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FOREWORD

The mathematical community was startled in 1956 by John Milnor’s dis-
covery of a smooth manifold homeomorphic but not diffeomorphic to the 7-
dimensional sphere [M3]. A few years later Michel Kervaire found a closed
topological 10-dimensional manifold that does not support a smooth struc-
ture [K]. Thus was differential topology born as a separate field of manifold
study. Of course there were earlier important topological theorems that used
differentiable techniques, e.g., Morse Theory, Pontryagin-Thom transversal-
ity, and Whitney’s strong embedding theorem. However, the Kervaire-Milnor
examples showed that these techniques could not be directly applied to the
study of topological manifolds in general.

At about the same time that the Kervaire-Milnor examples were discov-
ered, important new differentiable techniques were developed; in particular,
the Smale-Hirsch immersion theorem, Smale’s h-cobordism theorem [Sm1],
and Haefliger’s embedding theorem ([H]). These made it possible for Kervaire
and Milnor in 1963 to classify, up to diffeomorphism, all smooth manifolds
homeomorphic to the n-dimensional sphere S

n when n > 4 ([K-M]). Thus was
established the new field of surgery. This field rapidly matured over the next
7 years through the work of Browder, Novikov, Sullivan, and Wall to become
an effective method for classifying, up to diffeomorphism, all closed simply
connected manifolds of a given homotopy type X and of dimension greater
than 4 (so-called high dimensional manifolds) ([Bd], [W]). Surgery theory is
also effective for classifying high-dimensional non-simply connected manifolds
provided certain groups Wh(π1(X)) and Ln(π1(X)) can be calculated. Much
progress has been made calculating these groups over the last 40 years and
this is currently a focus of research. Building on this earlier work Kirby and
Siebenmann, in their 1976 monograph ([K-S]), accomplished the daunting task
of indirectly extending the above differential topology techniques so as to ap-
ply to topological manifolds. In particular, they established effective versions
of the h-cobordism theorem and of surgery theory that are valid for high-
dimensional topological manifolds. They also established a smoothing theory
to answer the basic question: Does a given topological manifold support a
smooth structure and if so (up to diffeomorphism) how many?

We further remark that the Kervaire-Milnor exotic spheres, i.e., smooth
n-dimensional manifolds homeomorphic but not diffeomorphic to Sn, have
also been of much interest to differential geometers through the study of
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Riemannian manifolds of positive sectional curvatures. The classical sphere
theorem, due independently to Berger and Klingenberg 1960 ([B], [Kl]),
showed that if the sectional curvatures of a closed simply connected n-
dimensional manifold are strictly 1/4-pinched, then the manifold is homeo-
morphic to Sn. And recently Brendle and Schoen have shown, under this same
1/4-pinching assumption, that the manifold is actually diffeomorphic to Sn, by
using Hamilton’s Ricci flow theory ([B-S]). A bit earlier use of this theory by
Perelman positively solved perhaps the oldest problem in topology, Poincare’s
Conjecture; i.e., any simply connected closed 3-dimensional manifold is home-
omorphic to S3.

Professor Shastri’s book gives an excellent point of entry to this fascinating
area of mathematics by providing the basic motivation and background needed
for the study of differential geometry, algebraic topology, and Lie groups.

His book is accessible to a serious first year graduate student reading it
either independently or as a text in a graduate course. If such a student also
familiarizes himself/herself with the basics of algebraic topology, through cup
products, then he would be prepared to understand the important results
outlined above.

A major strength of Professor Shastri’s book is that detailed arguments
are given in places where other books leave too much for the reader to supply
on his/her own. This, together with the large quantity of accessible exercises
makes this book particularly reader friendly as a stable text for an introductory
course in differential topology.

F. Thomas Farrell
Binghamton, New York
Autumn, 2010



PREFACE

This book is intended for a preparatory course for the vast and elegant theories in topol-
ogy developed by Morse, Thom, Smale, Whitney, Milnor, etc. It grew out of several years of
teaching at my department, a third-semester course in Differential Topology. The selection
of topics broadly follows the classical book of Milnor, Topology from the Differentiable View-
point, [M1] from which I myself learned differential topology. One may see here quite a bit
of similarity with the book Differential Topology [G-P] by Guillemin and Pollack. That was
the book from which I used to teach my course initially and which is also modeled on Mil-
nor’s book. Two other books I have been influenced by are Kosinski’s book ‘Differentiable
Manifolds’ [K] and John Lee’s book Manifolds [L].

This book assumes that the reader has gone through a semester course each in real
analysis, multivariable calculus, and point-set-topology. The entire book or parts of it can be
adopted as text for M.Sc./B.Tech./M.Tech./Ph.D. students. The exercises in each chapter
with solutions/hints at the end make this book self-readable by any interested student. I
have included a ‘section-wise dependence tree’ which may help a teacher to make his/her
course plan.

The first two chapters offer a quick review of differential and integral calculus of several
variables. They also serve as a ready reference to fundamental results to be used throughout
the rest of the book. They include standard material such as inverse and implicit function
theorems, change of variable formula for integration, Sard’s theorem, etc. As a precursor
to the study of manifolds, we discuss the Lagrange multiplier method with complete proof
and include interesting examples.

Chapter 3 deals with smooth manifolds as submanifolds in a Euclidean space. Basic
notions of tangent space, immersions, embeddings, transversality, etc. and the stability
properties of some of these notions are discussed. In Chapter 4, we introduce the notion
of orientability and develop the algebraic machinery of differential forms that is necessary
for the study of integration on manifolds, and then present the general form of the Stokes’
theorem and a little bit of De Rham cohomology.

In Chapter 5 we introduce the notion of abstract smooth manifolds. A fundamental
gluing lemma is introduced, which is used again and again in the construction of new
manifolds out of the old ones. As an immediate application of this lemma, we give an
elementary proof of the classification of 1-dimensional manifolds. To my knowledge, there
is some novelty in this proof. This chapter concludes with Whitney’s (easy) embedding
theorems.

In Chapter 6, we begin with the normal bundle, tubular neighborhoods and orientation
on normal bundles laying down the foundation for homotopical aspects of manifolds. We
then go on to study vector fields and isotopies, thereby clearing the ground for bringing in
constructional tools of differential topology.

In Chapter 7, we discuss intersection theory, which is central to the theme of the book.
Technically useful results such as relative transverse homotopy theorems are proved with
complete detail. We directly discuss oriented intersection numbers, relate this to the degree
of a map, the concept of winding number, index of a vector field, etc. We discuss various
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equivalent definitions of the Euler characteristic, except the standard definition itself, viz.,
alternative sum of the face numbers of a triangulation. This chapter includes big results
such as the Jordan-Brouwer separation theorem, the Borsuk-Ulam theorem, the Hopf degree
theorem, the Gauss-Bonnet theorem etc.

In Chapter 8, we introduce the Morse functions. For a submanifold of a Euclidean
space, existence of ‘linear’ Morse functions is established. We then introduce the notion
of attaching handles and connected sum, prove handle presentation theorem for compact
manifolds due to Smale and present a proof of classification of compact smooth surfaces.
Again, to my knowledge, there is some novelty here. Here the reader will meet two more
definitions of Euler characteristic, one through handle presentation and another directly
through the Morse function and see a proof of Poincaré-Hopf index theorem.

Chapter 9 deal with the basics of Lie groups. It is primarily included as a rich source of
examples of manifolds and most of it can be read independently of the rest of the book. Part
of it needs a little more background such as working knowledge of covering space theory
and topological groups.
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1.8 Miscellaneous Exercises for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

This chapter is a self-contained review of some basics of the differential calculus of several
variables. We assume that you are fairly familiar with these results and just need to browse
through this chapter to get familiar with some standard notation/results to be used in the
rest of the book. However, if you are learning some of them for the first time, you may need
to go through it slowly. In any case, whenever you have some difficulty in later chapters,
often it just helps to come back to this chapter for the relevant clarification.

1.1 Vector Valued Functions

We shall use the notation N,Z,Q,R,C to denote the set of positive integers, the ring of
integers, and the fields of rational numbers, the real numbers, and the complex numbers,
respectively.

Definition 1.1.1 Let r ∈ N be a nonnegative integer. Let U be an open interval in R. We
say f : U → R is a Cr-function if f possesses all derivatives of order ≤ r and these derivatives
are all continuous throughout U. (For r = 0 this is taken to mean that f is continuous.)
We say f is C∞ on U if it is Cr for all r ≥ 0. The set of all real valued Cr-functions on
U is denoted by Cr(U). Similarly C∞(U) denotes the set of all C∞ functions. We say f is
smooth if it is of class Cr, for some r ≥ 1. The purpose of introducing this somewhat vague
terminology is twofold:
(i) often the actual value of r ≥ 1 is not so important.
(ii) most of the properties that we need to discuss merely require that r = 1; only once in
a while we need to have higher values of r.

Remark 1.1.1 In the literature, the terminology “f is a continuously differentiable func-
tion” means that f is a C1-function. We shall also use this without hesitation.

Recall that a complex valued function is continuous if and only if its real and imaginary
parts are continuous. Motivated by this, we can immediately adopt the following definition.

Definition 1.1.2 Let U be an open interval. A vector valued function f : U → Rn where,
f(t) = (f1(t), . . . , fn(t)) is differentiable at t = t0 ∈ U if and only if each one of its component
functions fi is differentiable at t0. In this case, we shall use the notation

D(f)(t0) := (f ′
1(t0), . . . , f ′

n(t0))

1



2 Review of Differential Calculus

for the derivative of f at t0. If f is differentiable at all points t ∈ U, we then say that f is
differentiable on U. We shall use the notation Cr(U ; Rm) to denote the set of all functions
f : U → R

m with each component fi ∈ Cr(U).

Remark 1.1.2 As can be easily verified, this definition is quite satisfactory in the sense
that all the standard properties of differentiability of scalar valued function of a real variable
have parallels here also. For instance, we have the chain rule for differentiation of composite
of two functions viz., for any real valued differentiable functions g : V → U and f : U → Rn,
we have f ◦ g is differentiable on V and

D(f ◦ g)(t) = D(f)(g(t))g′(t) = g′(t)(f ′
1(g(t)), . . . , f ′

n(g(t))).

Thus, the theory of vector valued functions is a straightforward extension of the theory
of scalar valued functions. Having said this, we should however take some precaution in
dealing with vector valued functions. Indeed, the Mean Value Theorem (MVT) is one of the
most fundamental results about smooth real valued functions. Alas! It is no longer true in
the case of vector valued functions:

Example 1.1.1 Consider f(x) = (cosx, sinx). Then f(2π)− f(0) = 0. On the other hand,
f ′(x) = (− sinx, cosx), and hence ‖f ′(x)‖ = 1, for all x. Therefore, there can be no x0 such
that f(2π)− f(0) = 2πf ′(x0).

Remark 1.1.3 Nevertheless, the situation is not so bad, since we can always salvage some-
thing useful out of the corresponding results for real valued functions. As an illustration,
here we give a result that is an easy consequence of the Mean Value Theorem in 1-variable
calculus. We shall refer to it as the Weak Mean Value Theorem (WMVT).

Theorem 1.1.1 Let f : [a, b] → Rn be a continuous map, which is differentiable in the
open interval, a < b ∈ R. Then there exists t0 ∈ (a, b) such that

‖f(b)− f(a)‖ ≤ (b− a)‖D(f)(t0)‖. (1.1)

Proof: Let v = f(b)− f(a) and consider the function g(t) = v · f(t). Apply MVT to g to
obtain t0 ∈ (a, b) such that

v · v = v · (f(b)− f(a)) = g(b)− g(a) = (b− a)g′(t0) = (b− a)(v ·D(f)(t0)).

Therefore, by Cauchy-Schwartz’s inequality, it follows that

‖f(b)− f(a)‖ = ‖v‖ ≤ ‖(b− a)D(f)(t0)‖ = (b− a)‖D(f)(t0)‖,

which is nothing but (1.1). ♠

Exercise 1.1 Verify the following statements:
(a) A vector valued function f : R → Rn, f = (f1, f2, . . . , fn) is continuous if and only if
each fi : R → R is continuous.
(b) The function f as above is differentiable at t = t0 if and only if

lim
t→t0

f(t)− f(t0)
t− t0

exists.
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1.2 Directional Derivatives and Total Derivative

We are interested in differential properties of vector valued functions of several real
variables. In the case of one variable, the domains of definition of our functions were, at
least to begin with, open intervals. The analogue of this in several variables will be open
subsets. Let us first recall some standard notations and concepts.

Given a point x ∈ Rn and δ > 0, the open ball and the closed ball of radius δ around x
are defined respectively as follows:

Bδ(x) = {y ∈ R
n : ‖y − x‖ < δ}, B̄δ(x) = {y ∈ R

n : ‖y − x‖ ≤ δ}.

We shall also use the notation:

S
n−1
r = {x ∈ R

n : ‖x‖ = r}; D
n
r = {x ∈ R

n : ‖x‖ ≤ r}; S
n−1 = S

n−1
1 ; D

n = D
n
1 .

A subset U ⊂ Rn is said to be open in Rn if for each x ∈ U there exists δ = δx > 0 such
that Bδ(x) ⊂ U. A subset is closed if its complement is open.

So let us begin with a function f : U → R
m, where U is an open subset of R

n for some
m,n ≥ 1. Considerations similar to the one in the previous section offer us an easy approach
to convert the study of f into the study of its components fi’s, where f = (f1, f2, . . . , fm).
So, let us concentrate on the case m = 1.

Can we do a similar simplification in the domain of the function as well? That is, can
we restrict the function to line segments parallel to one of the coordinate axes and passing
through a given point in U and talk about the differentiability of these restricted functions?
No doubt this can be a useful idea but we need to be cautious. Let us examine an example
before we proceed.

Example 1.2.1 Define a function f : R2 → R by

f(x, y) =

{ xy

x2 + y2
, if (x, y) �= (0, 0),

0, if (x, y) = (0, 0).
(1.2)

This map has the property that for each fixed y, it is continuous for all x and for each fixed
x it is continuous for all y. However, it is not continuous at (0, 0) even if we are ready to
redefine its value at (0, 0). This is checked by taking limits of f as x → 0 along the lines
y = mx for different values of m.

Remark 1.2.1
(i) Note that in the above example, we have taken a rational function in two variables,
which is homogeneous of degree 0. Such functions provide a variety of counterexamples to
illustrate the failure of certain phenomena for functions of several variables. As you will
soon see most of our counterexamples in this chapter are based on rational functions which
are homogeneous, possibly with different weights assigned to different variables.
(ii) This however should not discourage us completely. As a first shot, we shall give some
more thought to this idea of restriction along line segments in the domain which leads us
to the notion of directional derivatives and partial derivatives.

Definition 1.2.1 Let v be a unit vector in Rn, U be an open subset and let x ∈ U be any
point. Then the line {x + tv : t ∈ R} which passes through x contains an open segment
around x completely contained in U. Therefore, given a function f : U → R, we can talk
about the differentiability at x of the function obtained by restricting f to this line segment.
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Figure 1 The directional derivative.

More precisely, consider the function g(t) = f(x + tv), which is defined in an open interval
containing 0. We say that the directional derivative of f in the direction of v at x exists
and is equal to g′(0) if g′(0) exists; in this case, we denote g′(0) by Dv(f)(x). Thus,

Dv(f)(x) = lim
t→0

f(x + tv)− f(x)
t

. (1.3)

If the derivative exists for all x ∈ U, we obtain a function x 
→ Dv(f)(x) defined on U. We
shall denote this function by Dvf. In the special case when v = ei, the ith standard basis
element for the vector space Rn, the directional derivative is called the partial derivative
of f with respect to the ith variable. We also use the simpler notation Dif in this case.
Moreover, when the variables are denoted by x, y, z, etc., as in the case n = 2, or 3, we use

the notations
∂f

∂x
,
∂f

∂y
,
∂f

∂z
, etc. The notations Dxf,Dyf,Dzf, etc. are also in use. Whenever

all the partial derivatives exist, we shall denote the vector (D1f, . . . , Dnf) by the symbol
∇f (read “del f” or “grad f”). This is called the gradient of f and is also denoted by grad f.

Remark 1.2.2 Directional derivatives share most of the natural properties of the deriva-
tives of a function of one variable. One is tempted to define the notion of differentiability in
terms of directional derivatives, or even more economically, in terms of partial derivatives.
Namely, tentatively, let us say that f is ‘T-differentiable’ at p if it possesses all the direc-
tional derivatives at p. Caution is needed here in the sense that we should check whether
such a “T-differentiable” function, as expected, is automatically continuous or not. Alas,
this is not the case, as illustrated by the following example. Therefore, we discard this
tentative definition.

Example 1.2.2 Consider the function defined by

f(x, y) =

⎧⎨
⎩

x2y

x4 + y2
, if (x, y) �= (0, 0)

0, if (x, y) = (0, 0).
(1.4)

Check that at (0, 0) all the directional derivatives exist. Yet the function is not continuous
at (0, 0) since along parabolas y = mx2, if we take the limit as x→ 0, we get different limits.
So, such a function cannot be declared as differentiable. Check that the partial derivatives
are not continuous at (0, 0), nor even bounded near (0, 0).

Remark 1.2.3 In case of three variables, it is customary to denote gradf by the sum
∂f
∂x i + ∂f

∂y j + ∂f
∂z k. Implicit in this is the notation i = (1, 0, 0), j = (0, 1, 0),k = (0, 0, 1).
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We can generalize this practice for any number of variables by using the standard basis
elements:

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1).

For a function f of n-variables we can then write

(∇f)(x) :=
∑
i

Dif(x)ei.

Remark 1.2.4 Recall that when we have a differentiable function f of one variable, by the
Increment Theorem, we have,

f(x+ h) = f(x) + f ′(x)h + ε(h)h (1.5)

where the error function ε(h) → 0 as h→ 0. Indeed, (1.5) is equivalent to the differentiability
of the function f at x : simply by rearranging the terms in (1.5) we get,∣∣∣∣f(x+ h)− f(x)− hf ′(x)

h

∣∣∣∣ = |ε(h)| → 0 (1.6)

as h → 0. It turns out that (1.6) can be adopted to give a very satisfactory definition of
differentiability of a real valued function of several real variables.

Definition 1.2.2 Let U be an open subset of Rn, x ∈ U and let f : U → R be a function.
We say f is differentiable at x if there exists α = (α1, α2, . . . , αn) ∈ Rn such that for all
h = (h1, h2, . . . , hn) ∈ Rn \ {0} with x + h ∈ U , we have,

lim
h→0

ε(h) = lim
h→0

f(x + h)− f(x)−
∑n
i=1 αihi

||h|| = 0. (1.7)

We say α is the total derivative of f at x and denote it by D(f)(x) or sometimes by
D(f)x. If this happens at all points of U, then we say f is differentiable in U. Also, the
assignment x 
→ α defines a vector valued function

Df : U → R
n

called the total derivative or simply the derivative of f .

Remark 1.2.5
(1) Note that if n = 1, then we get back the old definition.

Df = f ′.

(2) Let u be unit vector. By putting h = tu in (1.7), and letting t → 0, we immediately
deduce that

Du(f)(x) =
∑

αiui = D(f)(x) · u. (1.8)

In particular, we conclude that if the total derivative exists then all the partial derivatives
exist and the components of the total derivatives are nothing but the partial derivatives.
Thus,

D(f)(x) = ∇f(x). (1.9)

(3) All the standard laws of differentiation such as additivity, the Leibniz rule, etc., are valid
and can be verified in a straightforward manner. We have considered only some of these
properties below.
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Theorem 1.2.1 Increment Theorem: Let f : U → R be a function where U is an open
subset of Rn and let x ∈ U. Set z = f(x) and Δz = f(x+h)−f(x). Then f is differentiable
at x if and only if there exists a vector α ∈ R

n and an error function ε defined in a
neighborhood of 0 ∈ Rn such that

Δz = α · h + ||h||ε(h) (1.10)

and ε(h) → 0 as h→ 0.

Proof: In fact, this is just a rewording of Definition 1.2.2. ♠
Taking the limit as h→ 0 in (1.10) yields:

Theorem 1.2.2 Continuity Theorem: If f : U → R is differentiable at x ∈ U , then f
is continuous at x.

Theorem 1.2.3 Chain Rule (Simpler Case): Let V be an open subset of Rm. Let
f : (a, b) −→ V and g : V → R be such that f = (f1, f2, . . . , fm) is differentiable at t0 ∈ (a, b)
and g is differentiable at f(t0) ∈ V. Then the composite function g ◦ f is differentiable at t0
and its derivative at t0 is given by

d(g ◦ f)
dt

(t0) =
m∑
j=1

∂g

∂xj
(f(t0))

dfj
dt

(t0). (1.11)

Proof: Put y = f(t0). By the increment theorem we have,

f(t0 + k)− f(t0) = kf ′(t0) + kε1(k); (1.12)

g(y + h)− g(y) = Dg(y) · h + ‖h‖ε2(h) (1.13)

with ε1(k) → 0 as k → 0 and ε2(h) → 0 as h→ 0. (Note that ε1 is a vector valued function.)
We must find ε(t) such that ε(t) → 0 at t→ 0 and

g ◦ f(t0 + k)− g ◦ f(t0) = Dg(f(t0)) · f ′(t0) + kε(k). (1.14)

First of all, observe that f is continuous at t0 and hence we can put h = h(k) =
f(t0 +k)−f(t0) for sufficiently small k. Then we have h(k) → 0 as k → 0. Next, we observe
that

lim
k→0±

||h(k)‖
k

= ±‖f ′(t0)‖

In particular, ||h(k)‖
k is a bounded function. We now take

ε(k) = D(g(y)) · ε1(k) +
||h(k)‖
k

ε2(h(k))

which clearly tends to 0 as k → 0. Now, substitute h = h(k) in (1.13) to obtain (1.14). ♠

Remark 1.2.6 Remark 1.2.5(2) and Theorem 1.2.3 give enough indication that total
derivative and directional derivatives are closely related. This is what we want to inves-
tigate further.

Theorem 1.2.4 Let f : U → R be a function such that its partial derivatives all exist and
are all bounded in U . Then f is continuous in U .
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Proof: We shall write down the proof for n = 2 and leave the general case as an exercise
to the reader.

Let M > 0 be such that |fx(x, y)| < M, |fy(x, y)| < M for all (x, y) ∈ U . Let (x0, y0) be
a point in U . Let (x, y) be sufficiently near (x0, y0) so that the rectangle with sides parallel
to the axes and with vertices (x, y), (x0, y0) is contained in U. Then we have,

|f(x, y)− f(x0, y0)| ≤ |f(x, y)− f(x, y0)|+ |f(x, y0)− f(x0, y0)|. (1.15)

Using the mean value theorem for fx and fy we can find a point c1 between y0 and y and
a point c2 between x0 and x such that f(x, y)− f(x, y0) = fy(x, c1)|y − y0| and f(x, y0)−
f(x0, y0) = fx(c2, y0)|x − x0|. Plugging these on the right-hand-side (RHS) of (1.15) above
yields:

|f(x, y)− f(x0, y0)| ≤M(|y − y0|+ |x− x0|)
which tends to 0 as (x, y) → (x0, y0). ♠

Example 1.2.3 We may improve upon Example 1.2.2 as follows. Take g(x, y) =√
x2 + y2f(x, y), where f is given as in Example 1.2.2. Then the function g is continu-

ous also at (0, 0) and has all the directional derivatives vanish at (0, 0). That means that
the graph of this function has the xy-plane as a plane of tangent lines at the point (0, 0, 0).
Once again (see Remark 1.2.2), we may be tempted to award such “nice” geometric behavior
of the function and admit it to be “differentiable” at (0, 0). However, it is not differentiable
at (0, 0), according to the definition that we have adopted. For

g(x, y)− g(0, 0)
‖(x, y)‖ = f(x, y)

has no limit at (0, 0). We hope that this example illustrates the subtlety of the situation in
the following theorem.

Theorem 1.2.5 If f : U → R is such that all its partial derivatives exist in U and are
continuous at p ∈ U , then f is differentiable at p. Moreover, the derivative Df itself is a
continuous function on U.

Proof: Here again we shall write down the proof for n = 2 and leave the general case as
an exercise. Taking p = (x0, y0) concentrating attention inside an open rectangle around p
contained in U, we have,

|f(x, y)− f(x0, y0)− (Δxfx(x0, y0) + Δyfy(x0, y0))|
≤ |f(x, y)− f(x, y0)−Δyfy(x0, y0)|+ |f(x, y0)− f(x0, y0)−Δxfx(x0, y0)|
= |Δy| |fy(x, c1)− fy(x0, y0)|+ |Δx| |fx(c2, y0)− fx(x0, y0)| (by MVT)
≤ ||(Δx,Δy)|| (|fy(x, c1)− fy(x0, y0)|+ |fx(c2, y0)− fx(x0, y0)|).

⎫⎪⎪⎬
⎪⎪⎭ (1.16)

Note that c1 lies between y0 and y; also c2 lies between x0 and x. Thus, c1 → y0 and c2 → x0

as (x, y) → (x0, y0). Hence, by continuity of fx and fy, it follows that the quantity in the
bracket on the RHS above tends to 0 as ||(Δx,Δy)|| → 0. Thus, dividing out by ||(Δx,Δy)||
and then taking limit as ||(Δx,Δy)|| → 0, we obtain

|f(x, y)− f(x0, y0)− (Δxfx(x0, y0) + Δyfy(x0, y0))|
||(Δx,Δy)|| → 0

as required. The last assertion of the theorem follows immediately if you recall that a vector
valued function is continuous if all its components are so, as the components of Df = ∇f
are nothing but the partial derivatives. ♠

The following corollary has the flavor of Riemann’s removable singularity for functions
of one complex variable.
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Theorem 1.2.6 Removable Singularity: Let U be an open subset of Rn, p ∈ U and
f : U → R a continuous function. Suppose Df exists in U \ {p} and limq→pDf(q) = L
exists. Then Dfp exists and is equal to L.

Proof: For n = 1 this is a direct consequence of MVT. Since this is a nonstandard result,
we shall write down the proof. Choose δ > 0 such that [p− δ, p+ δ] ⊂ U. By the mean value
theorem applied to f : [p− δ, p] → R for each q ∈ [p− δ, p) there exists q < x < p such that
f(q)− f(p) = f ′(x)(q − p). Now take the limit as q → p inside [p− δ, p) we obtain that the
left-hand derivative of f exists and is equal to limx→p f

′(x) = L. Similarly the right-hand
derivative exists and is equal to L and we are done.

We shall now write down the proof for the case n = 2, the general case being similar. Tak-
ing p = (x0, y0) concentrating attention inside an open rectangle around p contained in U, we
merely reproduce the inequality (1.16), except that we have to replace fx(x0, y0), fy(x0, y0)
respectively by L(e1), L(e2). Therefore,

|f(x, y)− f(x0, y0)− L(∇tax,Δy)|
= |f(x, y)− f(x0, y0)− (ΔxL(e1) + ΔyL(e2)|
≤ ||(Δx,Δy)|| [|fy(x, c1)− L(e2)|+ |fx(c2, y0)− L(e1)|].

(1.17)

Here c1 lies between y0 and y and c2 lies between x0 and x. Since limq→pDf(q) = L, we
have

lim
q→p

fx(q) = L(e1); lim
q→p

fy(q) = L(e2).

Therefore, the expression in the square bracket tends to 0 as q = (x, y) → p = (x0, y0). This
implies Dfp exists and is equal to L. ♠

Remark 1.2.7 One way we would like to use this result is the following. Often in topology
maps on a disc are defined using polar coordinates. Since the polar coordinates have a
built-in singularity at the origin, the smoothness of the maps so defined need to be checked
carefully.

Recall that the disc Dn can be thought of as the quotient space of Sn−1 × [0, 1], where
we identify all (v, 0),v ∈ Sn−1 to a single point. This indeed gives polar coordinate repre-
sentation of the disc.

Now suppose we have a C1-function f : Sn−1 × [0, 1] → R such that f(v, 0) = 0 for all
v ∈ Sn−1. Let f̂ : Dn → R be the function defined by f̂ [v, r] = f(v, r). Since the quotient
map (v, r) 
→ [v, r] is a local diffeomorphism at all points (v, t) ∈ Sn−1 × (0, 1], it follows
that f̂ is a C1-function on Dn\{0}. Therefore, f̂ will be differentiable at 0 if limr→0Df̂(v, r)
exists, i.e, independent of v as a single linear map R

n → R.

Remark 1.2.8 Theorem 1.2.5 fully justifies the need to study the partial derivatives. In-
deed, often in literature, the conditions of this theorem are taken as the definition of differ-
entiability. Though, such a definition, automatically excludes functions that may be differ-
entiable but having a derivative which is not continuous, it has the tremendous advantage
of being extremely simple to work with and being sufficient in many practical purposes.
For instance, this definition very easily extends to higher order differentiation. All that we
have to do is to consider partial derivatives of partial derivatives and so on, since each par-
tial derivative is a new scalar function. For instance, for a function f of 2-variables, there
are four possible partial derivatives of second order, viz. D1(D1), D1(D2f), D2(D1f) and

D2(D2f). These are also written as
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y∂x
,
∂2f

∂y2
, respectively. There is a further

simplification of notations, such as D1,2f to denote D1(D2f), etc. It is not true, in general
that D1,2(f) = D2,1(f). Finally, when fewer than three variables are involved, such as for
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a function f(x, y, z), there are the classical notation fx, fxy, etc. to denote respectively,
∂f

∂x
,
∂f

∂y∂x
, etc. Pay attention to the order in which the variables with respect to which the

differentiation is being taken. The theorem below gives a sufficient condition under which
we can permute the order of taking mixed partial derivatives.

Definition 1.2.3 Let r be a nonnegative integer. Let U be an open set in Rn. As in
Definition 1.1.1, we say f : U → R is a Cr-function if f possesses all partial derivatives of
order ≤ r and these partial derivatives are all continuous throughout U. We say f is C∞ on
U if it is Cr for all r ≥ 0. The set of all real valued Cr-functions on U is denoted by Cr(U).
Similarly C∞(U) denotes the set of all C∞ functions.

Remark 1.2.9 We say a function is smooth if it is in Cr for r ≥ 1. It is a convenient
practice to adjust the value of r according to the context.

Theorem 1.2.7 Clairaut’s Theorem:1 Let U be an open subset of R2. Let f : U → R be
such that both fxy and fyx exists and are continuous in U. Then fxy = fyx on U.

Remark 1.2.10 In order to prove this, we need to exploit the mean value theorem thor-
oughly. On the way we shall be able to get a “second order mean value theorem” for functions
of two (or more) variables. Moreover, we shall be able to give a proof of a statement that is
slightly more powerful than Clairaut’s theorem.

Theorem 1.2.8 Second Order Mean Value Theorem : Let f be defined in an open
subset U of R2, and possess D1f, D2,1f in U. Let the rectangle R with vertices (a, b), (a+
h, b), (a + h, b + k), and (a, b + k) be contained in U. Then there exists a point (x, y) ∈ R
such that

hkD2,1f(x, y) = Δ,

where Δ is the double difference given by

Δ := Δf := f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b). (1.18)

(a,b+k) (x,b+h) (a+h,b+k)

(a+h,b)(x,b)(a,b)

(x,y)

Figure 2 Second order mean value theorem.

Proof: Put g(t) = f(t, b + k) − f(t, b). Then by the mean value theorem (MVT) for one
variable functions, there exists 0 ≤ s1 ≤ 1 such that

Δ = g(a+ h)− g(a) = hg′(a+ s1h). (1.19)

Take x = a+ s1h. Observe g′(t) = D1f(t, b + k) −D1f(t, b). Now define G(r) = D1f(x, r)
and observe that G′(r) = D2,1f(x, r). Apply the MVT again to get 0 ≤ s2 ≤ 1 such that

kG′(b+ s2k) = G(b + k)−G(b) = D1f(x, b + k)−D1f(x, b) = g′(x). (1.20)

Now, multiply both sides of (1.20) by h and take y = b + s2k. ♠
1Alexis Claude Clairaut (1713–1765), contemporary of D’Alembert, a prodigious Parisian, is well known

for his contributions in astronomy.
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Theorem 1.2.9 Commutativity of Mixed Partial Derivatives: Let f be defined in an
open subset U of R2, and possess D1f, D2,1f, and D2f in U. Suppose D2,1f is continuous
at some point (a, b) ∈ U. Then D1,2f exists at (a, b) and we have,

D1,2f(a, b) = D2,1f(a, b). (1.21)

Proof: By the continuity of D2,1f, given ε > 0, there exists a rectangle R contained in U
such that

|D2,1f(x, y)−D2,1f(a, b)| < ε,

for all (x, y) ∈ R. Then, ∣∣∣∣Δfhk −D2,1f(a, b)
∣∣∣∣ < ε

where Δ is defined as in (1.18). Fix h and let k → 0. Since D2f exists, we obtain,

lim
k→0

Δf
hk

=
D2f(a+ h, b)−D2f(a, b)

h
.

Plug this in the above inequality to get,∣∣∣∣D2f(a+ h, b)−D2f(a, b)
h

−D2,1f(a, b)
∣∣∣∣ ≤ ε.

This proves that D1,2f(a, b) exists and is equal to D2,1f(a, b) as required. ♠

Example 1.2.4 You are familiar with examples of one variable functions having a discon-
tinuous first derivative, e.g.,

f(x) = x2 sin
(

1
x

)
. (1.22)

Such functions can be used to construct examples of functions of several variables which are
differentiable but have discontinuous partial derivatives. For instance, take g(x, y) = f(x)
where f is as above.

Example 1.2.5 Consider the function

g(x, y) =

⎧⎨
⎩

x2 − y2

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).
(1.23)

Put f(x, y) = xyg(x, y). Then gx and gy exist everywhere and

fx = yg + xygx; fy = xg + xygy.

Therefore,

fxy(0, 0) = lim
y→0

fx(0, y)− fx(0, 0)
y

= lim
y→0

yg(0, y)
y

= −1.

Interchanging x and y, we see fyx(0, 0) = 1. If one of the functions fxy and fyx were
continuous at (0, 0), then both would have the same value at (0, 0). Therefore, Theorem
1.2.9 tells you that neither fxy nor fyx is continuous. One can directly verify that being a
homogeneous rational function of degree zero, fxy takes a constant value on the line y = mx
and these constants are different for different m. That is enough to conclude that fxy (and
similarly fyx) is not continuous at (0, 0).
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Theorem 1.2.10 Taylor’s Theorem: Let f : U → R be a Cr-function, where U is a
convex open subset of Rn. Let 0 ∈ U. Then for each point x ∈ U, we have

f(x) = f(0) +
r−1∑
k=1

1
k!

∑
Di1i2...ikf(0)xi1xi2 · · ·xik +R(x) (1.24)

where the remainder term R(x) satisfies

lim
x→0

R(x)
‖x‖r−1

= 0. (1.25)

Proof: Fix x ∈ U and define g(t) = f(tx). Then by Taylor’s theorem for one variable, there
exists tx ∈ (0, 1) such that

g(1) = g(0) +
r−1∑
k=0

g(k)(0)
k!

+
g(r)(tx)
r!

. (1.26)

By repeated application of the chain rule to find successive derivatives of g(t) = f(tx), we
find that

g(1)(1) := g′(1) =
∑

iDif(x)xi; g(2)(1) =
∑
Di,jf(x)xixj ; · · · ,

g(k)(1) =
∑
Di1i2...ikf(x)xi1xi2 · · ·xik ; · · ·

}
(1.27)

for k ≤ r − 1 and

g(r)(tx) =
∑

Di1i2...irf(txx)xi1xi2 · · ·xir . (1.28)

Substituting these, in (1.26) and taking

R(x) =
g(r)(tx)
r!

(1.29)

we get the first part of the statement. Since,

lim
x→0

Di1i2...irf(txx) = Di1i2...irf(0); & lim
x→0

xi1xi2 · · ·xir
‖x‖r−1

= 0

for all i1, i2, . . . , ir, (1.28) yields (1.25). ♠

We end this section with an analogous result, which is obtained by a simple application
of the chain rule. We shall have some opportunities to use this later.

Theorem 1.2.11 Let f be a Cr function in a convex neighborhood U of 0 ∈ Rn. Then there
exist Cr−1 functions gi on U such that ∂f

∂xi
(0) = gi(0) and

f(x) = f(0) +
n∑
i=1

xigi(x), (1.30)

for x = (x1, . . . , xn) ∈ U.
Proof: By the fundamental theorem of integral calculus of one variable, we have

f(x) =
∫ 1

0

df(tx)
dt

=
∫ 1

0

n∑
i=1

∂f(tx)
∂xi

xidt.

Therefore, we define gi(x) =
∫ 1

0

∂f(tx)
∂xi

dt and check that all the required properties are

satisfied. ♠
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Exercise 1.2

1. In each of the following cases draw a picture of the level surfaces for f and that for
∇f at some select points of the surface. Check that ∇f is perpendicular to the surface
at all these points.
(a) f(x, y, z) = x2 + 2y2 + 3z2; (b) f(x, y, z) = x2 + y2 − z2;
(c) f(x, y, z) = y − x2.

2. Find all the directional derivatives for f at P in each of the following cases:
(a) f = x2 − 9y2; P = (1, 2); (b) f = (x2 + y2 + z2)−1/2; P = (1, 1, 1);
(c) f = ex cos y, ; P = (1, π).

3. Simplify the expression for g ◦ f in each of the following cases.
(a) f(x) = (cosx, sin2 x); g(u, v) = u2 + v2;
(b) f(x) = (x, x2, x3), g(u, v, w) = eu + cos v + w2.

4. Use the chain rule and the Leibniz rule, etc., to find the derivative of these functions:
(a) ecos

2 x2
(b) e−5 tan x sin3 2πx; (c) f(cosx, sinx).

5. Let f, g be smooth real valued functions. Derive the following formulae:
(a) ∇(fg) = g(∇f) + f(∇g); (b) ∇(fn) = nfn−1∇f.
(c) ∇(f/g) = (1/g2)(g∇f − f∇g);
(d) ∇2(fg) = g∇2f + 2∇f∇g + f∇2g.

6. The divergence div f of a smooth function f : Rn → Rn is defined by

div f =
∑
i

∂fi
∂xi

.

In the vector notation, writing f =
∑

i fiei and ∇ =
∑

i
∂
∂xi

we can write

div f = ∇ · f.

Find the divergence of the following functions:

(a)
xi + yj + zk

(x2 + y2 + z2)3/2
; (b) (cosx cosh y)i + (sin x sinh y)j.

7. Show that
(a) div (kf) = k div f, k a constant;
(b) div (αf) = α div f + α · ∇f, α, a scalar function;
(c) div (f∇g) = f∇2g + (∇f) · (∇g);
(d) div (f∇g)− div (g∇f) = f∇2g − g∇2f.

8. For a smooth function f : R3 → R3, f = (f1, f2, f3), we define the curl of f by the
formula

curl f = ∇× f =
(
∂f3
∂y

− ∂f2
∂z

)
i +

(
∂f1
∂z

− ∂f3
∂x

)
j +

(
∂f2
∂x

− ∂f1
∂y

)
k

Compute the curl of the following functions:

(a) xi + xyj + (x2 + y2 + z2)k; (b)
xi + yj + zk

(x2 + y2 + z2)3/2
.

9. Establish the following identities where f, g, etc. denote vector valued functions and
α, β denote scalar functions:
(a) curl (f + g) = curl f + curl g; (b) curl gradα = 0;
(c) div (f × g) = g · curl f − f · curl g; (d) div (curl f) = 0;
(e) curl (αf) = (gradα)× f + α curl f ; (f) div (β∇α× α∇β) = 0.
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10. Let f : U → R be as in the above theorem, r ≥ 2. Suppose f(0) = 0 and Df(0) = 0.
Then show that there are Cr−2 functions τij such that τij(0) = ∂2f

∂xi∂xj
(0) and f(x) =∑

ij τij(x)xixj , x ∈ U.

11. A smooth function f : Rn → R is called homogeneous of degree k if f(tx) = tkf(x)
for all x ∈ R

n and t ∈ R. Typical examples of such functions are homogeneous
polynomials of degree k. Prove the following Euler’s Identity:

kf(x) =
n∑
i=1

xi
∂f

∂xi
. (1.31)

12. Deduce (1.30) directly from (1.24).

1.3 Linearity of the Derivative

We shall denote the space of all m × n matrices with real entries by M(m,n; R) or by
the more suggestive notation Rm×n to indicate that it can be identified with the Euclidean
space of dimension mn. When m = n, we shall use the simpler symbol M(n; R) also. We
shall use the notation GL(n,R) for the (open) subspace of all invertible n × n matrices
with real entries. The corresponding notations M(m,n; C),M(n; C), GL(n,C), etc., with R

replaced by C has the obvious meaning.
Consider a smooth function f : U → Rm at a point x ∈ U where, U ⊂ Rn is an open

set. It is convenient to have the convention of writing elements in R
n as column vectors.

Since this will take up a lot of typed space, we shall write them as (x1, . . . , xn)t ∈ Rn. With
this convention, if the components of f are f1, f2, . . . , fm then f(x) = (f1(x), . . . , fm(x))t.

On the other hand, if L : Rn → R is a linear map, it is represented by the row vector
(L(e1), . . . , L(en)). In this way, the dual space (Rn)∗ of linear maps Rn → R gets identified
with Rn but treated as row vectors.

Following the theme in Definition 1.1.2, we now make:

Definition 1.3.1 Let U be a nonempty open subset of Rn. A vector valued function f :
U → R

m is said to be differentiable at x ∈ U if and only if each component fi is differentiable
at x. In that case, the derivative of f at x is defined to be the m × n matrix obtained by
writing the row vectors Dfi, i = 1, 2, . . . ,m, one below the other.

We would like to interpret the derivative Df(a) of f at a ∈ U as a linear map R
n → R

m.
In the simplest case, viz., m = n = 1, i.e., when f is a real valued function defined on
an interval, the derivative f ′(a) at a is a real number. Recall that each real number r
corresponds to a unique linear map hr : R → R viz., x 
→ rx. Hence, we have no difficulty
in thinking of f ′(a) as a linear map from R to R. The graph of the affine linear map

x 
→ f(a) + f ′(a)(x − a) (1.32)

is nothing but the tangent line to the graph of f at the point (a, f(a)). Also observe that
the RHS of (1.32) is nothing but the linear approximation to f near a.

Likewise, when n = 1, m ≥ 2, we can identify the total derivative of f at x = a with a
m×1 matrix or a column vector Df(a) = (f ′

1(a), . . . , f ′
m(a))t. This in turn is identified with

the linear map R1 → Rm, which sends e1 to (f ′
1(a), . . . , f ′

m(a)). Observe that the graph of
this linear map parallely shifted so as to pass through (a, f(a)) is the tangent hyperplane
to the graph of the function at the point (a, f(a)).
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Next, we consider the case when n ≥ 2 and m = 1. As an example consider a linear
function L : R3 → R, given by

L(x, y, z)t = ax+ by + cz. (1.33)

For each point p ∈ R3, the total derivative DL(p) of L at p is the linear map R3 → R

given by the 1× 3 matrix (a, b, c). On the other hand, the gradient ∇L(a) of L is the vector
ai + bj + ck ∈ R3 which can be identified with the row vector (or the 1× 3 matrix) (a, b, c).
Thus, DL is the constant function on R3 with a single value in the space of linear maps
R

3 → R, which can be identified with the space of 1 × 3 matrices M(1, 3; R) with real
coefficients. Likewise, if Q(x, y, z) = x2 + y2 + z2, then the total derivative DQ is a function
from R3 to M(1, 3; R) given by

(x, y, z)t 
→ (2x, 2y, 2z). (1.34)

Finally, consider the case m,n ≥ 2. Then Df(x) is the matrix obtained by writing the
row vectors Df1, . . . , Dfm one below the other in that order. Incidentally this happens to be
the same matrix obtained by writing the column vectors D1f, . . . , Dnf next to each other
in that order. The corresponding linear map is seen to send ej to the vector

∑n
i=1Djfiei.

We can now formulate a direct definition of differentiability of a map f : U → Rn on an
open set U ⊂ Rm. This, we shall state as a theorem, in view of Definition 1.1.2.

Theorem 1.3.1 Let f : U → R
n be a function and a ∈ U any point where U is an

open subset of Rm. Then f is differentiable at a if and only if there exists a linear map
L = La : R

m → R
n such that the error function has the property

lim
‖h‖→0

ε(h) = lim
‖h‖→0

‖f(a+ h)− f(a)− L(h)‖
‖h‖ = 0. (1.35)

Proof: Assuming f is differentiable at a, we set L : R
n → R

m to be the linear map defined
by the matrix obtained by writing the row vectors Df1(a), . . . , Dfm(a) one below the other.
If εi are the corresponding error functions for fi as in (1.7) we take ε = (ε1, . . . , εm)t and
verify that (1.35) is satisfied. The above argument is completely reversible and hence the
converse follows. ♠

Definition 1.3.2 Given f : U → Rm where U is an open subset of Rn, if f possesses total
derivative at every point of U we obtain a function Df : U →M(m,n; R) = Rm×n defined
by x 
→ Df(x), x ∈ U. This is called the total derivative of f. If Df is differentiable at
a ∈ U then we say f is twice differentiable at a. Once again if this is true for all a ∈ U
then we say f is twice differentiable in U and the second derivative D2f is then a map
U → M(m × n, n; R) = Rmn×n. More generally, if f is (k − 1)-times differentiable and if
Dk−1f : U → Rmn

k−1×n is differentiable, then we say f is k-times differentiable.

Remark 1.3.1 Note that Dkf exists implies that Dk−1f is continuous and therefore f ∈
Ck−1(U). Further, it also follows that Dkf is continuous if and only if f ∈ Ck(U ; Rm).

The following theorem gives the chain rule for the derivative of composite of two such
functions. Note that if we have to show that two given matrices are equal then it amounts
to showing that their corresponding entries are equal. Then Theorem 1.2.3 discussed above
completes the proof. We leave the details of the proof to the reader.

Theorem 1.3.2 Chain Rule: Let U be an open subset of Rn, V be an open subset of
Rm. Let f : U → V and g : V → Rl be such that f is differentiable at x ∈ U and g be
differentiable at f(x) ∈ V . Then g ◦ f is differentiable at x and the derivative is given by

D(g ◦ f)(x) = (Dg)(f(x)) ◦ (Df)(x). (1.36)
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Remark 1.3.2 Going back to the case, n = 1 and l = 1, note that Dg is a matrix of size
1 × m and Df is a matrix of size m × 1 and their product D(g ◦ f) is a matrix of size
1× 1, which can be thought of a real number. This yields the statement of Theorem (1.2.3)
discussed in the previous section. We could have expressed this in vector notation by the
dot product of two column vectors:

D(g ◦ f)(x) = [(Dg)(f(x))]t • (Df)(x). (1.37)

Finally, we also note that, in the above theorem, if we interpret the quantities in (1.36) as
the corresponding matrices then the composition corresponds to the matrix multiplication.

Remark 1.3.3 There is an analogue of the mean value theorem for real valued functions
of several variables, proved by simply converting the problem into one variable. From this,
we can then derive the analogue of the weaker version of the mean value theorem for vector
valued functions as seen in Theorem 1.1.1.

Theorem 1.3.3 Let U be a convex domain in Rn and f : U → Rm be a continuously
differentiable function. Let a,b ∈ U be any two points.
(i) If m = 1, then there exists x0 ∈ [a,b] such that

f(b)− f(a) = D(f)(x0)(b− a). (1.38)

(ii) In general, there exists x0 ∈ [a,b] such that

‖f(b)− f(a)‖ ≤ ‖D(f)(x0)‖‖b− a‖. (1.39)

Proof: Consider the function γ : [0, 1] → Rn, defined by

γ(t) = tb + (1− t)a (1.40)

and put g = f ◦ γ.
(i) If m = 1, apply the MVT to g to obtain t0 ∈ [0, 1], such that

f(b)− f(a) = g(1)− g(0) = g′(t0) (1.41)

Put x0 = γ(t0). Then by chain rule,

g′(t0) = D(f)(x0)(b− a). (1.42)

Now (1.41) and (1.42) together give (1.38).
(ii) Apply Theorem 1.1.1 to the function g : [0, 1] → Rm as above. ♠

Example 1.3.1 Let us compute the derivative of some specific maps:
(a) Consider the function φ(x) = x • x =

∑
i x

2
i on Rn. Clearly, its partial derivatives

all exist and are continuous and hence Dφ exists and is determined by the partial deriva-
tives. Therefore, Dφx = (2x1, 2x2, . . . , 2xn) = 2xt. (Remember that x is a column vector.)
Observe that Dφx : Rn → R as a linear map is actually given by

Dφx(y) = 2x • y = 2
∑
i

xiyi.

(b) On M(n; R) consider the function σ(A) = AAt. The space M(n,R) is identified as the
Euclidean space R

n×n; the only difference being the variables are indexed by ordered pairs
(i, j), 1 ≤ i, j ≤ n. Therefore, at any point B ∈ Rn×n, the derivative DσB is a linear map
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from Rn×n → Rn×n. The (i, j)th-coordinate functions of f are nothing but
∑

k aikajk. Each
of these is therefore a quadratic in the variables and hence is continuously differentiable
any number of times. Thus, the function f is also differentiable any number of times.
Here we shall find its first derivative and this amounts to finding the partial derivatives of
σij =

∑
k aikajk. With respect to the variable apq this is zero unless p = i, j. If p = i �= j

then ∂σij

∂apq
= ajq Similarly, if p = j �= i, it is aiq. If p = i = j then it is 2apq. We can

now replace aij by bij to get the value of the respective derivatives at A = B. The matrix
representing DσB is of size n2 × n2 and its entries can now be written down. Here is the
answer for n = 2 :

DσB =

⎡
⎢⎢⎣

2b11 2b12 0 0
b21 b22 b11 b12
b21 b22 b11 b12
0 0 2b21 2b22

⎤
⎥⎥⎦

Here is an alternative approach. We know that DσB : M(n,R) →M(n,R) is a linear map.
A linear map is completely determined if we know its values on all unit vectors. The value
of DσB on any unit vector A is the directional derivative of Dσ at B in the direction of A.
Therefore, by the definition of the directional derivative we have

DσB(A) = lim
s→0

f(B + sA)− f(B)
s

= lim
s→0

(B + sA)(B + sA)t −BBt
s

= lim
s→0

s(ABt +BAt) + s2AAt

s

Therefore,

DσB(A) = ABt +BAt. (1.43)

Thus we have determined Dσ at all points of M(n; R) as a linear map from M(n; R) to
M(n; R). Its matrix representation can be recovered from (1.43) by substituting

A = E(ij),(kl),

which are n2 × n2 matrices with entries equal to 1 only at ((ij), (kl))th place and zero
elsewhere.
(c) Let us now consider ψ : M(n; R) → R given by ψ(X) = detX. This is a polynomial
function in the entries xij of the matrix X of degree n. Once again it is enough to determine
the partial derivatives. In the first method as in the above case, we need to use the full
expansion formula for the determinant. There is a simpler way, viz., we can use the Laplace
expansion formulae

ψ(X) = detX =
∑
j

xijXij

where Xij is the (ij)th cofactor of X. Observe that for each fixed i and j the cofactor Xij

is a polynomial in xkl’s but does not involve the variable xij . Therefore, we can compute
the partial derivative of detX with respect to xij treating Xij as constants and hence
∂ψ
∂xij

= Xij . One can write gradψ as a n2-row vector with its (ij)th entry as Xij . With
a little more caution, we can also write it as n × n-matrix: DψX = adj(X)t. However,
caution is required in interpreting adj(X)t as a linear map on M(n; R). It is neither by left
multiplication nor by right multiplication:

D(ψ)X(Y ) =
∑
ij

Xijyij = Tr(adj(X)Y ). (1.44)
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In particular, for X = Idn, we have

D(det)In(Y ) = Tr(Y ).

We can also employ the second method here to directly compute

lim
s→0

det(X + sY )− det(X)
s

and arrive at (1.44). However, we need to use the multilinearity of det meticulously here.
We leave this to you as a joyful exercise.

Exercise 1.3

1. Compute the total derivative of the functions in each of the following cases.
(a) f : M(n,R)×M(n,R) →M(n,R) given by f(A,B) = A+B.
(b) g : M(n,R)×M(n,R) →M(n,R) given by g(A,B) = AB.
(c) h : M(n,R) →M(n,R) given by h(A) = A2.

2. Let τ : M(m,n; R) →M(n,m; R) denote the transpose: A 
→ At. Prove that D(τ)A =
τ, for all A ∈M(m,n; R).

3. Leibniz’s rule: Let U be an open subset of Rm, and α, β : U →M(n; R) be any two
smooth maps. Put γ(x) = α(x) · β(x). Show that

D(γ)x = D(α)x · β(x) + α(x) ·D(β)x. (1.45)

(Note that D(α), D(β) take values in M(n; R)m which admits action by M(n; R) both
on the left and on the right, viz.,

A · (B1, . . . , Bm) = (A ·B1, . . . , A ·Bm); (A1, . . . , Am) · B = (A1 ·B, . . . , Am ·B)

where Ai · Bj etc. denote the matrix multiplication. You have to interpret the right
hand side of (1.45) in this sense.)

4. Let f : Rn → Rn, g : Rn → R be smooth maps. Derive the formula

D2(g ◦ f)x = D(f)tx ·D2(g)f(x) ·D(f)x +D(g)f(x) ·D2(f)x. (1.46)

5. Show that div f is nothing but the trace of the linear map Df. Conclude that div
remains unchanged under an orthogonal change of coordinates.

6. Consider the vector field f(x, y, z) = xj. Compute its curl with respect to the standard
right-handed Cartesian coordinate system {i, j,k}. Compute the same with respect to
the system i∗ = −i, j∗ = j,k∗ = k also. What do you conclude?

7. Show that the curl remains unchanged under an orientation preserving orthogonal
change of coordinates, i.e., the curl is an SO(3)-invariant.
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1.4 Inverse and Implicit Function Theorems

The edifice of differential topology is built on the base theme: a differentiable map
closely imitates the behavior of its tangent map, in a sufficiently small neighborhood. The
very first instance of this is the Inverse Function Theorem. If f : (a, b) → R is a continuously
differentiable function such that f ′(c) �= 0, c ∈ (a, b), then we know that in a sufficiently
small neighborhood U of c, f is strictly monotonic; equivalently, f is one-to-one on U.
Moreover, the inverse of f, defined over f(U) is also differentiable. Such a behavior holds
in higher dimensions as well. This is going to be the topic of this section, the importance
of which cannot be overemphasized.

The basic idea in the proof is to use the contraction mapping principle. The first part
of this theorem is equivalent to saying that a certain system of equations can be solved
uniquely in a sufficiently small neighborhood of 0, viz.,

yi = fi(x1, . . . , xn); f = (f1, . . . , fn)

under suitable conditions on f. Experience tells us that if you want to show the existence
of certain solutions the contraction mapping principle comes quite handy e.g., remember
the proof of Picard’s iteration method for the solution of the first order linear differential
equations.

Definition 1.4.1 Let (X, d) be a metric space. A function φ : X → X is called a contraction
if there exists a constant 0 < c < 1 such that for all x, y ∈ X we have

d(φ(x), φ(y)) ≤ c d(x, y).

Theorem 1.4.1 Contraction Mapping Principle:
Let (X, d) be a complete metric space2. Then every contraction φ : X → X has a unique

fixed point in X, i.e., there exists a unique point y ∈ X such that φ(y) = y.

Proof: Start with any point x0. Define

x1 = φ(x0), x2 = φ(x1), . . . , xn = φ(xn−1), . . . .

Observe that d(xn+1, xn) ≤ cnd(x1, x0) for some 0 < c < 1. Since
∑
n c

n < ∞ it follows
that given ε > 0 we can find n0 such that for m > n > n0 :

d(xm, xn) ≤
m−1∑
k=n

ckd(x1, x0) < εd(x1, x0).

Therefore {xn} is a Cauchy sequence. Since X is complete, this sequence has a limit point
y ∈ X. Also observe that any contraction is a continuous function. Therefore,

φ(y) = φ(lim
n
xn) = lim

n
φ(xn) = lim

n
xn+1 = y.

Finally if yi ∈ X, i = 1, 2 are such that φ(yi) = yi, then

d(y1, y2) = d(φ(y1), φ(y2) ≤ c d(y1, y2)

with c < 1. This is meaningful only if y1 = y2. ♠

Remark 1.4.1 Since R
n is a complete metric space, every closed ball in it is a complete

metric space. This is what we need in the following theorem.

2Recall that a metric space X is complete if every Cauchy sequence in X is convergent in X.
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Theorem 1.4.2 Inverse Function Theorem (IFT): Let E ⊂ Rn be an open set, 0 ∈ E
and let f ∈ C1(E,Rn) be such that Df(0) is invertible. Then there exist open neighborhoods
U of 0 and V of f(0) such that
(i) f : U → V is a bijection;
(ii) g = f−1 : V → U is differentiable.
(iii) D(f−1) is continuous on V.

Proof: (i) Put A = Df(0) and consider f̂ = A−1 ◦ f. Then f̂ ∈ (E; Rn) and D(f̂)(0) = Id.

Now if we prove the conclusion of the theorem with f replaced by f̂ then it will also hold
for f. Thus without loss of generality we may assume that D(f)(0) = Id.

Choose 0 < ε ≤ 1
2
. Let 0 < δ < 1 be such that the open ball U = Bδ(0) is contained in

E and

‖Df(x)− Id‖ < ε (1.47)

for all x ∈ U. This is possible by the continuity of Df at 0. Put V = f(U). First we claim
that f is injective on U.

For any y ∈ V, let us define φy : U → Rn by

φy(x) = x+ (y − f(x)). (1.48)

Then differentiating with respect to x, we have,

D(φy)(x) = Id−Df(x) (1.49)

for all x ∈ U. Hence, for all x ∈ U, we have,

‖D(φy)(x)‖ ≤ ‖Id−Df(x)‖ ≤ ε < 1. (1.50)

Now for x1, x2 ∈ U, by Theorem 1.3.3, we have

‖φy(x1)− φy(x2)‖ ≤ ‖D(φy)(x′)‖‖x1 − x2‖, (1.51)

for some x′ ∈ [x1, x2] ⊂ U. Combining with (1.50), this gives

‖φy(x1)− φy(x2)‖ ≤ ε‖x1 − x2‖. (1.52)

(That means φy is a contraction mapping on U.)
Now suppose f(x1) = f(x2) = y with x1, x2 ∈ U. Then

φy(xi) = xi, i = 1, 2.

From (1.52), we conclude that x1 = x2. Therefore, f |U is injective.
Next, we must show that f(U) = V is open. Fix y0 ∈ V, y0 = f(x0), x0 ∈ U. Let r > 0 be

such that the closed balls Br(x0) ⊂ U. It suffices to show that Brε(y0) ⊂ V. If y ∈ Brε(y0),
then

‖φy(x0)− x0‖ ≤ ‖y − y0‖ < rε ≤ r

2
. (1.53)

Therefore, if x ∈ Br(x0), then

‖φy(x)− x0‖ ≤ ‖φy(x) − φy(x0)‖+ ‖φy(x0)− x0‖ ≤
‖x− x0‖+ r

2
≤ r. (1.54)
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Therefore, φy maps the closed ball Br(x0) into itself.
By contraction mapping principle (Theorem 1.4.1), there is a ∈ Br(x0) such that φy(a) =

a. This means f(a) = y. So, y ∈ f(U) = V. Therefore, Brε(y0) ⊂ V. This proves that V is
open.

(ii) (The proof of this part is exactly similar to the proof of the statement for one variable.
Nevertheless, we write down the details here.)

Recall that the space of all invertible n × n matrices is an open set in the space of all
n × n matrices. Since the map x 
→ D(f)(x) is continuous at x0 and since D(f)(x0) is
invertible, it follows that we can choose δ > 0 such that for all x ∈ U = Bδ(x0), we have
D(f)(x) is invertible. Now to show that g is differentiable, and also Dg(y) = (Df(x))−1,
consider y ∈ V and y + k ∈ V. Put g(y) = x, g(y + k) = x + h, T = (Df(x))−1. Then,
f(x+ h) = y + k, f(x) = y and we have,

‖g(y + k)− g(y)− T (k)‖
‖k‖

≤ ‖T ‖‖Df(x)[g(y + k)− g(y)]− k‖
‖k‖

≤ ‖T ‖‖Df(x)(h)− (f(x+ h)− f(x))‖
‖h‖

‖h‖
‖k‖ .

We now want to take the limit as ‖k‖ → 0 on the left-hand-side (LHS). On the RHS, we
have

lim
‖h‖→0

‖Df(x)(h)− (f(x+ h)− f(x))‖
‖h‖ = 0.

Therefore, it suffices to show that as ‖k‖ → 0, we have, ‖h‖ → 0 and
‖h‖
‖k‖ remains bounded.

We have, φy(x + h) − φy(x) = h + [f(x) − f(x + h)] = h − k. Therefore, ‖h − k‖ =
‖φy(x+ h)− φy(x)‖ ≤ ‖h‖/2 (by (1.52)) and hence, ‖h‖ ≤ 2‖k‖. This completes the proof
of all the claims. Thus, g is differentiable and D(g) = T = D(f)−1.
(iii) Finally, the continuity ofD(g) is obvious from the continuity ofD(f), and the continuity
of the inverse operation on invertible square matrices. ♠

Remark 1.4.2 Let us re-examine the above proof a little bit.
(a) In (i) we started with ε ≤ 1/2, which was used in (1.52) to conclude that φy is a
contraction mapping. We could have achieved this with any 0 < ε < 1. However, later in
(1.54), we would only get φy(Br(x0)) ⊂ B2εr(x0), which is not enough unless ε ≤ 1/2.

Now consider an example: f(x) = x + x2. Then Df(x) = f ′(x) = 1 + 2x and hence
(1.47) is satisfied with δ = 1

4 . The theorem then concludes that f is a 1-1 mapping in the
interval (−1/4, 1/4).

On the other hand, since f ′(x) = 1 + 2x > 0 in the interval (−1/2,∞), it follows that
f is strictly monotonically increasing in this interval and hence is a 1-1 mapping. Thus, we
see that the open set U given by the theorem is not optimum even if we restrict ourselves
to open balls around the point under consideration.
(b) The second point that we would like to make is that the proof of the theorem is exis-
tential, i.e., it does not tell you how to get the inverse map (unlike for instance, Picard’s
iteration method for solution of ODE’s). However, there are special situations in which we
may be able to write down the inverse map. In the above example, we can write down the

inverse map by inspection. viz., g(y) =
√
w + 1

4 −
1
2 . More generally, if f is given by a

convergent power series,

f(x) =
∑
n

anx
n, a0 = 0, a1 �= 0
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then we can formally write down the inverse of this power series. It turns out that this
formal inverse power series g(x) =

∑
n bnx

n is also of positive radius of convergence and
the function defined by it is the inverse of f. (See [Sh2] for more details.) Such a method is
available for analytic functions of several variables also.
(c) Alternatively, for holomorphic functions, Cauchy’s residue theory allows one to write
down an integral formula for the inverse. This is then available for real valued functions
as well provided they are given by convergent power series by taking the real part of the
integral of the complexified function. (See [Sh2] for more details.)
(d) However, the space of C1 functions is much much larger than the space of analytic func-
tions and certainly the method of power series would not work there.
(e) The inverse function theorem is valid even in a Banach spaces. Far reaching generaliza-
tions have been obtained using the good old “Newton’s method” by Nash [N], [Ham], [Ho],
et al.

Definition 1.4.2 We shall set up the notation: Let π1 : Rn×Rm → Rn and π2 : Rn×Rm →
Rm be the respective projections and let η1 : Rn → Rn+m and η2 : Rm → Rn+m be
the inclusion maps given by u 
→ (u, 0) and v 
→ (0,v) respectively. Given a linear map
A : Rn × Rm → Rr, we put Ai = A ◦ ηi. Clearly then A = A1 ◦ π1 +A2 ◦ π2. We have,

Lemma 1.4.1 Suppose that r = n and A1 is invertible. Then for every v ∈ R
m, there

exists a unique u ∈ Rn such that A(u,v) = 0, given by the formula

u = −A−1
1 A2(v).

Proof: Obvious.
Before taking up the nonlinear analogue of this result, which goes under the name

“implicit function theorem”, we would like to introduce the following important terminology.

Definition 1.4.3 Let U ⊂ Rn, V ⊂ Rm be open subsets. A map f : U → V is called
a diffeomorphism if it is a bijection and both f and f−1 are continuously differentiable.
Clearly, then f−1 will also be a diffeomorphism. Given a diffeomorphism f, we also refer to
it as a change of coordinates on U by treating the coordinate functions f1, . . . , fn of f as
the new coordinates on U. We say, U and f(U) are diffeomorphic.

Remark 1.4.3
(i) It follows immediately that m = n once there is a diffeomorphism f : U → V where U, V
are nonempty open sets. For, then Df : Rn → Rm will be a linear isomorphism.
(ii) Note that a diffeomorphism is necessarily a homeomorphism whereas, there are plenty
of homeomorphisms that are not differentiable at all. Even if f is differentiable, the inverse
of f need not be differentiable. The simplest example of this is the map x 
→ x3 on R.
(iii) Clearly, composite of two diffeomorphisms is a diffeomorphism.
(iv) Typical examples of diffeomorphisms are exp : R → R+, linear isomorphisms, trans-
lations, and so on. A diffeomorphism restricted to an open subset of the domain defines a
diffeomorphism onto its image.
(v) Later on, we shall define diffeomorphisms of arbitrary subsets of Euclidean spaces. Obvi-
ously, “being diffeomorphic” is an equivalence relation among these sets. The central theme
of differential topology is to classify subsets of Euclidean spaces up to diffeomorphism.

Theorem 1.4.3 Implicit Function Theorem (ImFT): Let E ⊂ Rn × Rm be an open
subset, (a,b) ∈ E and let f ∈ C1(E,Rn) and A := D(f)(a,b). Suppose that f(a,b) = 0
and A|Rn×0 is invertible. Then there is an open neighborhood U of (a,b) in Rn × Rm, a
neighborhood W of b in R

m and a unique map g ∈ C1(W,Rn) such that for every point y ∈
W, f(g(y),y) = 0. Moreover, D(g)(b) = −A−1

1 A2 where A1 = A|Rn×0 and A2 = A|0×Rm .
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Proof: Put F (x,y) = (f(x,y),y), (x,y) ∈ E. Then F ∈ C1(E,Rn × Rm) and we have,

DF (a,b) =
[
A1 A2

0 Id

]
.

Therefore, DF (a,b) is invertible. By Theorem 1.4.2(IFT), it follows that, we have neigh-
borhoods U and V of (a,b) and (0,b), respectively such that F is a diffeomorphism of U
onto V. Put W = {y : (0,y) ∈ V}. Then W is open in R

m. Let G be the inverse of F.
Write, G(0,y) = (g(y), h(y)),y ∈W. Then

(0,y) = F ◦G(0,y) = F (g(y), h(y)) = (f(g(y), h(y)), h(y)).

Therefore, h(y) = y and f(g(y),y) = 0. Uniqueness of g follows from the injectivity of
F. Finally, differentiating the equation f(g(y),y) = 0, with respect to y, it follows that
A1D(g)(b) +A2 = 0. This means, D(g) = −A−1

1 A2. ♠

Remark 1.4.4 Think of the equation f(x,y) = 0 as a system of n equations in n + m
variables. With (a,b) as a given solution, the theorem tells you under what condition,
we can solve for the variables x near a in terms of the variables y, to obtain a unique
continuously differentiable solution. The new function g(y) so obtained is said to be given
by the equation f(x,y) = 0 implicitly. That is why the theorem is so named.

As a simple example consider the equation x2 + y2 − 1 = 0 defining the unit circle in
R2. Observe that we can solve for x uniquely, in a small neighborhood of any point (a, b)
such that a �= 0. That is so, because, then fx(a, b) = 2a �= 0.

Theorem 1.4.4 Surjective Form of Implicit Function Theorem: Let U ⊂ R
n+m be

open, f ∈ C1(U,Rn), and let a ∈ U be such that f(a) = 0 and Df(a) is surjective. Then
there exists a diffeomorphism φ : V → φ(V ) of a neighborhood V of 0 in Rn+m onto a
neighborhood of a, such that fφ(x1, . . . , xn+m) = (x1, x2, . . . , xn.)

Proof: In other words, the conclusion of the theorem is that after a change of coordinates
in the domain, the function f coincides with the projection map in a small neighborhood
of the origin.

By performing a translation, we may assume that a = 0. Consider the n × (n + m)
matrix A corresponding to Df(0) which is of rank n. By performing column operations we
can bring this to the form in which aij = δij , 1 ≤ i ≤ n, 1 ≤ j ≤ n + m. To sum it up, it
follows that, we can first perform an affine linear change of coordinates Rn+m so that, with
respect to the new coordinates, the point a is the origin and the given map f = (f1, . . . , fn)
has the property that

∂fi
∂xj

(0) = δij , i = 1, . . . , n, j = 1, . . . , n+m.

Consider the map h : U → R
n+m defined by h := (h1, . . . , hn+m) where,

hi(x1, . . . , xn+m) =
{
fi(x1, . . . , xn+m), i ≤ n,
xi, i ≥ n+ 1.

Then D(h)(0) is invertible and hence by the IFT 1.4.2, h has an inverse φ, which is contin-
uously differentiable in a small neighborhood of 0. Writing

(x1, . . . , xn) = x, (xn+1, . . . , xn+m) = y,

we have,
(x1, . . . , xn+m) = (x,y) = h ◦ φ(x,y) = (f ◦ φ(x,y),y).

Therefore, we have, f ◦ φ(x1, . . . , xn+m) = (x1, . . . , xn) near 0. ♠
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Theorem 1.4.5 Injective Form of Implicit Function Theorem: Let E ⊂ Rn be an
open subset, 0 ∈ E and let f ∈ C1(E,Rn+m) be such that f(0) = 0 and Df(0) is injective.
Then there exists a neighborhood U of 0 ∈ R

n+m and a diffeomorphism ψ of U onto a
neighborhood of 0 ∈ Rn+m such that ψ(0) = 0 and

ψf(x1, . . . , xn) = (x1, . . . xn, 0, . . . , 0).

Proof: The proof here is somewhat dual to the proof of the surjective form considered
above. First of all, by a linear change of coordinates in Rn+m we may assume that

∂fi
∂xj

(0) = δij , 1 ≤ i ≤ n+m, 1 ≤ j ≤ n.

(Perform row operations!) Define F : E × Rm → Rn+m by F (x,y) = f(x) + (0,y). Then
DF (0) is invertible. Let ψ be the inverse of F on a suitable neighborhood of 0, etc. Then,
since F (x, 0) = f(x), it follows that ψ ◦ f(x) = ψ ◦ F (x,0) = (x,0), as required. ♠

Example 1.4.1 Take f(x, y) = x2 + y2 − 1. Let us work out explicitly the surjective form
of ImFT for this function at the point (1, 0). The conditions for ImFT are satisfied since
f(1, 0) = 0 and Dfa = (2, 0). The curve x2 + y2 − 1 = 0 (or = ε) is a circle centered at the
origin. This suggests that the map

(r, θ) 
→ (
√
r + 1 cos θ,

√
r + 1 sin θ)

to play the role of φ. We check that φ(0, 0) = (1, 0). And f ◦ φ(r, θ) = r as required. The
function makes sense provided we restrict the domain |r| < 1 and will be a diffeomorphism
in −1 < r < 1,−π < θ < π. The same discussion goes through at the point (0, 1) for the
function φ changed to

(r, θ) 
→ (
√
r + 1 sin θ,

√
r + 1 cos θ).

Example 1.4.2 Consider the function f(x, y) = y2−x3. The derivative vanishes identically
only at (0, 0). Therefore, the implicit function theorem is available at all points a �= (0, 0).
For instance, let a = (1, 1). Then Df(1,1) = (−3, 2). Now put g(x, y) = 2x + 3y − 5 and
ψ = (f, g). Then ψ(1, 1) = (0, 0) and Dψ(1,1) is invertible. Therefore, by the inverse function
theorem, in some neighborhood W of (1, 1), we have ψ : U → V = ψ(W ) a diffeomorphism.
Put φ = ψ−1 : V →W. Then

(x, y) = ψ ◦ φ(x, y) = (f, g) ◦ φ(x, y) = (f(φ(x, y)), g(φ(x, y)))

implies that f ◦ φ(x, y) = x. Notice that φ is not unique.

Remark 1.4.5 The method that we have followed in the above two examples can be made
into an algorithm to find a local diffeomorphism ψ whose inverse φ = ψ−1 fits the bill in
Theorem 1.4.4 as follows: Complete the matrix of Df(a) into an invertible matrix(

Df(a)
A

)

where A is a m × (m + n) matrix. Let g : Rn+m → Rm be the affine linear map such
that g(a) = 0 and Dg = A. Put ψ = (f, g). Then Dψ(a) is invertible and hence in a
neighborhood of a it is a diffeomorphism onto a neighborhood of 0 ∈ Rn+m, and ψ(a) = 0.
If φ = ψ−1, then we have

(x,y) = ψ ◦ φ(x,y) = (f, g) ◦ φ(x,y)

which gives f ◦ φ(x,y) = x, as required.
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Combining the arguments employed in the above two theorems, we obtain the following
more general result.

Theorem 1.4.6 Rank Theorem: Let U be an open subset of Rn, F ∈ C1(U,Rm), a ∈
U,b = F (a) and let DF (a) be of rank r. For any N ≥ r, 1 ≤ i ≤ r, let pi : RN → R denote
the projection map (x1, . . . , xN ) 
→ xi. Then there exist diffeomorphisms φ : V → φ(V ), ψ :
W → ψ(W ) of suitable neighborhoods of the origins in Rn and Rm respectively, such that
φ(0) = a, ψ(0) = b, and

pi ◦ ψ−1 ◦ F ◦ φ(x) = pi(x), 1 ≤ i ≤ r. (1.55)

Furthermore, if DF (x) is of rank r for all x in a neighborhood of a, then φ, ψ, etc., can be
chosen so that

ψ−1 ◦ F ◦ φ(x1, x2, . . . , xn) = (x1, . . . , xr, 0, . . . , 0),

for points (x1, . . . , xn) ∈ V.

Proof: By shifting the origins on either side, we will assume that a = 0, b = 0. Now
consider A = DF (0). Since the rank of this matrix is r, there exists linear isomorphisms B
and C say, of Rm, and Rn respectively, such that BAC is of the form[

Ir 0
0 0

]
.

Therefore, replacing B ◦F ◦C, by F, we will assume that the matrix A = DF (0) itself is of
the above form.

Consider the map H : U → Rn defined by H = (h1, . . . , hn) where,

hi(x1, . . . , xn) =
{
fi(x1, . . . , xn), 1 ≤ i ≤ r,
xi, r + 1 ≤ i ≤ n.

Then it follows that the rank of DH(0) is n. Hence, by IFT, in a small neighborhood of 0,
H will be a diffeomorphism. Then we have, for 1 ≤ i ≤ r, pi ◦F ◦H−1 = pi ◦H ◦H−1 = pi
as required, in the first part.

Now assume that V,W, φ, ψ etc. have been chosen so as to satisfy (1.55). Note that we
can always insist that the neighborhood V so chosen is convex. Put ψ−1 ◦ F ◦ φ =: G =
(g1, . . . , gm). It follows that the matrix of DG(x) is of the form[

Ir 0
A(x) B(x)

]
.

Therefore, under the additional hypothesis that DGF (x) is of rank r for all x ∈ V, it

follows that B = 0 for all x ∈ V. This is the same as saying
∂gi
∂xj

= 0 for i, j ≥ r + 1.

Since V is convex, this implies that gi, i ≥ r + 1 depend only on (x1, . . . , xr). Therefore,
G(x) = (p(x), α(p(x))), for some function α : W → Rm−r, where W is a neighborhood of 0
in Rr. Here p denotes the projection onto the first r factors. Let L : W × Rm−r → Rm be
the map defined by

(y, z) 
→ (y, α(y) + z).

