closed map as it is the restriction of (¢, i) to the closed subset
G x {x}. The preimage of a compact set K is the preimage of K x {x} under
(¢, ), so is compact.

(iii) It is the image of G under the proper, hence closed map ¢,.

(iv) This map is bijective by construction, continuous since ¢, is, and by the
definition of the quotient topology, and closed since ¢ is. O

Proposition A.3.4 Let¢ : G x X — X be a smooth proper group action. Then
the quotient space G\X is Hausdorff, locally compact, and paracompact.

Proof Write A for the diagonal in G\X x G\X. Since (¢, ) is closed, C :=
{(x,gx)|x € X} is closed in X x X. Now C = (¢, ¢)~'(A), and since G\X x
G\X has the quotient topology, it follows that A is closed in G\X x G\X. Thus
G\X is Hausdorff.

By Theorem 3.3.5, any point of X has an invariant neighbourhood of the
form j(G xy V) with H € G a compact subgroup and V a disc on which H
acts orthogonally. Thus any point of G\X has a neighbourhood of the form
H\V, which is compact. So G\X is locally compact.

By Proposition A.2.8, paracompactness will follow provided G\X is a count-
able union of compact subsets. But this follows since X is such a union, and the
image of a compact set is compact. O

For the special case when G is compact, we have

Proposition A.3.5 If¢ : G x X — X is a group action with G compact, then
(i) the map ¢ is a proper map;
(ii) the action is proper;
(iii) the map q : X — X/G is proper;
(iv) for any Y C X, any neighbourhood of Y contains a G-invariant neigh-
bourhood.

Proof (i) Suppose F a closed subset of G x X: we want to prove that any limit
point x of ¢(F) belongs to ¢(F). Suppose (g;, x;) € F and g;.x; — x. Since G
is compact, {g;} has a convergent subsequence. Passing to this subsequence, we
may write g; — g. Then x; = gi’l.(g,-.x,-) — y:= g '.x. Thus (g, x;,) — (g, ),
s0(g,y) € Fandx = g.y € ¢(F).

(i) Similarly if (g;, x;) € F and (g;.x;, x;) = (3, x) we have x; — x and may
suppose g; — g; thus g.x =y, (g, x) € F and (y, x) = (¢, w)(g, x).

(ii1) The preimage under g of a point g(x) is the orbit G.x, which is compact
since G is. Now suppose F is closed in X: then G x F is closed in G x X;
since by (i) ¢ is proper, G.F = ¢(G x F)is closed in X. Now by the definition
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of quotient topology, ¢(F) is closed in X/G since ¢~ ' (¢(F)) = G.F is closed
in X.

(iv) Let U be an open set containing Y. Then W := X \ ¢ '¢(X \ U) is G-
invariant and contained in U. Since ¢ is proper X \ U is closed, thus W is
open. O

A similar argument shows that in general if K C G is compact then the
restriction of ¢ to K x X — X is proper, and hence if A C X is closed (com-
pact) so is K.A.

Proposition A.3.6 Let G act properly on M and p be a G-invariant metric on
M. Define p : G\M x G\M — R by p(G.x, G.y) := infeec p(x, g&y). Then p
is a metric on G\M.

Proof Since the action is proper, the orbit G.y is closed. Thus if x € G.y,
p(x,G.y) > 0,i.e. G.x # G.y implies p(G.x, G.y) # 0.

For any x, y, z € M and any ¢ > 0 we can choose g, ¢ € G with p(x, g.y) <
0(G.x,Gy)+¢eand p(y, g.2) < p(G.y, G.z) + &. Thus

p(G.x,G.z) < p(x, g¢'.2) < p(x, gy) + p(g.y, 8¢ -2),
and this is equal to

p(x, 8y) + p(y, &.2) < p(G.x, Gy) + p(G.y, G.2) + 2e.
Since this holds for any & >0, we have p(G.x,G.2) < p(Gx, Gy)+
2(G.y, G.z2), so the triangle inequality holds. O

Note As for the definition of proper maps, one can define and study a ‘bad
set’. If G is a locally compact group acting on a Hausdorff space X, then x € X
is a wandering point if it has a neighbourhood V, such that {g € G| V,.g NV, #
&} has compact closure, or equivalently, if there exists a compact subset K C G
such that g ¢ K implies V,.g NV, = &. The set Q(X) of all wandering points
is open, and the action of G on 2(X) is proper; the action on X is proper if and
only if Q2(X) = X. In the case when G is a discrete group, the term ‘properly
discontinuous’ is often used instead of ‘proper’.

A.4 Mapping spaces

We begin by discussing topologies on the set C°(X,Y) of continuous maps
between two topological spaces X and Y. We are only interested here in the
case when X and Y are manifolds, and hence metrisable.

Perhaps the most commonly used topology on function spaces is the so-
called compact-open topology, which we call the C° topology. This is the
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topology on C°(X, Y) defined by taking the sets
AWK, U):={f| f(K) cU} with K C X compact, U C Y open

as a sub-base of open sets. It can be described as the topology of uniform con-
vergence of f on compact sets.

There is also the fine topology (or fine C° topology), which we define by
taking the

BU) ={f|(1 x AHX)CcU} withUopeninX xY
as a base of open sets.

Lemma A.4.1 (i) The sets I({Ky, Uy}) := (), A(Ky. Uy), with K, C X com-
pact, U, CY open, {Ky} locally finite, are a subbase for the fine topology.
(ii) For f € C%(X,Y) and p a metric on Y, the sets

J(f k) :={g € C°X,Y) | (Vx € X) p(f(x), g(x)) < k(x)},
with k € C°(X,R.y), are a base of neighbourhoods of f in the fine topology.

Proof We have J(f,k) = B(U), where U = {(x,y) e X x Y | p(y, f(x)) <
k(x)}, hence J(f, k) is open. That these give a base of neighbourhoods of f
follows by applying Lemma A.2.4 to neighbourhoods of the graph of f in
X xY.

The set A(K,, U, ) is the preimage by 1 x f of the open subset

(X\Ky) xY) U (X xUy)

of X x Y. Any finite intersection of these subsets is thus also open. But by
hypothesis, any x € X has an open neighbourhood U, intersecting K,, for only
finitely many «. Thus the intersection of U, x Y with I({K,, U,}) is equal to its
intersection with a finite number of the A(K,, U, ) and hence is open. It follows
that I({K,, U,}) is open.

For the converse, it will suffice to check that any neighbourhood J(f, k) of
f contains one of the form I({K,, U, }). It will suffice if the K, cover X and z €
Ky, y € U, implies p(f(2),y) < k(z). For each x, set U, := {y | p(y, f(x)) <
1k(x)}, choose a compact neighbourhood K, C f~'(Uy) N {z|k(z) > 3k(x)}
now let {K,} be a locally finite subcover of the sets K. [

If X is compact, the fine topology, the C° topology and the topology of uni-
form convergence are the same.

For when X is compact, the functions k in J(f, k) have positive lower bounds,
so the base of neighbourhoods J(f, k) is equivalent to the base of neighbour-
hoods J(f, c¢) (c constant), which defines the uniform topology.
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Both topologies are Hausdorff; indeed completely regular.

We will shortly see that the C° topology is metrisable, hence Hausdorff and
normal.

For the fine topology, any closed set C not containing f is disjoint from
some J(f, k), so J(f, %k) is an open set containing f disjoint from the open
set {g € COX,Y) | (Vx € X) p(f(x), g(x)) > %k(x)} which contains C.

If X is not compact, the fine topology is very large, and the two topologies
are distinct.

Proposition A.4.2 (i) The space C°(X, Y) with the C° topology has a complete
metric.

(ii) A sequence of maps which converges in the fine topology is eventually
constant outside a compact set.

(iii) If X is not compact, the fine topology on C°(X, Y) is not metrisable, and
does not admit a countable base, even locally.

Proof (i) First suppose X compact, then choose a complete metric p on ¥ and
take the uniform metric p(f, g) = sup,.x p(f(x), g(x)). This is complete since
if { f,,} is a Cauchy sequence, so is each { f,,(x)}, which thus converges to a limit
f(x), and f is continuous as the uniform limit of { f,,}.

For X not compact, write X = [ J;°, X; as a countable union of compact
subsets. Then the topology for C°(X;, Y) is defined by a complete metric p;,
hence also by the bounded metric p;(f, g) := min(p;(f, &), 27%). The met-
ric p := ) 0, p} defines the product topology on I1,C°(X;, Y), and hence the
required topology on the subset C°(X, Y). Moreover, C°(X, Y) is a closed subset
of the complete I1,C°(X;, Y) and is thus also complete.

(ii) Assume f,, — f and that for no compact K C X is the sequence f, even-
tually constant outside K. Choose an increasing sequence {K,} of compact sub-
sets of X with union X. By hypothesis, there existx,, € (X \ K,,) and i, > n with
Ji, () # f(xn). Set 8, := p(fi,(xn), f(x,)). Since the sequence x, diverges,
we can find a positive continuous function k£ on X such that k(x,) = %6,, for
infinitely many n. For none of these nis f;, € J(f, k), contradicting the assump-
tion that f, — f.

(iii) follows from (ii). O

Not only compactness of spaces, but properness of maps is important in dis-
cussing these topologies, and we have

Lemma A.4.3 IfY is a locally compact, paracompact metric space, the set
Cgr(X, Y) of proper maps is open in C°(X, Y) in the fine topology.
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Proof By Proposition A.2.7, there exist coverings of Y by sets F, C G, with
each F, compact, each G, open, {G,} locally finite, and | J, F, =Y.

For f: X — Y a proper map, the sets K, := f~!(F,) are compact. They
are locally finite, since for any x € X, f(x) has a neighbourhood U, meeting
only finitely many of the G,, so f~!(U,) is a neighbourhood of x meeting only
finitely many of the K,,. Hence by Lemma A.4.1, I({K,}, {G,}) is a neighbour-
hood of f in the fine topology.

We claim that any g € I({K,}, {G,}) is proper. For any compact subset L C Y
meets only finitely many G,, so g~'(L) is contained in the union of the corre-
sponding K,, so is compact. O

We turn to the question of continuity of the composition map.

Proposition A.4.4 (i) The composition map C'X,Y) x CY, Z2) —» C°(X, Z2)
is continuous for the C° topologies.

(ii) The map %y, z) - CY(X,2) defined by composition with a continuous
map f is continuous for the fine topologies if and only if f is proper.

(iii) The composition map Cgr(X, Y) x COY, Z2) — C%(X, Z) is continuous
for the fine C° topologies.

Proof (i) It will suffice to show that the preimage of a subbasic open set
A(Kx, Uyz) is open, and thus to show that if go f € A(Kx, Uy), it contains a
neighbourhood of (f, g).

Since go f € A(Kx, Uz) and f is proper, f(Kx) is a compact subset of ¥
and g~'(Uy) is an open neighbourhood of it. By Lemma A.1.1, this contains
a compact neighbourhood, so we can find a compact Ky and an open Uy with
f(Kx) C Uy C Ky C g ' (Uy).

It follows that the preimage of A(Ky, Uz) contains the open neighbourhood
A(Kx, Uy) x A(Ky, Uz) of (f, g).

(i) If £ is not proper, there is a discrete sequence x,, € X such that f(x,) con-
verges to a limit yy € Y. Let g: Y — Z be continuous, and consider a neigh-
bourhood J(g o f, k) of go f. We want to show that for some k, f*J(go f, k)
is not open, in fact does not contain a neighbourhood J(g, £) of g. For if it does,
p(&(), h(y)) < £(y) for all y implies p(g(f(x)), h(f(x))) < k(x) for all x.

Since x, is discrete, we can choose k with k(x,) = n~! for all n. Now as
F(x) = yo, if p(g(f (%)), A(f(x,))) < k(x,) = n~! for all n, it follows that
p(&(yo), h(yo)) = 0. Thus we do not have a neighbourhood of g.

(iii) We copy (i); so start with neighbourhood I({KX, U%}) of go f: here
as well as the UZ being open, the KX are locally finite. Any y has a compact
neighbourhood By: then f~'(B,) is compact (as f is proper), so meets only
finitely many of the KX. Hence the f(KX) are locally finite.
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We now have a locally finite family of compact sets f(KX) with neighbour-
hoods g~' (U%) and seek f(KX) Cc UY C K! C g7'(U?) with the K’s compact,
the U’s open and the K? locally finite. We restate the problem. First use count-
able compactness to say the set of « is countable. We have a locally finite family
of compact sets A,, with open neighbourhoods D,, and seek A, C B, C C, C D,,
with the C,, compact, the B, open and the C, locally finite.

Shrinking the D,,, we may suppose each meets only finitely many of the A;.
Now by Lemma A.1.1 we can find B, and C, as above, but have yet to make
the C, locally finite. Set

C, :=C,,\U{D,|r<n, D,NA, = 7).

Since A, C C, and we have only removed subsets disjoint from A,, we have
A, C C,. If C; meets C,, with r < n then C,, meets D, so D, N A,, # ¥. For each
r this holds for finitely many »n, and there are only finitely many n < r, so C,.
meets only finitely many C). It remains only to take B), as a neighbourhood of
A, contained in C),.

In the original notation, it follows that the preimage of I({KX, UZ}) contains
I{KX, U} x I({KY, UZ}), a product of neighbourhoods of f and g. 0

We next discuss the Baire property, which is important for many of our
applications.

Theorem A.4.5 (Baire’s Theorem) Let X be a complete metric space. The
intersection of a countable family of dense open subsets of X is dense.

Proof Let the given subsets be {U;}, and let V be any non-empty open set.
Then V N U, is non-empty and open, and so contains a metric neighbourhood
U(xy, €1), say. Next, U, N U (xy, 5%) is non-empty and open, so contains some
U(xy, &2). We can thus construct a decreasing sequence of neighbourhoods
U (x;, ;) and have ¢; — 0. Then {x;} is a Cauchy sequence, so has a limit point
x, which lies in each U(x;, &;) (since the later x; do) and so in each U; and
inV. O

This result shows that any complete metric space has the Baire property. It
follows from Proposition A.4.2 that C°(X, Y) with the C” topology has the Baire
property. For the fine topology, we have to work harder.

Theorem A.4.6 If X is paracompact and Y a complete metric space, then
C%(X,Y) with the fine topology is a Baire space.

Further, if Q C C%(X,Y) is closed in the C° topology, then Q with the fine
topology is a Baire space.
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Proof Let {U;} be a countable sequence of open dense sets and V' a further open
set. Choose fy € V and a neighbourhood J(fy, ko) of fy with closure contained
inV.

Now suppose inductively chosen functions fy, ..., f, and neighbourhoods
J(fi,k) (O <i<r)suchthat f; €V, f; € J(f}, kj), ki < 27 and J(fi, ki) C U;
for j <i < r. Since U, is dense, it meets the open set ﬂf:O J(fi, ki): choose
fr+1 in the intersection, and choose a neighbourhood J(f, 1, k1) with closure
contained in it and with k,; < 27C¢+D,

Since p is a complete metric, and the sequence f, converges uniformly, we
can define f to be its limit. Since all f; with i > r belong to J(f,, k), f belongs
to its closure, which is contained in U, (r > 0) or V (r =0). Thus VN (), U,
is non-empty, as required.

Given a countable sequence of open dense subsets W; of Q, we can take
U; := W; U (C°(X, Y) \ Q) and argue as above. We only need to note that since
0 C C°%X,Y) is closed in the C° topology, the uniform limit f of the maps
fi € Q also belongs to Q. O

For smooth manifolds V* and M™, write C"(V, M) for the set of mapsV — M
whose restrictions in any local coordinates have continuous partial derivatives
of all orders < r; in particular, C*°(V, M) is the set of smooth maps of V to
M. Taking r-jets gives an injective map j" : C"(V, M) — C°(V,J"(V, M)). The
topology on C"(V, M) induced by regarding it as a subspace of C°(V, J(V, M))
with the compact-open topology is called the C" topology, and the topol-
ogy induced from the fine topology is the fine C" topology. The image of
j :C"(M,N)— CO(M, J"(M, n)) is closed in the C” topology.

The inclusion of C*°(V, M) in C"(V, M) induces topologies on it, and we
define the C* topology to be the union of the C” topologies, in the sense that
a set is open if it is open in one of these topologies. Correspondingly, the fine
C* topology, which we christen the W™ topology, is the union of the fine C"
topologies.

The properties of these metrics are similar to those for the case » = 0, and
the proofs run in parallel, though with complications of detail (the case r = co
requiring a little more effort), so we omit most of them. The discussion extends
to manifolds with boundaries, corners, etc. The following statements hold for
all r < oo: it is the case r = oo which is of prime interest to us.

We have equivalent characterisations of the fine C” topology if the above
conditions on the images of the maps are replaced by conditions on the r-jets.
However if in the C* version of I({K,, U,}) we allow the U, to be open in
jet spaces J"(V, M) for varying values of r we obtain a new topology, the very
strong topology, which we do not discuss further in this book.
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Both topologies on C*(V, M) are completely regular. They agree if V is
compact.

For the W topology, a convergent sequence of maps is eventually constant
outside a compact set; hence the topology is neither metrisable nor even locally
countable.

Theorem A.4.7 With the C* topology, C*°(V, M) is a complete metric space.

Proof First suppose V is compact. Each jet space J"(V, M) is a smooth mani-
fold, and admits a complete Riemannian metric p”, say. The distance function
p"(f, 8 = suppcy p"(j f(P), j g(P)) is well defined since V is compact, and
defines the C" topology on C*°(V, M).

The same topology on J"(V, M) is given by the non-Riemannian metric p” =
inf(p”, 1), and the metric p(f, g) =), 277 p""(f, g) defines the C* topology
on C*°(V, M).

A Cauchy sequence {f;} in C*°(V, M) must a fortiori be Cauchy with the
metric p". Since J'(V, M) is complete, the maps j" f; converge to a limit g,
which is continuous, since the convergence was uniform.

The coordinates u,, ; of j" f; are the partial derivatives of the uy ;. Let ' be
derived from w by increasing w; by unity, and |w'| < r: then u. ; = ue j/0X;
and so u,, ; is the indefinite integral with respect to x; of u,,_ ;. Integration com-
mutes with uniform limits, so the relation u,, ; = du,, ;j/dx; also holds for g".
Thus the ug ; = y; are r-times continuously differentiable, g" is the r-jet of a C"
function g, independent of r, so g is smooth, and is the limit of the sequence.