Then, L is a diffeomorphism in a neighborhood of 0. Moreover, G(x) = (p(x), α(p(x))) =
L(p(x),0). Therefore, L−1 ◦ G(x) = (p(x),0). All that we need to do now is to replace ψ
by ψ ◦ L. ♠
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Remark 1.4.6 Before winding up with the above theme we will now consider one more
result of the above type. Recall that any invertible matrix can be written as a product
of elementary matrices and permutation matrices. (This is an easy consequence of the
Gauss elimination method.) We may ask the question whether there is a similar result with
diffeomorphisms. First of all, we can hope to have such a result, locally only. With this
modest modification in the question, the answer is in the affirmative: The prototype of an
elementary matrix is a diffeomorphism of the type

x = (x1, . . . , xn) 
→ (x1, . . . , xk−1, xk + α(x), xk+1, . . . , xn), (1.56)

where, α is a continuously differentiable map with certain properties. We will be satisfied
with a result of the type, which ensures that every diffeomorphism is a composite of functions
of the above form (1.56) and of course, of some permutations. We begin with:

Definition 1.4.4 By a primitive mapping f : U → Rn of an open subset of Rn, we mean
a diffeomorphism f of U onto an open subset f(U) and f is of the form (1.56) above.

Clearly, a diffeomorphism f is a primitive mapping if and only if pi ◦ f = pi, for all i
except perhaps for one say i = k. It follows that the matrix Df coincides with Id except in
the kth row. Indeed, given any mapping f of the form (1.56), f is a local diffeomorphism

if and only if
∂α

∂xk
�= −1. Note that the inverse of a primitive mapping is again a primitive

mapping.
The following theorem is what we were after:

Theorem 1.4.7 Let U be an open set in Rn 0 ∈ U, and F ∈ C1(U,Rn) be such that
F (0) = 0 and DF (0) be invertible. Then there exists a neighborhood V of 0, in which we
can express F as a composite

F = P ◦Gn ◦ · · · ◦G1, (1.57)

where P is a permutation and G1, . . . , Gn are primitive diffeomorphisms of the form

Gi(x) = (x1, . . . , xi−1, xi + αi(x), xi+1, . . . , xn). (1.58)

Proof: Let us put F = F1. Inductively, for each 1 ≤ k ≤ n− 1, we shall find a permutation
Pk, a map αk, such that if Gk are defined as in (1.58), and if we put Fk+1 = Pk ◦ Fk ◦G−1

k

then

pi ◦ Fk+1 = pi, 1 ≤ i ≤ k. (1.59)

Clearly, then Fn itself is primitive and we set Gn = Fn. Then it follows that

F = P1 ◦ P2 ◦ · · · ◦ Pn−1 ◦Gn ◦ · · · ◦G1.

By taking P = P1 ◦ · · · ◦ Pn−1, the conclusion (1.58) follows.
Inductively, consider the matrix DFk(0). Since this is invertible, from (1.59), it follows

that there exists a j ≥ k such that
∂(pk ◦ Fk)

∂xj
(0) �= 0. Take Pk to be the transposition

interchanging j and k if j �= k and equal to Id if j = k. Let H = Pk ◦ Fk. Then it follows
that (k, k)th entry of DH(0) does not vanish. Put αk(x) = pk ◦H(x)− xk. If Gk is defined
as in (1.58), a simple computation show that DGk(0) is invertible and hence is a primitive
diffeomorphism in a small neighborhood of 0. Since, pi ◦ Fk = pi, and pi ◦ Pk = pi for
1 ≤ i ≤ k − 1, it follows that

pi ◦ Fk+1 = pi ◦ Pk ◦ Fk ◦G−1
k = pi ◦ Fk ◦G−1

k = pi ◦G−1
k = pi, i ≤ k − 1.
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Moreover, for i = k, we have

pk ◦ Fk+1 = pk ◦H ◦G−1
k = pk ◦Gk ◦G−1

k = pk.

This completes the proof. ♠

Exercise 1.4

1. Verify that the following functions define a diffeomorphism of R2 → R2 by expressing
them as composites of primitive diffeomorphisms or otherwise.

(a) (x, y) 
→ (x+ y2, y + x3 + 3x2y + 3xy2 + y3).

(b) (x, y) 
→ (x+ y2 + 2x3y + x6, y + x3).

2. Let U be an open subset of R
n and f, g : U → Rm be two submersions such that

KerDf = KerDg on U. Then for each p ∈ U, there is a neighborhood W of f(p)
in Rm and a diffeomorphism h : W → g(f−1(W )) = W ′ such that g = h ◦ f on
V = f−1(W ).

1.5 Lagrange Multiplier Method

Near a maximum the decrements on both sides are in the beginning only imperceptible.
–J. Kepler

When a quantity is greatest or least, at that moment its flow neither increases nor
decreases. –I. Newton

If one is looking for a maximum or a minimum of some function of many variables
subject to the condition that these variables are related by a constraint given by one or more
equations, then one should add to the function whose extremum is sought the functions that
yield the constraint equations each multiplied by undetermined multipliers and seek the max-
imum or minimum of the resulting sum as if the variables were independent. The resulting
equations combined with constrained equations will serve to determine all unknowns.

–J. Lagrange
These epigrams have been reproduced from the beautiful book of Tikhomirov [Ti].
In this section we would like to study the above statement of Lagrange. Nowadays, we

call it Lagrange3 Multiplier Method (LMM). Recall that given a real valued function f on
an open subset U of Rn and a point p ∈ U, we say p is a local maximum if there exists a
neighborhood V of p in U such that f(q) ≤ f(p) for all q ∈ V. Similarly, p is called a local
minimum if there is a neighborhood V of p such that f(q) ≥ f(p) for all q ∈ V. The point
p is called a local extremum point if f(p) is a local maximum or a local minimum. For a
smooth function f : U → R, a necessary condition for a point p ∈ U to be a local extremum
of f is that all the 1st order partial derivatives of f vanish at p. This is deduced by merely
restricting the function to various coordinate axes through the point p and then applying
the corresponding result from one variable calculus. For future reference let us state and
label this result here:

Lemma 1.5.1 Let f : U → R be a smooth function defined on an open subset of Rn. A
necessary condition for f(P ) to be a local extremum of f at P ∈ U is that Df(P ) = 0.

3Joseph Louis Lagrange was born on Janaury 25, 1736, in Turin, Italy (and was named Giuseppe Lodovico
Lagrangia) and lived in Paris most of his life. He is well known for his many mathematical discoveries, the
calculus of variations being one of them.
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The Lagrange Multiplier Method deals with such a necessary condition for local ex-
tremum of the function restricted to a subspace called the constraint space. Let us first
make a little more concise statement out of the above quotation from Lagrange.

We are given a smooth function f(x1, . . . , xn) of n variables. The problem is to find the
extremal values of this function on the constraint space G given by a number of equations
gi(x1, . . . , xn) = 0, i = 1, . . . , k. The LMM says that the points at which extrema of f may
occur are contained in the space of solutions of

∂L
∂xi

= 0, i = 1, . . . , n;
∂L
∂λj

= 0, j = 1, . . . , k; (1.60)

where L is the Lagrange multiplier function defined by

L := L(x,Λ) = f(x) +
k∑
i=1

λigi(x). (1.61)

When we equate the partial derivatives ∂L
∂λi

to zero, we get back the constraint space
itself. Thus, if (x1, . . . , xn, λ1, . . . , λk) is a solution of (1.60), it follows that (x1, . . . , xn) is
a point on the constraint space. Conversely, if (x1, . . . , xn) belongs to the constraint space,
and for (λ1, . . . , λk) the point (x1, . . . , xn, λ1, . . . , λk) satisfies the first n equations of (1.60)
then the other k equations are also satisfied automatically. Thus, we see that LMM is a
clever way of converting a problem of extrema with constraints, to another problem of
extrema without constraints, by increasing the number of variables.

Example 1.5.1 Before we proceed any further, let us examine a simple example where we
have f(x, y) = x and the constraint space is the cuspidal curve y2 = x3. This means x3 ≥ 0
and hence x ≥ 0. Indeed the point (0, 0) is on the curve and f(0, 0) = 0. Thus, the minimum
is attained precisely at (0, 0). Also we see that for any positive value of x, we can always
find two solutions of y2 = x3 and hence it follows that f is not bounded above on the curve
y2 = x3. So, it has no maximum. Now according to LMM, we must look for extrema of f
among solutions of (1.60) where,

L := L(x, y, λ) = x+ λ(y2 − x3). (1.62)

This yields

1− 3λx2 = 2λy = y2 − x3 = 0, (1.63)

which, alas, has no solutions at all.

Thus we see that the statement of LMM needs some technical correction. One simple
way to do this is to put an additional condition on the constraint space:

Theorem 1.5.1 Let G be the subspace of Rn given by some smooth equations gi(x) = 0,
for i = 1, 2, . . . , k, and f be a real valued smooth function on G. Suppose that for every
P ∈ G, the set {∇g1(P ), . . . ,∇gk(P )} is independent. Then the local extrema, if any, of
a given smooth function f defined on G has to be found among the solutions of equation
(1.60), where L is as in (1.61).

Proof: Put g = (g1, . . . , gk) : R
n → R

k. Then G = {x ∈ R
n : g(x) = 0}. To say that

{∇g1(P ), . . . ,∇gk(P )} is independent is the same as saying that (Dg)P : Rn → Rk is
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surjective. Let now for some P ∈ G, f(P ) be a local extremum for f. In view of the
discussion above, we have only to prove that there exists constants λi, 1 ≤ i ≤ k such that

(∇f)P + λ1(∇g1)P + · · ·+ λk(∇gk)P = 0. (1.64)

Apply the surjective form of the ImFT (1.4.4) to the map x 
→ g(x) to obtain a neigh-
borhood V of 0 in Rn and a diffeomorphism φ : V → φ(V ) to a neighborhood φ(V ) of P
such that g ◦ φ(x1, . . . , xn) = (x1, . . . , xk).

Let W be the linear span of {vj := (Dφ)0(ej), : k + 1 ≤ j ≤ n}. By the chain rule, it
follows that DgP ◦Dφ0(ej) = 0, k + 1 ≤ j ≤ n. Therefore, (∇gi)P · vj = 0 for 1 ≤ i ≤ k
and k+ 1 ≤ j ≤ n. This means that (∇gi)P ∈W⊥, the orthogonal complement of W. Since
these vectors are given to be independent, and since dim W⊥ = k, they actually form a
basis for W⊥.

On the other hand, since φ(0) = P, it follows that 0 is a local extremum for f ◦ φ
restricted to 0 × Rn−k. Therefore, by Lemma 1.5.1, D(f ◦ φ)0(ej) = 0, k + 1 ≤ j ≤ n. By
the chain rule, this means that (∇f)P is perpendicular to vj for all k + 1 ≤ j ≤ n, i.e.,
(∇f)P ∈W⊥. Therefore, (1.64) follows as required. ♠

Remark 1.5.1

(i) A global extremum in the interior of a constraint space is necessarily a local extremum.
Thus to solve a global extremum problem, one uses LMM for the interior of the
constraint space and gets all possible local solutions. To this set one adds all local
extrema on the boundary of the constraint space. Often LMM itself can be used for
the local extrema on the boundary of the constraint space as a problem with an
increased number of constraints. This way, we keep cutting down the “dimension” of
the space on which we need to look for the possible extrema. Hopefully, in a finite
number of steps, this process will convert the constraint space into a finite set. We
can then simply enumerate the value of the function at these finitely many points and
find out the actual maximum or minimum.

(ii) In general, an extremum problem may not have any solutions and LMM does not
address itself to the existence aspect at all. A result of Weierstrass, which says that a
continuous function attains its extrema on a closed and bounded subset of a euclidean
space, comes in handy in many situations, to ensure the existence. So, it is good if we
have the constraint space as a closed and a bounded subset.

(iii) In some situations even if the constraint space is unbounded we can guarantee the
existence of the extrema. For instance, suppose we know that the function tends to
+∞ as ||x|| → +∞. Then this function will attain its minimum. (You may recall
that this fact has been used in an elementary “canonical” proof of the Fundamental
Theorem of Algebra. See for example [Sh2].)

(iv) The condition that ∇gi are independent ensures that the constraint space is a smooth
submanifold of the Euclidean space with its tangent space orthogonal to the gradient
lines of the constraint function. (See Chapter 3 for more details.) In general, a con-
straint space may not be smooth all over and may have corners, e.g., it may be a cube
or a polyhedron. Even in such cases the method can be employed for local extrema
away from such corner points. At the corners, however, you will have to use further
analysis of the situation.

(v) The condition that ∇gi are independent is not always necessary. However, in the
absence of this condition, weird things can happen. From a certain advanced point of
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view, this happens to be the more interesting case as it allows the study of singularities
and degeneracies. In order to have the full force of LMM, it is necessary that we
formulate the problem in the projective space of multipliers. Take f = g0 and put
L =

∑k
i=0 λigi in (1.61). We are now looking at the projective class of multipliers

[λ0, . . . , λk] ∈ IP k−1. [Two multipliers (λ1, . . . , λk) and (λ′1, . . . , λ′k) are in the same
class if and only if there exists a nonzero real number s such that (λ1, . . . , λk) =
s(λ′1, . . . , λ

′
k). The extra condition that we put on multipliers is that they are not

identically zero i.e., at least one λi �= 0. For more details about the projective space,
see Sections 5.1 and 5.2.] Thus, Theorem 1.5.1 takes the form:

Theorem 1.5.2 The extrema of the function g0 on the constraint space G are contained
in the set of solutions of (1.61), where L =

∑k
i=0 λigi.

Equation (1.64) says that the vector (∇f)P = (∇g0)P belongs to the linear span of
{(∇g1)P , . . . , (∇gk)P }. This condition is now replaced by saying that the set of vectors,
{(∇g0)P , . . . , (∇gk)P } is linearly dependent. Then the case that we have discussed in The-
orem 1.5.1 corresponds to the restricted classes in which λ0 �= 0. The advantage in the new
formulation is that we need not put the additional hypothesis that {(∇g1)P , . . . , (∇gk)P }
are linearly independent. Geometrically, this amounts to allowing the constraint space to
have singularities. We shall not go into more details here and be content with just discussing
how this helps us to resolve the difficulty that we faced in Example 1.5.1.

Setting L = λ0x + λ1(y2 − x3) with the only restriction that (λ0, λ1) �= (0, 0), we then
obtain λ0−3λ1x

2 = 2λ1y = y2−x3 = 0. This then allows the solution λ0 = 0 together with
(x, y) = (0, 0) as a probable solution, which we know happens to be the actual solution!

We can modify the above problem by taking f(x, y, z) = x+ z, and the constraint space
to be g(x, y, z) = y2 − x3 = 0. Then we get

L = λ0(x+ z) + λ1(y2 − x3), (λ0, λ1) �= (0, 0).

This yields that the probable solutions are inside 0 × 0 × R. Since obviously, f(0, 0, z) = z
does not have any extremum values for z ∈ R, it follows that f(x, y, z) = x + z has no
extremum values on the constraint space.

Example 1.5.2 Physical interpretation of grad:
Consider any linear function φ : Rn → R, φ(x) =

∑
i αixi, and the problem of finding

its maxima on the unit sphere Sn−1. The Lagrange multiplier function in this case is

n∑
i=1

αixi − λ
(

n∑
i=1

x2
i − 1

)

which leads to the solution that

xi = ± αi√∑
i α

2
i

, i = 1, 2, . . . , n. (1.65)

Let us now apply this to a specific case where φ = Df0, and f : U → R is a smooth
function in a neighborhood U of 0 ∈ Rn. To each v ∈ Sn−1 we can consider the path
(−ε, ε)→ U given by t 
→ tv and look at the function t 
→ f(tv). The derivative of this map
at 0 is nothing but Df0(v). Now Df0(x) =

∑
i
∂f
∂xi

xi. Therefore, from (1.65), it follows that
the extrema of the function

v 
→ Df0(v)

occur at ± ∇f
‖∇f‖ . Thus, ∇f is the direction in which the increment in f is the maximum.
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Figure 3 The hill is steepest in the direction of ∇f.

The figure shows the graph of f, for n = 2. At any point on the graph, the increment in
f is maximum in the direction of the vector ∇f.

Example 1.5.3 Let x, y, z be nonnegative real numbers subject to the condition
x+ y + z = 1. Find the maximum value of f(x, y, z) = xy + yz + zx− 2xyz.

Observe that part of the constraint (viz., nonnegativity) is given by a number of inequal-
ities. We shall ignore this part in the beginning and consider them only at a later stage. The
other part of constraint is given by a linear equation. So, it seems easier to eliminate one of
the variables and treat the problem with two variables only and without any constraint. I
leave it to you to work out this problem in this method and see which one is actually easier.
We shall carry out the LMM below.

Thus, here L(x, y, z, λ) = xy + yz + zx− 2xyz − λ(x + y + z − 1). Putting ∇L = 0, we
obtain

x+ y + z − 1 = 0

and
y + z − 2yz = x+ z − 2xz = x+ y − 2xy = λ.

This means (y − x)(1 − 2z) = 0, etc., and yields the following:

y = x or z = 1/2
z = y or x = 1/2
x = z or y = 1/2.

⎫⎬
⎭

Observe that if none of x, y, z is equal to 1/2 then x = y = z = 1/3 and f(x, y, z) = 7/27.
So, consider the case when z = 1/2. Then x = y and f(x, y, 1/2) = (x+ y)/2 = 1/4 < 7/27.
By symmetry, this is the case with x = 1/2 as well as with y = 1/2.

One should remember that the above set of solutions gives all possible local extrema, in
the interior of the region under consideration. Since a global extrema which is in the interior
of the constraint domain has to be among these, but not those which are on the boundary
of the constraint domain, we should keep in mind to look at the boundary also separately.

So, let us look at one of the boundary pieces say given by z = 0. This is the same as
adding another constraint to the above situation. Therefore, we may simply consider

L(x, y, z,Λ) = f(x, y, z)− λ1(x+ y + z − 1)− λ2z.

But, in this case, we see that plugging simply z = 0 in the given problem makes it easier to
handle. We get

L(x, y,Λ) = xy − λ(x+ y − 1).

Putting ∇L = 0 we get y = x = λ = 1/2. Hence, f(1/2, 1/2, 0) = 1/4 < 7/27. Other
constraints such as x = 0, or y = 0 yield the same result because of the symmetry. The
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problem is not over yet. We have to consider the boundary constraints two at a time, say
y = z = 0. But then f(x, 0, 0) = 0 < 7/27.

Therefore, the maximum value is 7/27. Incidentally we have also found out that mini-
mum value is 0.

Thus, we have proved an inequality:

0 ≤ xy + yz + zx− 2xyz ≤ 7
27

whenever x, y, z ≥ 0 and x+ y + z = 1.

Example 1.5.4 The Inequality of Arithmetic and Geometric Means:
Given nonnegative real numbers a1, . . . , an show that

a1a2 · · · an ≤
(
a1 + a2 + · · ·+ an

n

)n
.

We set S =
∑

i ai and xj = aj/S. Then
∑

i xi = 1, xi ≥ 0 and we must prove that
x1x2 · · ·xn ≤ (1/n)n. Thus, we have converted the given problem into an extremal problem:

L = x1x2 · · ·xn − λ(x1 + x2 + · · ·+ xn − 1).

Putting ∇L = 0 gives
x1λ = x2λ = · · · = xnλ = x1x2 · · ·xn.

Since we are interested in the maximum of x1 · · ·xn clearly we can assume that none of xi
is 0. Then λ �= 0 and x1 = x2 = · · · = xn = 1/n. Therefore the maximum value x1 · · ·xn is
at this point which is equal to (1/n)n as required.

Example 1.5.5 Inequality of Geometric and Quadratic Means:
Given nonnegative real numbers a1, . . . , an show that

(a1a2 · · ·an)1/n ≤
(
a2
1 + · · ·+ a2

n

n

)1/2

.

We set S = (a2
1 + · · ·+ a2

n)1/2 and xj = aj/S. Then
∑
i x

2
j = 1. And we have to prove that

(x1x2 · · ·xn)1/n ≤
√

1/n.

So, we take f(x1, . . . , xn) = x1x2 · · ·xn and maximize it subject to the constraint
∑
i x

2
i = 1.

As before the maximum is seen to have attained at x1 = x2 = · · · = xn =
√

1/n and is
equal to

√
1/n.

This has a nice geometric interpretation: Find the box of maximum size inscribed in
a sphere. The above solution tells us that this box is actually a cube and its volume is

(2r)n
(

1
n

)n/2
, where r is the radius of the sphere.

Example 1.5.6 Cauchy’s Inequality: For arbitrary real numbers
a1, . . . , an, b1, . . . , bn show that

∑
i

aibi ≤
(∑

i

a2
i

)1/2 (∑
i

b2i

)1/2

.

Put A =
√∑

i a
2
i . If all the ai = 0 then the given inequality is obvious. So, we assume
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A �= 0. Put xi = ai/A so that
∑
i x

2
i = 1. We now fix b1, . . . , bn and put B =

√∑
i b

2
i .

Observe that we may assume that B �= 0. We have to prove that
∑

i bixi ≤ B subject to
the constraint

∑
i x

2
i = 1. Thus,

L =
∑
i

bixi − λ
(∑

i

x2
i − 1

)
.

Equating ∇L = 0 we get
2λxi = bi, i = 1, 2, . . . , n.

Since some bi �= 0, we have λ �= 0. Therefore, 1 =
∑

i x
2
i = B2/4λ2. This means that

λ = ±B/2. Correspondingly, we have xi = ±bi/B. The negative sign corresponds to the
value −B whereas the positive sign gives B. Therefore, we get −B ≤

∑
i bixi ≤ B.

Example 1.5.7 Hölder’s Inequality: Fix real numbers p, q > 1 such that
1
p

+
1
q

= 1.

Let ai, bi be any nonnegative real numbers. Then

∑
i

aibi ≤
(∑

i

api

)1/p(∑
i

bqi

)1/q

.

The proof is similar to the above after we set xj = aj/A, where A = (
∑

i a
p
i )

1/p, etc.

We shall end this section with an application of Lagrange Multiplier Method to Linear
Algebra:

Theorem 1.5.3 Given any symmetric matrix A ∈Mn(R) there exists an orthogonal matrix
P ∈ O(n) such that P−1AP is a diagonal matrix.

Proof: Check that finding a matrix P as above is the same as finding an orthonormal basis
{v1, . . . ,vn} for Rn consisting of eigenvectors of A.

We start with the function φ : Rn \ {0} → R given by

φ(x) =
x · Ax
x · x .

Observe that φ is continuous and φ(αx) = φ(x) for all real scalars. Thus, φ(Rn \ {0}) =
φ(Sn−1). By Weierstrass’ theorem, φ|Sn−1 attains its maximum and minimum values. And
by the above observation, φ attains its extrema on the whole of Rn\{0}, and this will happen
inside the unit sphere. Therefore, we can study the extrema of the function f : S

n−1 → R,
given by

f(x) = x ·A(x)

in place of φ. As we shall see this simplification of the problem is a very important step
since we have got rid of the denominator in the expression for φ. Now the idea is clear— an
extremum value of f should give an eigenvalue of A. Indeed we shall soon see that it gives
even the corresponding unit eigenvector.

So we set up
L(x,Λ) = f(x)− λx · x.

The extrema of f with the constraint x·x = 1 is to be found among the solutions of∇L = 0.
Since Df(x) = 2Ax, it follows that the local extrema are given by the solution of the

equation

Ax = λx. (1.66)
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Remember that the existence of such a solution x on the unit sphere is guaranteed by
the general consideration that a continuous map has to attain its maximum on a closed and
bounded subset together with the principle that such a maximum is also a local maximum
for all curves passing through the point.

Let such a solution of (1.66) be denoted by v1 with the corresponding eigenvalue μ1.
(Incidentally it may be noted that we have actually found v1 corresponding to the maximum
eigenvalue or the minimum eigenvalue.)

Inductively, having found mutually orthogonal vectors v1, . . . ,vk of unit length such
that Avi = μivi, we now consider the LMM with the data:

f(x) = x · Ax; g(x) = x · x = 1; gi(x) = vi · x = 0, 1 ≤ i ≤ k.

For this we have to set

L(x,Λ) = f(x) +
k∑
i=1

λigi(x) + λ(g(x)− 1)

and look for points (x, λ1, . . . , λk, λ) which satisfy ∇L = 0. This is the same as saying

2Ax =
k∑
1

λivi + 2λx. (1.67)

Since we are also having the constraints gi(x) = 0 = x · vi, by the symmetry property of
A, it follows that Ax · vi = x · Avi = x · μivi = 0, for all 1 ≤ i ≤ k. Plugging in this
information in (1.67) yields that λi = 0 and Ax = λx. Thus we have found another (not
necessarily different from the old ones) eigenvalue of A which we shall denote by μk+1. The
corresponding solution of Ax = μk+1x can now chosen to be a unit vector and denoted by
vk+1. The proof is completed by induction. ♠

Exercise 1.5

1. Examine the map f(x, y, z) = xyz for extremum values on the unit sphere

x2 + y2 + z2 = 1.

2. Examine the function x2 + y2 + z2 for extremum values on the surface z = xy + 1.

3. Find the maximum value of 8x2 + 4yz − 16z + 10 on the ellipsoid

4x2 + y2 + 4z2 = 16.

4. Consider the space SL(2,R) of 2 × 2 matrices
[
a b
c d

]
over the real numbers and

with determinant ad− bc = 1. Show that the Euclidean distance of SL(2,R) from the
origin, viz., minimum of (a2 + b2 + c2 + d2)1/2 is

√
2. What about the same problem

if R is replaced by C?

1.6 Differentiability on Subsets of Euclidean Spaces

Given a subset X of some Euclidean space, a function f : X → R and a point x ∈ X, in
order to define the differentiability of f at x, we have insisted that the set X should be a
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neighborhood of x or at least contain a neighborhood of x in Rn. Our aim here is to remove
this restriction as far as possible and extend the notion of differentiability of functions.
For instance, X could be a closed interval [a, b] in R and the point may be one of the end
points. Recall then that f is said to be differentiable at a if the “right-hand derivative”
at a exists. Similarly, it is said to be differentiable at b if the “left-hand derivative” exists.
When we consider subsets of Rn for n ≥ 2, such simple-minded modifications would not
be possible. We must remember that any modification/extension of the definition should
conform with the old definition of differentiability when X is a neighborhood of x. Here is
then a reasonably satisfactory answer to this problem.

Definition 1.6.1 Let X ⊂ RN and x0 ∈ X be any point. A function f : X → R is said to
be differentiable (of class Cr) at x0 if there exists an open subset U of RN such that x0 ∈ U
and a function f̂ : U → R, which is differentiable (Cr) at x0 such that f̂ |U∩X = f. If f is
differentiable at every point of X then we say f is differentiable on X.

Remark 1.6.1
(i) Clearly, if X itself is open in RN , then this new definition of differentiability coincides
with the old one for functions defined on open subsets.
(ii) Now consider the case when f : [a, b] → R. Suppose that we have defined f to be
differentiable at a if the right-hand derivative of f at a exists, viz.,

lim
h→0+

f(a+ h)− f(a)
h

= α (1.68)

exists. Clearly, this is implied by the existence of the derivative at a according to Definition
1.6.1. On the other hand, if f satisfies (1.68), consider

f̂(x) =
{
f(a)− (a− x)α, x ≤ a
f(x), x ∈ [a, b]. (1.69)

Then f̂ is defined in (−∞, b] and is differentiable at a and f̂ |[a,b] = f. Thus, the two
definitions coincide here.
(iii) Also, we now have two different definitions of differentiability of a function defined on
Rn itself, the new definition applied to the case when Rn is thought of as a subspace of
Rn+1 by a coordinate inclusion say,

(x1, . . . , xn) 
→ (x1, . . . , xn, 0). (1.70)

Verify that the two notions coincide.
(iv) It follows easily that sums, products, and composites of differentiable functions yield
differentiable functions again—we have only to argue in the same old fashion with extended
functions instead of the given functions.
(v) Observe that we have not defined the derivative of a function that is differentiable in the
new sense on arbitrary subsets. No doubt if the domain of the given function is open then
we can take the derivative to be the same as in the old sense. Can we take the derivative of
f to be that of f̂ at x0 in general? The trouble with this idea is the choice involved in f̂ and
that there is no guarantee that this derivative can be unique. One of the important aspects
of the notion of manifolds is that it allows us to define the derivative of a differentiable
function on a manifold, in an unambiguous way, as we shall see later. (The exercise 1.6
below will give you some idea about the conditions on the domain for the derivative of any
functions to be defined uniquely.)

Definition 1.6.2 By a diffeomorphism f : X → Y of two subsets of Euclidean spaces we
mean a bijection f such that both f and f−1 are smooth. If such a function exists, then we
say X and Y are diffeomorphic. Compare Definition 1.4.3.
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Remark 1.6.2 It is easy to see that “being diffeomorphic” is an equivalence relation. We
remind you that one of the central theme of Differential Topology is to classify objects
up to this equivalence. Observe that any diffeomorphism is a homeomorphism and hence
nonhomeomorphic spaces cannot be diffeomorphic. The converse is far from being true but
examples are not that easy to come by. We shall however establish easily the invariance of
certain topological properties of spaces under diffeomorphisms, the corresponding result for
homeomorphism being more difficult. The very first instance of this is the following result.

Theorem 1.6.1 Invariance of Domain: Let U ⊂ R
n, V ⊂ R

m be nonempty subsets
which are diffeomorphic to each other.
(a) If U and V are both open then m = n.
(b) If m = n and U is open, then V is also open.

Proof: (a) Choose x ∈ U and consider D(f)x. Since f is a diffeomorphism, by the chain
rule, it follows that D(f)x : R

n → R
m is a linear isomorphism. Hence, m = n.

(b) Since U is open the two definitions of differentiability coincide here. By IFT 1.4.2, f is
an open mapping. Therefore, f(U) = V is open. ♠

Example 1.6.1

1. It is easy to see that any two open balls (closed balls) in Rn are diffeomorphic (use
a translation followed by a scaling). Moreover, all open balls are diffeomorphic to the
whole of Rn. To see this consider the map φ : Bn → Rn given by

φ(x) =
x√

1− ‖x‖2
(1.71)

with its inverse map

ψ(y) =
y√

1 + ‖y‖2
. (1.72)

2. Consider the function x 
→ x2 on the unit interval [0, 1]. This is clearly a smooth map
in the new sense, since it is the restriction of a smooth map on the whole of R. Clearly it
is a bijection and hence a homeomorphism. However, observe that the inverse function
x 
→

√
x is not differentiable at x = 0. Thus, this is not a diffeomorphism. Indeed, it

can be seen that if f : [a, b] → X is a diffeomorphism where, X is any subset of Rn,
then D(f) does not vanish at any point of [a, b]. (Exercise: Supply details.)

3. The phenomenon that we witnessed in (2) has nothing to do with the boundary. For
instance, consider the map

x 
→ x3,

which is a homeomorphism of R with itself and is a C∞ map. However, its inverse is
not differentiable at 0.

Example 1.6.2 Let Hn denote the upper half-space in R
n,

Hn = {(x1, . . . , xn) ∈ R
n : xn ≥ 0}.

Let f be a smooth function defined in a neighborhood of 0 ∈ Hn. Let f1, f2 be any two
extensions of f to a (common) neighborhood U of 0 in Rn, which are differentiable at 0.
Then

lim
‖h‖→0

fi(h)− fi(0)−D(fi)(0)(h)
‖h‖ = 0, i = 1, 2.
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Therefore, for each i = 1, 2 we can take the limit, by restricting h to remain inside Hn.
But, for h ∈ Hn, f1(h) = f(h) = f2(h). Hence, it follows that Df1(0) = Df2(0). Thus, the
derivative of f at 0 can be defined unambiguously to be the linear map Df̂(0) where f̂ is
any differentiable extension of f in a neighborhood of 0.

Example 1.6.3 Let n ≥ 2. Consider the unit sphere Sn−1 in Rn given by

S
n−1 = {(x1, . . . , xn) :

∑
i

x2
i = 1}.

Let N = (0, . . . , 0, 1) denote the “north pole” and U = S
n−1 \ {N}.

x

N

η(x)  

Figure 4 Stereographic projection.

Given any point x ∈ U, there is a unique line Lx passing through x and N and this
line is not parallel to the hyperplane Rn−1 × {0}. Therefore, Lx intersects Rn−1 × {0} in a
unique point. We shall denote it by η(x). The function η : U → Rn−1 = Rn−1×0 is called a
stereographic projection. Let us compute this explicitly. The line Lx can be parameterized as
tx+(1− t)N, t ∈ R. We want to find the value of t for which this point belongs to Rn−1×0.
Therefore, we put the last coordinate equal to zero to obtain the equation txn + 1− t = 0,
i.e., t = 1

1−xn
. (Note that x ∈ U implies xn �= 1 and hence this makes sense.) Thus

η(x) =
(

x1

1− xn
, . . . ,

xn−1

1− xn

)
. (1.73)

In order to compute the inverse map, we can reverse this geometric argument. Given
any point y ∈ Rn−1 × 0, the line joining y and N has to meet the sphere in exactly two
points, one of the points being N itself. The other point is clearly η−1(y). Following the
same procedure, we first get the parameterization ty + (1− t)N, t ∈ R of the line and then
require that a point of the line to be on the sphere, which yields t2

∑
i y

2
i +(1− t)2 = 1. This

is the same as t[t(
∑

i y
2
i + 1) − 2] = 0. The solution t = 0 gives the point N. The solution

t = 2
1+‖y‖2 gives the point η−1(y). Therefore,

η−1(y) =
(

2y1
1 + ‖y‖2 , . . . ,

2yn−1

1 + ‖y‖2 ,
‖y‖2 − 1
1 + ‖y‖2

)
.

It follows that both η and η−1 are smooth and hence η is a diffeomorphism. More generally,
we can take any point P ∈ S

n−1 and consider the “stereographic projection” from that
point onto the hyperplane perpendicular to the vector p.
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Remark 1.6.3

1. Consider the subset X = [0, 1] × {0} ∪ {0} × [0, 1]. It is easy to see that this is
homeomorphic to the closed interval [−1, 1]. But there is no diffeomorphism between
them! For suppose that f : [−1, 1] → X is a homeomorphism with f(p) = (0, 0) say.
Then the two half-intervals around p have to be mapped respectively onto horizontal
and vertical segments of X. Suppose f is also smooth. It will then follow that the
left-hand and right-hand derivatives of f at 0 are multiples of e1, e2, respectively; by
the smoothness condition, they should be equal and hence both are zero. This means
Df(p) = 0. Therefore, f cannot have a smooth inverse.

(a) 
(b)

Figure 5 Nondiffeomorphic but homeomorphic subspaces.

2. The above argument can be used to prove that the boundary of a triangle in R2 cannot
be diffeomorphic to a circle or the boundary of a square. Of course, it also can be used
to show that a (full) triangle is not diffeomorphic to a disc or a (full) square, whereas
they are all homeomorphic to each other. Thus, in differential topology, we have to
be careful to distinguish between I × I and the unit disc D2. And this is not just a
minor irritation that one can ignore.

Exercise 1.6

1. Determine the maximal intervals on which these functions are diffeomorphisms:
(a) sin (b) cos (c) tan (d)

√
1− t2.

2. Show that for r > 0 and s = sin r, the map (v, t) 
→ (v, sin t) is a diffeomorphism
Dnr → Dns . [Hint: Use Theorem 1.2.6.]

3. Consider the quarter space

Q = {(x, y) ∈ R
2, x ≥ 0, y ≥ 0}

and a real valued differentiable function f on it. Show that the derivative of f at 0
can be defined unambiguously, as a linear map R2 → R.

4. Let X ⊂ R
n, and 0 ∈ X. Suppose v1,v2, . . . ,vn are independent vectors such that

the line segments [0,vi] ⊂ X, ∀ i. Let f : X → R be differentiable at 0. Show that
Df0 is well defined.

5. Let X be a subset of R
2, 0 ∈ X. Let us denote the set of natural numbers by N =

{1, 2, . . .}. Assume that ( 1
n ,

k
n ), ( 1

n ,
l
n ) ∈ X for all n ∈ N where k �= ±l are some non

zero real numbers. Suppose f : X → R is a continuously differentiable function and
f( 1

n ,
k
n ) = 0 = f( 1

n ,
1
n ), ∀ n ∈ N. Show that D(f)0 is well defined and compute it.

6. Recall that for a subset A ⊂ R
n, a point a ∈ Rn is called a cluster point of A (or a limit

point of A) if there is a sequence {an} of distinct points in A \ {a}, which converges
to a. Assume that there are smooth curves C1, . . . , Cn passing through a such that
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the tangent vectors v1, . . . ,vn to these curves at a are independent. Further, suppose
that a is a limit point of each Ci ∩ A. Show that for any f : A → R, a differentiable
map, Dfa is well defined.

7. Show that any two (nondegenerate) triangles in R2 are diffeomorphic.

8. A finite subset {p0, . . . , pn} ⊂ Rm is said to be affinely independent if the vectors
{p1−p0, . . . , pn−p0} are independent. (Any singleton set is affinely independent.) By
an n-simplex in Rm, we mean the convex hull of any affinely independent subset with
n+ 1 points. Show that any two n-simplexes in Rm are diffeomorphic.

9. Show that any two regular n-gons in R2 are diffeomorphic to each other.

10. Classify the following list of subsets of R2 into diffeomorphism types.

(a)  (b) (c) (d) (e)

(f) (i) (j)(g) (h)

Figure 6 Classify into diffeomorphism types.

1.7 Richness of Smooth Maps

In this section, our aim is to establish the fact that smooth functions are “plenty” in a
very loose sense.4 (For a detailed treatment of this topic see [Hi].) Recall one of the most
important C∞ functions on R :

x 
→ e−1/x2
(1.74)

which you may have studied as an example of a nonzero smooth function with all its
derivatives at 0 vanishing. (Verify this fact right now, if you have not seen this before.) The
Taylor’s expansion of this function at 0 is identically 0 and yet the function is nonvanishing
except at 0. This and similar other functions become very useful for us and in fact contribute
to the richness of the set of smooth functions.

4The space C([0, 1]; R) of all continuous real valued functions on the closed interval [0, 1] can be given
a measure called Wiener measure with respect to which the subset of all continuous functions that are
differentiable even at a single given point is of measure zero. Nevertheless, Theorem 1.7.2 below implies
that under the “sup-norm” topology, the subset of smooth functions is dense in the space of all continuous
functions.
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Figure 7 Patching up smooth maps.

Let us begin with any smooth function f : R → R taking only positive values except at
0 and having all its derivatives 0 at 0, for instance, as in (1.74). We consider the function
g defined by

g(x) =
{
f(x), x ≥ 0,
0, x ≤ 0. (1.75)

Then g(n)(0) = 0 for all n ≥ 0 and g(x) ≥ 0 for all x. Moreover, g(x) = 0 if and only if
x ≤ 0.

What we have done just now is a typical case of “patching up” of two smooth functions.
Recall that if you have two continuous functions f1 and f2 that agree at a point x = x0,
then we could define another function g, which is f1 for x ≤ x0 and f2 for x ≥ x0. Of
course, without any further assumptions, the function g is also continuous. However, if fi
were smooth we cannot say immediately that g is also smooth at x0. This would require
that all the derivatives (or at least as many as we are interested in) of f1 and f2 agree
at x0. The point is that “patching up” two smooth functions is possible and this is the
secret of the richness of smooth maps. It may be recalled that holomorphic functions are
rather too rigid: if two of them agree on a connected set with a limit point then they agree
everywhere. So, one cannot “patch up” two distinct holomorphic functions. Recall that for
any real or complex vector-valued function f defined on a topological space X, the support
of f is defined by

supp f = cl ({x ∈ X : f(x) �= 0}) (1.76)

where cl denotes the closure of a set. The zero set Z(f) of f is defined to be

Z(f) = {x ∈ X : f(x) = 0}.

Clearly supp f = cl (X \ Z(f)).

In this terminology, we have supp g = [0,∞).

Next, we modify g to have compact support. Let now 0 < a < b be real numbers and
define

h(x) = g(x− a)g(b− x). (1.77)

Then check that the support of h is precisely [a, b]. Sketch the graph of h and observe
that it has the shape of a camel’s hump.
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a b0 0 a b

Figure 8 A camel’s hump and a smooth step.

We now define

γ(x) =

∫∞
x
h(t) dt∫∞

−∞ h(t) dt
. (1.78)

The function γ has the following properties:
(i) γ(x) = 1 for all x ≤ a;
(ii) monotonically decreasing in [a, b];
(iii) and γ(x) = 0 for all x ≥ b.

We call such a function a smooth unit step-down function. By scaling, shifting, reflecting,
or combining several of these operations on this function, we can get smooth functions with
other geometric properties. For instance, let us illustrate how to use this to get smooth
“bump” functions on Rn. Consider

α(x) = γ(‖x‖) (1.79)

The norm function is not smooth at x = 0. However, the composite of this with γ is a
smooth function all over. [This is another typical tool used in building up smooth functions
out of possible nonsmooth ones. Pay attention to this.] Then α : Rn → [0, 1] is a smooth
function which vanishes for ‖x‖ ≥ b and equals 1 for ‖x‖ ≤ a. For n = 2, its graph looks
like a nice hill with a football ground at the top!

ba

Figure 9 Hilltop with a football ground.

Remark 1.7.1 It is worth noting that the smooth functions that we construct “depend”
smoothly on the initial data that we choose according to the properties that we want the
functions to have. This is so because of the “algorithmic” nature of the constructions that
we have discussed so far. This fact will be used in a nontrivial way in a later chapter. At
this stage, you are welcome to try the first few exercise at the end of the section, which
emphasize this phenomenon.

Remark 1.7.2 An important technique that allows passage from “local” to “global” in
differential topology, is the so-called “partition of unity”. Though the concept itself can be
studied in a more general setup (of paracompact spaces), we shall restrict ourselves to the
case of subspaces of Euclidean spaces.
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Theorem 1.7.1 Partition of Unity: Let X be any subspace of Rn and {Uα}α∈Λ be an
open covering of X. Then there exists a countable family {θj} of smooth functions with
compact support on R

n such that
(i) 0 ≤ θj(x) ≤ 1, for all j and x ∈ X ;
(ii) for each x ∈ X there exists a neighborhood Nx of x in X, such that only finite number
of θj are nonzero on Nx;
(iii) for each j, (supp θj) ∩X ⊂ Uαj for some αj ; and
(iv)

∑
j θj(x) = 1, for all x ∈ X.

Proof: Recall that Uα are open in X means that there exist Vα that are open in Rn and
Uα = X ∩ Vα. Put W = ∪αVα. Then X ⊂W and {Vα} is an open cover of the open set W.
If we prove the theorem, with X replaced by W and {Uα} replaced by {Vα}, we can then
take the restriction of ηj to X to complete the proof of the original statement. So, instead
of changing X to W, etc., we may and will assume that X itself is an open set in R

n.
We now use the fact that every open set in R

n is the increasing union of a countable
family of open sets whose closure is compact. There are different ways to see this; here is
one such way: For positive integer i, take

Ki = {x ∈ X : ‖x‖ < i & d(x, R
n \X) > 1/i}.

Check that
X = ∪iKi; Ki ⊂ Ki ⊂ Ki+1 ⊂ Ki+1.

Here K denotes the closure of a subset K in Rn. Also, each Ki being closed and bounded,
is compact. We set K−1 = K0 = ∅ for the sake of inductive steps that follow.

XK K i

i

K 

i−1

i−1i+

i+

1

1

Figure 10 Nested union of compact sets.

For any ball B in Rn, let us agree to denote by
1
2
B, the ball with half the radius and

the same center. Let now B be the collection of all balls in Rn each of which is contained
in some member of {Uα}. Among these balls, for each i ≥ 1, there will be finitely many Bk

not intersecting K̄i−2 and such that their halves
1
2
Bk will cover the compact set Ki \Ki−1.

Together, let us index all these balls by {Bj}. (Strictly speaking we should use double
indices like Bij but we avoid this for simplicity.) Clearly, the family {Bj} is an open cover
for X.

Now, a crucial fact is that the family {Bj} is locally finite on X, i.e., for each x ∈ X, we
can find a neighborhood Nx of x such that only finitely many of {Bj} intersect Nx.

To see this, suppose x ∈ Ki. Then take Nx = Ki. Clearly, Nx does not meet any of the
balls chosen after the stage i+ 2.
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For each j, choose some smooth bump function ηj : Rn → [0, 1] with its support equal
to Bj and which equals 1 on 1

2Bj . One can verify straight away that (i)-(iii) are all satisfied
by ηj in place of θj . In particular, η :=

∑
j ηj makes sense and gives a smooth function on

η : X → [0,∞). Moreover, for each x ∈ X, since x belongs to at least one of the half balls
1
2Bj , it follows that ηj(x) = 1 and hence η(x) ≥ 1. Hence, for each j,

θj :=
ηj
η

(1.80)

makes sense on X and defines a smooth map θj : X → [0, 1]. Since each θj vanishes outside
the ball Bj , we can extend it by zero on all of Rn\B̄j to obtain smooth maps θj : Rn → [0, 1].
Verify that all the properties required by {θj} are satisfied. ♠

Remark 1.7.3
(i) The partition of unity is going to be extremely useful for us. Here, we shall give two
immediate corollaries. The first one already tells you that there are enough smooth functions
to separate disjoint closed subsets in R

n.
(ii) The family {θj} may fail to be locally finite at all points of Rn, viz., at the boundary
points of the set X. Because of this, the function η may fail to make sense at these points.
Our next corollary is an illustration of how the partition of unity can be combined with
other tools in analysis such as taking convergent series to define smooth maps with other
properties.

Corollary 1.7.1 Smooth Urysohn’s Lemma: Let F0, F1 be any two disjoint closed
subsets of Rn. Then there exists a smooth function f : Rn → [0, 1] such that f(x) = 0 for
all x ∈ F0 and f(x) = 1 for all x ∈ F1. If F1 is compact then we can choose f to have
compact support also.

Proof: Consider the open covering {Rn \ F0,R
n \ F1} of Rn and apply the above theorem

to get a partition of unity {θj} subordinate to this cover. (This just means that the family
satisfies the conditions (i)–(iv) of the above theorem with X replaced by Rn.) Define

A = {j : supp θj ∩ F1 �= ∅}; f(x) :=
∑
j∈A

θj .

Then by condition (iii), f makes sense and is smooth. For j ∈ A, we have supp θj ⊂ X \F0,
which means that θj(F0) = {0}. Therefore, f(F0) = {0}. On the other hand, given any
point x ∈ F1 since

∑
j θj(x) = 1 and if θj(x) �= 0 then j ∈ A, it follows that f(x) = 1. If

F1 is compact, then there will be a finite open cover {U1, . . . , Uk} of F1 such that each Ui
intersects only finitely many members of {supp θj}∞j=1. Therefore, it follows that the set A
is finite. In particular, being a finite sum of functions with compact support f itself has
compact support. ♠

Corollary 1.7.2 A subset C of Rn is closed if and only if it is the precise zero set of a
smooth function f : Rn → R.

Proof: Since the zero set of any continuous real valued function is closed, we have only to
prove the “only if” part here.

Given an n-tuple of nonnegative integers α = (α1, . . . , αn), let |α| =
∑
i αi and let Dα

denote the partial derivative

Dα =
∂|α|

∂xα1
1 · · · ∂xαn

n
.



Richness of Smooth Maps 43

Let X = Rn \ C, with the open cover {X}, in the above theorem and let {θj} be the
partition of unity obtained therein. Let cr = sup{|Dα(θr)| : |α| ≤ r}. Since each θr is a
smooth function with compact support, cr is a finite quantity. Choose εr > 0 such that∑

r εrcr < ∞. Now consider f =
∑∞

r=1 εrθr. This sum is not necessarily locally finite.
However, it is convergent. Indeed, observe that for any fixed α, the series

∑
r≥|α| εrcr is a

majorant series for
∑

r≥|α|D
α(εrθr). By the majorant criterion, the series

∑
rD

α(εrθr) is
uniformly convergent for each multi-index α. It follows that f is a smooth function on Rn.
If x ∈ X, then since some θr(x) �= 0, it follows that f(x) �= 0. On the other hand, if x ∈ C
then θr(x) = 0 for all r and hence the sum, f(x) = 0. ♠

We shall end this section with the following approximation theorem.

Theorem 1.7.2 Approximation Theorem: Let C be a closed subset of an open set U in
Rn and f : U → Rm be a continuous map that is smooth restricted to C. Given a continuous
function ε : U → (0,∞), there exists a smooth function g : U → Rm such that

g(y) = f(y), ∀ y ∈ C and ‖f(y)− g(y)‖ < ε(y), ∀ y ∈ U. (1.81)

Proof: By the smooth version of the Tietze Extension Theorem (see Exercise 10 below),
there exists a smooth function h : U → R

m such that h = f on C. Since ε is a continuous
positive function, for each x ∈ U, we can choose a neighborhood Ux of x in U so that
ε′(x) = inf {ε(y) : y ∈ Ux} > 0. By the continuity of f and h, for each x ∈ C, there exists
a neighborhood Vx ⊂ Ux of x such that

‖f(y)− h(y)‖ < ε′(x) ≤ ε(y), y ∈ Vx.

Also by continuity of f for each x ∈ U \C, there exists neighborhood Vx ⊂ Ux of x in U \C
such that

‖f(x)− f(y)‖ < ε′(x) < ε(y), y ∈ Vx.
Let us put gx(y) = h(y), y ∈ U for all x ∈ C and gx(y) = f(x), y ∈ U (the constant map)
for all x ∈ U \ C.

Let {λj} be a smooth partition of unity on U subordinate to the open cover {Vx}x∈U .
Suppose that suppλj ⊂ Vxj . Define g =

∑
j λjgxj . Then clearly g is a smooth function on

U and if y ∈ C then

g(y) =
∑
j

λj(y)gxj (y) =
∑
j

λj(y)h(y) = f(y).

Finally for y ∈ U we have,

‖f(y)− g(y)‖ = ‖
∑
j

λj(y)(f(y)− gxj (y))‖

≤
∑
j

λj(y)‖f(y)− gxj (y)‖

≤
∑
j

λj(y)ε(y) = ε(y),

which completes the proof. ♠

Remark 1.7.4 You may have learned in your real analysis course that any continuous map
f : K → R on a compact subset K of Rn can be approximated by a polynomial function
(Weierstrass’ approximation theorem). The above result is clearly a big generalization of
this result in a sense, though you cannot deduce Weierstrass’ approximation theorem from
it. Also, when K is noncompact, you cannot hope to get polynomials to approximate a
given continuous function.
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Exercise 1.7

1. Fix a < b ∈ R. Show that there exists a smooth function φ : R×R×R → R such that
for each fixed (α, β) ∈ R×R, the map φα,β : R → R given by φα,β(t) = φ(α, β, t) has
the properties:
(i) φα,β(t) = α, t ≤ a, φα,β(t) = β, t ≥ b;
(ii) φα,β is monotonic.

2. Fix M > ε > 0.
(a) Show that there is smooth map g : [0,M ] × [0, 1] → [0,M ] such that for each
α ∈ [0,M ], the map defined by gα(t) = g(α, t) has the properties:
(i) gα(t) = α near 0 and gα(t) is some positive constant near 1;
(ii)

∫ 1

0 gα(t)dt < ε.
(b) Deduce that there is a smooth map h : [0,M ]× [0,M ]× [0, 1] → [0,M ] such that
(i) h(α, β, t) = α near 0 and h(α, β, t) = β near 1 for each fixed (α, β);
(ii)

∫ 1

0 h(α, β, t)dt < ε.

3. Fix M > 0. Show that there is a smooth map f : (0,M ]× (0,M ]× [0, 1] → [0, 1] such
that for each (α, β) ∈ (0,M ]× (0,M ], the map fα,β : [0, 1] → [0, 1] has the properties:
(i) fα,β(0) = 0, fα,β(1) = 1;
(ii) f ′

α,β(t) = α near 0, f ′
α,β(t) = β near 1;

(iii) f is strictly increasing.

4. Construct a C∞ function f : [−1, 1] → R such that the zero set of f is equal to the

closure of
({

1
n

: n �= 0 is an integer
})

.

5. Give an example of a smooth function f : R → R such that
supp f = [0, 1] and |f ′(x)| ≤ 1 for all x.

6. Let −∞ ≤ α < β ≤ ∞ and −∞ ≤ γ < δ ≤ ∞ and let α = a0 < a1 < · · · < a2k+1 = β
and γ = c0 < c1 < · · · < c2k+1 = δ. Given order preserving diffeomorphisms φi :
[a2i−1, a2i] → [c2i−1, c2i], i = 1, . . . , k, construct a diffeomorphism ψ : [α, β] → [γ, δ]
such that ψ|[a2i−1,a2i] = φi, i = 1, 2, . . . , k. If any one of the φi is given only on the
open interval, does the conclusion hold?

7. Given a < c < b, show that there exists a smooth function f : [a, b] → R such that f

vanishes near a and b and is a constant near c and such that
∫ b

a

f(x)dx = 1.

8. Given 0 < a < b ∈ R, find a smooth function f : R → R such that
(i) near 0, f ≡ a;
(ii) near b, f ≡ 0; and
(iii) −1 < f ′(x) ≤ 0, for 0 ≤ x ≤ b.

9. Prove or read from a point set topology book the following simpler version of Wall-
man’s theorem: Let K ⊂ Rn × {0} be a compact set, and U be an open subset of
Rn+1 containing K. Then there exists ε > 0 and an open subset V of Rn such that
K ⊂ V × (−ε, ε) ⊂ U.

10. Smooth Tietze Extension Theorem: Let C be any closed subset of Rn and f :
C → R be any smooth map. Then there exists a smooth function f̂ : R

n → R such
that f̂ |C = f.
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11. Let f : U → R be a smooth function that vanishes in a neighborhood of p ∈ U, where
U is an open subset of Rn. Show that there exists a smooth function λ : U → R, that
vanishes in a neighborhood of p and satisfies f = λf on U.

12. By a smooth homotopy, we mean a smooth map H : X ×R → Y. Put ht(x) = h(x, t).
Two smooth maps f, g : X → Y are said to be smoothly homotopic if there exists a
smooth homotopy H such that ht = f,Hs = g for some s, t ∈ R. Show that being
smoothly homotopic is an equivalence relation on the set of smooth maps from X to
Y.

1.8 Miscellaneous Exercises for Chapter 1

1. Given a C∞ function f : R → R such that f(1/n) = 0 for all positive integers n, can
you determine the values of f(0), f ′(0), f ′′(0), · · ·?

2. An example of Weierstrass’ function (due to McCarthy):5 A continuous func-
tion f : R → R which is nowhere differentiable is called a Weierstrass’ function
because he was the first one to discover such functions. (This should not be confused
with the Weierstrass’ pee-function ℘.) Here is an easy example: Define

g(x) =

⎧⎨
⎩

1 + x, if −2 ≤ x ≤ 0;
1− x, if 0 ≤ x ≤ 2;
g(x− 4n), if −2 ≤ x− 4n ≤ 2, for some integer n �= 0.

Observe that g is a periodic function with period 4. Put gk(x) = g(22k

x) and f(x) =∑∞
0 gk(x)/2k. Show that f is a Weierstrass’ function. [Hint: to show that f is not

differentiable at x, consider the sequence {x + 2−2k} or {x − 2−2k} depending upon
whether mod 2 you have 0 ≤ x ≤ 1 or 1 ≤ x ≤ 2.]

3. Examine the following functions for continuity at (0, 0). The expressions below give
the value of the function at (x, y) �= (0, 0). At (0, 0) you are free to take any value you
like.

(i)
x3y

x2 − y2
; (ii)

x2y

x2 + y2
; (iii) xy

x2 − y2

x2 + y2
;

(iv) |[|x| − |y|]| − |x| − |y|; (v)
sin2(x+ y)
|x|+ |y| .

4. Suppose f, g : R → R are continuous functions. Show that each of the following
functions on R2 are continuous.
(i) (x, y) 
→ f(x) + g(y); (ii) (x, y) 
→ f(x)g(y);
(iii) (x, y) 
→ max{f(x), g(y)}; (iv) (x, y) 
→ min{f(x), g(y)}.
If f, g are differentiable, are all the above functions differentiable?

5. Deduce from the above exercise that every polynomial function in two variables is
continuous (smooth). Can you generalize this?

5Amer. Math. Monthly Vol. LX No. 10 Dec. 1953.
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6. Examine each of the following functions for continuity.

(i) f(x, y) =

{ y

|y|
√
x2 + y2, y �= 0,

0 y = 0.

(ii) g(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x sin
1
x

+ y sin
1
y
, x �= 0, y �= 0;

x sin 1
x , x �= 0, y = 0;

y sin 1
y , x = 0, y �= 0;

0, x = 0, y = 0.

7. Let f : Br(0) → R be some function where Br(0) is the open ball of radius r and
center 0 in R

2. Assume that the two limits

lim
x→0

f(x, y); lim
y→0

f(x, y) (1.82)

exist for all sufficiently small y and for all sufficiently small x, respectively. Assume
further that the limit lim

(x,y)→(0,0)
f(x, y) = l also exists. Then show that the iterated

limits

lim
y→0

[ lim
x→0

f(x, y)], lim
x→0

[ lim
y→0

f(x, y)] (1.83)

both exist and are equal to l.

8. Put f(x, y) =
x− y
x+ y

, for (x, y) �= (0, 0). Show that the two iterated limits (1.83) exist

but are not equal. Conclude that the limit lim
(x,y)→(0,0)

f(x, y) does not exist.

9. Put f(x, y) =
x2y2

x2y2 + (x− y)2
, (x, y) �= (0, 0). Show that the iterated limits (1.83)

both exist. Compute them. Show that the lim(x,y)→(0,0) f(x, y) does not exist.

10. Express the definition of lim
(x,y)→(0,0)

f(x, y) in terms of polar coordinates and analyze

it for the following functions:

(i) f(x, y) =
x3 − xy2

x2 + y2
; (ii) g(x, y) = tan−1

(
|x|+ |y|
x2 + y2

)
;

(iii) h(x, y) =
y2

x2 + y2
.

11. Consider the function

f(x, y) =

⎧⎨
⎩

x3

x2 + y2
, (x, y) �= (0, 0)

0, (x, y) = (0, 0).

(a) Show that f is continuous and all the directional derivatives f exist and are
bounded all over R2.
(b) For any C1 curve g : R → R2 (i.e., continuously differentiable and g′ �= 0) show
that f ◦ g is a C1- mapping. [Hint: Use the Taylor expansion for g at points t ∈ R such
that g(t) = (0, 0).]
(c) Yet, f is not differentiable at (0, 0). [Hint: Use polar coordinates.]

12. Compute D(τ) at the point −Id, where τ(A) = AAt as in (1.43).
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13. For a fixed A ∈ GL(n; R), and consider the map κ(B) = ABA−1. Compute D(κ).

14. Derive the Liebnitz rule for differentiation of the product fg of two differentiable,
matrix-valued functions f : X → M(p× q; R) and g : X → M(q × r; R), where X is
any open set of R

n.

15. Consider η : GL(n; R) → GL(n; R) given by η(A) = A−1. Show that η is a C∞ map
and compute D(η) at Id.

16. Compute the derivative of A 
→ A2 where A ∈M(n; R).

17. Recall that a map f : C → C is holomorphic if f = u + ıv, where u, v : R
2 → R

are smooth functions satisfying Cauchy-Riemann equations. Let f be holomorphic.
Suppose g : C → R is a smooth map. Show that

∇2(g ◦ f)(z) = |f ′(z)|2∇2(g)(f(z))

Deduce that if g is harmonic then g ◦ f is harmonic.

18. For a > 0, consider the function f : R× R → R given by f(r, s) = (a− rs)(r + s)2.

(a) Discuss the extremum values of f.

(b) Deduce that (2 cos θ − rs)(r + s)2 ≤ 2 + 2 cos θ, for all r, s ∈ [0, 1] and θ ∈ R.

(c) Deduce that for complex numbers zj , j = 1, 2 of modulus < 1,

||z1| − |z2|| ≤
∣∣∣∣ z1 − z21− z1z̄2

∣∣∣∣ ≤ |z1|+ |z2|.
[Hint: Use Cosine Rule: |z + w|2 = |z|2 + |w|2 + 2�(zw̄).]

19. Given a homeomorphism f : S
n−1 → Sn−1, the cone over f, C(f) : Dn → Dn is

defined by C(f)[v, r] = [f(v), r], in the notation introduced in Remark 1.2.7.
(a) Show C(f) is a homeomorphism of Dn to itself.
(b) If f is a diffeomorphism, can you say that C(f) is a diffeomorphism?
(c) Can you give sufficient conditions on f under which this holds?
(d) Can you characterize all diffeomorphisms f : Sn−1 → Sn−1 such that C(f) is a
diffeomorphism?
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As in Chapter 1, we shall assume that the reader is familiar with line integrals, surface
integrals, the standard results such as the Green theorem and the Stokes’ theorem for
surfaces in R

3. In Section 2.1, we shall begin with recalling some important results from the
integral calculus of several variables. We introduce the notion of measure zero sets, with
the restricted aim of formulating a very important result about the largeness of the set of
regular values of a smooth function. This result goes under the name Sard’s theorem and
is dealt with in Section 2.2. With the aim of generalizing the integration theory, we then
develop the necessary algebraic preliminaries of differential forms in Sections 2.3, 2.4, and
2.5. In Section 2.6, integration on singular chains is introduced and a generalization of the
Stokes’ theorem is proved.

2.1 Multivariable Integration

In this section, we begin with a quick review of the Riemann integration theory for
several variables, basic properties of measure-zero sets, and present the “change of variable
formula” for integration.

Definition 2.1.1 By a box B in R
n we mean a product of intervals

B = Πn
i=1[ai, bi] (2.1)

The volume of the box B is defined to be μ(B) := Π(bi − ai).

Definition 2.1.2 Let A ⊂ Rn. We say A has measure zero in Rn if for every ε > 0, there
exists a countable cover {B1, . . . , Bk, . . .} of A by boxes such that

∑
i μ(Bi) < ε.

Remark 2.1.1
(a) If B ⊂ A ⊂ Rn then A has measure zero in Rn implies so has B.
(b) Any countable subset of R

n has measure zero. More generally, a countable union of
measure zero sets has measure zero.
(c) In Definition 2.1.2, we can use open boxes instead of closed ones. We can even use closed
balls or open balls instead of rectangles. All these give the same notion of measure zero.
(d) If A is a compact subset of measure zero, then for every ε > 0, there exists a finite cover
of A by closed boxes {B1, . . . , Bk} such that

∑
i μ(Bi) < ε.

(e) For any finite cover of [a, b] by closed intervals [ai, bi], we have
∑
i(bi−ai) ≥ b−a. Thus,

49
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we are happy that the interval [a, b] for a < b is not of measure zero in R.
(f) The following lemma tells you that being “measure zero” is a kind of local property of
sets.

Lemma 2.1.1 A ⊂ R
n is of measure zero in R

n iff A∩U is of measure zero for every open
subset in Rn.

Proof: Cover A by a family of open sets in R
n. Then by the Lindelöff property1 for subsets

of Rn, there exists a countable subcover {Ui} for A. Now each A ∩ Ui is of measure zero
and hence for each ε > 0, there is a countable cover of A ∩ Ui such that the total measure
is < ε

2i . The collection of all these open sets forms a cover for A with the property that the
total measure is <

∑
i
ε
2i = ε. The converse is obvious from Remark 2.1.1(a). ♠

Definition 2.1.3 By a partition P of an interval [a, b], we mean a finite set of points
a = t0 < t1 < · · · < tn = b. By a partition of a box B as in (2.1), we mean an n-
tuple P = (P1, . . . , Pn) where Pi is a partition of [ai, bi]. The boxes Πn

i=1[tα(i), tβ(i)], where
[tα(i), tα(i)+1] is a sub-interval occurring in Pi are called subboxes of the partition P. If each
subbox of a partition Q is contained is some subbox of a partition P, then we say Q is a
refinement of P.

Definition 2.1.4 Now consider a bounded function f : B → R and let P be a partition of
the box B. For each subbox S of P put

mS(f) = inf{f(x) : x ∈ S}; MS(f) = sup{f(x) : x ∈ S}.

The lower sum and the upper sum of f with respect to P are defined by:

L(f, P ) :=
∑
S

mS(f)μ(S); U(f, P ) :=
∑
S

MS(f)μ(S),

where the summations are taken over all subboxes belonging to the partition P.

Remark 2.1.2
(a) If Q is a refinement of P then

L(f, P ) ≤ L(f,Q); U(f,Q) ≤ U(f, P ).

(b) Given any two partitions P, P ′ ofB, there exists a partitionQ of B, which is a refinement
of both P, P ′.
(c) For any two partitions P, P ′ of B, we have L(f, P ) ≤ U(f, P ′).
(d) Let now

L(f) := sup{L(f, P ) : P is a partition ofB}
and

U(f) := inf{U(f, P ) : P is a partition ofB}.
Then L(f) ≤ U(f).

Definition 2.1.5 Let f : B → R be a bounded function. We say f is (Riemann) integrable
on B if L(f) = U(f). In this case, we put∫

B

f := L(f) = U(f)

and call this the integral of f over B.

1That is, every open cover has a countable subcover. Every second countable space has the Lindelöff
property. In particular, every subspace of a Euclidean space has the Lindelöff property.
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Remark 2.1.3
(a) The condition in the above definition is equivalent to say that for every ε > 0, there
exists a partition P of B such that U(f, P )− L(f, P ) < ε.
(b) For the constant function f = c,

∫
B
c = cμ(B).

(c) As a typical example of a bounded function that is not integrable, take f(x1, . . . , xn) = 0
if x1 is rational and = 1 if x1 is irrational.
(d) If f, g are integrable then for any scalars α, β, αf + βg is integrable and∫

B

αf + βg = α

∫
B

f + β

∫
B

g.

(e) If f and g are integrable then so is fg.
(f) Given any continuous function f on a closed box B, it is not hard to see that f is
integrable on B. However, we need a result which a bit stronger than this, viz., a bounded
function f on a (bounded) box is integrable iff the set of points where f is discontinuous is
of measure zero. This is indeed a deep theorem due to Lebesgue. Toward a quick proof of
this, let us introduce the following notion:

Definition 2.1.6 Let X ⊂ Rn, and f : X → R be a bounded function. For each x ∈ X
and r > 0, introduce the notation:

M(x, r) = sup {f(y) : y ∈ Br(x) ∩X}; m(x, r) = inf {f(y) : y ∈ Br(x) ∩X}.

Note that M(x, r) is a decreasing function of r and m(x, r) is an increasing function of r.
We define the oscillation of f at x to be the quantity

O(f, x) := lim
r→0

(M(x, r) −m(x, r)).

Remark 2.1.4 (a) For any bounded function, the oscillationO(f, x) is a nonnegative upper
semi-continuous function: the nonnegativity follows from the fact that M(x, r) ≥ m(x, r).
“Upper semi-continuity” means that Bε := {x ∈ B : O(f, x) < ε} is an open subset of B
for all ε > 0. To see this, suppose x ∈ Bε. By definition of O(f, x), there exists r > 0 such
that M(x, r′)−m(x, r′) < ε for all 0 < r′ ≤ r. Let y ∈ Br(x). Then for 0 < s < r−‖x− y‖,
Bs(y) ⊂ Br(x) and hence M(y, s) − m(y, s) ≤ M(x, r) − m(x, r) < ε. This implies that
Bs(y) ∩B ⊂ Bε.
(b) A bounded function f is continuous at a point x iff O(f, x) = 0.

Theorem 2.1.1 (Lebesgue) A bounded function f : B → R is (Riemann) integrable iff
the set of points Z at which it is discontinuous is of measure zero. In particular, every
continuous function is integrable.

Proof: Suppose Z is of measure zero. Given ε > 0 by the above remark, first of all we
have Bε := B \ Bε = {x ∈ B : O(f, x) ≥ ε} is a closed subset B and hence is compact.
Also Bε ⊂ Z and hence is of measure 0. Therefore there exist finitely many closed boxes
B1, . . . , Bk whose interiors cover Bε and such that

∑
i μ(Bi) < ε. By Lebesgue covering

lemma, it follows that we can find a partition P of B such that each subbox S of this
partition is
(1) either contained in of the Bi
(2) or is contained in Bε. Accordingly, let us denote the set of all subboxes S of P satisfying
(1) by P1 and (2) by P2 so that P = P1 ∪ P2.

Let |f(x)| < M for all x ∈ B for some M > 0. Then MS(f) − mS(f) < 2M for all
S ∈ P. Therefore∑

S∈P1

(MS(f)−mS(f))μ(S) < 2M
∑
S∈P1

μ(S) ≤ 2M
∑
i

μ(Bi) < 2Mε.
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Now let S ∈ P2. Then for every x ∈ S we have O(f, x) < ε. Therefore, there exists r > 0
such that M(x, r) −m(x, r) < ε. By compactness of S, this means that we can partition S
so that on each subbox S′ of this partition, we have MS′(f)−mS′(f) < ε.

Let P ′ be the partition of B which is a refinement of P and when restricted to each
S ∈ P2 refines the above partition on S. Then

U(f, P ′)− L(f, P ′) =
∑

S′∈P ′
1∪P ′

2

(MS′(f)−mS′(f))μ(S′)

≤
∑
S∈P1

(MS(f)−mS(f))μ(S) +
∑

S′∈S∈P ′
2

(MS′(f)−mS′(f))μ(S′)

≤ 2Mε+ ε
∑
S∈P2

μ(S) ≤ ε(2M + μ(B)).

Since ε > 0 is arbitrary, this proves that f is integrable.
To prove the converse, note that Z = ∪nB1/n and hence it is enough to prove that B1/n

is of measure zero for each n. Given ε > 0 let P be a partition of B such that

U(f, P )− L(f, P ) < ε/n.

Let P ′ be the set of all those boxes in P which intersect B1/n. Then B1/n ⊂ ∪S∈P ′S and
for S ∈ P ′, we have MS(f)−ms(f) ≥ 1/n. Therefore

∑
S∈P ′

μ(S) ≤ n
∑
S∈P ′

(MS(f)−mS(f))μ(S)

≤ n
∑
s∈P

(MS(f)−mS(f))μ(S) = n(U(f, P ′)− L(f, P ′)) < ε.

This shows that μ(B1/n) = 0 and completes the proof of the theorem. ♠

Remark 2.1.5
(a) Given any subset A of Rn, recall that the boundary of A is defined by δA = Ā \ int(A)
where Ā is the closure of A in Rn and intA denotes its interior in Rn.
(b) Recall that the characteristic function χA of a subset of a space X is defined to by
χA(x) = 1 if x ∈ A and = 0 if x �∈ A. It follows that χA is discontinuous precisely at its
boundary points x ∈ δA. Therefore, for any closed box B, χA|B is integrable over B iff
B ∩ δA is of measure zero.
(c) Given a bounded function f on a bounded set A, choose a closed box B such that A ⊂ B.
If χAf is integrable over B then we put∫

A

f :=
∫
B

χAf.

(For this to make sense, we have to verify that the right-hand side (RHS) is independent of
the choice of B.)
(d) For a bounded subset A ⊂ Rn with δA having measure zero, we set

μn(A) :=
∫
A

1 =
∫
A

χA,

the integral of the constant function 1; μn(A) is called the n-dimensional volume of A.
(e) For any t ∈ R, Rn−1 × {t} ⊂ Rn has its n-dimensional volume equal to zero. So is the
case with any subset of Rn−1 × {t}.
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Theorem 2.1.2 Fubini’s Theorem: Let A ⊂ Rn, B ⊂ Rm be rectangles, f : A ×B → R

be an integrable function. For each x ∈ A, let fx : B → R be defined by fx(y) = f(x, y).
Then the lower and upper sum functions L : x 
→ L(fx), U : x 
→ U(fx) are integrable
functions on A and we have ∫

A×B
f =

∫
A

L =
∫
A

U. (2.2)

In particular, if fx is integrable for all x ∈ A then we have∫
A×B

f =
∫
A

(∫
B

f(x, y)dy
)
dx. (2.3)

Remark 2.1.6
(a) The RHS of (2.3) is an iterated integral. That is the reason why we call even the RHS
of (2.2) also as an iterated integral for f.
(b) Of course we can interchange A and B and get another valid statement. The change
of order of integration in an iterated integral is a very useful tool that is available if f is
continuous.
(c) Thus, for all continuous functions f on any rectangle, the integral can be evaluated by
integrating the function with respect to one variable at a time and in whichever order we
may prefer.

Theorem 2.1.3 Change of Variable Formula:
Let f : U → V be a diffeomorphism of open subsets in Rn. Then for any continuous

function α on V, with compact support, we have∫
V

α =
∫
U

(α ◦ f)|det (Df)|. (2.4)

Proof: Consider the case when n = 1. Without loss of generality, we may assume that U
and V are closed intervals, say U = [a, b] and V = [c, d]. Formula (2.4) can be rewritten as:∫

[c,d]

α =
∫

[a,b]

(α ◦ f)|f ′|. (2.5)

Suppose that f is strictly increasing. Then we know from the calculus of 1-variable that∫ d

c

α(y) dy =
∫ b

a

α(f(x))f ′(x) dx. (2.6)

Since f ′(x) > 0 this formula is the same as (2.5). On the other hand, if f is strictly
decreasing, then c = f(a) > f(b) = d and hence

∫ d

c

α(y) dy =
∫ f(b)

f(a)

α(f(x))f ′(x) dx =
∫ f(a)

f(b)

α(f(x))|f ′(x)| dx (2.7)

which is again the same as (2.4). (In the integration theory that we have developed here, we
have ignored the orientations on subsets of Rn. That is the reason why we need to introduce
a correction factor of taking modulus of the determinant of Df. Later in Chapter 4, we shall
restore the orientation factor as a necessity, in order to develop the theory of integration on
manifolds.)

Combining this with Fubini’s theorem, it follows that (2.4) holds when f is a primitive
mapping (see (1.56)).
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Also, we easily check that (2.4) is valid if f is a permutation of variables.
Now we claim that if (2.4) holds for f : U → V and g : V → W then it holds for

g ◦ f : U →W. This is verified in a routine way, using the chain rule for differentiation (see
(1.36)).

Now by the Primitive Mapping Theorem 1.4.7 for each x ∈ U, there exists a neigh-
bourhood Wx on which f can be expressed as a composite of primitive mappings and a
permutation. Therefore, (2.4) is valid for all α having its support inside f(Wx) for some
x ∈ U. Let {θj} be a smooth partition of unity subordinate to the cover {f(Wx)}x∈U} of
V. Then (2.4) is applicable to each θjα and hence we have∫

U

θjα =
∫
Wj

θjα =
∫
f(Wj)

θj(αj ◦ f)|detD(f)|

=
∫
V

θj(α ◦ f)|detD(f)|.
(2.8)

Since α has compact support, these terms are nonzero only for a finite number of j′s.
Therefore, taking summation over j in (2.8) is allowed and this yields (2.4). ♠

Exercise 2.1

Let {Ii} be a finite cover of an interval (a, b) by open intervals. Show that there exists a
subcover {Ij}1≤j≤r such that Ij ∩ Ik = ∅, for |j − k| > 2. Conclude from this that the sum
of the of lengths of intervals belonging to this subcover is less than 2(b− a).

2.2 Sard’s Theorem

The behavior of a real valued smooth function of one variable changes at a point where
the derivative vanishes. This fact is not simply an exception but a phenomenon that is
present in the general situation also, though in a more complicated manner. Sard’s theorem
assures us that every smooth map takes the set of all such points where its derivative is
not surjective, into a set of ‘negligible size’. Going through the proof you will have an
opportunity to use the surjective form of the implicit function theorem as well as the rank
theorem in a nontrivial way.