For V not compact, write V = J:2, V; as a countable union of compact sub-
manifolds (with boundary). Then the topology for C*°(V;, M) is defined by a
metric p;, bounded by 1. Hence the metric p = Z?il 27 p; defines the prod-
uct topology on IT;C*°(V;, M), and hence the required topology on the subset
C*®V,M).

Now C*(V, M) is a closed subset of the complete [, C*(V;, M) which is
thus also complete. O

Lemma A.4.8 The set C,.(V, M) of proper smooth maps is open in C*(V, M)
in the W topology.

Proof Let f :V — M beaproper map, and {¢, : U, — D (3)) alocally finite
open cover of M as in Theorem 1.1.4, so that M is covered by the compact
sets K, := (pojl(D’”(2)). Since f is proper, F, := f~'(K,) is compact. Then
W = {g|Va g(Fy) C U,} is an open neighbourhood of f. For any g € W and
any compact L C M, L meets only finitely many U,, so g~'(L) is contained in
the union of the corresponding F,, so is compact. O
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The composition map C*(V, M) x C*°(M,N) — C*(V, N) is continuous
for the C* topologies; however for the W topologies this fails unless V is
compact: more precisely, C;f(V, M) x C®°(M,N) — C*°(V, N) is continuous,
and the map C*°(M, N) — C*°(V, N) defined by composition with f : V — M
is continuous if and only if f is proper.

Theorem A.4.9 (see, for example, [73, 2.4.4], [57,3.4]) IfF is any subspace
of C*(V, M) which is closed in the C* topology, then F (with either the C*®
topology or the W™ topology) has the Baire property.

For example, if f € C*°(V, M) and K is a closed subset of V, we can take
F ={geC®V,M)|glK = f|K}.

We also have

Theorem A.4.10 IfW is open in C*°(V, M) with the C* or W topology, then
W has the Baire property.

Proof Since C*(V, M) is completely regular, for any f € W we can choose
a neighbourhood U of f whose closure F C W. If now the U; are dense open
subsets of W, the U; U (W \ F) are dense open subsets of X, hence their inter-
section (| U; U (W \ F) is dense in X, and hence intersects U. Thus U meets
(\ U;, and since this holds for any neighbourhood of f contained in U, f is in
the closure of () U;. As this holds for all f € W, [\ U; is dense in W. O
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Appendix B

Homotopy theory

I do not know any book on homotopy theory which covers all the material to
which I need to refer, but one useful introduction is May’s book [89].

B.1 Definitions and basic properties

A continuous map X x I — Y is said to be a homotopy between the maps
X — Y given by its restrictions to X x {0} and X x {1}. The relation of homot-
opy between maps is an equivalence relation. A major concern of homotopy
theory is the set of homotopy equivalence classes of maps X — Y, which in
this appendix we denote by [X : Y]. Unless otherwise stated we fix base points
in X and Y and require maps and homotopies to respect the base point. The
base point is usually denoted =, but is often suppressed from the notation. A
map X — Y homotopic to the constant map X — x* is said to be nullhomo-
topic. We write X for the disjoint union of X and a point, taken as base point.

An important type of homotopy occurs when B C A, h : A x I — A satisfies
h(x,0) =xforallx € A, h(x,t) = xforallx € B, r € [and h(A x {1}) = B: B
is then called a deformation retract of A and h is a deformation retraction. A
simple example is when A is a square and B the union of three sides.

Two spaces X, X' are said to be homotopy equivalent if there are maps f :
X — X'and f' : X’ — X such that each composite f o f’, ' o f is homotopic
to the identity map.

If f: S§"~! — X is a continuous map, we define a space X Uy e": as a set,
we have the disjoint union of X and D"; the map g: D" — X Uy e" is given
by the identity on D" and by f on §"~!; and we declare a subset to be open
if its preimages by both g and the inclusion of X are open. This process is
called attaching an n-cell to X. We can allow n = 0: S~! is the empty set, so
X Uy e = X is the disjoint union of X and a point.

314
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A space obtained by attaching a finite number of cells to the empty set is
a cell complex. A CW-complex is obtained by a (possibly infinite) sequence
of attachments of cells to ¥, subject to the condition that each attaching map
has image in a finite subcomplex, and that the topology is given by declaring
a set to be open if its intersection with each finite subcomplex is. A CW-pair
(K, L) consists of a CW-complex L and a CW-complex K obtained from L by
attaching cells. We are mainly interested in finite CW-complexes and pairs, or
at worst those with a finite number of cells of each dimension.

Given a CW-complex (or pair) we can change the attaching maps by homot-
opies (and K by a homotopy equivalence) to ensure that cells are attached in
order of increasing dimension: the argument parallels that of §5.2, which is
modelled on the CW case. The space obtained at the intermediate stage when
all cells of dimension < n have been attached, is called the n-skeleton of K and
denoted K™,

In general, we use the term ‘space’ for a topological space homotopy equiv-
alent to a CW-complex. This class of objects is closed under various natural
constructions, including fibrations and formation of function spaces (with the
compact-open topology).

For any space X and n > 1, the set [S” : X] has the structure of a group and
is denoted 7, (X). The group is abelian if n > 2; if X is connected, it is inde-
pendent of the base point. The group m;(X) is called the fundamental group
of X.

Given a space Y and subspace X, we can similarly define 7, (Y, X) using maps
f:D"— Y with £(§""') C X; more generally given any map j: X — Y we
define 7, (j). There is an exact sequence

T (X) I (V) = () = e (X))

Going one further, given a commutative diagram

A 2 B

Piqgl ri,
c > D
we can define 7,(®) by homotopy classes of commutative diagrams of maps of
an n-sphere, the upper and lower hemispheres of its boundary, and the equator
into @: this is a group for n > 3. There are exact sequences
oo Tn(p) = 7u(8) = TW(P) = Tu1 (p),
T (q) = T (r) = (D) — me_1(g).

A space X is contractible if it is homotopy equivalent to a point. It is weakly
contractible if any map K — X, with K a finite CW-complex, is homotopic to
a constant map. It is sufficient to check this for K a sphere, i.e. that 7, (X) is
trivial for all i > 0.
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If we merely suppose that every map K — X, with K a finite CW-complex
of dimension < n, is homotopic to a constant map, X is called n-connected.
For this, it is sufficient that 77,(X) is trivial for all 0 < i < n.

Recall that a map f : X — Y is said to be a weak homotopy equivalence if,
for any CW-pair (K, L) and mapsa : L - X andb: K — Y withb|L= foa
there exists ¢ : K — X withc|L = a and f o c homotopic to b keeping L fixed.

L—2>X

e

K—tsy
For this it suffices to consider pairs S*~!  DFinstead of L C K; thus for X con-
nected it suffices if f induces isomorphisms f; : 7,.(X) — 7,(Y) of homotopy
groups.

The map f : X — Y is said to be n-connected if this condition holds for all
(K, L) with K of dimension < n. If f is the inclusion of a subset, we say that
the pair (Y, X) is n-connected. For this it is sufficient that m,(Y, X) is trivial
for all 0 < i < n: equivalently (if n > 2) that X and Y are connected, the map
fe : (X) = m,.(Y) is an isomorphism for r < n and surjective for r = n.

For any K, we define the cylinder on K to be the product K x I, the cone
CK on K to be obtained from K x I by identifying the subspace K x {0} to
a point (so there is an inclusion K — CK with x — (x, 1)), and the suspen-
sion SK to be obtained by further identifying (x x I) U (K x {1}) to a point.
More generally, for any map f : K — L we define the mapping cone LUy CK
to be obtained from the disjoint union L U CK by identifying, for each x € K,
the point (x, 1) € CK with f(x) € L: this generalises the procedure of attach-
ing a cell to L using a map f : S"~! — L. We also define the mapping cylinder
Cyl(f) :== LUy (K x I) to be obtained from the disjoint union L U (K x I) by
identifying, for each x € K, the point (x, 1) € (K x I) with f(x) € L: this con-
tains K x {0} as a subspace, and has L as a deformation retract.

The join of two spaces K and L is the space K * L obtained from K x L x [
by identifying each {k} x L x {0} to k € K and each K x {l} x {1} to [ € L.
The smash product of spaces K and L is defined to be

KAL:=(KxL)/(Kx{x}U{x}xL).
In particular, the suspension SK = S' A K.

A map i:K — L is said to have the homotopy extension property
(HEP) if given any map f : L — Y and homotopy g: K x I — Y such that
g(x, 0) = f(i(x)) for each x € K there is a homotopy 4 : L x I — Y such that
h(i(x,t)) = g(x, t) foreach (x,¢) € K x Iandho (i x 1;) = g. Thisis a typical
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property of inclusion maps: the inclusion of a subcomplex L in a CW-pair (K, L)
has the HEP. Any map f : K — L is homotopy equivalent to the inclusion
K — Cyl(f) = LUy (K x I), which has the HEP. If i : K — L has the HEP,
identifying CK to a point gives a homotopy equivalence L U; CK — L/K: to
obtain a homotopy inverse, extend the homotopy of CK which shrinks the cone
to its vertex to a homotopy of the identity map of L U; CK: at the end of the
homotopy is a map sending CK to a point, hence factoring through L/K.
For any f : K — L and any X, the sequence
[K:X] < [L:X] < [LU;CK:X]

is exact, foramap L — X extends to L Uy CK if and only if its restriction to K is
nullhomotopic. For any f : K — L, denote by Af the inclusion L — L Uy CK.
Since A f has the HEP, (L Uy CK) U, CL is homotopy equivalent to CL/(L Uy
CK) = SK, so up to homotopy A’ f is a map L Ur CK — SK. Iterating once
more gives a map A’f : SK — SL which differs from the suspension Sf by
reversing orientation in /. Thus the sequence A" f of maps induces, for any X,
an exact sequence

[K:X] <« [L:X] <« [LUfK:X] < [SK:X] < [SL:X]...
Each set [SK : X] admits a natural group structure, and [S%K : X] is abelian.

A map p: X — Y is said to be have the covering homotopy property (CHP)
if given a space K, a map a: K — X and a homotopy »: K x I — Y such
that b | (K x 0) = p o a, there exists a homotopy ¢ : K x I — X such thata =
c|(Kx0)andb=poec.

Kx0-21>X

[l

KxI-t >y

If this holds for K a finite CW-complex, it follows for any CW-complex; it also
follows if (K, L) is a CW-pair that ¢ can be chosen to extend a lift already given
on L x 1. It suffices to require this condition for pairs (K, L) = (D", $"~'). We
may regard the CHP as a sort of dual notion to the HEP.

We recall from §1.3 that if G is a Lie group acting on a smooth manifold F,
amap 7 : E — B is the projection of a fibre bundle (with base space B, total
space E, and fibre F) if B can be covered by open sets U, such that

(1) There are homeomorphisms ¢, : U, X F — 7~ (U,) such that for all
meUy,xeF,mp,(m,x)=m.

(i1) For each pair («, B) there is a continuous map g4 : Uy N Ug — G such
that form € U, NUg, x € F, pg(m, x) = @o(m, go4p(m).x).
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Lemma B.1.1 The projection map w : E — B of a fibre bundle has the CHP.

This is trivial if 7 is the projection of a product B x F' — B, thus we can lift
a homotopy whose image is contained in some U, ; and now the result is proved
by subdividing K x I into small pieces.

This result motivates the definition that a map = : E — B is a fibration if it
has the CHP. Given a fibration, write F for the fibre F := 7 ~!(x). Then for any
space X, the sequence [X : F] — [X : E] — [X : B] is exact, for given a map
f X — B with w o f homotopic to the map to *, we can lift the homotopy to
give a homotopy of f to a map into F.

Now let X be a connected space and consider the space EX of continu-
ous maps « : I — X. There are two projections pg, p; : EX — X given by
po(a) = «(0) and py (o) = «(1): each has the CHP. The map py is a homotopy
equivalence: a homotopy inverse is given by constant maps ¢ : X — EX with
c(x)(t) = x; the map h: EX x [ — EX given by h(x,t) = o, with o, (u) =
a(min(t, u)) is a homotopy of ¢ o py to the identity. Thus PX := pal () is con-
tractible. The restriction ¢g; := p; | PX also has the CHP, and QX := ql’1 (%) is
called the loop space of X.

For any map f : K — L we form the pullback

X :={(k,a) e K x EL| f(k) = a(0)};

write i = (i1, i) for the inclusion of X in K x EL. Since py is a homotopy
equivalence, so is the projection i; : X — K. The composite foi; = pgoir:
X — L is homotopic to the map 7 : p; o i5.

Lemma B.1.2 The projection w : X — L defined above has the CHP.

Proof Given g:Y — X and a homotopy G :Y x I — L such that G|Y x
{0} =m og we need to construct £:Y x I — X with h|Y x {0} = g and
7 o h = g. To this end, write i o g = (g1, g2), i o h = (hy, h); use t as parame-
ter for paths belonging to EL and s as the homotopy parameter in /; thus write
hy as hy(y,t,s) € L.
Then the conditions that (g, g2) and (hy, hy) factor through X are
F(&1()) = 83, 0), f(hi(y, 5)) = ha(3, 0, 5);
that & extends g is
@y, 0)=g1(y), h.1,0)=g01),
and that A lifts G is
ha(y, 1,5) = G(y, ).

We take h;(y,s) = g1(y), and then the equations define h,(y, ¢, s) if either
t =0, s=0 or r =1: moreover the two values for A,(y, 0, 0) agree since
S, 0)) = f(g1(y)) = g2(y, 0) and those for hy(y, 1,0) do since G(y) =
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7 (g(y)) = g2(y, 1). Since the union of 3 sides of the square I x [ is a retract
of the whole square, we can extend these values to define &, for all values. [

The fibre of 7 is called the mapping fibre of f; we may denote it by M.
Thus My := {(k,a) € K x EL| f(k) = a(0), a(1) = *}. We have seen that if
fhasthe HEP, LUy K >~ L/K. Dually, if f : K — L has the CHP, with fibre F’,
then F' is homotopy equivalent to M. Let us write Bf for the map My — K:
up to homotopy, if f has the CHP, this agrees with the inclusion F C K. As
7 has the CHP, so does My — K, and this has fibre QL, so B2 QL — My.
Analogously to the above discussion of A f, up to homotopy we can identify
B*f with Qf : QK — QL. It follows that for any space X, there is an exact
sequence

L X QK> [X QL - [X:My] — [X K] — [X: L]

Composition of loops induces a group structure on the set [X : K], and there
is a natural bijection of this set on [SX : K]. In particular, 7, (2X) = 7,41 (X).
Taking X a sphere in the exact sequence gives

.- .JT,,(K) g 7Tn(L) - 7Tn—l(Mf) - 71’,,_1(K) - 7Tn—l(L)-
Here we may identify m,_ (M) with the group 7, (f) and the sequence with
the exact homotopy sequence described above. If also f : K — L has the CHP,
with fibre F', then M is homotopy equivalent to F'.

LemmaB.1.3 Given a sequence A; 5 A; where the maps o; are fibrations,
there are natural isomorphisms q,, 71,,(1(@ ADE l(ﬂi T, (A)).

Given a sequence of maps f; : A; — B; between two sequences of fibrations,
with each f; a weak homotopy equivalence and f; o o; = B; o fir1 for each i,
the induced map l(ln A — l(ln B; is a weak homotopy equivalence.

For a map §" — l(ln A, defines a sequence of maps S” — A;, so we have a
natural map g,,. Since «; is a fibration, if the homotopy class of a map S" —
A; lifts to that of a map to A;;, so does the map itself. It follows that g, is
surjective; injectivity follows similarly.

The second assertion now follows.

Many of the definitions and results in this section have a formal nature. A
set of axioms for homotopy theory, with a development along these lines, was
given by Quillen [126].

B.2 Groups and homogeneous spaces

We observed in §3.1 that for any Lie group G and Lie subgroup H, we have a
fibre bundle with projection G — G/H and fibre H; and that if we have two
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Lie subgroups H; C H, C G, the projection G/H, — G/H, is that of a fibre
bundle, with fibre H,/H;, so has the CHP.

The group GL,(R) acts transitively on the space P of positive definite
quadratic forms on R”, and O, is the isotropy group of the usual inner product,
so we have an induced diffeomorphism of GL,(R)/O,, on P, and hence a fibre
bundle O, — GL,(R) — P. Since P is a convex subset of a Euclidean space, it
is contractible. Thus GL,(R) is homotopy equivalent to O,,. It is usually more
convenient to work with the compact group O,,.

Similarly, any Lie group G has maximal compact subgroups K, any two
are conjugate, and G/K is contractible. Thus for homotopy purposes, we may
replace G by K. In particular, we may replace GL,(C) by U,,.

Since O,, acts transitively on the Grassmann manifold Gr,  of k-dimensional
subspaces of R”, and the subgroup leaving RF @ {0} can be identified with O; x
O,_i, we can identify Gr, ; with the coset space O, /(Ox x O,_;). This is a
smooth manifold, and there is a natural vector bundle y, ; over Gr,; whose
fibre is the k dimensional linear subspace.

The space V. of injective linear maps R¥ — R” is homotopy equivalent
to the space of isometric linear embeddings R — R”. The latter is called the
Stiefel manifold, and denoted V,,  (we call V, , the weak Stiefel manifold). It can
be identified with O,,/O,_, hence with SO,,/SO,_;. For any n-vector bundle
& : E — B with group O, there is an associated bundle with fibre V,, ;: a point
in its total space can be interpreted as an isometry of R¥ into some fibre of &.

For any Lie group G, there is a contractible space E(G) admitting a free
action of G. Write B(G) := E(G)/G and i : E(G) — B(G) for the projection.
Then this is a principal G-bundle, and for any principal G-bundle & over any
space X there is a map f : X — B(G), unique up to homotopy, such that § is
equivalent to f*mg. The bundle 7 : E(G) — B(G) is determined uniquely up
to homotopy by this condition.

The space B(G) is called a classifying space for G. Since E(G) is con-
tractible, it follows that G is homotopy equivalent to the loop space QB(G).

The classical construction of a classifying space is based on the Grassmann
manifolds. The natural inclusion Gr,, y C Gry414, 1s (n — k)-connected, and the
union | J,, Gr,x can be taken as a classifying space B(Oy) for bundles with
group Oy. This construction may be adapted for other Lie groups.

There is an alternative construction, due to Milnor [91], using the sequence
of iterated joins G * G * ... * G (on which G acts freely), and taking E(G) as
the union.