Definition 2.2.1 Let X be an open subset of R
m or the half-space Hm and let f : X → R

n

be a smooth map. A point x ∈ X is called a critical point of f if Dfx is not surjective. We
shall denote the set of critical points of f by Cf . Any point y ∈ Rm such that f(x) = y for
some critical point x of f is called a critical value of f .

Theorem 2.2.1 Sard’s Theorem: Let f : X → Rn be a C∞ map. Then the image f(Cf )
of the set of critical points of f is of measure zero in Rn.

Remark 2.2.1 The proof of this will be through several steps. Recall the definition of
measure zero sets in Rn (Definition 2.1.1). The first step is to examine the behavior of a
measure zero set under a smooth map and in particular, under a diffeomorphism. This will
enable us later to define the concept of measure zero sets in arbitrary manifolds.

Theorem 2.2.2 Let A ⊂ R
n be of measure zero and f : A→ R

n be any smooth function.
Then f(A) is of measure zero.
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Proof: Given a point x ∈ A, choose a ball B around x so that f |B̄∩A is the restriction of
a smooth function f̂ : B̄ → Rn. Since A can be covered by a countable union of such balls,
we may as well assume that A ⊂ B ⊂ B̄ and f : B̄ → R

n is a smooth map. By continuity
and compactness of B̄ we can now choose M > 0 such that ‖Dfx‖ ≤ M for all x ∈ B̄. A
simple application of Theorem 1.3.3 (WMVT), now yields that

‖f(x)− f(y)‖ ≤M‖x− y‖, ∀ x, y ∈ B̄.

Therefore, if D is a disc of radius r in B̄, it follows that f(D) is contained in a disc of radius
rM. Now given ε > 0 cover A by balls Di of radius ri such that

∑
voln(Di) < ε. It follows

that f(A) is contained in a countable collection of balls of total volume < Mε. ♠

Remark 2.2.2
(i) In particular, it follows that the property of being measure zero is a diffeomorphism
invariant.
(ii) Also, if f : A→ Rl is a smooth map where A ⊂ Rn for n < l, then f(A) is of measure
zero in Rl. For, we can consider Rn as a subset of Rn × Rl−n, define f̂ on A × Rl−n by
f̂(a, b) = f(a) and apply the above theorem to f̂ in place of f. Of course, we have to appeal
to the fact that A× 0 is of measure zero in Rl.

We now proceed to give a proof of Morse-Sard’s theorem. Suppose X ⊂ Rm. The case
m < n is covered by Remark 2.2.2(ii), the entire set f(X) being of measure zero, in this
case. So, we may and shall assume that m ≥ n ≥ 1. Given A ⊂ Rk × Rl and u ∈ Rk,
define the slice of A at u by

Au = {x ∈ R
k : (x, u) ∈ A}.

The following is an easy consequence of Fubini’s theorem.

Lemma 2.2.1 Let A be a closed subset of Rk+l. If Au is of measure zero in Rk for all
u ∈ R

l, then A is of measure zero in R
k+l.

Now by the local nature of the problem, we may assume that X is an m-dimensional
cube in Rm of side-length α > 0 and f is defined and smooth in a neighbourhood of X. Let
C = Cf be the set of critical points of f. For r ≥ 1, put Cr equal to the set of all x ∈ X
such that all partial derivatives of f of order ≤ r vanish at x. Then clearly

C ⊃ C1 ⊃ C2 ⊃ · · ·

Now the proof of Theorem 2.2.1 is completed by proving the following three statements:
(I) f(Cr) is of measure zero if r >

m

n
− 1.

(IIm) f(C \ C1) is of measure zero.
(IIIm) For r ≥ 1, f(Cr \ Cr+1) is of measure zero.
Proof of (I): By Taylor’s theorem, it follows that

f(x+ h) = f(x) +R(x, h)

where ‖R(x, h)‖ < M‖h‖r+1 for all x ∈ Cr and x + h ∈ X, where M is a constant that
depends on the partial derivatives of f of order r+ 1 > m

n . Divide X into lm cubes each of
side α/l. If S is one of these small cubes, it follows that f(S ∩ Cr) is contained in a cube
of side

√
nM(α

√
m/l)r+1. Thus, f(Cr) is contained in the union of at most lm such cubes

which have a total volume less than or equal to

[
√
nM(α

√
m/l)r+1]nlm = M ′lm−(r+1)n.
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Since r + 1 >
m

n
, it follows that this quantity converges to zero as l → ∞. This completes

the proof of (I).
Before proceeding further, we observe that statement (I) yields a proof of the theorem

for the case m = n = 1. For, here, C = C1 and therefore f(C) = f(C1) is of measure zero.
So, from now onwards, we assume that m > 1.

Inductively assume that the theorem is true for all maps h : W → Y, where W is an
open subset of Rk, k < m. Under this induction hypothesis we shall prove (IIm) and (IIIm).
Combined with (I) this will imply the theorem for subsets X ⊂ R

m.
Proof of (IIm): Let a ∈ C \C1. Then one of the first order derivatives of f at a is not zero
and hence the rank of Dfa > 0. Hence by the rank theorem, there exists a neighbourhood
V of a such that after a suitable change of co-ordinates at a as well as at f(a), we may
assume that f is of the form f(x, y) = (x, g(x, y)), for all (x, y) ∈ (Rp × Rm−p) ∩ V, where
p = rk Dfa and g : V → Rn−p is a smooth function. Now (x, y) ∈ Cf ∩ V iff y ∈ Cgx . (Here
gx : {x} × Rm−p ∩ V → Rn−p is given by gx(y) = g(x, y).) From this, it follows that for
every x ∈ Rp, we have

{x} × R
n−p ∩ f(C ∩ V ) = {x} × gx(Cgx).

By the induction hypothesis, each of these slices is of measure zero and hence f(C ∩ V ) is
of measure zero. Since C \C1 can be covered by countably many such sets, we are through.
Proof of (IIIm):

For each partial differential operator P of order r and 1 ≤ j ≤ m, put

U(P, j) =
{
x ∈ X :

(
∂

∂xj
◦ Pf

)
(x) �= 0

}
.

Then X \Cr+1 is covered by the open sets {U(P, j)} where P and j take all possible values
as above. Therefore, if we prove that f((Cr \ Cr+1) ∩ U(P, j)) is of measure zero for each
P, j, then the proof of (IIIm) will be complete.

Fix P and j, put

U = U(P, j), g = Pf : U → R, Z = g−1(0), and h = f |Z .

Observe that Cr ∩ U ⊂ Z. Clearly, the critical set Ch of h contains Cr ∩ U. Therefore, it
suffices to prove that f(Ch) is of measure zero.

Clearly g is a smooth map, with
∂g

∂xj
�= 0 on U. Therefore by the surjective form

of the implicit function theorem, around each point z ∈ Z, we can choose a coordinate
neighbourhood Vz on which g takes the form g(x, y) = x. This means Vz ∩ Z looks like an
open subset of {0} × Rm−1. Therefore, by induction hypothesis, f(Ch ∩ Vz) = h(Ch ∩ Vz)
is of measure zero. Since Ch can be covered by countably many such neighbourhoods Vz, it
follows that f(Ch) is of measure zero, as claimed. ♠

As an entertaining exercise, we shall give an application of Sard’s theorem here to a
central result in homotopy theory, which is however, not the main import of Sard’s theorem.

Recall from Exercise 1.7.12, that by a smooth homotopy, we mean a smooth map H :
X × R → Y. Two smooth maps f, g : X → Y are said to be (smoothly) homotopic if there
is a smooth homotopy H such that Ht = f,Hs = g for some t, s ∈ R. If f is homotopic to a
constant map, then we say f is null homotopic. Given any smooth map f : X → Rn we can
consider H(x, t) = tf(x), which defines a smooth homotopy of f with the constant map 0.
We say Y is simply connected if every smooth map f : S

1 → Y is null homotopic. We shall
prove:
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Theorem 2.2.3 For m > n, every map f : Sn → Sm is null homotopic. In particular, Sm

is simply connected for all m ≥ 2.

Proof: We first note that any map f : X → S
m, which is not surjective is null homotopic.

This follows easily from the fact that Sm \ {p} is diffeomorphic to Rm and the observation
that we have made above that every map into Rm is null homotopic. So, it is enough to
prove that any smooth map f : Sn → Sm is not surjective.

This is precisely where we use Sard’s theorem. Choose any point p ∈ S
n, q = f(p), and

let η : Sm \ {q} → Rm be the stereographic projection. Then (η ◦ f)−1(Rm) is an open
subset U of Sn \ {p}. So, we can choose the stereographic projection (see Remark 1.6.3(i))
τ : Sn \ {p} → Rn and put V = τ(U). Now put g = η ◦ f ◦ τ−1 : V → Rm. Then g is
smooth. Since n < m, it follows that Dg is never surjective. This means the entire set V
is the critical set of g. Therefore, g(V ) is of measure zero in Rm. In particular, g is not
surjective. This means f is not surjective. ♠

Exercise 2.2

1. Give an example of a smooth map f : R → R such that the set of critical values is
dense.

2. Does the exercise above contradict Sard’s theorem?

3. Show that for any C1 function f, the critical set Cf is a closed subset.

4. Let U ⊂ R
3 and V ⊂ R2 be open sets and f : U → V be a surjective C1 function.

Does f necessarily have rank 2 at some point of U?

5. Let f : Cn → C be a complex analytic function. Show that the set of critical points
of f is of measure zero.

2.3 Exterior Algebra

In this section, we shall develop the multilinear algebraic machinery needed to introduce
the notion of differential forms.

Throughout this section, V denotes a vector space of dimension n, over the field2 R.
Let p ≥ 1 be an integer and let V p denote the Cartesian product of p copies of V :

V p := V × · · · × V︸ ︷︷ ︸
p copies

.

Definition 2.3.1 By a p-tensor on V, we mean a multilinear map

φ : V p → R,

i.e., for every 1 ≤ i ≤ p and vectors, v1, . . . ,vn, the map

v 
→ φ(v1, . . . ,vi−1,v,vi+1, . . . ,vp)

is linear.

2Indeed, most of the stuff here is valid if we replace R by any field. At places such as when dealing with
alternating and symmetric tensors etc., we will have to assume that the field is of characteristic zero.
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Remark 2.3.1

(i) For p = 1, a 1-tensor on V is nothing but a linear map on V. A typical example of a 2-
tensor is the dot product on Rn. By writing elements of Rn as column vectors and then
by writing p of them side by side, we identify (Rn)p with the space of n× p matrices
over R. Then for p = n, we have another familiar tensor, viz., the determinant.

(ii) If φ, ψ are p-tensors, then for any α, β ∈ R, αφ+βψ is also a p-tensor. Thus, the set of
all p-tensors on V forms a vector space and we denote this vector space by T p(V ). Let
us determine its dimension. For this purpose, let us consider a mechanism to produce
higher order tensors, out of lower order tensors.

Definition 2.3.2 Given a p-tensor φ and a q-tensor ψ on V define the product (p+q)-tensor
φ⊗ ψ on V as follows:

(φ⊗ ψ)(u,w) = φ(u)ψ(w), u ∈ V p,w ∈ V q. (2.9)

We call φ⊗ ψ the tensor product of φ with ψ. It is not difficult to see that tensor product
is an associative operation. But it is not commutative. (See the exercise below.)

For positive integers p, n, let us denote the set of all functions from

{1, 2, . . . , p} → {1, 2, . . . , n}

by S(p, n). For an element I ∈ S(p, n), we shall write ik for I(k) and display I as

I = (i1, . . . , ip).

Given a set {φ1, φ2, . . . , φn} of 1-tensors, and I = (i1, . . . , ip) ∈ S(p, n), let us denote

φ(I) := φi1 ⊗ · · · ⊗ φip . (2.10)

We can now determine the dimension of T p(V ) :

Theorem 2.3.1 Let {φ1, . . . , φn} ∈ V 
 = T 1(V ) form a basis for V 
. Then the set

{φ(I) : I ∈ S(n, p)} (2.11)

forms a basis for T p(V ). Consequently, dim T p(V ) = #(S(p, n)) = np.

Proof: Let {v1, . . . ,vn} be the basis of V dual to {φ1, . . . , φn}, i.e., φi(vj) = δij . We
first claim that two p-tensors φ, ψ, are equal iff φ(vj1 , . . . ,vjp ) = ψ(vj1 , . . . ,vjp ) for all
J ∈ S(p, n). Just like the similar statement for linear maps on a vector space, this follows
by multilinearity of φ. The details are left to the reader.

Now observe that,

φ(I)(vj1 , . . . ,vjp ) =
{

1, if (j1, . . . , jp) = I,
0, otherwise. (2.12)

Therefore, (2.11) defines an independent set in T p(V ). Next, given any p-tensor ψ, consider
the p-tensor

ξ =
∑

I∈S(p,n)

ψ(vi1 , . . . ,vip)φ(I).

It follows that
ξ(vj1 , . . . ,vjp ) = ψ(vj1 , . . . ,vjp )

for all J ∈ S(p, n). Therefore, ξ = ψ. This proves that the set (2.11) generates T p(V ). Thus,
we have proved that the set (2.11) is a basis for T p(V ). ♠
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Definition 2.3.3 Let p ≥ 2. Let Sp denote the group of permutations of {1, 2, . . . , p}.
Given σ ∈ Sp and a p-tensor φ, we define the p-tensor φσ by

φσ(v1, . . . ,vp) = φ(vσ(1),vσ(2), . . . ,vσ(p)). (2.13)

This defines a linear action of the permutation group Sp on the space T p(V ). For p ≥ 2, we
say a p-tensor φ is symmetric if φσ = φ for all σ ∈ Sp. More interesting for us for the time
being are the tensors that are antisymmetric or alternating, viz., those p-tensors satisfying:

φσ = sgn (σ)φ, (2.14)

where sgn (σ) is the signature of the permutation σ (= ±1 according as σ is even or odd).
Since every permutation of n letters is a composite of finitely many transpositions, it follows
that a p-tensor φ is alternating iff

φτ = −φ (2.15)

for all transpositions τ.
Notice that any 1-tensor is automatically symmetric as well as alternating.
Let us denote by Sp(V ∗) and ∧p(V ∗), the subset of all symmetric tensors and the subset

of alternating tensors, respectively. We can then verify that these two subsets are indeed
vector subspaces of T p(V ). (Note that S1(V ∗) = ∧1(V ∗) = V 
.) Further, let us define two
linear maps Sym : T p(V ) → Sp(V ∗) and Alt : T p(V ) → ∧p(V ∗) as follows:

Sym(φ) =
1
p!

∑
σ

φσ; Alt(φ) =
1
p!

∑
σ

sgn (σ)φσ , (2.16)

where the sum is taken over σ ∈ Sp.

The following lemma is easy to prove:

Lemma 2.3.1
(a) For any φ ∈ T p(V ), Alt(φ) = φ iff φ ∈ ∧p(V ∗); in particular, Alt ◦Alt = Alt.
(b) For any φ ∈ T p(V ), Sym(φ) = φ iff φ ∈ Sp(V ∗). In particular, Sym ◦ Sym = Sym.
(c) For p ≥ 2, Alt ◦ Sym = Sym ◦Alt = 0.

Let us now consider the behavior of these special tensors under the tensor product.
Immediately we see that there is trouble here: φ⊗ ψ is neither symmetric nor alternating,
even when both φ and ψ are symmetric or both are alternating. We shall not give up so
easily.

Definition 2.3.4 Define exterior product ∧ : ∧p(V ∗)× ∧q(V ∗) → ∧p+q(V ∗) as follows:

φ ∧ ψ = Alt (φ ⊗ ψ). (2.17)

Remark 2.3.2 We can then verify easily that
(a) (a1φ1 + a2φ2) ∧ ψ = a1(φ1 ∧ ψ) + a2(φ2 ∧ ψ);
(b) φ∧ (b1ψ1 + b2ψ2) = b1(φ∧ψ1) + b2(φ∧ψ2). That means that “∧” is bilinear. We would
like to see whether this operation is associative just like the tensor product. That needs to
be verified carefully.
(c) If φ1, φ2 are 1-tensors then ψ1 ∧ψ2 = −ψ2 ∧ψ1. In particular, φ1 ∧φ1 = 0. Can you say
that φ ∧ φ = 0 for any p-tensor φ? Wait for a while.

Lemma 2.3.2 If Alt (φ) = 0 then for all ψ, we have Alt(φ⊗ ψ) = 0.
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Proof: Let φ ∈ ∧p(V ∗), ψ ∈ ∧q(V ∗). Consider Sp as a subgroup of Sp+q consisting of those
permutations that leave {p+ 1, . . . , p+ q} pointwise fixed. Let {τj} ⊂ Sp+q be a set of right
coset representatives for Sp. Then

φ ∧ ψ = Alt (φ ⊗ ψ)
=

∑
σ∈Sp+q

sgn (σ)(φ ⊗ ψ)σ

=
∑

τj

(∑
α∈Sp

sgn (ατj)(φ ⊗ ψ)ατj

)
=

∑
τj

sgn (τj)
(∑

α∈Sp
sgn (α)(φα ⊗ ψ)

)τj

=
∑

τj
sgn (τj)(Alt(φ) ⊗ ψ)τj = 0

since Alt (φ) = 0. ♠

Theorem 2.3.2 The exterior product is associative.

Proof: Let φ, ψ, ξ be any three alternating tensors. We have to prove that

(φ ∧ ψ) ∧ ξ = φ ∧ (ψ ∧ ξ).

Instead we shall prove that

(φ ∧ ψ) ∧ ξ = Alt (φ⊗ ψ ⊗ ξ) = φ ∧ (ψ ∧ ξ).

Using the associativity of the tensor product, this is the same as proving

(φ ∧ ψ) ∧ ξ = Alt((φ ⊗ ψ)⊗ ξ); Alt(φ⊗ (ψ ⊗ ξ)) = φ ∧ (ψ ∧ ξ). (2.18)

Now
(φ ∧ ψ) ∧ ξ −Alt((φ⊗ ψ)⊗ ξ)

= Alt((φ ∧ ψ)⊗ ξ)−Alt((φ ⊗ ψ)⊗ ξ)
= Alt[(φ ∧ ψ)⊗ ξ − (φ⊗ ψ)⊗ ξ]
= Alt[(φ ∧ ψ − φ⊗ ψ)⊗ ξ]
= (φ ∧ ψ − φ⊗ ψ) ∧ ξ = 0,

the last equality holds from the above lemma, because

Alt (φ ∧ ψ − φ⊗ ψ) = φ ∧ ψ − φ ∧ ψ = 0.

This proves (φ ∧ ψ) ∧ ξ = Alt((φ ⊗ ψ)⊗ ξ)
Similarly, we can prove the other equality in (2.18). ♠

Remark 2.3.3 Thus, we need not put any brackets while taking the exterior product of
more than two (alternating) tensors. We can now derive a basis for ∧p(V ∗) as follows: Let
s(p, n) denote the set of all strictly monotonic sequences I = (i1, i2, . . . , ip) in {1, 2, . . . , n}.
Let {φ1, . . . , φn} be a basis for V 
. For I = (i1, . . . , ip) ∈ s(p, n), put

φI := φi1 ∧ φi2 ∧ · · · ∧ φip = Alt (φ(I)). (2.19)

Theorem 2.3.3 The set {φI : I ∈ s(n, p)} forms a basis for ∧p(V ∗). In particular, we
have dim ∧p (V ∗) =

(
n
p

)
.

Proof: Since Alt(φ) = φ for φ ∈ ∧p(V ∗), it follows that Alt is a surjective linear map.
Therefore, the image of the basis {φ(J) : J ∈ S(p, n)} of T p(V ), is {φJ : J ∈ S(p, n)}, a
generating set for ∧p(V ∗). The given set is a subset of this set. We shall see why the extra
elements are unnecessary for generating ∧p(V ∗). First of all, observe that for each sequence
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J ∈ S(p, n), (p ≤ n), there is a permutation σ ∈ Sp such that J ◦ σ is monotonic. But
Alt (φ(J ◦ σ) = sgn (σ)Alt (φ(J)). Therefore, we can cut down this generating set to

{Alt (φ(J)) : J is monotonic}.

We now observe that if J is not injective, i.e., if a certain number has repeated then φJ = 0.
Hence we can cut down the generating set to the required size as above.

It remains to see that the {φI : I ∈ s(p, n)} is independent. This can be proved by
using a property similar to (2.12). (Take this as an exercise.) ♠

Remark 2.3.4

1. Using the fact φ1 ∧ φ2 = −φ2 ∧ φ1 for 1-tensors, we can immediately deduce that

φI ∧ φJ = (−1)pqφJ ∧ φI ,

where I, J are of length p, q, respectively. Therefore, from the bilinearity of the exterior
product, it follows that this relation of anticommutativity should hold for all tensors:

φ ∧ ψ = (−1)pqψ ∧ φ, (2.20)

where φ is a p-tensor and ψ is a q-tensor.

2. In particular, we have an affirmative answer for the question raised in Remark 2.3.2(c).

3. Take V = R
n and p = n. We get dim ∧n (Rn∗) = 1. This is the same as saying

that there is only one alternating n-tensor on Rn up to a scalar multiple. Since the
determinant function is one such, this gives the uniqueness of the determinant function
as a multilinear alternating function taking the identity matrix to 1.

4. What happens to ∧p(V ∗), where p exceeds the dimension of V ? Clearly, none of the
sequences I is now injective and hence Alt (φ(I)) = 0. Therefore, ∧p(V ∗) = 0.

For the sake of completeness we define ∧0(V ∗) = R.

5. We define the exterior algebra ∧(V ∗) of V to be the direct sum of vector spaces,

∧(V ∗) := ∧0(V ∗)⊕ ∧1(V ∗)⊕ · · · ⊕ ∧n(V ∗)⊕ 0⊕ · · · (2.21)

together with the exterior product

∧ : ∧p × ∧q → ∧p+q (2.22)

It is a graded, anticommutative algebra. Any vector space basis for V 
 = T 1(V ) =
∧1(V ∗) would generate ∧V ∗ as an algebra. (See Theorem 2.3.3.)

Definition 2.3.5 Given a linear function f : V → W between two vector spaces, consider
the linear map f∗ : T 1(W ) = W ∗ → V ∗ = T 1(V ), the dual map of f. More generally, for
any φ ∈ T p(W ) we can consider f∗(φ) ∈ T p(V ) defined by

f∗(φ) = φ ◦ (f, f, . . . , f). (2.23)

It is easily checked that f∗ is a linear map. Since

σ ◦ (f, f, . . . , f) = (f, f, . . . , f) ◦ σ
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for any permutation σ of {1, 2, . . . , p}, it follows that

f∗(φσ) = (f∗(φ))σ . (2.24)

Therefore, f∗ takes alternating tensors to alternating ones. (Of course, it takes symmetric
tensors to symmetric ones also.) Hence, we get an induced linear map

∧pf : ∧p(W ∗) → ∧p(V ∗). (2.25)

Moreover, f∗ clearly respects the tensor product and hence the exterior product. Therefore,
(2.25) actually defines a graded algebra homomorphism

∧f : ∧W ∗ → ∧V ∗; ∧ f(φ ∧ ψ) = (∧f(φ)) ∧ (∧f(ψ)). (2.26)

Moreover, even at the tensor product level, if f : V →W, g : W → U are linear maps then

(g ◦ f)∗ = f∗ ◦ g∗. (2.27)

This means that

∧(g ◦ f) = ∧f ◦ ∧g. (2.28)

Observe that ∧(Id) = Id, where Id denotes the identity map of an appropriate vector
space.3

Example 2.3.1 Let U, V be any two n-dimensional vector spaces, with bases {u1, . . . ,un}
and {v1, . . . ,vn}, respectively. Then any linear map A : U → V corresponds, in a natural
way, to an n× n matrix, which we shall denote by A itself, via,

A(uj) =
∑
i

aijvi. (2.29)

Now, both ∧nU∗ and ∧nV ∗ are 1-dimensional vector spaces spanned by u∗
1 ∧ · · · ∧ u∗

n

and v∗
1 ∧ · · · ∧ v∗

n, respectively. Therefore,

(∧nA)(v∗
1 ∧ · · · ∧ v∗

n) = α(A)(u∗
1 ∧ · · · ∧ u∗

n), (2.30)

where α : M(n,R) → R is some function. We want to determine this function α.
On the space of 1-tensors, we have

A∗(v∗
j )(ui) = (v∗

j ◦A)(ui) = v∗
j

(
n∑
k=1

akivk

)
= aji.

This in turn implies that A∗(v∗
j ) =

∑n
i=1 ajiu

∗
i (i.e., the matrix corresponding to A∗ is the

transpose of the matrix corresponding to A). Therefore,

α(A)(u∗
1 ∧ · · · ∧ u∗

n) = (∧nA)(v∗
1 ∧ · · · ∧ v∗

n) = A∗(v∗
1) ∧ · · · ∧A∗(v∗

n). (2.31)

It follows from this that α is an alternating n-tensor on the space of n× n matrices, in
terms of its rows. Thus, from Remark (2.3.4)(iii), it follows that α(A) = λdet (A), since
det is a nonzero alternating n-tensor.

3In the fancy language of categories and functors, what we have just seen above amounts to saying that
the exterior algebra defines a contravariant functor from the category of finite dimensional vector spaces to
the category of finitely generated, graded, anticommutative algebras.
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The value of λ can now be checked by evaluating both sides on the special map A = Id :
U → U. Since the matrix of Id is Id, we have det (Id) = 1. So, λ = α(Id). On the other
hand, (2.31) gives α(Id) = 1. Therefore, λ = 1. Thus,

(∧nA)(v∗
1 ∧ · · · ∧ v∗

n) = det (A)(u∗
1 ∧ · · · ∧ u∗

n). (2.32)

In particular, if U = Rn = V, it follows that

(∧nA)(φ) = det (A)φ, ∀ φ ∈ ∧n(Rn). (2.33)

Exercise 2.3

1. Consider πi : R2 → R, i = 1, 2 the two coordinate projections. Show that π1 ⊗ π2 �=
π2 ⊗ π1.

2. Let f : U → V be an injective (surjective) linear map of finite dimensional vector
spaces. Then show that ∧f : ∧V → ∧U is surjective (resp., injective). (Hint: Use
(2.28.)

3. Show that a given set {φi ∈ V ∗, i = 1, 2, . . . , p} is dependent iff
φ1 ∧ · · · ∧ φp = 0.

4. For φi ∈ V ∗ and vi ∈ V show that

(φ1 ∧ · · · ∧ φk)(v1, . . . ,vk) =
1
k!

det ((φi(vj)).

5. Let φ ∈ ∧nV ∗ be any nonzero element. For any linear transformation A : V → V and
any basis {v1, . . . ,vn} of V, show that

φ(Av1, . . . , Avn) = (detA)φ(v1, . . . ,vn). (2.34)

6. The space of symmetric tensors is also important especially in differential geometry
and representation theory. Show that the dimension of Sp(V ∗) is equal to

(
p+n−1

p

)
,

where n = dimV.

7. Indeed, analogous to the exterior product, define a symmetric product

♦ : Sp(V ∗)× Sq(V ∗) → Sp+q(V ∗)

and establish that it is associative. Show that the graded algebra ⊕p≥0S
p(V ∗) is

isomorphic to the polynomial algebra R[x1, . . . , xn], where n = dim V.

2.4 Differential Forms

Throughout this section, X will be an open subset of Hn.

Definition 2.4.1 For p ≥ 0, by a p-form on X, we mean a function ω, which assigns to
each point x ∈ X, an alternating p-tensor ω(x) ∈ ∧p(Rn∗). Two p-forms on X can be added
together pointwise and also any p-form can be multiplied by a scalar function on X. Thus,
the space of all p-forms on X forms a module over the ring of all scalar functions on X.

Moreover, we can take exterior product of a p-form and a q-form to get a (p+ q)-form;
this again is done pointwise. It is not difficult to see that these operations make the space
of all forms on X into a graded anticommutative algebra over the ring of all real valued
functions on X.
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Example 2.4.1

(i) Clearly, any 0-form on X is nothing but a scalar valued function on X.

(ii) We know that Tx(X) = R
n for all x ∈ X. For any C∞-function f : X → R, recall that

the total derivative Dfx : Rn → R is a linear map, and that the assignment x→ Dfx
is a smooth function on X. In the new terminology, each Dfx is a 1-tensor and hence
is an element of ∧1(Rn∗). Thus, Df is a 1-form on X. In this new avatar, we shall
denote Df by df.

(iii) Now, suppose f is the ith-coordinate projection πi : X → R. Then Dfx = πi for all
x. It is customary to denote πi by a more transparent notation xi and we shall follow
this practice. The corresponding 1-form is then dxi. Thus, dxi denotes the 1-form on
Rn which assigns, to each point x ∈ Rn, the 1-tensor on Rn which is nothing but the
projection onto the ith coordinate.

(iv) Now, use the fact that (Rn)∗ is spanned by {x1, . . . , xn}, to see the following: Given
any 1-form ω on X , for each x ∈ X, there exist unique scalars, f1(x), . . . , fn(x) such
that

ω(x) =
n∑
i=1

fi(x)xi. (2.35)

Since dxi(x) = xi for all x ∈ X, we have,

ω =
∑
i

fidxi, (2.36)

where fi : X → R are some scalar functions.

(v) What we saw above applies, in general, to p-forms for p ≥ 2 also. As in (2.19), let us
introduce the notation

xI = xi1 ∧ · · · ∧ xip , where I = {i1 < i2 < · · · < ip}.

Since {x1, . . . , xn} is a basis for (Rn)∗, it follows from (2.3.2) that ∧p(Rn∗) is spanned
by {xI : I ∈ s(n, p)}. We shall introduce the notation dxI for the p-form on X, which
assigns xI ∈ ∧p(Rn∗) for each point a ∈ X. Then as above, given any p-form ω on X ,
there exist functions fI : X → R, I ∈ s(n, p), such that

ω =
∑

I∈s(n,p)
fIdxI . (2.37)

The functions fI are called the coefficient functions of the p-form ω.

(vi) What are the coefficient functions of the 1-form df, where f : X → R is a smooth
function? The answer is in the elementary calculus that you have studied. These are

nothing but the partial derivatives
∂f

∂xi
. Thus,

df =
n∑
i=1

∂f

∂xi
dxi. (2.38)



Differential Forms 65

(vii) A very important aspect of forms is the beautiful way they transform. Consider a
smooth map φ : X → Y. Then for each x ∈ X, the map dφx : Rn → Rm is a linear
map. This in turn induces a linear map

∧p(dφx) : ∧p(Rm∗) → ∧p(Rn∗).

Thus, given a p-form ω on Y, we can “pull it back” to a p-form on X as follows:

φ∗(ω)(x) := ∧p(dφx)(ω)(φ(x)). (2.39)

It is routine to verify that for each p, φ∗ itself is a linear map. Further, they are algebra
homomorphisms also, in the sense

φ∗(ω ∧ τ) = φ∗(ω) ∧ φ∗(τ) (2.40)

Let us work out this one completely in a simple situation first. Let X,Y be open
subsets of some Euclidean spaces and let φ : X → Y be a smooth function. For the
sake of clarity and to be conformal with standard practice, let us denote the coordinate
projections on X,Y by {x1, . . . , xn} and {y1, . . . , ym}, respectively. For x ∈ X, put
y = φ(x). Put πi ◦ φ = φi. Consider the 1-forms dyi on Y. We have

φ∗(dyi)(x) = (dφx)∗(dyi)
= (dφx)∗(d(πi)y)
= d(πi)y ◦ d(φx)
= d(πi ◦ φ)x = d(φi)(x).

(2.41)

Now using the homomorphic property of φ∗, we can say something on p-forms. (For
simplicity, we don’t write the point x at which the action is taking place.)

φ∗(dyI) = φ∗(dyi1 ∧ · · · ∧ dyip) = dφi1 ∧ · · · ∧ dφip =: dφI . (2.42)

It follows that

φ∗
(∑

I

fIdyI

)
=

∑
I

(fI ◦ φ)dφI . (2.43)

To summarize, the pullback of forms under a smooth map is completely determined
in terms of the pullback of 0-forms and 1-forms.

Observe that if φ is a diffeomorphism then dφx is an isomorphism for all x and hence
so is φ∗ for each p.

Definition 2.4.2 A p-form on an open subset of R
n is said to be continuous/smooth if all

its coefficient functions are continuous/smooth.

Remark 2.4.1

1. We leave the verification that the smoothness of a p-form is independent of the local
parameterization chosen to the reader as an exercise.
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2. The set of all smooth p-forms is a vector subspace of the space of all p-forms. This
subspace will be denoted by Ωp(X). Note that Ω0(X) = C∞(X ; R), the ring of real
valued C∞-functions on X. Each Ωp(X) is a module over Ω0(X).

Moreover, the exterior product of smooth forms turns out to be smooth. Thus,

Ω∗(X) := Ω0(X)⊕ Ω1(X)⊕ · · · ⊕ Ωn(X), (2.44)

forms an anticommutative graded algebra over the ring of smooth functions Ω0(X).
Given a smooth map f : X → Y, we have the algebra homomorphism Ω(f) : Ω∗(Y ) →
Ω∗(X), with the property that

Ω(g ◦ f) = Ω(f) ◦ Ω(g); Ω(Id) = Id. (2.45)

Exercise 2.4 If η : R → R
2 is the inclusion map x 
→ (x, 1) what are η∗(dxi), i = 1, 2?

Generalize your result for coordinate inclusions Rn → Rn+k and p-forms dxI .

2.5 Exterior Differentiation

Throughout this section X,Y etc. will denote open subsets of HN for some N.
We have used the concept of derivative of a function to define a 1-form associated with

a smooth function:

φ 
→ dφ (2.46)

which now defines a function d : Ω0(X) → Ω1(X). The elementary properties of the deriva-
tive are all present in this function and can be summarized as follows:
(i) d(αφ + βψ) = αd(φ) + βd(ψ), α, β ∈ R;
(ii) d(φψ) = φd(ψ) + ψd(φ).
(iii) If f : X → Y is a smooth map, then

f∗ ◦ d = d ◦ f∗.

The last one is a consequence of the chain rule for differentiation.
Our aim now is to extend this operator to all over Ω∗(X), so that all these properties

are preserved. That is, we would like to define d : Ωp(X) → Ωp+1(X) for each p which
should satisfy (i), (ii), and (iii). Property (i) tells us that it is enough to define d on the
basis elements dxI . The correct extension of property (ii) means that

(iie) d(φ ∧ ψ) = φ ∧ d(ψ) + d(φ) ∧ ψ. (2.47)

This relates d defined on Ωp with that defined on Ωp−1, for p ≥ 2, and so on.
Thus, it follows that we are only free to define d on Ω1. We have reduced the entire work

to the task of defining d of dxi. Here again, we fall back on our knowledge of calculus. Recall
that for any smooth function φ : U → R, the derivative is a smooth map Df : U → (Rn)∗

and its derivative is a smooth map D2f : U → M(n; R). Thus, we can think of D2f as a
2-tensor valued function on U. In order to get an alternating tensor out of it, we follow the
good old method of “alternatising” this, viz., Alt (D2f). But the entries of D2(f)(x) are

nothing but
∂2f

∂xi∂xj
(x) and hence it follows that D2f is a symmetric 2-tensor. Therefore,

Alt (D2f) = 0. In particular, we are led to define

d(dxi) = 0. (2.48)
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Combine this with (i) and (iie) to get,

d(df) =
∑

d

(∑
i

∂f

dxi
dxi

)
=

∑
i,j

∂2f

∂xi∂xj
dxj ∧ dxi = 0, (2.49)

the last equality is justified because the terms
∂2f

∂xi∂xj
dxj ∧dxi and

∂2f

∂xj∂xi
dxi∧dxj cancel

out each other.
As pointed out before, together with the definition of d on Ω0(X), this completes the

definition of d on the entire of Ω∗(X). Let us go through this carefully, once again.
To start with we have the operator d on Ω0(X). Then we define d(dxi) = 0 for all i.

Next, for a general 1-form φ =
∑

i fidxi ∈ Ω1(X), by property (i), we have

d(φ) =
∑
i

d(fidxi). (2.50)

By property (iie) we get,

d(fidxi) = fid(dxi) + d(fi) ∧ dxi = dfi ∧ dxi. (2.51)

Thus,

d(φ) =
∑
i

dfi ∧ dxi. (2.52)

Further, for p ≥ 2, and I ∈ S(p, n) we have,

d(dxI) =
p∑
j=1

dxi1 ∧ · · · ∧ d(dxij ) ∧ · · · ∧ dxip = 0. (2.53)

Finally, for any p-form, φ =
∑

I fIdxI ∈ Ωp(X), we have,

d(φ) =
∑
I

d(fIdxI) =
∑
I

dfI ∧ dxI . (2.54)

That the operator d satisfies (i) and (iie) is clear from the way we have defined d. We
call d the exterior derivative.

As a bonus, we also have

(iv) d2 = 0. (2.55)

Let us prove this. In (2.53), we have verified that d(dxI) = 0 for all I. Now from (2.54),

d(d(φ)) =
∑
I

d(dfI ∧ dxI) =
∑
I

d(dfI) ∧ dxI = 0 (2.56)

since d(dfI) = 0 from (2.49) for each I.
Can there be another operator d̂ say, which agrees with d on Ω0(X) and satisfies the

properties (i), (iie), and (iv)? The answer is NO, which may give you a mild surprise.
Let us see why this is so. First of all, since on 0-forms d̂ should be the same as d, we have,
d̂(xi) = dxi and hence it follows that d̂dxI = 0 for all I. Therefore, d̂(φ) =

∑
I d̂(fI)∧dxI =∑

I d(fI) ∧ dxI = d(φ).
In this sense the exterior derivation d is unique on open subsets of Euclidean spaces.
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We may now worry about property (iii) of the extended operator d. Not really, because,
we have another surprise bonus: Suppose the statement is true for φ and ψ then

f∗d(φ ∧ ψ) = f∗(d(φ) ∧ ψ + φ ∧ d(ψ))
= f∗(d(φ)) ∧ f∗(ψ) + f∗(φ) ∧ f∗(d(ψ))
= d(f∗(φ)) ∧ f∗(ψ) + f∗(φ) ∧ d(f∗(ψ))
= d(f∗(φ) ∧ f∗(ψ))
= d(f∗(φ ∧ ψ)).

Now, to begin with, (iii) is valid on Ω0(X). Also if φ = dω is a 1-form then f∗(d(φ)) =
f∗(0) = 0. On the other hand,

d(f∗(φ)) = d(d(f∗(ω))) = 0.

In particular, the formula is valid for 1-forms dxi. Using the above, it is valid for all fIdxI
in Ωp(X), p ≥ 1. Finally, because of the linearity of the two sides, it is then valid for sums
of such elements in Ωp(X), p ≥ 1 also. Thus, property (iii) is also valid.

Example 2.5.1 Let X be an open subset of H3. For a smooth function f : X → R, we
have,

df =
3∑
i=1

∂f

∂xi
dxi. (2.57)

The vector formed by the coefficient functions is nothing but the

grad f =
(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
. (2.58)

Thus, for a 0-form f, we can say

df = grad f. (2.59)

Next, given any smooth 1-form ω = f1dx1 + f2dx2 + f3dx3, we have,

d(ω) = df1 ∧ dx1 + df2 ∧ dx2 + df3 ∧ dx3

Use (2.57) and the anticommutativity of ∧ to see that

d(ω) =
(
∂f2
∂x1

− ∂f1
∂x2

)
dx1 ∧ dx2

+
(
∂f3
∂x2

− ∂f2
∂x3

)
dx2 ∧ dx3 +

(
∂f1
∂x3

− ∂f3
∂x1

)
dx3 ∧ dx1

Choosing the correct order for basis elements of ∧2(R3∗), viz.,

{dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2} = {i, j,k},

we see that the vector formed out of the coefficients of d(ω) is(
∂f3
∂x2

− ∂f2
∂x3

,
∂f1
∂x3

− ∂f3
∂x1

,
∂f2
∂x1

− ∂f1
∂x2

)
= curl (f1, f2, f3).
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Thus, for a 1-form ω, we may say

dω = curl ω. (2.60)

Let now τ = g1dx2 ∧ dx3 + g2dx3 ∧ dx1 + g3dx1 ∧ dx2 be a smooth 2-form. Then

d(τ) =
(
∂g1
∂x1

+
∂g2
∂x2

+
∂g3
∂x3

)
dx1 ∧ dx2 ∧ dx3. (2.61)

Here the coefficient function gives us the divergence, div (g1, g2, g3). Thus, we may say that
for a 2-form τ,

dτ = div (τ). (2.62)

Of course, d(φ) = 0 for any 3-form φ.
In this sense, d ◦ d = 0 has the following familiar interpretation:

curl(grad) = 0 & div(curl) = 0. (2.63)

Exercise 2.5

1. Show that d(f) = 0 for a 0-form on R
n iff f is a constant.

2. Show that d(ω) = 0 for a 1-form ω on Rn iff ω = d(f) for some 0-form f.

3. Show that d(τ) = 0 for a 2-form on Rn iff τ = d(ω) for a 1-form ω.

4. Generalize the above three results to the case when Rn is replaced by an open convex
subset.

5. Which of the above results hold for R2 \ {0} also?

2.6 Integration on Singular Chains

In this section, we shall once again, use the notation I := [0, 1], for the closed unit
interval in R. Thus, In will denote the n-fold Cartesian product of I which is the unit
n-cube in Rn. We shall consider topological spaces X,Y etc., which are all subspaces of
Euclidean spaces.

Definition 2.6.1 For n ≥ 1, by a singular n-cube in X, we mean a smooth map γ : In → X.
By a singular 0-cube in X we mean a point of X.

Remark 2.6.1 Here the adjective “singular” is used to indicate that the map need not be
injective. Indeed, we should have used the terminology “singular smooth n-cubes” so as to
allow room for continuous functions γ : In → X also as ‘singular n-cubes’. For our limited
purpose of integration theory, it is necessary and sufficient to restrict ourselves to smooth
functions only.

Thus, a singular 1-cube γ is nothing but a smooth curve in X. Notice that the image
of this curve may be a single point. Here the emphasis is on the function γ rather than its
image set as a subset of X. Thus a singular 1-cube γ is a parameterization of the image
curve γ[I].
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Example 2.6.1 The most important singular n-cube is the identity map of In to itself.
We shall denote this by ξn. We shall also denote the inclusion map In ↪→ Rn by ξn, when
there is no confusion. Next, we have the face-cubes Fnj,i : In → In+1 for each 1 ≤ j ≤ n+ 1
and i = 0, 1 defined by

Fnj,i(x1, . . . , xn) = (x1, . . . , xj−1, i, xj , . . . , xn).

For i = 0, 1, they are called back (respectively) front j-face of ξn+1. For instance, the two
faces of ξ1 are {0} and {1}. The singular 2-cube ξ2 has four singular 1-cubes as its faces.
Indeed, ξn has 2n faces.

back faces

front faces

Figure 11 Oriented faces of cubes of dimension ≤ 3.

Example 2.6.2 The map t 
→ e2πıt defined on [0, 1] is a singular 1-cube that represents
the oriented circle. Likewise the spherical coordinates [0, 1]× [0, 1] → R3 given by

(t, s) 
→
(

cos 2πt cosπ
2s− 1

2
, sin 2πt cosπ

2s− 1
2

, sinπ
2s− 1

2

)
(2.64)

is a singular 2-cube which represents the oriented 2-sphere.

Definition 2.6.2 Let sn(X) denote the set of all singular n-cubes in X. By a n-chain in X
we mean a function c : sn(X) → Z with the property that c(γ) �= 0 only for finitely many
γ ∈ sn(X). The set of all n-chains on X will be denoted by Sn(X).

Proposition 2.6.1 Pointwise addition of two members makes Sn(X) into an abelian group,
i.e.,

(c1 + c2)(γ) = c1(γ) + c2(γ).

Remark 2.6.2 The chain that sends every singular n-cube to 0 is the additive identity
of the abelian group Sn(X) and so, will be denoted by 0 itself. For a chain c, suppose
{γ1, . . . , γk} is the set of all singular n-cubes on which c is nonzero. It is customary to
denote c by the formal sum

∑
i niγi, where ni = c(γi). This notation has a lot of advantage

without loosing any rigor. Thus, a singular n-cube γ gets identified with an n-chain which
takes the value 1 on γ and 0 on every other singular n-cube. Thus, the negative of γ is
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nothing but −γ. More generally, the negative of a chain
∑

i niγi is nothing but −
∑
i niγi.

If you know what is a free abelian group, then you will be able to see that Sn(X) is actually
a free abelian group with sn(X) as a basis. In particular, S0(X) is a free abelian group with
X itself as a basis.

Definition 2.6.3 The boundary ∂γ of a singular (n+ 1)-cube is

∂γ =
1∑
i=0

n+1∑
j=1

(−1)i+jγ ◦ Fnj,i.

For any (n+ 1)-chain c =
∑
i niγi, we define ∂c by

∂c =
∑
i

ni∂(γi).

It is then clear that ∂ : Sn+1(X) → Sn(X) is a group homomorphism. It is called the
boundary operator.

For n < 0, we define Sn(X) = 0 and then naturally, take ∂ : Sn+1(X) → Sn(X) to be 0
as well.

Definition 2.6.4 Given a smooth map f : X → Y, we define f∗ : Sn(X) → Sn(Y ) by

f∗

(∑
i

niγi

)
=

∑
i

nif ◦ γi.

Remark 2.6.3 It is not difficult to check that
(i) f∗ is a group homomorphism;
(ii) If f : X → Y, g : Y → Z are smooth functions then (g ◦ f)∗ = g∗ ◦ f∗;
(iii) (Id)∗ = Id.

We also have one more naturality property:

Lemma 2.6.1 ∂ ◦ f∗ = f∗ ◦ ∂.

Proof: For any smooth map f : X → Y and any (n + 1)-chain c in X, we have to verify
that ∂ ◦f∗(c) = f∗∂(c). Since the singular (n+1)-cubes form a basis for Sn+1(X), it suffices
to verify this for singular (n+ 1)-cubes γ in place of c. But then

f∗∂(γ) = f∗(
∑

i

∑
j(−1)i+jγ ◦ Fnj,i) =

∑
i

∑
j(−1)i+jf ◦ (γ ◦ Fnj,i)

=
∑
i

∑
j(−1)i+j(f ◦ γ) ◦ Fnj,i = ∂(f ◦ γ)

= ∂ ◦ f∗(γ).

This completes the proof. ♠

Remark 2.6.4 Notice that the assignments f � f∗ on tensors and f � Ω(f) on differen-
tial forms also have similar properties as seen in Sections 2.3, 2.4. It may interest you to
know that the operator ∂ also has the property ∂ ◦ ∂ = 0. This indicates a deep connection
between the operator ∂ on smooth chains on the one hand and and the operator d on differ-
ential forms on the other, which leads to what is known as homology theory, which is ‘dual’
to the ‘cohomology’ that we are going to introduce in Chapter 4. It may be remarked that
by the linearity and the naturality properties of ∂, in order to prove ∂2 = 0, it is sufficient
to prove that ∂2(ξn) = 0. And the proof of ∂2(ξn) = 0 is combinatorial in nature and is
very straightforward. Try it.
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Definition 2.6.5 Given an n-form ω on In, we know that there is a unique (continuous)
function f such that ω = fdx1 ∧ · · · ∧ dxn. We define∫

In

ω =
∫
In

fdx1 ∧ · · · ∧ dxn :=
∫
In

f(x1, . . . , xn)dx1 · · ·dxn =
∫
In

f.

Next, if γ is a singular n-cube in X and ω is an n-form on X, then we define∫
γ

ω :=
∫
ξn

γ∗ω :=
∫
In

γ∗ω.

And finally, we extend this definition to all singular n-chains c =
∑
i niωi by linearity:∫

c

ω =
∑
i

ni

∫
γi

ω =
∑
i

ni

∫
In

γ∗i ω.

Example 2.6.3

(i) Let γ : [0, 1] → R
3 be a smooth function. Let ω be a smooth 1-form on a neighbourhood

of image C of γ. Then ∫
C

ω =
∫

[0,1]

γ∗(ω).

If we write γ(t) = (γ1(t), γ2(t), γ3(t)) and ω = f1dx1 + f2dx2 + f3dx3, then

γ∗(ω) =

(
3∑
i=1

fi(γ(t))
dγi
dt

(t)

)
dt,

where dt denotes the 1-form on the interval, which assigns the identity map at each
point of [0, 1]. Thus,

∫
C

ω =
∫ 1

0

(
3∑
i=1

fi(γ(t))
dγi
dt

(t)

)
dt =

∫ 1

0

F · dγ

which is the familiar line integral of the vector field F = (f1, f2, f3) on the curve γ.

(ii) Suppose f : U → R is a smooth map defined in a neighbourhood U of the image of γ,
and ω = df. Then

∫
C

ω =
∫ b

a

γ∗(df) =
∫ b

a

(f ◦ γ)′dt = f(γ(b))− f(γ(a)).

In particular, this proves that on all closed curves γ in X,

∫
γ

df = 0. Later, we shall

generalize this result.

(iii) Let now
γ(t) = (ar cos θ, br sin θ), (0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1)

be a parameterization of the elliptical region for some a, b > 0. Then, ∂γ is a param-
eterization of the ellipse and we have

∫
∂γ

xdy =
∫ 2π

0

ab cos2 θ dθ = πab.
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On the other hand, d(xdy) = dx ∧ dy and we have

γ∗(dx ∧ dy) = (−ar sin θ dθ + a cos θ dr) ∧ (b sin θ dr + br cos θ dθ)
= abr dr ∧ dθ.

Therefore, ∫
γ

d(xdy) =
∫
γ

dx ∧ dy =
∫
I×[0,2π]

γ∗(dx ∧ dy) = abπ.

That these two integrals are the same is not a coincidence but a special case of Green’s
theorem.

(iv) Let now F : [0, 1]2 → R3 be a parameterization of a smooth surface in R3. Let

ω = g1dx2 ∧ dx3 + g2dx3 ∧ dx1 + g3dx1 ∧ dx2

be a smooth 2-form defined in a neighbourhood of the image S of F. Then,∫
S

ω =
∫

[0,1]2
F ∗(ω).

Write
F (u1, u2) = (f1(u1, u2), f2(u1, u2), f3(u1, u2))

Then,

F ∗(dxi) =
2∑
j=1

∂fi
∂uj

duj ,

for each i and hence,

F ∗(dxk ∧ dxl) =
(
∂fk
∂u1

∂fl
∂u2

− ∂fl
∂u1

∂fk
∂u2

)
du1 ∧ du2.

Write
n1(du1 ∧ du2) = F ∗(dx2 ∧ dx3),
n2(du1 ∧ du2) = F ∗(dx3 ∧ dx1),
n3(du1 ∧ du2) = F ∗(dx1 ∧ dx2).

Then check that
N := (n1, n2, n3) =

∂F

∂u1
× ∂F

∂u2
.

N is the fundamental vector product of the parameterized surface S. Let n =
N
‖N‖

denote the unit vector in the same direction as this and dS = ||(n1, n2, n3)||du1∧du2.
Put G = (g1 ◦ F, g2 ◦ F, g3 ◦ F ). Then,

F ∗(ω) = [(g1 ◦ F )n1 + (g2 ◦ F )n2 + (g3 ◦ F )n3]du1 ∧ du2

and ∫
S

ω =
∫

[0,1]2
F ∗(ω) =

∫
[0,1]2

(G • n) dS.

The 2-form dS is called the area form. The vector (g1, g2, g3) which corresponds to the
given 2-form ω, represents the flux density, the integral depends only on its component
normal to the surface on which integration is taken.
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Put X = [0, 1]× [0, π]× [0, 2π]. Let now P : X → R3 be given by

P (r, θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ)

be spherical coordinate representation of the unit ball D3 in R3. One can easily verify
that P ∗(dx ∧ dy ∧ dz) = r2 sin θ dr ∧ dθ ∧ dφ and∫

P

dx ∧ dy ∧ dz =
∫
X

P ∗(dx ∧ dy ∧ dz) =
∫
X

r2 sin θ dr ∧ dθ ∧ dφ =
4π
3
.

On the other hand, take ω = z dx ∧ dy and check that d(ω) = dx ∧ dy ∧ dz. If
F : [0, π]× [0, 2π] → R3 given by F (θ, φ) = P (1, θ, φ) is the representation of the unit
sphere, we have,∫

F

ω =
∫

[0,π]×[0,2π]

F ∗(ω) =
∫ π

0

∫ 2π

0

cos2 θ sin θ dθ ∧ dφ =
4π
3
.

Once again, the equality of the two expressions
∫
P dω and

∫
F ω is not a coincidence

but a very special case of the divergence theorem of Gauss.

We shall now present a sweeping generalization of these results as a reward for going
through the seemingly meaningless algebrization that we have indulged in, in the
preceding sections.

Theorem 2.6.1 Stokes’ Theorem for Chains: Let ω be a (n − 1)-form on an open
subset X of Rm. Then for any singular n-chain c in X, we have,∫

c

dω =
∫
∂c

ω. (2.65)

Proof: Since both sides of the identity are linear in c, it suffices to prove (2.65) when c = γ
is a singular n-cube. But then∫

γ

dω =
∫
In

γ∗d(ω) =
∫
In

d(γ∗ω) =
∫
ξn

d(γ∗ω)

whereas ∫
∂γ
ω =

∑
i,j

(−1)i+j
∫
γ◦Fn

j,i

ω =
∑
i,j

(−1)i+j
∫
In−1

(γ ◦ Fnj,i)∗ω

=
∑
i,j

(−1)i+j
∫
In−1

(Fnj,i)
∗ ◦ γ∗ω =

∫
∂ξn

γ∗ω.

Now γ∗ω is just an (n − 1) form on In. Thus, it suffices to prove (2.65) for the singular
n-cube ξn and an arbitrary (n− 1) form ω′ on In, viz.,∫

ξn

dω′ =
∫
∂ξn

ω′. (2.66)

Let us introduce a temporary notation for the forms

dx := dx1 ∧ · · · ∧ dxn; dx̂k := dx1 ∧ · · ·dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn.

For a fixed x = (x1, . . . , xn) and 1 ≤ k ≤ n let

x̂k = (x1, . . . , xk−1, xk+1, . . . , xn); g(x̂k, t) = f(x1, . . . , xk−1, t, xk+1, . . . , xn).
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Since each (n− 1)-form ω is a finite sum:

ω =
∑
k

fkdx̂k,

it is enough to prove (2.66) when ω is of the form f dx̂k for each 1 ≤ k ≤ n. Now for such
an ω we have,

dω = d(f dx̂k) =
∂f

∂xk
dxk ∧ dx̂k = (−1)k−1 ∂f

∂xk
dx. Therefore,

∫
ξn

dω = (−1)k−1

∫
In

∂f

∂xk

= (−1)k−1

∫ 1

0

· · ·
(∫ 1

0

∂f

∂xk
dxk

)
dx1 · · · d̂xk · · · · · ·dxn (Fubini)

= (−1)k−1

∫ 1

0

· · ·
∫ 1

0

[g(x̂k, 1)− g(x̂k, 0)]dx1 · · · d̂xk · · ·dxn

= (−1)k−1

∫
In

[g(x̂k, 1)− g(x̂k, 0)]dx1 · · ·dxn.

The last two steps are justified by the fundamental theorem of integral calculus of 1-
variable and the simple fact that

∫
I

1 = 1. On the other hand,

∫
In−1

(Fnj,i)
∗(ω) =

⎧⎨
⎩

0, if j �= k,∫
In

g(x̂k, i)dx1dx2 · · · dxn, if j = k.

Therefore,∫
∂In

ω =
∑
i,j

(−1)i+j
∫
In−1

(Fnj,i)
∗(ω)

= (−1)1+k
∫
In

g(x̂k, 1)dx1 · · ·dxn + (−1)k
∫
In

g(x̂k, 0)dx1 · · · dxn.

The claim follows. ♠

Exercise 2.6 Verify Proposition 2.6.1.

2.7 Miscellaneous Exercises for Chapter 2

1. An element τ ∈ ∧p(V ∗) is said to be decomposable if there exist φ1, . . . , φp ∈ V ∗ such
that τ = φ1∧· · ·∧φp. Clearly every element of ∧1(Rn∗) and ∧n(Rn∗) is decomposable.
Show that every element of ∧n−1(Rn∗) is decomposable. In particular, it proves that
every element of ∧p(R3∗) is decomposable for all p.

2. Show that φ1 ∧ φ2 + φ3 ∧ φ4 is not decomposable if {φ1, φ2, φ3, φ4} is an independent
set in ∧1V ∗. (Hint: Any independent set in V ∗ can be completed to a basis.) Thus, in
dimension ≥ 4, there are indecomposable elements.

3. Recall that given a linear map f : Rn → R, there is a unique vector w ∈ Rn such that
f(u) = u •w, the dot product of the two vectors, for all u ∈ Rn. Given n− 1 vectors
v1, . . . ,vn−1 ∈ V, we define their cross product C(v1, . . . ,vn−1) =: w by the property
that det (v1, . . . ,vn−1,u) = u • w. Show that the cross product is multilinear and
alternating. For n = 3, this is indeed the classical cross product: C(v1,v2) = v1×v2.
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The basic motivation for the concept of a manifold is to be able to talk about differentiability
of functions defined on such objects and then to be able to assign a meaning to the derivative
of a differentiable function on such objects. In this chapter, first we introduce the basic
concept of a manifold, though we shall restrict ourselves to those that are subspaces of
Euclidean spaces. Next, we introduce the concept of tangent space and define the derivative
of a differentiable function. We then introduce the reader to special types of maps such
as immersions, submersions embeddings etc. In particular, we shall see how the concept of
regularity is generalized to transversality. Finally, the concept of “perturbations” is realized
in the precise form of a homotopy and some of the special types of maps above are shown
to be “stable under small perturbations”. This makes the study of these special maps more
important.

3.1 Basic Notions

Definition 3.1.1 Let N, k, and r be fixed positive integers. Let X be a nonempty subspace
of R

N . We say X is a k-manifold (or k-dimensional manifold) of class Cr, if for each x ∈ X
there exists an open neighborhood Ux of x in X and a Cr-diffeomorphism φ : Ux → φ(Ux)
onto an open subset φ(Ux) of R

k. The integer k is called the dimension of X and the map
φ is called a chart for X. Observe that there is no uniqueness in the choice of charts and
in particular, we can choose a chart x so that φ(x) = 0. Such a chart will be called a local
coordinate system at x for X and Ux will be called a coordinate neighborhood of x. The
inverse of φ will be called a local parameterization. Any collection of charts {(Uα, φα)} such
that X = ∪Uα will be called an atlas for X. We also call X a smooth manifold in RN or
simply a differentiable manifold, if we do not want to mention the class to which it belongs
nor the Euclidean space where it lives.

Definition 3.1.2 A nonempty subset X of a Euclidean space is called a 0-dimensional
manifold if it is a discrete subset. If X = ∅, we call it a manifold of dimension −1.

Remark 3.1.1
(i) In the first definition above we have frozen the integer k. There is not much harm if we
allow it to vary provided we assume that X is connected. For, because of the invariance of
domain (see Theorem 1.6.1), it follows that k(x) is locally a constant and hence a constant.
However, we do not consider disjoint union of manifolds of different dimensions as a mani-
fold.

77
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(ii) Observe that we can allow r = 0 also but then we should drop out the word ‘differen-
tiable’. That will give us the definition of a topological manifold (for more, see Chapter 5).
(iii) Observe that any Cr-manifold is a Cs-manifold for 0 ≤ s ≤ r. A deep theorem due
to Whitney (see e.g., Ch.2 of [Hi]) tells us that any C1-manifold is C1-diffeomorphic to a
C∞-manifold. This is a partial justification for the way we use the word “smooth manifold”
to mean a Cr-manifold, where r could be any integer between 1 and ∞.
(iv) In the second definition, we want to emphasize the fact thatX is not necessarily a closed
subset of the Euclidean space. For instance, the set {1/n : n ∈ N} is a 0-dimensional man-
ifold in R, whereas its closure is not.

Example 3.1.1

1. Any nonempty open subset of Rk is a k-manifold. Indeed, any nonempty open subspace
of a k-manifold is again a k-manifold.

2. All vector subspaces of Rn are manifolds. Suppose V is a k-dimensional subspace.
Choose a basis {v1, . . . ,vk} for V and consider the map φ : Rk → V given by

(x1, . . . , xk) 
→
k∑
i=1

xivi.

This is clearly a bijective linear map of R
k onto V. Hence it defines a global parame-

terization of V which makes it a k-dimensional manifold.

3. A Cartesian product of any two manifolds is again a manifold. Inductively, this will
hold for a Cartesian product of any finite number of manifolds. Observe that the
dimension adds up except when you take an empty product.

4. Given any open subset U ⊂ Rn and a smooth map f : U → R, the graph

Γf = {(x, f(x)) : x ∈ U}

is a manifold in Rn+1. It is covered by a single parameterization, viz., x 
→ (x, f(x)).
This also shows that Γf is actually diffeomorphic to U. By combining the above
examples we can produce a few more examples but not many.

5. For n ≥ 2, consider the (n− 1)-dimensional sphere Sn−1 in Rn given by the following
equation:

x2
1 + · · ·+ x2

n = 1. (3.1)

Put U± = Sn−1 \ {±N} where N = (0, . . . , 0, 1). Let η± : U± → Rn−1 be the
stereographic projections (see Example 1.6.3). It follows that {(U+, η+), (U−, η−)} is
a C∞-atlas for Sn−1, showing that Sn−1 is a smooth manifold.

Later on, we shall see that this is a special case of a phenomenon, viz., a nonempty
regular level set of a smooth function on an n-manifold is an (n− 1)-manifold.

6. You are familiar with the representation of the unit circle by (cos θ, sin θ), 0 ≤ θ ≤ 2π.
For 0 < θ < 2π this is nothing but a parameterization of the unit circle which covers
the whole circle except the point (1, 0). Even the point (1, 0) is covered by the map
but we see that the map does not define a parameterization in the sense that we
have introduced above. This can be slightly rectified by taking a larger open interval
(−ε < θ < 2π + ε), and taking the same map and then restricting it to suitable
smaller open intervals, depending on the point that we want to cover so as to get a
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parameterization of the circle by a single map which is allowed to be not injective
globally. Such maps are called “global parameterizations”. In this sense, the circle is
indeed a very special manifold–very few manifolds admit such parameterizations.

7. Having said that, we can generalize this aspect of the circle a little bit. Take any
parameterized smooth curve C in R2. For definiteness assume that it does not intersect
the y-axis. Now rotate the curve around the y-axis inside R3 to obtain a smooth
surface ρ(C). It is easy to give a “global parameterization” of ρ(C) starting with a
parameterization γ : [0, 1] → R2 of C : Observe that each point (γ1(t), γ2(t), 0) is at
a distance |γ1(t)| from the y-axis, and hence when rotated about the y-axis, traces
the circle with center (0, γ2(t), 0) and radius |γ1(t)| in the plane y = γ2(t). Therefore,
Γ : [0, 1]× [0, 2π] → R3 given by the above formula

(t, ψ) 
→ (γ1(t) cosψ, γ2(t), γ1(t) sinψ)

is a parameterization of the surface ρ(C). A typical example of this is when we take
the curve C to be a circle disjoint from the y-axis, say,

γ(θ) = (2 + cos θ, sin θ, 0)

the circle with centre (2, 0) and radius 1. The surface of rotation is nothing but a torus
given by the global parameterization

(θ, ψ) 
→ ((2 + cos θ) cosψ, sin θ, (2 + cos θ) sinψ)).

8. As a typical example of a subset of R2, that is not a manifold, consider X to be the
union of the two coordinate axes. Observe that at each point x ∈ X \ {(0, 0)} the
required condition is satisfied with k = 1. However, for x = (0, 0), no neighborhood
U of (0, 0) in X can be even homeomorphic to R. For, U \ {x} will have at least
four connected components, whereas, if we remove a point from R, we get only two
connected components.

9. Another typical example of a subspace of R, that is not a manifold is a closed inter-
val [0, 1]. No neighborhood of the point 0 in the interval [0, 1] can be diffeomorphic
(homeomorphic) to an open subset of R. Can you see why?

Remark 3.1.2
(i) Let X ⊂ RN be an n-manifold, x ∈ X, and let φ : Rn → X be a parameterization for
X at x ∈ X. Then for all z ∈ Rn, D(φ)z : Rn → RN is a linear map of rank n and hence
injective. For, if ψ : U → Rn is the inverse of φ, then there exists ψ̂ : W → Rn, which is a
smooth extension of ψ to a neighborhood W of x in RN . Now ψ̂ ◦ φ(z) = ψ ◦ φ(z) = z for
all z ∈ Rn. Therefore, D(ψ̂)φ(z) ◦D(φ)z = Id.
(ii) In the situation described above, applying the injective form of implicit function theorem
(1.4.5), we get a neighborhood W of x ∈ RN and a diffeomorphism τ : W → RN such that

τ ◦ φ(y1, . . . , yn) = (y1, . . . , yn, 0, . . . , 0).

Therefore,

X ∩W = φ(Rn) = τ−1(Rn × 0) = {z ∈W : τi(z) = 0, i ≥ n+ 1}.

Here for each 1 ≤ i ≤ N, τi denotes the ith-coordinate function of τ. In other words, every
manifold in RN is locally equal to the zero set of some “coordinate functions”.
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Definition 3.1.3 Let X ⊂ RN be a manifold. A subspace Y of X is called a submanifold
if Y ⊂ RN is a manifold on its own.

Remark 3.1.3
(i) There is need for caution in this definition, while we are dealing with “abstract mani-
folds”. We shall discuss this point in Chapter 5.
(ii) It is natural to expect that the dimension of a submanifold is less than or equal to that
of the manifold. Indeed, we have the following stronger result that can be proved exactly
as in (ii) of the above remark.

Theorem 3.1.1 Let X be a k-dimensional submanifold of a n-dimensional manifold Y.
Then for each a ∈ X, there exists a neighborhood W of a in RN and a diffeomorphism
τ : W → RN such that
(i) τ(a) = 0;
(ii) Y ∩W = {x ∈W : τi(x) = 0, i ≥ n+ 1};
(iii) X ∩W = {x ∈W : τi(x) = 0, i ≥ k + 1}.

Exercise 3.1
Let A = {x ∈ Sn−1 : x1 ≥ 0} be the closed right-half sphere.

1. Use the stereographic projection φ+ to see that A \ {(0, . . . , 1)} is diffeomorphic to
the closed right-half space {y ∈ Rn−1 × 0 : y1 ≥ 0}.

2. Given any p ∈ ∂D
n−1 find a diffeomorphism α : D

n−1 → A such that α(p) =
(0, 0, . . . , 1).

3. Conclude that if p is any point on the boundary of a closed disc Dn−1 then Dn−1 \{p}
is diffeomorphic to the closed upper-half space Hn−1.

3.2 Manifolds with Boundary

In (7) of Example 3.1.1, we saw that even a closed interval is not a manifold according
to Definition 3.1.1. Clearly, there is a need to extend the definition of a manifold to include
objects such as a closed interval, a closed disc, the half-spaces in Rn etc. The key is to
choose a correct local model such that copies of this model would cover these objects.

Recall the notation for the upper half-space in Rk :

Hk = {(x1, . . . , xk) ∈ R
k : xk ≥ 0}

Definition 3.2.1 Let k ∈ N. Let ∅ �= X ⊂ RN be such that for all x ∈ X there exists
a neighborhood Ux of x in X and a diffeomorphism φ : Ux → φ(Ux) where φ(Ux) is an
open subset of Hk. Then we call X a manifold with boundary. Terms such as chart, atlas,
coordinate neighborhood, etc., are defined exactly similarly as in Definition 3.1.1.

Remark 3.2.1 Let X be a manifold with boundary. Consider the subset

∂X = {x ∈ X : φ(x) ∈ R
k−1 × 0 for some chart φ}.

Suppose x ∈ ∂X. Then for every chart ψ of X at x, it follows that ψ(x) ∈ Rk−1 × 0. (For,
φ ◦ ψ−1 defines a diffeomorphism of an open subset A of Hk containing the point y = ψ(x)
to some open subset B in Hk and sends the point y to z = φ(x) ∈ Rk−1×0. If y were not in
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Rk−1 × 0, then φ ◦ ψ−1 would map an open neighborhood W of y in Rk to a neighborhood
W ′ of z. By invariance of domain, W ′ must be open in Rk. But no neighborhood of z in Rk

is contained in B ⊂ Hk!!)
It follows that

X \ ∂X = {x ∈ X : φ(x) ∈ int (Hk) for some chart φ}.

From this description, it follows that X \ ∂X is open in X. Therefore, ∂X is a closed subset
of X. Moreover, we have:

Theorem 3.2.1 Let X be a k-dimensional manifold with boundary. Then ∂X is either
empty or is a manifold of dimension k − 1.

Proof: We first observe that ∂X may be empty. For the images of all the charts may be
contained in int(Hk). (In such a case, X will be a manifold (without boundary).

So, let ∂X be nonempty. For each x ∈ ∂X, let (U, φ) be a chart at x for X. Put
V = φ−1(Rk−1 × 0) and f = φ|V . Then observe that V = ∂X ∩ U and hence is an
open subset of ∂X. Moreover f(V ) = φ(U) ∩ Rk−1 × 0. Hence, f : V → f(V ) defines a
diffeomorphism of V onto an open subset of Rk−1. This proves the claim. ♠

Definition 3.2.2 Let X ⊂ RN be a n-manifold with boundary. By a neat submanifold
Y ⊂ X of dimension m we mean a closed subset Y ⊂ X which is an m-manifold with
boundary on its own such that
(i) ∂Y = Y ∩ ∂X and
(ii) at each point y ∈ ∂Y there exists a chart (U, φ) for X, φ : U → Rn−m ×Hm such that
φ(U ∩ Y ) ⊂ 0×Hm.

The figure below shows a closed strip as a 2-manifold with boundary and six of its
subspaces. None of the subsets except the last one is a neat submanifold, even though each
one of them is a manifold with (or without) boundary.

Figure 12 Only the last one is a neat submanifold.

Definition 3.2.3 A compact manifold without boundary is called a closed manifold. A
noncompact manifold without boundary is called an open manifold.

Remark 3.2.2 When we say X is a closed submanifold of Y, we mean that X is a sub-
manifold of Y and as a topological space, it is a closed subspace of Y. This should not be
confused to mean that X is a closed manifold. It is true that a closed manifold, which is a
submanifold of another manifold, is also a closed submanifold. However, the converse need
not be true. Likewise, one should not confuse an open submanifold with an open manifold
which is a submanifold of another manifold. Indeed, in this case, neither implies the other.

Example 3.2.1
(1) Clearly, the half-spaces Hk are themselves manifolds with boundary, ∂Hk = Rk−1 × 0.
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More generally, if P is defined by finitely many linear inequalities inside Rn, then it will be
a topological manifold with boundary. If it is defined by only one linear inequality, then it
would be a smooth manifold with boundary. In particular, all half-rays and closed intervals
are 1-dimensional manifolds with boundary.
(2) The open interval (0, 1) is not a neat submanifold of R since it is not a closed subset.
Nor is the closed interval [0, 1] since its boundary is nonempty whereas ∂R = ∅. The closed
interval [−1, 1] is a neat submanifold of the closed disc D2.
(3) All closed balls in Rn are n-dimensional manifolds with boundary. Each of them is
diffeomorphic to the unit ball via a suitable translation followed by a scaling. Therefore, it
is enough to see that the unit ball is a manifold with boundary. Exercises 3.1 show that
D
n \ {p} is diffeomorphic with Hn where p is any point on the boundary. Thus, D

n can be
covered by two such charts, defined on Dn \ {p}, Dn \ {q}, p �= q, p, q ∈ ∂Dn.

We shall give a slightly different proof of the same here, still leaving the Exercises 3.1
to you.

N

p
τ (x)

τϕ

τ (p)

ψ

x

(x)

(x)

Figure 13 Extended Stereographic projection.

Consider the stereographic projection φ+ : Sn−1\{N} → Rn−1 and extend it on Dn\{N}
as follows. First, fix a point x ∈ Dn and x �= N. Let τ(x) �= N denote the point of intersection
of Sn−1 and the line joining N and x. Then, τ(x) is a smooth map. Observe that if x ∈ Sn−1,
then τ(x) = x. Moreover, each point of Dn\{N} belongs to a unique line segment [τ(x), N).
Now put

σ(x) =
‖x− τ(x)‖2

‖N − τ(x)‖2 − ‖x− τ(x)‖2 .

Observe that for each y ∈ Sn−1 \ {N}, σ restricted to the line segment [y, N) is a diffeo-
morphism onto [0,∞).

Finally consider ψ(x) = (φ+(τ(x)), σ(x)). Then ψ is a diffeomorphism of Dn \ {N} with
Hn extending the diffeomorphism φ+.
(4) As a typical nonexample, let us consider the unit square I2 in R2. At a first glance, we
may conclude that this is a manifold with boundary. But caution is needed, particularly at
the four vertices. Indeed, we shall right now prove that there is no local chart for I2 at any
of the four vertices. Say for instance (U, φ) is a chart at 0 = (0, 0), i.e., φ : U → H2 is a
diffeomorphism onto an open subset of H2. Clearly φ(0) ∈ R ⊂ H2. By the definition of
smoothness of φ, we may assume that φ itself is defined and smooth in an open set V ⊂ R2

around 0 and U = V ∩ I2. It follows that D(φ)0 is an isomorphism. On the other hand
we can compute the two partial derivatives of φ by remaining inside the boundary of the
square and since this is mapped inside R × 0, it follows that the two partial derivatives
are linearly dependent. In other words, {D(φ)0(e1), D(φ)0(e2)} is a linearly dependent set.
Hence, D(φ)0 cannot be an isomorphism. This contradiction proves the claim.
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Exercise 3.2

1. Show that a manifold is locally compact, locally path connected, Hausdorff, and II-
countable. If it is connected then show that it is path connected.

2. Show that any two points in a path connected manifold X can be joined by a piecewise
smooth path ω : [0, 1] → X which is a 1-1 function.

3. Given x0 ∈ U1 ⊂ U2 ⊂ · · · ⊂ Un where each Ui is a manifold of dimension i, show
that there exists a coordinate chart (V, φ) for Un at x0 such that

V ∩ Ui = {x ∈ V : φj(x) = 0, i+ 1 ≤ j ≤ n}.

4. Show that if X and Y are manifolds with boundary, then X × Y is a manifold with
boundary provided ∂X = ∅ or ∂Y = ∅. What is ∂(X × Y )? [Hint: First study the
example I × S1.] What goes wrong if ∂X �= ∅ and ∂Y �= ∅?

5. Show that if f : X → Rn is a smooth map and X is a manifold then the graph of f
is a manifold diffeomorphic to X.

6. Let X be a connected manifold and Y be a neat submanifold of X. If dimY = dimX
then show that Y = X.

3.3 Tangent Space

Let us begin with a simple example. Let f : R → R be a smooth map and let us consider
its graph. We know that the slope of the tangent to this curve at any point (p, f(p)) is equal
to f ′(p). Therefore, it follows that the actual tangent at (p, f(p)) is the image of the map t 
→
(p, f(p))+(1, f ′(p))t, which is the same as the graph of the map x 
→ f(p)−pf ′(p)+f ′(p)x.

(p,f(p))

0 0
U V 

X

φ ψh

x

Figure 14 The tangent space is independent of the parameterization.

Observe that this is an affine linear map. If we ignore the additive constant (p, f(p)) for
a while, then what we have is the linear map R → R2 given by the derivative at p of the
parameterization x 
→ (x, f(x)) of the graph. This is going to guide us in defining tangent
space to any manifold at any of its points.

Definition 3.3.1 Let X be a manifold of dimension k ≥ 1 in RN . Let φ : U → X be a local
parameterization at x. Recall that by this we mean that φ is the inverse of a coordinate chart,
U is a neighborhood of 0 in Rk and φ(0) = x. Consider the linear subspace A = D(φ)0(Rk)
of R

N . We shall first show that A is independent of the choice of parameterization φ. So,
suppose ψ is another parameterization at x. Put h = φ−1 ◦ψ, which is defined in a suitable
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neighborhood of 0 in Rk, and is a diffeomorphism there. In particular,D(h)0 : Rk → Rk is an
isomorphism. Since D(ψ)0 = D(φ)0 ◦D(h)0, it follows that D(ψ)0(Rk) = D(φ)0(Rk) = A.

We define the tangent space of X at x to be this linear subspace A and denote it by
Tx(X). The geometric tangent space at x is defined to be the affine subspace Tx(X) + x.

Now consider X × 0 ⊂ RN × RN and the subspace

T (X) = {(x,v) : x ∈ X, v ∈ Tx(X)}.

T (X) is called the total tangent space of X. Observe that the first projection π : RN×RN →
RN restricts to a smooth map π : T (X) → X. We have for each x ∈ X, π−1(x) =
{x} × Tx(X) ⊂ {x} ×RN , which we shall identify with Tx(X) itself and treat it as a linear
subspace of RN .

Now suppose Y is a l-dimensional manifold in RM and f : X → Y is a smooth map.
We would like to define the derivative of f to be a map D(f) : T (X) → T (Y ). Indeed for
each x ∈ X, we will define D(f)x : Tx(X) → Ty(Y ) to be a linear map, where y = f(x). So,
suppose that ψ : V → Y is a local parameterization for Y at y. Since f is continuous and
ψ(V ) is open, f−1(ψ(V )) is open. We choose a local parameterization φ : U → X for X at
x such that φ(U) ⊂ f−1(ψ(V )).

X

0 0
U V 

ϕ ψ

Y

h

g

f

x
y

Figure 15 Using local coordinates to define the derivative.

Now consider the map h = f ◦φ : U → RM , which is smooth on U. So, D(h)0 : Rk → RM

is a linear map. Since D(φ)0 : R
k → Tx(X) is an isomorphism, it makes sense to take

D(f)0 := D(h)0 ◦ (D(φ)0)−1 : Tx(X) → R
M

which is clearly a linear map. Put g = ψ−1 ◦ f ◦ φ. Then ψ ◦ g = f ◦ φ = h, and hence it
follows that the image of D(h)0 is contained in the image of D(ψ)0(Rl) = Ty(Y ).

It remains to prove that D(f)0 as defined above is independent of the choice of φ. So,
let φ1 be another parameterization for X at x and let h1 = f ◦ φ1. We have to show that

D(h1)0 ◦ (D(φ1)0)−1 = D(h)0 ◦ (D(φ)0)−1.

Let α : W → Rk be a smooth extension of φ−1
1 where W is open in RN , such that x ∈

W ∩X ⊂ φ(Rk) ∩ φ1(Rk). Then, it follows that h = f ◦ φ1 ◦ α ◦ φ and hence,

D(h)0 = D(f ◦ φ1 ◦ α ◦ φ)0
= D(h1)0 ◦D(α)x ◦D(φ)0 = D(h1)0 ◦ (D(φ1)0)−1 ◦D(φ)0

which proves the claim.

It is straightforward to verify that the chain rule holds for the derivatives of functions
on manifolds.

Remark 3.3.1 Here is an alternative approach to D(f). Let f̂ be any smooth extension
of f in a neighborhood of x in RN . Take

D(f)x = D(f̂)x|Tx(X). (3.2)



Tangent Space 85

We have to verify that the right-hand side (RHS) of (3.2) is independent of the extension
f̂ chosen. We refer to the Remark 1.6.1 (iii). By the injective form of implicit function
theorem, there exists a neighborhood W of 0 ∈ R

N and a diffeomorphism α : W → W ′

onto a neighborhood of x ∈ X ⊂ RN such that U = W ∩Rn × 0 and α|U = φ : U → X is a
parameterization of X near x. Then D(f̂ ◦ α)|Rn×0 = D(f ◦ φ) for all extensions f̂ of f. It
follows that D(f̂) restricted to Tx(X) = D(φ)0(Rn) is independent of f̂ . Observe that (3.2)
implies that the image D(f̂x)(Tx(X)) ⊂ Tf(x)(Y ).

Definition 3.3.2 The tangent space T (X) together with the projection map π : T (X)→ X
is called the tangent bundle on X. In this sense, for any smooth map f : X → Y of manifolds,
we treat D(f) as a commutative diagram of maps

T (X)
D(f) 



��

T (Y )

��
X

f 

 Y

Remark 3.3.2
(i) Observe that for each point x ∈ X, there is the vector space π−1(x) ⊂ T (X). There are
other examples of bundles over a topological space. We shall meet at least one more such
example during this course. A simple way to consider a bundle over X is to take X × Rn

with the first projection. These bundles are called trivial bundles. In fact, a bundle (E, π)
over X is called trivial bundle, if there exists a homeomorphism F : E → X × Rm for
some m such that π1 ◦ F = π. Often, the homeomorphism is required to satisfy additional
structural conditions, depending upon the kind of bundles that we are dealing with. The
situation with the tangent bundle is that the fibre π−1(x) = x × Tx(X) over every point
has a vector space structure which is very important for us. Thus the homeomorphism F
above is required to be linear when restricted to each fibre: F : π−1(x) → {x}×Rm. It may
be a good idea to read the formal definition of a vector bundle etc. from section 5.5 before
reading the following examples and remarks or come back to them later.
(ii) Suppose now that X is a manifold with boundary ∂X �= ∅. The points in the interior
of X pose no problems in defining the tangent space—the old definition is applicable here
verbatim. Even if x ∈ ∂X, we still define the tangent space TxX in the same manner as
above. This is where Example 1.6.2 comes to our aid so that there is no ambiguity involved
because of the choice of the extension of the parameterization φ : Hn → X at x to a smooth
function defined in a neighborhood of 0 in Rn.

Example 3.3.1
(1) Taking (Rn, Id) as a single chart for Rn, it follows that at each point of x ∈ Rn, the
tangent space Tx(Rn) = Rn. Indeed, let (U, φ) be a local parameterization for a manifold
of dimension k and let V = φ(U). Consider

Ψ : U × R
k → T (X)

given by
(x,v) 
→ (φ(x), D(φ)x(v)).

Clearly Ψ is a smooth map (provided φ is at least of class C2). It is also injective and the
image π−1(V ) =: T (V ) is an open subset of T (X). It is easily seen that the inverse map is
also smooth and hence Ψ defines a local parameterization for T (X). From this we see that
T (X) itself is a manifold of dimension 2k. This discussion also shows that as a bundle T (X)
is locally trivial.
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(2) Let V be any k-dimensional vector subspace of Rn. As before we get a linear bijective
mapping φ : Rk → V. For every point x ∈ Rk, we have D(φ)0 = φ and hence Tv(V ) = V
for every v ∈ V. Indeed, if φ−1 : V → R

k is the inverse of φ then the map

(v,w) 
→ (v, φ−1(w))

defines a diffeomorphism of T (V ) onto V ×R
k as a trivial bundle. As a subspace of R

n×R
n,

T (V ) is equal to V × V.
(3) Consider the unit circle S1. We can use the global parameter φ : t 
→ (cos t, sin t) defined
on R. The tangent space at a point a = (cos t0, sin t0) is then the image of D(φ)a = the line
spanned by the unit vector (− sin t0, cos t0), which is nothing but the line perpendicular to
the position vector of the point a. Thus, we see that T (S1) = {(x, ıαx) : x ∈ S1, α ∈ R} is
diffeomorphic to S1×R. Indeed, this shows that the tangent bundle of S1 is a trivial bundle.

Remark 3.3.3

1. A n-manifold with a trivial tangent bundle is called a parallelizable manifold. This
is the same as having n vector fields σi such that at each point of the manifold, the
tangent vectors {σi(x)} are independent in TxX. We shall see that S3 and S7 are
parallelizable (see exercises below). We shall also see that S2n is not parallelizable
(see remark 7.3.2). It is a deep result that the spheres S2n−1, n �= 1, 2, 4 are not
parallelizable, the proof of which is beyond the scope of this book (see [Hus]). Indeed,
counting maximum number of independent vector fields on some special types of
manifolds itself has become a big branch of Differential Topology.

2. Let X be a submanifold of Y and i : X → Y be the inclusion map. What is D(i)x
for x ∈ X? In the case, Y = RN , we already know that D(i)x : Tx(X) → RN is the
inclusion map. Therefore, for the inclusion maps j1 : X → RN and j2 : Y → RN , we
know that both D(j1) and D(j2) are inclusion maps. But j1 = j2 ◦ i and by chain
rule, D(j1) = D(j2) ◦D(i). Therefore, D(i) : TxX → TxY is also the inclusion map.

Exercise 3.3

1. Show that if f : X → Y is a diffeomorphism then D(f) : T (X) → T (Y ) is a diffeo-
morphism. (Thus, the tangent space is a diffeomorphic invariant.)

2. Compute D(f) where f : S1 → S1 is given by z 
→ zn.

3. Suppose X is a manifold such that T (X) is trivial. If U is an open subset of X, show
that T (U) is trivial.

4. Let V be a vector subspace of R
n of dimension k. Exhibit explicitly the tangent space

of V (as a subspace of R
n × R

n). Next if L : V → W is a linear map, where W is a
vector subspace of Rm, write down explicitly D(L).

5. Let X ⊂ R
n be a closed subset and a manifold. Define ρ : Rn → R by

ρ(z) = d(z,X) := inf {d(z, x) : x ∈ X}

where d denotes the euclidean distance function. Show that
(a) there exists x0 ∈ X such that ρ(z) = d(z, x0) and
(b) for any x ∈ X satisfying (a), the vector z − x is perpendicular to TxX.
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6. Let X be an n-dimensional smooth manifold in RN . Show that for any point x ∈ X,
there exist n coordinate projections xi1 , . . . , xin , which when restricted to a suitable
neighborhood of x in X, give a coordinate chart for X. [Hint: There is such a set of
coordinate projections, which when restricted to Tx(X), is independent.] Deduce that
after a suitable permutation of coordinates, a neighborhood of x ∈ X is the graph of
a smooth function f : U → RN−n where U ⊂ Rn is open.

7. Use coordinates (. . . , xj , yj, zj , wj , . . . , ) for R
4n. Check that

(. . . , xj , yj , zj, wj , . . . , ) 
→ (. . . ,−yj, xj ,−wj , zj, . . . , )

defines a unit vector field on the sphere S4n−1. Likewise, by merely permuting the
four symbols (x, y, w, z) and choosing appropriate signs produce two more unit vector
fields, so that all the three vector fields are mutually orthogonal. (In particular, this
proves that S3 is parallelizable.)

8. Use the coordinates (a, b, c, d, e, f, g, h) ∈ R8 to write-down seven mutually orthogonal
vector fields on S7 following a method similar to the one in the above exercise. Here
are two of them.

(a, b, c, d, e, f, g, h) 
→ (b,−a, d,−c,−f, e,−h, g)

and
(a, b, c, d, e, f, g, h) 
→ (c,−d,−a, b, g,−h,−e, f).

Follow the same method to produce seven mutually orthogonal vector fields on S8n−1.

3.4 Special Types of Smooth Maps

Throughout this section, X,Y, etc., will denote manifolds unless specified otherwise.

Definition 3.4.1 We say f : X → Y is immersive (resp. submersive) at x ∈ X if (Df)x is
injective (resp. surjective.) If this is true at every point of X then we say f is an immersion
(respectively, a submersion). Finally, we say f is an embedding if f is a diffeomorphism of
X onto its image f(X).

Remark 3.4.1 Observe that if f is immersive at a point then it is immersive at all points
in a neighborhood of that point. Also, it is injective in a small neighborhood of this point.
However, an immersion need not be globally injective as seen by the example x 
→ e2πıx.
Clearly, if an immersion f : X → Y exists, then dimX ≤ dimY. Similar statements hold
for submersions. Also, observe that if f is an embedding, then f(X) is clearly a manifold
diffeomorphic to X.

These special classes of smooth maps are very useful in the study of Differential Topology.
To begin with, we shall see that they can be used to identify certain submanifolds. Before
proceeding further, let us recall “proper maps”.

Definition 3.4.2 A continuous function f : A→ B of topological spaces is called a proper
map if for every compact subset K of B, we have f−1(K) is compact.

Remark 3.4.2 It follows easily that if B is Hausdorff then every map f : A → B from
a compact space A is proper. Indeed properness hypothesis on maps is a clever device
introduced to take care of the vast situations wherein the domain is not compact.
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Theorem 3.4.1 Let f : X → Y be a smooth, proper, injective immersion. Then Z = f(X)
is a submanifold and f : X → Z is a diffeomorphism. Moreover, Z is a closed subset of
Y. Conversely, if Z is a closed subset of Y, which is also a submanifold of Y then Z is the
image of a smooth, proper, injective immersion.

Proof: We shall first show that f is a homeomorphism onto Z. This is equivalent to show
that f : X → Z is an open mapping. Let U be an open subset in X and suppose that
f(U) is not open in Z. Then there exists a sequence yn = f(xn), say, in Z \ f(U) such that
yn → y and y ∈ f(U), say y = f(x), for some x ∈ U. Since K = {y} ∪ {yn : n ≥ 1} is a
compact subset of Y and f is proper, it follows that f−1(K) is compact. Any sequence in
a compact set has a subsequence that is convergent. Hence, after passing to a subsequence,
if necessary, we may assume that xn → x′ say. Since xn ∈ X \U, a closed subset, it follows
that x′ �∈ U. But then f(x′) = lim f(xn) = lim yn = y = f(x). Since f is injective, we have,
x = x′ ∈ U, a contradiction. Hence, f is a homeomorphism onto Z.

(Indeed, we have just proved the following: a continuous proper bijection of two metric
spaces is a homeomorphism.)

In order to show that Z is a submanifold, let x ∈ X be any point and y = f(x). Choose
a chart (U,ψ) at y for Y and consider g = ψ ◦ f on V = f−1(U). It is enough to show
that g(V ) is a submanifold of Rm. Thus, we have reduced the problem to the case when
Y = R

m. Similarly, by precomposing with a parameterization at x for X, we may assume
that X = Rn.

Now by the injective form of implicit function theorem, there is a diffeomorphism α :
W → Rm of some neighborhood W of 0 in Rm, such that

α ◦ f(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

Put β = α−1|Rn×0. Then β is a parameterization for f(X).
This also proves the smoothness of f−1 since β(x, 0) = f(x). Hence, f is a diffeomor-

phism.
To show that Z is a closed subset of Y, let yn = f(xn) be a sequence converging to

y ∈ Y. Now argue exactly as in the proof that f : X → Z is an open mapping to see that
y ∈ Z.

The converse is obvious: we simply take X = Z and f as the inclusion map. ♠

Example 3.4.1 As a typical counterexample consider the mapping f : R → R
2, which

traces the figure-eight curve:
f(t) = (sinπt, sin 2πt).

If g is the restriction of f to the open interval (−1, 1), it is not difficult to see that f is an
injective immersion. However, the image fails to be a manifold precisely at the point (0, 0).
This failure can be attributed to the fact that g is not a proper map.

f

1−1

Figure 16 An injective immersion that does not yield a submanifold.

Submersive maps have a special role to play. We first make a few a definitions.



Special Types of Smooth Maps 89

Definition 3.4.3 Let f : X → Y be a smooth map of manifolds. We say x ∈ X is a regular
point for f if Dfx is surjective. A point that is not regular may be referred to as critical or
singular. We say y is a regular value if all points of f−1(y) are regular for f. Thus, we see
that if f−1(y) = ∅ then clearly y is a regular value. [This is a typical case of a phenomenon
in modern mathematics wherein a red herring need be neither red nor a herring.]

Remark 3.4.3 We shall denote the set of regular points of f by Rf and the set of critical
points of f by Cf := X \ Rf . We shall denote the set of regular values of f by Vf . Note
that Vf ∩ f(X) ⊂ f(Rf ) and often these two sets are not equal. It is an easy consequence
of the implicit function theorem that,

Rf ⊂ X, f(Rf ) ⊂ Y, , Vf ⊂ Y

are all open.

The following theorem that may be also called regular inverse image theorem, is of
utmost importance to us. It is a direct consequence of the surjective form of implicit function
theorem.

Theorem 3.4.2 Preimage Theorem: Let X and Y be boundaryless manifolds. Let f :
X → Y be a smooth map, dimX = n, dimY = m. Then for all regular values y of f the
inverse image W = f−1(y) is either empty or is a closed submanifold of X of codimension
m. Moreover, the tangent space to W at any point w ∈W is precisely the kernel of Dfw.

Proof: Being the inverse image of a single point, clearly W is closed. In order to show that
it is a submanifold, by composing f with a chart at y for Y, we may assume that Y = Rm

and y = 0. Similarly, by precomposing with a parameterization for X at x ∈ W, we may
assume that X = R

n. But then the claim follows directly from the surjective form of the
implicit function Theorem 1.4.4. ♠

Example 3.4.2 As we know already, this theorem can be used to produce a large number
of submanifolds of Euclidean spaces. Typical examples of these are conics in R2, quadratic
hypersurfaces in Rn such as the sphere, ellipsoids, hyperboloids, etc.

Let us now discuss a few important examples occurring in the space of matrices. We
know that the space M(n,R) of n × n real matrices can be thought of as the Euclidean
space Rn

2
. A standard notation here is Rm×n, which indicates that we are considering the

Euclidean space Rmn as the space of all m × n matrices with real entries instead of space
of column vectors of column-size mn.

Consider the mapping det : M(n,R) → R the determinant mapping. It is indeed a poly-
nomial mapping and hence is smooth. Now, the space GL(n,R) of all invertible matrices
is the inverse image of the open set R \ {0} under this mapping and hence is an open sub-
manifold of M(n,R). Also, its total tangent space is actually equal to GL(n,R)×M(n,R).
Likewise the space S(n) of all symmetric matrices, being a vector subspace of dimension
n(n + 1)/2, is a closed submanifold of M(n,R). (Similarly the space of all antisymmetric
matrices is a closed submanifold of dimension n(n− 1)/2.) We also know that the tangent
space to any vector subspace V of the Euclidean space is V × V itself.

Now consider, the space O(n) of all orthogonal matrices in M(n,R) :

O(n) := {A ∈M(n; R) : AAt = Id}.

Thus, if τ : M(n,R) → S(n) is defined by τ(A) = AAt, then O(n) = τ−1(Idn). Since τ is
easily seen to be smooth map, this leads us to the question whether Id is a regular value
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for τ or not. To check this, we must fix some B ∈ O(n) and compute DτB . This has been
done in (1.43).

We have DτB(A) = ABt + BAt for all A ∈ M(n,R). To show that for each fixed
B ∈ O(n) the mapping A 
→ ABt +BAt is surjective onto the space S(n) of all symmetric
matrices, given C ∈ S(n), we consider A = 1CB. Since BBt = Id, we get ABt = 1

2C. Also,
since C is symmetric, we have BAt = 1

2C
t = 1

2C and hence ABt +BAt = C.
It follows that O(n) is a submanifold of M(n,R) of codimension equal to n(n+1)/2 and

hence dimO(n) = n2 − n(n + 1)/2 = n(n − 1)/2. Moreover, the tangent space to O(n) at
any point can now be identified with the kernel of Dτ. At B = Id, this is easily seen to be
the space of all antisymmetric matrices.

Example 3.4.3 Consider S = {(A, t) ∈ M(n; R)× R : t(detA) = 1}. It is easily verified
that every nonzero real number is a regular value of f(A, t) = t(detA). Therefore S = f−1(1)
is a smooth submanifold of M(n; R) × R. It is also easily verified that A 
→ (A, 1/det, A)
defines a diffeomorphism of GL(n; R) with S. Thus GL(n,R) is the zero set of a polynomial
in n2 + 1 variables, which makes it an affine variety.

Another rich source of obtaining manifolds and closely related to the preimage theorem
is the “Jacobian criterion”. The difference is that instead of implicit function theorem, we
have to appeal to the rank theorem. Below, we state this criterion, the details of the proof
of which is left to the reader as an exercise.

Theorem 3.4.3 Jacobian Criterion: Let f : X → Y be a smooth map of manifolds.
Suppose Dfx is of constant rank r throughout X. Then for any point y ∈ Y, W = f−1(y) is
either empty or is a closed submanifold of X of codimension r. Moreover, the tangent space
TxW of x ∈W is the kernel of Dfx : TxX → TyY.

Example 3.4.4 The Rank Manifolds Rk(m,n; R) : Here is an important class of sub-
manifolds of the space of matrices, which do not occur, in general, as regular inverse image
of some nice functions as such.1 Let

Rk(m,n; R) = {A ∈ R
m×n : rankA = k}.

We shall show that this is a smooth submanifold of the Euclidean space R
m×n, of codi-

mension (m − k)(n − k). Let Cn,k denote the set of all k-subsets of the set {1, 2, . . . , n}.
For α ∈ Cn,k, let Uα denote the open subset of Rk(m,n; R) consisting of those matrices
A whose columns corresponding to the indices α1, . . . , αk are independent. It is clear that
Rk(m,n; R) = ∪α∈Cn,k

Uα. Therefore, it is enough to show that each Uα is diffeomorphic to
an open subset of R

t, where t = mn− (m− k)(n− k) = k(m+ n− k).
First, consider the case when α = {1, 2, . . . , k}. Let W be the open set of all elements

in Rm×k of maximal rank k. Consider the map

φ : W × R
k×(n−k) →Rk(m,n; R)

given by
(B,C) 
→ [B,BC].

The smoothness of this map is clear. It is elementary linear algebra to verify that φ is a
bijective map onto the open set Uα of Rk(m,n; R). Being a rational function, the inverse is
also a smooth map.

Now, in the general case, the map φα is nothing but φ as above followed by an appropriate
permutation of columns; and hence all the claims made in the special case are valid.

1In the language of Algebraic Geometry, this phenomenon can be expressed by saying that Rk(m, n; R)
is not a complete intersection, in general. See exercise 24 in 3.7.
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Example 3.4.5 Steifel Manifolds Vk,n : For integers 1 ≤ k ≤ n, let Vk,n denote the
subspace of Rn×k of k-tuples (v1, . . . ,vk) of vectors vj ∈ Rn such that 〈vi,vj〉 = δij . These
are called orthonormal k-frames in R

n. Let φ : Rk(n, k; R) → S(k) ⊂ R
k×k be defined by

φ(A) = AtA. If we write A = [u1, . . . ,uk] where uj are columns of A then we have,

φ(A) = φ[u1, . . . ,uk] = ((〈ui,uj〉)).

One can write down the matrix form for D(φ), using the double-indices {(i, j), 1 ≤
i ≤ m, 1 ≤ j ≤ n}. Check that the columns corresponding to (i, j) for 1 ≤ i ≤ j ≤ k are
independent, whereas other columns are repetitions. [Write down the matrix of Dφ for some
small values of k and n.] Therefore, it follows that the rank of Dφ is equal to k(k + 1)/2
everywhere and hence, by the Jacobian Criterion, Vk,n = φ−1(Idk) is a submanifold of
Rk(n, k; R) of codimension = k(k+ 1)/2. It is clear that Vk,n is a closed subspace of Sn−1×
· · · × Sn−1 (k-copies) and hence is compact. Also note that V1,n = Sn−1 and Vn,n = O(n),
the space of the orthogonal group and Vn−1,n = SO(n), the space of special orthogonal
group. (See exercise 2 at the end of the section.)

We now consider an extension of Theorem 3.4.2 to the case when X may have boundary.
The importance of such a result being more or less obvious, will, in any case, be demon-
strated in a later section. We begin with:

Lemma 3.4.1 Let S be a manifold without boundary and π : S → R be a smooth map
such that 0 is a regular value of π. Then {s ∈ S : π(s) ≥ 0} is either empty or is a manifold
of the same dimension as S with boundary equal to {s ∈ S : π(s) = 0}.

Proof: The set {s ∈ S : π(s) > 0} is an open subset of S and hence is a submanifold.
(What happens if it is empty?) So, let s ∈ S be such that π(s) = 0. By the surjective form
of implicit function theorem, we may as well assume that π is a coordinate projection in a
neighborhood of s ∈ S and then the result is obvious. ♠

Theorem 3.4.4 Extended Preimage Theorem: Let X,Y be smooth manifolds, ∂Y = ∅,
f : X → Y be a smooth map and y ∈ Y be a regular value for both f and f |∂X . Then
W := f−1(y) is either empty or is a neat submanifold of X of codimension = dimY. Also,
for all x ∈W, we have, TxW = ker (Dfx).

Proof: Clearly W is a closed subset of X. As in the boundaryless case, from the Implicit
Function Theorem 1.4.3, it follows that W ∩ int(X) and W ∩ ∂X are both submanifolds,
the former being a manifold without boundary. So, we have to analyze the situation at a
point x ∈ W ∩ ∂X.

H
V 

S
R

π
n

n−1

0

Figure 17 A neat submanifold produced by preimage.

By choosing a parameterized neighborhood of x in X, etc., we reduce the entire situation
to the case of a map f : Hn → Rk, x = 0, f(0) = 0 and 0 ∈ Rk is a regular value of both f
and ∂f. The smoothness of f means that f has a smooth extension f̃ in a neighborhood U
of 0 in R

n. Also by definition Df = Df̃ and hence Df̃0 is surjective. From the result that we
have proved in the boundaryless case, it follows that for a smaller neighborhood V of 0 in
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Rn, we have, S = f̃−1(0)∩V is a codimension k submanifold. Clearly, Hn∩S = f−1(0)∩V
and hence, we must show that Hn ∩ S is a manifold with boundary ∂Hn ∩ S. For this,
we consider the last coordinate projection π : V → R and claim that 0 is a regular value
for π|S . Since Hn ∩ S = {x ∈ S : π(x) ≥ 0}, by appealing to the lemma above, this will
complete the proof.

To show that D(π|S) : T0(S) → R is a nonzero map, assume the contrary. This means
that T0(S) ⊂ Rn−1. But T0(S) = KerDf̃0 and Df̃0|Rn−1 = Df0|Rn−1 = D(∂f)0. Therefore,
KerDf̃0 = KerD(∂f)0. On the other hand, both maps are surjective and hence by the
rank-nullity theorem, nullity of Df̃0 is n− k whereas that of D(∂f)0 is n− 1− k, which is
absurd. ♠

Remark 3.4.4
(i) In Figure 17, the curve S and the x-axis intersect in a very special way. In layman’s
language, one may say that the two curves “cross” each other at the point of intersection.
Now consider another situation in which S is the graph of y = x3. Here also the curve S
crosses the x-axis. But there is a difference, viz., the curve appears to “linger on” a little,
before crossing over. Mathematically, this can be described in a very neat way. The tangent
to the graph y = x3 coincides with the tangent to the x-axis, whereas in the situation of
Figure 17 the two tangent lines are different. This leads us to the geometric concept called
“transversality” which is going to play a big role in the rest of the development of the
subject and we propose to take it up in the next section.
(ii) Discussion of regular values of maps between manifolds of the same dimension deserves
some special attention. We end this section with a result that we come across in many
situations.

Theorem 3.4.5 Stack-Record Theorem: Let X be compact and f : X → Y be a smooth
map of manifolds of the same dimension and without boundary.
(i) If y ∈ Y is a regular value, then f−1(y) is a finite set = {x1, . . . , xk} and there exist open
neighborhoods Ui of xi and V of y such that f : Ui → V is a diffeomorphism for 1 ≤ i ≤ k
and f−1(V ) = �ki=1Ui, a disjoint union.
(ii) On the space of regular values of f, the number of points #(f−1(y)) is locally a constant
function.
(iii) If f is a submersion and Y is connected, then f is a covering map.

V

Ui

Figure 18 The records are stacked one over other.

Proof: (i) By the inverse function theorem, for every point x ∈ X such that f(x) = y, there
is an open set Ux in X such that x ∈ Ux, f : Ux → f(Ux) is a diffeomorphism and f(Ux) is
open in Y. In particular, this implies that f−1(y) is an isolated subset of the compact space
X and hence is a finite set, say f−1(y) = {x1, . . . , xk}. Therefore, there exists Wi ⊂ Uxi
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such that Wi ∩Wj = ∅, i �= j. Put V ′ = ∩ki=1f(Wi). We claim that there exists an open
neighborhood V of y contained in V ′, such that we have f−1(V ) ⊂ ∪ki=1Wi = W. By putting
Ui = Wi ∩ f−1(V ′), (i) follows.

Suppose the claim is not true. Then there will be a sequence zn ∈ X \W such that
f(zn) → y. Passing to a subsequence we may assume that zn → z. Then f(z) = y whereas
z �∈W and hence, cannot be equal to any of the x1, . . . , xk; a contradiction. (Observe that
this takes care of the case when y is not a value at all.)
(ii) Follows from (i). However, first notice that it also follows that the set of regular values
is an open set.
(iii) If f is a submersion, then f(X) is open. Since X is compact, f(X) is closed as well.
Therefore, f(X) = Y and every point of Y is a regular value. The conclusion (i) for every
point of Y means that f is a covering map. ♠

Exercise 3.4

1. Show that the following subsets of M(n,R) are submanifolds; determine their dimen-
sion and the tangent space at Idn.
(i) T = {A = ((aij)) : detA �= 0, & aij = 0, i < j}.
(ii) SL(n,R) = {A : detA = 1}.
(iii) SO(n) = {A ∈M(n,R) : AAt = Idn, & detA = 1}.
(iv) Op,q(R) = {A ∈M(n,R) : AJp,qAt = Jp,q}, where

Jp,q =
[
Ip 0
0 −Iq

]
, 1 ≤ p ≤ n− 1, p+ q = n.

(v) SOp,q = {A ∈ Op,q : detA = 1}.

2. Show that Vn−1,n is diffeomorphic to SO(n).

3. Identify the group of all rigid motions of R
n as a subspace of M(n+ 1,R) and show

that it is a manifold. Similarly identify the group of all affine isomorphisms of Rn with
a subspace of M(n+ 1,R) and show that it is a manifold. What are the dimensions?

4. Under the identification C = R2 show that the group U(n) of all n×n unitary matrices
(i.e., those which satisfy AA∗ = Id) form a manifold. What is the tangent space at
Id and what is the dimension?

5. Show that GL(n,C) is connected. Show that GL(n,R) has precisely two components.

3.5 Transversality

Definition 3.5.1 Let f : X → Y be a smooth map of smooth manifolds and let Z be a
submanifold of Y. We say f is transversal to Z, (written f ∩| Z) if for each point x ∈ X
such that y = f(x) ∈ Z, we have,

Im(Df)x + Ty(Z) = Ty(Y ).

Remark 3.5.1
(i) It may be noted that, no condition is imposed at points x ∈ X such that f(x) �∈ Z.
Thus, it follows that if f(X) ∩ Z = ∅, then f is transversal to Z in a vacuous way.
(ii) Consider the case when Z = {z} is a singleton. Then the above condition says that f is
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a submersion at x. This is true for each x ∈ f−1{z} iff z is a regular value for f. Therefore,
we see that the notion of transversality is a generalization of the notion of regularity. This
will become more evident in the proof of the following theorem.

Theorem 3.5.1 Transversal Inverse Image Theorem: Let f : X → Y be a smooth map
and Z ⊂ Y be a submanifold of codimension k, where Z and Y are boundaryless. Suppose
that f∩| Z and ∂f∩| Z where ∂f := f |∂X . Then f−1(Z) =: W is a submanifold of X of
codimension = k such that ∂W = ∂X ∩W. Moreover, we have Tx(W ) = (dfx)−1(Tf(x)(Z)),
for every x ∈W.

Proof: We shall prove this theorem by reducing it to the case of the Preimage Theorem
3.4.2, as follows:

Let x ∈ W be any point. Choose a coordinate neighborhood (U, φ) at y = f(x) such
that, Z ∩ U = {y : φ1(y) = · · · = φk(y) = 0}, where φ = (φ1, . . . , φn). Let p denote the
projection to the first k factors in the Euclidean space, so that we can rewrite Z ∩ U =
(p ◦ φ)−1(0). Observe that p ◦ φ is a submersion. Hence, by the Preimage Theorem 3.4.2,
we have, Ty(Z) = Ty(Z ∩ U) = Ker d(p ◦ φ)y . Now consider the map g : V → R

k given by
g = p ◦ φ ◦ f, where V = f−1(U). Then clearly W ∩ V = g−1(0). Thus, if we prove that 0 is
a regular value of g, then from the Preimage Theorem, the conclusion of the above theorem
follows.

Therefore, to see that Dg is surjective, let v ∈ Rk be any vector. Since d(p ◦ φ) is
surjective, there exists u ∈ Ty(Y ) such that d(p◦φ)(u) = v. Now from the hypothesis of the
theorem, we can write u = (df)x(w1) +u2, where u2 ∈ Ty(Z). Therefore, v = d(p◦φ)(u) =
(dgx)(w1), since d(p ◦ φ)(u2) = 0.

Finally, for the last part, we have,

TxW = (dgx)−1(0) = (dfx)−1(d(p ◦ φ)y)−1(0) = (dfx)−1TyZ,

as required. This completes the proof. ♠

Remark 3.5.2 It should be remarked that, in the above theorem, the hypothesis on f
restricted to V is indeed equivalent to say that g is a submersion. It is in this strong
sense that we say that transversality is a generalization of the regularity. Thus, taking
transversal inverse images of already known manifolds is another sure way of constructing
new manifolds.

Example 3.5.1 Let us now examine a few simple examples of transversal maps. Consider
Y = R2 and let Z be the real axis. Consider the map f : R → R2 given by t 
→ (t, at + b.)
For a = 0 = b, f maps R inside Z. At any point t ∈ R, we then have dft = (1, 0) and hence
the image of df is contained in the tangent space to Z. Thus, f is not transversal. However,
for a �= 0, the only point t ∈ R for which f(t) ∈ Z is t = −b/a, and at this point df = (1, a).
Therefore, the image of df is the line y = ax which, together with the tangent space to Z,
spans R2. We conclude that, f is transversal to Z iff a �= 0 or b �= 0. Now consider the map
g(t) = (t, p(t)), where p(t) is some polynomial function of some higher degree. The points
common to the image of g and Z are given by the roots of the polynomial p(t). At such a
root t0, the derivative is given by df = (1, p′(t0)). Therefore, the image of df at such a point
is not contained in Z iff p′(t0) �= 0, which is the same as saying that t0 is not a multiple
root of p(t). Thus, g is transversal to Z iff p(t) has no multiple real roots.

As a typical counterexample, take p(t) = t3. As observed in Remark 3.4.4, the graph of
p crosses the x-axis at the origin. Yet it is not a “point of transversal intersection”.
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Exercise 3.5

1. Consider the hyperboloid x2 +y2−z2 = 1 and the sphere x2 +y2+z2 = a2. Determine
the values of a for which the intersection is transversal.

2. Let X,Z be submanifolds of Y . Say X is transversal to Z if ιX : X ↪→ Y is transversal
to Z. Show that this is equivalent to say that for every y ∈ X∩Z, we have, Ty(X∩Z) =
Ty(X) ∩ Ty(Z). In particular, this implies that the inclusion map ιY : Z → Y is
transversal to X. Thus, the symmetric terminology, “X,Z intersect transversally” for
this property is justified.

3. Given smooth maps f : X → Y and g : Y → Z and a submanifold W of Z, such
that g is transversal to W, show that g ◦ f is transversal to W iff f is transversal to
g−1(W ).

4. Give an example to show that the intersection of two submanifolds can still be a
manifold even though they are not intersecting transversally. In such a case, what can
be said about the dimension of the intersection? Illustrate with examples.

3.6 Homotopy and Stability

One of the important aspects of the algebraic and differential topology is to study
properties that remain invariant under a deformation or a homotopy. Recall that by a
homotopy we mean a continuous map F : X × I → Y, where X,Y are any two topological
spaces and I denotes the unit interval. We write, for each t ∈ I, ft(x) = F (x, t), x ∈ X
and say that f0 is homotopic to f1. In fact by a reparameterization, we can see that ft and
fs are also homotopic for any t, s ∈ I. A property that remains invariant under “small”
deformations is called a stable property. More precisely, suppose P is a property of a map
f : X → Y. Then P is said to be stable if for all homotopies F : X × I → Y of f (i.e.,
f0 = f,) ft possess the property P, for all 0 ≤ t ≤ ε, for some ε > 0. Thus, the study of
stability property can be termed as a “local behavior” under homotopies (deformations).

While dealing with smooth maps of manifolds f : X → Y, it is not unreasonable to
demand that the homotopy F of f is also a smooth map. Later on, we shall see that this
is indeed not too much of a restriction. So, from now on, we shall assume that a homotopy
F is a smooth map also. The following theorem tells you that many interesting properties
that we studied so far are all stable.

Definition 3.6.1 For any homotopy F : X × I → Y, the track of F is defined to be the
map F̃ : X × I → Y × I given by F̃ (x, t) = (F (x, t), t).

Lemma 3.6.1 Given any smooth map F : X × I → Y and a point q = (x, s) ∈ X × I, we
have rank (DF̃ )q = rank (Dfs)x + 1.

Proof: First consider the case when X = R
m and Y = Rn. Then D(F̃ )q is represented by

a (n+ 1)× (m+ 1) matrix of the form the

D(F̃ )q =
[
As �
0 1

]

where As = (Dfs)x, fs(x) = F (x, s). Hence, the conclusion.
In the general case, take a coordinate neighborhood (U, φ) at y = F (x, s) and a

parameterization (Rn, ψ) at x for X such that F (ψ × Id)(Rn × I) ⊂ U and consider
G = φ ◦ F ◦ (ψ × Id) : Rm × I → Rn in place of F. ♠
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Theorem 3.6.1 Let f : X → Y be a smooth map of manifolds where ∂X = ∅ and X is
compact. Then all of the following properties of f are stable properties:
(a) Immersion.
(b) Submersion.
(c) Local diffeomorphism.
(d) Transversal to a given submanifold Z ⊂ Y.
(e) Embedding.
(f) Diffeomorphism.

Proof: Let F : X × I → Y be a homotopy of f and F̃ be its track.
(a) Let f be an immersion. This means that at each point x ∈ X, the rank of Dfx is equal to
the dimension of X. Then by the lemma above, D(F̃ )(x,0) is injective, i.e, F̃ is an immersion
at (x, 0) for all x ∈ X. By the injective form of implicit function theorem 1.4.5, there exist
neighborhood Ux of x and εx > 0 such that F̃ |Ux×[0,εx) is an immersion. Since X is compact,
there exist finitely many points xi such that X = ∪iUxi. Take ε = min{εxi}. It follows that
F̃ |X×[0,ε) is an immersion. But then from the above lemma, we conclude that fs is also an
immersion for all 0 ≤ s ≤ ε, as required.
(b) Simply replace the word “immersion” by “submersion” everywhere in the proof of (a).
(c) This is a special case of (a) or (b) when dimX = dimY.
(d) Let x ∈ X and f(x) = y ∈ Z. Let dimZ = k. Choose a coordinate neighborhood (U, φ)
at y for Y such that Z ∩ U is given by vanishing of φ1, . . . , φk. Consider the composition
H = π ◦ φ ◦ F in a neighborhood of (x, 0) say, in V × [0, α). Here π : Rn → Rn−k is the
projection to the last n − k coordinates space. As in the proof of Theorem 3.5.1, to say
that f |V is transversal to Z is equivalent to say that H |V×0 is a submersion. Now by the
surjective form of implicit function theorem 1.4.4, conclude that H |W×[0,β) is a submersion,
for a neighborhood W of x and for β > 0. This means that ft|W is transversal to Z for
all t ∈ [0, β). Now, use the compactness of X to get a finite cover and choose ε to be the
minimum of the corresponding positive numbers βi.
(e) Since X is compact, any continuous map to a Hausdorff space Y is proper. Thus, in
view of (a), and Theorem 3.4.1, the only thing that needs to be proved is injectivity of ft for
sufficiently small t. If this is not true, then for all n, we can find xn �= x′n ∈ X and 0 ≤ tn ≤
1/n such that F (xn, tn) = F (x′n, tn). By the compactness of X, passing to subsequences
if needed, we can assume that xn → x0, and x′n → x′0. Then F (xn, tn) → F (x0, 0), and
also F (x′n, tn) → F (x′0, 0). This means that f(x0) = F (x0, 0) = F (x′0, 0) = f(x′0). Since f
is injective this means that x0 = x′0. On the other hand, by the injective form of implicit
function theorem, it follows that there exists a neighborhood U× [0, ε) of (x0, 0) such that F̃
is injective in this neighborhood. Then for large n, we have (xn, tn), (x′n, tn) ∈ U × [0, ε) and
we have, F (xn, tn) = F (x′n, tn). This means that F̃ (xn, tn) = F̃ (x′n, tn) and hence xn = x′n,
for all sufficiently large n, which is a contradiction.
(f) Observe that since f is a diffeomorphism, dimX = dimY. Again in view of (e), it
remains to prove that ft is also surjective. Since, connected components are mapped inside
connected components, we may as well assume that both X and Y are connected. It now
follows that for small t, ft being a submersion, is an open mapping. Hence, ft(X) is an open
subset of Y. It is also closed because X is compact. Hence, ft(X) = Y, as required. ♠

Exercise 3.6 Let f : X×Y → Z be a smooth map and let F : X×Y → Z×Y, be defined
by F (x, y) = (f(x, y), y). For any point y ∈ Y, let fy(x) = f(x, y). Show that for any point
(x, y) ∈ X × Y, we have rank DF(x,y) = rank D(fy)x + n, where n = dimY. (Compare
Lemma 3.6.1.)
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3.7 Miscellaneous Exercises for Chapter 3

Throughout these exercises, X,Y etc. denote manifolds in RN or HN .

1. Give an explicit atlas for S1 × S1. What is the minimum number of charts needed?

2. For what values of r, does the equation z2 − x2 − y2 = r2 define a manifold?

3. For positive real numbers a, b consider the set S(a, b) of points P ∈ R
3, which are

at a distance b from the circle x2 + y2 = a. Show that for 0 < b < a, S(a, b) is a
2-dimensional manifold and identify this manifold. What happens when a = b and
b > a?

4. The graph of a function f : X → Y is defined to be

Γ(f) = {(x, y) ∈ X × Y : y = f(x)}.

Show that if X,Y are smooth manifolds and f is smooth then Γ(f) is a submanifold
of X × Y and is diffeomorphic to X.

5. Let f : X → Y be a continuous map of differentiable manifolds such that Γ(f) is
a smooth submanifold of X × Y. Does this imply that f is differentiable? [Compare
Exercise 3.3.6 and Example 3.1.1.4. Hint: Example 1.6.1.3.]

6. Let V be a vector subspace of Rn. Show that the tangent space Tx(V ) = V for all
x ∈ V.

7. Exhibit a basis for the tangent space of the paraboloid x2 + y2 − z2 = 1 at the point
(1, 0, 0).

8. For any two manifolds X and Y without boundary, show that

T(x,y)(X × Y ) = TxX × TyY.

Compute dp where p : X × Y → Y is the projection.

9. For smooth maps f : X → X ′, g : Y → Y ′, show that d(f × g) = df × dg.

10. Compute d(η), where η : X → X ×X is the diagonal map x 
→ (x, x).

11. Prove that the tangent space to the graph of a smooth map f : X → Y at (x, f(x))
is the graph of the tangent map

dfx : Tx(X) → T(x,f(x))(X × Y ).

12. Let c : I → X be a smooth curve where X is a smooth manifold. The velocity vector
to c at t = s is defined to be the vector dcs(1) ∈ Tc(s)(X). We denote this simply by
dc
dt

∣∣
s
. If X = Rn and c(t) = (c1(t), . . . , cn(t)) then check that

dcs(1) =
dc

dt

∣∣∣∣
s

= (c′1(s), . . . , c′n(s))

Prove that every vector in Tx(X) is the velocity vector of some curve in X passing
through x. (This exercise gives an alternate description of the tangent space.)

13. If f : R → R is a local diffeomorphism, then show that f is a diffeomorphism onto an
open interval.
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14. Show that the map z 
→ 2z3 − 3z2 restricts to a local diffeomorphism of C \ {0, 1}
onto C. Now, use the following fact that there is a complex differentiable map that
is a covering projection λ : D

2 → C \ {0, 1} (the modular function), to construct a
surjective holomorphic mapping B1(0) → C, which is a local diffeomorphism of the
open unit disc onto C.

15. Give an example of a surjective local diffeomorphism R2 → S2. [Hint: Consider z 
→
2z3 − 3z2/z + 1.]

16. Show that any injective local diffeomorphism f : X → Y is a diffeomorphism onto an
open subset, where X,Y are smooth manifolds.

17. Let f : X → Y, g : Y → Z be smooth maps. If f, g are embeddings then so is g ◦ f. If
g, g ◦ f are embeddings then so is f.

18. Let f : X → Y be a submersion. If X is compact and Y is connected, show that f is
surjective.

19. Let p(x1, . . . , xn) be a homogeneous polynomial of degree k with real coefficients. For
any r �= 0, show that p(X) = r defines a submanifold of Rn of codimension 1. Show
that if r1r2 > 0 then p(X) = r1 and p(X) = r2 define diffeomorphic submanifolds.
Give an example to show that the condition r1r2 > 0 cannot be dropped.

20. Let P1, . . . , Pn+1 ∈ Rn be any n+ 1 points that do not lie in a hyperplane. Consider
the mapping φ = (φ1, . . . , φn+1) given by φi(x) = 1

‖x−Pi‖ , i = 1, . . . , n+ 1. Show that
φ : Rn \ {P1, . . . , Pn+1} → Rn+1 is an embedding.

21. Let U be a nonempty open subset of Rn and φ(x) = d(x,Rn \ U). Show that

ψ(x) =
(
x,

1
φ(x)

)

defines a proper embedding of U in R
n+1.

22. Show that every rational function f(z) = P (z)/Q(z) (where P,Q are polynomials in
one variable) extends to a smooth map of f̂ : Ĉ → Ĉ, where Ĉ = S2 is the extended
complex plane (which is also called the Riemann sphere).

23. Fundamental Theorem of Algebra Let p(z) = zn + a1z
n−1 + · · ·+ an be a non-

constant polynomial with complex coefficients. Show that p has a root by making the
following simple observations:
(i) p is smooth.
(ii) p extends smoothly to a map Ĉ = S2 → S2.
(iii) p is a local diffeomorphism at z0 iff p′(z0) �= 0.
(iv) There are only finitely many critical points of p.
(v) #(p−1(w)) is finite for all w ∈ S2.
(vi) Property (ii) of Theorem 3.4.5 holds for p.
(vii) C \ S is connected where S is a finite set.
(viii) A locally constant function is a constant on a connected set.
(ix) p : C → C defines a surjective mapping.

24. In Example 3.4.4, we saw that the space R1(2, 2; R) of all 2× 2 real matrices of rank
1 is a 3-dimensional submanifold of R2×2. Display it as the regular inverse image of
a smooth map R2×2 \ {0} → R. Generalize this to the case of Rn−1(n, n; R). [Indeed,
among all Rk(m,n; R), this is as far as you can go– other Rr(m,n; R) are not even
intersection of an appropriate number of hypersurfaces.]
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25. Show that every closed subset of Rn is the intersection of Rn × 0 and another sub-
manifold Y of Rn+1. [Hint: Compare Corollary 1.7.2.]

26. For a linear map f : R
n → Rn show that the graph of f is transversal to the diagonal

Δ iff +1 is not an eigenvalue of f.

27. Let f : X → X be a smooth map with x as a fixed point. We say x is Lefschetz type
if +1 is not an eigenvalue of dfx : TxX → TxX. If all fixed points of f are of Lefschetz
type then we say f is a Lefschetz map. If X is compact, show that a Lefschetz map f
has only finitely many fixed points.

28. Let f : X → Z, g : Y → Z be continuous maps of topological spaces. The fibered
product denoted by X ×Z Y is a subspace of the product X × Y defined by

X ×Z Y = {(x, y) ∈ X × Y : f(x) = g(y)}.

Suppose now that X,Y, Z are smooth manifolds and f, g are smooth. We say f is
transversal to g (and write f ∩| g) if dfx(TxX)+dgy(Ty(Y )) = Tz(Z) whenever f(x) =
g(y) = z.
(i) Show that f∩| g iff (f × g)∩| ΔZ in Z × Z.
(ii) Deduce that X ×Z Y is a submanifold of X × Y if f∩| g.
(iii) If f is a submersion, show that the projection p2 : X ×Z Y → Y is a submersion.
This submersion is called the pullback of f via g.

X ×Z Y
p1 



p2

��

X

f

��
Y

g 

 Z

29. Show that S0(n) is connected for all n ≥ 1 and O(n) has precisely two components.

30. Show that U(n) is connected for all n ≥ 1.

31. Show that Vk,n, 1 ≤ k < n are connected.
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In this chapter, we extend the notion of integration discussed in Chapter 2, to the class
of smooth manifolds. First, we introduce the notion of orientation on manifolds and dif-
ferential forms on manifolds. Via partition of unity, we then define integration on oriented
manifolds. Stokes’ theorem comes almost as a free reward. As an illustration of the fact
that the integration on manifolds can be effectively used to bring out the geometric and
the topological behaviour of the manifolds, we then introduce De Rham cohomology groups
and compute them for spheres and give a few applications.

4.1 Orientation on Manifolds

In your calculus course, you have met with the concept of orienting a curve by putting
an arrow or even indicating orientations on surfaces by placing curved arrows, etc. In this
section, we shall consolidate the notion of orientation, which is very fundamental especially
in the theory of integration on manifolds.

Definition 4.1.1 Let V be a vector space of dimension n ≥ 1. Consider the set B of all
ordered bases for V. On this set let us introduce an equivalence relation as follows. We know
that any two ordered bases correspond under an invertible matrix, i.e., if α, β are any two
ordered bases, written columnwise, then there is a unique invertible n× n matrix M, such
that Mα = β. We shall define α ∼ β if detM > 0. It is straightforward to verify that “∼” is
an equivalence relation. We shall call an equivalence class of an ordered basis an orientation
for V. Since for any invertible matrix M either detM > 0 or < 0, it follows easily that
there are precisely two equivalence classes of ordered bases. It is also clear that, if one class
α is represented by (v1, . . . ,vn) then (−v1,v2, . . . ,vn) represents the other class. For this
reason, we may refer to the other orientation as the “opposite orientation” or the “negative”
of the first orientation and indicate this by writing −α. This does not necessarily mean that
α is the positive orientation and the other one is the ‘negative’. As such we do not have any
bias for one orientation from the other and treat both the orientations with equal dignity.

Finally, it remains to define orientation on the vector space (0). Since on every nonzero
vector space there are precisely two orientations, we shall declare the same to be true on
the (0) space as well. These two orientations will be denoted by ±, by convention. We shall
denote by En the standard orientation on Rn, i.e.,

En = [e1, e2, . . . , en].

Remark 4.1.1 Observe that if f : V →W is a linear isomorphism then f takes an ordered
basis of V to an ordered basis of W. Moreover, it is easily verified that if two of the ordered
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bases of V are equivalent then the corresponding bases of W are also so. Thus, f induces a
function f
 on the set of orientations of V to that of W. This function is clearly a bijection.

Figure 19 Orientations on R and R2.

Example 4.1.1 Consider the following orientation on R
3 :

(i) {e1, e2, e3}, (ii) {−e1,−e2,−e3}, (iii) {e1, e3, e2},
(iv) {−e3, e2, e1}, (v) {3e1, e2, 5e3}, (vi) {e1 + e2, e2 + e3, e3 + e1}.

Since there are three negative signs in (ii) as compared to (i) and no order change, it follows
that the determinant of the transformation matrix is actually −1. So, (i) and (ii) are in
different orientation classes. Arguing similarly, we can check that (i), (iv), (v), and (vi) are
in one class whereas, (ii) and (iii) in another.

Definition 4.1.2 Let X be a manifold of dimension n ≥ 1. By a preorientation α on X
we mean a choice αx of an orientation on TxX for each x ∈ X. A preorientation α of X is
said to be smooth or continuous if it satisfies the following smoothness condition: to each
x ∈ X, there exists a parameterization (U, φ) for X at x such that dφy : Rn → Tφ(y)(X)
carries the orientation class En to αφ(y) for all y ∈ U ⊂ Rn, i.e., dφy(En) = αφ(y). (Observe
that we could have replaced En by −En.) A preorientation which is smooth will be called
an orientation. If there exists an orientation of X then we say X is orientable. In such a
case, X together with a fixed orientation will be called an oriented manifold.

Finally, let X be a manifold of dimension 0. Then by an orientation on X, we mean a
function ε : X → {+,−}. Thus, an orientation on X simply assigns a sign ± for each point
of X. Obviously, there is no need to put any smoothness condition on ε, since every function
on a discrete space is continuous.

Lemma 4.1.1 Let X be a connected manifold and ω, θ be any two orientations. Suppose
there exists a point x ∈ X such that ωx = θx. Then ω = θ.

Proof: As usual, we take A = {x ∈ X : ωx = θx}. The hypothesis says that A is nonempty.
We shall show that A is both open and closed in X and conclude thatA = X. So consider y ∈
A. Let φ : U → Rn and ψ : U → Rn be charts for X at y such that dφx(ωx) = En = dψx(θx)
for all x ∈ U. Then, since ωy = θy, we have, d(ψ ◦ φ−1)0(En) = dψy(ωy) = dψy(θy) = En.
Therefore, d(ψ ◦ φ−1)z has positive determinant at z = 0 and hence this must be the case
for all z in a neighbourhood W of 0. This means d(ψ ◦ φ−1)z(En) = En for all z ∈ W.
Taking V = φ−1(W ), this is the same as saying ωx = θx for all x ∈ V. Therefore, V ⊂ A.
This proves the openness of A. Exactly the same way, one can show that X \ A is open.
This completes the proof of the lemma. ♠

As an immediate consequence we have:

Theorem 4.1.1 On a connected manifold there can be at most two orientations.
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Remark 4.1.2
(i) Clearly every open subset of Rn is orientable. Indeed we need to fix one basis for Rn and
take the class of the same basis for all TxU = R

n. In fact, a similar reason tells you that
if X is an orientable manifold then every open subset of X is also so. Observe that this is
also true for any subset Y of X, which is the closure of an open subset.
(ii) Of course there need not be any orientation on a given manifold. The simplest example
is the Möbius band. We leave it to you to figure out why this surface is not orientable. At
this stage we do not want to give a formal proof of this fact.
(iii) Observe that if ω is an orientation on X, U is a connected open subset of X and
φ : U → Rn is a diffeomorphism onto an open set, then d(φ)x preserves orientation for all
x ∈ U or it reverses orientation for all x ∈ U. The argument that goes into proving this has
occurred in the proof of the above lemma.

Definition 4.1.3 A diffeomorphism φ : X → Y of oriented manifolds is said to be ori-
entation preserving if at each point x ∈ X, we have Dφ : TxX → Tf(x)Y mapping the
orientation of TxX to that of Tf(x)Y.

Remark 4.1.3 It is a straightforward exercise to verify that if X is connected then any dif-
feomorphism φ preserves orientation iff it does so at a single point. [See Remark 4.1.2.(iii).]
Therefore, every diffeomorphism of connected oriented manifolds, either preserves orien-
tations or reverses them. Also, a composite of two orientation preserving diffeomorphisms
is again orientation preserving. It is also true that composite of two orientation reversing
diffeomorphisms is orientation preserving. On Rn itself, translations and rotations are easily
seen to be orientation preserving, whereas the reflection in any hyperplane is orientation
reversing. A holomorphic function defined in a region in C is orientation preserving at all
points z such that f ′(z) �= 0.

Let us now give a criterion for orientability of a manifold.

Theorem 4.1.2 An n-dimensional manifold is orientable iff it has an atlas {(Uα, φα)} such
that for each pair of indices α, β, φβ ◦ φ−1

α is an orientation preserving diffeomorphism of
open subsets of R

n.

Proof: Assume that X is orientable and θ is an orientation on X. Let {(Uα, φα)} be an
atlas that guarantees the local smoothness of θ. This just means that D(φα)y(θy) = En for
all y ∈ Uα and for all α. Therefore, whenever Uα ∩ Uβ �= ∅, for all z ∈ φα(Uα ∩ Uβ), we
have, D(φβ ◦ φ−1

α )z(En) = En.
Conversely, given such an atlas, we define an orientation ω on X as follows: Let x ∈ X

be such that x ∈ Uα. Among the two possible orientations on TxX, take ωx to be that
one such that D(φα)x(ωx) = En. From the condition given on the atlas, it follows that
ωx is well defined, i.e., it does not depend upon the choice of α. The smoothness of ω
follows by the very definition, since for all points y in the neighbourhood Uα we have,
ωy = D(φα)y(ωx) = En. This completes the proof of the theorem. ♠

We shall now take up the task of getting an orientation on the boundary of an oriented
manifold. In this, we shall be guided by the standard practice of choosing orientation on
the boundary of a bounded plane region, viz., when you trace the boundary curve forward,
the region should be on your left. So, to begin with we fix an orientation on Rn say, the
standard one En, given by the ordered basis (e1, . . . , en). This then gives an orientation on
Hn.

Definition 4.1.4 The induced orientation on Rn−1 × {0} from the standard orientation
En of Hn is defined and denoted by

∂En := (−1)nEn−1 (4.1)
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Remark 4.1.4

1. First observe that if {v1, . . . ,vn−1} is an ordered basis of Rn−1 representing ∂En,
then {−en,v1, . . . ,vn−1} represents the orientation En on Rn. We express this by
simply writing

−en∂En = En.

2. Now, if h : U → V is a diffeomorphism of two open subsets in Hn, then for any
x ∈ U ∩Rn−1 we have,

Dhx(Rn−1) ⊆ R
n−1 and Dhx(en) = λen + v; λ > 0, v ∈ R

n−1. (4.2)

Definition 4.1.5 Let X be a manifold, x ∈ ∂X. A vector v ∈ Tx(X) is called inward
(resp. outward) if there exists a local parameterization φ : Hn → U at x for X such
that dφ0(en) = v (resp. = −v). From the remark above, it follows that this definition is
independent of the choice of parameterization.

Remark 4.1.5 It is now clear that while adopting the Definition 4.1.4, we have followed
the standard convention of orienting the boundary of a planar region by the rule that the
region lies to your left while you trace the curve in the chosen direction.

Theorem 4.1.3 Let X be an orientable manifold. Then ∂X is orientable. Indeed, if ω is
an orientation on X, there is a unique orientation ∂ω such that at each point x ∈ ∂X, we
have, ωx = [ηx][∂ωx], where ηx is a nonzero outward vector to ∂X at x.

Proof: We shall verify the local constancy of ∂ω, which will automatically prove that it is
well defined also. So, let φ : H → U denote a local parameterization around x, such that
for all z ∈ ∂H,

ωφ(z) = (dφ)z(En) = (dφ)z(−en∂En)
= ηφ(z)(dφ)z(∂En) = (−1)nηφ(z)(dφ)z(En−1).

Taking x = φ(z) and ∂ωx = (−1)n(dφ)z(En−1) we are done. ♠

Remark 4.1.6 It is not difficult to prove the above theorem directly by using the criterion
for orientability in 4.1.2. We leave this to you as an exercise.

Definition 4.1.6 The orientation ∂ω is called the induced orientation on the boundary of
X from the given orientation ω on X.

Remark 4.1.7
(i) Let X and Y be manifolds, at least one of them being boundaryless. If both are oriented
with orientations ω and θ respectively, then the product X×Y is oriented with the product
orientation defined by

(ωθ)(x,y) := ωxθy.

Recall that T(x,y)(X × Y ) = Tx(X) × Ty(Y ) and hence an ordered basis for this product
vector space is obtained by simply taking an ordered basis for the first factor followed by
an ordered basis for the second.
(ii) Consider the unit interval I with the standard orientation E1. On the two points 0, 1 ∈
∂I, what are the induced orientations? If we follow the outward normal rule, the point 1
acquires the + sign and the point 0 acquires the sign −. Next consider cylinder I × S1.
Fixing an orientation on S

1 and one on I say the standard ones, we get an orientation on
I ×S1. The boundary of this consists of two copies of the circle, viz., {0}×S1 and {1}×S1.
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What are the induced orientations on them? If we denote the standard orientations on I
and S1 by E1 and τ, we see that on {0} × S1, we have ∂(ητ) = ∂(η)(τ) = −τ and hence
the induced orientation on {0} × S

1 is −τ. It is easily seen that the induced orientation on
{1} × S1 is τ itself.

More generally, for any oriented manifold X without boundary, the oriented boundary
of I ×X should be expressed as

∂[I ×X ] = [{1} ×X ]− [{0} ×X ].

Figure 20 Boundary orientations on the plane region.

Figure 20 shows the induced orientations on the boundary components of a disc with
three wholes in R2.

Exercise 4.1

1. Let X be a connected nonorientable manifold.

(i) Let Uα be an atlas for X of open subsets diffeomorphic to Dn. Show that there
exists a smooth loop γ : [0, 1] → X with the following properties:

(a) There exist a partition 0 = t0 < t1 < · · · < tn = 1 such that γ([ti−1, ti]) ⊂
Uαi .

(b) If we choose the constant orientation on each of Uαi such that at γ(ti) the
two orientations from Uαi−1 and Uαi agree for 1 ≤ i ≤ n−1, then the orientations
on γ(t1) = γ(tn) coming from Uα1 and Uαn do not agree.
Such a loop is called an orientation reversing loop.

(ii) Show that dim X > 1.

(iii) Improve the result in (i) by getting an immersed loop first. This means that the
loop may have some self-intersections.

(iv) Extract an embedded loop out of (iii), which is orientation reversing.

2. Conversely, show that if there is an orientation reversing loop in X then X is nonori-
entable.

3. Show that if a loop is contained in a single chart then it is orientation preserving.

4. Show that any null-homotopic loop is orientation preserving. Deduce that a simply
connected manifold is orientable.

5. Obtain an embedding of the Möbius band inside the solid torus in R3 which itself is
obtained by rotating the disc

{(x, y), 0) ∈ R
3 : (x − 2)2 + y2 ≤ 1}
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around the y-axis. Use this description to explicitly write down an diffeomorphism
φ : M → M which is isotopic to identity.

4.2 Differential Forms on Manifolds

Throughout this section, X will denote a manifold of dimension n, with or without
boundary. Recall that Tx(X) denotes the tangent space to X at x ∈ X, T (X) : ∪x∈XTx(X),
the total tangent space, and π : T (X) → X, the projection map. If X is an open subset of
Rn or Hn, then all the tangent spaces Tx(X) = {x}×Rn can be identified with 0×Rn in a
natural way. In Chapter 2, we have extensively discussed the differential forms on X in this
special case. The situation with a submanifold of Euclidean spaces is only a little bit more
complicated and all those notions and results which are “local” in nature, generalize in a
natural way. Moreover, whatever we do here is then applicable to the so-called “abstract
smooth manifolds” (introduced in Chapter 5) as well, thanks to the embedding theorems
that we shall prove therein.

Definition 4.2.1 For p ≥ 0, by a p-form on X, we mean a function ω that assigns to each
point x ∈ X, an alternating p-tensor ω(x) ∈ ∧p(Tx(X)∗). Two p-forms on X can be added
together pointwise and also any p-form can be multiplied by a scalar-function on X. Thus,
the space of all p-forms on X forms a module over the ring of all scalar functions on X.

Moreover, we can take the wedge product of a p-form and a q-form to get a (p+q)-form;
this again is done pointwise. It is not difficult to see that these operations make the space
of all forms on X into a graded anticommutative algebra over the ring of all real valued
functions on X.

Remark 4.2.1 As before, a very important aspect of forms is the beautiful way they
transform. Suppose φ : X → Y is a smooth map. Then for each x ∈ X, the map dφx :
Tx(X) → Ty(Y ), ( y = φ(x)), is a linear map. This in turn induces a linear map

∧p(dφx) : ∧p(Ty(Y )∗) → ∧p(Tx(X)∗).

Thus, given a p-form ω on Y, we can pull it back to a p-form on X as follows:

φ∗(ω)(x) := ∧p(dφx)(ω)(φ(x)). (4.3)

It is routine to verify that for each p, φ∗ itself is a linear map. Further, they are algebra
homomorphisms also, in the sense

φ∗(ω ∧ τ) = φ∗(ω) ∧ φ∗(τ). (4.4)

Definition 4.2.2 A p-form on an open subset of Rn is said to be smooth if all its coefficient
functions are smooth. A p-form ω on a manifold X is said to be smooth at x ∈ X if for
some local parametrization φ : U → X at x, (where U is an open subset of Rn,) the p-form
f∗(ω) is smooth.

Remark 4.2.2

1. We leave the verification that the smoothness of a p-form is independent of the local
parameterization chosen to the reader as an exercise.
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2. The set of all smooth p-forms is a vector subspace of the space of all p-forms. This
subspace will be denoted by Ωp(X). Note that Ω0(X) = C∞(X ; R), the ring of real
valued C∞-functions on X. Each Ωp(X) is a module over Ω0(X).

Moreover, the wedge product of smooth forms turns out to be smooth. Thus,

Ω∗(X) := Ω0(X)⊕ Ω1(X)⊕ · · · ⊕ Ωn(X), (4.5)

forms an anticommutative graded algebra over the ring of smooth functions Ω0(X).
Given a smooth map f : X → Y, we have the algebra homomorphism Ω(f) : Ω∗(Y ) →
Ω∗(X), with the property that

Ω(g ◦ f) = Ω(f) ◦ Ω(g); Ω(Id) = Id. (4.6)

Thus, the assignment X � Ω∗(X) is a contravariant functor from the category of
smooth manifolds to the category of graded anticommutative algebras.

3. Recall from Section 2.5, that for an open subset U of Rn, the exterior differentiation
d : Ω(U) → Ω(U) satisfied the properties (i), (ii), (iii), and (iv), which are verified
pointwise and hence all these are valid when we replace U by a manifold X.

For future reference, here is the summary of the properties of the exterior differenti-
ation operator that we have already established.

Theorem 4.2.1 The exterior differentiation operator d : Ω∗(X) → Ω∗(X) is the unique
operator satisfying the following conditions:
(E1) d is homogeneous of degree 1, i.e., d(Ωp(X))) ⊂ Ωp+1(X), for all 0 ≤ p ≤ n− 1, and
d(Ωn(X)) = (0).
(E2) Let π : T (R) = R × R → R be the projection to the second factor. For any smooth
map f : X → R let Tf : TX → TR be the map induced on the tangent space. Then
π ◦ Tf : TX → R is a smooth map which when restricted to each fibre is a linear map. We
can identify it with df which assigns to each point x ∈ X, the 1-tensor dfx : TxX → R. Thus
π ◦ Tf = df.
(E3) d(ω + τ) = d(ω) + d(τ).
(E4) d(ω ∧ τ) = d(ω) ∧ τ + ω ∧ d(τ).
(E5) d ◦ d = 0. ( Co-cycle condition ).
(E6) For any smooth map f : X → Y, f∗ ◦ d = d ◦ f∗.

Exercise 4.2

1. Verify various claims made in the section, especially those in Remark 4.2.2 (1).

2. Let X be a connected manifold with an oriented atlas {Uα}. We say a smooth n-form
φ on X is an orientation form on X if φ(v1, . . . ,vn) > 0 whenever, [v1, . . . ,vn] is
the orientation on X at a point. Show that there is such a form φ on X. Obviously,
such a form is nonzero at every point of X. Conversely, show that given any nowhere
vanishing smooth n-form φ on X, there is an orientation on X with respect to which
φ is an orientation form.

4.3 Integration on Manifolds

We begin with recalling Theorem 2.1.3.
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Theorem 4.3.1 Change of Variable Formula: Let f : U → V be a diffeomorphism of
open subsets in Rn. Then for any integrable function α on V, we have∫

V

α =
∫
U

(α ◦ f)|det(df)| (4.7)

If f is an orientation preserving diffeomorphism then detdf is positive everywhere and hence
there is no need to take the modulus in the expression for the integrand on the right-hand
side (RHS) of (4.7) and we get∫

U

α =
∫
V

(α ◦ f)det(df) (4.8)

Just as in Definition 2.6.5, given any n-form ω on an open set U there is a unique function
α such that ω = αdx1 ∧ · · · ∧ dxn. So, if α is integrable, we can and shall define∫

U

ω :=
∫
U

α. (4.9)

We can now rewrite (4.8) in the form∫
U

ω =
∫
V

f∗ω. (4.10)

[The existence of the integral the RHS of (4.9) can be guaranteed if we assume that α is

continuous and has compact support.] Consider now the simple line integrals
∫ b

a

f(t) dt and∫ a

b

f(t) dt. By convention, one is the negative of the other. The domain of integration, viz.,

the interval [a, b] is considered with different orientations in the two integrals. A diffeomor-
phism of the interval that takes one orientation to the other, is given by φ(t) = a + b − t;
the determinant of the Jacobian of this diffeomorphism is −1 everywhere. Thus, the change
of variable formula explains why the two integrals are negatives of each other. The notation∫ b

a

is too special for the case of intervals and is not conveniently generalizable. This prob-

lem is already resolved in the definition of the integration of forms on chains as well as the
definition of forms adopted above.

The advantage of (4.10) over (4.7) is not just in elegance. Only this way we shall be
able to formulate the notion of integration on a manifold. The price we have to pay is that
we are now restricted to taking diffeomorphisms that preserve orientations. Naturally, this
makes sense only on manifolds that are oriented. However, (4.10) can be used for orientation
reversing ones as well, by changing the orientation of the domain on one of the sides.

Let then X be an oriented n-dimensional manifold. Recall (from 4.1.2) that this means
that:
(i) there is an assignment Θ : x 
→ Θx, where for each x ∈ X, Θx is an orientation (an
equivalence class of an ordered basis) of Tx(X);
(ii) Θ is “smooth” or “locally consistent” in the sense that there is an atlas {(Uj , φj)}
of parameterizations for X such that for each y ∈ Uj, D(φj)y : Rn → Tφ(y)X takes the
standard orientation of Rn to the orientation Θφj(y). Such parameterizations are said to be
orientation preserving.

Let now ω be a smooth n-form on X with compact support, i.e., with the closure of the
set of all points where ω �= 0 being compact. We shall define the integral of ω on X. This
will take several steps:
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Step I Let the support of ω be contained in an open set W of X, which can be covered
by a single parameterization. If φ : U → W is an orientation preserving parameterization,
then we define ∫

X

ω :=
∫
U

φ∗(ω). (4.11)

The most important thing to observe now is that the RHS above is independent of φ
chosen. For, if ψ : V → W is another such parameterization, we put ξ = ψ−1 ◦ φ and see
that ξ : U → V is an orientation preserving diffeomorphism and hence∫

V

ψ∗(ω) =
∫
U

ξ∗(ψ∗(ω)) =
∫
U

(ψ ◦ ψ−1 ◦ φ)∗(ω) =
∫
U

φ∗(ω).

We also observe that this integral has the usual linearity properties on forms that satisfy
the assumption above.
Step II: In order to remove the assumption that we made in Step I, we now invoke the
technique of partition of unity. Let {αi} be a smooth partition of unity subordinate to an
atlas {(Uj, φj)} as above. Then for each i, αiω satisfies the assumption in Step I and hence∫
X αω makes sense. Since the support of ω is compact, only finitely many of αiω are nonzero

and hence we may take ∫
X

ω :=
∑
i

∫
X

αiω (4.12)

provided we verify that the RHS of (4.12) is independent of the partition of unity chosen.
Step III Once again, assume first that support of ω satisfies the assumption in Step I.
Then all αiω also satisfy this and we have

∑
i αiω = ω. Therefore,∫

U

φ∗(ω) =
∑
i

∫
U

φ∗(αiω).

This means that the two definitions of
∫
X
ω as in (4.11) and (4.12) coincide, in this special

case.
Step IV Now suppose {βi} is another smooth partition of unity subordinate to the cover
{Ui}. Then for each fixed j, we apply Step III to βjω to see that∫

X

βjω =
∑
i

∫
X

αiβjω.

Similarly, we apply it to each αiω to see that∫
X

αiω =
∑
j

∫
X

βjαiω.

(Observe that all sums involved are finite even though the indexing sets may be infinite.)
Therefore, upon taking the sum over both i, j, we obtain that

∑
j

∫
X

βjω =
∑
i,j

∫
X

αiβjω =
∑
i

∫
X

αiω.

This proves that the RHS of (4.12) is independent of the partition chosen.
Step V We have more or less subsumed that the dimension n of X is ≥ 1. However, this is
not the case. Indeed, the case when n = 0 is much easier to handle and let us do it separately
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here. X is now a discrete space. An orientation on X means a function Θ : X → {−1, 1}.
A 0-form on X is nothing but a function f : X → R. To say f has compact support means
that f(x) = 0 except for finitely many x ∈ X. Now we define∫

X

f =
∑
x

Θ(x)f(x). (4.13)

For a bijection f : X → Y of 0-dimensional oriented manifolds, we define det f : X → R

by

(det f)(x) = Θ(x)Θ(f(x)). (4.14)

Then to say that f preserves orientation is the same as saying that det (f)(x) = 1 for
all x ∈ X.

This completes the definition of
∫
X

ω for a smooth compactly supported n-form ω. It has

all the usual properties of the integral. We shall summarize them in the following theorem,
for future reference.

Theorem 4.3.2 (Properties of the Integral)

(i)
∫
X

aω + bτ = a

∫
X

ω + b

∫
X

τ.

(ii) If X1 ∩X2 = ∅, then
∫
X1∪X2

ω =
∫
X1

ω +
∫
X2

ω.

(iii) If −X denotes the manifold with the orientation opposite to that of X, then∫
−X

ω = −
∫
X

ω.

(iv) If f : X → Y is an orientation preserving diffeomorphism then∫
X

f∗ω =
∫
Y

ω.

Remark 4.3.1 Now suppose that Y is a smooth submanifold of X of dimension k. Then
the restriction of a smooth k-form τ on X to Y makes sense. It is just ι∗(τ) where ι : Y → X
is the inclusion map. For the sake of notational simplicity, we write τ or τ |Y for ι∗(τ). If this
restriction is compactly supported on Y, and Y is oriented, then

∫
Y
τ makes sense. Special

cases of this will lead you to some familiar integrals. We have already seen enough examples
of this.

We end this section with the final version of Stokes’ theorem. In reality, it is the general
form of the Fundamental Theorem of Integral Calculus. Given a continuously differentiable
function f : [a, b] → R we know that

∫ b

a

f ′(t)dt = f(b)− f(a), a < b. (4.15)

We first observe that in terms of our new terminology, the left-hand side (LHS) of the

above equation can be written as
∫

[a,b]

df, with the standard orientation on the interval

[a, b]. Even the RHS can also be written as an integral, viz., integral of the 0-form f on the
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0-dimensional oriented manifold {a, b}, which is treated as the boundary of the oriented 1-
manifold [a, b]. If g is a continuously differentiable function on [0,∞) with compact support
then, ∫ ∞

0

g′(t)dt = −g(0) (4.16)

Once again the RHS of this formula can be treated as an integral of the 0-form on the
boundary 0 of the ray [0,∞), which receives the negative orientation sign. Thus, we see
that both (4.15), (4.16) can be written as∫

X

df =
∫
∂X

f (4.17)

where X is a 1-dimensional oriented manifold, ∂X is the oriented boundary, and f is a
smooth 0-form on X with compact support.

Our aim is to generalize (4.17) to all dimensions. As a first step we have:

Lemma 4.3.1 Let ω be a smooth (n − 1)-form on X = Rn or X = Hn with compact
support. Then ∫

X

dω =
∫
∂X

ω, (4.18)

where X has standard orientation and ∂X has the induced boundary orientation.