Yet another approach is axiomatic. The set Eg(X) of equivalence classes of
bundles over X with a given structure group G is a contravariant functor of
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X, and it is not difficult to verify the hypotheses of Brown’s representability
theorem [33]. This shows again that there exists a space B(G) and a bundle
&c over it with structure group G such that taking a map f : X — B(G) to the
bundle f*&¢ induces a bijection of [X : B(G)] on E6(X).

In some sense, we can regard any space X as a classifying space for QX,
which plays the part of the group, since we have a fibration QX — PX — X
with PX contractible.

An (n — 1)-spherical fibration consists of a fibration 7 : F — E — X
together with a homotopy equivalence S"~! — F. It follows from the axiomatic
approach that there is a classifying space B(G,) for the set £¢(X) of homot-
opy equivalence classes of (n — 1)-spherical fibrations over X and a fibra-
tion v, : S ! — S(G,) — B(G,), such that f — f*v, gives a bijection [X :
B(G,)] — £§(X).

This notation goes with writing G,, for the set of maps of §"~! to itself of
degree £1, with the multiplication given by composition of maps. Although
this is not a group, it can be treated as one for the purposes of homotopy theory.
In particular we have a homotopy equivalence G, — 2B(G,). Restricting to
maps of degree +1, or to fibrations with a fixed orientation of the fibre, gives a
monoid SG, and a classifying space B(SG,,). The inclusion O, C G, gives rise
to a natural map B(O,) — B(G,).

We write F,, C G,y for the set of base-point preserving maps S" — S" of
degree +1, and SF, for those of degree +1. The suspension of a self-map of
§"=! is a self-map of the same degree of S" which fixes a base point; thus
we also have an inclusion G,, C F;. Since all components of Q"S", including
SF,, are homotopy equivalent, we have r,(F,) = m,.,(S"). We have a fibration
SF,_; — SG, — §"!, and hence an exact sequence

oo T (8" = 71.(Gy) = 7 (ST, (B.2.1)

The classifying spaces B(G) are infinite dimensional, and not homotopy equiv-
alent to finite dimensional spaces. They may, however, be approximated by
smooth manifolds. Since the map Gr,, x — B(Oy) is m-connected, for a mani-
fold M of dimension at most m, the set of homotopy classes of maps M — Gry,
maps bijectively to that of maps M — B(Oy). In general, we first replace
the original B(G), or indeed any space X, by the (N + 1)-skeleton X; of
its singular complex. Next, provided the homotopy groups of X are count-
able, we can replace X; by a countable (N + 1)-simplicial complex X,; then
by a locally finite complex X3, and finally imbed X3 properly in Euclidean
(2N + 3)-space and take an open neighbourhood X, of which it is a deformation
retract.
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In the construction of classifying spaces we have emphasised principal bun-
dles. However, for any G-space L we can study bundles with group G and
fibre L, and the classification is the same as for the associated principal bun-
dles: they are induced from the universal bundle E(G) x L. For example,
using the action of GL,(R) on R”, we obtain a universal vector bundle over
B(GL,(R)).

Likewise we have a universal orthogonal vector bundle y; over B(Oy), whose
total space contains the associated unit disc bundle A(Oy). Writing S(Oy) for
its boundary sphere bundle, we have the Thom space T (Oy) = A(Oy)/S(Ok).
Thus for any group G with a given homomorphism G — O we have induced
bundles S(G) C A(G) and T'(G) is obtained from A(G) by identifying S(G) to
a point.

More generally, since each sphere bundle is a spherical fibration, we have an
inclusion O,, C G, and maps B(O,) — B(G,), S(O,) — S(G,). Here the role
of A(G,) is played by the mapping cylinder Cyl(rr ), where 7 : S(G,) — B(G,)
denotes the projection, and we define T'(G,,) to be its mapping cone. Again, any
map X — B(G,) induces a spherical fibration £ over X and we have a Thom
space. In this situation there is still a natural isomorphism, called the Gysin
isomorphism

H'(X) — H*"(Ag, Sg) = H (T (£)).

A summary of calculations of cohomology of classifying spaces is in §8.6.

In general, if x € H*(B(G); A) is a cohomology class, and 7 : E — X is a
G-bundle, 7 is induced by a map f : X — B(G), so we have a class f*x €
H"(X;A). Such a class is called a characteristic class of the bundle 7, and
denoted x(f). For example, we have H*(B(0,) : Z,) = Z,[wy, . .., w,], so any
polynomial in wy, ..., w, defines a characteristic class for vector bundles of
fibre dimension 7.

If M is a smooth manifold, its tangent bundle T'(M) is classified by a map ¢ :
M — B(0), so aclass x € H"(B(0O); A) induces a characteristic class x(M) :=
¢*(x) € H'(M; A).If J is a stable group and M has a J structure, we may replace
O by J here.

If moreover M has the same dimension n, we have ¢*(x)[M] € A: this is
called a characteristic number of M (if A = Z we do just have a number). If W is
a cobordism of M to M, x € H*(B(G) : A), and ¥ : W — B(G) classifies a G-
structure on W, then ¢*(x)[M] = ¢*(x)[M'], since v restricts to ¢ and ¢’, and
(¥*(x), [M] — [M']) = 0 since [M] — [M'] = 0 in homology, as the boundary
of W. Thus characteristic numbers are cobordism invariants.

The same argument applies with any non-classical homology theory; for
example, with KO-theory.
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B.3 Homotopy calculations

In this section we summarise the results of a large number of homotopy calcu-
lations. We have included text intended to make the summary less unreadable,
but make no attempt to give proofs. The results may be found in texts on homot-
opy theory, but the author has not discovered a convenient single reference for
these results.

(i) There are natural maps 7,,(X) - H,(X; Z)and 7,(X,Y) > H,(X,Y; Z).
The Hurewicz Isomorphism Theorem states that if X is (n — 1)-connected (and
n > 2), the natural map 7,,(X) — H,(X; Z) is an isomorphism.

It follows that ,.(S") is zero for r < n and isomorphic to Z for r = n. We
write ¢, for the class in ,(S") of the identity map.

The Hurewicz theorem has a relative version: if (K, L) is (n — 1)-connected
(and K, L are simply-connected), the natural map n,(K, L) - H,(K, L; Z) is
an isomorphism. If we define the homology groups of a map f: A — B as
those of the pair (Cyl(f),A) we can write this as: if f is (n — 1)-connected,
i (f) — Hi(f; Z) is an isomorphism for k < n.

(ii) The group SU, is homeomorphic to the sphere S, and its action on
P'(C) ~ §? gives a fibre bundle map 1, : S — S? called the Hopf map; sim-
ilarly using quaternions or Cayley numbers gives maps 14 : 7 — $* and g :
S5 — $8: using the real numbers gives ; : S' — ' of degree 2, so homotopic
to 2.

(iii) There is a natural homomorphism H : m5,_1(S") — Z, called the Hopf
invariant. Given f:S$*! — §" form X;:=S"U; ¢, then H"(X;) and
H* (X[ ) are infinite cyclic with preferred generators u, v, say, and we set =
H(f)v. This invariant vanishes for n odd (the cup product is skew-symmetric
here), and takes the value 1 for each of 15, n4, 1s.

One generalisation of H is defined as follows. The map 7,(j,) induced by
the inclusion j, : $" v §" — S§" x §" has a right inverse given by adding the
maps induced by the two projections of S" x S". Then H is the composite

7.(§") = 7. (8" v S") > 7, (S x S", 8"V S —> 71,+1(Sz"),

where the first map is induced by collapsing the equator to a point, the second
by the splitting in the exact homotopy sequence of (§" x §”, " v §") and the
third by collapsing S" v S" to a point.

(iv)Let f : (D™, S 1) — (X, %) represent @ € m,,(X)and g: (D", S" ') —
(X, x) represent 8 € m,(X): then the Whitehead product [, B] € myqn—1(X) is
the homotopy class of the map F : (D™ x D") — X given by F(x,y) = f(x)
ify € D" and = g(y) if x € 0D™.

We have [i,,, t,,] € 72,-1(S"), and H([t,, t,])is Oif nis odd, and 2 if n is even.
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(v) The ‘Hopf invariant 1’ problem, the question whether H : mp,—(S") — Z
is surjective, was solved by Adams [3]: it is surjective only if n is 2, 4, or 8.

This is analogous to the Kervaire invariant problem.

(vi) A further relative version of the Hurewicz theorem is the Blakers—Massey
Theorem [18]. Given a commutative square

A2 B

®:q] ri,
c > D
of simply-connected spaces, we can define H,(®, Z) so that there are exact
sequences H.(q; Z) — H.(r; Z) — H.(®,Z) - H._1(q; Z). Thenif pis (r —
1)-connected, g is (s — 1)-connected, and H,(®, Z) = 0, m,(P) vanishes for
n<r+s—1land 1 (®) = H.(p; Z) ® Hy(q; 7).

(vii) We can apply (vi) to the square given by the inclusions of $” in the two
hemispheres E™! and Ei“ of $"*! (these inclusions are n-connected), and
theirs in S"*!. This gives 77,(®) = 0 for r < 2n and 7,41 (P) = Z. Since the
hemispheres are contractible, the sequence 7, (E"™!, §") — 7,.(S"*!, E frl) —
7,.(P) becomes 7,_1(S") = m,(S"!) = 7,(D).