Proof: First consider the case when X = Rn. Then ∂X = ∅ and hence RHS has to be
interpreted to be = 0. On the other hand, since ω has compact support, there exists R > 0
such that ω vanishes identically on the boundary and outside of the box B = [−R,R]n.
Therefore, LHS=

∫
B dω.

Write Ip := (1, 2, . . . , p− 1, p+ 1, . . . , n) so that

dxIp = dx1 ∧ · · · ∧ d̂xp ∧ · · · ∧ dxn

where the “hat” indicates that the corresponding term is missing. Write ω =
∑
p fpdxIp ,

where fp are some smooth functions each vanishing outside of B and on ∂B. Then

d(ω) =
∑
p

(−1)p−1 ∂fp
∂xp

dx1 ∧ · · · ∧ dxn.

Now for each p and for each fixed (x1, . . . , x̂p, . . . , xn),

∫ R

−R

∂fp
∂xp

(x1, . . . , x̂p, . . . , xn)dxp

= fp(x1, . . . , xp−1, R, . . . , xp+1, . . . , xn)− fp(x1, . . . , xp−1,−R, xp+1, . . . , xn)
= 0− 0 = 0.

Therefore, by Fubini’s theorem, we have

∫
B

d(ω) =
∑
p

(−1)p−1

∫ R

−R
· · ·

∫ R

−R

∂fp
∂xp

dx1dx2 · · ·dxn = 0.

Thus, the lemma is proved in this case.
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Next, consider the case when X = Hn. Here, the modifications that we have to make in
the above argument are the following:
(i) The box B should be replaced by the half-box H = [−R,R]n−1 × [0, R].
(ii) The (n− 1)-form ω vanishes outside H and on all faces of it except perhaps on the face
[−R,R]n−1 × 0.
(iii) On Rn−1 × {0}, we have, dxn = 0, and hence dxIp = 0 for all p �= n. Therefore, ω
restricted to Rn−1 × {0} is equal to fndxIn .

Now as before,
∫ R

−R

∂fp
∂xp

dxp = 0 for all p < n. However, for p = n we have to consider

∫ R

0

∂fn
∂xn

dxn = fn(x1, . . . , xn−1, R)− fn(x1, . . . , xn−1, 0) = −fn(x1, . . . , xn−1, 0).

Now the orientation on R
n−1×0 as the boundary of Hn is equal to (−1)n times the standard

one.
Therefore,∫

∂Hn

ω = (−1)n
∫

Rn−1×0

ω = (−1)n
∫

Rn−1×0

fn dx1dx2 · · · dxn−1. (4.19)

Therefore,∫
Hn

dω =
∫
Hn

(∑
p

(−1)p−1 ∂fp
∂xp

)
dx1 ∧ · · · ∧ dxn

= (−1)n−1

∫
Hn

∂fn
∂xn

dx1 ∧ · · · ∧ dxn

= (−1)n−1

∫
Rn−1×0

(−fn(x1, . . . , xn−1, 0))dx1 · · · dxn−1

= (−1)n
∫

Rn−1×0

fn dx1dx2 · · ·dxn−1.

Combining this with (4.19), completes the proof of the lemma. ♠
Theorem 4.3.3 Stokes’ Theorem: Let X be a compact oriented n-manifold and let ∂X
be oriented with the induced orientation. Then for any smooth (n−1)-form ω on X we have∫

X

dω =
∫
∂X

ω. (4.20)

Proof: Since the two sides are linear in ω, using partition of unity technique, we may
assume that ω has its support contained in a parameterized open set W of X. Pulling back
both sides the statement is reduced to the statement of the above lemma. ♠
Corollary 4.3.1 Let X be an oriented closed n-manifold (compact and with empty bound-

ary). Then for any (n− 1)-form ω on X, we have
∫
X

dω = 0.

Apart from the obvious classical applications implied via Green’s theorem and Gauss’s
theorem, etc., the general form of Stokes’ theorem has many applications. We give one such
application below as an exercise. For others, you will have to wait a bit.

Exercise 4.3 Let f, g : X → Y be smooth maps where X and Y are oriented closed
n-manifolds. Suppose f is homotopic to g. Then for any smooth n form ω on Y we have∫

X

f∗ω =
∫
X

g∗ω.
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4.4 De Rham Cohomology

In Section 2.4 we introduced the functorial graded algebra Ω∗(X) of smooth differential
forms over the ring C∞(X ; R), for a smooth manifold. In Section 2.5, we introduced the
functorial differential operator d : Ω∗(X) → Ω∗(X) with the property that d2 = 0. Ω∗(X)
together with the operator d is called the De Rham complex of X.

That ∂2 = 0 is the same as saying that ker [d : Ωp(X) → Ωp+1(X)] contains the image
of d : Ωp−1(X) → Ωp(X). For X = R3, we have seen that this is the same as saying
curl ◦ grad = 0 and div ◦ curl = 0. Classically, if you had a differential equation such as

pdx+ qdy = 0,

solving this equation means that we have to find a function f such that df = pdx+ qdy. In
the terminology of the De Rham complex, this just means that the 1-form ω = pdx + qdy
is in the image of d : Ω0 → Ω1. Of course, you know that it is necessary to assume that
∂p
∂y = ∂q

∂x in order to solve this equation and then how to solve it in R2. Such an equation
was called an exact equation.

Now suppose you consider

ω(x, y) =
xdy − y dx
x2 + y2

on R2 \{0}. You can easily check that dω = 0. Integrate this form on any circle Cr of radius
r > 0 and center 0 and see that

∫
Cr

xdy − y dx
x2 + y2

= 2π. (4.21)

On the other hand, if ω = df for some f then by Stokes’ theorem, we know that
∫
Cr
ω = 0.

Therefore, we conclude that if U is any domain contained in R2 \ {0} and contains some
circle Cr then there cannot be any smooth function f such that df = ω.

But now, consider a domain such as the right-half space G = {(x, y) ∈ R2 : x > 0}.
Then we can take f(x, y) = arctan y/x and see that df = ω.

Thus, it seems that the integration theory of forms on spaces can reveal to us certain
topological properties of the space. In this case U had a hole in it and Ker d was bigger
than image of d, whereas G does not have any holes and Ker d is equal to image of d.

In this section, we shall strive to make this observation into a meaningful mathematical
result.

We make a small beginning with the following theorem.

Theorem 4.4.1 Let ω be a smooth 1-form on S1. Then ω = df for some f iff
∫

S1
ω = 0.

Proof: We have already seen the “only if” part in example 2.6.3 (ii). Now suppose the
integral vanishes. Let h : R → S1 be the map θ 
→ (cos θ, sin θ). Define g : R → R by the
formula,

g(x) :=
∫ x

0

h∗(ω).

Then for any fixed x ∈ R, the restriction h : [x, 2π + x] → S1 is a parameterization of
S1 and therefore,

g(2π + x)− g(x) =
∫ 2π+x

x

h∗(ω) =
∫

S1
ω = 0.

Therefore, g factors through h to define a map f : S1 → R by the formula f(cos θ, sin θ) =
g(θ). Your knowledge of 1-variable calculus is enough to tell you that g is smooth and
dg = h∗(ω). Then, so is f and df = ω. ♠
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Definition 4.4.1 Let ω be a differential p-form. We say, ω is closed if d(ω) = 0. We say ω
is exact if there exists a (p− 1)-form τ such that d(τ) = ω.

Remark 4.4.1 Thus, from (2.55), all exact forms are closed forms. On an n-dimensional
manifold, all n-forms are closed. By convention, the only exact 0-form is the constant func-
tion 0. Of course, all constant functions are closed 0-forms. On the other hand, on a con-
nected manifold, the only closed 0-forms are constant functions. (Can you prove this?) The
question of whether a closed form is exact or not is surprisingly related to the topological
properties of the manifold X. To lay down the foundations for a systematic study of this
question is the aim of this section.

Observe that the set Zp(X) of all closed p-forms constitutes a linear subspace of Ωp(X)
and contains the linear subspace Bp(X) of all exact p-forms. The quotient space

Hp
DR(X) := Zp(X)/Bp(X) (4.22)

is called the pth De Rham Cohomology group of X. We shall drop the lower suffix DR for
the time being and use a simpler notation,

Hp(X) = Hp
DR(X).

The direct sum

H∗(X) := H0(X)⊕H1(X)⊕ · · · ⊕Hn(X) (4.23)

is called the total De Rham cohomology group of X. Observe that if f : X → Y is a smooth
map of manifolds, then from Theorem 4.2.1 (f), it follows that the pullback of a closed
(resp. exact) p-form on Y is a closed (resp. exact) p-form on X, i.e., f∗(Zp(Y )) ⊂ Zp(X)
and f∗(Bp(X)) ⊂ Bp(Y ). (It may be noted here that, this property is expressed by saying
that the map Ω(f) : Ω∗(Y ) → Ω∗(X) is a homomorphism of chain groups.) Therefore, we
obtain a linear map on the cohomology groups, induced by Ω(f). Let us denote this by
H(f) : Hp(Y ) → Hp(X). The property (2.45) also continues to hold for these induced
maps, viz.,

H(g ◦ f) = H(f) ◦H(g); H(Id) = Id. (4.24)

Example 4.4.1 We remarked earlier that on a connected manifold the only closed 0-forms
are constants. Let us prove this. Fix any point x ∈ X and for any other point y ∈ X, choose
an embedded smooth arc γ : [0, 1] → X joining x and y. Let now f : X → R be a smooth 0-
form onX such that df = 0. Then the pullback 0-form on [0, 1] viz., g = γ∗(f) = f◦γ, is such

that dg = γ∗(df) = 0. This means
(
dg

dt

)
dt = 0 at all points of [0, 1] and hence

dg

dt
= 0. This

means g = c, a constant on [0, 1]. In particular, it means that f(x) = g(0) = g(1) = f(y).
Therefore, f is a constant.

In terms of cohomology, this just means that H0(X) = R. More generally, it is not hard
to see that H0(X) is a vector space over R of dimension equal to the number of connected
components of X.

Also observe that if X = {�} is the singleton space, then there are no nonzero p-forms
on X for p > 0 and hence Hp(X) = 0 for p > 0. Thus,

H(p)(�) ≈
{

R, p = 0,
0, p > 0. (4.25)

In a sense, the size of this space gives you an idea of how “many” closed p-forms are not
exact.
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Remark 4.4.2 Connectivity of manifolds, which is the same as path-connectivity can be
rephrased as follows. Any two point-maps in X are homotopic in X . This should ring
a familiar bell in us. We may anticipate something more general about the behavior of
homotopic maps vis-à-vis differential forms. And this anticipation turns out to be true. As
a first step we have:

Lemma 4.4.1 Let X be any manifold and ω be any 1-form on X. Then ω = df for some
smooth function f iff for every closed piecewise smooth path γ : [a, b] → X, we have∫
γ

ω :=
∫ b

a

γ∗(ω) = 0.

Proof: Assume ω = df. Then by the Fundamental Theorem of Integral Calculus,

∫ b

a

γ∗(df) =
∫ b

a

(f ◦ γ)′(t) dt = f(γ(b))− f(γ(a)) = 0,

since γ is a closed path.
To prove the converse, we fix p ∈ X and for any q ∈ X choose a smooth path γ from p to

q and define f(q) =
∫
γ ω. If τ is another path from p to q, then τ · γ−1 is a closed piecewise

smooth path and by hypothesis,
∫
τ ·γ−1 ω = 0. This implies that

∫
τ ω =

∫
γ ω. Thus, f(q) is

independent of the path chosen.
We claim that df = ω. So, let q ∈ X be fixed. Choose a coordinate neighbourhood U

around q. Fix a smooth path γ from p to q. Then for every point x ∈ U we can take any
path α lying within U, and write

f(x) =
∫
γ∗α

ω =
∫
γ

ω +
∫
α

ω.

Using some coordinates for U we may therefore workout as if we are inside R
n. So, we can

first of all write ω =
∑

i gidxi. In these coordinates, we may assume q = 0. Therefore,

∂f

∂xi
(0) = lim

h→0

f(0, . . . , h, . . . , 0)− f(0, . . . , 0, . . . , 0)
h

= lim
h→0

1
h

∫ h

0

gidxi = gi(0).

(The last equality is due to the mean value theorem of integral calculus.) Since this is true
for all i = 1, 2, . . . , n, this means df(q) = ω(q). Therefore, df = ω. ♠

Theorem 4.4.2 If X is a simply connected manifold, then every closed 1-form in X is
exact.

Proof: Recall that if X is simply connected then every smooth loop γ : S1 → X has a
smooth extension γ̂ : D2 → X. Now if ω is a closed 1-form on X then∫

γ

ω =
∫

S1
γ∗(ω) =

∫
S1
γ̂∗(ω) =

∫
D2
d(γ̂∗(ω))

by Stokes’ theorem. But d(γ̂∗(ω)) = γ̂∗(dω) = 0. Therefore,
∫
γ

ω = 0 for every smooth loop.

Therefore, from the above lemma, ω is exact. ♠
Indeed, we have the best that we can wish, viz., homotopic maps inducing same homo-

morphisms at the cohomology.
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Theorem 4.4.3 Let h : R ×X → Y be a smooth map and put hr(x) = h(r, x). Then for
any two points t, s ∈ R, we have h∗t = h∗s : Hp(X) → Hp(Y ).

A more fundamental result from which we can deduce the above theorem is:

Lemma 4.4.2 (Poincaré) For any fixed t ∈ R, let ι(x) = (t, x) and let π : R×X → X be
the projection to the second factor. Then, ι∗ and π∗ are inverses of each other on cohomology
groups. In particular, Hp(R×X) ≈ Hp(X).

The proof of the theorem is immediate from this lemma: Take ιr(x) = (r, x) for r = t, s.
Then

h∗t = (h ◦ ιt)∗ = ι∗t ◦ h∗ = ι∗s ◦ h∗ = (h ◦ ιs)∗ = h∗s.

Moreover, taking X = R
n and applying the second part of the lemma iteratively, we

obtain the following:

Corollary 4.4.1 H∗(Rn) ≈ H∗(�), where � denotes a pointspace.

A more general result that is also immediate is:

Theorem 4.4.4 Homotopy Invariance: A smooth homotopy equivalence f : X → Y of
manifolds, induces an isomorphism H(f) : H∗(Y ) → H∗(X) of the De Rham cohomology
algebras.

Proof: If g : Y → X is a smooth map that is a homotopy inverse to f then, we have
f ◦ g  IdY and g ◦ f  IdX . Therefore, H(f ◦ g) and H(g ◦ f) are identity homomorphisms
of appropriate cohomology algebras. Hence, H(g) is the inverse of H(f). ♠
Proof of Poincaré Lemma:

In order to prove the lemma, since ι∗ ◦ π∗ = (π ◦ ι)∗ = (IdX)∗, we need to prove the
other equality, viz., π∗ ◦ ι∗ = (IdR×X)∗ on H∗(R×X).

For this purpose, we introduce the homotopy operator

P : Ωp(R×X) → Ωp−1(R×X)

satisfying the following property:

dPω + Pdω = ω − π∗ι∗ω. (4.26)

Assume that we have defined such an operator. Consider an element of Hp(R × X)
represented by a closed p-form ω on R×X. Then by (4.26), it follows that ω−π∗ ◦ ι∗(ω) =
dPω is an exact form and therefore represents the 0 element of Hp−1(X). This will complete
the proof of the lemma.

As in the case of the operators d and
∫
, the task of defining an operator on the forms on

manifolds becomes easy (and indeed possible at all) if we demand that the operator behaves
well under transformations. Here, let us demand that for any diffeomorphism φ : X → Y
we have,

P ◦ (φ× Id)∗ = (φ× Id)∗ ◦ P. (4.27)

where Id : R → R is the identity map.
Having made this demand, we now proceed from local to global. So, let X be an open

subset of the Euclidean space. Then every p-form on R×X can be written in the form:

ω =
∑

I∈s(p−1,n)

fI dt ∧ dxI +
∑

J∈s(p,n)

gJ dxJ
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where fI , gJ are smooth functions on R×X. (See Remark 2.3.3.) Now define

P (ω)(t, x) =
∑

I∈s(p−1,n)

(∫ t

0

fI(s, x)ds
)
dxI . (4.28)

Our task is to check that P, first of all, satisfies (4.26), at least in this special case. By
additivity of either side, it is enough to check this for forms of the type f dt∧dxI and g dxJ .
We leave this to the reader as a routine exercise.

The next task is to prove (4.27).
Once again, we need to verify this for forms of the type f dt ∧ dyI and g dyJ . On the

latter, i.e., on g dyJ both sides vanish. Checking this on the former is left to the reader as
an exercise.

Finally, let X be any manifold. Cover it with an atlas {(φi, Ui)}. For any p-form ω on
R×X, define P (ω) to be that (unique) (p− 1)-form, which when pulled back onto R× Ui
via Id× φi gives the differential (p− 1)-form P ((Id× φ∗)(ω)).

It remains to prove that P satisfies (4.26), in the general case. This follows, by using
partition of unity, since both sides of (4.26) are linear.

This completes the construction of the operator P and thereby the proofs of the lemma,
the theorem, and the corollary. ♠

We shall now take up the task of determining the cohomology groups of the spheres Sn.
We plan to attack this using induction on n. To begin with from Example 4.4.1, we know
that H0(S0) ≈ R

2 and Hp(S0) = 0 for all p ≥ 1. We also know that H0(Sn) ≈ R for all n.
However, our induction begins with n = 1.

Lemma 4.4.3 H1(S1) ≈ R.

Proof: Consider the linear map η : Ω1(S1) → R given by

η(ω) =
∫

S1
ω.

By (4.21), it follows that η is not the zero map. By Theorem 4.4.1, it follows that η induces
a linear map η̄ : H1(S1) → R, which is injective. Therefore, η̄ is an isomorphism. ♠

We now use the standard topological approach. Write S
n = U1 ∪ U2, where, U1, U2 are

obtained by deleting north pole and south pole respectively, from S
n. Use the stereographic

projection to see that both Ui are diffeomorphic to Rn and U1 ∩ U2 is diffeomorphic to
R×Sn−1. By Lemma 4.4.2, it follows that Hp(U1∩U2) ≈ Hp(Sn−1). Our inductive argument
then needs only the following key step:

Lemma 4.4.4 For p ≥ 1, Hp(U1 ∩ U2) is isomorphic to Hp+1(U1 ∪ U2).

Proof: Let us directly define an isomorphism

β : Hp+1(U1 ∪ U2) → Hp(U1 ∩ U2) (4.29)

as follows: Given a closed (p+ 1)-form ω on U1 ∪ U2, since Ui are diffeomorphic to Rn, the
closed forms ω|Ui are also closed and hence both are exact. So, there exist p-forms νi on Ui
such that d(νi) = ω|Ui . Consider the p-form ν1 − ν2 on U1 ∩ U2. This is a closed form, for
d(ν1 − ν2) = d(ν1)− d(ν2) = ω−ω = 0 on U1 ∩U2. Put β(ω) = [ν1− ν2]. If we have chosen
some other p-forms ν′i in place of νi, then it follows that νi − ν′i is a closed form on Ui and
hence is an exact form. Therefore, (ν1 − ν2)− (ν′1 − ν′2) = (ν1 − ν′1)− (ν2 − ν′2) is also exact
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on U1 ∩U2. This means that in the cohomology group, [ν1 − ν2] = [ν′1− ν′2]. Therefore, β is
independent of the choice of νi’s.

Using this, it is now easy to verify that β : Zp+1(U1∪U2) → Hp(U1∩U2) is a linear map
such that β ◦ d = 0. Therefore, β factors through the quotient space and defines a linear
map that we shall again denote by β : Hp+1(U1 ∪ U2) → Hp(U1 ∩ U2).

Suppose β[ω] = 0. This means β(ω) = 0 and hence there exist a (p−1)-form θ on U1∩U2

such that ν1 − ν2 = d(θ). Put

V1 = {(x0, . . . , xn) ∈ S
n : xn > −1/2}; V2 = {(x0, . . . , xn) ∈ S

n : xn < 1/2}; W = V1∩V2.

λ

λ 0

1

V

V

1

2

W

Figure 21 Patching up forms.

Choose a smooth function λ on V2 that is≡ 1 in V1∩V2 and ≡ 0 in a small neighbourhood
of the south pole. Then the (p − 1)-form λθ is defined on V2 and is equal to θ on V1 ∩ V2.
Let ν be the p-form defined by

ν =
{
ν1, on V1,
ν2 + d(λθ), on V2.

This is well defined since, on the intersection V1 ∩ V2 we have, ν1 = ν2 + d(θ) = ν2 + d(λθ).
Now clearly, d(ν) = ω on the whole of V1 ∪ V2 = Sn. Therefore, [ω] = 0. This proves β is
injective.

Now let {ρ1, ρ2} be a smooth partition of unity on Sn such that supp ρi ⊂ Vi, i = 1, 2.
Given a closed p-form ν on U1 ∩ U2, the forms ρiν make sense on Vj , j �= i. Consider the
(p+ 1)-form ω defined by:

ω =
{
d(ρ1ν), on V2,
−d(ρ2ν), on V1.

On U1 ∩ U2, we have d(ρ1ν) + d(ρ2ν) = d((ρ1 + ρ2)ν) = d(ν) = 0, which means that
d(ρ1ν) = −d(ρ2ν). Therefore, ω is well-defined. It is easily verified that ω is a closed form
and β(ω) = [ρ1ν + ρ2ν] = [ν]. Therefore, β[ω] = [ν]. This proves surjectivity of β and
thereby the lemma. ♠

Theorem 4.4.5 For n ≥ 1 we have,

Hp(Sn) =
{

R, p = 0, n,
0, otherwise. (4.30)



De Rham Cohomology 119

Proof: Since all Sn, n ≥ 1 are connected H0(Sn) ≈ R, by Example 4.4.1. We now use a
result in algebraic topology that we proved in Theorem 2.2.3 viz., that all Sn, n ≥ 2 are
simply connected. By Theorem 4.4.1, it follows that H1(Sk) = (0) for all k > 1. By iterated
application of Lemma 4.4.4 it follows that Hp+1(Sk+p) = (0) for k > 1 and Hn(Sn) ≈
H1(S1) ≈ R. ♠

Here are some immediate applications of the computation of the De Rham cohomology
of Dn and Sn. We begin with an elementary lemma which often used in algebraic topology.

Lemma 4.4.5 The following two statements are equivalent.
(a) There is no smooth map r : Dn → Sn−1 such that r(x) = x for all x ∈ Sn−1.
(b) Every smooth map f : Dn → Dn has a fixed point.

Proof: (A map as in (a) is called a smooth retraction.) Suppose there is a smooth map
f : Dn → Dn, such that f(x) �= x for any x ∈ Dn. Let Lx denote the line passing through
x and f(x). Then Lx ∩ Sn−1 has precisely two points. Let g(x) ∈ �Lx ∩ Sn−1 be the point
so that {g(x), x, f(x)} are located in that order on Lx. (It is given by an explicit root of a
quadratic equation.) It follows that g : Dn → Sn−1 is smooth and g(x) = x for all x ∈ Sn−1.
This proves (a) =⇒ (b).

To see (b) =⇒ (a), suppose r : Dn → Sn−1 is a smooth map such that r(x) = x for all
x ∈ Sn−1. Then the map −η ◦ r, where η : Sn−1 → Dn is the inclusion map, is a smooth
map Dn → Dn having no fixed points.

g(x) f(x)x

Figure 22 “No fixed points” yields retraction.

Theorem 4.4.6 ( Brouwer) Every (smooth) map f : Dn → Dn has a fixed point.

Consider the case n ≥ 2. Suppose we have such a map, then by the above lemma, we have a
smooth retraction r : Dn → Sn−1, i.e., r◦η = IdSn−1 . Therefore, on the (n−1)th cohomology
groups, we have

Id = Id∗ = (r ◦ η)∗ = η∗ ◦ r∗ = 0,

because Hn−1(Dn) = (0). This is a contradiction to the fact that Hn−1(Sn−1) = R. ♠

Remark 4.4.3 Using the approximation theorem 1.7.2, first show that every continuous
map f : Dn → Dn can be approximated by a smooth map g : Dn → Dn. Now if f has no
fixed points, put ε = min {d(x, f(x)) : x ∈ Dn} and choose g such that d(f(x), g(x)) <
ε/2, x ∈ Dn, to conclude that g cannot have a fixed point. This contradicts the above result
and thereby establishes the continuous versions of (a) and (b).

Exercise 4.4 Verify all the details left to you in the proof of the Poincaré lemma.
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4.5 Miscellaneous Exercises for Chapter 4

1. Show that an n-form ω on Sn is exact iff
∫

Sn ω = 0.

2. Show that a closed (n− 1)-form η on R
n \Bn is exact iff

∫
∂Bn η = 0.

3. Let X be an orientable smooth n manifold. Say X satisfies (CI)-property if for every
compactly supported n-form on ω, there is a compactly supported (n−1)-form η such
that d(η) = ω iff

∫
X
ω = 0.

(a) Show that Rn satisfies (CI).
(b) Let X = U1 ∪ U2, where Ui are connected open and U1 ∩ U2 is connected. Show
that X satisfies (CI) if U1 and U2 satisfy (CI).
(c) Show that every connected orientable manifold X satisfies (CI).

4. Let X be a connected closed manifold. Show that Hn(X) = R or (0) according as X
is orientable or not.
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We are familiar with the concept of a differential manifold as a subspace of a Euclidean
space. We shall now study this concept in an abstract setup. This will enable us to see
that the notion of a “manifold” is independent of any particular embedding. It also gives
us more natural examples of differential manifolds such as projective spaces, without the
tedious method of realizing them as submanifolds of some Euclidean space. All the notions
developed so far for manifolds do make sense in this general setup as well. Finally, we shall
see that every abstract differential manifold can be embedded in some Euclidean space,
coming full circle. Thus, after all, one could have stuck to submanifolds of Euclidean spaces
only.

We introduce abstract topological manifolds and abstract smooth manifolds in Section
5.1 and 5.2, respectively. In Section 5.3, we introduce the fundamental gluing lemma which
will be used several times in what follows. In Section 5.4, a simple proof of classification of
1-dimensional manifolds is proved. Sections 5.5 and 5.6 deal with tangent space. In Section
5.7, we shall first show that every manifold can be embedded in a suitable Euclidean space.
We shall then prove some general results that bring down the dimension of the ambient
Euclidean space. (These are the so-called easy Whitney embedding theorems.)

5.1 Topological Manifolds

In this section, let us get familiar with the general concept of a topological manifold.
For simplicity, we shall first consider only manifolds “without boundary”.

Definition 5.1.1 Let X be a topological space. By a (n-dimensional ) chart for X we mean
a pair (U,ψ) consisting of an open neighborhood U of x and a homeomorphism ψ : U → Rn

onto an open subset of Rn. By an atlas {(Uj, ψj)} for X, we mean a collection of charts for

X such that X = ∪jUj . If there is an atlas for X, we say X is locally Euclidean.

A chart (U,ψ) is called a chart at x0 ∈ X if ψ(x0) = 0.

Let n ≥ 1 be an integer. We say X is a topological manifold of dimension n if:
(i) X is locally Euclidean, i.e., there is an atlas consisting of n-dimensional charts,
(ii) II-countable, it has a countable base for its topology and
(iii) a Hausdorff space.

Any countable discrete space is called a 0-dimensional manifold.

121
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Remark 5.1.1

1. Observe that once a chart (U,ψ) exists at a point x0 ∈ X, then we can choose a
chart (V, φ) at x0 such that φ(U) = Rn. For, by composing with a translation, we
can assume that ψ(x0) = 0 and then we can choose r > 0 such that the open ball
Br(0) ⊂ ψ(U) and put V = ψ−1(Br(0)), and φ = f ◦ ψ where f : Br(0) → Rn is the
diffeomorphism given by x 
→ x

r2−‖x‖2 .

2. For an atlas, it is necessary to assume that the integer n is the same for all the charts.
Of course, if X is connected, such an assumption is not necessary—it is a consequence
of topological Invariance of Domain. (See Theorem 5.1.1, below.) It should be noted
that any known proof of the purely set-topological invariance of domain is very hard
as compared to the differential topological one. However, the differential topological
version of this is easy as seen in Theorem 1.6.1.

3. For a topological space that is locally Euclidean, the II-countability condition is equiv-
alent to many others, such as metrizability or paracompactness. We find II-countability
the most suitable for our purpose.

Example 5.1.1

1. Clearly, differential manifolds inside Euclidean spaces that you have studied earlier
are topological manifolds in the above sense.

2. Let X be the union of the two axes in R2. If U is any connected neighbourhood of
(0, 0) in X then U \ {(0, 0)} has four components. It follows that X cannot have any
chart covering (0, 0) and hence fails to be a topological manifold.

3. Let X be the set of all real numbers together with one extra point that we shall denote
by 0̃. We shall make X into a topological space as follows: Let T be the collection of
all subsets A of X of the form A = B ∪C where B is either empty or an open subset
of R with the usual topology such that (C ∩R)∪{0} is a neighborhood of 0 in R. We
leave it to you to verify that T forms a topology on X in which R is a subspace. Since
0̃ also has neighborhoods that are homeomorphic to an interval, it follows that X has
an atlas. It is easily seen that X has a countable base also. But however, observe that
X fails to be a Hausdorff space, since neighborhoods of 0 and 0̃ cannot be disjoint.

4. Likewise, one can also give examples of spaces that are Hausdorff and has an atlas
but not II-countable. The typical example is the so-called long line: Consider the set
Ω of all countable ordinals and put X = Ω × [0, 1). Define a total order " on X as
follows:

(α, t) " (β, s) if α < β or α = β and t < s.

With the order topology induced by this order,X is a connected, Hausdorff space, hav-
ing a smooth structure, locally diffeomorphic to R. But X does not have a countable
base. (For more details, See [J].)

5. Another type of nonexample is obtained by taking the disjoint union of manifolds of
different dimensions. Thus, the subspace of R2, consisting of the x-axis together with
the point (0, 1), is not a manifold.

6. The real projective space. Let us now consider some examples of manifolds that do
not occur naturally as subspaces of any Euclidean space but as quotients of subspaces
of Euclidean spaces. The foremost one is the n-dimensional real projective space P

n.
This is the quotient space of the unit sphere Sn by the antipodal action, viz., each
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element x of Sn is identified with its antipode −x. By the definition of quotient
topology, if q : Sn → Pn denotes the quotient map then a subset U of Pn is open iff its
inverse image q−1(U) is open in S

n. We first observe that the quotient map q is both
an open mapping as well as a closed mapping. This follows easily from the fact that
for any subset F ⊂ Sn, F ∪ (−F ) is open (closed) if F is open (closed, respectively).
From this, many of the topological properties of Sn pass onto the quotient space Pn.
For instance, using the openness of q we can easily conclude that Pn is II-countable.
Indeed given any base B for the topology of Sn, it follows that {q(U) : U ∈ B} is a
base for Pn. Since Sn is compact, it follows that Pn is also so.

We may represent points of Pn by the symbols [x], where [x] = q(x), x ∈ Sn. Given
x ∈ Sn consider V to be the set of all points in Sn, that are at a distance less than√

2 from x. Then check that U = q(V ) is a neighborhood of [x] in Pn and q itself
restricts to a homeomorphism from V to U. Since V is anyway homeomorphic to an
open subset of Rn, this proves the existence of an n-dimensional atlas for Pn.

To see that Pn is Hausdorff, let [x] �= [y] ∈ Pn be two points. Clearly, in Sn, we
can choose ε > 0 such that Bε(±x) ∩ Bε(±y) = ∅. It then follows that q(Bε(x)) and
q(Bε(y)) are disjoint neighborhoods of [x] and [y] in Pn.

Definition 5.1.2 A topological space X is called a manifold with boundary if it is a II-
countable, Hausdorff space, such that each point of x has an open neighborhood Ux and a
homeomorphism φ : Ux → Hn onto an open subset of Hn.

Denote by intX the set of all those points in x having a neighborhood Ux, that is
homeomorphic to an open subset of

intHn = {(x1, . . . , xn) ∈ R
n : xn > 0}.

Clearly this forms an open subset of X and is a topological n-manifold in the old sense.
Can you see why this is nonempty? The complement of this set in X is denoted by ∂X and
is called boundary of X. Clearly it is a closed subset of X.

Remark 5.1.2 It may happen that ∂X is empty which means precisely that X is a mani-
fold. The points of ∂X are characterized by the following property. There is a neighborhood
Ux of x and a homeomorphism φ : Ux → Hn such that the nth-coordinate of φ(x) vanishes,
i.e., φn(x) = 0. This is a simple consequence of the following profound result:

Theorem 5.1.1 Topological Invariance of Domain: Let A and B be any two subspaces
of Rn that are homeomorphic to each other. If one of them is open in Rn then the other
one is also open.

We shall not prove this here. We shall not use this theorem either. Usually, a first course in
algebraic topology offers a proof of this theorem. For a purely point-set topological proof of
this theorem, you may read [H-W].

Remark 5.1.3 It follows that Û = φ−1(Rn−1 × 0) is a neighborhood of x in ∂X if we
take φ as given in Remark 5.1.2. Also, then φ itself restricts to a homeomorphism φ : Û →
(Rn−1×{0})∩φ(U). As a consequence, it follows that ∂X, if nonempty, is itself a topological
(n− 1)-dimensional manifold (without boundary).

Exercise 5.1

1. Give 5 examples of manifolds of different dimension. Give examples of Hausdorff, II-
countable spaces that are not manifolds. Can you think of some manifolds other than
projective spaces, that “do not naturally occur” as subspaces of Euclidean spaces?
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2. Consider an equivalence relation on Rn+1 \ {0} : x ∼ y if there exists λ �= 0 such that
y = λx. Show that the quotient space (Rn+1 \ {0})/ ∼ is homeomorphic to Pn.

3. Prove that every locally Euclidean, II-countable, Hausdorff space is paracompact or
read it from some book, say, e.g., [Du].

5.2 Abstract Differential Manifolds

We would now like to introduce the notion of an abstract differential manifold. To begin
with, we shall concentrate only on manifolds without boundary. Most of the concepts that
we are going to introduce apply to manifolds with boundary as well and can be obtained
routinely. However, when extra care needs to be taken for manifolds with boundary, we
shall take care of them.

The “new” objects that we are going to introduce should be such that we should be
able to talk about the differentiability of maps defined on such objects. So, first of all, these
objects should be ‘locally’ Euclidean. That is precisely what we have done in the previous
section. On the other hand, consider a differential manifold X as a subspace of a Euclidean
space as introduced in Ch. 3. If f : X → Rk is any map then, f is differentiable iff for each
parameterization φ : Rn → X of an open set of X, the composite f ◦φ is differentiable. Can
we then simply turn the table around and say that, in the case of an abstract topological
manifold, a map f : X → R is differentiable at a point x ∈ X iff f ◦ φ is differentiable at
0 = φ−1(x), where, φ is a parameterization of X around x? Clearly, such a definition will
depend heavily on the parameterization of X near x that we may choose and can run into
serious difficulties. This leads us precisely to the notion of “compatibility of charts” and
“differential structures”.

Definition 5.2.1 Let X be an n-dimensional topological manifold (with or without bound-
ary) and Ψ = {(Ui, ψi)} be an atlas for X. For each pair of indices i, j, such that Ui∩Uj �= ∅,
consider the homeomorphisms ψij : ψi(Ui ∩ Uj) → ψj(Ui ∩ Uj) defined by ψij := ψj ◦ ψ−1

i .
These are called the transition functions associated to the atlas Ψ.

U U

j i

i j

i j

−1

ψ ψ
ψ ψ

Figure 23 Smooth transition functions.

Now fix a positive integer r. We say the atlas Ψ is of class Cr if all its transition functions
are at least of class Cr.

Let Ψ = {(Ui, ψi)}, Θ = {(Vj , θj)} be two Cr atlases for X. We say Ψ is Cr-equivalent
to Θ if for each pair of indices i, j, such that Ui ∩ Vj �= ∅, the map

θj ◦ ψ−1
i : ψ(Ui ∩ Vj) → θj(Ui ∩ Vj)
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is of class Cr. Check that this is an equivalence relation on the family of all Cr-atlases on
X.

It follows easily that if Ψ and Θ are two equivalent Cr atlases, then their union
{(Ui, ψi)} ∪ {(Vj , θj)} is also a Cr atlas on X in the same equivalence class. From this
it follows that, given any Cr atlas on X, there exists a unique maximal Cr atlas in the same
equivalence class. Indeed, it is nothing but the the union of all members of the equivalence
class.

Definition 5.2.2 Let 0 ≤ r ≤ ∞ be an integer or equal to ∞. By a Cr structure on a
topological manifold X, we mean an equivalence class Φ of Cr atlas on it. The ordered pair
(X,Φ) where X is a topological manifold and Φ is a Cr structure on it will be called a Cr
manifold. If r ≥ 1, it will be called a smooth manifold.

Often, in practice, we simply take one single atlas to represent the entire Cr structure and
of course the maximal atlas in the class is a natural choice. Also, we shall dispense away
with this elaborate notation (X,Φ), and simply say X is a smooth manifold, whenever
there is no confusion. This is similar to the usual practice followed elsewhere such as “X is
a topological space” or ‘G is a group”, etc.

Definition 5.2.3 Let (X,Φ) and (Y,Ψ) be two smooth manifolds. A continuous map f :
X → Y is said to be smooth at x ∈ X if for some (U, φ) ∈ Φ and (V, ψ) ∈ Ψ such that
x ∈ U and f(U) ⊂ V, we have ψ ◦ f ◦ φ−1 is smooth at φ(x). [Using the chain rule for
differentiation, it follows easily that this condition is independent of the choice of ψ and φ.]
If f is smooth at all points of X, then we say f is smooth on X. A bijection f such that f
and f−1 are both smooth will be called a diffeomorphism.

It is also clear that a diffeomorphism is a homeomorphism. Hence, if two manifolds are
nonhomeomorphic, they cannot be diffeomorphic. However, there are examples (difficult)
of homeomorphic manifolds, that are not diffeomorphic. [Milnor gave examples of nondif-
feomorphic smooth structures on the sphere S7.]

Definition 5.2.4 Let X be an n-dimensional manifold, and Y ⊂ X a subspace. We say Y
is a k-dimensional submanifold if for each y ∈ Y there is a chart (U, φ) for X at y such that
φ(y) = 0 and

Y ∩ U = {x ∈ U : φ1(x) = · · · = φn−k(x) = 0},
where φ = (φ1, . . . , φn). Letting ψ = (φn−k+1, . . . , φn), it follows easily that the collection
{(Y ∩ U,ψ|Y ∩U )} forms an atlas for Y and hence Y itself is a k-dimensional manifold on
its own. The maximal atlas containing this atlas will be called the smooth structure induced
from that of X on Y.

Remark 5.2.1

1. It follows that the inclusion map is now an embedding of Y in X . Conversely, if Y is a
subspace and a k-dimensional manifold on its own and if ι : Y ↪→ X is an immersion,
then by applying the injective form of the implicit function theorem, we see that Y is
a submanifold.

2. Theorem 3.4.1 is valid in the abstract setup as well. The proof is identical.

3. As in the case of manifolds in Euclidean spaces and unlike the topological manifolds,
the abstract differential manifolds with boundary do not cause any problem. In the
definition 5.2.1, by allowing the charts to take values in the upper-half space Hn as
in the definition 5.1.2, we get a differential n-manifold with boundary. The boundary
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of such a manifold precisely consists of those points that are mapped inside Rn−1× 0,
by any chart. Remark 3.2.1 and Theorem 3.2.1 etc. are valid ditto in this situation as
well.

4. Replacing open subsets of Rn by open subsets of Cn and requiring that the transition
functions to be complex differentiable, one gets the notion of complex n-dimensional
manifolds. However, the analogy almost ends there. Due to the “rich” analytical as-
pects of complex differentiability, complex manifolds need to be studied on their own.
On the other hand, due to the nonavailability of the partition of unity, many of the
techniques available in differential topology are not available to complex manifold
theory. On the positive side, since every complex n-dimensional manifold is a real
2n-dimensional smooth manifold, all the results applicable to real smooth manifolds
are available to complex manifolds after treating them as real smooth manifolds.

5. Having pointed out the importance of existence of smooth partition of unity, we shall
now see that what we have proved for subsets of Rn in Theorem 1.7.1, is also available
for abstract manifolds. And this result will be needed immediately in section 5.7 to
prove that every abstract manifold can be embedded in a Euclidean space.

Lemma 5.2.1 Let X be a topological manifold. Then there exists a nested sequence of
open subsets {Wi} in X such that
(i) W i is compact for each i;
(ii) W i ⊂Wi+1, for each i;
(iii) X = ∪iWi.

Proof: Let φi : Uα → Bn be homeomorphisms such that X = ∪αφ−1
α (Bn1/2). Since X is

II-countable, it is Lindelöff, i.e., every open cover of X has a countable subcover. Therefore
we may assume that the family {Uα} is countable and index them by natural numbers:
{Ui}i∈N. Put Vi = φ−1

i (Bn1/2). Then each Vi is an open subset of X. The closure of Vi is
compact being homeomorphic to the closed ball Dn1/2.

Put W1 = V1. Inductively having defined Wk, satisfying (i) and (ii), there are finitely
many members of {Vi}, that cover W k. Let Wk+1 be the union of all these members and
Vk+1. Check the property (iii). ♠

We now have the following version of Theorem 1.7.1, that is obtained by merely replacing
Rn by an abstract smooth manifold Y. Even the proof is similar. You are welcome to write
down the details of the proof by yourself and read what is given here later.

Theorem 5.2.1 Partition of Unity on Abstract Manifolds: Let X be any subspace of
a smooth manifold Y and {Uα}α∈Λ be an open covering of X. Then there exists a countable
family {θj} of smooth real valued functions on Y with compact support such that
(i) 0 ≤ θj(x) ≤ 1, for all j and x ∈ X ;
(ii) for each x ∈ X there exists a neighborhood Nx of x in X, such that only finitely many
of θj are nonzero on Nx;
(iii) for each j, (supp θj) ∩X ⊂ Uαj for some αj ; and
(iv)

∑
j θj(x) = 1, for all x ∈ X.

Proof: As before, we may replace X by a neighborhood of X in Y and assume that X itself
is a smooth n-manifold. By the previous lemma, X is the increasing union of a countable
family of open sets {Ki}i≥1 whose closure is compact. We set K0 = ∅.

We shall now construct a countable family {Bij} of open sets in X with diffeomorphisms
φij : Bij → Bn such that {Bij} is a covering of X, that is a locally finite open refinement of
{Uα}. After that, since each Bij is diffeomorphic to an open ball, we can construct a bump
function on each of them and proceed exactly as in the proof of Theorem 1.7.1.
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Inductively, suppose {Bij} have been constructed for i ≤ k so as to cover Kk. For each
point x ∈ Kk+1 \ Kk, we can choose a neighborhood Wx contained in some member of
{Uα} and not intersecting Kk−1. We can further assume that there is a diffeomorphism
ψx : Wx → Bn such that ψx(x) = 0. Since {ψ−1

x (Bn1/2)} is an open cover of Kk+1 \Kk that
is compact, finitely many of these will cover it and we shall name them B(k+1),j ’s. It then
follows that

Kk+1 ⊂ ∪ij{Bij : i ≤ k + 1}.

Inductively, the construction of the family {Bij} is over. Clearly, it is an open refinement
of the family {Uα} and covers X. To see that the family {Bij} is locally finite, given x ∈ X,
suppose x ∈ Kk. Then, take Nx = Kk. Clearly, Nx does not meet any of the Bij for i ≥ k+2
and the family {Bij : i ≤ k + 2} is finite. ♠

Remark 5.2.2 Naturally, we now have all other consequences of existence of the partition
of unity such as the smooth Urysohn’s lemma, the smooth Tietze’s extension theorem, the
Approximation theorem 1.7.2, etc., for any smooth manifold.

The fundamental problem in differential topology is to classify all smooth manifolds up
to diffeomorphism. This problem is known to be unsolvable. However, there are plenty of
restricted versions of this problem that are useful, solvable, and some of them are still not
solved. Let us now study some examples and nonexamples of smooth manifolds.

Example 5.2.1
(i) The simplest example is perhaps Rn itself. Begin with the atlas {(Rn, Id)} and take a
maximal atlas Ψ containing it. This definitely gives us a C∞ structure on Rn, called the
standard smooth structure on Rn. Let us denote this by (Rn,S). Indeed for any open subset
U of R

n, there is a unique smooth structure on U, that contains the inclusion map U ↪→ R
n.

(ii) The above game can be played starting with an arbitrary homeomorphism h : Rn → Rn,
as well, instead of the identity map. Clearly, {h} is an atlas and there is a unique maximal
atlas containing {h}, that gives a smooth structure on Rn. Let us denote this by Φh. Ob-
serve that h : (Rn,Φh) → (Rn,S) is a diffeomorphism. Thus, up to a diffeomorphism, we
have not obtained any new structure on Rn.
(iii) More generally, suppose X,Y are topological spaces and f : X → Y is a homeomor-
phism. If Y is a smooth manifold, then we can give a smooth structure to X also, by “pulling
back” the smooth structure on Y via f, so that f is a diffeomorphism, viz., if {(Ui, ψi)} is
a smooth atlas for Y then take Vi = f−1(Ui) and φi = f ◦ψi. Then {(Vi, φi)} is an atlas for
X. (Verify this.) This fact should not be confused to mean that any two smooth manifolds
that are homeomorphic are diffeomorphic. Now verify that, if X = Y = Rn, then the pull
back of the standard structure on Rn via f is Φf that we have defined in a slightly different
way in (ii) above.
(iv) Given a nonempty open subset A ⊂ X of a smooth manifold, by restricting each chart
of X to U, we get a smooth structure on U. This is called the subspace structure. We shall
always take the subspace structure on an open subset of a given manifold, unless it is men-
tioned otherwise. Clearly, the dimension of A is equal to that of X. The openness of A in X
is crucial for this. For an arbitrary subset B, this process need not give a manifold structure.
However, for a function defined on B, we have the notion of differentiability in the usual
sense: f : B → Y is Cr at x ∈ B if f has an extension that is Cr in a neighborhood of x in
X.
(v) It is easy to construct a homeomorphism of the unit square [0, 1] × [0, 1] in R2 onto
the unit disc. Then using the method described in (ii) we can think of the unit square as a
smooth manifold. However, recall that the unit square is not a smooth submanifold of R

2.
(See Example 3.2.1(3).) Likewise the boundary of the unit square in R2 is not a smooth
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submanifold of R2. However, since it is homeomorphic to S1, we can give it a smooth struc-
ture so that it is diffeomorphic to S1. In other words, here we have two different smooth
structures i.e., inequivalent atlases, on the underlying topological manifold S

1. (It is possible
to have many more: merely keep taking regular n-gons in R2.) We shall soon see that all
these inequivalent structures are diffeomorphic to each other, i.e., there is only one smooth
manifold up to diffeomorphism with its underlying topological space homeomorphic to S1.
(vi) It is known that Rn, n ≤ 3 has only one smooth structure, up to diffeomorphism. Of
course the proof is not easy. Soon, we shall see a proof of this for n = 1. Indeed, we shall
classify all 1-dimensional manifolds. A somewhat more technical result is the classification
of 2-dimensional manifolds, which will be studied in Chapter 8. In dimension 3, the problem
already becomes formidable ([Moi]).
(vii) It was believed for a long time that each Rn has only one (viz., the standard) smooth
structure, up to diffeomorphism. However, it is one of the shocking discoveries of the 1980’s
that R4 admits (uncountably) many nondiffeomorphic smooth structures. Donaldson was
awarded the Fields medal for this outstanding discovery [Do].
(viii) Pn as an abstract C∞ manifold. Let us write down at least one atlas explicitly.
We will use the notation in Example 5.1.1.6. Indeed, we need to solve Exercise 5.1.2 now.
Observe that Sn ⊂ Rn+1 \ {0} and the equivalence relation defined in the exercise restricts
to the antipodal relation on S

n. Moreover, observe that given any nonzero vector in R
n,

there is a unit vector in that direction. This shows that we can represent Pn as “the space
of all lines” in Rn+1, passing through 0. Let us denote the line represented by (x0, . . . , xn)
by [x0, . . . , xn]. For 0 ≤ i ≤ n, put Ui = {[x] = [x0, . . . , xn] : xi �= 0}. Define ψi : Ui → Rn

by the formula

[x] = [(x0, . . . , xn)] 
→
(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

To verify that each ψi is a homeomorphism, we write down its inverse map, viz.,
(t0, t1, . . . , tn−1) 
→ [s0, s1, . . . , si, . . . , sn] where,

sj =

⎧⎨
⎩

tj , j < i,
1, j = i,
tj−1, j ≥ i+ 1.

Clearly, ∪iUi = Pn. Therefore, in order to show this is a smooth atlas, we have only to
check that the transition functions are all smooth. Let i < j. Then, observe that

ψi(Ui ∩ Uj) = {(t0, . . . , tn−1) ∈ R
n : tj−1 �= 0.}

and

ψj ◦ ψ−1
i (t0, . . . , tn−1) =

(
t0
tj−1

, . . . ,
1
tj−1

, . . . ,
tn−1

tj−1

)
. (5.1)

A similar formula holds for the case i > j also. Hence, all the transition functions are
smooth.
(ix) The complex analytic manifold CPn: In a similar fashion to that of real projective
space, we can define the complex projective space CPn as the quotient space of Cn+1 \ {0}
by the equivalence relation

(z1, . . . , zn+1) ∼ (λz1, . . . , λzn+1), λ ∈ C \ {0}.

Of course, it will be a “n-dimensional complex manifold” and hence, a 2n-dimensional real
C∞ manifold. The details are left to the reader.
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Remark 5.2.3 Caution has to be taken while considering the Cartesian product X × Y,
whenX and Y both have nonempty boundary. The natural way would be to take the product
atlas {φi×ψj} where, {φi}, {ψj} are, respectively, atlases for X and Y. This is perfect under
the assumption that ∂X = ∅ or ∂Y = ∅. Therefore, in general, (intX) × (intY ) ⊂ X × Y
carries the product structure. However, if x ∈ ∂X, y ∈ ∂Y then at (x, y) ∈ X × Y the
product of charts fail to form a chart for X × Y. Therefore, one needs to “modify” this.
Such a process is called “smoothing the corners” in which one has to establish that there is a
“unique” smooth structure on X×Y that extends the product structure on (intX)×(intY ).
Here, we shall not discuss this any further. On the other hand, it makes perfect sense to talk
about differentiability of functions defined on X × Y with reference to the product atlas,
without bothering about whether it defines a manifold or not.

Exercise 5.2 Write down details of the Example 5.2.1.(ix).

5.3 Gluing Lemma

We shall now give a general construction that allows us to obtain new manifolds out of
the old ones. As a bonus, we shall then be able to classify all 1-dimensional manifolds, in
the next section. A more general version of this is employed in defining the tangent bundle
of an abstract smooth manifold. Several important constructions are just special cases of
this gluing lemma. Especially, we shall see some of them in Chapter 8.

Definition 5.3.1 By a gluing data (M,φ), we mean a smooth manifold M and a diffeo-
morphism φ : U → V where U, V are open subsets of M such that U ∩ V = ∅. Let R be
the equivalence relation on M whose equivalence classes are the singletons outside U ∪ V ,
and the pairs {u, φ(u)}, u ∈ U . We shall denote the set of equivalence classes M/R with the
quotient topology by Mφ and the quotient map by qφ : M →Mφ.

Remark 5.3.1 There is a category of gluing data and morphisms between gluing data:
suppose (M,φ), (M ′, φ′) are two gluing data. By a morphism

α : (M,φ) → (M ′, φ′)

we mean a smooth map α : M → M ′ such that φ′ ◦ α = α ◦ φ for x ∈ U. Clearly then α
induces a smooth map α̂ : Mφ →M ′

φ′ . The word “canonical” in the following lemma should
be understood in this sense.

Recall that for a subset A of a topological space X, the boundary δ(A) is defined to be
the set of all points x ∈ X such that every neighborhood U of x in X intersects both A
and X \A. This should not be confused with the boundary of a manifold, though there are
instances in which the two concepts coincide. In the following lemma, we need to use this
concept.

Lemma 5.3.1 The Gluing Lemma: Let (M,φ) be a gluing data and qφ : M →Mφ =: N
be the corresponding quotient map. Then
(i) N has a “canonical” smooth structure such that the quotient map q : M → Mφ is a
local diffeomorphism. In particular, a map f : Mφ → R is smooth iff f ◦ q is smooth.
(ii) N is not Hausdorff iff there is a sequence {un} in U converging to some point p ∈ δ(U)
and such that {φ(un)} converges to a point in δ(V ), (where δ(U) = Ū \U, and δ(V ) = V̄ \V
are the sets of boudary points of U, V respectively in X).
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(iii) Suppose (M ′, φ′) is another gluing data, i.e., φ : U ′ → V ′ is another diffeomorphism
where U ′, V ′ are open subsets of M ′ with U ′ ∩ V ′ = ∅. Then Mφ is diffeomorphic to M ′

φ′ ,
if there exists a diffeomorphism α : M →M ′ such that α ◦ φ = φ′ ◦ α on U.

U
φ 



α

��

V

α

��
U ′ φ′



 V ′

U V

A Ai j

ϕ

Figure 24 Verifying Hausdorffness for gluing-up.

Proof: (i) Observe that the quotient map q = qφ : M → Mφ is a local homeomorphism.
Indeed, for any open setG of M, that is contained in M\U or in M\V, we have q : G→ q(G)
is a homeomorphism. Therefore, we can choose an atlas {(Aj , ψj)} for M such that each
Aj is contained in M \ U or M \ V. (Here, the hypothesis U ∩ V = ∅ is used.) We claim
that {(q(Aj), τj)}, where τj = ψj ◦ q−1)}, is a (smooth) atlas for Mφ. For, given i, j, let us
say Ai ⊂ M \ V,Aj ⊂ M \ U. Then the intersection of q(Ai) with q(Aj) can be written as
a disjoint union of two open sets:

q(Ai) ∩ q(Aj) = q(Ai ∩Aj)
∐

q(φ(Ai ∩ U) ∩Aj).

And the transition function τj ◦ τ−1
i is equal to ψj ◦ ψ−1

i on the first set and ψj ◦ φ ◦ ψ−1
i

on the second set.
(ii) Given two points x, y ∈ N , if one of them does not belong to the boundary of q(U) =
q(V ) in N, we can easily get open sets around x and y that are disjoint. Therefore, N is
not Hausdorff iff there are points q(x), q(y) on the boundary of q(U) = q(V ), that cannot
be separated by open sets. Let {Un}, {Vn} be a fundamental systems of neighborhoods at
x, y ∈ M, respectively. Then q(x), q(y) cannot be separated in N iff for each n, we have
q(Un)∩ q(Vn) �= ∅. This is the same as saying that for each n ≥ 1, there is xn ∈ Un∩U such
that φ(xn) ∈ Vn ∩ V. But then we see that xn → x and φ(xn) → y. The converse is easy to
see. (The best way to understand this is to consider the situation when you are gluing two
open intervals along two open subintervals (see the Figure 25).
(iii) Clearly, the map α factors down to give a continuous bijection α : Mφ →Mψ :

M
α 



q

��

M

q′

��
Mφ

α 

 Mψ.
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The smoothness of α and its inverse follows from the last part of (i). ♠

Example 5.3.1

1. In the lemma above, take

M = (−1/2, 1), U = (−1/2, 0), V = (1/2, 1)

and
τ(t) = t+ 1; λ(t) = 1/2− t.

Can you recognize Mτ and Mλ? How do they differ?

Figure 25 gluing one or two intervals.

Observe that the map M → S
1 given by t 
→ e2πıt factors down to define a diffeo-

morphism Mτ → S1. However, Mλ is not a Hausdorff space since λ does not satisfy
condition (ii) in Lemma 5.3.1.

2. The cylinder and the Möbius band: Put

M = (−1/2, 1)× [0, 1]; U = (−1/2, 0)× [0, 1]; V = (1/2, 1)× [0, 1].

Take φ : U → V given by φ(t, s) = (t + 1, s). As in the above example obtain a
diffeomorphism of Mφ with S1 × [0, 1].

Figure 26 Cylinder and the Möbius band.

Now take ψ : (t, s) = (t + 1, 1 − s). The resulting manifold Mψ is called the Möbius
band. We shall denote it by M. The difference in the construction of the cylinder
and the Möbius band is in the fact that the gluing map φ used for the cylinder is
orientation preserving whereas ψ used for the Möbius band is orientation reversing.
Indeed, you can easily show that the central circle in M is orientation reversing and
hence M is nonorientable (see Exercise 4.1.1). Later, we shall give yet another proof
of this fact (see Theorem 7.4.2).

3. In the above example begin with M = (−1/2, 1)× S1 (instead of (−1/2, 1)× I) and
make corresponding changes everywhere else. Also take ψ to be (t, v) 
→ (1 + t, v̄).
Exactly as in example 1 and 2, you will get a diffeomorphism from Mφ to S

1 × S
1.

This surface is popularly called the torus, that resembles the surface of a well-made
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medu-vada or a donut. On the other and, Mψ is not such a surface at all. One cannot
even visualize it in the 3-dimensional Euclidean space. An “approximate picture” of
this object is shown in the Figure 27 that is indeed an immersion of this surface. It is
called the Klein bottle.1 We shall denote it by K.

Figure 27 The torus and the Klein bottle.

Let q : M → K be the quotient map. The image of the two lines (−1/2, 1)× {v, v̄} in
K is an embedded loop, that separates K into two Möbius bands. Define τ : M → K
by

τ(t, v) =

⎧⎨
⎩

q(2t, v), −1/4 < t < 1/2;
q(2t− 1, v), 1/4 < t < 1;
q(2t+ 1, v), −1/2 < t < 0.

Then τ factors through M → S1 × S1 to give τ̂ : S1 × S1 → K, that is a two-to-one
smooth map. (Indeed it is a 2-sheeted covering projection, if you know what a covering
projection means.)

Exercise 5.3
(a) Obtain a generalization of the gluing Lemma 5.3.1 for the following gluing data: Let
M be a smooth manifold. Instead of considering one single pair of open sets {U, V }, let us
have a family φα : Uα → Vα, α ∈ Λ of homeomorphisms (diffeomorphisms) where Uα, Vα
are open subsets of M such that Uα ∩ V α = ∅, ∀ α ∈ Λ. Carry out the rest of the details
exactly as before.
(b) Given a smooth atlas {(Ui, φi)} on X, put M equal to disjoint union of φi(Ui) and for
each pair of indices i, j such that Ui ∩ Uj �= ∅, put ψij : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) to be
the diffeomorphisms ψij = φj ◦ φ−1

i . Use this as gluing data to obtain a space N. Consider
the map Θ : M → X defined by Θ|φi(Ui) = φ−1

i . Show that Θ factors through the quotient
map q : M → N to define a diffeomorphism θ : N → X.

M
q

����
��

��
�� Θ

��















N
θ 

 X

1The Klein bottle was first described in 1882 by the German mathematician Felix Klein. It was originally
named the Kleinsche Fläche meaning “Klein surface”; however, this was incorrectly interpreted as Kleinsche
Flasche meaning “Klein bottle”, that ultimately led to the adoption of this term in the German language
as well.–Wikipedia
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5.4 Classification of 1-dimensional Manifolds

In every classification problem, we must, first of all, have plenty of examples that are
“likely” to represent all possible types of objects that we want to classify. Only after that,
we can make a probable list of representatives that are mutually of different types. The final
step is to show that every object that we wanted to classify belongs to (precisely) one of
the types mentioned in the list.

In order to classify all manifolds, clearly, it suffices to consider only connected ones. For,
any manifold is locally connected and hence its connected components are open as well as
closed. Therefore, any manifold is the disjoint union of its connected components, even as
a topological space.

What are the examples of 1-dimensional connected manifolds that we have?
We observe that any two closed intervals are diffeomorphic via an affine linear map.

This diffeomorphism can then be used to get diffeomorphisms between any two finite open
intervals or between any two half-open intervals as well. Moreover, x 
→ tanx defines a
diffeomorphism of the interval (−π/2, π/2)→ R. Thus, as far as subsets of R are concerned,
we have three different classes of connected 1-dimensional manifolds:

(i) open intervals (ii) half-open intervals (iii) closed intervals.

As soon as we go to subspaces of R2, we get “other” types: circles, ellipses, parabolas, and
many more smooth curves. If we have one-to-one parameterization of any of these curves
then clearly they will be diffeomorphic to an interval. This is the case with a parabola
for instance. One can also see easily that any two circles are diffeomorphic to each other.
Indeed, placing a small circle inside an ellipse and then projecting radially from the center
of the circle produces a diffeomorphism of the circle with the ellipse. Write down an explicit
formula by yourself:

Do we get any other types of 1-dimensional manifolds, if we look inside higher dimen-
sional Euclidean spaces? The answer is: NO.

Theorem 5.4.1 Let X be a connected 1-dimensional, (Hausdorff and II-countable) abstract
smooth manifold. Then X is diffeomorphic to one of the following:
(i) (0, 1); (ii) [0, 1); (iii) [0, 1] (iv) S1.

Our main tool in the proof of this theorem is the basic gluing Lemma 5.3.1 that we have
introduced in Section 5.3.

Let us take a look at the Examples 5.3.1. Since they become crucial, we shall recast
them in a little general setup.

Example 5.4.1 Let M = (a, b)
∐

(c, d), p ∈ (a, b), q = b + c − p ∈ (c, d), U = (p, b), V =
(c, q). Let φ : U → V be the diffeomorphism given by φ(x) = c+x−p. Then the identification
space Mφ is diffeomorphic to an open interval. If we replace one or both open intervals
(a, b), (c, d) by the half-closed intervals [a, b), (c, d], respectively, then Mφ is diffeomorphic
to a half-closed or a closed interval accordingly. To see this, consider the map f : M →
(a+ c− p, d) defined by f(x) = c+ x− p, x ∈ (a, b) and f(x) = x for x ∈ (c, d). Clearly, this
map factors through q : M →Mφ to define a smooth map f̂ : Mφ → (a+ c− p, d).

Example 5.4.2 Consider M = (0, 1), U = (0, 1/4), V = (3/4, 1) and φ(t) = t+ 3/4. Then
Mφ is diffeomorphic to the unit circle S1.

To see this, consider the map Θ : M → S1 given by t 
→ e8πıt/3, which factors through the
quotient space to define a map Θ̂ : Mφ → S1.We can easily check that Θ̂ is a diffeomorphism.

We can now slightly generalize these facts in the following two lemmas. The ease with
which we can prove the next result is specific to 1-dimensional manifolds.
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Lemma 5.4.1 Let a < b < c and d < e < f be real numbers, M be the disjoint union of the
two intervals M = (a, c)

∐
(d, f). Let φ : (b, c) → (d, e) be a diffeomorphism with φ(b) = d

and φ(c) = e. Then the identification space Mφ is diffeomorphic to an open interval.

Proof: Choose b′, c′ so that b < b′ < c′ < c. Put φ1 = φ|[b′,c′]. Extend the diffeomorphism
φ1 : [b′, c′] → [φ(b′), φ(c′)] to a diffeomorphism φ̂1 : R → R. Put g = φ̂1(a). We claim that
Mφ is diffeomorphic to the open interval (g, f).

Put M ′ = (a, c′)
∐

(φ(b′), f) ⊂ M. Then observe that the quotient map q : M → Mφ is
surjective restricted to M ′ and hence Mφ is the same as q(M ′) = M ′

φ1
. Now let ψ : M ′ →

(g, f) be defined by

ψ(t) =
{
φ̂1(t), if t ∈ (a, c′];
t, if t ∈ [φ(b′), f).

Then ψ factors through q to give a continuous bijection ψ̄ : Mφ → (g, f). On the other
hand ψ̄ ◦ q restricted to (a, c) is φ̂ and restricted to (d, f) is the identity map. This suffices
to conclude that ψ̄ and its inverse are smooth. ♠

Lemma 5.4.2 Let a < b < e < f and let φ : (a, b) → (e, f) be an order preserving
diffeomorphism. Then the identification space (a, f)φ is diffeomorphic to the circle.

Proof: Choose a < a′ < b′ < b and put e′ = φ(a′), f ′ = φ(b′), φ1 = φ|(a′,b′). As in the
previous lemma, observe that the subset (a′, f ′) surjects onto (a, f)φ and hence (a′, f ′)φ1 =
(a, f)φ.

From the exercise 6 in 1.7, there is a diffeomorphism α : (a′, f ′) → (0, 1) such that the
following diagram is commutative:

(a′, b′)
φ 



α

��

(e′, f ′)

α

��
(0, 1/4) τ 

 (3/4, 1)

where τ(t) = t + 3/4. Therefore, the gluing Lemma 5.3.1(iii) implies that α defines a
diffeomorphism of (a′, f ′)φ1 with (0, 1)τ . As seen in Example 5.3.1, the map t 
→ e8πıt/3

defines a diffeomorphism of (0, 1)τ with the unit circle S1. ♠
We now come to another result specific to 1-dimension. It is the key to the classification

of 1-dimensional manifolds.

Lemma 5.4.3 A key-lemma: Let X be a connected 1-dimensional manifold having an
atlas consisting of two members, U1, U2, such that U1 �= U1 ∩ U2 �= U2. Then
(i) U1 ∩ U2 is nonempty and has at most two components.
(ii) If U1 ∩ U2 has one component, then X is diffeomorphic to an interval.
(iii) If U1 ∩ U2 has two components, then X is diffeomorphic to S

1.

Proof: That U1∩U2 �= ∅ follows from the connectedness of X. Observe that this just means
that X is obtained by gluing two (disjoint) intervals I1, I2 (diffeomorphic to U1, U2 respec-
tively), along some nonempty proper open subsets J1 ⊂ I1, J2 ⊂ I2 via a diffeomorphism
φ : J1 → J2. We make the following observations, each one being obvious or follows easily
from the previous ones.
(a) Each Ii is an open interval or an half-open interval, i.e., cannot be a closed interval.
(b) Each component of J1, J2 is an interval. None of them can be a closed interval.
(c) At least one of the end points of each component C of Ji belongs to Ii, i = 1, 2.
(d) If e is an end point of a component C of J1, then limx→e φ(x) does not exist in I2 (by
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(ii) of gluing Lemma 5.3.1). Here the limit is taken where the variable x remains inside C.
(e) Number of component of Ji cannot exceed the number of end points of Ii that do not
belong to Ii. This follows from (d).
(f) If both Ii are open intervals, then Ji can have at most two components each. If one of
the Ii is an half-open interval then Ji are connected. This proves (i).
To prove (ii), first consider the case wherein I1, I2 are both open intervals. It follows that
J1 and J2, being diffeomorphic U1 ∩ U2 are also open intervals. As seen in (i), both end
points of J1 cannot be in the interior of I1 and similarly both end points of J2 cannot be
in the interior of I2. Therefore, the situation is precisely as in the Lemma 5.4.1. Even the
diffeomorphism φ has to be order preserving. So, Lemma 5.4.1 is applicable.

The case when I1 or/and I2 is not an open interval is handled similarly, once we show
that J1 and J2 are open intervals. As such the other possibility is that both are half-open
intervals. The diffeomorphism will then take the boundary point of J1 to that of J2 and we
will have non-Hausdorffness at the other end. Therefore, J1 and J2 are open intervals. The
rest of the argument is the same as above, except that the conclusion in this case is that
X is diffeomorphic to a half-open interval or a closed interval according as one of I1, I2 or
both are half-open intervals. This proves (ii).
(iii) Now suppose J1 and hence J2 has two components. Say A1, A2 and B1, B2 are the
components of J1, J2, respectively. Let φ(Aj) = Bj . Then first of all we note that both
Ii are open intervals. Then the identification space X can be obtained in two steps: first,
we glue along φ1 = φ|A1 to obtain a space Mφ1 and then perform another gluing along
φ2 = φ|A2 . Of course, Mφ1 is also a Hausdorff space, for otherwise X will not be Hausdorff.
By the first case discussed in (ii) it follows that Mφ1 is an interval. Therefore, we are in the
situation of Lemma 5.4.2 and conclude that X is diffeomorphic to S1. ♠
Proof of the theorem 5.4.1: Let {Uα} be an atlas for X . By II-countability, there exists
a countable subcover for {Uj} for X. Indeed, we have:
Step I There exists a countable family {Uj} :
(i) Each Uj is diffeomorphic to an interval;
(ii) Uk �⊂ ∪j≤k−1Uj =: Wk−1;
(iii) Wk−1 ∩ Uk �= ∅, k ≥ 1.
To construct such a family, we start off with any one member from the countable family
{Uj}, call it U1. Having picked up U0, U1, . . . , Uk−1 so as to satisfy the above requirement,
we check whether Wk−1 := ∪j≤k−1Uj is the whole space X. If so, we stop. Otherwise, it
means that there are members in {Uj} not contained in Wk−1. If none of them intersect
Wk−1, it would mean that X is disconnected. Therefore there exists a member that we label
Uk with the required property.

We remark that in addition if X is compact, then the family {Uj} can be chosen to be
finite also. Moreover, if ∂X is nonempty, we can start with U1 as a half-open interval.
Step II If Wn �= X, then Wn is diffeomorphic to an interval.
We shall prove this by induction on n. This is true for k = 0 since W0 = U0. So assume that
Wk is diffeomorphic to an interval and Wk+1 �= X. Apply the Lemma 5.4.3, we conclude
that Wk+1 is diffeomorphic to an open interval, a half-open interval, a closed interval, or
S1. The latter two cases are ruled out, because, then Wk+1 is compact and hence will have
to be the whole of X.
Step III If the sequence {Uj} stops at j = m say, then from the previous step Wm−1

is an open interval or a half-open interval. Therefore, the key Lemma 5.4.3 applied to
X = Wm = Wm−1 ∪Wm yields that X is an interval or a circle.
Step IV Consider the case when the sequence {Uj} is infinite. First consider the simpler
case when U0 = W0 is diffeomorphic to a half-closed interval. We shall fix a diffeomorphism
f0 : W0 → [0, 1). We can then get a diffeomorphism f1 : W1 = W0 ∪ U1 → [0, 2) such that
f1|W0 = f0. Inductively, having found a diffeomorphism fk : Wk → [0, k + 1) such that
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fk|Wk−1 = fk−1, it is easily seen that we can find a diffeomorphism fk+1 : Wk+1 → [0, k+2)
such that fk+1|Wk

= fk. Now define f : X → [0,∞) by f = limk→∞ fk. This is the same as
saying f(x) = fk+2(x) whenever x ∈ Uk. It follows that f is a diffeomorphism.

Now consider the case when ∂X = ∅. In this case, it follows that at each stage Wk is
diffeomorphic an open interval. Hence the gluing of the next interval may occur on either
side. If there is a Ui such that all other Uj occur on only one of the two sides, then we could
have re-labeled them so that this Ui is the 0th one and proceeded as in the above case. If
this is not the case, then there are infinitely many Uj occurring on either side of U0 and
hence we can relabel them by positive and negative integers, redefine Wk = ∪kj=−kUj and
obtain diffeomorphisms fk : Wk → (−k, k) such that fk+2|Wk

= fk. Put f = limk→∞ fk
and check that f : X → (−∞,∞) is a diffeomorphism. ♠

Here is an interesting application of the classification of 1-dimensional manifolds. (Com-
pare Lemma 4.4.5 and Theorem 4.4.6.)

Theorem 5.4.2 Let X be a compact manifold with nonempty boundary. Then there exists
no map f : X → ∂X such that f |∂X = Id∂X .

Proof: [The result is true even for continuous maps. However, we shall give the proof here
for smooth maps only. For continuous maps see Exercise 6.1.1.] Let f : X → ∂X be such
a smooth map. By Sard’s theorem, there exists x ∈ ∂X, which is a regular value for f (as
well as for ∂X, which is obvious in this case). By the Extended Preimage Theorem 3.4.4,
it follows that L = f−1(x) is a 1-dimensional neat submanifold of X. Recall that neatness
means that the boundary of L is precisely equal to

L ∩ ∂X = (f |∂X)−1(x) = {x}.

On the other hand, since X is compact L is also compact. By the classification theorem, L is
the union of finitely many components, each one of them diffeomorphic to a closed interval
or a circle. Hence, ∂L should have an even number of points. This is a contradiction. ♠

Remark 5.4.1 As a corollary, we obtain another proof of Brouwer’s Fixed Point The-
orem 4.4.6.

Exercise 5.4 Let W be a smooth 1-dimensional manifold, W = A ∪ B with A ∩ B =
{w}. Suppose both A and B are diffeomorphic to a closed interval. Show that W is also
diffeomorphic to a closed interval, without appealing to the classification theorem.

5.5 Tangent Space and Tangent Bundle

It is time you have gone through the exercise 5.3. The theme of this exercise is that we
can think of a smooth n-manifold as a union of a collection of open subsets of Rn that are
glued to each other along some diffeomorphisms. This view helps us to define the tangent
space of an abstract smooth manifold also, since we know that the tangent space for an
open subset U of Rn is actually diffeomorphic to U × Rn. The following definition should
be understood from this point of view.

Definition 5.5.1 (Tangent space to an abstract smooth manifold) Let (X,Φ) be
a smooth n-dimensional manifold, where Φ = {(Ui, φi)}i∈Λ is a maximal smooth atlas.
Consider the space

F = {(x, i, v) ∈ X × Λ× R
n : x ∈ Ui}.
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Give discrete topology to Λ, take the product topology on X × Λ× Rn and let F have the
subspace topology. [Observe that F is homeomorphic to the disjoint union ∪i∈ΛUi × Rn.
Now define an equivalence relation on F by (x, i, v) ∼ (y, j, u) iff

x = y, and D(φj ◦ φ−1
i )φi(x)(v) = u.

The verification that this is an equivalence relation is straightforward. Let TX be the space
of equivalence classes with the quotient topology and q : F → TX be the quotient map.

We call TX the total tangent space to X. If π : TX → X denotes the map induced by
the projection onto the first factor F → X, then (TX, π) is called the tangent bundle of X.
The subspace π−1(x) is called the tangent space of X at x and is denoted by Tx(X).

Remark 5.5.1
(i) The first thing to observe is that in the definition of TX we could have used any atlas
Φ′ ⊂ Φ, in place of the maximal atlas Φ. For if Λ′ ⊂ Λ such that {Ui : i ∈ Λ′} is a cover
of X, and F ′ is defined similarly, then q : F ′ → TX is surjective. This observation is going
to be quite useful in practice. For example, we can now immediately see that TX is second
countable, by choosing a countable Λ′ as above. We leave it to you to verify that TX is
Hausdorff also. However, this becomes clearer, after remark (iii) below.
(ii) The image of all points (x, i, 0) forms a subspace of TX diffeomorphic to X. We shall
merely identify this with X itself. Under this identification, we have π(x) = x and hence
X is called the 0-section of π. Further, in X × Λ × Rn, for each fixed (x, i), we have the
subspace {(x, i)} × R

n, that can be identified with R
n and hence can be given the linear

structure. Moreover, q : {(x, i)} × Rn → Tx(X) is a bijection. Verify that it is actually a
homeomorphism. Since the equivalence relation respects the linearity, it follows that Tx(X)
is a vector space in such a way that q : {(x, i)} × Rn → Tx(X) is an isomorphism.
(iii) For any open subset U of X, we shall denote by Ũ the inverse image of U under π. [Some
authors use the notation TU for T−1U. This notation may run into difficulty when U is not
an open set but a submanifold of X of lower dimension.] Once again, q : Ui×{i}×Rn → Ũi
is a homeomorphism. Shifting the labeling from the domain to the map, we shall denote
this homeomorphism by qi : Ui × R

n → Ũi. Put ξi = (φi × Id) ◦ q−1
i : Ũi → R

n × R
n.