The map m,_;(S") — m.(S"1) is called the suspension map. It is thus an
isomorphism for r < 2n — 1, so the groups m,,+(S") for n > k 4 2 are all iso-
morphic; the limit value is denoted 7r7. Also we have an exact sequence

T00(8") = Ton 1 (S™) = Z — 702,-1(S") — 72,(S"!) — 0.

Here the second map is the Hopf invariant, and 1 € Z maps to [t,, t,]. It
follows from the above that if n is even, the second map is zero so we have
an exact sequence 0 — Z — mp,-1(S") — 775—1 — 0;ifn # 1, 3,7 is odd we
must replace Z by Z, here.

(viii) For the groups 7,(S") we have a range given by r < n where the groups
vanish, and a range n < r < 2n — 1 where they are stable. We get information
in the next ‘metastable’ range 2n — 1 < r < 3n — 2 as follows.

We use the isomorphism of 7,(QS"") on m,41(S"*!). Up to homotopy,
Q5" has a cell structure with one kn-cell for each k € N. Hence (Q5™+!, §")is
(2n — 1)-connected and, by the relative Hurewicz theorem, 7,,(25"*!, §") =
Z. Now applying (vi) to the square

s 5 QSV!+1

|

* —— QS ~ 21y e
we find that 77,(Q8"+!, §") — 7,(5%") is an isomorphism for < 3n — 1. This
yields the so-called EHP sequence

n E n H n P n E
Tk (8") = Tkt (8™ = Tppp2 (82 = mpa1 (") = ..., (B.3.1)
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generalising the sequence (vii), and valid for a range k < 2n — 1. Here the map
P agrees (up to suspension) with the Whitehead product with ¢,: 7 (S") —
Tayk—1(S").

A more general version can be obtained using the fibration §* — QS§"*! —
Q8?1 (after localisation at 2) constructed by James [1] and Toda [6].

(ix) The homotopy group m,(S") is finite for r > n except if n is even and
r = 2n — 1 when it is the direct sum of Z and a finite group.

(x) The calculation of the homotopy groups 7,.(S") is a massive enterprise:
see [129] for the state of the art. The stable groups form a ring under compo-
sition; the first few, with generators (here we use the same notation 7, for the
class of the suspension in 77} of 7,), are given by

7 = o), 75 = Zoln3l, 7§ = Zoalnal, n§ =0, ¥ =0.
We have ng =0¢ nlf.

(xi) The group SO, acts transitively on the unit sphere S"~! in R”, and the
stabiliser of the unit point on the x,-axis is the subgroup SO,_;. Thus there
is a fibre bundle SO,_; — SO, — S"!, with an exact homotopy sequence.
Since 7;(S") vanishes for i < n, we have isomorphisms 7,(SO,—;) — 7,(SO,)
for r < n — 3. More generally, if X has dimension < r, the suspension map
[X : BSO,] — [X : BSO,4] is bijective for n > r + 1, so stably isomorphic
vector bundles over X of fibre dimension > r 4+ 1 must be isomorphic.

Also all groups 7,(SOy) for N > r 4 2 are isomorphic; the common value
is denoted 7,(SO).

(xii) It was proved by Bott [21] that 7,(SO) is infinite cyclic if r = 3 (mod
4), isomorphic to Z; if r =0 or r = 1 (mod 8), and zero otherwise. A good
account of Bott’s proof is given in [98].

(xiii) The exact sequence of the fibre bundle SO,_; — SO, — §"~ ! includes

= T 1605 = 1160, 7> Z > 1, 260,-1) —> 7,-2(S0) — 0.
(B.3.2)
If x € m,_1(SO,) classifies a bundle &, then 7,x can be identified with the Euler
number of £. If x = ¢, then £ is the tangent bundle of S”, so m,d¢, is 2 for n
even, and O for n odd. The image of r, is O for n odd, Z forn = 2, 4, 8§ and 2Z
for n even otherwise.
(xiv) Using (ix) and (xi), we see inductively that each group m,(SOy) is
finitely generated; the rank is O except if
@k=2s+1,r=4i—1,1<i<s,or
b)k=2s+2,citherr =4i—1withl <i<sorr=2s+1.
In these cases the rank is 1 except if k = 4s and » = 4s — 1 when the rank is 2.
(xv) The Stiefel manifolds V, ; = SO, /SO,_; occur in fibre bundles
SO,y = SO, > Vyx I <k<n)and V,_y ;4 = Vg = Vor k<l <n),
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which give further exact homotopy sequences. It now follows that for r <
n—k — 1 wehave 7,(V,x) =0, 1i.e. V. is (n — k — 1)-connected.

(xvi) The calculation (xiii), that the kernel of 7, »(SO,_;) — 7, »2(SO) is
isomorphic to Z for n odd, and to Z, for n even, now implies that the first non-
vanishing homotopy group 7, (V, x) is isomorphic to Z if (n — k) is even and
to Z, if (n — k) is odd.

(xvii) There is a homomorphism J : m4(SO,) — w44 (S"), called the
J-homomorphism, defined as follows. An element ¢ € m;(SO,) is represented
by a map f: S x D" — D". Write ¢ : D" — S" for a map which collapses
D" to x. Write S"T* as the union of S¥ x D" and D**! x $"~!, and define
g: 8" — §" to map the first part by c o f and the second to *. Then J(¢)
is the class of g in 7,1 (S"). An equivalent definition in the language of cobor-
dism is given in §8.8.

For x € mi(S0,,), we have H(J(x)) = S"( (x)) € m,x(S>*1). Taking k =
2s — 1,n = 2s and x = 0J1tyg, then since 7 (x) = 21,1 we deduce H(J(x)) = 2,
so the homomorphism J : 7,1 (SO2) — T45—1(S>*) has rank 1.

(xviii) The image of the stable J homomorphism J; : 7 (SO) — nkS was
determined after heroic calculations by Adams [5]; a simpler proof was found
in joint work with Atiyah [8].

(@) Ifk=0ork =1 (mod 8), the map J; is a split monomorphism.

(b) If k = 4m — 1 the image of J; has order equal to den(B,,/4m), and is a
direct summand of J'ré.

(xix) It follows from (vi) that ,(SF;) is finite for r > 0 except if n is even
and r = n — 1 when it is the direct sum of Z and a finite group.

In the exact sequence (B.2.1)

oo T 1 (8" = 7,(SG,) = (ST = w2 (ST,

the final map is the Whitehead product with ¢,_;, so has infinite image if and
only if n is odd and r = n — 1. Thus 7,.(SG,) is infinite if and only if either
r=n—1and n is even or r = 2n — 3 and n is odd. The image of the map
7,.(S0,) — m,(SG,) has infinite order in each of these cases.

To summarise: the homotopy groups are finite except as follows:

Case r n rank(w,(S0,)) rank(mw.(SG,))
A 4ds+14s+2 1 1
B 4s5—14s 2 1
S 4s—12s+1<n##ds 1 0
C 45—12s+1 1

(xx) If we take the exact sequence (B.2.1), increase n by 1, replace r by «,
and compare with (B.3.1), we see that if m;(S") is stable, i.e. 2n > k + 2, we
have an isomorphism 7, (SG,,+1) = i (SF,41).
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The calculations in (xiv) can be compared with Haefliger’s result [64]
7 (Fy, Gy) = -3 41(SO, SO,,—1) for r < 3n — 6, which he established by geo-
metrical arguments.

B.4 Further techniques

We have defined CW complexes as built up from spheres by attaching cells.
If these are attached in order of increasing dimension, a complex K has an n-
skeleton K™: the union of cells of dimension < n. The inclusion i : K™ — K
has the HEP and is n-connected: the map H,(K") — H,(K) is an isomorphism
for r < n and an epimorphism for r = n; and the mapping cone K U; CK™ is
n-connected.

There is also a dual approach. We may start with K, attach (n + 1)-cells to K
to kill 7, (K); then (n + 2)-cells to kill 7,41, ..., obtaining eventually an inclu-
sion j : K — K,y with m.(j) an isomorphism for r < n — 1 and 7,(K(,)) = 0
for r > n. Denote the mapping fibre of jby p" : K™ — K:then K™ is (n — 1)-
connected and 7,(p") is an isomorphism for r > n. The pair (K, p") is called
the (n — 1)-connected cover of K, and is determined up to homotopy by these
conditions.

It follows that, up to homotopy, there is for each k a fibration K*~1 —
K* — K(k, m;(K)). For any Y we have an induced map [Y : K®¥] — [Y : K];
this is surjective if Y is k-connected, and bijective if Y is (k + 1)-connected.
The sequence of maps ... — K» — K1) — K is called the Postnikov tower
of K.

Given CW complexes K, L and a map f: K* D — L of the (k—1)-
skeleton, the obstruction to extending f over a k-cell of K is an element of
mr—1(L); collecting these over all k-cells gives a cochain on K, which is neces-
sarily a cocycle. Its class in H*(K; m;_; (L)) is the obstruction to extending the
restriction of f to K*~2 over K®.

If this obstruction vanishes, we can seek to extend over the (k + 1)-skeleton,
and so on. However, the later obstructions will in general depend on choices
made at earlier stages. If k is the least integer such that H*(K; m;_ (L)) is non-
zero, the obstruction in this group depends on no choices, and is called the
primary obstruction.

If & is a vector bundle, and & (k) the associated bundle with fibre V,, , the
primary obstruction to finding a section of & (k) is denoted W, _(£); it lies in
H"*(B; Tn—k(Vix))- The reduction modulo 2 of W,,_;(§) is equal to the Stiefel—
Whitney class w,,_(§).
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Given n > 1 and a group , abelian if n > 2, spaces K(7, n) were con-
structed by Eilenberg and MacLane [49], with the property that (K vanishes
for r # n and that 77,,(K) = 7 this determines K (;r, n) up to homotopy equiva-
lence. For 7 abelian, there is a natural isomorphism [X : K(7, n)] = H"(X; 7).
It follows that a map K(m, m) — K(p, n) determines a natural transforma-
tion H"(X; w) — H"(X : p). Such a transformation is called a cohomology
operation.

In particular, [K(Zp, n) : K(Z,,n+ k)] = H"*k(K(ZP, n); Z,). Composing
with an element of this group gives a natural transformation from H"(X; Z,)
to H"**(X : Z,). There are maps

H" ™ K(Z,, n); Z,) - H" " "N (K(Z,, n+ 1); Z,),

which are isomorphisms for n > k, so the groups with n > k have a com-
mon value H*(K (Zp); Zp): elements of this give stable operations. Composi-
tion endows the set of these operations with a natural ring structure; this ring
is known as the Steenrod algebra and denoted S,,. Particular such operations
are the Bockstein B, : H'(X; Z,) — H™ (X . Z,) and Steenrod’s squares
Sq' : H'(X; Z») — H""(X; Z,) and reduced pth powers P’ : H"(X; Z,) —
H"™2»=D(X : 7,). These operations generate S, and formulae for their com-
posites (the Adem relations) are well known. There are rules (Cartan formulae)
for evaluating these operations on the cup product of two classes. These define
a diagonal map which furnishes S,, with the structure of a Hopf algebra. It thus
has a canonical anti-automorphism, which is denoted .

It was shown by Milnor [93] that the dual algebra S If is a polynomial algebra
on a 1-dimensional generator b, and generators ¢, (r > 1) of degrees 2(p" — 1).
The quotient 3,, of S, by the ideal generated by S, has dual the polynomial
algebra on the ¢,. A careful and thorough account of this material is given in
[145].

Steenrod squares are related to Stiefel-Whitney classes as follows. If £ is
a vector bundle, with projection 7 : E — B and Thom space T'(§), we have
the Gysin isomorphism & : H*(B : Z,) — H*(T(£); Z), with ®(1)=U,
say: then Sq'U = ®(w;(£)) = w;(§).U. Classes v; € H(B(0); Z,) are defined
uniquely by the rule w; = v; + Z.’:l Sq’v;_;, which may be written compactly
as w, = Sq*v,. In the special case of the tangent bundle of a manifold M™,
we have the formulae, known as Wu relations, Sg'x[M] = xv;[M] for any x €
H™ (M : Z,): these follow from the above and duality in M (see [103, IX, 5]).

As well as primary operations such as Steenrod squares there are sec-
ondary operations. The general idea is that if something vanishes for two
independent reasons, this leads to a construction. Perhaps the simplest exam-

ple: given maps Ay i) Ay i) As i) As such that f> o f] and f3 o f> are
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nullhomotopic, choose homotopies i : Ag X I — A and hy : A} X [ — Aj:
then both h; o f3 and hy o fy are homotopies of f3 o f> o fj o fy to a point.
Glueing these together thus gives a map SAg — As. This depends not only on
the homotopy classes of the f; but also on the choices of the homotopies, so
(in the additive case) is unique up to adding elements of f3 o [SAp : A>] and
[SA] . A3] o Sfl.

For example, if A, = K(G, m) and A3 = K(H, n), the map f3 defines a coho-
mology operation ¢ : H"(X; G) — H"(X; H). Thus if f, represents a class
& € H"(Ay; G) such that 6 =0 and ¢(§) =0 we obtain an element of
H"(SAo; H) = H""'(Ao; H), which is denoted ¢ ,£.

If p is a prime, we can localise a (finitely generated) abelian group A at p by
forming the tensor product A ® Z,, with the group of integers localised at p
(i.e. rational numbers with denominator prime to p). An Eilenberg—MacLane
space K(A, n) localises to K(A ® Z,), n). Building up using fibrations, one can
define the localisation X, at p of any simply-connected space X: it is unique
up to homotopy, and 7, (X)) is the localisation of 7, (X) at p. See, for example,
[23] for a textbook account. Similarly we can localise at any set S of primes.
This permits calculations where we can ignore throughout the contribution of
all primes not in S. This technique of ‘mod C’ theory is due to Serre [136].

We define a spectrum A to be a sequence of (based) spaces A, (n € Z) and
maps i, : SA, — A,+1: equivalently, we may require maps A, — QA, ;. [tis
called an Q2-spectrum if the maps A,, — QA,; are all homotopy equivalences.

The map i, induces 7,1,(A;) = Trpni1(SAL) = Trpnt1(Ans1) and, for any
C,Hyn(Ay; C) > Hyy i 1(SA, - C) = Hpg i1 (Any; €): the limits of these are
defined to be 7,(A) and H,(A; C).

Proposition B.4.1 Let X be a spectrum whose homology groups are finitely
generated. Then the natural map nkS(X) — Hi(X; Z) has finite kernel and
cokernel.

This is proved using the methods of mod C theory [136]. It is a very useful
first step in calculation of bordism groups.

We give important examples of spectra. The sphere spectrum S is defined by
the sequence S" and SS" ~ §"*!. The Eilenberg-MacLane spectrum K(A, k) is
defined by the sequence K(A, n + k) and the homotopy equivalences K(A, n +
k) — QK(A,n+ k+1). The cohomology ring H*(K(Z,, k); Z,) is free on
one generator over S,; H*(K(Z, k); Z,,) is free over gp.

For J a stable group in the sense of §8.2, the sequence of maps A : ST (J;) —
T (Jy41) defines a spectrum, which we denote by TJ.
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A different example is obtained using the homotopy equivalence QU —
B(U) established by Bott: set Ay, = B(U) and A,,—; = U. This gives an Q-
spectrum BU with 7y (BU) = Z for all n € Z. Similarly using a homotopy
equivalence Q80 — O we define a spectrum BQ. For any spectrum A we
can define the (k — 1)-connected cover A(k): as for spaces, A% is (k — 1)-
connected and % : A% — A induces isomorphisms of the homotopy groups
7, for r > k. The spectrum BO(k), which is a Q-spectrum with O-term B(O)(k),
plays a role in Chapter 8.

A spectrum A is aring spectrum if we are given a system of maps A,, A A, —
A, +n compatible with the i,. There is a natural condition of associativity. For
the above examples, S is a ring spectrum, a ring structure on A induces one on
K(A, k), and TJ is a ring spectrum if (M) and (A) hold for J.

Any spectrum A = {A,, i,} gives rise to a homology theory (satisfying the
axioms discussed in §8.4) on defining

Hy(X; A) = lim m,n(A, AXT)
Hy(X.Y: A) = lim 7,0n(A, A XY, A, AYT)
—00

= lim 7 nvA, AX, A, AY).
N—oo

If A is a ring spectrum we obtain external products which are associative if
the spectrum is.
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Set theory

@ is the empty set.

x € X denotes that x is an element of the set X.

X C Y means that X is a subset of Y.

X denotes the closure of X (in Y).

{x | A(x)} is the set of objects x satisfying a condition A(x).

X x Y is the set of pairs {(x,y) |[x € X,y € Y}.

A(X) is the diagonal subset A(X) := {(x,y) e X x X |[x =y} of X x X.
f : X — Z means that f is a map from X to Z.

Im f denotes the image of f: {f(x) |x € X}.

| denotes restriction, for example, for Y C X i) Z, f|Y is the restriction of f
to?Y.
o denotes composite: the composite g o f is given by go f(x) := g(f(x)).
R is the set of real numbers,
R" is the vector space of n-tuples x = (xy, ..., x,) with each x; € R,
Ixll == /(e + -+ 4+ x2).
RY is the subset with x; > 0, R’} | the subset with x; > 0, x, > 0.
[a, b] is the closed interval {x € R|a < x < b};
[a, b) is the half-open interval a < x < b (allowing b = 00); similarly (a, b].
D (r) is the closed disc {y € R" | [|x — y|| < r},
Soi"l(r) the sphere {y € R" [ [lx — yll = r},
D’ (r) the open disc {y € R" | lx — y|| < r},
Qﬁ_(r) = lo);’(r) N R is the closed half-disc
D', (r) :== D(r) N IR the open half-disc.
If x is omitted, the centre is the origin; if  is omitted, the radius is r = 1.
Di(a,b) :={x e R"|a < |lx| < b}.

340
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Thus / := [0, 1] = D and R := R = [0, 00).
u: R\ {0} — §"!is defined by u(x) := x/|x|. (§4.2).

Groups, fields, etc.

Z is the ring of integers.

Z, is the additive group of integers modulo the natural number n.

R is the field of real numbers.

Q is the field of rational numbers.

C is the field of complex numbers.

o (g) is the signature of a quadratic form ¢ defined over R,

Arf(p) is the Arf invariant of a quadratic form p defined over Z;.

B () is the Gauss sum of the quadratic form u on a finite group.

PA,; F)(t) := Zgo dimg(A,)t" is the Poincaré€ series of A,.

|G| is the order of the finite group G.

Tors(A) is the torsion subgroup of the abelian group A.

A @ B is the direct sum of A and B;

A ® B is the tensor product of A and B.