Since {Ũi : i ∈ Λ} is an open cover of TX, it follows that TX is a topological manifold of
dimension 2n, with {(Ũi, ξi) : i ∈ Λ} as an atlas. (Of course, you have to verify now that
TX is Hausdorff to complete this step.)
(iv) Finally, let us look at the transition functions associated to the above atlas of TX. For
any two indices i, j such that Ui ∩ Uj �= ∅, we have, the transition mappings

ξj ◦ ξ−1
i : φi(Ui ∩ Uj)× R

n → φj(Ui ∩ Uj)× R
n

given by,
(y, w) 
→ (φj ◦ φ−1

i (y), D(φjφ−1
i )y(w)).

[The expression in the first slot is obvious. The expression in the second slot is precisely due
to the manner in which we have introduced the equivalence relation in F.] It follows that
if Ψ is a Cr+1 atlas for X then the above maps define a Cr atlas for TX. In this manner
we get TX as a 2n-dimensional Cr-manifold. Observe that with this smooth structure, the
projection map π : TX → X is a Cr mapping and is referred to as the projection map of
the tangent bundle. Finally, it should be noted that each transition function is a linear map
when restricted to the second slot.
(v) The abstract definition of the tangent space coincides with our old geometric definition
for a smooth submanifold X of RN given in the previous chapter. To see this, consider the
map τ : TX → R

N × R
N defined by [x, i, v] 
→ (x,D(φ−1

i )φi(x)(v)). Verify that it is well
defined. The surjectivity of this map is obvious. Proving the injectivity is similar to proving
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the well-definedness of the map. That the inverse map is also of class Cr can be verified by
choosing any chart at a point.
(vi) Tangent space of a manifold with boundary is also defined exactly in a similar fashion.
Note that the dimension of the tangent space TxX is the same as the dimension of X even
at points of ∂X. On the other hand, since ∂X is a manifold of one dimension lower, Tx∂X
is a codimension 1 subspace of TxX.

Definition 5.5.2 For a smooth map f : X → Y of manifolds, the induced map Tf : TX →
TY is defined by the formula

[x, i, v] 
→ [y, j, u],

where, (Ui, φi), (Vj , φj) are charts for X and Y, respectively at x, y such that f(Ui) ⊂ Vj ,
y = f(x) and u = D(φj ◦ f ◦ φ−1

i )(v).

Remark 5.5.2
(i) Once again, the usual chain rule for differentiation can be employed to see that the
above definition of Tf is independent of the choice of charts at x and f(x). Clearly, Tf
restricted to π−1(x) for any x ∈ X, is a linear map. We also have the obvious chain rule
T (g ◦ f) = T (g) ◦ T (f). Once we have verified this, we can use the notation Df itself for
Tf and call it the derivative of f.
(ii) Observe that we can define the smoothness of any function defined on any non empty
open set U of X as well, by simply treating U as a submanifold with the smooth structure
obtained by restricting the atlas for X to U. In particular, we then ask the question: Is
a chart smooth with respect to the smooth structure to which it belongs? To be precise,
consider the homeomorphism φi : Ui → Rn, that belongs to the atlas Φ. Treating Ui as a
manifold with the induced structure and Rn with its standard structure, is φi smooth? To
answer this, we first observe that the singleton {(Ui, φi)} is an atlas for Ui and hence any
map g : Ui → Rm is smooth iff g ◦ φ−1

i is smooth. In particular, we can take g = φi and it
follows that φi is smooth.
(iii) Closely related is the question: How does the derivative of φi look like? The answer is
D(φi)[x, i, v] = (φi(x), v).
(iv) All the notions and results about immersion, submersion, etc., that you have learned
for differential manifolds in Euclidean spaces are valid for abstract manifolds as well.

The concept of tangent bundle leads to a more general and very powerful concept, viz.,
the vector bundle. We shall take this opportunity just to introduce this concept here. For
further studies the reader may consult [Hus] or [St].

Definition 5.5.3 Let B be a topological space. By a real vector bundle of rank k over B
we mean an ordered triple ξ = (E, p,B), where E is a topological space p : E → B is a
continuous map such that for each b ∈ B, the fiber p−1(b) is a k-dimensional R-vector space
satisfying the following local triviality condition(LTC):
To each point b ∈ B there is an open neighborhood U of b and a homeomorphism φ :
p−1(U) → U × Rk such that
(i) π1 ◦ φ = p and
(ii) π2 ◦ φ : p−1(b) → Rk is an isomorphism of vector spaces.

Here π1 : U × Rk → U and π2 : U × Rk → Rk are projection maps.
E is called the total space of ξ and B is called the base of ξ.
If ξ = (Ei, pi, Bi), i = 1, 2 are two vector bundles, a morphism ξ1 → ξ2 of vector bundles
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consists of a pair (f, f̄) of continuous functions such that the diagram

E1
f 



π1

��

E2

π2

��
B1

f̄ 

 B2

is commutative and such that f |p−1
1 (b) is R-linear. If both f and f̄ are homeomorphisms

also, then we say (f, f̄) is a vector bundle isomorphism. In this situation we say that the
two bundles are isomorphic.

Often while dealing with vector bundles over a fixed base space B, we require a bundle
morphism (f, f̄) : (E1, p1, B) → (E2, p2, B) to be such that f̄ = IdB .

Definition 5.5.4 Let ξ = (E, p,B) be a vector bundle. By a section of ξ we mean a
continuous (smooth) map σ : B → E such that p ◦ σ = IdB. A section σ is said to be
nowhere zero, if σ(b) �= 0 for each b ∈ B.

Remark 5.5.3

1. A simple example of a section is the zero section, that assigns to each b ∈ B the
0-vector in p−1(b). (Use (LTC) to see that the zero section is continuous.)

2. The simplest example of a vector bundle of rank k over B is B×Rk. These are called
trivial vector bundles. In fact any vector bundle isomorphic to a product bundle is
called a trivial vector bundle. We shall denote this by Θk := B×Rk, the base space of
the bundle being understood by the context. It is easy to see that the trivial bundle
has lots of sections. Indeed, if σ : B → B × Rk is a section then it is of the form,

σ(b) = (b, f(b))

where f : B → R
k is continuous. Thus, the set of sections of Θk is equal to C(B,Rk).

3. Using the vector space structure of each fibre, given two sections, s1 and s2 of a vector
bundle, we can add and scale them:

(s1 + s2)(x) = s1(x) + s2(x); (rs1)(x) = rs1(x).

Using local triviality, one can verify that if s1, s2 are continuous, then so are rs1 and
s1 +s2. Thus, the set of all sections of a vector bundle forms a vector space. Indeed, it
forms a module over the ring C(X ; R) of continuous real valued functions on X. Using
partition of unity, we can produce lots of sections.

4. In all the above remarks, for a smooth bundle over a smooth manifold, you can replace
“continuous” by “smooth” everywhere.

Example 5.5.1

1. A simple example of a nontrivial vector bundle is the infinite Möbius band M :
Consider the quotient space of R× R by the equivalence relation (t, s) ∼ (t + 1,−s).
The first projection gives rise to a map p : M → S1, which we claim is a nontrivial
real vector bundle of rank 1 over S1. It is easy to see that complement of the 0-section
in the total space of this bundle is connected. Therefore, the bundle cannot be the
trivial bundle S

1×R. Indeed, the total space of this bundle is not even homeomorphic
to S1 × R but to see that needs a little bit more topological arguments.



140 Abstract Manifolds

2. The tangent bundle τ(X) := (TX, p,X) of any smooth submanifold X ∈ RN is
a typical example of a vector bundle of rank n, where n = dimX. It satisfies the
additional smoothness conditions, viz.,
(i) both the total space and the base space are smooth manifolds;
(ii) the projection map p is smooth and
(iii) the homeomorphisms φ : p−1(U) → U × Rn are actually diffeomorphisms.
Over the base space B which is a smooth manifold, a vector bundle that satisfies these
additional smoothness conditions will be called a smooth vector bundle.

3. On a manifold X embedded in RN , we get another vector bundle, viz., the normal
bundle, ν(X), that is also a smooth vector bundle (see section 6.1).

4. Let B = Pn be the n-dimensional real projective space. The canonical line bundle
γ1
n = (E, p,Pn) is defined as follows: Recall that Pn can be defined as the quotient

space of Sn by the antipodal action. Put

E = {([x],v) ∈ P
n × R

n+1 : v = λx}.

That is, over each point [x] ∈ Pn we are taking the entire line spanned by the vector
x ∈ S

n in R
n+1. Let p : E → P

n be the projection to the first factor. The verification
that this data forms a line bundle is easy.

Definition 5.5.5 By a continuous/smooth vector field on a smooth manifold X, we mean
a continuous/smooth section of the tangent bundle. By a parallelizable manifold, we mean
a smooth manifold X whose tangent bundle is trivial.

Remark 5.5.4 As before, a vector field on a parallelizable manifold Xn corresponds to a
smooth map X → Rn. Indeed, a manifold is parallelizable iff there exists n smooth vector
fields {σ1, . . . , σn} such that for each p ∈ X, we have

{σ1(p), . . . , σn(p)}

is linearly independent in Tp(X).

Exercise 5.5

1. Show that if f : X → Y is a diffeomorphism, then Tf : TX → TY is a diffeomorphism.
Thus the tangent space is a diffeomorphic invariant of a manifold.

2. Show that a map f : X → Y is smooth, iff for every open set U of a Euclidean space
and every smooth map g : U → X the composite f ◦ g is smooth.

3. Show that f : X → Y1 × Y2, f = (f1, f2) is smooth iff each fi is smooth.

4. If X and Y are smooth manifolds (without boundary), show that X1×X2 is a smooth
manifold in such a way that the projection maps πi : X1×X2 → Xi are smooth. Also
show that T (X × Y ) is diffeomorphic to T (X)× T (Y ).

5. Show that the diagonal map x 
→ (x, x) is smooth for any smooth manifold X.

6. Show that if fi : Xi → Yi are smooth, then so is f1 × f2.
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5.6 Tangents as Operators

Let V be a finite dimensional vector space and V ∗ be the space of all linear functionals
on V. Elements of V ∗, by definition, operate on V. This role can be easily interchanged
meaningfully as follows: Fix a vector v ∈ V and consider the assignment f 
→ f(v) for
f ∈ V ∗. This assignment defines a linear functional on V ∗, that vanishes iff v is the zero
vector. Thus, we may think of elements of V as operating on the vector space V ∗. Using
this idea, we shall now give an operator-theoretic interpretation of a tangent to a manifold
at a point.

Given an abstract smooth manifold X, let C∞(X) denote the ring of all smooth real
valued functions on X . (The ring structure on C∞(X) comes from that of R via pointwise
addition and pointwise multiplication.) Fix a point p ∈ X and define an equivalence relation
∼p on C∞(X) as follows: f ∼p g iff there exists a neighborhood U of p on which f = g.
Check that this is actually an equivalence relation and denote the space of equivalence
classes by C∞p (X). Also, we shall denote by [f ]p the equivalence class of f. Observe that the
ring structure of C∞(X) quotients down to define a ring structure on C∞p (X). This ring is
called the ring of germs of smooth functions on X defined at p. The phrase “on X” in this
nomenclature can further be justified, because, if we have a smooth function f defined in
a neighborhood of p, using a bump function, we can extend it to a smooth function f̂ on
the whole of the manifold X and the germ [f̂ ]p of f̂ at p does not depend on the actual
extension but only on [f ]p.

Let us now consider the situation when X is an open subset of R
n. Fix a vector v ∈

Tp(X) = Rn. To each smooth function f : X → R, we have an assignment f 
→ Dfp(v), the
directional derivative of f along v. Let us denote this by v(f) = Dfp(v). Then
(i) v(αf + βg) = αv(f) + βv(g);
(ii) v(fg) = f(p)v(g) + g(p)v(f); and
(iii) If f = g in a neighborhood of p then v(f) = v(g).
All this clearly make sense, when X is any smooth manifold because of the chain rule: If
φ : X → Y is a diffeomorphism of open sets in Rn, with φ(p) = q,D(φ)p(v) = u we have
v(f) = u(f ◦ φ). This proves the invariance of the properties (i), (ii), and (iii) under local
coordinate changes. It allows us to adopt these properties as axioms for a tangent at a point
for abstract manifolds as well. Property (i) is nothing but linearity. Property (ii) is called
derivation. Property (iii) seems to have been added as an afterthought. This corresponds
to the infinitesimal behavior of the derivative without which the entire machinery will be
meaningless. To sum up, we have the following definition.

Definition 5.6.1 Let X be a manifold and p ∈ X. Let Dp(X) be the space of all functions
τ : C∞(X) → R satisfying:
(A) τ(αf + βg) = ατ(f) + βτ(g), α, β ∈ R, f, g ∈ C∞(X).
(B) τ(fg) = f(p)τ(g) + g(p)τ(f); f, g ∈ C∞(X).
(C) If f = g in a neighborhood of p then τ(f) = τ(g).

Observe that τ1, τ2 ∈ Dp(X), α1, α2 ∈ R, φ ∈ C∞(X) then α1τ1 + α2τ2 ∈ Dp(X) and
φτj ∈ Dp(X). Verify that, in this way, Dp(X) is a C∞(X)-module. Property (C) implies
that we can consider τ ∈ Dp(X) as a function C∞p → R satisfying (A) and (B). It then
follows that Dp(X) is a C∞p (X)-module. Define Θ : Tp(X) → Dp(X) by the formula:

Θ(v)(f) = Dfp(v). (5.2)

Then Θ is a linear map.

Once again, by the chain rule, we obtain:
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Theorem 5.6.1 Θ is functorial in the sense that if φ : U → Rn is a diffeomorphism such
that φ(p) = 0, then we have the following commutative diagram:

Tp(X) Θ 



dφ0

��

Dp(X)

φ∗
��

T0(Rn) Θ 

 D0(Rn)

Theorem 5.6.2 Θ : Tp(X) → Dp(X) is an isomorphism of vector spaces.

Proof: Because of the above naturality property, it is enough to prove this for X = R
n and

p = 0. Now let ei denote the standard basis from T0(Rn) = Rn. Then Θ(ei)(f) = ∂f
∂xi

(0), the
partial derivative with respect to xi. We shall denote Θ(ei) by ∂i and prove that {∂1, . . . , ∂n}
is a basis for D0(Rn).

Given a smooth function f on Rn, from (1.30) we have the identity:

f(x) = f(0) +
n∑
i=1

xigi(x)

where gi(0) = ∂i(f). Let now τ ∈ D0(Rn). Using property (A) and (B) first verify that for
any constant function c, we have τ(c) = 0. Therefore,

τ(f) =
∑
i

τ(xi)gi(0) =
∑
i

τ(xi)∂i(f) =

(∑
i

τ(xi)∂i

)
(f).

This proves that {∂1, . . . , ∂n} generates D0(Rn). To see that these vectors form an in-
dependent set, we simply evaluate them on the coordinate functions xj ’s and see that(

∂
∂xi

)
p

(xj) = δij . ♠

Remark 5.6.1 Thus, we can now identify the tangent space Tp(X) with the space Dp(X)
of “local derivations” at p. Let us now consider global derivations.

Definition 5.6.2 By a derivation on the ring C∞(X), we mean a R-linear mapping τ :
C∞(X) → C∞(X) such that

τ(fg) = fτ(g) + gτ(f). (5.3)

Remark 5.6.2

1. Let us denote by D(X) the space of all derivations on X. Clearly the sum of any two
elements of D(X) is an element of D(X) and we can multiply a derivation with a
smooth function to obtain another. This makes D(X) into a C∞(X)-module.

2. Fix a point p ∈ X and consider the map Ep : D(X) → Dp(X) defined as follows:
Given a germ [f ]p of a smooth function f defined in a neighborhood of p, consider
some extension f̂ : X → R of f and define

Ep(τ)([f ]p) = [τ(f̂)]p.

In order to see that Ep is well-defined, we must check that if f1, f2 : X → R are
smooth functions such that [f1]p = [f2]p then [τf1]p = [τf2]p. This is the same as
showing that if f ≡ 0 in a neighborhood of p then τ(f) ≡ 0 in a neighborhood of p.
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To see this, choose a smooth function ρ on X such that f = ρf and ρ(q) = 0 in a
neighborhood of p. (See Exercise 1.7.11.) Then

τ(f) = τ(ρf) = τ(ρ)f + τ(f)ρ.

It follows that τ(f) vanishes in a neighborhood of p. Therefore, Ep is well-defined.
Clearly for each τ, Ep(τ) satisfies (A) and (B). Any way we have verified (C) just
now. Therefore, Ep(τ) ∈ Dp. We can now onwards denote Ep(τ) by τp.

3. Thus, each element τ ∈ D(X) gives rise to an element of Dp(X) for each p ∈ X. Is
then an element τ ∈ D(X) just a collection of elements of Dp(X) one for each p ∈ X?
As in the case of a vector field, we may anticipate some “smoothness” condition on
these operators, as p varies over X. To examine this, we can restrict ourselves to a
coordinate neighborhood and work on an open subset U of Rn. Now suppose τ ∈ D(U)
so that Ep(τ) = τp ∈ Dp(U) for each p ∈ U. Using the structure of Dp(U) we can
write

τp(f) =
n∑
i=1

σi(p)
∂f

∂xi
(p) (5.4)

where σi(p) ∈ R. Now, the fact that τ(f) is a smooth map for any smooth map f tells
us that each of the functions σi must be smooth. Conversely, one can directly check
that, given a smooth function σ : U → Rn, (5.4) gives a derivation τ on U.

4. Let T (X) denote the space of all smooth vector fields on X. This is also a C∞(X)-
module in an obvious fashion. The following theorem establishes a canonical isomor-
phism of these two modules.

Theorem 5.6.3 The C∞(X)-module T (X) of all smooth vector fields on X is isomorphic
to the module D(X) of all derivations on X.

Proof: Once again, we define Θ̃ : T (X) → D(X) as follows: For a smooth vector field σ on
X, let τp = Θ̃(σ)p ∈ Dp(X) be defined by

τp(f) = Θ(σ(p))(f).

From the remark above, it follows that f 
→ τp(f) is smooth. Hence the above definition
makes sense. Clearly, Θ̃ is a C∞(X)-module homomorphism. We directly define the inverse
of this as follows: Given τ ∈ D(X), define τp ∈ Dp(X) by the formula

τp(f) = τ(f)(p).

Clearly, τp satisfies (A) and (B) of Definition 5.6.1. Property (C) is checked as in the above
remark. It follows that τp ∈ Dp(X). Hence, τp = Θ(v) for a unique v ∈ Tp(X). From the
remark above, it follows that the assignment p 
→ Θ−1(τp) defines a smooth vector field σ.

The verification that this gives the inverse map of Θ̃ is left to the reader. ♠

Definition 5.6.3 Given τ, τ ′ ∈ D(X) = T (X) we define their Lie bracket [τ, τ ′] by the
formula:

[τ, τ ′] = τ ◦ τ ′ − τ ′ ◦ τ.
Observe that, a composite of two endomorphisms is an endomorphism and hence [ , ] is
an endomorphism, being the difference of two endomorphisms. But, the composite of two
derivations is not a derivation. However, the bracket [τ, σ] of two derivations is a derivation
and you have to verify this.
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Definition 5.6.4 Let φ : X → Y be a smooth map. Let τ : X → TX, σ : Y → TY be any
two smooth vector fields. We say τ is φ-related to σ and write τ ∼φ σ if

Tφ ◦ τ = σ ◦ φ. (5.5)

Given σ, in general, there may not be any τ that is φ-related to σ and vice versa.
However, if φ is a diffeomorphism, then the identity (5.5) defines τ in terms of σ and vice
versa. We then say τ =: φ∗(σ) is the pullback of σ or σ = φ∗(τ) is the pushout of τ.

TX
Tφ 

 TY

X
φ 



τ

��

Y

σ

��

Definition 5.6.5 Similarly, α ∈ D(X), β ∈ D(Y ) are said to be φ-related for a smooth
map φ : X → Y if for every x ∈ X and a smooth map defined in a neighborhood of f(x) in
Y we have

β(f) = α(f ◦ φ). (5.6)

Equivalently, α ∼φ β if the following diagram

C∞(X) α 

 C∞(X)

C∞(Y )
β 



φ∗

��

C∞(Y )

φ∗

��

is commutative. Once again, if φ is a diffeomorphism, then (5.6) defines α in terms of β and
vice versa.

Theorem 5.6.4 The isomorphisms Θ̂X : T (X) → D(X), respect the relation ∼φ for any
smooth φ.

Proof: Let φ : X → Y be a smooth map, τ ∈ T (X), σ ∈ T (Y ), be any. Put α = Θ̂(τ), β =
Θ̂(σ). Suppose τ ∼φ σ. We have to show that α ∼φ β. So, let x ∈ X be any and f be a
smooth function defined in a neighborhood of y = φ(x) in Y. We have to prove (5.6).

β(f) ◦ φ(y) = β(f)(y)
= Θ̂(σ)(f)(y) = Θ(σ(y))(f)
= Dfy(σ(y)) = Dfy(Dφx(τ(x))
= D(f ◦ φ)x(τ(x)) = Θ(τ(x))(f ◦ φ)
= Θ̂(τ)(f ◦ φ)(x) = α(f ◦ φ)(x) = α(f ◦ φ).

We leave the converse part to the reader as an exercise.

Corollary 5.6.1 For any smooth map φ : X → Y of manifolds and respective vector fields,
we have,

τi ∼φ σi, i = 1, 2 =⇒ [τ1, τ2] ∼φ [σ1, σ2].

Proof: We should think of τi and σi as elements of D(X) and D(Y ) respectively. But then
the hypothesis is equivalent to say that the following diagram is commutative:

C∞(X)
τi 

 C∞(X)

C∞(Y )
σi 



φ∗

��

C∞(Y )

φ∗

��
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Thus, if τi ∼φ σi then τ1 ◦ τ2 ∼φ σ1 ◦ σ2 and τ2 ◦ τ1 ∼φ σ2 ◦ σ1. By the linearity,
[τ1, τ2] = τ1 ◦ τ2 − τ2 ◦ τ1 ∼φ σ1 ◦ σ2 − σ2 ◦ σ1 = [σ1, σ2]. ♠

Exercise 5.6

1. Let σ, τ be two vector fields on an open subset U of Rn. Express [σ, τ ] in terms of
coordinate functions.

2. Show that [ , ] has the following properties:
(i) [ , ] is antisymmetric, i.e., [v,u] = −[u,v] for all u,v ∈ g.
(ii) [ , ] is bilinear, i.e., [a1u1 + a2u2,v] = a1[u1,v] + a2[u2,v].
(iii) the Jacobi identity:

[[τ1, τ2], τ3] + [[τ2, τ3], τ1] + [[τ3, τ1], τ2] = 0 (5.7)

(A vector space with a binary operation like the above is called a Lie algebra. When
X happens to be a Lie group, a particular subalgebra of (T (X), [ , ]) becomes very
important. (See Chapter 9 for more details.)

5.7 Whitney Embedding Theorems

In this section, we shall prove some of the celebrated results of Whitney about approx-
imating functions by immersions and embeddings into Euclidean spaces. As a warm-up let
us begin with:

Theorem 5.7.1 For any compact smooth manifold X, there exists a smooth neat embedding
g : X → HN .

Proof: First, consider the case when ∂X = ∅. At each point x ∈ X, choose a chart φx such
that φx(x) = 0. Put Ux = (φx)−1(Rn). Clearly {(φx)−1(Dn), x ∈ X} itself is an open cover
of X. Since X is compact it follows that there exists a finite atlas {(Ui, φi)}1≤i≤k such that

Ui = φ−1
i (Rn) and

{
φ−1
i (Dn) : i = 1, 2, . . . , k

}
covers X. (5.8)

Let λ : Rn → R be a C∞ bump function, such that λ (Dn) = {1} and λ(Rn \2Dn) = {0}.
Define λi : X → R by the formula

λi(x) =
{
λ ◦ φi(x), x ∈ Ui
0, x ∈ X \ Ui.

Check that each λi is a smooth function on X. Now define fi : X → Rn by the formula:

fi(x) =
{
λi(x)φi(x), x ∈ Ui
0, x ∈ X \ Ui.

Once again, observe that each fi is smooth and restricted to φ−1
i (Dn) , is an embedding.

We put gi = (fi, λi) : X → Rn+1 and put g = (g1, . . . , gk) : X → Rk(n+1). It remains to
show that g is an embedding. Clearly g is a smooth map. If x ∈ φ−1

i (Dn), then since fi is
immersive at x, it follows that g is immersive at x. Hence, g is an immersion. To see that g is
injective, let us say x �= y ∈ X. We may assume that λi(y) = 1 for some i. If λi(x) = 1, then
both x, y belong to Ui and hence φi(x) �= φi(y) and hence fi(x) = φi(x) �= φi(y) = fi(y).
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It follows that g(x) �= g(y). Now assume that λi(x) �= 1. But then gi(x) �= gi(y) and hence
g(x) �= g(y).

Since X is compact, the map g is closed. Therefore, g is a homeomorphism onto its
image. By the injective form of the implicit function theorem, it follows that g−1 is also
smooth. Therefore, g is an embedding. Put ĝ(x) = (g(x), 1) and take N = k(n + 1) + 1.
This takes care of the case ∂X = ∅.

In case ∂X �= ∅, we can first find a smooth function α : X → [0,∞) such that α−1(0) =
∂X as follows: Choose an atlas {(Ui, φi)}, that is locally finite. Define αi(x) = πn ◦ φi.
Define α =

∑
i αi. This makes sense and gives a smooth map because of local finiteness of

Ui. Now α(x) = 0 iff αi(x) = 0 for all i such that x ∈ Ui. This is equivalent to say that
x ∈ ∂X.

Now consider the map ḡ(x) = (g(x), α(x)), where g is constructed as before. It follows
that ḡ(∂X) = g(X) ∩ RN−1 × 0 and ḡ(X) ⊂ HN . Therefore, ḡ : (X, ∂X) → (HN , ∂HN) is
a neat embedding. ♠

Remark 5.7.1 The proof of the above theorem gives you a glimpse of certain techniques
frequently used in differential topology: have a certain result locally and then use partition of
unity to glue it up to obtain a global one. Here the end result is somewhat crude in the sense
that it is not at all economical in the choice of the dimension of the ambient Euclidean space.
Moreover it cannot be easily generalized to the case of noncompact manifolds. There is yet
another related question: Given a continuous map f : X → RN , can we find embeddings
(immersions) g : X → RN very close to f? Whitney’s idea is to address all these questions
simultaneously. The key is to bring in a measure theoretic argument. We need to make a
definition and recall some results from Section 2.2.

Definition 5.7.1 Let X be a smooth manifold of dimension n. A subset A of X is said to
be of measure-zero in X if there exists an atlas {(Ui, φi) : i ∈ Λ} for X such that φi(Ui∩A)
is of measure zero in Rn for every i ∈ Λ.

Remark 5.7.2 By Theorem 2.2.2, it follows that the above definition is independent of the
atlas. Check that this concept has the usual properties of measure zero sets in the Euclidean
spaces. Also verify that for any manifold X, X × 0 is of measure zero in X ×R. As an easy
consequence, we deduce the following:

Theorem 5.7.2 Mini Sard’s Theorem: Let f : X → Y be a smooth map of manifolds
with dimX < dimY. Then f(X) is of measure zero in Y.

Proof: First, consider the case when X and Y are open subsets of Rn,Rm respectively,
with n < m. We can then treat f as defined on an open set U in Rm and identify X with
U ∩R

n× (0, 0, . . . , 0), that is of measure zero in R
m. Therefore by Theorem 2.2.2, it follows

that f(X) is of measure zero in Y. In the general case, using coordinate charts on either
side, f(X) can be covered by countably many measure zero sets. Hence, the conclusion. ♠

Remark 5.7.3 In any case, this is an easy consequence of the result that we prove next.
The idea of giving this proof is that, for our purpose in this section, we do not need the
stronger form of Sard’s theorem and the above mini Sard’s theorem suffices. However, we
shall use the stronger form later. We begin by recalling an important result from Chapter
2 for ready reference. (See Theorem 2.2.1).

Theorem 5.7.3 Let f : U → Rm be a C∞ function. Then the set of critical values of f is
of Lebesgue measure zero in Rm.



Whitney Embedding Theorems 147

Remark 5.7.4 Recall that x ∈ U is called a critical point of f if Dfx is not surjective. A
point y ∈ Rm is called a critical value of f if f−1(y) consists of at least one critical point
of f. Notice that there is no difficulty in extending the definition of critical points, etc., for
maps between manifolds, since being a critical point is invariant under diffeomorphisms.
We can now extend the above result to manifolds.

Theorem 5.7.4 Morse-Sard Theorem: Let X,Y be any smooth manifolds, and f : X →
Y be a C∞ map. Then the image f(Cf ) of the set of critical points of f is of measure zero
in Y.

Proof: We choose an atlas for {(Ui, φi, )} for Y. To show that f(Cf ) ⊂ Y is of measure-
zero is the same as to show that φi(f(Cf ) ∩ Ui) is of measure zero in R

n, where n is
the dimension of Y. Replacing X by f−1(Ui) and f by φi ◦ f, we have reduced the task
to the case of a smooth map f : X → Rn. We now cover X by a countable family of
parameterized neighborhoods {(Vj , ψj)}. It then suffices to prove that f(Vj ∩ Cf )) is of
measure zero for each j. Put gj := f ◦ ψj : Rm → Rn. Then the critical set Cf ∩ Vj of f is
precisely equal to ψj(Cgj ). Therefore, f(Vj ∩Cf ) = gj(Cgj ), the image of the critical set of
gj : Rm → Rn,m < n. By Theorem 5.7.3, each gj(Cgj ) is of measure. This completes the
proof of the theorem. ♠

We can now move toward Whitney’s results, with a “local extendability lemma”.

Lemma 5.7.1 Let m ≥ 2n. Let α, β : R
n → R

m be two smooth maps and C ⊂ R
n be a

compact subset such that
(a) α ≡ β on Rn \ 2Dn;
(b) β|C is an immersion;
(c) sup ‖α(x)− β(x)‖ < ε, for some ε > 0.
Then there exists a smooth map γ : Rn → Rm satisfying:
(i) γ|Rn\2Dn = α.
(ii) sup ‖γ(x)− α(x)‖ < ε.
(iii) γ is an immersion on C ∪ D

n.

Proof: Choose a smooth bump function φ : R
n → [0, 1] such that φ ≡ 1 on D

n and
suppφ ⊂ 2Dn. For L ∈ Rm×n, put

γL(x) = β(x) + φ(x)L(x).

We shall show that there are “plenty” of choices of L for which γ = γL will satisfy our
requirements. To begin with note that (i) is satisfied for all L.
Step 1 Since C is compact, there exists ε0 > 0 such that

sup
x∈C

‖α(x)− β(x)‖ < ε0 < ε.

Then for all L ∈ Rm×n with ‖L‖ < (ε− ε0)/2, we have

sup ‖γL(x)− α(x)‖ ≤ sup ‖γL(x)− β(x)‖ + sup ‖β(x) − α(x)‖ < ε.

This ensures condition (ii).
Step 2 Clearly the map λ : Rn × Rm×n → Rm×n given by

(x, L) 
→ DγL(x)

is continuous and λ(C × {0}) is contained in the open set of all linear maps L of rank n.
Therefore, there exists δ > 0 such that for all ‖L‖ < δ and for all x ∈ C, we have DγL(x)
is of rank n.
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Step 3 We want to choose L in such a way that for all x ∈ Dn, DγL(x) is of rank n. Since
φ ≡ 1 on Dn, we have

DγL(x) = Dβ(x) + L

Therefore, we do not want L to be of the form �−Dβ(x) where � is of rank < n.
Recall that Rk(m,n; R) of rank k matrices is a smooth submanifold of codimension

(m− k)(n− k) in Rm×n. (See Example 3.4.4.) Since (m− k)(n− k) ≥ m− n+ 1, it follows
that the dimension of Rn ×Rk(m,n; R) is less than mn+ 2n−m − 1 for all k < n. Since
m ≥ 2n, by mini Sard’s Theorem 5.7.2, the mapping τ : Rn ×Rk(m,n; R) → Rm×n given
by (x, �) 
→ �−Dβ(x) has its image of measure zero in Rm×n.

Thus, if we choose L ∈ R
m×n\τ (∪k<nRn ×Rk(m,n; R)) such that ‖L‖ < min {δ, ε−ε02 },

we are through. ♠

Theorem 5.7.5 Let X be a smooth manifold of dimension n, ∂X = ∅, and let f : X → Rm

be a continuous function, m ≥ 2n. Suppose that K ⊂ X is a compact set such that f |K is
smooth and is an immersion on an open set containing K. Given ε > 0 there exist a smooth
function G : X → Rm such that
(a) G|K = f ;
(b) sup ‖G(x)− f(x)‖ < ε;
(c) G is immersive on X.

Proof: Note that the approximate Theorem 1.7.2 though stated for continuous functions
on open subsets of Rn is valid for continuous functions on any manifold. (See remark 5.2.2.)
Even the proof is valid verbatim. Thus, there exists a smooth map f̂ : X → Rm such that
sup ‖f(x) − f̂(x)‖ < ε/2 and f̂ = f on a compact neighborhood of K. So, if we prove
(a),(b),(c) with f replaced by f̂ and ε replaced by ε/2 then we are through. It follows that
we may as well assume that f itself is smooth, which we shall do.

Choose a locally finite, countable atlas {(Ui, φi)} such that X \ K = ∪iφ−1
i (D). Put

Xk = K ∪i≤k φ−1
i (Dn). Then clearly each Xk is campact and X = ∪kXk. We shall first

construct a family of smooth functions gi : X → Rm such that
(i) g1|K = f ; gk+1|Xk

= gk, k ≥ 1;
(ii) gk is immersive on Xk.
(iii) supx∈Xk

‖f(x)− gk(x)‖ ≤ ε.

We do this by induction, using Lemma 5.7.1. Put α = β = f ◦ φ−1
1 : Rn → Rm, and

C = ∅. Let γ be the map obtained in the lemma and put g1 = γ ◦ φ1 on U1 and = f on
X \ φ−1

1 (2Dn). It is straightforward to check that g1 satisfies (i), (ii), and (iii).
Inductively, suppose we have defined gk. Put α = f ◦ φ−1

k+1, β = gk ◦ φ−1
k+1 and C =

φk+1(Xk ∩ φ−1
k+1(2Dn)). Apply Lemma 5.7.1 to get γ and put gk+1 = γ ◦ φk+1 on Uk+1 and

= gk on X \φ−1
k+1(2Dn). Once again verifying the conditions (i), (ii), and (iii) is just routine.

Given x ∈ X = ∪Xk we choose k such that x ∈ Xk. We then define G(x) = gk(x)
whenever x ∈ Xk. By property (i) if x ∈ Xl, l > k then it follows that gk(x) = gl(x) and
hence G is well-defined. Also G(x) = g1(x) = f(x) on K. Observe that since {Ui} is locally
finite, given any x ∈ X there exist a neighborhood W of x and r such that Ui ∩W = ∅
for i > r. This then implies that fr(x) = fr+1(x) = · · · = G(x) on W. Hence, G is smooth.
This same property also allows us to conclude that ‖G(x) − f(x)‖ = ‖fr(x) − f(x)‖ < ε.
Therefore, (b) is satisfied. Condition (c) follows from (ii) and the fact that X = ∪kXk. ♠

Theorem 5.7.6 Let m ≥ 2n + 1. Let X be a smooth manifold of dimension n and f :
X → Rm be a continuous function. Suppose K is a compact subset of X on which f is an
embedding. Then there exists an injective immersion g : X → R

m such that g|K = f and
sup ‖g(x)− f(x)‖ < ε. Moreover if f is a proper mapping, then g is an embedding.
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Proof: By the previous theorem, there exists an immersion f̂ : X → Rm such that f̂ |K = f

and sup ‖f(x) − f̂(x)‖ < ε2. Therefore, without loss of generality we may as well assume
that f itself is an immersion. This means that f is locally injective. Therefore, there exists
an atlas {(Ui, φi)} for X \ K, that is locally finite, countable, X = K ∪ (∪iVi) where
Vi = φ−1

i (Dn), and such that on each Wi := φ−1
i (2Dn), f is injective. Put X0 = K and

Xk+1 = Xk ∪V k+1 so that each Xk is compact and X = ∪kXk. We shall construct a family
gk : X → Rm of smooth functions such that
(i) g0 = f ; gk+1 = gk on X \Wk+1.
(ii) sup ‖f(x)− g(x)‖ < ε.
(iii) gk is an embedding on Xk.
(iv) gk is injective on each Wi.
We shall then put g(x) = limk→∞ gk(x). It then easily follows that g is as required. To see
the last part, we have only to observe that if f is proper then g is also proper because of
the property sup ‖f(x)− g(x)‖ < ε.

Taking g1 = f, inductively, suppose we have defined gk as required. Choose a bump
function ψ : X → [0, 1] such that suppψ = W k+1 and ψ ≡ 1 on V k+1. For any v ∈ Rm, put

gk+1(x) =
{
gk(x), x ∈ X \W k+1;
gk(x) + ψ(x)v, x ∈ Uk+1.

The idea is to choose v ∈ Rm suitably, so that gk+1 will become an embedding on Xk+1.
By continuity of the map (x,v) 
→ Dgk+1(x) and the fact that it is an immersion on the
compact set Xk, as in the proof of the previous theorem, we can ensure that gk+1 is an
immersion and sup ‖gk+1(x) − f(x)‖ < ε provided ‖v‖ is sufficiently small.

We now want to ensure that gk+1 is injective on Xk+1 as well as on each Wi. Consider
the open set

Ω = {(x, y) ∈ X × Y : ψ(x) �= ψ(y)}

and the smooth map λ : U → R
m given by

λ(x, y) = −gk(x)− gk(y)
ψ(x)− ψ(y)

.

Since the dimension U is 2n < m it follows that image of λ is of measure zero in Rm. Hence,
we can choose v of arbitrary small length and not in the image of λ. With such a choice of
v, we shall now claim that gk+1 is as required.

Suppose x �= y and gk+1(x) = gk+1(y). If ψ(x) �= ψ(y) then it follows that v = λ(x, y),
which is a contradiction. Therefore, ψ(x) = ψ(y). This implies that gk(x) = gk(y). Therefore,
x, y do not belong to same Wi nor both belong to Xk. It remains to see why both of them
do not belong to Xk+1. If so, one of them say x must be in Xk+1\Xk ⊂ Uk. But this implies
ψ(x) = 1 and therefore ψ(y) = 1. But then both are in Wk+1, which is a contradiction. ♠

Remark 5.7.5

1. Theorem 5.7.6 immediately tells you that all compact n-manifolds can be embedded
in R2n+1. For noncompact manifolds, the missing link is that we have to find just one
smooth proper map f : X → R2n+1. Note that if α : X → R is a proper map then so
is the map x 
→ (α(x), 0, 0 . . . , 0). If {θi} is a countable, smooth partition of unity, we
can easily verify that α(x) =

∑
j jθj(x) is a smooth proper map. Thus, we conclude

that every n-manifold can be embedded in R2n+1.

2. In all these discussions we have assumed that X is a manifold without boundary just
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for simplicity. All the arguments go through even if ∂X �= ∅. The only difference is that
some of the members of any atlas we take may have their range the upper-half space
Hn instead of R

n. As in the last part of the proof of Theorem 5.7.1, we can obtain a
neat embedding of η : X → H2n+2. Finally, using measure theoretic arguments as in
the above proof, we can find a vector u ∈ S2n+1 so that if τ : H2n+2 → H2n+1 is the
projection along u then τ ◦ f : X → H2n+1 is a neat embedding.

3. Using the heavy tools from algebraic topology, Whitney has proved that every n-
manifold can be embedded in R2n for n > 0 and can be immersed in R2n−1, n > 1.
But the approximate version of this result is false in general. The simplest example is
obtained by the figure eight curve:

γ(cos t, sin t) = (cos t, sin 2t), 0 ≤ t ≤ 2π (5.9)

defines an immersion of S1 in R2. If ε < 1/2, then it is not very difficult to see that
no ε-approximation to γ can be an embedding. (Exercise: Write down details.)

4. It is possible to avoid/post-pone the definition of tangent space for an abstract smooth
manifold as done in section 5, if needed, due to time constraint or otherwise. For this,
one has to define immersions in terms of local parameterizations and then directly
prove the embedding theorems of the last section. After that, we can of course take
the geometric tangent space as defined in chapter 3. However, this is not recommended
in the long run. The alternative definition treated in section 6 is used only in the last
chapter in this book and is a must from the geometric viewpoint.

5.8 Miscellaneous Exercises for Chapter 5

Throughout this set of exercises, X,Y etc. denote smooth manifolds.

1. Let S(X) denote the set of all points (x, v) ∈ T (X) such that ‖v‖ = 1 where X ⊂ R
N .

Show that S(X) is a manifold and compute its dimension. (S(X) is called the unit
tangent bundle of X.)

2. Consider the space Rn+1 \ {0}. Define an equivalence relation on this set by saying

(x0, . . . , xn) ∼ (y1, . . . , yn)

iff (x0, . . . , xn) = r(y1, . . . , yn) for a nonzero real number r. Let Y denote the quotient
space.
(i) Show that Y is the same as Pn.
(ii) Let x = (x0, x2, . . . , xn) and Ui = {[x] ∈ Pn : xi �= 0}. Show that each Ui, i =
0, . . . , n is an open subset of Pn homeomorphic to Rn and Pn = ∪iUi.
(iii) Define d([x], [y]) = cos−1

(
〈x, y〉
‖x‖‖y‖

)
, [x], [y] ∈ Pn. Verify that d is a metric on

P
n inducing quotient topology from Sn.

3. The two-sphere S2, the projective space P2, the torus S1 × S1, the Klein’s bottle,
etc., can all be obtained by the above construction in Lemma 5.3.1, where U, V are
diffeomorphic to S1 × (0, 1). In each case, think of the correct choice for M and the
diffeomorphism φ : U → V. Indeed all oriented surfaces can be obtained by this
construction, taking M as the disjoint union of two copies of a disc with a number of
holes and U, V as the unions of small boundary annuli. Learn the details!
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4. Show that if f : X → Y is a diffeomorphism, then Tf : TX → TY is a diffeomorphism.
Thus, the tangent space is a diffeomorphic invariant of a manifold.

5. Show that a map f : X → Y is smooth, iff for every open set U of a Euclidean space
and every smooth map g : U → X the composite f ◦ g is smooth.

6. Verify that all the results proved in Section 2.4 are valid for abstract manifolds also.

7. Whitney’s Hill There exists a C1 map f : R2 → R and a “path” γ in R2 such that
γ is contained in the critical set of f and f |γ is not a constant (see [W]). The graph
of f is called Whitney’s hill. The graph of γ then defines a path on this hill that is
“flat” at every point and yet keeps going up and down. Can this path be smooth?

8. Show that every complex manifold is orientable and has a canonical orientation.

9. Orientation Double Cover: For any linear isomorphism α : Rn → Rn, define sgn(α)
to be ±1 according as α preserves (or reverses) orientation. Let X be a connected
manifold. Choose a family ψj : Rn → X, j ∈ Λ of local parameterizations that cover
the whole of X. (ψj may be the inverses of functions belonging to an atlas.) On the
space Z = R

n × Λ× {−1, 1}, introduce an equivalence relation as follows:

(x, j, ε1) ∼ (y, k, ε2) iff ψj(x) = ψk(y) and sgn(d(ψ−1
k ◦ ψj)x) = ε1ε2.

Denote the quotient space by X̃. Prove that
(i) the assignment (x, j, ε) 
→ ψj(x) defines a double covering p : X̃ → X and hence
X̃ is a smooth manifold of the same dimension as X ;
(ii) X̃ is orientable;
(iii) X̃ has one or two connected components according as X is not orientable or
orientable.
(iv) The map (x, j, ε) 
→ (x, j,−ε) defines a diffeomorphism τ : X̃ → X̃ such that
p ◦ τ = p, and τ ◦ τ = Id.
(v) τ is orientation preserving iff X is oriented.

10. Grassmannian Manifolds: Let Gk,n denote the set of all k-dimensional vector sub-
spaces of Rn where 1 ≤ k ≤ n−1. (The cases k = 0, n are disinteresting.) Consider the
space M(n, k) := M(n, k; R) of all n× k real matrices. Let U(n, k) =: U be the open
set of M(n, k) consisting of those matrices of maximal rank (=k). Let Ck,n denote
the set of all k-subsets of {1, 2, . . . , n}. Finally, let Θ : M(n, k) → Gk,n be defined by
A 
→ column space of A. We give the quotient topology to Gk,n via Θ, i.e., a subset
V of Gk,n is open iff Θ−1(V ) is open in U.
(i) Show that Θ : U → Gk,n is surjective.
(ii) For each A ∈ Ck,n, let UA be the subset of those elements of U such that the
rows corresponding to the indices in A are independent. Show that {UA : A ∈ Ck,n}
forms an open cover for U.
(iii) The family {Θ(UA) : A ∈ Ck,n} forms an open cover for Gk,n.
(iv) For each A ∈ Ck,n, let η = η(A) denote the strictly increasing function
{1, . . . , n − k} → {1, 2, . . . , n} \ A. Given L ∈ M(n − k, k), let Li denote its ith

row. Let L′ := φA(L) ∈ UA denote the element whose jth row L′
j is defined as follows:

if j = η(i) then L′
j = Li. Otherwise j = qi for some i, where A = {q1 < q2 < · · · < qk}

in which case, we take L′
j = (0, 0, . . . , 1, 0, . . . , 0) with 1 exactly in the ith place. Show

that φA : M(n−k, k)→ UA is an embedding and ψA := Θ◦φA : M(n−k, k)→ Θ(UA)
is a homeomorphism.
(v) Verify that {(Θ(UA), ψ−1

A ) : A ∈ Cn,k} forms a smooth atlas for Gn,k making it
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into a smooth manifold of dimension k(n−k). It is called the Grassmannian manifold
of type (k, n).
(vi) Show that Θ : U → Gn,k is a smooth map.

11. Consider the Steifel manifold Vk,n ⊂ U as given in Example 3.4.5.
(i) Show that Θ(Vk,n) = Gn,k and hence Gk,n is compact.
(ii) Given an element F = (v1, . . . ,vk) ∈ Vk,n, complete it to a basis
{v1, . . . ,vk,u1, . . . ,un−k} of Rn. Show that the set U of all F ′ = (v1; , . . . ,v′

k) ∈ Vk,n
such that {v′

1 . . . ,v
′
k,u1, . . . ,un−k} is a basis for Rn is an open subset of Vk,n con-

taining F.
(iii) Apply the Gram-Schmidt process to the sequence {v′

1, . . . ,v
′
k,u1, . . . ,un} to ob-

tain the orthonormal basis

{v′
1, . . . ,v

′
k,v

′
k+1, . . . ,v

′
n}.

Define a mapping Ŝ : U → Vn−k,n by the formula

Ŝ(F ′) = {v′
k+1, . . . ,v

′
n}.

Show that Ŝ is smooth.
(iv) Consider the mapping S : Gk,n → Gn−k,n, which maps any k-dimensional sub-
space to its orthogonal complement. Show that S is a diffeomorphism. S is canonical
in the sense that it does not depend upon the choice of the basis. (However, it does
depend upon the choice of the metric.)
(v) Observe that G1,n = Pn−1 = S(Gn−1,n).

12. Consider the space S of all symmetric n × n real matrices A of rank k such that
A2 = A. Define η : S → Gk,n mapping A to the column space of A. Show that η is a
diffeomorphism. Hence, we get an embedding of Gk,n in Sym(n) ∼= Rn(n+1)/2.

13. Let M be a smooth n-submanifold of some R
N . Then there is a canonical map, called

the Gauss map, of M to Gn,N sending p ∈M to its tangent space g(p).
(i) Show that g is smooth.
This map is clearly of great geometrical interest; its nondegeneracy is obviously related
to how curved M is in RN . (See the Gauss-Bonnet Theorem in Chapter 7.)
(ii) Gauss map could be defined by taking the normal spaces instead of the tangent
spaces, and use this to describe the Gauss map of Sn ⊂ Rn+1.

14. Show that Gk,n is connected.
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In this chapter, we introduce a “nonsingular” version of homotopy, viz., isotopy. In Section
6.1, we discuss the normal bundle and tubular neighborhoods laying down the foundation
for homotopical aspects of manifolds. In particular, we prove the existence of “collar neigh-
borhoods” for the boundary a manifold. In Section 6.2, we shall show how vector fields help
us to construct isotopies. Isotopies together with collar neighborhoods form an essential
part of the tool-kit in differential topology. In section 6.3, we obtain a few ready-to-use
results which go a long way in building up new manifolds out of the old. In Section 6.4, we
shall see a little bit of ‘smoothing theory’.

6.1 Normal Bundle and Tubular Neighborhoods

In this section, we shall assume that all manifolds are submanifolds of some Euclidean
space and use the Euclidean metric. Most of these concepts could be generalized to the
situation while dealing with manifolds endowed with a “Riemannian metric”, which of
course, we are not discussing here.

Definition 6.1.1 Let X ⊂ RN be a smooth manifold. For each point x ∈ X define the
space of normals to X at x to be

Nx(X) = {v ∈ R
N : v ⊥ TxX}.

The total normal space N(X) of X in R
N is defined by:

N(X) := {(x,v) ∈ X × R
N : v ⊥ TxX}.

We denote the restriction of the first projection X ×R
N → X to N(X) by π : N(X) → X.

Clearly it is a smooth map. N(X) together with the map π is called the normal bundle of
X in R

N .

Theorem 6.1.1 Given any submanifold X ⊂ R
N , N(X) is a submanifold of RN ×RN ; the

dimension of N(X) is equal to N. For each point (x,v) ∈ N(X), we have T(x,v)(N(X)) =
Tx(X)×Nx(X). Moreover, the projection map π : N(X) → X is a submersion.

Proof: Given x ∈ X choose a diffeomorphism τ : R
N → V, where V is a neighborhood of

x in R
N such that τ(Rn × 0) = V ∩X = U. We shall show that π−1(U) is diffeomorphic to

RN . As x varies over X, this will give an atlas for N(X).
Let {e1, . . . , eN} be the standard basis for R

N . For t ∈ R
n, put vi(t) = (dτ)(t,0)(ei).

Apply Gram-Schmidt’s process to {v1(t), . . . ,vN (t)} to obtain an orthonormal basis

153
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{u1(t), . . . ,uN (t)} for RN . Note that if t ∈ Rn, x = τ(t, 0) ∈ X, then {v1(t), . . . ,vn(t)}
is a basis for TxX. It follows that {u1(t), . . . ,un(t)} is an orthonormal basis for Tx(X)
and {un+1(t), . . . ,uN (t)} is an orthonormal basis Nx(X). Since Gram-Schmidt’s pro-
cess is a smooth operation, it follows that ui(t) are smooth functions of t ∈ Rn. For
(t, s) ∈ Rn × RN−n, we define

Θ(t, s) = (τ(t, 0),
N−n∑
j=1

sjuj+n(t)).

It is straight forward to verify that Θ is a diffeomorphism of R
N onto π−1(U) = N(U) ⊂

N(X). This proves the first part of the theorem.
Also, it follows that T(x,v)(N(X)) = d(Θ)(t,s)(RN ) = Tx(X)×Nx(X). The above argu-

ment also shows that X is a submanifold of N(X). In particular, T (X) is a submanifold of
T (N(X)). Since π is the restriction of the projection, π(x, 0) = x, it follows that (dπ)x :
Tx(N(X)) → Tx(X) also has the property dπx(v) = v for all v ∈ Tx(X) ⊂ Tx(N(X)).
Hence, π is a submersion.

Indeed, for each fixed t = (t1, . . . , tn, 0, . . . , 0) the mapping

s = (s1, . . . , sN−n) 
→ Θ(t, s)

is a linear isomorphism of the vector spaces 0× RN−n → NxX, where x = τ(t, 0). Putting
ψ = τ |Rn×0 : Rn → U, and φ = (ψ × Id) ◦ Θ−1 : N(U) → U × RN−n, it follows that the
projection map π : N(X) → X satisfies the requirements as in Definition 5.5.3 for a vector
bundle of rank N − n over X. ♠

Example 6.1.1 Consider the unit sphere S
n−1 in R

n. Its normal bundle N(Sn−1) is a
submanifold of Rn × Rn. Consider the mapping α : N(Sn−1) → Rn given by

(x, y) 
→ x+ y.

ε

Figure 28 The ε-neighborhood of the unit circle.

Restricted to S
n−1×0, it is a diffeomorphism with which we are used to identify Sn−1×0

with Sn−1. On the other hand, restricted to each normal line Nx(Sn−1), it is an affine linear
embedding onto the line spanned by x itself in Rn. Thus, we see that if we restrict α to only
those vectors of length < ε for some 0 < ε ≤ 1, then α itself is one-to-one.

It can be easily seen that this is actually an embedding onto the annular region,

{x ∈ R
n : ε < ‖x‖ < 1 + ε}
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which is an open neighborhood of Sn−1 in Rn. We shall soon conceptualize this property
and prove it for all proper submanifolds of RN .

On the other hand, consider the mapping β : N(X) → S
n−1 × R given by

(x, v) 
→ (x, 〈x, v〉).

This is clearly a smooth map. Verify that this is a diffeomorphism by showing that the map
γ : Sn−1 × R → N(X) defined by

(x, r) 
→ (x, rx)

is the inverse of β. The diffeomorphism is seen to preserve the first factor and restricted
to each normal line, it is linear also. Such a diffeomorphism is called an equivalence or
isomorphism of the vector bundles. A vector bundle over X, which is isomorphic to X ×Rn

for some n, is called a trivial bundle. Thus, what we have seen above amounts to saying
that the normal bundle of Sn−1 in Rn is trivial, i.e.,

N(Sn−1; R
n) ≈ Θ1

Sn−1 ≈ S
n−1 × R.

(Compare Example 3.3.1(3).)

Definition 6.1.2 Given a submanifold X ⊂ R
N , and a continuous function ε : X → (0,∞),

introduce the notation,

Nε(X) = {(x,v) ∈ N(X) : ‖v‖ < ε(x)}

Clearly, Nε(X) is a neighborhood of X × 0 in N(X).

Remark 6.1.1 Whatever we did so far in this section is valid for manifolds with or without
boundary. But in the following theorem, we actually have to assume thatX has no boundary.

Theorem 6.1.2 Tubular Neighborhood Theorem: Let X ⊂ RN be a proper subman-
ifold without boundary and let U be a neighborhood of X in RN . Then there exists a con-
tinuous function ε : X → (0,∞) and a diffeomorphism φ : Nε(X) → V onto an open
neighborhood V of X in U such that φ(x, 0) = x for all x ∈ X. In particular, X is a strong
deformation retract of V. Moreover, if X is compact, then we can choose a constant ε > 0,
such that V = Vε′ = ∪x∈XBε′(x).

Proof: We consider the linear mapping α : R
N × RN → RN given by

(u,v) 
→ u + v.

First we claim that α : X → R
N is a submersion. In Theorem 6.1.1, we have seen that

for all points (x,v) ∈ N(X), the tangent space to N(X) is given by

T(x,v)N(X) = TxX ⊕Nx(X).

Since α is a linear map, it follows that Dα = α for all points in R
N × RN . Therefore, it

follows that
Dα(T(x,v)N(X)) = R

N .

This proves that α is a submersion. Since dimension of N(X) and dimension of RN are the
same, by the inverse function theorem, this means that α : X → RN is a local diffeomor-
phism.

In particular, for each x ∈ X we can find δ(x) > 0 such that on the open set
Box(x, δ(x)) = {(y,v) ∈ N(M) : ‖x − y‖ < δ(x), ‖v‖ < δ(x)}, the map α is injective
and the image is contained in U.
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(If X is compact, we can immediately conclude that for suitable a choice of ε > 0, α is
injective on Vε as well. In the noncompact case, we have to work harder.)

Let us put τ ′(x) to be the supremum of all such δ(x) ≤ 1 for which α is injective on
Box(x, δ(x)) and such that α(Box(x, δ)) ⊂ U. As seen above, α is a local embedding implies
that τ is positive. We shall show that τ is actually uniformly continuous in x, i.e.,

|τ(x) − τ(x′)| ≤ ‖x− x′‖. (6.1)

We may assume that τ(x) ≥ τ(x′). We then have to prove that

τ(x) − τ(x′) ≤ ‖x− x′‖.

If this were not true, then τ(x) > τ(x′) + ‖x − x′‖ > ‖x − x′‖. This clearly implies that
Box(x′, τ(x) − ‖x − x′‖) is contained in Box(x, τ(x)) on which α is injective. Therefore,
τ(x′) ≥ τ(x) − ‖x− x′‖, which is absurd.

Put ε(x) = τ(x)/2 and take φ = α|Nε(X). We claim that φ is a diffeomorphism onto an
open subset V = φ(Nε(X)). Since the dimension of the domain and codomain are the same
and α is a submersion, all that we need to prove is that φ is injective.

Now suppose (x,v), (x′,v′) ∈ Nε(X) are such that φ(x,v) = φ(x′,v′) = z. Once again,
we may assume that τ(x) ≥ τ(x′). But then

‖x− x′‖ ≤ ‖z − x‖+ ‖z − x′‖ = ‖v‖+ ‖v′‖ ≤ ε(x) + ε(x′) < τ(x).

This implies that (x,v), (x,v′) ∈ Box(x, τ(x)) on which α = φ is injective. Therefore
(x,v) = (x′,v′).

δ

X

x
B(x, (x))

z

y0

X

Figure 29 The normal bundle.

Now consider the case when X is compact. Take ε′ as the constant function
min{ε(x) : x ∈ X}. Clearly, Vε′ contains

V = α(Nε(X)) = α (∪x∈X{x} ×Bε′(x) ∩Nx(X)) .

On the other hand, suppose z ∈ Vε′ . This means that z ∈ Bε′(x) for some x ∈ X. Since
X is a closed subset of RN (being a proper submanifold) X ∩ Bε′(x) is a closed subset of
this open ball. If r = d(z,X), the distance between z and X, then it follows that there
is y0 ∈ X ∩ Bε′(x) such that r = d(z, y0). Moreover, it follows that y0 is a critical point
of the function f(y) = ‖y − z‖2. This means that the derivative of the function f at the
point y = y0 restricted to Ty0X must be the zero map. This is the same as saying that the
gradient vector 2(y − z) at y0 is perpendicular to Ty0X, which is the same as saying that
z − y0 ∈ Ny0(X). Clearly, r < ε′ and hence (y0, z − y0) ∈ Nε′(X). Also, φ(y0, z − y0) = z
and hence z ∈ V. ♠

Definition 6.1.3 Let X be a submanifold of a manifold Y. By a tubular neighborhood of
X in Y we mean a pair (V, π) where V is a neighborhood of X in Y and π : V → X is a
submersion and a strong deformation retraction.
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Remark 6.1.2
(i) Recall that π is a strong deformation retraction means that there is homotopy H :
V × I → V such that

H(y, 0) = y, H(y, 1) = π(y), y ∈ V ; and H(x, t) = x, ∀ x ∈ X, t ∈ I.

In particular, this implies that π(x) = x, ∀ x ∈ X. The above theorem, not only establishes
the existence of a tubular neighborhoods in case Y = Rn, but also gives recipe to construct
one. At least in case X is compact, for sufficiently small ε, an ε-neighborhood will do.
Note that once some ε > 0 is chosen to satisfy the above property, the same holds for all
0 < ε′ < ε also. Moreover, it is easily seen that Nε(X) is diffeomorphic to Nε′(X) with the
diffeomorphism being equal to the identity map on X × 0.
(ii) Consider the situation when X ⊂ Y is a neat submanifold with ∂X = ∂Y ∩X �= ∅. Note
that the normal bundle of X in Y makes perfect sense and is a vector bundle of rank equal
to the codimension of X in Y. This is so because the normals to X at a point x ∈ ∂X are
the same as normals to ∂X in ∂Y at that point. We then take the union of some appropriate
tubular neighborhood of intX in intY with a tubular neighborhood of ∂X in ∂Y to obtain
a tubular neighborhood of X in Y.
(iii) Finally, consider a situation of a nonneat submanifold such as [0, 1] × {0} ⊂ R2. The
arguments in the above theorem break down because the local diffeomorphism does not
guarantee open mapping due to the presence of boundary points of the submanifold in the
interior of the ambient manifold. The situation can be remedied to some extent by allowing
all normals to ∂X at the boundary points of X. By modifying the map π near the boundary
points, it is possible to obtain a map π : V → X satisfying the conditions in Definition
6.1.3. The simplest situation of this type is depicted in Figure 30.

X X

(Nε )αα(Nε )

XX

Figure 30 Tubular neighborhoods.

(iv) Suppose X ⊂ Y ⊂ RN . One can talk about the normal bundle and the tubular neigh-
borhoods of X in Y extending all the results we have proved for the case X ⊂ RN . We
can also deal with the situation when Y itself is an abstract manifld. However, this leads
us to consider the concept of inner products on tangent spaces of Y which vary smoothly,
familiarly known as Riemannian metric, which we shall not be dealing with.

As an application of the existence of tubular neighborhoods, we can now generalize the
approximation Theorem 1.7.2, which says that smooth functions form a dense subspace of
the space of all functions.

Theorem 6.1.3 Smooth Approximation: Let X and Y be manifolds and let C ⊂ X
be a closed subset. Given f : X → Y a continuous function that is smooth on C, and
a positive function ε : X → (0,∞), there exists a smooth map g : X → Y such that
‖f(x)− g(x)‖ < ε(x), x ∈ X and such that g|C = f.
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Proof: We may assume that both X and Y are proper submanifolds of RN and f is defined
on an open set U containing X. Choose a continuous function δ : X → (0,∞) such that Vδ
is a tubular neighborhood of Y in R

N with the submersion π : Vδ(Y ) → Y. Observe that
πY = IdY . Let r(x) = min {δ(x)/2, ε(x)/2}. By Theorem 1.7.2, there a smooth function
p : RN → RN such that ‖f(x) − p(x)‖ < r(x) for all x ∈ X and p|C = f. Put g = π ◦ p.
Then for x ∈ C we have, g(x) = π ◦ p(x) = π ◦ f(x) = f(x). Moreover,

‖f(x)− g(x)‖ ≤ ‖f(x)− p(x)‖ + ‖p(x)− π ◦ p(x)‖ ≤ 2r(x) ≤ ε(x),

for all x ∈ X. ♠

Exercise 6.1

1. Use Theorem 6.1.3 to deduce Theorem 5.4.2 for continuous maps. Can you replace
the compactness hypothesis on X by a weaker hypothesis? Can you remove the com-
pactness hypothesis altogether?

2. Prove the continuous version of Brouwer’s fixed point theorem.

3. Let f : Dn → Dn be any continuous (smooth) map such that f |Sn−1 = Id. Then show
that f is surjective.

6.2 Orientation on Normal Bundle

Based on this experience we have gained in the special case of the boundary of a manifold,
we shall now study how to orient an arbitrary submanifold of an oriented manifold.

Definition 6.2.1 Let X ⊂ RN be a smooth manifold and N(X) denote its normal bundle.
By an orientation τ of N(X) we mean a choice of orientation class τx of Nx(X) for each
x ∈ X such that τ is locally constant in the following sense. Recall that if (U, φ) is a local
coordinate chart for X then using Gram-Schmidt process we have defined a diffeomorphism
φ̂ : N(U) → φ(U)×RN−n. We demand that for all x ∈ U the orientation class τx of Nx(X)
is mapped onto the same orientation class of R

N−n, under φ̂x.

Remark 6.2.1
(i) Observe that the above definition is similar to the definition of orientation on the manifold
X itself. Indeed, in this sense an orientation on X is nothing but an orientation on the
tangent bundle T (X).
(ii) The above definition is available to the normal bundle of any submanifold Y inside a
given manifold also.
(iii) Given a manifold X ⊂ RN and an orientation τ on N(X), we define the associated
orientation ω on X by the rule

τxωx = En.

(Use Theorem 4.1.2 to verify that ω is smooth.)
(iv) More generally, consider the situation where Z is a submanifold of Y. Let us agree to
use the notation [V ] to denote an oriented vector space, i.e., a vector space V with a specific
orientation. Consider the identity

[Nz(Z;Y )][TzZ] = [TzY ]. (6.2)

This identity can be used to define any one of the three objects whenever the other two
are known. Moreover, if two of them are smooth then the third one is also smooth. As an
example, suppose now that Y is oriented. Then Z will be orientable iff N(Z;Y ) is orientable;
moreover, fixing an orientation on Z is the same as fixing one on N(Z;Y ).
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Theorem 6.2.1 Let X,Y, Z be smooth manifolds, Z ⊂ Y be a closed submanifold with Z
and Y boundaryless. Let f : X → Y a smooth map such that f ∩| Z and ∂f ∩| Z. Assume
that X,Y, Z are all orientable. Then W = f−1(Z) is also orientable.

Proof: Let x ∈ W and z = f(x). The transversality condition says that

dfx(Tx(X)) + TzZ = TzY. (6.3)

Write Tx(X) = TxW ⊕NxW. Observe that dfx(TxW ) = TzZ. It follows that

dfx(NxW )⊕ TzZ = TzY. (6.4)

Using the orientations on Y and Z to define the orientation classes on dfx(NxW ). Similar
to the proof of the above theorem, the smoothness of this assignment can be seen. Now use
the fact that dfx is injective on NxW and hence dfx : NxW → dfx(NxW ) is an isomorphism.
Use this to pull back the orientation class onto NxW. Since dfx is smooth in x, it follows
that this gives a smooth orientation on N(W ;X), the normal bundle of W in X. Since X
is orientable, it follows that W is also orientable. ♠

Remark 6.2.2
(i) It may be noted that according to our convention, the induced orientation on W is given
by the following two formulae:

dfx[NxW ][TzZ] = [TzY ]; [NxW ][TxW ] = [TxX ]. (6.5)

(ii) Once W is oriented in the above manner, its boundary gets an induced orientation, say
α, by the formula:

ηxαx = [TxW ], (6.6)

where η is the outward normal to ∂W. On the other hand, we can consider the induced
orientation, say β on ∂W directly via the map ∂f : ∂X → Y given by the formula

d(∂f)x[Nx(∂W ; ∂X)][TzZ] = [TzY ]; [Nx(∂W ; ∂X)]βx = [Tx∂X ] (6.7)

It is an interesting exercise to figure out the exact relation between α and β. Please try this
and only after you have given enough time to it read the following solution. However, we
are not going to use this result in the rest of the course.

Since the outward normal ηx for ∂X is also the outward normal to ∂W, by the rule for
induced orientation on the boundary we have,

ηx[Tx∂X ] = [TxX ]. (6.8)

Therefore,

ηx[Nx(∂W ; ∂X)]βx = ηx[Tx∂X ] = [TxX ]. (6.9)

On the other hand,

[TxX ] = [NxW ][TxW ] = [NxW ]ηxαx. (6.10)

Therefore,
ηx[Nx(∂W ; ∂X)]βx = [NxW ]ηxαx = (−1)kηx[NxW ]αx,

where k = dim Nx(W ). Notice that at any point x ∈ ∂W, the normals to ∂W inside ∂X
are the same as normals to W inside X. It follows that βx = (−1)kαx. Since this true for
all points x ∈ W and k = codimZ, we have,

β = (−1)codimZα.

Exercise 6.2 Extend the concept of orientation on any vector bundle.
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6.3 Vector Fields and Isotopies

Definition 6.3.1 Let X be a smooth manifold. By a vector field on X we mean a smooth
map σ : X → TX such that π ◦ σ = IdX .

Remark 6.3.1
(i) Thus, a vector field assigns to each point x ∈ X, a tangent vector to X at x in a smooth
fashion. Consider the case when X is an open subset of Rn. Then TX = X × Rn and π is
the first projection. Therefore, we can write σ(x) = (x, τ(x)) where τ : X → Rn is a smooth
map. This establishes a one-to-one correspondence between vector fields on X and smooth
maps X → Rn. This happens, more generally, whenever the tangent bundle of X is trivial.
A typical case is the unit circle S1.
(ii) In general, the assignment x 
→ (x, 0) defines a vector field which is the zero-field. Given
any two vector fields, we can add them pointwise to obtain another vector field. We can also
multiply a vector field by a scalar. Thus, the set of vector fields on a given manifold forms a
vector space. Further, we can also multiply a vector field on X by a smooth function X → R.
This operation makes the set of all vector fields into a module over the ring C∞(X ; R) of
smooth real valued functions.
(iii) Using partition of unity, we can always patch up vector fields defined locally to obtain
plenty of nonzero vector fields. However, having a vector field that does not vanish anywhere
is another matter. As we shall see later the existence of a vector field that does not vanish
anywhere implies a certain topological behavior of the manifold.
(iv) Vector fields arise in a natural way from many physical situations, which we shall not
discuss here. The most common one is when we have to deal with a homotopy ht : X → X
of the identity map. Then, to each point x ∈ X, we have the smooth curve c : t 
→ ht(x)
which starts at x. We could simply take the tangent vector to this curve at x, to obtain a
vector field on X. In this section, we want to show that the situation is reversible to a large
extent.

We shall need the following fundamental result from the theory of ordinary differential
equations (See for instance, Theorems 1 and 2 and Remark 1 in Section 2.3 of [Pe].)

Theorem 6.3.1 Let U ⊂ Rn, V ⊂ Rm be open subsets, x0 ∈ U,v0 ∈ V and let σ ∈
Cr(U × V,Rn). Then there exist positive real numbers δ, r such that for all x ∈ Br(x0) ⊂ U
and v ∈ Br(v0) ⊂ V, the initial value problem

∂f
∂t

(x,v, t) = σ(f(x,v, t),v); f(x,v, 0) = x

has a unique Cr solution f : G→ U, where G = Br(x0)×Br(v0)× [−δ, δ].

Definition 6.3.2 Given a vector field σ on X, by the initial value problem
associated to σ [abbreviated to IVP(σ)], we mean

∂f

∂t

∣∣∣∣
(x,t)

= σ(f(x, t)); f(x, 0) = x. (6.11)

For a function ε : X → (0,∞) set up the notation

Xε := {(x, t) ∈ X × R : |t| < ε(x)}.

Lemma 6.3.1 Let X be any smooth manifold and σ : X → TX be a smooth vector field.
Then there exists a smooth map ε : X → (0,∞) and a smooth map f : Xε → X satisfying
the IVP(σ) (6.11) for all points in (x, t) ∈ Xε.
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Proof: Via a local coordinate system at a point x ∈ X, the differential equation (6.11)
corresponds to an ordinary differential equation (initial value problem) defined in a neigh-
borhood of 0 ∈ R

n. Therefore, there exists a positive number δ and a neighborhood U of
0 on which the equation has a unique solution U × (−δ, δ) → U. Translated back to the
manifold, this means that we have a neighborhood Vx of x and δ > 0 and a smooth map
f : Vx × (−δ, δ) → Vx satisfying (6.11). Let {Vα} be a locally finite open refinement of
the open cover {Vx} of X. Let {θα} be a smooth partition of unity subordinate to {Vα}
and let δα denote the corresponding positive numbers, so that we have a smooth function
fα : Vα × (−δα, δα) → X satisfying (6.11). Put ε =

∑
α δαθα. By the uniqueness of fα’s, in

each neighborhood, it follows that fα = fβ on Vα ∩ Vβ × (−a, a), where a = min{δα, δβ}.
(Details are left to the reader as an exercise.) Therefore, {fα} patch-up to a well-defined
map f : Xε → X as required. ♠

Definition 6.3.3 For each fixed x ∈ X, the curve t 
→ f(x, t) has the property that
f(x, 0) = x and the tangent to this curve at any point f(x, t) is equal to σ(f(x, t)), for
all values of t for which the curve is defined. They are called solution curves or flow curves
of the field σ, emanating from x. If the map ε in the above lemma can be chosen so that
the values keep away from 0 i.e., there exists r > 0 such that ε(x) ≥ r for all x ∈ X , then
we say σ admits global solutions on X.

The reason for introducing the last terminology is clear from the following lemma.

Lemma 6.3.2 Suppose the vector field σ admits a global solution. Then a solution f is
defined on X × R and satisfies the property

f(x, t+ s) = f(f(x, t), s). (6.12)

In particular, the maps ft : X → X defined by ft(x) = f(x, t) are diffeomorphisms that
satisfy ft+s = fs ◦ ft, for all t, s ∈ R.

Proof: Suppose f : X × (−r, r) → X is a global solution of σ where r > 0. If t, s ∈ (−r, r)
are such that t+ s ∈ (−r, r), then the curves t 
→ f(f(x, s), t) and t 
→ f(x, s+ t) are both
solution curves for σ emanating from the point f(x, s). By the uniqueness of the solution,
it follows that f(f(x, s), t) = f(x, s + t). Now given any t ∈ R write t = m r

2 + t′ where
|t′| < r/2 and m is some integer. Put φ = fr/2. Define g : X × R → X by the formula
g(x, t) = f(φm(x), t′). Verify first that g = f wherever f is already defined, g is a solution
for σ and gt+s = gt ◦ gs. Therefore, we can rename g as f. ♠

Certainly, if X is compact then the smooth function ε keeps away from 0 and hence
σ admits global solutions. Even if X is not compact but the vector field σ has compact
support K, we have the same conclusion. For then, around points where σ = 0, we can
choose δ = ∞, K itself can be covered by finitely many neighborhoods where solutions are
defined for some δ > 0. Therefore, we obtain:

Theorem 6.3.2 Let X be any smooth manifold and σ : X → TX be a smooth vector field
that vanishes outside a compact subset of X. Then there exists a smooth 1-parameter family
of diffeomorphisms ht : X → X, for all t ∈ R with the following properties.

(i)
dht(x)
dt

= σ(ht(x)), for all x ∈ X, t ∈ R;

(ii) h0(x) = x, for all x ∈ X ;
(iii) ht ◦ hs = ht+s;
(iv) ht(x) = x for all t ∈ R and for x outside a compact set.
Moreover, the family ht satisfying (i) and (ii) is unique.



162 Isotopy

Definition 6.3.4 Because of the uniqueness and the property (iii) in the theorem, the
1-parameter family of diffeomorphism is called the 1-parameter group of diffeomorphism
generated by the vector field σ.

Remark 6.3.2
(i) Without some compactness conditions, the theorem is not valid as seen by the following
example. Take X = (0, 1) and σ = d

dx . Then the solution for IVP(σ) has to be necessarily,
f(x, t) = x+ t. But, there is no ε > 0 such that f(x, t) ∈ (0, 1) ∀ x ∈ (0, 1) and all |t| < ε.
(ii) The theorem is valid for manifolds with boundary as well, except that we need to assume
that the vector field σ is never pointing outward along the boundary points. For then the
solution curves starting at a boundary point will lie inside the manifold for a small period.
So, the conclusion also should be modified by restricting solutions for t ∈ [0, ε). As an
important corollary we have:

Theorem 6.3.3 Collar Neighborhood Theorem: LetX be a manifold with its boundary
∂X compact. Let U be a neighborhood of ∂X. Then there exists an embedding φ : ∂X ×
[0, 1)→ X such that φ(x, 0) = x for all x ∈ ∂X.

Proof: Let η be a vector field on X, which is pointing strictly inward at each point of the
boundary. (Use partition of unity to see the existence of such a vector field.) Choose an
open set V such that ∂X ⊂V⊂ V̄ ⊂ U and such that V̄ is compact. Then by multiplying by
a suitable cut-off function, we may assume that η vanishes outside V̄ . It follows that there
is an ε > 0 and a map h : ∂X × [0, ε)→ X such that
(i) h(x, 0) = x, ∀ x ∈ ∂X ;

(ii)
∂h

∂t
(x) = η(x), ∀ x ∈ ∂X, t ∈ [0, ε).