G is the dual group to G.

Ker(¢) is the kernel of the group homomorphism ¢ : A — B;

Coker(¢) is the cokernel of ¢ : A — B.

G/H is the quotient (space) of (right cosets) of a group G by a subgroup H. If
H is a normal subgroup of G, this is the quotient group.

GL,,(K) is the group of nonsingular (m x m) matrices over the field K.
SL,,(K) is the subgroup of matrices of determinant 1.
GL/ (R) C GL,(R) is the subgroup of matrices with positive determinant.
0,, € GL,(R) is the orthogonal group, {A € GL,,(R) | AA" = I}.
U,, € GL,,(C) is the unitary group, {A € GL,,(C) |AZt =1}.
SO,, := 0,, " SL,,(R).
Su,, :=U,, N SL,,(C).
G, is the monoid of maps of S"~! to itself of degree £1.
F, C G, is the set of base-point preserving maps S” — S".
Top, is defined in §8.9.
SG,, SF,, STop,, are the corresponding subsets of orientation-preserving
maps.
For each of the above groups and monoids C,,,
B(C,) is the classifying space of C;
B(G,) is the classifying space for spherical fibrations with fibre §"~!;
C is the union of the C,;; and
B(C) is the inductive limit of the sequence B(C,,).
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Manifolds, etc.

Bp(x) is the bump function (§1.1).

TpM is the tangent space at P € M to the smooth manifold M;

T,’M is the dual vector space.

T(M) is the tangent vector bundle of M; the dual is TV (M).

TO(M) is the zero cross-section.

N(M/V) is the normal bundle of the smooth submanifold V C M.

dM is the boundary of M: for example, 0D (r) = Sﬁ’l (r).

/M is the corner of M.

M:=M \ dM is the interior of M.

0_W, 0, W and o.W are the lower, upper, and middle parts of the boundary oW
of a cobordism W.

D(M) is the double of M.

M, # M, is the connected sum of manifolds M, and M,.

M, + M, is the boundary sum of M and M; (§2.7).

P"(R) = P(R™*!) is the set of lines through the origin in R"*!;

P"™(C) = P(C™*1) the set of lines in C"*!.

PP(R) := ey P"(R); PP(C) := |, cn P*(C).

Gry, i 1s the Grassmann manifold of k-dimensional subspaces of R™.

Vink = On/ Ok is the Stiefel manifold of isometric embeddings RF — R™,

V,;, « = GL,(R)/GLi(R) is the set of linear embeddings RF — R™.

JK(V, M) is the space of k-jets of maps V — M;

J*f :V — J(V, M) is the k-jet of the map f : V — M;

V@ is the subset of V" consisting of 7-tuples of distinct points of V.

JE(V, M) is the subset of (J*(V, M))" lying over V"),

VO JK(V, M) is the multijet of f: V — M. §4.4.

C"(V,M)isthe setof C" mapsV — M (0 < r < o0);

C},(V, M) is the set of proper C" maps.

Imm(V, M) is the set of (smooth) immersions V — M;

Emb(V, M) is the set of (smooth) embeddings V — M;

Diff(M) is the set of diffeomorphisms of M.

=i, BiV, M) C J'(V, M), £ f are Thom-Boardman sets: see §4.5.

I(¢) is the number of double points of an immersion ¢ : V¥ — M.

Cobordism theory

For & an orthogonal bundle (or spherical fibration), we write
Ag for the associated disc bundle,
S¢ for the sphere bundle,
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T(&) = A¢ /S for the Thom space,
B; for the base.
For & the universal bundle over B(C,,), these become A(C,), S(C,,), T(C,,).
Q. (X, v) is the set of normal cobordism classes of maps of degree 1 to X.
Py = Qu(D™, €).
Kerv(¢, v, T) is the Kervaire invariant of a normal cobordism class.
L, isZ,0, Z, or 0 according as m = 0, 1, 2 or 3 (mod 4).
QY is the cobordism group of m-manifolds with (weak) G-structure.
QJ/ is the framed cobordism group.
©F is the group of homotopy spheres £ C S"+,
F®¥ is the group of framed homotopy spheres ™" C S"**,
¥k is the group of embeddings S” C S" .
By is the kth Bernoulli number.

Homology theory

H.(X,Y;A) is the rth homology group of (X, Y) with coefficients in A.
If A is omitted, it is taken as Z.

H*(X,Y) is the reduced cohomology group.

Ki(M) := Ker(¢, : Hy(M) — Hy(X)) for ¢ : M — X a normal map.

[M] is the fundamental homology class of the manifold M.

By : H*(X; Z,) — H**'(X; Z,) is the Bockstein homomorphism.

S, is the mod p Steenrod algebra,

X its canonical anti-automorphism,

Sp = Sp/(ﬂp)

K (7, n) is the Eilenberg—MacLane space.

Ji : 1 (SO) — nks is the stable J homomorphism.

wi(£), vi(€) € HX(X : Zy) are the Stiefel-Whitney, Wu classes of a bundle &.
If & & n is trivial, Wi (&) = wi(n).

cx € H*(X; Z) is the kth Chern class,

par € H*(X; Z) are the Pontrjagin classes.

Homotopy theory

« is the base point.

X™ is the disjoint union of X and .

X A'Y is the smash product of X and Y.
X %Y is the joint of X and Y.
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344 Index of notations

[X : Y] is the set of (based) homotopy classes of maps X — Y.

(X, Y) is the rth homotopy group of (X, Y).

K™ is the n-skeleton of K.

X% is a (k — 1)-connected cover of X.

SX := S' A X is the suspension of X.

QX is the loop space of X.

(X :Y}=limy—lS"X : S"Y].

n5(X) = {S": X}.

S is the sphere spectrum.

K(A, k) is the Eilenberg—MacLane spectrum.

TG is the classifying spectrum of the stable group G (in the sense of §8.2).
BU and BO are the Bott spectra, with connective versions BU (k) and BO(k).
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Index

A-regular, 109 deformation retract, 314

associated bundle, 24 diffeomorphism, 16

atlas, 11 diffeotopy, 49

attaching sphere, 137 differential, 18
dimension, 9

Baire property, 104 double, doubling, 63

belt sphere, 137

Bernoulli numbers, 266 embedding, 296

boundary, 29 equivalent tubular neighbourhoods, 53

boundary sum, 66 equivariant map, 72

bump function, 10 exponential map, 41

bundle map, 24
fibration, 167, 318

characteristic number, 322 fibre bundle, 23
chart, 11 fibre map, 168
Chern class, 262 fine topology, 103, 307
closed manifold, 29 flow, 27
cobordism, cobordant, 129 focus, 99
codimension, 19 framing, 24
cohomology operation, 328 fundamental class, 208
collar neighbourhood, 32
compact-open topology, 102, 306 geodesic, 39
component, 16 geometrically r-connected, 149
cone, 316 germ, 100
connected, 15 glueing, 63
connected sum, 65 Gysin isomorphism, 221
coordinate neighbourhood, 9
core, 137 h-cobordism, 152
corner, manifold with corner, 30 handle, handle presentation, 130
covering homotopy property CHP, handlebody, 156
317 homotopy sphere, 153
critical point, critical value, 96 homotopy, homotopy equivalent, 314
cross-section, 24
cutting, 64 immersion, 21
CW-complex, CW-pair, 315 index of critical point, 134
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inverse limit, 298
isotropy group, 72
isovariant, 184

jet, jet space, 101
Kervaire invariant, 216

Lagrangian, 202
length of path, 37
Lie group, 23
localisation, 329
loop space, 318

manifold with boundary, 29

manifold, smooth m-manifold, 9

mapping cone, mapping cylinder,
316

metastable range, 185

metric adapted to the boundary, 47

multijet, 102

mutually transversal, 113

n-connected map, pair, 316

non-degenerate critical point, 98

nonsingular pairing, 202

normal map, normal cobordism,
197

normal space, normal bundle, 38

nul set, 95

orbit, orbit space, 72
orientable, orientation covering, 26

partition of unity, 13

path, 15

plumbing, 228

Poincaré complex, 208
Poincaré series, 267
Pontrjagin class, 265
primary obstruction, 327
proper group action, 74, 304
proper map, 300

reduction, 24

regular homotopy, 169
regular point, 96
residual set, 104

Index

Riemannian metric, 37
Riemannian structure, 25

side, 64

skeleton, 315

slice, 76

smash product, 222, 316
smooth action, 23, 72
smooth embedding, 20
smooth functions, 9
smooth mapping, 16
smooth part, 33

source, 101

spectrum, 329

spherical fibration, 221
spherical modification, 196
stable group, 244

stably isomorphic, 24
Steenrod algebra, 328
Stiefel manifold, 170
Stiefel-Whitney class, 263
Stiefel-Whitney number, 268
straightening the corner, 61
stratification, 83

strictly subordinate, 13
submanifold, 19
submanifold with boundary, 31
subordinate, 13

support of diffeotopy, 50
support of function, 13
suspension, 316

symplectic basis, 204

tangent bundle, 25

tangent space, tangent vector, 17
target, 101

Thom class, Thom space, 221
Thom construction, 239

totally geodesic, 41

transverse, 105

trivial bundle, 24

tubular neighbourhood, 46

vector bundle, 23
vector field, 25

weak homotopy equivalence, 169, 316
Whitney sum (of vector bundles), 24
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