This then implies that h is a local diffeomorphism at (x, 0), for each x ∈ ∂X. Moreover
h|∂X×0 is injective. By stability property (see Theorem 3.6.1), it follows that there exists
δ > 0 such that h : ∂X × [0, δ] → X is an injective immersion. Choosing δ smaller if
necessary we may assume h(∂X × [0, δ]) ⊂ V. Now we just define φ(x, t) = h(x, tδ). ♠

Definition 6.3.5 Let X,Y be smooth manifolds, h : X × I → Y be a smooth homotopy.
Put ht(x) = h(x, t). We say h is an isotopy, if each ht is an embedding. In that case, we
say h0 and h1 are isotopic to each other. Clearly, this is an equivalence relation among all
diffeomorphisms X → Y. (Take this as an exercise.) Furthermore, when X = Y and each
ht is a diffeomorphism with h0 = IdX , we call ht a diffeotopy, or an ambient isotopy. Of
course, a diffeotopy is an isotopy. An isotopy is said to have compact support if it is the
identity map outside a compact set. Two embeddings f, g : X → Y are said to be ambient
isotopic if there exists an ambient isotopy h : Y × I → Y such that h(f(x), 1) = g(x).

Remark 6.3.3 Clearly, if two maps are ambient isotopic to each other, then they are
isotopic. We may always assume that an isotopy is defined for all t ∈ R, instead of just
on the interval I. For example, let μ be a smooth function such that μ(t) = 0 for t ≤ 0,
μ(t) = 1 for all t ≥ 1 and μ′(t) ≥ 0, for all t. Then consider F (x, t) = h(x, μ(t)). Thus,
whenever an isotopy is given we may at will assume that it is defined for all t. This will help
us technically in several ways. For instance, we can now allow isotopies defined on manifolds
with boundary as well.

Example 6.3.1

1. Any two linear isomorphisms : Rn → Rn are ambient isotopic to each other iff the
product of their determinant is positive: Consider a smooth map λ : [0, 1] → GL(n,R)
such that λ(0) = Id. Then the map defined by H(x, t) = λ(t)(x) is a diffeotopy of IdRn



Vector Fields and Isotopies 163

and λ(1). Now given linear isomorphisms, f, g ∈ GL(n,R) we can find λ as above with
λ(1) = g◦f−1 iff det g◦f > 0. ( GL(n,R) has precisely two path components consisting
of those matrices with ± determinant. See Exercise 3.4.5.) Check that H(f(x), t) is
the required diffeotopy from f to g.

2. Let f : R
n → R

n be any diffeomorphism (at least C2). Then it is diffeotopic to the
linear isomorphism Df0. To see this, first consider a diffeomorphism g : Rn → Rn

such that g(0) = 0 and Dg0 = Id. Define

h(x, t) =

{
g(tx)
t

, t �= 0

x, t = 0.

Verify that h is a diffeotopy of g. Now given any diffeomorphism f, consider φ(x, t) =
x− tf(0). Then φ(f(x), t) defines a diffeotopy of f with f − f(0). Therefore, we may
assume f(0) = 0. Put g = f ◦ (Df0)−1. Then g(0) = 0 and Dg0 = Id. Therefore, by
the earlier case, we have the diffeotopy ht. But now h(Df0(x), 1) = f(x). Thus, f is
diffeotopic to the linear isomorphism Df0.

3. If f, g : X → Y are ambient isotopic embeddings then it follows that the complement
of their images are diffeomorphic. This can be used to produce embedded arcs in R2,
which are not ambient isotopic. For example, take f(t) = (t, 0) and g(t) = (tanπt/2, 0)
on (−1, 1). Directly write down an isotopy between them. The complement of R

2 \
(0, 1)× {0} is connected, whereas, R2 \ R× 0 is disconnected. So, f and g cannot be
ambient isotopic.

As an immediate application of the notion of isotopy, let us derive the “uniqueness” of
the collar neighborhoods, which itself is going to be very useful later. We begin with:

Lemma 6.3.3 Let M be a closed manifold and φ : M × I →M × I be an embedding such
that φ(x, 0) = x, x ∈ M. Then there exists 0 < δ < 1 such that φ|M×[0,δ] is isotopic to
Id|M×[0,δ].

Proof: Write φ(x, t) = (φ1(x, t), φ2(x, t)). Then φ1(x, 0) = x and φ2(x, 0) = 0. Moreover,
we check that the derivative of φ at any point (x, 0) ∈M × 0 is of the form(

Id σ
0 α

)

where α > 0. Consider the homotopy H : M × I × I →M × I given by

(x, t, s) 
→ (φ1(x, st), (1 − s)t+ sφ2(x, st)).

Clearly,

H(x, t, 0) = (φ1(x, 0), t) = (x, t); and H(x, t, 1) = (φ1(x, t), φ2(x, t)) = φ(x, t).

We claim that there exists 0 < δ < 1 such that for each s ∈ I, (x, t) 
→ H(x, t, s) is an
embedding on M × [0, δ]. The arguments involved are exactly similar to the one you have
seen in the Stability Theorem 3.6.1.

Fix s ∈ I and put Hs(x, t) = H(x, t, s). At any point (x, 0, s) the derivative of Hs is of
the form (

Id sσ
0 1− s+ α

)
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and hence is invertible. By inverse function theorem, Hs is a local diffeomorphism at all
points (x, 0, s). Since M × {0}× I is compact, it follows that there 0 < δ < 1 such that Hs

is a local diffeomorphism on M × [0, δ]. Therefore, it suffices to show that for some δ > 0,
Hs is injective on M × [0, δ] for all s.

If this were not true, then for each n there exists x1,n, x2,n ∈ M, sn ∈ I and 0 <
t1,n, t2,n < 1/n, such that (x1,n, t1,n) �= (x2,n, t2,n) and Hsn(x1,n, t1,n) = Hsn (x2,n, t2,n).
By passing to subsequences we may assume that xi,n → xi ∈ M, and sn → s ∈ I. It then
follows that (x1, 0) = Hs(x1, 0) = H(x1, 0, s) = H(x2, 0, s) = (x2, 0) and hence x1 = x2.
But for large n, (xi,n, ti,n) are in a neighborhood of (x1, 0) = (x2, 0), which violates the
injectivity of Hs on this neighborhood. ♠

Theorem 6.3.4 Let M be a compact component of ∂N. Then any two collar neighborhoods
of M in N are isotopic.

Proof: Let f : M × I → N be an embedding such that f(x, 0) = x, x ∈ M (i.e., f is a
collar of M in N). Fix 0 < δ < 1. The map Fδ : M × I × I → N given by F (x, t, s) =
f(x, t− st+ stδ) defines an isotopy of f with another collar of M, viz., fδ(x, t) = f(x, tδ).
Given any neighborhood U of M, we can choose δ such that fδ(M × I) ⊂ V. Therefore, in
order to prove that any two collars f, g of M are isotopic to each other, we can replace f
by fδ and assume that the image of f is contained in the image of g. Now the problem is
reduced to the situation of the above lemma, wherein, φ = g−1 ◦ f : M × I →M × I. ♠

We shall now embark upon making good use of the existence of global solutions. To
begin with the following lemma is easy to prove.

Lemma 6.3.4 Let H : M × R → N × R be such that H(x, t) = (h(x, t), t). Then H is an
embedding iff h is an isotopy.

Remark 6.3.4 Embeddings of the above form are called level-preserving embeddings. Often
we call H as the track of h. Thus, isotopies of maps from M to N are in 1-1 correspondence
with level-preserving embeddings of M × R in N × R.

Definition 6.3.6 For any manifold X, recall that T(x,t)(X × R) = TxX ⊕ R. So, given a
smooth vector field σ on X × R, we can decompose σ as a direct sum

σ := (σ1, σ2), (6.13)

where σ2 : X × R → R is a smooth map and σ1(x, t) ∈ Tx(X). We call σ1 as the space
component of σ and σ2 as the t-component (time component) of σ. We shall denote by
∂t the vector field whose space component σ1 is 0 and whose time component σ2 is the
constant map (x, t) 
→ 1.

Now let us take a close look at a level-preserving embedding. Fixing a point x ∈ X, we
get the curves t 
→ H(x, t) = (h(x, t), t). The tangent field to this curve has its t-component
equal to ∂t. The space component defines a vector field along the curve, which we can view
as time dependent vector field on X.

We now want to reverse this process. We have a ready-made tool for this, viz., vector
fields that admit global solutions (see Lemma 6.3.2).

The following theorem is independently due to R. Thom [Th] (compact case), R. Palais
[Pa] and J. Cerf [Ce]. We begin with a lemma.

Lemma 6.3.5 Let σ be a vector field on N × R whose time component is ∂t. Suppose
H : N × R× R → N × R is the global solution for IVP(σ) as in (6.11). Then the mapping
G(x, t) = H(x, 0, t) is the track of an isotopy of the identity map of N.
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Proof: We know that H(x, s, 0) = (x, s) for all (x, s) ∈ N ×R and DH(∂t) = σ, since H is
a solution of IVP(σ). Therefore, G(x, 0) = H(x, 0, 0) = (x, 0).

Let π1 : N ×R → N and π2 : N ×R → R be projection maps and let Hi = πi ◦H ;Gi =
πi ◦ G, i = 1, 2. Thus, H = (H1, H2). Then DH2(∂t) is nothing but the t-component of σ
that is equal to ∂t. This just means that for each fixed (x, s), the curve t 
→ H2(x, s, t) is of
the form t+ α(x, s). Consequently,

G2(x, t) = π2 ◦G(x, t) = t+ α(x, 0).

Since G(x, 0) = (x, 0), it follows that α(x, 0) = 0. This proves that G is level-preserving. To
show that G is an embedding, we consider the map L : N × R → (N × R)× R defined by

L(x, t) = (H(x, t,−t), t).

Note that (x, s, t) 
→ (H(x, s, t), t) is a level-preserving diffeomorphism of N × R × R with
itself. Taking the composite with the embedding (x, t) 
→ ((x, t,−t), t), we get the map L.
Therefore, L is an embedding. Therefore, it suffices to show that L ◦ G is an embedding.
(See Exercise 3.7.17.)

Recall that H is a 1-parameter group of diffeomorphisms. Therefore,

H(H(p, s, r), t) = H(p, s, r + t).

Put y = H1(x, 0, t). Therefore,

L(G(x, t)) = L(H1(x, 0, t), t) = L(y, t)
= (H(y, t,−t), t) = (H(H1(x, 0, t), t,−t), t)
= (H(G1(x, t), t,−t), t) = (H(G(x, t),−t), t)
= (H(H(x, 0, t),−t), t)
= (H(x, 0, t− t), t) = (H(x, 0, 0), t) = ((x, 0), t).

This proves that G is an embedding. Since we have already seen that G is level-preserving,
it follows that G is the track of an isotopy of the identity map. ♠

Theorem 6.3.5 (Isotopy Extension Theorem) Let f : M → N be an embedding of
a manifold M in a manifold N with ∂N = ∅. Let K ⊂ M be a compact subset and F :
M ×R → N ×R be the track of an isotopy of f. Then there is G : N ×R → N ×R which is
the track of an isotopy such that G(f(x), t) = F (x, t) for all x ∈ K and t ∈ [0, 1]. Moreover,
G is the identity map outside a compact subset of N × R.

Proof: Consider the vector field σ′ = DF ◦ ∂t. [This is nothing but the tangent field to
the curves t 
→ F (x, t).] This is defined on F (M × R) which is a smooth submanifold of
N × R. Since K̂ := F (K × [0, 1]) is compact, we can extend σ′|K̂ to a vector fieldσ on all
of N ×R in such a way that σ vanishes outside an open set V containing K̂ and such that
V̄ is compact. We define a new vector field τ on N × R by

τ = (σ1, ∂t),

i.e, the space-component of τ is the same as that of σ whereas the time-component has been
changed to 1. Observe that σ′|K̂ has its time component ∂t and hence the extended σ also
has this property. Therefore, it follows that

τ |K̂ = σ′|K̂ = σ|K̂ .

We have only to verify that τ admits global solutions. For this, we examine the behaviour
of the solution curves of τ and find ε > 0 such that for all x ∈ N the solution curves are
defined for |t| < ε.
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Let W be an open set such that V̄ ⊂ W and W̄ is compact. Then there exists ε > 0
such that all solution curves originating in W are defined for |t| < ε.

On the other hand, consider a solution curve originating at a point (x0, t0) �∈ V̄ . Since
σ1 vanishes outside V, the curve is of the form t 
→ (x0, t0 + t). These curves may never hit
V̄ , in which case, the solution is defined for all t ∈ R. On the other hand, if it hits V̄ , say
for some t = t1 �= 0, that is, now we have (x0, t0 + t1) ∈ V̄ ⊂W, |t1| > 0. The solution curve
can now be extended further for a time |t| < ε and hence is defined at least in the interval
|t| < ε+ |t1|.

Thus in either case, the solution curves are defined for |t| < ε.

Let nowH : N×R×R→ N×R be the global solution given by σ andG(x, t) = H(x, 0, t).
For some x0 ∈ K let C0 be the solution curve of σ which at t = 0 passes through (f(x0), 0).
Then C0 : t 
→ F (x0, t). Since σ and τ agree on K̂ = F (K × [0, 1]), it follows that, C0 is the
solution curve for τ as well in 0 ≤ t ≤ 1. Hence, F (x0, t) = H(f(x0), 0, t) = G(f(x0), t) for
0 ≤ t ≤ 1. ♠

Remark 6.3.5 It is also important to note that if V ⊂ N is any open set with compact
closure and K̂ = F (K × I) ⊂ V, then the isotopy G of N that we get is the identity map
outside V. The hypothesis ∂N = ∅ itself is not crucially used; but if ∂N is nonempty we
need to assume that the image of F avoids ∂N.

Remark 6.3.6 This theorem has several natural as well as surprising applications. One
of the easy consequences is that any two collars of a compact boundary component of a
manifold are ambient isotopic (see Theorem 6.3.4). We have many more to come.

Corollary 6.3.1 Let Z ⊂ M be a compact submanifold. Let f0, f1 : Z → N \ ∂N be any
two isotopic embeddings in N \ ∂N. If f0 extends to an embedding of M into N then so
does f1.

Proof: Let F : Z × R → N be an isotopy of f0 and f1. Let G : f0(Z) × R → N × R be
defined by G(y, t) = (F (f−1

0 (y), t), t). We can then apply Theorem 6.3.5 with K = f0(Z)
to obtain the track of an isotopy H : N × R → N × R such that H(y, t) = G(y, t) for all
y ∈ f0(Z). Now consider L : M × R → N given by

L(x) = π ◦H(f0(x), 1)

where π : N × R → N is the first coordinate projection. Clearly, L(x) = π(G(f0(x), 1)) =
π(F (x, 1), 1) = f1(x), x ∈ Z. ♠

Corollary 6.3.2 Let N be a connected manifold, and a, b be any two points in N \ ∂N.
Then there exists a diffeomorphism φ : N → N isotopic to identity such that φ(a) = b.

Proof: A smooth path from a to b inside N \∂N defines an isotopy of the singleton {a} ⊂ N.
Now apply Theorem 6.3.5. ♠

Corollary 6.3.3 Let N be a connected manifold of dimension ≥ 2 and let k be any posi-
tive integer. For any two k-subsets {a1, . . . , ak} and {b1, . . . , bk} of N \ ∂N, there exists a
diffeomorphism φ : N → N isotopic to identity such that φ(ai) = bi, 1 ≤ i ≤ k.

Proof: Induct on k, the case k = 1 being covered by the above corollary. Assume that
the result holds for k − 1 where k ≥ 2. Let ψ : N → N be a diffeomorphism isotopic to
identity such that ψ(ai) = bi, 1 ≤ i ≤ k−1. If ψ(ak) = bk there is nothing more to be done;
simply take φ = ψ. Otherwise, we can join ψ(ak) to bk by a path γ : R → N not passing



Vector Fields and Isotopies 167

through any of b1, . . . , bk−1. Let S = {b1, . . . , bk−1, ψ(ak)}. Consider the isotopy of S, viz.,
F : S × R → N given by

F (s, t) =
{
s, s �= ψ(ak),
γ(t), s = ψ(ak).

Now apply Theorem 6.3.5 with M = K = S to obtain an isotopy τ : N → N such that
τ(bi) = bi, i ≤ k − 1 and τ(ψ(ak)) = bk. Now take φ = τ ◦ ψ. ♠

Theorem 6.3.6 Orientation Reversing Isotopy: Let N be a connected nonorientable
manifold, p ∈ N be any point. Then there exists a diffeomorphism φ : N → N isotopic to
IdN such that φ(p) = p and Dφp : TpN → TpN is orientation reversing.

Proof: Let γ be a loop at p that is orientation reversing. (See Exercise 4.1.1.) Then γ can
be thought of as an isotopy of the embedding {p} ↪→ N. Let Φ : N × R → N × R be an
isotopy extending this as in Theorem 6.3.5. Let us verify that φ(x) = Φ(x, 1) is such that
Dφp : TpN → TpN is orientation reversing. For this, we may choose any parameterization
τ : Rn → N of a neighborhood of p ∈ N such that τ(0) = p and fix an orientation on
Tp(N) say, Dτ0(En). Put φt(q) = Φ(q, t), so that φ0 = IdN and φ1 = φ. Also note that
Φ(p, t) = (γ(t), t). Therefore, it follows that {φt(τ(Rn))} forms an open cover for the loop
γ[0, 1]. We can now extract a finite subcover {Uj} out of this, where Uj = φtj (τ(Rn))
with 0 = t0 < t1 · · · < tk = 1 and such that there are points tj < sj < tj+1 so that
γ[sj , sj+1]) ⊂ Uj . Orient U0 by taking Dτx(En) on Tτ(x)N. Having oriented Uj , orient Uj+1

so that the two orientations on Tγ(sj)N coincide. By continuity, and from the fact that
φ0 = Id, it follows that for each j, and sj ≤ t ≤ sj+1, Dφt preserves this orientation. Now γ
is an orientation reversing path means that the orientation on Tγ(1)N = TpN coming from
Uk is different from the one with which we started. Therefore, it follows that Dφp reverses
the orientation. ♠

Theorem 6.3.7 Disc Theorem: Let f0, f1 : Dn → N \ ∂N be any two embeddings, where
N is a connected n-manifold. If N is orientable assume that either both f0 and f1 preserve
orientation or both reverse it. Then they are ambient isotopic.

Proof: Observe that by isotopy extension Theorem 6.3.5, since Dn is compact, it is enough
to prove that fi are isotopic to each other.

First consider the case, when N is orientable and fi are both orientation preserving. By
an ambient isotopy along a path joining f1(0) to f2(0) we can first make f1(0) = f2(0) = p.
Let now U be a coordinate patch for N around p. Choose δ > 0 such that fi(Dnδ ) ⊂ U. Let
Θ(x, t) = (1 − t+ tδ)x. Then Θ : Dn × [0, 1] → Dn is an isotopy such that Θ(Dn × 1) ⊂ U.
Therefore, fi ◦Θ gives an isotopy of fi with an embedding gi such that gi(Dn) ⊂ U. Thus,
we may as well assume that fi(Dn) ⊂ U. This is equivalent to assume that N = Rn. The
conclusion follows from the Example 6.3.1, 1 and 2.

The case when both fi are orientation reversing is converted into the first case, by
changing the orientation on the codomain N.

Now suppose N is nonorientable. We can follow the above arguments till we get to the
case when fi(Dn) ⊂ U, where U is a coordinate patch. But now it may happen that for
any fixed orientation on U one of fi is orientation preserving and the other revering! In this
situation, we go back to the manifold N find a loop at p which is orientation reversing and
perform an ambient isotopy of f2 ◦ f−1 along this loop to an embedding h. Now f2 and
f̂2 = h ◦ f1 are isotopic and f1, f̂2 are both orientation preserving or orientation reversing.
We are then back in the first case. ♠

Exercise 6.3

1. Justify the choice of the function ε in the proof of lemma 6.3.1.
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2. Show that every orientation preserving diffeomorphism of S1 is isotopic to the identity
map.

3. Show that the embedding f : (0, 1)→ R2 given by f(t) = e2πıt is not ambient isotopic
to the inclusion map t 
→ (t, 0).

4. For each n ≥ 1 construct at least one diffeomorphism S
n → S

n which reverses orien-
tation.

5. Obtain an embedding of the Möbius band inside the solid torus in R3 which itself is
obtained by rotating the disc

{(x, y), 0) ∈ R
3 : (x − 2)2 + y2 ≤ 1}

around the y-axis. (See Example 3.1.1.7.) Use this description to explicitly write down
a diffeomorphism φ : M → M which is isotopic to identity.

6. Let f : R → R3 be a proper embedding representing the trefoil knot as shown in the
figure below:

Figure 31 The trefoil knot.

Show that f is not ambient isotopic to the inclusion map t 
→ (t, 0, 0). Are the two
embeddings isotopic?

7. Given 0 < ε < 1/2, construct a smooth map μ : I → I such that
(i) μ(t) = t, 0 ≤ t ≤ ε/2 or 3/4 ≤ t ≤ 1.
(ii) μ′(t) ≥ 0 for all t.
(iii) μ(1/2) = ε.

8. Define h : Dn × I → Dn by

h(x, t) = (tμ(‖x‖) + (1 − t)‖x‖) x
‖x‖

where μ is as in the above exercise. Show that h defines an isotopy of D
n which is

identity in a neighborhood of the boundary and maps Dn1/2 onto Dnε .

9. Let f : D
n → R

n be any embedding such that f(0) = 0. Let V be a neighborhood
of f(Dn) ∪ Df0(Dn) such that V̄ is compact. Show that f is isotopic to a linear
embedding by a diffeotopy of Rn which is the identity map outside V.

10. Why do we need dim N ≥ 2 in Corollary 6.3.3?
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6.4 Patching-up Diffeomorphisms

Let M be a closed m-manifold and φ : M × I → M × I be any smooth map. Suppose
for some 0 ≤ t ≤ 1, φ(M × {t}) ⊂ M × {s} for some s. Then the derivative Dφ at a point
(x, t) ∈M × I is of the form (

A v
0 α

)

where A is an invertible m ×m matrix and α is a nonzero real number. In particular, if
φ1 : M × [a, b] →M × [α, β] and φ2 : M × [b, c] →M × [β, γ] are diffeomorphisms such that
φ1|M×{b} = φ2|M×{b}, we can patch-up the two diffeomorphisms into a homeomorphism
ψ : M × [a, c] →M × [α, γ] but it may fail to be a C1-map in general. This is so because at
points (x, b), the t-derivatives of φ1 and φ2 may not match. On the other hand the method
we have followed to compose homotopies would produce a 1-to-1 map that is also C1 but
fails to give a diffeomorphism since the t-derivatives at points (x, b) vanish. In this section
we shall study a partial solution to this problem. It is of some practical importance for us
in the diffeomorphic classification of surfaces.

In the following lemma, we have to use the fact that the solution generated by a smooth
family of vector fields is smooth. (See Theorem 6.3.1.)

Lemma 6.4.1 Smoothing Lemma: Let M be a compact manifold and σ0, σ1 be any two
vector fields on M which are tangential to the boundary at boundary points. There is a
diffeomorphism Θ : M × I →M × I such that
(a) Θ|M×{0,1} = Id and
(b) at points (x, 0) and (x, 1), DΘ is, respectively, of the form[

Id σ0

0 1

]
;

[
Id σ1

0 1

]

[Here Id denotes the identity map of the tangent space TxM for an appropriate x ∈M.]

Proof: Note that, it is enough to prove the result for the case σ1 = 0. For then, we can put
two such diffeomorphisms together to define a diffeomorphism Γ : M × [0, 2] → M × [0, 2]
so that D(Γ) at points (x, 0) and (x, 2) (instead of (x, 1)) satisfies condition (b). It is then
just a matter of reparameterizing M × [0, 2] by M × [0, 1]. So, we shall prove the result for
the case σ0 = σ and σ1 = 0.

For any vector field τ on M admitting global solution, let us introduce the notation Φτ

for the 1-parameter group of diffeomorphisms M ×R →M generated by τ. We consider the
family of vector fields sσ and the associated 1-parameter group of diffeomorphisms Φsσ , for
0 ≤ s ≤ 1. (Note that Φ0

t = Id for all t and Φsσ0 = Id for all s.) Define Ψ : M × I × I →
M × I × I by

Ψ(x, s, t) = (Φsσ(x, t), s, t).

Check that Ψ defines a diffeomorphism that is doubly level-preserving.
Let η : I → I be a strictly monotonically decreasing smooth map with η(0) = 1, η(1) = 0

and η′(0) = η′(1) = 0 (see 1.78). Put G(x, r) = (x, η(r), r) and let π(x, s, t) = (x, t) be the
projection. Put Θ = π ◦Ψ ◦G : M × I →M × I, i.e., Θ(x, r) = (Φη(r)σ(x, r), r). It is easily
seen that Θ is a diffeomorphism satisfying (a). We have to check (b). By the chain rule, it
follows that the matrix form of Dθ is the product:

[
1 0 0
0 0 1

]⎡
⎣ ∂Φsσ

∂x
∂Φsσ

∂s
∂Φsσ

∂r
0 1 0
0 0 1

⎤
⎦
⎡
⎣ 1 0

0 η′(r)
0 1

⎤
⎦
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which is equal to [
∂Φsσ

∂x
∂Φsσ

∂s η′(r) + ∂Φsσ

∂r
0 1

]
.

By the definition, Φsσ(x, 0) = x, ∀x and hence ∂Φsσ

∂x (x, 0) = Id. On the other hand, since
s = η(r) and η(1) = 0 we have Φsσ(x, 1) = Φ0(x, 1) = x. Therefore, ∂Φsσ

∂x (x, 1) = Id. This
takes care of the (1, 1)th entry of the matrices in (b). Now use the fact that η′(r) = 0 for
r = 0, 1 to see that the (1, 2)th entry reduces to ∂Φsσ

∂r (x, r) = η(r)σ(Φsσ(x, r)) for r = 0, 1.
Again, for r = 0, since s = η(0) = 1, we have ∂Φsσ

∂r (x, 0) = σ(Φσ(x, 0)) = σ(x). Finally, for
r = 1, since s = η(1) = 0 we have ∂Φsσ

∂r (x, 1) = 0σ(x, 1) = 0. This completes the proof of
the lemma. ♠

Remark 6.4.1
(i) Given some smooth functions α, β : M → (0,∞), using Exercise 1.7.3, the conclusion in
(b) of the above lemma can be strengthened to the following:
(b’) at points (x, 0) and (x, 1), DΘ is, respectively, of the form[

Id σ0

0 α

]
;

[
Id σ1

0 β

]

(ii) There is nothing special about the interval I = [0, 1], in the above lemma; we can replace
[0, 1] by [a, b] for any a < b.
(iii) Often in application, the vector fields σ, τ may be given on a closed subset of M. We
can simply extend these on the whole of M smoothly and work with the extended vector
fields.

Using the existence of the collar neighborhoods, we can now derive several interesting
results from this lemma. The following corollary is immediate.

Corollary 6.4.1 Given a vector field λ : S
n−1 → T (Dn) that is strictly pointing inwards,

there exists a diffeomorphism φ : Dn → Dn, that is identity on the boundary and such that
the radial component of Dφ at any point on the boundary is equal to σ.

Proof: If σ and β are the spherical and radial components of λ, we can apply the above
lemma, along with Remark 6.4.1 (a), to get a diffeomorphism Θ : Sn−1 × I → Sn−1 × I so
that D(θ) satisfies (b’) with α ≡ 1. Treating (x, r) as polar coordinates, this Θ defines a
diffeomorphism φ : Dn → Dn as required. ♠

Theorem 6.4.1 Let φ : Sn−1 → Sn−1 be a diffeomorphism which is diffeotopic to IdSn−1 .
Then φ can be extended to a diffeomorphism of Dn.

Proof: If φ is diffeotopic to Id we can find a level-preserving diffeomorphism η : Sn−1 ×
[1/2, 1]→ Sn−1× [1/2, 1] such that η(v, 1) = (φ(v), 1) and η(v, 1/2) = (v, 1/2). Via the polar
coordinates this give a diffeomorphism ψ of the annulus {x ∈ Dn : 1/2 ≤ ‖x‖ ≤ 1} such
that the radial component σ of Dψ at any point (x, 1/2) ∈ D

n is pointing inward. Thus, by
the above corollary, we can extend this diffeomorphism to a diffeomorphism of the disc to
itself. Note that ψ restricts to φ on the boundary. ♠

Theorem 6.4.2 Patching-up diffeomorphisms: Let M be a compact manifold, φ : M×
I → M × I be a continuous function such that φ1 := φ|M×[0,1/2] and φ2 := φ|M×[1/2,1] are
self-diffeomorphisms of M × [0, 1/2] and M × [1/2, 1], respectively. Given 0 < δ < 1/2,
there exists a diffeomorphism Φ : M × I → M × I such that Φ|M×[0,δ] = φ|M×[0,δ] and
Φ|M×[1−δ,1] = φ|M×[1−δ,1].
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Proof: Clearly, φ is a homeomorphism M × [0, 1] → M × [0, 1] and takes M × {1/2} into
itself. Let us write f(x) = φ(x, 1/2). Then it follows that f : M →M is a diffeomorphism.
The missing thing for φ to be a diffeomorphism on the whole of M × [0, 1] is that φ may not
be smooth at points in M ×{1/2}. Indeed, the only missing thing is that at points (x, 1/2)
the t-derivatives of φ from left and right may not be the same.

By composing with a variable reparameterization (see Exercise 1.7.3) we shall assume
that the time component of the time derivative of φ at points (x, 1/2) are both equal to 1
from either side of the interval. Thus, at each point (x, 1/2), the left-hand and the right-

hand t-derivatives of φ exist and are of the form
[
σ1

1

]
,

[
σ2

1

]
, respectively, where σj

are some smooth vector fields on M. Note that since φ restricts to self-diffeomorphisms of
∂M × [0, 1/2] and ∂M × [1/2, 1], it follows that σj are tangential to the boundary. We shall
now use the above lemma to make σ1 = σ2.

For j = 1, 2, let Θj = θ(σj) be diffeomorphisms:

Θ1 : M × [1/2, 1]→M × [1/2, 1]; Θ2 : M × [0, 1/2]→M × [0, 1/2]

such that Θ1(x, 1/2) = x = Θ1(x, 1); Θ2(x, 0) = x = Θ2(x, 1/2) and DΘ1|(x,1/2) =[
Id σ1(x)
0 1

]
; DΘ2|(x,1/2) =

[
Id σ2(x)
0 1

]
;

DΘ1|(x,1) =
[
Id 0
0 1

]
= DΘ2|(x,0).

Let T : M×[0, 1]→M×[1, 2] be the translation (x, t) 
→ (x, t+1).Define Λ : M×[0, 2]→
M × [0, 2] by:

Λ(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

φ(x, t), 0 ≤ t ≤ 1/2;
Θ1(f(x), t), 1/2 ≤ t ≤ 1;
T ◦Θ2(f(x), t− 1), 1 ≤ t ≤ 3/2;
T ◦ φ(x, t − 1), 3/2 ≤ t ≤ 2.
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Figure 32 The t-derivatives of Φ are being adjusted.

Check that Λ is a diffeomorphism. Let ε1 : [0, 1] → [0, 2] be a diffeomorphism such that

ε1(t) = t, 0 ≤ t ≤ δ; & ε1(t) = t+ 1, 1− δ ≤ t ≤ 1.

By the compactness of M, it follows that there is a 0 < ρ < 1/2 such that φ(M × [0, δ]) ⊂
M × [0, ρ] and φ(M × [1− δ, 1] ⊂M × [1− ρ, 1]. Let ε2 : [0, 2] → [0, 1] be a diffeomorphism
such that

ε2(t) = t, 0 ≤ t ≤ ρ & ε2(t) = t− 1, 2− ρ ≤ t ≤ 2.

Put Φ = (IdM × ε2) ◦ Λ ◦ (IdM × ε1) and verify that Φ is as required. ♠

Remark 6.4.2 Consider the converse of Theorem 6.4.1, viz., if Φ : Dn → Dn is a diffeo-
morphism then the restriction map η = Φ|∂Dn is isotopic to the identity diffeomorphism
or to the reflection. This is “almost true” but extremely difficult to prove. What one can
achieve without much difficulty is the following. If η is given as above, and is orientation
preserving, then there exists a diffeomorphism Ψ : Sn−1× [0, 1] → Sn−1× [0, 1] which is the
identity map on Sn−1 × 0 and is equal to η on Sn−1 × 1. However, this does not mean that
η is isotopic to Id; the diffeomorphism Φ may not be level-preserving.

More generally, one can consider any closed manifold M and a diffeomorphism Φ :
M × [0, 1] = M × [0, 1] such that Φ|M×0 = Id. Such a diffeomorphism is called a pseudo
isotopy of ΦM×1. If P denotes the space of all pseudo isotopies of diffeomorphisms of M
one is interested in the number of path-connected components of P . Cerf [C1] has proved
that if M is simply connected and dimM ≥ 5 then P is path connected.
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From this, Cerf [C1] deduced that the group An of all orientation preserving diffeomor-
phisms of Dn is path connected for n ≥ 6. For n = 1, this is an easy exercise. For n = 2, this
was a result of Smale [Sm]. For n = 3 and 4 this is again proved by Cerf [C2]. For n = 5,
the problem is still open.

The following result which is a variant of Theorem 6.4.2 comes handy later in the
classification of surfaces.

Theorem 6.4.3 Let X,Y be n-dimensional smooth manifolds, X1, X2 ⊂ X,Y1, Y2 ⊂ Y be
such that

X = X1 ∪X2, Y = Y1 ∪ Y2, X1 ∩X2 = ∂X1 ∩ ∂X2; Y1 ∩ Y2 = ∂Y1 ∩ ∂Y2

where Xi ⊂ X,Yi ⊂ Y are closed subspaces. Let f : X → Y be a homeomorphism whose
restrictions to X1 and X2 define diffeomorphisms f1 : X1 → Y1 and f2 : X2 → Y2. Then f
can be altered in a neighborhood of X1 ∩X2 to a diffeomorphism f̃ : X → Y.

Proof: Put X1∩X2 = M,Y1∩Y2 = N. By restricting the discussion to collar neighborhoods
of M,N we may assume that

X1 = M × [0, 1/2], X2 = M × [1/2, 1], X = M × [0, 1];
Y1 = N × [0, 1/2], Y2 = N × [1/2, 1], Y = N × [0, 1].

Note that f restricts to a diffeomorphism g : M → N. Consider h : N × [0, 1] →M × [0, 1]
given by h(x, t) = (g−1(x), t) and put φ = h◦f : M× [0, 1] →M× [0, 1]. Apply the Theorem
6.4.2 to obtain a diffeomorphism Φ : M × I →M × I as specified. Now f̃ = g ◦Φ gives the
required alteration of f. ♠

Example 6.4.1 Gluing Manifolds along Boundary Components: Let M be a closed
manifold. Consider two embeddings φi : M × I → Ni where each φi|M×{0} is an embedding
onto some boundary components Mi of Ni and φi(M × [0, 1]) is a collar neighborhood of
Mi in Ni, i = 1, 2. Consider the quotient space

W =
N1 \M1

∐
N2 \M2

∼

where φ1(x, t) ∼ φ2(x, 1 − t) ∀ x ∈ M, 0 < t < 1. Clearly, W is a smooth manifold that
contains copies of both N1 and N2. Indeed, if we put N ′

i = Ni \ φi(M × [0, 1/2) then we
see that W = q(N ′

1)∪ q(N ′
2), with q(N ′

1)∩ q(N ′
2) ∼= M. Also each N ′

i is diffeomorphic to Ni
and the quotient map q is also a diffeomorphism restricted to each N ′

i .
Of course, the diffeomorphism class of W heavily depends on the embeddings φi, i = 1, 2.

Since any two collar neighborhoods are ambient isotopic (see Remark 6.3.6), ultimately it
follows that the diffeomorphism class of W depends on the isotopy class of diffeomorphisms
of M.

Example 6.4.2 Double of a Manifold Let X be a compact manifold with non empty
boundary and φ : ∂X × [0, 1] → X be a collar neighborhood. Take N1 = X and N2 to be
another copy of X with the opposite orientation if X is orientable. Take φ1 = φ2 = φ and
perform the gluing operation. The resulting manifold W in the above construction is called
the double of the manifold X and is denoted by 2X. Observe that if X is orientable then
so is 2X. In particular, the double of the disc Dn is Sn, and the double of the cylinder is
the torus, etc.
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Example 6.4.3 Capping Off: Let X be an n-manifold with a boundary component C
diffeomorphic to Sn−1. By capping off X at C we mean the manifold obtained by gluing a
disc D

n to X along C. More specifically, in Example 6.4.1, takeN1 = X,N2 = D
n,M = S

n−1

and φ1 : Sn−1 × [0, 1] → N1 be any collar neighborhood of C and φ2(x, t) = (1− t/2)x. We
shall denote the resulting manifold W by X̂C = W.

When we cap-off all the boundary components of X that are diffeomorphic to Sn−1, we
get a manifold, that we simply denote by X̂. This construction happens to be very important
in the study of manifolds of dimension 2, 3, since any orientation-preserving diffeomorphism
of S1 or S2 is isotopic to the identity map. (This is an exercise for n = 1 and a nontrivial
result due to Smale [Sm] for n = 2.) Therefore, the result of capping off is independent of
the diffeomorphisms chosen and therefore is a well defined manifold. Notice that we can
recover the original manifold X from X̂ by removing as many discs as we have put. (Use
Disc Theorem.)

Exercise 6.4

1. Directly using Corollary 6.3.1 deduce that any diffeomorphism f : Sn−1 → Sn−1 that
is isotopic to Id extends to a diffeomorphism of Dn.

2. Let M be any connected manifold of dimension n ≥ 2. Let Di, D
′
i, i = 1, 2, . . . , k be

embedded discs in intM such that Di ∩Dj = ∅ = D′
i ∩D′

j , i �= j. Then there exists
diffeomorphism f : M →M diffeotopic to Id such that f(Di) = D′

i, i = 1, 2, . . . , k.

3. Let W be a connected manifold with S1, . . . , Sk as boundary components, all of them
diffeomorphic to Sn−1. Given any permutation σ of n letters, there exists a diffeomor-
phism λ : W →W such that λ(Si) = Sσ(i).

4. Let W be a smooth surface W0,W1 be such that W = W0 ∪W1. Suppose there are
diffeomorphisms φi : I × I →Wi such that

φ0(0× I) = φ1(1× I);φ0(1 × I) = φ1(0× I);W1 ∩W2 = φ0(0× I) ∪ φ0(1× I).

Assume further that φ−1
0 ◦φ1|0×I and φ−1

0 ◦φ1|1×I are both orientation-preserving or
both orientation-reversing. Then there exists a diffeomorphism Φ : S1 × I →W, such
that Φ(eıπθ, s) = φ0(θ, s), 1/3 ≤ θ ≤ 2/3, and Φ(e−ıπθ, s) = φ1(θ, s), 1/3 ≤ θ ≤ 2/3.

5. In the above exercise assume that one of φ−1
0 ◦φ1|0×I and φ−1

0 ◦φ1|1×I is orientation-
preserving and the other is orientation-reversing. Then show that there is a diffeomor-
phism Φ : M → W with similar properties as in the exercise, where M denotes the
Möbius band.

6. State and prove similar results that describe a torus and a Klein bottle as a union of
two cylinders.

6.5 Miscellaneous Exercises for Chapter 6

1. Let M be a closed submanifold of N. Show that any two tubular neighborhoods of M
in N are ambient isotopic.

2. Let A,B ⊂ M be closed submanifolds of a closed manifold M. Suppose dimA +
dimB < dimM. Then show that there exists an ambient isotopy φ of M such that
φ(A) ∩B = ∅.
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3. Some Consequences of the Tubular Neighborhood Theorem.
(i) Let X ⊂ RN be a smooth compact submanifold. Then X is a smooth retract of an
open neighborhood (in fact of its ε-neighborhood, for all sufficiently small ε > 0).
(ii) Let X be a smooth compact submanifold of a smooth manifold Y . Then X is a
smooth retract of an open neighborhood of X in Y . (This is clear from (i) if Y is a
submanifold of some RN .) Hence, any smooth map X → S (S an arbitrary smooth
manifold) can be extended smoothly to a neighborhood of X in Y .
(iii) Local triviality of a proper submersion: Let f : X → Y be a smooth map,
and p ∈ S a regular value of f . Suppose F := f−1(0) is compact. Then show that
there is a neighborhood U of p in Y and a diffeomorphism φ : f−1(U) → F × U
such that πU ◦ φ = f . (Hint: Can take φ = (r, f), where r is a retraction onto F of a
neighborhood of F in X , if U is sufficiently small.)
(iv) Conclude that if f : X → Y is a proper map, which is a submersion of connected
manifolds, then there exists an open covering {Uα} of Y and diffeomorphisms φα :
f−1(Uα) → Uα × F such that f = π1 ◦ φα, where F = f−1(p) where p ∈ Y is fixed.
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The differentiable viewpoint of some topological concepts as expounded by Milnor in [M1]
is fully realized in this chapter. We begin with some technical results about the transversal
maps in Section 7.1. We then introduce the oriented intersection number in Section 7.2. In
Section 7.3, the degree of maps between manifolds of the same dimension is introduced as a
special case of intersection number. We then discuss, in Section 7.4, the mod 2 intersection
number, which, while taking care of nonoriented cases, adds its own flavour to the recipe. In
Section 7.5, the concept of winding number is introduced as a special case of the mapping
degree. We then give applications of these results to the proofs of the Jordan-Brouwer Sep-
aration Theorem, the Borsuk-Ulam Theorem (Section 7.6), and the Hopf Degree Theorem
(Section 7.7). We take up the study of the Lefschetz fixed point theory in Section 7.8. The
local Lefschetz numbers are introduced, once again through the mapping degree. We then
relate the Lefschetz number to the index of a vector field.

Of course, one can think of several applications at this stage. However, we shall give only
two applications in the last section. We relate the integral of a pullback to the mapping
degree of a smooth map between oriented manifolds of the same dimension. The second
application is a proof of a simple version of the Gauss-Bonnet theorem.

7.1 Transverse Homotopy Theorem

Theorem 7.1.1 Transversality Theorem: Let Z ⊂ Y and S be manifolds without
boundary. Let X be a manifold with or without boundary and F : X × S → Y be a smooth
map such that F and ∂F are both transversal to Z. Then for almost every s ∈ S, the
mappings Fs and ∂Fs are transversal to Z. (Here Fs(x) = F (x, s), x ∈ X, s ∈ S.)

Proof: Clearly, it suffices to prove that the set of points s for which Fs is not transversal is
of measure zero. For then we can apply this result to the special case of ∂F : ∂X × S → Y
and conclude that the union of the two sets of points s ∈ S for which Fs or ∂Fs is not
transversal is of measure zero.

Our strategy is to employ Sard’s theorem and hence, we shall convert the requirement
of transversality into regularity of some other map. Recall that the transversality condition
has to be verified only at points (x, s) so that F (x, s) ∈ Z. This means that we must consider
the set W = F−1(Z). This is a proper submanifold of X × S, since both F and ∂F are
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transversal to Z. Now the target manifold for the map of which we are going to look for
regular values is obviously S. Thus, we may consider the map π : W → S, which is the
restriction of the second projection. We shall claim that s is a regular value of π implies
Fs∩| Z.

So, fix s ∈ S, a regular value of π. This implies that α := Dπ(x,s) : T(x,s)W → Ts(S)
is surjective for all (x, s) ∈ W. We want to show that Fs ∩| Z. So, let (x, s) ∈ W and
F (x, s) = z. Put

λ := DF(x,s) : T(x,s)(X × S) → TzY.

Since F∩| Z, we have,
Im(λ) + TzZ = TzY.

So, given v ∈ TzY, there exists v1 ∈ TzZ,u1 ∈ TxX,u2 ∈ TsS such that

λ(u1,u2) + v1 = v. (7.1)

From the surjectivity of α and the fact that it is the restriction of the second projection, it
follows that there exists (w1,u2) ∈ T(x,s)W such that α(w1,u2) = u2. Therefore, by adding
and subtracting λ(w1,u2) in (7.1), we have

v = v1 + λ(w1,u2) + λ((u1,u2)− (w1,u2))
= v1 + λ(w1,u2) + λ(u1 −w1, 0)
= v2 + λ(u1 −w1, 0)

where v2 = v1 + λ(w1,u2) ∈ TzZ since λ(T(x,s)(W )) ⊂ Tz(Z). This completes the proof
that Fs ∩| Z. ♠

Remark 7.1.1 The steps in the above claim are completely reversible. Therefore, we can
say that Fs is transversal to Z iff s is a regular value of π : W → S.

Theorem 7.1.2 Let f : X → Y be a smooth map, where Y is a proper submanifold of RN .
Let BN denote the open unit ball in RN . Then there exists a smooth map F : X ×BN → Y
such that F (x, 0) = f(x), x ∈ X and for each fixed x ∈ X, the mapping s 
→ F (x, s) is a
submersion. In particular, F and ∂F are submersions.

Proof: For any fixed real number r > 0, consider the map Gr : X × BN → RN defined
by (x, s) 
→ f(x) + rs, where r �= 0 any fixed real number. Check that Gr(x, 0) = f(x)
and for each fixed x, s 
→ G(x, s) is a submersion of BN into R

N . Let Nε(Y ) be a tubular
neighborhood of Y in RN and let β : Nε(Y ) → Y be the submersion as considered in
Remark 6.1.2. Now observe that Gε(X) ⊂ Nε(Y ). Now, put F = β ◦Gε. ♠

Remark 7.1.2 Note that we need not be strict about the assumption that Y is a proper
submanifold of RN . All that we need is that Y should have tubular neighborhoods in RN as
described in Remark 6.1.2.(iii). Thus, the result is applicable in a somewhat more general
situation than the one stated in the above theorem.

Theorem 7.1.3 Transverse Homotopy Theorem: Let Z ⊂ Y be boundaryless mani-
folds. Given any smooth map f : X → Y, on a compact manifold X, there exists a smooth
map g : X → Y such that g ∩| Z, ∂g ∩| Z and g is homotopic to f.

Proof: We can always think of Y as a proper submanifold of some RN . Then by the above
theorem, there exist F : X × BN → Y such that F, ∂F are submersions and hence Fs and
∂Fs are both transversal to Z for almost all s. For any such value of s ∈ BN , let [0, s] denote
the line segment joining 0 and s. Then F restricted to X × [0, s] defines a homotopy of f
with g = Fs as required. ♠

In applications, we need to strengthen this result to a relative version, viz., while taking
the homotopy of f, we do not want to “move” f on parts where it is already transversal.
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Theorem 7.1.4 Extended Transverse Homotopy Theorem: Let Z be a closed sub-
manifold of Y with ∂Y = ∂Z = ∅. Let X be any compact manifold and W ⊂ X be closed.
Suppose f : X → Y is a smooth map such that for all x ∈ W both f and ∂f are transversal
to Z. Then f is homotopic to a smooth map g relative to W, such that g ∩| Z, ∂g ∩| Z and
f = g in a neighborhood of W.

Proof: Observe that “being transverse” to a closed submanifold is an open condition. Hence
f and ∂f are both transverse to Z in a neighborhood U of W. Let V be an open subset
such that W ⊂ V ⊂ V ⊂ U. By the smooth version of Urysohn’s lemma (Corollary 1.7.1),
we can find a smooth map γ : X → [0, 1] such that γ|V̄ ≡ 0 and γ|X\V ≡ 1. Let F be as in
the proof of Theorem 7.1.2. Define G : X ×BN → Y by

G(x,v) = F (x, (γ(x))2v).

It is enough to show that G∩| Z and ∂G∩| Z. For then, we can appeal to the transversality
Theorem 7.1.1, to conclude that for almost all v ∈ BN , Gv and ∂Gv are transversal to Z. Fix
one such v, and take g = Gv. Clearly, the map H(x, t) = G(x, tv) defines a homotopy of f
with g. Moreover, for x ∈W, we have H(x, t) = G(x, tv) = F (x, tγ(x)2v) = F (x, 0) = f(x).
Therefore, f is homotopic to g relative to W. It remains to show that G ∩| Z and ∂G ∩| Z.

Let now x ∈ X. If γ(x) �= 0, then u 
→ γ(x)2u is a diffeomorphism of BN onto an
open ball in RN . Since u 
→ F (x,u) is a submersion from BN to Y, it follows that u 
→
F (x, γ(x)2u) is a submersion. In particular, G is transversal to Z at points (x,u), where
γ(x) �= 0.

Next, consider a point x such that γ(x) = 0. We have to actually compute the derivative
DG(x,v), now. For this we think of G as a composite of the two maps:

(x,u) 
→ (x, μ(x,u); (x,v) 
→ F (x,v),

where μ : X ×BN → BN is given by μ(x,u) = γ(x)2u. Also,

Dμ(x,u) = (2γ(x)D(γ)xu, γ(x)2Id) = (0, 0).

By the chain rule, it follows that

∂G

∂x
|(x,u) = Dfx,

as F |X×{0} = f. Since f ∩| Z, it follows that G is transverse to Z at these points also. The
proof of transversality of ∂F to Z is similar. ♠

Corollary 7.1.1 Suppose f : X → Y is a smooth map such that ∂f ∩| Z. Then there
exists a map g : X → Y homotopic to f, relative to the boundary such that g ∩| Z and
g = f on ∂X.

Exercise 7.1 Supply details of Remark 7.1.1.

7.2 Oriented Intersection Number

We begin with the following situation: X,Z ⊂ Y are smooth manifolds, X is compact
and all these manifolds are boundaryless. Also, dimX + dimZ = dimY. Such a data is
called a data appropriate for intersection theory.

In this section, we also assume that all the manifolds are oriented. Later we shall consider
the nonoriented case.
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Definition 7.2.1 Let W be a compact 0-dimensional oriented manifold. Recall that each
point of W receives a sign ±. The number of + signs minus the number of − signs in W is
called the orientation number of W.

Example 7.2.1 The orientation number on ∂[a, b] is always zero irrespective of what ori-
entation we take on [a, b]. More generally, if X is a compact oriented 1-dimensional man-
ifold, then the orientation number on ∂X is zero. This follows from the classification of
1-dimensional manifolds that we have seen in the previous chapter: that every connected
compact 1-dimensional manifold is diffeomorphic to either S1 or to the closed interval [0, 1].
This result plays a key role in the theory of intersection numbers.

Definition 7.2.2 Assume that f : X → Y is smooth and f ∩| Z. Then it follows that
W = f−1(Z) is a compact 0-dimensional oriented submanifold ofX. The orientation number
of W is called the intersection number of f with Z. We denote it by I(f, Z).

Remark 7.2.1

1. Consider a situation in which f is an embedding. Through this embedding, we can
identify X with a submanifold of Y. Then W = X ∩ Z and it consists of finitely
many points. At each of these points, the transversality condition X ∩| Z says that
the tangent spaces of these manifolds are supplementary. Being of complementary
dimensions, they are also, complementary. Now, if the orientation classes satisfy

[Tw(X)][TwZ] = [TwY ] (7.2)

the point w is assigned the number +1 at w; otherwise, −1 is assigned. These numbers
are called orientation numbers and I(X,Z) is nothing but the sum of these numbers.

2. What is the relation between I(X,Z) and I(Z,X)?. To see this we need to examine
what happens at each of the points w ∈ W = X ∩ Z. Observe that we now have to
consider the validity of the equation

[TwZ][Tw(X)] = [TwY ] (7.3)

which involves a permutation of the left-hand side of (7.2). The signature of this
permutation equals (−1)(dim X)(dim Z). This then precisely gives the relation:

I(X,Z) = (−1)(dim X)(dim Z)I(Z,X) (7.4)

3. Suppose X is the disjoint union of two manifolds X = X1 ∪X2 and f |Xi = fi. Then,
it follows easily that I(f, Z) = I(f1, Z) + I(f2, Z).

4. If we change the orientation on only one of the manifolds X,Y, or Z, then I(f, Z)
changes its sign.

Theorem 7.2.1 Let X be the boundary of an oriented manifold M and f be the restriction
of a smooth map F : M → Y. Suppose f ∩| Z. Then I(f, Z) = 0.

Proof: By the extended transverse homotopy Theorem 7.1.4, there exists a homotopy of F
to a map G : M → Y such that G|X = f and G ∩| Z. Then W = f−1(Z) is the boundary
of an oriented compact 1-dimensional manifold G−1(Z) and hence as seen in Example 7.2.1
the orientation number of W is zero. ♠

The above theorem is the first step toward some meaningful way of computing the
orientation numbers. For example, as a corollary we have,
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Theorem 7.2.2 If f and g are homotopic, and transversal to Z, then I(f, Z) = I(g, Z).

Proof: Recall that given an oriented manifold X, I ×X is given the product orientation,
wherein I is given the standard orientation. The two boundary components 0×X and 1×X
then have the induced orientations. Under the diffeomorphisms x 
→ (0, x) and x 
→ (1, x),
we have,

[∂I ×X ] = [1×X ]− [0×X ].

Put φ = ∂(F ) : ∂(I ×X) → Y where F is a homotopy from f to g. By Theorem 7.2.1,
we have, I(φ,Z) = 0. But φ|0×X = f and φ|1×X = g. Hence, I(g, Z)− I(f, Z) = 0. ♠

Remark 7.2.2 The advantage of the above theorem is quite apparent: We can extend the
definition of I(f, Z) not only to all smooth maps f : X → Y without the assumption that
f ∩| Z, but to any continuous map f : X → Y as well. For, by the Smooth Approximation
Theorem and the Transverse Homotopy Theorem, we can choose g to be any map that is
homotopic to f and g∩| Z and define I(f, Z) = I(g, Z). If h is another such map then since
g  h, it follows that I(g, Z) = I(h, Z). Therefore, the definition is unambiguous. Also it is
clear that the above theorems and all other properties of the intersection number are now
valid for all smooth maps.

Definition 7.2.3 Consider the special case when X = Z. We put f = ι : X ↪→ Y to be the
inclusion map and define

I(X ;Y ) := I(ι,X).

This is called the self-intersection number of X inside Y. We shall return to the study of
this important number a little later.

Exercise 7.2

1. Let M be a connected, closed, oriented manifold and take the product orientation
on M ×M. Compute the self-intersection number I(M × {p};M ×M) for any point
p ∈M. Also, compute I(M × {p}; {p} ×M ;M ×M).

2. Compute the self-intersection number of the diagonal in CP 1 × CP 1.

7.3 Degree of a Map

In this section, we continue to assume that X,Y, Z, etc., form an appropriate data for
the intersection theory.

An important special case of the intersection number is when the manifold Z = {z} is
a singleton. Notice that this means that dimX = dimY. We shall further assume that X
and Y are boundaryless and compact and Y is connected. Under these conditions, we make
the following definition:

Consider then a smooth map f : X → Y and a regular value z ∈ Y of f. This is
equivalent to say that f ∩| {z}. We can now consider the number I(f, {z}) and write the
simpler notation I(f, z) for it. Let us make a few observations:
(a) We know that if f is replaced by a map g homotopic to f and transversal to {z}, then
this number remains the same: I(g, {z}) = I(g, {z}).
(b) Now given any z ∈ Y, we also know that f can be homotoped in such a way that it
becomes transversal to {z}. Combining these two observations, we can define I(f, z) for all
z ∈ Y.
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(c) Next, observe that if z ∈ Y is a regular value of f by Stack-Record Theorem 3.4.5, it
follows that there is a neighborhood V of z ∈ Y such that f−1(V ) =

∐
i Vi is the disjoint

union of open sets such that f : Vi → V is a diffeomorphism, for each i = 1, 2, . . . , k. We can
further assume that V is connected. As z varies over V, its inverse image will have exactly
one point xi in Vi and for each fixed i, the orientation number assigned to xi is the same
throughout Vi, since V is connected. Thus, it follows that I(f, {z}) has the same value for
all z ∈ V.
(d) It follows that I(f, z) is locally a constant function on Y. Since we have assumed Y is
connected, it is actually a constant function. We can now make a definition:

Definition 7.3.1 Let X,Y be closed, oriented manifolds of same dimension n and let Y be
connected. Then for any smooth map f : X → Y we define deg f to be equal to the value
of the constant function I(f, y) for y ∈ Y.

Remark 7.3.1

1. It follows easily that if f is not surjective, then its degree is zero. For then, we can
choose y ∈ Y \ f(X), which is clearly a regular value for f in the definition of deg f.

2. If X = ∂M, where M is a compact, oriented manifold and f can be extended to
F : M → Y, then deg f = 0. This is an immediate consequence of Theorem 7.2.1.

Example 7.3.1 Degree of the Antipodal Map: If X is a closed, connected, orientable
manifold and f : X → X is a diffeomorphism then clearly, deg f = ±1 according as f
is orientation preserving or reversing. As a special case, let us compute the degree of the
antipodal map η : Sn → Sn given by x 
→ −x. For n = 1, it is easy to see that the antipodal
map preserves orientation. For n ≥ 2, we need to work it out carefully.

To see whether η preserves orientation or not, it is enough to do this at a single point
p ∈ Sn and compute the derivative of η at this point and check whether d(η)p preserves
orientation or not. So, let us take p = (1, 0, . . . , 0), say. The tangent space at p to Sn is
the vector space spanned by {e2, . . . , en+1}. Also, the induced orientation from Bn+1 on
S
n at this point gives the ordered basis [e2, . . . , en+1]. Now T−pSn = Tp(Sn). However, the

induced orientation at −p is the opposite of that at p. Moreover, dηp : TpSn → T−pSn is
also the antipodal map v 
→ −v. Therefore, the ordered basis [e2, . . . , en+1] is mapped onto
[−e2, . . . ,−en+1], which is equal to (−1)n[e2, . . . , en+1]. It follows that

deg η = (−1)n+1. (7.5)

As a simple application of the computation of the degree of the antipodal map, let us
prove the following:

Theorem 7.3.1 On S2n, every vector field has to vanish at some point.

Proof: We shall assume that there is a nowhere vanishing vector field φ on S2n and arrive
at a contradiction.

Dividing by the norm, we get a vector field φ̂ such that φ̂(x) is of unit length for all x.
Such a field is called a unit vector field. Using φ̂, we define a homotopy H : S2n × I → S2n

between the identity map and the antipodal map by

H(x, t) = (cosπt)x+ (sinπt)φ̂(x).

[Observe that since x and φ̂(x) are unit vectors orthogonal to each other, for each fixed
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x, H(x, t) defines a rotation in the plane spanned by {x, φ̂(x)}, through an angle πt in the
direction indicated by φ̂(x).]

We have proved that the degree of η is −1 on S
2n. Under the assumption that S

2n has a
nowhere vanishing vector field, we have obtained that η is homotopic to the identity map.
Homotopy preserves the degree whereas the degree of the identity map is always +1! This
contradiction proves the theorem. ♠

Remark 7.3.2

1. In particular, this implies that none of the even dimensional sphere is parallelizable.

2. In the case of 2-dimension, this theorem has the following amusing interpretation. As-
sume that you have a ball full of hairs sticking out of its surface. You will never be able
to comb it “smoothly” without leaving any parting points. With this interpretation
the above theorem is sometimes called the hairy-ball theorem.

3. It is clear that whenever we can compute the degree of a certain map, we will have
rich consequences. Let us illustrate this point with another example that is one sure
case where we can compute the degree.

Lemma 7.3.1 Let S1
r ⊂ C denote the circle with center 0 and radius r. For any integer m,

the mapping ηm : S
1
r → S

1 given by z 
→ zm/|zm| has degree m.

Proof: Intuitively, this is clear. However, we can directly verify this by first principles.
First, observe that the map α : S

1 → S
1
r given by z → rz is an orientation-preserving

diffeomorphism. Hence, by considering ηm ◦ α, it is enough to prove the statement for
r = 1. Consider the case m �= 0. Look at the derivative of the map z 
→ zm at a point ζj ,
where ζj are |m|th roots of unity. The tangent line at ζj is oriented by ıζj . The derivative
d(ηm)ζj (ıζj) = mζm−1

j ıζj = mı which is the oriented tangent line at 1 or the opposite of it
depending on m is positive or negative. In either case, since there are exactly |m| number
of points, there degree is equal to m. Of course, if m = 0 then the map is a constant and
the degree is zero too. ♠

z       z  3

Figure 33 The degree of a map.

Lemma 7.3.2 Let p(z) be any polynomial of degree n ≥ 1 over complex numbers and let

P (z) =
p(z)
|p(z)| , wherever p(z) �= 0. Then for sufficiently large r > 0, the mapping P : S1

r → S1

has degree n.

Proof: By dividing by the coefficient of the leading term, we may as well assume that
p(z) = zn+q(z) where q(z) is a polynomial of degree < n. We know that for all large values
of r, p(z) �= 0 on S

1
r. We shall show that P is homotopic to the map ηn : S

1
r → S

1 defined
by z 
→ zn/|z|n = zn/rn. Since we have seen that deg ηn = n, this will complete the proof.
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So consider the obvious homotopy

H(z, t) = (1− t)p(z) + tzn.

We first claim that H(z, t) �= 0 for any t ∈ [0, 1] if |z| is very large. For this, we observe that∣∣∣∣H(z, t)
zn

∣∣∣∣ =
∣∣∣∣1 +

(1 − t)q(z)
zn

∣∣∣∣ ≥ 1−
∣∣∣∣q(z)
zn

∣∣∣∣ .
As z →∞, q(z)/zn → 0. Therefore, for large r > 0, H(z, t) does not vanish and so,

G(z, t) =
H(z, t)
|H(z, t)|

is a well-defined homotopy G : S
1
r × I → S1 as required. ♠

Theorem 7.3.2 Fundamental Theorem of Algebra (FTA): Let p be a nonconstant
polynomial with complex coefficients. Then p has at least one complex root.

Proof: Consider the function P : S
1
r → S1, defined as above, for some large r. We have

shown that degP = m. On the other hand, if p has no zeros at all, then P makes sense on
the whole of the ball Br(0). From Theorem 7.2.1 degP = 0, which is a contradiction. ♠

We can strengthen the above arguments to arrive at a result similar to that of the
argument principle in complex analysis.

Lemma 7.3.3 Let p be a polynomial and z = z0 be a zero of order l. Then on the circle
∂Br(z0) the mapping p/|p| has degree = l for sufficiently small r.

Proof: Choose r > 0 so that on the closed ball Br(z0), p has no other zeros. Write p =
(z − z0)lq(z). Then on Br(z0), q does not vanish. Hence, we can consider the homotopy

H(z, t) =
(z − z0)lq(tz0 + (1− t)z)
|(z − z0)lq(tz0 + (1− t)z)|

for z ∈ ∂Br(z0), t ∈ [0, 1]. Observe that

H(z, 0) =
p(z)
|p(z)| ; H(z, 1) = c

(z − z0)l

|z − z0|l
.

Here c =
q(z0)
|q(z0)| is a complex number of unit length. Multiplication by such a number is

a rotation and hence does not affect the degree. Thus, the map z 
→ H(z, 1) is clearly of
degree l. ♠

Theorem 7.3.3 Argument Principle: Let R be a bounded region in C bounded by a
smooth curve ∂R. Assume that p is a polynomial which has no zeros on ∂R. Then the number
of zeros of p inside R counted with multiplicity is equal to the degree of p/|p| : ∂R→ S

1.

Proof: An elementary observation in algebra tells us that there are only finitely many
zeros of a polynomial. Let zi be the zeros of p inside R. We choose small enough discs
Di in R around each of the zeros of p so that they are mutually disjoint and restricted
to the boundary of these discs, P = p/|p| is of degree li where li is the multiplicity of
the zero xi. Now p/|p| makes sense on the 2-dim manifold M = R \ ∪iDi and hence
the map restricted to ∂M should be of degree 0. Observe that ∂M = ∂R ∪i ∂Di and
the orientations induced on ∂Di from M is the opposite of the standard one. Therefore,
0 = degP |∂M = degP |∂R −

∑
i degP |∂Di = degP |∂R −

∑
i li. ♠
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Remark 7.3.3 Notice that in proving the above results, we have used only a little knowl-
edge of complex numbers. Indeed, such a result is provable for any holomorphic map also,
on similar lines. But for that, we need to use a little more knowledge of Complex Analysis,
such as that the zeros of a holomorphic function are isolated etc.. So, we better leave this
to Complex Analysis itself. For another proof (due to Euler) of the Fundamental Theorem
of Algebra using the notion of degree, see Exercise 2 below.

We shall end this section with a recipe to determine the degree of a map f : S1 → S1.

Example 7.3.2 Let f : S1 → S1 be any smooth map. Consider the exponential map
exp : R → S1 given by t 
→ e2πıt. We shall claim that there exists a smooth map g : R → R

such that f ◦ exp = exp ◦ g. Let us examine what kind of map g should be. Since for a
fixed t and for any integer k all points t + k are mapped to the same point under exp, it
follows that g(t+ k) should be points such that the difference between any two of them is
an integer. Therefore, if we set α(t, k) = g(t+k)−g(t), then α(t, k) is a continuous function
of R× Z taking integer values. Hence, it must be a constant for each k ∈ Z. Let us denote
this constant by α(k), i.e., g(t + k) − g(t) = α(k), for all t ∈ R and for all integers k. But
then we have

g(t) + α(k + l) = g(t+ (k + l))
= g(t+ k + l)
= g(t+ k) + α(l)
= g(t) + α(k) + α(l)

which shows that α(k+ l) = α(k)+α(l). Therefore, denoting α(1) = d, we have, α(k) = dk.
Thus, we have,

g(t+ k) = g(t) + dk, k ∈ Z, t ∈ R. (7.6)

We shall first of all show that d is indeed the degree of f. For this we shall prove that
f is actually homotopic to the map η : z 
→ zd. Once again, we construct this homotopy
in the space R and then pass down to S1. Clearly the power map η on S1 corresponds to
the multiplication map μ : t 
→ td on R. So, consider H : R × I → R given by (t, s) 
→
sg(t) + (1 − s)td. This is a smooth homotopy between μ and g. It defines a homotopy
G : S1 × I → S1 between η and f. For,

H(t+ k, s) = sg(t+ k) + (1− s)(t+ k)d
= sg(t) + skd+ (1− s)td+ (1− s)kd
= H(t, s) + kd, k ∈ Z.

Since we know that η is of degree d we are done.
Thus, it remains to prove the existence of the function g as claimed. Indeed, the prop-

erties of g require us to define it only in the interval [0, 1]. For, once the function is defined
here, its values elsewhere are determined by the property (7.6).

This we shall do by proving a little more general result.

Lemma 7.3.4 Let γ : [a, b] → S1 be any map, t0 ∈ R be such that e2πıt0 = γ(a). Then
there exists a unique map γ̃ : [a, b] → R such that exp ◦ γ̃ = γ and γ̃(a) = t0. Moreover, if
γ is smooth then γ̃ is also smooth.

Proof: Since the uniqueness is not of our immediate concern, we leave its proof to you as
an exercise. Let A be the set of all c ∈ [a, b] such that there exists a map γ̃ : [a, c] → R as
described above. Clearly, a ∈ A and hence A is nonempty. Now, we shall show that A is
both open and closed and hence A = [a, b], which will complete the proof. Let c be a closure
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point of A. Our aim is to show that c is in the interior of A. Let U be any neighborhood of
f(c) in S1, which is not the whole of S1. For definiteness, we choose U = S1 \{−f(c)}. Since
f is continuous, there exists ε > 0, such that if Iε = (c − ε, c + ε) ∩ [a, b], then f(Iε) ⊂ U.
Since c ∈ Ā, there exists s ∈ A ∩ Iε. If s > c, this implies c ∈ int (A). So assume s ≤ c and
let γ̃ : [a, s] → R be as required. Now we know that exp−1(U) is a disjoint union of open
intervals such that on each of these intervals Jr, exp : Jr → U is a diffeomorphism with its
inverse lnr. The point γ̃(s) belongs to precisely one such interval Jr say. It follows that for
points t ∈ Iε, we have γ̃(t) = lnr ◦ f(t). Therefore, if we define γ̃ : [a, s] ∪ Iε → R by the
formula

γ̃(t) =
{
γ̃(t), a ≤ t < s,
lnr ◦ f(t), t ∈ Iε,

then we obtain a continuous γ̃ : [a, s]∪ Iε → R as required. This proved that [a, s]∪ Iε ⊂ A.
Since c is in the interior of Iε this proves that c ∈ intA.

If γ is smooth, since locally γ̃ can be expressed as ln ◦γ for some branch of the logarithm,
it follows that γ̃ is also smooth. ♠

Remark 7.3.4 Using Lemma 7.3.4, given t0 ∈ R such that exp t0 = f(1), we can now get
a map g : [0, 1] → R such that g(0) = t0. It follows =that g(1) = t0 + d for some integer d.
We now extend g to the whole of R by the formula (7.6) as a continuous function.

For future reference, we shall state whatever we have proved just now as a theorem.

Theorem 7.3.4 Given any map f : S1 → S1 and a point x0 ∈ R such that exp(x0) :=
e2πıx0 = f(1), there exists a unique map g : R → R such that g(0) = x0 and exp◦g = f ◦exp.

As an immediate consequence, we derive an interesting result which is the first case of
the well-known Borsuk-Ulam Theorem.

Theorem 7.3.5 Let f : S1 → S1 be a smooth map that is odd, i.e., such that f(−x) =
−f(x), x ∈ S

1. Then deg f is odd.

Proof: We have a map g : R → R such that exp ◦ g = f ◦ exp. Since f is an odd map, it
follows that g(t+1/2) = g(t)+λ(t), where =e2πλ(t)ı = −1. As in Example 7.3.4, λ(t) can be
shown to be locally constant and hence does not depend upon t. This means λ(t) = 1/2+m
for some integer m. But then, if d = deg f we have,

g(t) + d = g(t+ 1)
= g(t+ 1/2 + 1/2)
= g(t+ 1/2) + 1/2 +m
= g(t) + 1 + 2m

This proves that d = 1 + 2m is odd. ♠
What we have seen so far, is the tip of a great iceberg called the theory of covering

spaces, which you will learn in a first course in Algebraic Topology.

Exercise 7.3

1. Compute the degree of f : Sn → Sn given by

(x1, . . . , xn+1) 
→ (−x1, . . . ,−xk, xk+1, . . . , xn+1).

2. Euler’s Proof of Fundamental Theorem of Algebra:1 Consider the affine space
Vm of all monic polynomials

f(x) = xn − a1x
n−1 + · · ·+ (−1)nan

1The idea behind this proof of FTA is due to Euler.
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with real coefficients and identify it with Rn via

f 
→ (a1, . . . , an).

The Cauchy product of two polynomials

(f, g) 
→ fg

then defines a map
φm,n : Vm × Vm → Vm+n.

(a) Show that φm,n is a smooth, proper map.
(b) Show that the Jacobian of φm,n, i.e., the determinant of D(φm,n) at any point
(f, g) is equal to the resultant R(f, g) of the two polynomials f, g with respect to the
variable x. (See [Lang] p. 200.)
(c) Show that (f, g) is a regular point of φm,n iff f and g have no common roots in C.

(d) Put f =
∏k
i=1(x2 + a2

i ), g =
∏l
j=1(x2 + b2j), for some ai, bj ∈ R. If

a2
1, . . . , a

2
k, b

2
1 . . . , b

2
l are distinct real numbers, then show that v = φ(f, g) is a reg-

ular value and #(φ−1(v)) =
(
k+l
k

)
and the Jacobian of φm,n at all these points is

positive.
(e) Conclude φ2,2l is a surjective map.2

(f) For f(x) = xn + c1xn−1 + · · ·+ cn ∈ C[x], define f̄(x) = xn + c̄1x
n−1 + · · ·+ c̄n.

Observe that h(x) = f(x)f̄(x) ∈ R[x] and f has a root iff h has a root.
(g) Deduce the Fundamental Theorem of Algebra.

7.4 Nonoriented Case

We shall now consider the case when the orientation information on one or the other
manifolds appearing in the data for intersection theory is missing. This could simply mean
that we have not decided on any orientation on one of them, or that such a data is not
available to us or that indeed one of these manifolds may not be orientable. It also includes
the case when all the orientation data were available (as before) but we prefer not to
use them for awhile. Nevertheless, as soon as the dimensionality condition is met, viz.,
dimX+dimZ = dimY and f∩| Z, we know that W = f−1(Z) is a (compact) 0-dimensional
manifold and we can simply count the number of points in it. We define

I2(f, Z) = #(W ) mod (2)

and call it the mod 2 intersection number. It follows that all the earlier theorems, available
for the oriented intersection number are available for mod 2 intersection number as well, with
trivial modifications. Moreover, if I(f, Z) were defined then I(f, Z) = I2(f, Z) mod(2). It is
also obvious, on general considerations, that the mod 2 intersection theory is weaker than
the oriented intersection theory, when the latter is available. For instance, using only the
mod 2 intersection theory, the arguments used in proving FTA 7.3.2 above would only lead
us to conclude that every odd degree polynomial has a root, instead of the full assertion
of FTA. However, there are situations in which, actual computation of the intersection
number could be impossible or very cumbersome, whereas, the mod 2 intersection is easily
computable. Certainly, the mod 2 intersection is stronger in one sense, viz., it has wider
range of applicability. Let us now illustrate this point.

2This step uses the fact that a positive degree map has to be necessarily surjective, and that the degree
is independent of the regular value chosen to compute it, which in turn, uses Sard’s theorem. During Euler’s
time, perhaps one could not have expected such justification to be provided.



188 Intersection Theory

Theorem 7.4.1 Let Y be a manifold of dimension 4m + 2,m ≥ 0. Let Z be a closed
submanifold of Y of dimension 2m + 1. If mod 2 self-intersection I2(Z;Y ) of Z in Y is
nonzero then Z or Y is nonorientable.

Proof: Assuming that both Z, Y are orientable, we fix some orientations on them and
consider the number I(Z;Y ) ∈ Z. Recall that this is nothing but I(X,Z;Y ) where X = Z.
In (7.4), we have seen that I(X,Z) = (−1)(dimX)(dimZ)I(Z,X). Putting X = Z and using
the fact that dimZ is odd, this means that I(Z;Y ) = −I(Z;Y ). Hence, I(Z;Y ) = 0. On
the other hand, I(Z, Y ) = I2(Z;Y ) mod(2), which contradicts the hypothesis. ♠

As an application, we have a neat proof of the following “obvious fact”:

Theorem 7.4.2 The Möbius band is nonorientable.

Y=M

Z

Figure 34 The central circle has nontrivial self-intersection.

Proof: Take Y to be the Möbius band and Z to be the central circle in the above theorem.
By pushing Z a little bit all over, we can obtain a homotopy of Z to another circle X ⊂
Y such that X ∩ Z is a single point and the intersection is transversal. (Ex. Prove this
rigorously.) Therefore, I2(Z;Y ) = 1. Since Z = S1 is orientable, from Theorem 7.4.1, it
follows that Y is not orientable. ♠

Remark 7.4.1 For more application of mod 2 intersection, see the next section.

Exercise 7.4 Compute the (mod 2) self-intersection number of the diagonal in P2 × P2.

7.5 Winding Number and Separation Theorem

We shall now study two more important geometric concepts using the intersection theory.
The classical Jordan curve theorem says that every simple closed curve in R

2 separates
R2 into two parts. Restricting ourselves to the case of smooth curves, this can be stated
as: every embedding of S1 separates R2 into two components. This somewhat “self-evident”
result, as we all know is hard to prove. On the other hand, intuitively this should also be
true in dimension three, i.e., any embedding of S2 should separate R3 into two components.
Indeed, such a result is true in all dimensions. In order to prove this and more, we shall con-
sider the situation in a general setup. However, for motivation and geometric understanding
of what is going on, you may keep the picture of a simple closed curve in R2 in your mind.

Let X be a compact, orientable, boundaryless manifold of dimension n − 1 and let
f : X → Rn be a smooth map. Let us take a point z ∈ Rn which does not belong to the
image of f. We are interested in studying how f “wraps” around z. For this, we consider
the behavior of the mapping τf : X → Sn−1 given by

x 
→ f(x)− z
‖f(x)− z‖ .
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Hold on then. This is the setup that is ideal for the study of the degree of a map. In what
follows, we assume that X is oriented and talk about the degree d of τf and its properties. In
the nonorientable case, corresponding statements with appropriate modifications will make
sense and will be true.

The experience that we have with the mappings S1 → S1 suggests the following defini-
tion:

Definition 7.5.1 We define the winding number W (f, z) of f around z to be the degree
of τf .

One of the simplest properties of the winding number is that it is locally a constant as
a function of z. Hence, it is constant on each component of Rn \ f(X). This remark will
become quite handy soon.

We begin with a result similar to the argument principle which is also proved in a similar
way. So let us call it the generalized argument principle.

Theorem 7.5.1 Generalized Argument Principle: Let X = ∂M, where M is a com-
pact oriented manifold and let F : M → Rn be a smooth map such that ∂F = f. Let
z ∈ Rn \ f(X) be a regular value of F. Then W (f, z) is equal to the sum of the intersection
numbers on F−1(z). In particular, W2(f, z) ≡ #(F−1(z)) (mod 2).

Proof: The proof is similar to the one that we gave for the argument principle (Theorem
7.3.3). Without loss of generality we may choose the origin of Rn to be at z itself. Choose
small neighborhood Bi around each of the points zi ∈ F−1(z) in X so that
(i) F : Bi → U is a diffeomorphism onto a neighborhood of z.
(ii) Each Bi is diffeomorphic to a n-disc.
(iii) The closures of Bi are mutually disjoint.
If εi is the number assigned to zi, we must show that W (f, z) =

∑
i εi. Recall that εi = ±1

according as F |Bi is orientation preserving or reversing. But this is the same as whether
F |∂Bi is orientation preserving or reversing. Put gi = F |Bi and let hi = gi/|gi|. Then
deg hi = deg gi = deg (F |∂Bi) = εi. On the other hand, consider A = M \ ∪iBi. Then F (A)
does not contain 0 and hence, H = F/|F | : A → Sn−1 is defined. Therefore, 0 = degH =
deg f −

∑
i deg hi = deg f −

∑
εi. ♠

Remark 7.5.1 We would like to bring to your notice once again that, in the statement
of the above theorem, we have assumed that M is orientable. However, if this is not the
case, the result is still valid provided you replace W (f, z) by W2(f, z), etc. This remark is
applicable to almost all situations that we discuss in future.

We shall now give a method that works well in computing the winding number. First,
prepare yourself with two lemmas, the proof of the first one being an exercise for you.

Lemma 7.5.1 Let Θ : Rn \{0} → Rn be defined by x 
→ x/‖x‖. At any point a ∈ Rn \{0},
show that d(Θ)a =

1
‖a‖πa, where πa : Rn → Rn is the projection of Rn on the orthogonal

complement of a. In particular Ker d(Θ)a = L({a}), the linear span of a.

Lemma 7.5.2 Let v ∈ Sn−1 and let Lv = {xv : r > 0} be the ray along the unit vector
v, τf (x) = f(x)/||f(x)||. Then for any smooth map f : X → Rn \ {0}, v is a regular value
of τf iff f ∩| Lv. Further, we have, W (f, 0) = I(Lv, f).

Proof: Clearly, x ∈ τ−1
f (v) ⇐⇒ f(x) ∈ Lv. Now, v is a regular value of τf iff d(τf )x :

TxX → Tv(Sn−1) is an isomorphism. Also, ker (d(θ)f(x)) = L({v}), the subspace spanned
by v, which is also equal to Tf(x)(Lv). Since the dimension of TxX is n − 1, it follows
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that d(τf )x : TxX → Tv(Sn−1) is an isomorphism iff d(τf )x is injective and its image is
complementary to L({v}). This is again equivalent to say that dfx(TxX) + Tf(x)(Lv) =
Tf(x)(Rn) = R

n, which, in turn, is equivalent to say that f is transversal to Lv.

uv
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y
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3

1
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2

3
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+
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Figure 35 Computing winding number.

Now, recall that the orientation taken on Lv is in the direction of v. Let [a] denote
the orientation class of TxX. In computing the number I(Lv, f), the orientation number εx
attached to x is +1 iff [v]dfx([a]) = En is the standard orientation on R

n. On the other hand,
if [b] denotes the orientation class of Tv(Sn−1), then we also have [v][b] = En. Therefore, it
follows that εx = +1 iff d(τf ) maps [a] onto [b]. This is the same as saying that τf preserves
orientation at x iff εx = +1. (In Figure 35, the vector u is not a regular value of τf because
of the point y1. The vector v is a regular value with xi ∈ τ−1

f (v). The orientation numbers
add up to +2.)

Upon taking the sum over all x ∈ τ−1
f (v) the last assertion of the lemma follows. ♠

Theorem 7.5.2 Jordan-Brouwer Separation Theorem: Let X be a connected, com-
pact, boundaryless submanifold of codimension 1 in R

n. Then Rn \X consists of two con-
nected components, A,B of which one is bounded. Moreover, X is the common boundary of
A and B.

Proof: The proof will be divided into several easy steps.
Step 1: We first prove the local version of the above theorem: At every point x ∈ X,
there exist arbitrary small neighborhood U of x in Rn such that U \ X has precisely two
components. To prove this, first consider the simplest situation, when X is replaced by
Rn−1 × 0. In this case, all that we have to do is to take U to be a ball around x. Then,
clearly U \ X has two components, viz., U ∩Hn

±. Now, in the general case, let x ∈ X be
any point, Ux be a neighborhood of x ∈ Rn and let φ1, . . . , φn be coordinate functions such
that

U ∩X = {z ∈ U : φn(z) = 0}; φi(x) = 0, i = 1, . . . , n.

If φ = (φ1, . . . , φn) defines a diffeomorphism of U onto the unit ball Bn say, then it follows
easily that U \X has precisely two components C1, C2 say, which are diffeomorphic to the
upper-half and the lower-half balls.

Step 2 : Let z ∈ R
n \ X. Let x ∈ X be any point and Ux be a neighborhood of x in R

n.
Then there exists a path γ ⊂ R

n \X, which starts at z and ends in a point of Ux. To prove
this, we have to use the connectivity of X. If Y is the set of all points in X which have the
above property, it is easily seen that Y is both open and closed. So, it remains to see why
Y is nonempty. Take any regular value v ∈ Sn−1 of the function

x 
→ z − x
‖z − x‖ .
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Then the ray L = {z + tv : t > 0} intersects X transversely. (See lemma 7.5.2.) Let x0

be the point on this ray which belongs to X and nearest to z. We can then choose a point
y ∈ L∩Ux0 such that the line segment [z, y] does not intersect X at all. This means x0 ∈ Y.
Hence, Y is nonempty as required. This completes the proof of Step 2.

Step 3: Rn \X has at most two connected components. Fix x ∈ X. If Ux is chosen as in
Step 1, it follows from Step 2, that every element z ∈ Rn \X can be joined to a point either
in C1 or in C2 inside Rn \X. Hence, the assertion.

c2

c1

X

L

x

U

Figure 36 The complement of X has at most two components.

Step 4: Let x ∈ X and U, etc., be as in Step 1. Let f : X → Rn be the inclusion map. Then
the winding number W2(f, z) takes different values on C1 and C2. In particular, Rn \ X
has at least two components. To see this, draw a line L through x that is transversal to X.
(L exists by Sard’s theorem). Then on this line, pick up points c1, c2 on either side of x so
that [c1, c2] ⊂ U and [c1, c2] ∩X = {x}. It follows that ci are in different C′

js. Hence, we
may assume that c1 ∈ C1 and c2 ∈ C2. Now we can use the ray [c1,∞) that includes the
point c2 to compute the winding number W2(f, c1). Likewise, we can use the sub-ray of this
[c2,∞) (which excludes c1) to compute W2(f, c2). It follows that W2(f, c1) = W2(f, c2) + 1.
Therefore, c1, c2 must be in different components of Rn \X. This completes the proof of the
assertion in Step 4.

Combining this with Step 3, we have completed the proof that Rn \X has precisely two
components.

Observe that X is a closed subset of Rn. Therefore both A and B are open sets in Rn

such that A = A ∪ X and B = B ∪ X. Combining this with Step 1, we conclude that A
and B are manifolds with their common boundary as X. Of course at least one of them
must be unbounded say, A. On the other hand, there cannot be more than one unbounded
component, since X is compact. So, B is bounded. ♠

Remark 7.5.2

1. Consider the special case when X is diffeomorphic to Sn−1. For n = 2, and for a
topological embedding of X, this is the classical Jordan Curve Theorem. Indeed, a
“not so easy” application of Riemann mapping theorem, tells you that the bounded
component U of R2 \X is diffeomorphic to (biholomorphic to) the open unit disc. For
n = 3, the famous Alexander’s horned sphere [A] gives an example of a topological
embedding of S2 in S3 such that the complements are not 3-cells. Thus, a certain
“flatness” condition on the embedding is necessary, such a condition being always
satisfied in case of smooth embeddings. And then these results are popularly know as
Schoenfly-type theorems which need special techniques to handle. (See [Bn], [M].)
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2. What happens when we take a submanifold of codimension > 1? To understand this,
consider a simple situation first. If U is a connected open subset of C, then you know
that U \F is still connected where F is a finite set. Likewise if we take away a line from
R3 it is easily seen that the resulting space is still connected. Indeed, this holds in much
generality. Let Y be a connected manifold, and X ⊂ Y be submanifold of codimension
> 1. Then Y \X is connected. We can use the transverse homotopy theorem to prove
this as follows. Let a, b ∈ Y \X be any. Since Y is connected, there exists a smooth path
γ : [0, 1] → Y connecting a, b. By the extended transverse homotopy Theorem 7.1.4,
we may assume that γ is transversal to X. But then W = γ−1(X) is a submanifold of
[0, 1], which is of codimension > 1. This means W = ∅, which is the same as saying
that Imγ1 ∩X = ∅.

Exercise 7.5

1. Prove Lemma 7.5.1

2. For n ≥ 2 and for any connected manifold X, the set of all homotopy classes of maps
S
n → X is denoted by πn(X). It can be shown that these form an abelian group. For

any continuous map f : X → Y, taking composition induces a group homomorphism
f# : πn(X) → πn(Y ).
(a) Let N be a closed connected submanifold of codimension k ≥ 2, in a manifold M.
Show that the inclusion induced map η# : πi(M \N) → πi(M) is an isomorphism for
i ≤ k − 2 and is surjective for i = k − 1.
(b) In the above situation suppose further that πk(M) = (0). Prove πk−1(M\N) �= (0).

7.6 Borsuk-Ulam Theorem

In this section, we shall apply the notion of winding number to prove one of the most
popular results in Topology.

Recall that a map f : S
n → R

m is a called odd if it satisfies the following symmetry
condition:

f(−x) = −f(x), ∀ x ∈ S
n.

A typical example of such a map is the antipodal map itself, which takes each x to −x.
Standard examples of odd maps are sinx and polynomial maps with only odd degree terms.
In particular z 
→ zd is an odd map if the degree d is odd. The Borsuk-Ulam theorem can
be loosely stated as a partial converse to this, viz.,

every odd map is of odd degree.

Lemma 7.6.1 Let k ≥ be an integer. The following statements are equivalent to each
other.
(k1) The image of any odd map f : Sk → Rk+1 \ {0} has to intersect every line in Rk+1

through the origin.
(k2) The image of any odd map g : Sk → Rk contains (0, . . . , 0).
(k3) There is no odd map g : S

k → S
k−1.

(k4) Given any map h : Sk → Rk, there exists v ∈ Sk such that h(v) = h(−v).
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Proof:
(k1) =⇒ (k2) Define f(x) = (g(x), 0). Then f is odd and hence there exists v ∈ Sk such
that f(v) belongs to the xk+1-axis, i.e., f(v) = (0, . . . , 0, t) = (g(v), 0). This implies g(v) =
(0, . . . , 0).
(k2) =⇒ (k3) An odd map g : Sk → Sk−1 can be thought of as an odd map f : Sk → Rk\{0}
contradicting (k2).
(k3) =⇒ (k4) Define φ(x) = h(x)− h(−x). Then φ is an odd map. If its image contains no
zeros then g = h/||h|| makes sense and is an odd map. This contradicts (k3).
(k4) =⇒ (k1) Given any line L through the origin, consider the projection πL : Rk+1 → Rk

parallel to L. Then πL being linear, it follow that h = πL ◦ f is an odd map. By (k4), there
exists a point v ∈ S

k, such that h(x) = h(−x) = −h(x). Hence, h(x) = 0. This implies that
f(x) ∈ Ker πL = L. ♠

Theorem 7.6.1 Borsuk-Ulam Theorem: Consider the following statements, in which
k ≥ 1 is a fixed integer:
(ka) Given an odd map f : S

k → R
k+1 \ {0}, we have W2(f, 0) = 1.

(kb) Given an odd map φ : Sk → Sk, we have, deg2 φ = 1.
These two statements are equivalent to one another. Each of them implies all the four
statements in the previous lemma. Moreover, statements (ka) and (kb) are true, for all
k ≥ 1.

Proof: We shall first prove that statements (ka) and (kb) are equivalent, prove (ka) =⇒
(k1) and then prove the statement (ka).
(ka) =⇒ (kb) Consider φ as an odd map into Rk+1 \ {0}. Then by (ka), 1 = W2(φ, 0) and
by definition, this is equal to deg2 (φ/||φ||) = deg2 φ.
(kb) =⇒ (ka) Put φ = f/||f ||.
(ka) =⇒ (k1) If L is a line that does not intersect image of f, then using this we can com-
pute the mod 2 intersection. So, if L+ is a ray on L from the origin,W2(f, 0) = I2(f, L+) = 0.

We shall now turn our attention to the proof of (ka), which is achieved by induction on k.
Observe that once we have an induction hypothesis that (ka) is true say, then corresponding
statements (k1)–(k4) as well as (kb) are available for us in proving ((k+1)a). Also, we can
choose to prove either ((k+1)a) or (k+1)b at our will.

Consider the statement (1b). This is precisely what we have proved in Theorem 7.3.5.
Thus, we have (1a) and (1b) are true.

Now assume that ((n–1)a) is true for some n ≥ 2. Let f : Sn → Sn be an odd map. We
have to prove that deg f is odd. Treat Sn−1 as a submanifold of Sn via the equator given by
xn+1 = 0 and consider the map g = f |Sn−1 . Let v be a regular value for both f and g. By
symmetry, it follows that −v is also a regular value of f and g. It also follows that ±v do
not belong to the image of g since the domain of g is of dimension one lower than that of its
codomain. Therefore, if L is the line spanned by v, then L does not intersect Img. Moreover,
it also follows that f∩| L. Therefore, by definition, deg2 f = W2(f, 0) = #(f−1(v)), (mod 2).

Now, under the antipodal mapping, there is a one-to-one correspondence between the
sets f−1(v) and f−1(−v), which follows from the symmetry property of f. Therefore,

#(f−1(v)) =
1
2

#(f−1{v,−v}) =
1
2

#(f−1(L)).

Also observe that f−1(L) ∩ Sn−1 = g−1(L) = ∅. Once again, by the symmetry, there is
a one-to-one correspondence of the sets f−1(L)∩ Sn+ and f−1(L)∩Sn− where Sn± denote the
upper and lower hemispheres. Therefore,

#f−1(v) = #(f−1(L) ∩ S
n
+).
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Now, consider the map h = πL ◦ f : Sn+ → Rn. It follows that h is an odd map. Moreover,
0 �∈ h(Sn−1), since L does not intersect g(Sn−1). Hence, W2(h|Sn−1 , 0) = 1, by induction
hypothesis ((n-1)a). On the other hand, 0 is a regular value of h, since f ∩| L. Therefore,
from Theorem 7.5.1, we have, W2(h|Sn−1 , 0) ≡ #h−1(0) ≡ #(f−1(L)∩Sn+) = 1 (mod 2). ♠

Remark 7.6.1

1. The 2-dimensional version of (k4) in Lemma 7.6.1 has the following meteorological
interpretation. At any given time, there exists a pair of antipodal points on the globe
at which temperature and pressure are equal.

2. Ham-Sandwich problem: In dimension 3, the Borsuk-Ulam theorem gives an affir-
mative answer to the following question: Consider three sandwiches of arbitrary size
and shape, situated in the space arbitrarily. Can one cut each of the three sandwiches
into two equal parts, by a single stroke of the knife? The mathematical model of this
question will read as follows: Suppose A1, A2, A3 are bounded regions (open and con-
nected) in R3. Does there exist a plane P that separates each Ai into two portions
of equal measure? (It is not asserted that the two halves of Ai are connected.) One
converts this problem into the setup of the Borsuk-Ulam theorem, the sketch of which
is as follows. (We leave it to you to fill up all the necessary arguments.)

Fix a vector v ∈ S2. To each r ∈ R, let Pr be the plane perpendicular to v and passing
through rv. For each A = Ai, let fA(r) be the difference of the measures of portion of
A lying on either side of Pr. First, show that f(r) is continuous. Use the intermediate
value theorem to show that there is rv ∈ R such that f(rv) = 0. Prove that rv is
unique. This is where connectivity of A has to be used.

We get a map gA : S2 → R defined by v 
→ rv. Show that gA is continuous, by
using an appropriate property of integration. Verify that gA is odd. Now take g :=
(gA1 , gA2 , gA3) and complete the argument.

3. It is also easily seen that the same arguments as above can be used to solve the higher
dimensional analogue of the Ham-Sandwich Problem.

Exercise 7.6 Fill in all the details in the proof of the Ham-Sandwich Theorem outlined in
the above remark.

7.7 Hopf Degree Theorem

Lemma 7.7.1 Let f : Sn → Sn, n ≥ 1 be any smooth map of degree 0. Then f is null
homotopic.

Proof: We prove it by induction. For n = 1, consider a map g : R → R such that g ◦ exp =
exp ◦ f as given by Example 7.3.2. Since degf = 0, it follows that (α(1) = 0 and hence)
g has the property g(t + n) = g(t) for all t and for all integer n. So, we consider gs(t) =
sg(t), 0 ≤ s ≤ 1, t ∈ R. Then each gs has the property gs(t+n) = sg(t+n) = sg(t) = gs(t)
and hence defines a unique smooth homotopy ft : S1 → S1 such that gt ◦ exp = ft ◦ exp. Of
course this is a homotopy of the constant map 1 with f.

We now assume the result for n and go on to prove it for n + 1. Observe that the
induction hypothesis is equivalent to say that any smooth map Sn → Rn+1 \ {0} having
winding number 0 around the origin is null homotopic in R

n+1 \ {0}.
We know that the punctured Sn+1 is diffeomorphic to Rn+1, which is contractible.
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Therefore, it suffices to prove that f is homotopic to a (continuous) map α : Sn+1 →
Sn+1 \ {v1} for some point v1 ∈ Sn+1.

Let f : S
n+1 → S

n+1 be a smooth map of degree 0. Choose two regular values v1, v2 ∈
Sn+1 for f. By an isotopy, push all the points in f−1(v1) into S

n+1
+ , the upper hemisphere,

and f−1{v2} inside S
n+1
− , the lower hemisphere. (See Corollary 6.3.3.) Next, by an isotopy

in the codomain (or otherwise), we may assume that v1 = N, v2 = S, the north and the
south pole, respectively. Let ρ : Sn+1 \ {N} → Rn+1 be the stereographic projection and
h = ρ ◦ f : S

n+1
− → Rn+1.

Now, for each ai ∈ f−1({S}) = h−1({0}), choose disjoint neighborhoods Vi of ai in
S
n+1
− such that each is diffeomorphic to a disc neighborhood V of 0 under h (Stack-Record

Theorem 3.4.5). Let W = S
n+1
− \∪i≥0Vi. Then clearly ∂W = Sn∪i=1 ∂Vi. Consider the map

h : W → R
n+1 \ {0}. It follows that the winding number W (h|Sn , 0) is equal to the sum of

all the winding numbers W (f |∂Vi , 0). On the other hand, this sum is equal to the degree of
f up to sign, and hence is equal to zero. By induction hypothesis, h|Sn is homotopic to a
constant map in Rn+1 \ {0}. From this, we get a smooth map

g : S
n+1
− → R

n+1 \ {0}

which extends the map h|Sn . Now, ρ−1 ◦ g will patch-up with f |
S

n+1
+

to define a continuous

map f̂ : Sn+1 → Sn+1. It easily follows that the south-pole S is not in the image of f̂ .
Finally define F̂ : Sn+1 × I → Sn+1 by

F̂ (x, t) =
{
f(x), x ∈ S

n+1
+ ,

ρ−1(tg(x) + (1− t)h(x)), x ∈ S
n+1
− .

Then F is a homotopy of f to a map f̂ as required. ♠

Theorem 7.7.1 Hopf Degree Theorem: Let X be a compact oriented boundaryless man-
ifold of dimension n and let f, g : X → Sn be any two maps. Then f  g iff deg f = deg g.

Proof: We have only to prove the “if” part here.
Observe that it is enough to get a map G : X×I → Rn+1\{0} such that G0 = f,G1 = g.

So, first define H : X × I → Rn+1 by H(x, t) = (1− t)f(x) + tg(x). By extended transverse
homotopy Theorem 7.1.4, we may assume that 0 is a regular value for H. By an isotopy
of X × I which is identity near ∂(X × I) we can push the finite set H−1(0) inside a
subset A of X× (0, 1), which is diffeomorphic to a disc. (See Corollary 6.3.3.) Now consider
W = X × I \ intA and let B = ∂A. Then

∂W = (X × 0) ∪ (X × 1) ∪B.

Since H(W ) ⊂ Rn+1 \ {0}, it follows that

0 = W (g, 0)−W (f, 0)−W (H |B, 0) = deg g − deg f −W (H |B, 0).

Hence, W (H |B, 0) = 0 and by the lemma above, it follows that H |B can be extended to a
map Ĥ : A → Rn+1 \ {0}. Together with the rest of H on W, this defines the map G that
we wanted. ♠

Remark 7.7.1 Thus, for a compact connected, oriented boundaryless manifold X of di-
mension n ≥ 1, the homotopy class of a map f : X → Sn is determined by an integer, viz.,
the degree of the map. A natural question that arises is: for each integer d, does there exist
a map f : X → S

n with its degree equal to d? The answer is “YES”.
Of course, for d = 0, we simply take f to be any constant map. So let d �= 0. Now
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consider the special case where X = Sn. For n = 1, we know that the map τd : z 
→ zd is
of degree d on S1. By successively spinning τd (equivalently, taking supsension), we obtain
degree d maps on higher dimensional spheres. The catch is that the “spinned” maps are
not smooth at the north and south poles. One can change them “slightly” by a homotopy
to get smooth maps. However, this technique will not be available on other manifolds.

We can try another geometric idea. Pick disjoint copies of balls in the manifold, as many
as the degree of the map that you want to construct; pinch the rest of the manifold to a
single point to obtain a bouquet of spheres; map each of these spheres to a single sphere
by orientation-preserving diffeomorphisms. It is clear that such a map is continuous and
is of degree d. The only problem seems to be the smoothness of the map at the boundary
points of the discs. This can be resolved in several ways, e.g., one can appeal to smooth
approximation Theorem 6.1.3. Here is another.

Theorem 7.7.2 Let X be an oriented, connected, closed n-dimensional manifold. For every
integer d, there exists a smooth map f : X → Sn such that deg f = d.

Proof: We first observe that if σ : Rn → Sn \ {N} is the inverse of the stereographic
projection, then lim

x→∞ dσx = 0. For

σ(x1, . . . , xn) =: (σ1, . . . , σn+1) =
(

2x1

1 + ‖x‖2 , . . . ,
2xn

1 + ‖x‖2 ,
1− ‖x‖2
1 + ‖x‖2

)
.

Now take partial derivatives of each σi and see that the limit is zero as x → ∞. (Indeed,
all the higher derivatives also have limit zero.)

Let now φi : Ui → Rn be orientation-preserving diffeomorphisms where Ui are disjoint
open subsets of X. We define f : X → Sn by

f(x) =
{
σ ◦ φi(x), x ∈ Ui, i = 1, . . . , d;
N, x ∈ X \ ∪iUi.

From the lemma above, it follows that as x approaches a boundary point of Ui from inside
Ui, dfx tends to 0. It follows that f is smooth. Now observe that σ is orientation preserving
or reversing according as n is odd or even. Therefore, it follows that deg f = (−1)n−1d.
When n is even, we also know that the antipodal map is of degree −1. So, in this case we
compose the above f with the antipodal map to get a map of degree d. ♠

Remark 7.7.2 The Hopf degree theorem is available when X is nonorientable also. The
basic result that we need is that in a connected nonorientable manifold, there exist embedded
loops ω which reverse orientation. (See Exercise 4.1.1).

Theorem 7.7.3 Let X be a connected nonorientable manifold of dimension n ≥ 2. Then
two maps f, g : X → Sn are homotopic iff deg2 f = deg2 g.

Proof: Again, we need to prove the case “if” only. As in the orientable case, it suffices to
prove that if deg2 f = 0 then f is null homotopic. Choose a regular value v ∈ Sn for f and
let F = f−1(v) = {a1 . . . , a2k}. We shall show that f is homotopic to a map f1 with v as a
regular value but f−1

1 (v) = {a1, . . . , a2k−2}. Repeating this argument, it would follow that
f is homotopic to a map that is not surjective. As before, this will imply that f is null
homotopic.

We shall prove that there is an embedded closed disc Bn ⊂ X such that a2k−1, a2k ∈
intBn and W (f |∂Bn , v) = 0. It then follows as in Lemma 7.7.1 that f |Bn can be homotoped
so as not to contain the point v in its image. This homotopy can then be extended to a
homotopy of f all over X to a map f1 as required.
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By an ambient isotopy of X, first push a2k and a2k−1 inside a co-ordinate neighborhood
U and the rest of the a′is inside a disjoint coordinate neighborhood. Now fix an orientation
for U and obtain the intersection numbers ε(a2k−1) and ε(a2k). If these two are different
then their sum is 0. Well and good—you can take B = Ū .

If not, choose an embedded loop γ : I → X at a2k such that γ is orientation reversing
and does not pass through any of the points ai, i �= 2k. Extend this to an ambient isotopy
of X that is a constant outside a tubular neighborhood of γ, which does not contain any
of the points ai, i �= 2k. The new map f is obviously homotopic to the old one and has the
property that the intersection number at a2k with respect to the orientation that we have
fixed on U is the opposite of ε(a2k−1). Therefore, we are back in the above case. ♠

Exercise 7.7 For smooth maps f : M → N and g : N → P, where M,N,P are oriented
closed n-manifolds, show that deg (g ◦ f) = (deg g)(deg f).

7.8 Lefschetz Theory

Given a self-map f : X → X of a compact smooth manifold X, consider the problem
of studying the set of fixed points of f. Of course, many questions can be raised in this
regard. The very first question is: Is the set nonempty? Second, if there are finitely many
such points, how many of them are there? Moreover, we also like to know the local behavior
of the function f itself in a neighborhood of a fixed point. Lefschetz’s theory comes up with
a fairly good answer to many of these questions.

First of all, we make a completely natural observation, viz., f(x) = x for some x ∈ X
iff (x, f(x)) ∈ ΔX the diagonal in X × X. Thus, the fixed points of f are in one-to-one
correspondence with the points in the intersection of the graph Γf of f with the diagonal
Δ in X ×X. So, the intersection theory must have a role to play in the fixed point theory.
This simple observation is the key to the entire discussion that follows.

Definition 7.8.1 Let X be a compact, oriented manifold and f : X → X be a smooth
map. Then the number I(ΔX ,Γf ;X × X) is denote by L(f) and is called the Lefschetz
number of f. In particular, we define the (Poincaré) index I(X) of X by the formula

I(X) := L(IDX) = I(ΔX ;X ×X) = I(ΔX ,ΔX ;X ×X). (7.7)

Remark 7.8.1 Since intersection number is a homotopy invariant, it follows that L(f) is
also an invariant of the homotopy class of f. Also, it is invariant under conjugation, viz, if
φ : X → X is a diffeomorphism, then L(f) = L(φ−1 ◦ f ◦ φ).

Remark 7.8.2 If the fixed point set of f is empty, then clearly L(f) = 0. Thus, at least
we know when the fixed point set is nonempty, viz., if L(f) �= 0.

Is the converse true? How does the number L(f) measure the number of fixed points?
These questions are subtle, for a number of reasons. First of all, we know that the set
theoretic intersection is not a homotopy invariant. Next, certain signs are attached to the
points and the summation of these signed numbers is taken as the intersection number.
Since cancellations are possible while taking the summation, it is not at all clear why L(f)
need not vanish, even when f may have fixed points. This is indeed true, yet, the scenario
is not so bad, as we shall soon see.
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Let us first examine the simplest case when x is a fixed point and Γf is transversal to
Δ at (x, x). This means that

T(x,x)(Γf ) + T(x,x)(Δ) = T(x,x)(X ×X).

This is the same as saying

Im(Id, dfx) + ΔTxX = Tx(X)× Tx(X).

Here Id denotes the identity map of TxX. Observe that (Id, dfx) is injective and hence the
image of (Id, dfx) is of dimension n. Also, the diagonal in TxX is of dimension n. It follows
that the above transversality condition is equivalent to say that Im(Id, dfx)∩ΔTx(X) = {0}.
This is the same as saying that no eigenvalue of the linear map dfx is equal to 1.

Definition 7.8.2 A fixed point x of f is said to be of Lefschetz type if dfx has all its
eigenvalues different from 1. Also, we call f itself a map of Lefschetz type if all of its fixed
points are of the Lefschetz type.

Remark 7.8.3 From the above analysis, it is immediate that fixed points of maps of the
Lefschetz type are isolated. Since the condition is open, we would anticipate that fixed
points are almost always of the Lefschetz type. In any case, the importance of Lefschetz
type maps is enhanced by the following result.

Lemma 7.8.1 Every map is homotopic to a map of the Lefschetz type.

Proof: Recall that given f : X → X, there exists a map F : X × BN → X such that for
each fixed x, the map v 
→ F (x, v) itself is a submersion (Theorem 7.1.2). Consider the map
G : X × BN → X ×X given by G(x, v) = (x, F (x, v)). Then it is fairly obvious that G is
also a submersion (see Exercise 3.6). Hence, by transversality Theorem 7.1.1, for almost all
v ∈ BN , the map x 
→ G(x, v) = (x, F (x, v)) is transversal to Δ. But this map is the graph
of the map x 
→ F (x, v), which is clearly homotopic to f. ♠

For a Lefschetz type map, let us denote the intersection number at a fixed point xi by
η(xi). Then by definition, L(f) =

∑
η(xi). The following lemma tells us how to identify

this. Since the transversality condition is the same as saying that 1 is not an eigenvalue of
dfxi , this means that dfxi − Id is an isomorphism of TxiX.

Lemma 7.8.2 Let x be a Lefschetz type fixed point of f. Then the intersection number
η(x) is ±1 according as dfx − Id preserves or reverses orientation at x.

Proof: Let A = dfx : TxX → TxX. Let [a] = [a1, . . . , an] denote the orientation class for
TxX. Then for T(x,x)(X × X), T(x,x)(Δ), and T(x,x)(Γf ), we have the orientation classes
given by

[(a, 0)][(0, a)] := [(a1, 0), . . . , (an, 0), (0, a1), . . . , (0, an)],
[(a, a)] := [(a1, a1), . . . , (an, an)],
[(a,A(a)] = [(a1, Aa1), . . . , (an, Aan)],

respectively. Let ε denote ±1 according as A− Id preserves orientation or reverses orienta-
tion, i.e.,

(A− Id)[a] = [(A− Id)(a1), . . . , (A− Id)an] = ε[a1, . . . , an] = ε[a].

Then
[(a, a)][(a,Aa)] = [(a, a)][(0, Aa− a)] = [(a, a)][(0, (A− Id)(a))]

= ε[(a, a), (0, a)] = ε[(a, 0), (0, a)].

Therefore, the intersection number at x is also equal to ε (see (7.2)). ♠
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Remark 7.8.4 In the above discussion, notice that we do not need X to be an orientable
manifold, the entire discussion is local in nature: To obtain the numbers η(xi) we need to
fix some orientation at the point xi and it does not matter which orientation is taken, the
value of η(xi) will be the same. Therefore,

Corollary 7.8.1 The number L(f) = I(ΔX ,Γf ;X ×X) is well defined for all closed man-
ifolds X and for all smooth maps f : X → X irrespective of whether X is orientable or not,
and is an invariant of the homotopy class of f. (In particular, it does not even depend upon
the smooth structure of X either.)

Remark 7.8.5 In particular, notice that the self-intersection number

I(X) = I(ΔX ,ΔX ;X ×X) (7.8)

is defined as an integer even in the case when X is not orientable.

Example 7.8.1 Let us examine what it means to say that the intersection number at
a point (x, x) is ±1 in the 2-dimensional case. By passing to a coordinate neighborhood
and adding a suitable constant to f, we may assume that x = 0 and f is defined in a
neighborhood of 0 ∈ R2 and f(0) = 0. Then df0 = A : R2 → R2 is a linear map that
approximates f and hence f(t, s) = A(t, s) + ε(t, s), where ε(t, s) → (0, 0) as (t, s) → (0, 0).
Therefore, an approximate picture of f can be obtained by studying A.

Let us assume that A has two independent eigenvectors, and λ1, λ2 are two real eigen-
values of A. By a coordinate transformation, we may assume that these eigenvectors are
in the direction of x-axis and y-axis. Now consider the case, when both λi are > 1. This
implies that each nonzero vector is mapped to a vector of length larger than itself. Thus, f
is an expanding map (near 0) and we call 0 a “source”. Exactly the opposite happens when
both λi are < 1 and we call 0 a “sink”. In either case, it is clear that det (A− Id) is positive
and hence η(x) = 1.

Now consider the case when λ1 > 1 and λ2 < 1. Then f is expanding along the x-axis
and contracting along the y-axis. In this case, we call 0 a saddle point. Also det (A−Id) < 0
and hence η(x) = −1.

Of course, it may happen that A has no real eigenvalues in which case, the picture may
be more complicated. We shall come back to it later.

Definition 7.8.3 Let x be a Lefschetz type isolated fixed point of a smooth map f : X →
X. We say x is a source (resp. a sink) if dfx : TxX → TxX has all eigenvalues > 1 (resp.
< 1). If some eigenvalues > 1 and some other < 1, then we say x is a saddle point.

Remark 7.8.6 Observe that the local Lefschetz number Lx(f) at a source is always equal
to 1. At a sink it is equal to (−1)n and at a saddle point it is equal to (−1)k where k is the
number of eigenvalues of dfx, which are less than 1.

As seen above we know that most maps are of the Lefschetz type. However, in practice,
we do come across maps that are not. This phenomenon is similar to the fact that most
polynomials have distinct roots but sometimes we have to deal with those that have multiple
roots.) We shall now use the homotopy invariance property of L(f) to define the local
Lefschetz numbers at any isolated fixed point that is not necessarily of the Lefschetz type.
The first step is:

Lemma 7.8.3 Let U be an open subset of Rn, f : U → Rn be a smooth map with a
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Lefschetz type fixed point at z ∈ U. Then for a suitable ε > 0, f(x) �= x for any x ∈ ∂Bε(z).
Moreover, the Gauss map associated to f, viz., F : ∂Bε(z) → Sn−1 given by

F (x) =
f(x)− x
‖f(x)− x‖

has its degree equal to η(z).

Proof: By linear approximation, we first reduce the problem to the case when f itself is
linear. First try it yourself and only then read the following details.

Put A = dfz. Then by Taylor’s’ Theorem, f(x) = f(z) +A(x− z) + ψ(x), where∥∥∥∥ ψ(x)
x− z

∥∥∥∥→ 0 as x→ z.

Put c = 1/‖(A − I)−1‖. Then for all v ∈ Rn, we have ‖(A − I)(v)‖ ≥ c‖v‖. Now choose
ε > 0 such that ‖ψ(x)‖ ≤ c‖x − z‖/2 for all x such that ‖x − z‖ ≤ ε. Then the first part
follows. Now define gt(x) = (A − I)(x − z)) + tψ(x). Then gt never vanishes in Bε(z) and
we have g0(x) = (A− I)(x− z) and g1(x) = f(x)− x. After dividing out by the norm, this
yields a homotopy of F with the map

x 
→ (A− I)(x− z)
‖(A− I)(x− z)‖

on ∂Bε(z). Therefore, the two maps have the same degree. It remains to show that the
degree of the map

v 
→ (A− I)(v)
‖(A− I)(v)‖

is equal to ±1 according as (A − I) preserves orientation or reverses it. From lemma 7.8.2
we are through. ♠

Theorem 7.8.1 Splitting Principle: Let f : X → X have an isolated fixed point at x0

inside a neighborhood U of x. Then there exists a homotopy H of f that is constant outside
a compact subset K of U to a map g such that all fixed points of g inside U are of the
Lefschetz type.

Proof: It suffices to prove the result for the case when U is an open subset of Rn and 0 is the
only fixed point of f in U. Choose a bump function ρ : U → [0, 1] such that ρ(Br(0)) = {1}
and ρ(U \B2r(0)) = {0}, with B2r(0) ⊂ U. For any fixed v ∈ Rn, consider the mapping

H(x, t) = f(x) + tρ(x)v =: ht(x).

We shall show that for all ε > 0 sufficiently small, there exist plenty of v with ‖v‖ < ε such
that H defined as above gives the required homotopy.

First, we want to ensure that ht does not have any fixed points outside Br(0). In the
compact set r ≤ ||x|| ≤ 2r, since f has no fixed points, we can find δ > 0, such that
||f(x)− x)|| > δ. Now take v such that ||v|| < δ/2. Then

||ht(x)− x|| ≥ ||f(x)− x|| − tρ(x)||v|| > δ/2.

On the other hand, for ||x|| ≥ 2r, we have, ρ(x) = 0 and hence H(x, t)− x = f(x)− x �= 0.
Now by Sard’s theorem, there exists v ∈ Rn such that 0 < ||v|| < δ/2 which is a regular
value for f − Id. Now suppose x is a fixed point of g = h1. Then x ∈ Br(0) and hence
g(y) = f(y) + v in Br(0). Therefore, dgx = dfx. Hence, x is of the Lefschetz type iff dfx− Id
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is an isomorphism. Now, since we have assumed that x is a fixed point of g, we have
x = g(x) = f(x) + v, which implies (f − Id)(x) = v. Since v is a regular value, it follows
that d(f − Id)x = dfx − Id is an isomorphism. Hence, we have proved that f is homotopic
to a map g which has all its fixed points inside Br(0) and they are all of the Lefschetz type.
Moreover, g = f outside B2r(0). ♠

Definition 7.8.4 Given a map f : U → Rn with an isolated fixed point z, we consider
the map F (x) = f(x)−x

‖f(x)−x‖ on ∂Br(z) for sufficiently small r > 0 and put Lz(f) = degF.
It is easily verified that if we choose any other sphere around z to define Lz(f), then
we get the same number. As remarked earlier, if φ : V → U is a diffeomorphism then
Lz(φ−1fφ) = Lφ(z)(f). This enables us to define the local Lefschetz number of self-maps of
any manifold.

Thus, suppose f : X → X has an isolated fixed point z ∈ X. Choose a parameterization
φ : Rn → U with φ(0) = z around z. Define the local Leschetz number of f at z by

Lz(f) = L0(φ−1 ◦ f ◦ φ). (7.9)

From the splitting theorem, using similar arguments as in the argument principle, we
obtain:

Lemma 7.8.4 Let f : X → X be any smooth map where X is a compact manifold.
Suppose f has finitely many fixed points {x1, . . . , xk}. Then L(f) =

∑
i Lxi(f).

Proof: Choose disjoint neighborhoods Ui of xi each diffeomorphic to a ball and apply the
splitting principle in each of the these neighborhoods simultaneously, to obtain a Lefschetz
map g that is homotopic to f and agrees with f outside X \ ∪iUi. So, L(f) = L(g). By
definition, since g is a map of the Lefschetz type, the global Lefschetz number is the sum
of the local ones, i.e., we have L(g) =

∑
ij Lxij (g). Now by argument principle, L(g|Ui) is

the sum total of the degrees at x′ijs, i.e., L(g|Ui) =
∑

j Lxij (g). On the other hand, on the

boundary of Ui, f = g and hence L(g|Ui) is equal to the degree of f(x)−x
‖f(x)−x‖ . Since xi is the

only fixed point of f inside Ui, this degree is equal to Lxi(f). ♠

Remark 7.8.7 Thus, the above lemma gives a method to determine the Lefschetz number,
even without actually homotoping the given map to a Lefschetz map. We shall now use this
in a very special case, viz., to compute the Lefschetz number of the identity map.

Let us begin with an example.

Example 7.8.2 Consider the following mapping f : Sn → Sn, which fixes the north pole
and the south pole, given by

f(x) =
x+ S/2
||x+ S/2||

where S denotes the south pole. Check that the north pole is a source and the south pole
is a sink. Of course there are no other fixed points of f. Therefore, L(f) = 1 + (−1)n. On
the other hand, f is homotopic to identity (why?) and hence

L(f) = L(Id) = I(S2) = I(ΔS2 ; S
2 × S

2). (7.10)

Thus, I(S2) = 2. Using similar ideas, it is possible to compute I(S) for any 2-dimensional
closed manifold S. This we shall do in the next chapter.
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Remark 7.8.8

1. The discussion that we had on the Lefschetz number is going to be of some use. For
this, we should choose the map homotopic to Id so that it has only isolated fixed
points. Already, we have a method to generate homotopies of the identity map, viz.,
by choosing a vector field σ and generating a 1-parameter group of diffeomorphisms,
{ht} from it.

2. It is fairly easy to see that for sufficiently small t > 0, each ht will have finitely many
fixed points, provided the vector field σ that we choose has finitely many zeros. In
such a situation, we have, I(X) = L(ht).

3. A natural question that arises is: Can we read off this number directly from the
vector field? The answer is yes indeed and this is the major part of the celebrated
Poincaré-Hopf Index Theorem (see Theorem 7.8.2 below). We begin with:

Definition 7.8.5 Let σ be a smooth vector field on Rn such that σ(x) = (x, 0) iff x = 0.
Recall that the tangent space to Rn is a product T (Rn) = Rn × Rn. Therefore, a vector
field σ on Rn corresponds simply to a map σ̂ : Rn → Rn, by the formula:

σ(x) = (x, σ̂(x)). (7.11)

In this case σ̂ restricts to a smooth map σ̂ : Rn \ 0 → Rn \ 0. Consider the winding number
W (σ̂, 0) of σ̂|Sn−1 around 0 and call this the local index of σ at x and denote it by indxσ.

Remark 7.8.9 Of course, we could take the restriction of σ̂ to any sphere around 0 and
they would all have same winding number around 0.

Lemma 7.8.5 Let f, g : R
n \ {0} → R

n \ {0} be any two smooth maps. Then W (g ◦ f, 0) =
W (g, 0)W (f, 0).

Proof: Recall that W (f, 0) is defined to be the degree of the map f̂ : Sn−1 → Sn−1 given
by f̂(x) = f(x)

‖f(x)‖ . Now consider the homotopy

H(x, t) = g

(
t
f(x)
‖f(x)‖ + (1− t)f(x)

)

between g ◦ f and g ◦ f̂ which yields W (g ◦ f, 0) = W (g ◦ f̂ , 0). Now ̂
g ◦ f̂ = ĝ ◦ f̂ and

hence W (g ◦ f̂ , 0) = deg(̂g ◦ f̂) = deg (ĝ ◦ f̂). We now appeal to Exercise 7.7 to conclude the
lemma. ♠

Lemma 7.8.6 The local index, ind0 σ is invariant under diffeomorphisms:

Proof: If φ : Rn → Rn is a diffeomorphism such that φ(0) = 0. We have to show that
indσ = indφ∗(σ). First of all note that

φ∗(σ)(x) = (x, (d(φ)x)−1(σ̂(φ(x))) =: (x, τ(x)), say.

Therefore, we must show that W (τ, 0) = W (σ̂, 0). Now consider the homotopy H(x, t) =
(dφtx)−1(σ̂(φ(x))), which yields that W (τ, 0) = W (A−1 ◦ σ̂ ◦φ, 0), where A = dφ0 is a linear
isomorphism. Now, we know that A preserves orientation iff the diffeomorphism φ preserves
orientation. Therefore, W (A−1, 0) = W (φ, 0) = ±1. We can now appeal to Lemma 7.8.5 to
conclude that

W (τ, 0) = W (A−1, 0)W (σ̂, 0)W (φ, 0) = W (σ̂, 0).

This completes the proof of the lemma. ♠
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Definition 7.8.6 Index of a Vector Field: Let σ be a smooth vector field on a manifold
X with finitely many zeros {z1, . . . , zk}. By the above lemma, it follows that the “local
index” ind zi(σ) of σ at each of the point zi is well-defined, being the index of the pullback
vector field under a parameterization around zi. We define the (global) index of σ by the
formula:

Ind (σ) =
∑
zi

indzi(σ). (7.12)

Remark 7.8.10 The well-definedness of the local index is a very important property. In
particular, it does not depend on the local orientations. The fallout is that the sum of all
these local indices is well-defined even for nonorientable manifolds also. This is something
that is not so obvious at all since all this depended on our theory of oriented intersection
numbers, or for that matter, on the notion of degree.

Example 7.8.3 There is a close relation between the discussion we had on Lefschetz type
maps and vector fields. Suppose σ is a vector field on a 2-disc with an isolated zero. We can
draw arrows to indicate this vector field and look at the various possible patterns as in the
figure below.

(i) (ii)

(vii)(v) (vi)

(iv)(iii)

Figure 37 Types of 2-dimensional fluid flows.

The first one is called a source, the second one a sink, terms we have used to describe
certain types of Lefschetz fixed points. We have more here. The third one is clearly a saddle
point. The fourth one may be called a vortex, and the fifth one is a spiral. The sixth one
is again a vortex but with an opposite orientation to that of the fourth one. Finally, you
are welcome to choose a name for the last one (butterfly?) Compute the index in each
case. Draw a small circle C around each zero of the field, draw a unit circle S on the
side and watch how σ(x)/‖σ(x)‖ moves on S as your point x moves on C. The indices
are respectively, 1, 1,−1, 1,−1, 1, 2. ARE YOU SURPRISED TO SEE THAT the first and
second and similarly, the third and the fifth have the same index?

Theorem 7.8.2 Let σ be a smooth vector field with finitely many zeros on a closed manifold
X. Then the sum of all the indices of σ at these points is equal to the self-intersection number
I(X), i.e.,

Ind(σ) = I(X).
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Proof: Let ht be the 1-parameter group of diffeomorphisms generated by σ. Since h0 = IdX ,
it follows that I(X) = L(ht) for all t. Now for sufficiently small t > 0, the fixed points of ht
are precisely, the zeros of σ. Therefore, we can compute L(ht) as the sum of finitely many
local Lefschetz numbers. Thus, it is enough to prove that Lp(ht) = indp(σ) for each of these
fixed points. This local problem can be transferred to a neighborhood of 0 in the Euclidean
space. Then by Taylor’s expansion, we have

ht(x) = h0(x) + tσ(x) + t2σ1(x)

where σ1(x) is some smooth function. Therefore,

ht(x) − x
‖ht(x) − x‖ =

ht(x) − h0(x)
‖ht(x) − h0(x)‖ =

tσ(x) + t2σ1(x)
‖tσ(x) + t2σ1(x)‖ =

σ(x) + tσ1(x)
‖σ(x) + tσ1(x)‖

The above equation is valid for sufficiently small t > 0. The winding number of the map on
the LHS restricted to a small sphere is the local Lefschetz number Lp(ht) of the map ht.
On the RHS, we have a homotopic family of maps defined even for t = 0. Therefore, they
all have the same degree. Putting t = 0, we get the map σ̂ : x 
→ σ(x)/‖σ(x)‖, the winding
number of which is indp(σ). ♠

Remark 7.8.11 As an immediate fallout of this theorem, we now have a better definition
of I(X), that is valid for all closed manifolds, viz., take any smooth vector field with finitely
many zeros and take the sum total of local indices. For compact manifolds with boundary,
the choice of vector field should be such that at the boundary points it is strictly outward.
All this will be futile of course, if we do not have such vector fields. We shall see more about
them in a later chapter.

Example 7.8.4 On the projective plane P2, we shall construct a vector field σ that has
only one zero. Also, this zero happens to be a vortex. Consequently, we obtain: I(P2) = 1.
The vector field σ is obtained by constructing a vector field τ on S2 which is invariant under
antipodal action. We use spherical coordinates

(ψ, θ) 
→ (cosψ cos θ, cosψ sin θ, sinψ),−π/2 ≤ ψ ≤ π/2, 0 ≤ θ ≤ 2π

for S
2, and take

τ(ψ, θ) = (π2/4− ψ2)(− sin θ, cos θ, 0).

Figure 38 An invariant vector field on S2.

The two zeros of τ are precisely at the south and north pole and the index at these
points is +1, they being vortices (see example 7.8.3). Passing down to P

2, this will produce
a vector field σ with index 1.
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Exercise 7.8

1. Let σ be a vector field on D
n with finitely many zeros all of which are in the interior.

Suppose the sum of the indices at these zeros is equal to zero. Then there exists a
vector field on Dn that agrees with σ on a neighborhood of ∂Dn and which does not
vanish anywhere.

2. Let X be a connected manifold and P ⊂ X be a finite subset. Then there exists an
open set U in X diffeomorphic to an open disc that contains P.

3. Let X be a closed manifold. Then I(X) = 0 iff there exists a nowhere vanishing
smooth vector field on X.

4. Construct a nowhere vanishing vector field on the Möbius band.

7.9 Some Applications

We shall now bring our knowledge of degree of a map together with the integration
theory that we have developed so far. The very first result may be viewed as a further
generalization of the change of variable formula. We then give an application of this to the
Gauss-Bonnet theorem, a classical result in differential geometry.

Of course, the Gauss-Bonnet formula for the curvature form can be viewed as another
way to compute the Euler characteristic itself.

Theorem 7.9.1 Degree Formula for Integration: Let X,Y be any two n-dimensional
smooth compact oriented connected manifolds without boundary and f : X → Y be any
smooth map. Then for any n-form ω on Y, we have∫

X

f∗(ω) = (deg f)
∫
Y

ω. (7.13)

As a first step toward the proof of this theorem we have:

Lemma 7.9.1 Let y ∈ Y be a regular value for f. Then there exists a neighborhood U of
y in Y such that for all n-forms ω with support contained in U, formula (7.13) holds.

Proof: By Stack-Record Theorem 3.4.5, we have a neighborhood U of y such that f−1(U) =
∪ki=1Vi, with each f : Vi → U being a diffeomorphism. Then by the change of variable
formula 4.10, for any ω with support inside U, we have,∫

Vi

f∗(ω) = η(x)
∫
Y

ω

where η(x) = ±1 according as f : Vi → U is orientation preserving or not. Therefore,∫
X

f∗ω =
∑
i

∫
Vi

f∗ω =
∑

f(x)=y

η(x)
∫
Y

ω = (deg f)
∫
Y

ω.

This completes the proof of the lemma. ♠
We now complete the proof of the theorem as follows. Fix a regular value y ∈ Y for f

and a neighborhood U as above. Recall that, given any point z ∈ Y we can find a diffeotopy
ht of Y such that h1(y) = z (see Disc Theorem 6.3.7). Using the compactness of Y, we can
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find finitely many diffeomorphisms gi : Y → Y such that Y = ∪gi(U). Using the partition of
unity, we can write any form ω as a finite sum of forms each of which has support inside one
of gi(U). By the additive property of the integrals, it is now enough to prove the theorem,
for a form ω with its support inside one of gi(U). Since gi  IdY , it follows that f  gi ◦ f.
By Exercise 4.3, we have,∫

X

f∗ω =
∫
X

(gi ◦ f)∗ω =
∫
X

f∗g∗i (ω) = (deg f)
∫
Y

g∗i (ω) = (deg f)
∫
Y

ω.

The proof of the theorem is complete. ♠

Definition 7.9.1 Let X ⊂ Rn+1 be a compact connected smooth hyper-surface. Consider
the map x 
→ ν(x), where ν(x) denotes outward unit normal to X at x. (This makes sense,
because of the Jordan-Brouwer separation theorem.) This map is called the Gauss map of
X and let us denote it by gX = g. Its Jacobian, i.e, the determinant of the derivative is
called the curvature form (which is an n-form) and is denoted by κ. Indeed, let Vn denote
the volume form on the unit sphere. Then κ = g∗Vn.

Example 7.9.1 If X is a sphere of radius r, then g(x) = x/r for each x and hence κ is
equal to 1/rn times the volume form.

Lemma 7.9.2 The degree of the Gauss map is equal to half of χ(X) for an even dimensional
hypersurface X in Rn+1.

Proof: Choose a ∈ Sn so that both ±a are regular values of the Gauss map g : X → Sn.
(This is possible, by choosing a regular value for the composite map π ◦ g : X → Pn where
π : Sn → Pn is the quotient map onto the real projective space.) Consider the vector field
Θa on Sn given by

Θa(v) = a− 〈a, v〉v. (7.14)

The zeros of this vector field are precisely ±a. One is a sink and the other is a source. Since
n is even, the index at both points is equal to 1. (This is the only place where evenness of
n is used and it is crucial.)

Now consider the pullback vector field σ = g∗(Θa) on X. Since Θa(v) = 0 iff v = ±a,
σ(x) = 0 iff g(x) = ±a. In particular, the zero set Z of σ is finite and we know that

χ(X) =
∑
z∈Z

indz(σ) =
∑

g(z)=a

indz(σ) +
∑

g(z)=−a
indz(σ).

Also, observe that in a neighborhood of each z ∈ Z, the Gauss map g is a diffeomorphism,
z being a regular point. Moreover, since g(x) ⊥ TxX, it follows that Tx(X) = Tg(x)S

n. One
can easily check that indz(σ) = ±indg(z)(Θa) according as dgx preserves the orientation or
not. Therefore, ∑

g(z)=a

indz(σ) = deg g =
∑

g(z)=−a
indz(σ).

The conclusion of the lemma follows. ♠

Remark 7.9.1 Note that in the odd dimensional case, this formula is not valid since
χ(X) = 0 whereas κ could be positive everywhere. That is the reason why the following the-
orem is also available for even dimensional manifolds only. However, if you are interested in
computing the total curvature somehow, computing the degree of the Gauss map somehow
is a solution.
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Theorem 7.9.2 Gauss-Bonnet: If X is a compact even dimensional hypersurface in
Rn+1 then ∫

X

κ =
1
2
γnχ(X)

where γn is the volume of the unit n-sphere.

Proof: ∫
X

κ =
∫
X

g
Vn = (deg g)
∫

Sn

Vn = (deg g)γn =
1
2
γnχ(X).

This completes the proof. ♠

Exercise 7.9

1. Let X,Y be connected, oriented, closed n-manifolds, and f : X → Y be a smooth
map. We know that Hn

DR(X) ≈ R ≈ Hn
DR(Y ). Therefore, there is a real number λ

such that f∗ : Hn
DR(Y ) → Hn

DR(X) is given by f∗(r) = λr. Show that λ = deg f.

2. Let X be a nonorientable closed n-manifold. Show that every n-form on X is exact
by using the fact that every n-form ω on X̃ such that

∫
X ω = 0 is exact. (Compare

Exercise 4.5.4.)

7.10 Miscellaneous Exercises for Chapter 7

1. Let X,Y be submanifolds of Rn. Show that for almost all v ∈ Rn, the translates X+v
intersect Y transversely.

2. IfX,Z are submanifolds of Y such that dim X+dim Z < dim Y then show thatX can
be isotoped away from Z by an isotopy that is constant outside a given neighborhood
of Z.

3. Let X be a submanifold of Rn \ {0}. For any 1 ≤ k ≤ n, let Gk,n denote the space
of all k-dimensional linear subspaces of Rn. (See Exercise 10 in 5.8. Show that almost
all elements of Gk,n intersect X transversely.

4. Let n ≥ 2 and f : Rn → Rn be any smooth map. Show that given ε > 0 and a compact
subset K of Rn, there exists a smooth map g : Rn → Rn such that dg is never zero
and |f − g| < ε on K. The same statement is false for n = 1.

5. A manifold X is called s-parallelizable if TX ⊕ Θk is a trivial bundle, for some k,
where Θk = X × Rk denotes the trivial bundle of rank k.
(i) Show that product of a finite number (more than one) of spheres is s-parallelizable
and is actually parallelizable if one of the sphere is odd dimensional.
(ii) Show that every codimension 1 submanifold of Rn is s-parallelizable.
(iii) Show that if X is a product of spheres then it can be embedded as a codimension
1 submanifold of a Euclidean space.

6. Show that TX is orientable for any manifold X.

7. Let M ⊂ N be a codimension 1 submanifold.
(i) Suppose N = Rn+1, n ≥ 1 and ∂M = ∅. Then M bounds a unique compact
submanifold of Rn+1.
(ii) Suppose ∂M �= ∅ and ∂N = ∅. If M,N are connected then so is N \M.
(iii) Suppose ∂M = M ∩ ∂N. Then the normal bundle of M in N is trivial iff there
exist arbitrary small neighborhoods of M in N that are separated by M.
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8. Show that any map f : Sn → Sn such that f(x) = f(−x) has an even degree.

9. Let X,Y be orientable closed connected manifolds of the same dimension and let
f : M → N be of degree k. Then f#(π1(X)) is a subgroup of π1(Y ) of index that
divides |k|. In particular, if k = 1, then f# is surjective on the fundamental groups.

10. Let Mn be a closed submanifold of R
n+1. For each x ∈ R

n+1 \M, define τx : M → S
n

by

τx(y) =
y − x
‖y − x‖ .

Show that
(i) xi, i = 0, 1 are in the same component of Rn+1 \M iff τx0  τx1 .
(ii) x is in the unbounded component of Rn+1 \M iff τx is homotopic to a constant
map.
(iii) Suppose M is connected. Then x belongs to the bounded component of Rn+1 \M
iff deg τx = ±1.

11. Let M,N be closed, oriented submanifolds of dimension m,n respectively of R
q where,

m+ n+ 1 = q. The linking number Lk(M,N) is defined to be the degree of the map
τ : M ×N → Sm+n, given by

(x, y) 
→ x− y
‖x− y‖ .

Show that
(i) Lk(M,N) = (−1)mnLk(N,M)
(ii) If M can be deformed to a point in Rq \ N or if it bounds an oriented compact
submanifold in Rq \N then Lk(M,N) = 0.
(iii) If M = {x, y} then N separates x and y iff Lk(M,N) = ±1.

12. Prove the following generalization of the fundamental theorem of algebra: Let U be
an open set in Rn and f : U → Rn be a proper smooth map such that outside a
compact set Det(Dfx) > 0 always or < 0 always. Then f is surjective.
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Recall that for a real valued smooth function of a real variable, the local extrema were
identified by conditions on the values of the derivative of the function. In particular, the
first derivative itself necessarily vanished at these points. Further, in order to determine
the nature of the function at an extremum point, viz., whether it has a local maximum
or a local minimum at that point, it was necessary to study the second derivative of the
function. There is no reason why a similar theory should not exist in the case of functions
of several variables.

Indeed, such is precisely the case, viz., the “nonsingularity” of the second derivative at
a point is a sufficient condition to determine the local behavior of the function at a critical
point. The key result is called the Morse1 lemma. While dealing with the second derivative,
the Morse lemma plays a role similar to the one played by the inverse function theorem
while dealing with the first derivative. The importance of this result is enhanced by the fact
that it gives a lot of information on the topology of the manifold itself. Smale2 developed
this idea into a powerful tool and used it to solve the Poincaré conjecture for dimension
≥ 5 [Sm1]. In this chapter, we shall introduce the easier part of Morse theory and use it to
present a classification of compact smooth manifolds.

8.1 Morse Functions

In order to see the effectiveness of the Morse theory, one needs to know that there
are “enough” smooth functions which have all their critical points nondegenerate. Such
functions are called Morse functions. In this section, we shall see that Morse3-Sard’s theorem
can be effectively used to prove that there are plenty of Morse functions on any given
manifold.

Definition 8.1.1 Let U be an open subset of Rn and f : U → R be a smooth map and
x ∈ U be a critical point of f. (Recall that this simply means that Dfx = 0.) We say x is a

1Marston Morse (1892-1977) was born in Waterville, Maine, USA. He did his Ph. D. under the guidance
of G. D. Birkhoff. The so called Morse theory came out of his paper ‘Relations between the critical points of
a real functions of n variables in 1925. He has contributed more than 180 research papers and eight books
on a whole range of topics such as minimal surfaces, topological methods in the theory of functions of a
complex variable, differential topology and dynamics.

2Stephen Smale (1930–) is a US mathematician, who has out-standing contributions in differential topol-
ogy, dynamical systems, mathematical economics and theoretical computer science. He received Fields medal
in 1966 for solving Poincaré conjecture in dimensions greater than 4.

3This is not Marston Morse but A. P. Morse (1811-1984) whose major contributions are in the area of
probability and measure theory and mathematical foundation.
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nondegenerate critical point if the Hessian matrix

Hf (x) =
(

∂2f

∂xi∂xj
(x)

)
(8.1)

is nonsingular.

Lemma 8.1.1 Nondegenerate critical points are isolated.

Proof: Consider the map g = ∇f : U → R
n, i.e.,

g(x) =
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
x

.

Then the critical points of f are nothing but the zeros of g. We look at the derivative of g at
a point x, which is nothing but the linear map Rn → Rn given by the Hessian matrix (8.1).
Assuming that this is nonsingular at x = x0, we can apply the Inverse Function Theorem to
conclude that g is a local diffeomorphism at x. Therefore, g(x) = 0 has a unique solution in a
neighborhood of x0. This means that there is no other critical points of f in a neighborhood
of x0. ♠

Remark 8.1.1 Observe that under diffeomorphisms, the nondegeneracy of critical points
is preserved. (See the exercise at the end of this section.) This observation enables us to
define nondegenerate critical points of a smooth function f defined on any manifold X, viz.,
x ∈ X is a nondegenerate critical point of f if for some parameterization φ of X around x,
φ−1(x) is a nondegenerate critical point of f ◦ φ : Rn → R.

Definition 8.1.2 A smooth function on a manifold is called a Morse function if all its
critical points are nondegenerate.

Let us first of all prove a result that will guarantee that there are plenty of Morse
functions. We now need the observation that we made in Exercise 3.3.(6). Since we are
going to use it now, let us give a proof of this here.

Lemma 8.1.2 Let X be an n-dimensional smooth submanifold of RN . Given any point
x ∈ X, there exist n coordinate projections xi1 , . . . , xin , which are such that restricted to a
neighborhood of x ∈ X, they form a coordinate system for X.

Proof: This follows directly from the corresponding linear algebra result: If L is any n-
dimensional vector subspace of RN , then some n of the coordinate functions (treated as
linear functionals) restricted to L are linearly independent. Now, choose L = TxX and
observe that the derivative of xi restricted to X is nothing but xi restricted to TxX. Choose
xi1 . . . , xin so that on L they are independent and define φk = xik , 1 ≤ k ≤ n. Then
φ : X → Rn is such that D(φ)x is an isomorphism. Now, by appealing to the inverse
function theorem, get the conclusion of the lemma. ♠

Theorem 8.1.1 Let X ↪→ RN be a smooth manifold and f : X → R be any smooth
function. Then for almost all vectors u ∈ RN , the mapping fu defined by:

fu(x) = f(x) + 〈x, u〉

is a Morse function on X.
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Proof: We are required to prove that the set of all vectors u ∈ RN for which fu is not a
Morse function is of the Lebesgue measure zero in RN . Suppose, we cover X by a countable
family of open subsets {Ui} such that the statement is true for each Ui in place of X. Since
the countable union of measure zero sets is of measure zero, the result follows for X itself.

Let us first consider the case when N = n and X is an open set in Rn. Let g : Rn → Rn

be the derivative of f, i.e.,

g(x) =
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
(x).

It follows that
D(fu)(x) = g(x) + u.

Therefore, x is a critical point of fu iff g(x) = −u. Since Hf (x) = Dg(x) = Hfu(x), we want
Dg(x) to be nonsingular, for all x ∈ g−1(−u). Since the dimensions of the domain and the
codomain of g are the same, this is the same as saying that −u is a regular value for the
function g. Morse-Sard’s theorem says that this is the case for almost all vectors u. This
completes the proof in this special case.

Now consider the general case. By the previous lemma, given x ∈ X, we can choose a
neighborhood U such that some n coordinate projections restrict to a coordinate system on
U. Without loss of generality, for convenience of writing down the proof, we assume that
these are the first n coordinate projections and let ψ : V → U be the inverse parameteriza-
tion, where V is some open subset of Rn. Then clearly, ψ(y) = (y, γ(y)) for some smooth
function γ : V → RN−n.

For each w ∈ RN−n, consider the mapping

F (w)(x) = f(x) + 〈x, (0, w)〉

and let h := F (w) ◦ ψ : V → R. Then from the earlier case, for almost all v ∈ Rn, we have,
hv is a Morse function.

Now we observe that for any u = (v, w) ∈ Rn × RN−n and x = ψ(y), y ∈ V,

fu(ψ(y)) = f(ψ(y)) + 〈ψ(y), u〉
= f(ψ(y)) + 〈(y, γ(y)), (v, w)〉
= f(ψ(y)) + 〈y, v〉+ 〈γ(y), w〉
= f(ψ(y)) + 〈ψ(y), (0, w)〉 + 〈y, v〉
= h(y) + 〈y, v〉 = hv(y).

Let S be the set of all u ∈ R
N such that fu is not a Morse function on U. Then the above

argument together with the first case of the theorem we have proved, shows that for every
w ∈ RN−n, the intersection S ∩ (Rn × {w}) is a subset of measure zero in Rn × {w}. Since
this is true for all w ∈ RN−n, it follows from Fubini’s theorem that S itself is of measure
zero in R

N , as required. ♠

Remark 8.1.2 Recall that every smooth manifold X can be embedded in a Euclidean
space. Therefore, you get plenty of Morse functions on any manifold. Indeed, taking f ≡ 0,
we get plenty of linear functions on the ambient Euclidean space, which when restricted to
X give Morse functions. Also, if X is compact, given any ε > 0, we can choose u ∈ RN in
such a way that |〈x, u〉| < ε for all x ∈ X and thereby, get a Morse function fu on X such
that |f(x)− fu(x)| < ε for all x ∈ X.

When X is noncompact, it is desirable to have Morse functions f : X → R, which
are proper, i.e., f−1(K) is compact for all compact subsets K ⊂ R. If we stick to linear
functions, this is more or less not possible. However, if we allow “quadratic” functions, then
the answer is in the affirmative.
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Theorem 8.1.2 Let X ⊂ RN be any smooth closed manifold. Then for almost all points
z ∈ RN , the square of the distance function from y restricted to X is a proper Morse
function.

Proof: Given z ∈ RN put Lz(x) =
∑

i(zi−xi)2. Since L−1
z [0, r] is nothing but the closed ball

of radius r with center z, it follow that X ∩L−1
z [0, r] is compact. From this, the properness

of Lz|X follows. Note that x ∈ X is a critical point of Lz iff z − x is perpendicular to
the tangent space TxX, iff v = z − x ∈ NxX. Therefore, we consider the space of normals
N(X) ⊂ RN × RN and the function α : (x, v) 
→ x + v on it. The image of α consists of
those points z for which the critical set of Lz : X → R is nonempty. Put x + v = z. We
claim that the Hessian of Lz at x ∈ X is nonsingular iff Dα(x,v) is nonsingular. Appealing
to Morse-Sard theorem, it follows that almost all points z ∈ RN are regular values of α and
for these values of z, Lz is a Morse function.

As in the Theorem 6.1.1, let Θ : Rn × RN−n → N(X) be a parameterization covering
(x, v) ∈ N(X), say Θ(t, s) = (φ(t), s · u(t)), where φ : Rn → U is a parameterization
for X near x, and u(t) is an orthonormal frame for Nφ(t)(X). Here t = (t1, . . . , tn), s =
s1, . . . , sN−n); and the vectors {u1(t), . . . ,uN−n(t)} form an orthonormal frame orthogonal
to Tφ(t)X. Therefore, {uj} are orthogonal to the tangent vectors ∂φi

∂tj
. Now α ◦ Θ(t, s) =

φ(t) + s · u(t) with its N partial derivatives

∂φ

∂ti
+
N−n∑
k=1

sk
∂uk
∂ti

, 1 ≤ i ≤ n, and u1,u2, · · ·uN−n.

So, Dα(x,v) is nonsingular, iff these N vectors are independent at the corresponding (t, s).
Taking the dot product with the N independent vectors ∂φ

∂tj
, 1 ≤ j ≤ n, and u1,u2, · · ·uN−n,

we get a matrix⎛
⎜⎝

(
∂φ

∂ti
· ∂φ
∂tj

+
∑
k

sk
∂uk
∂ti

· ∂φ
∂tj

) (∑
k

sk
∂uk
∂ti

· uj

)

0 IdN−n

⎞
⎟⎠ (8.2)

Clearly (8.2) is nonsingular, iff its first block is nonsingular. Since ∂φ
∂tj
· uk = 0, it follows

that

0 =
∂

∂ti

(
∂φ

∂tj
· uk

)
=

∂2φ

∂ti∂tj
· uk +

∂φ

∂tj
· ∂uk
∂ti

.

Therefore, the first block of (8.2) is equal to the matrix(
∂φ

∂ti
· ∂φ
∂tj

−
∑
k

sk
∂2φ

∂ti∂tj
· uk

)
= D(φ) ·D(φ) −

∑
k

skuk ·D2(φ).

On the other hand, to compute the Hessian of Lz, we can use the parameterization
φ : Rn → U and consider the map β = Lz ◦ φ : t 
→ ‖φ(t) − z‖2. The first derivative
Dβ = 2(φ(t) − z) · D(φ) and the second derivative is 2[D(φ) ·D(φ) + (φ(t) − z) · D2(φ)].
Since φ(t)− z = x− z = v =

∑
k skuk we are through. ♠

Remark 8.1.3 There is a deep relation between the Morse functions Lz and the geometry
of the submanifold X. (See [M2].)

Exercise 8.1 Let φ : U → V be a diffeomorphism of open subsets of Rn and f : V → R

be a smooth function. Show that x ∈ U is a nondegenerate critical point of g ◦ φ iff φ(x) is
a nondegenerate critical point of f. [Hint: See (1.46).]
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8.2 Morse Lemma

One of the landmarks in the theory of Differential Topology is the characterization of a
function in a neighborhood of a nondegenerate critical point. This result is due to Marston
Morse. Before we proceed, let us consider a simple example.

Example 8.2.1 Let S
2 denote the unit sphere in R

3 and let π : S
2 → R be the projection

to the last coordinate, π(x, y, z) = z. Since π is a linear map dπp = π for all p and hence
vanishes identically on the plane z = 0. Since the only points at which the plane z = 0 is
tangent to S2 are (0, 0,±1), it follows that (0, 0,±1) are the only critical points of π. Let
now p be one of these two points, say p = N = (0, 0, 1) the north pole. In order to determine
the second derivative of π at p, we must express dπ in terms of a coordinate system for S2

around p. Since the restrictions of (x, y) coordinates themselves define a coordinate system
for S2 around p, we may write

h(x, y) = π(x, y, z) =
√

(1− x2 − y2)

valid in a neighborhood of p. Therefore,

dh(x,y) = −(x(1 − x2 − y2)−1/2, y(1− x2 − y2)−1/2).

Therefore, the Hessian at p is given by
[
−1 0

0 −1

]
.

S

N

Figure 39 The z-coordinate as a Morse function.

A similar computation, (which differs only in the sign) is valid at −p as well. This shows
that both the critical points (0, 0,±1) are nondegenerate.

Notice how the topology of the space h−1(−∞, z] changes: for z < −1, this set is empty;
for z = −1, it is a singleton space; for −1 < z < 1, it is diffeomorphic to D2 and for z ≥ 1,
it is the whole space S2. In sections that follow, we shall see a precise formulation of this
phenomenon.

We begin with the celebrated result of Marston Morse.

Theorem 8.2.1 Morse Lemma: Let f : X → R be a smooth map and p ∈ X be a
nondegenerate critical point of f. Then there exists a chart (U, φ) for X near p such that
φ(p) = 0 and

f ◦ φ−1(x) = f(p)−
k∑
i=1

x2
i +

n∑
i=k+1

x2
i (8.3)

for all x ∈ φ(U) and for some k.
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We shall first prove a weaker version of the above theorem, which was an exercise to you
earlier (see Exercise 1.2.10).

Lemma 8.2.1 Mini-Morse Lemma: Let f : X → R be a smooth function from a convex
open subset X of Rn, 0 ∈ X, f(0) = 0 and 0 be a critical point of f. Then there exist
smooth maps τi,j : X → R, 1 ≤ i, j ≤ n, such that τi,j(x) = τj,i(x), and

f(x) =
∑

1≤i,j≤n
τij(x)xixj (8.4)

for all x ∈ X.

Proof: We are going to apply (1.30), first to f and then to its partial derivatives
∂f

∂xi
. Since

f(0) = 0 and
∂f

∂xi
(0) = 0, it follows that

f(x) =
n∑
j=1

(∫ 1

0

∂f

∂xj
(tx)dt

)
xj =

n∑
i,j=1

(∫ 1

0

∫ 1

0

∂2f

∂xj∂xi
(stx)ds dt

)
xixj .

Now, take τij(x) =
∫ 1

0

∫ 1

0

∂2f

∂xj∂xi
(stx)ds dt, to get (8.4). ♠

Remark 8.2.1 Note that one could directly obtain the above lemma via Taylor’s expan-
sion (exercise). Also, we have Hf (0) = (( 1

2!τij(0))). Now by (1.46), if φ : V → U is a
diffeomorphism, φ(y0) = x0, and f ′ : U → R is a smooth map with a nondegenerate critical
point at x0, then we have

Hf◦φ(y0) = D(φ)ty0
Hf (x0)D(φ)y0 .

Recall that any symmetric matrix can be diagonalized. Since Hf is symmetric, we can hope
to make Hf◦φ into a diagonal matrix by appropriately choosing φ. For this we need to
perform the diagonalization in a parameterized form. This is the gist of the following proof.

Proof of Morse Lemma: Replacing f ◦ φ−1 by f, for a suitable coordinate chart φ at p,
it is enough to prove the lemma under the assumption that X is a convex open subset of
Rn, p = 0, f(0) = 0 and Df0 = 0. By Lemma 8.2.1, there exist smooth functions τij such
that τij = τji and

f(x) =
∑

1≤i,j≤n
τij(x)xixj . (8.5)

Put τ(x) = ((τij(x))). Then τ(0) =
1
2
H(f)(0) and hence τ(0) is nonsingular, by hypothesis.

Therefore, at least one of the τnj(0) �= 0, say τnk(0) �= 0.Make a linear change of coordinates,

yi = xi, i �= k; yk = txn + xk.

It is easy to check that
f(y1, . . . , yn) =

∑
ij

σij(y)yiyj

where
σnn(y) = τnn(x) + 2tτnk(x) + t2τkk(x).
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Therefore, for a suitable choice of t ∈ R we can assume that σnn(0) �= 0. All this amounts
to saying that after a linear change of coordinates we may as well assume that τnn(0) �= 0
in (8.5).

We now follow the simple method of completing the square.

f(x) = τnn[x2
n + 2

∑
j<n

τnj
τnn

x1xj ] +
∑
i,j<n

τijxixj

= τnn[xn +
∑

j<n
τnj

τnn
xj ]2 +

∑
i,j<n λijxixj

by adding and subtracting suitable terms. Since τnn(0) �= 0, we can take the squareroot of
the modulus of this function in a suitable neighborhood of 0 :

g(x) =
√
|τnn(x)|.

We now make the substitution

yi = xi, i < n; yn = g(x)
(
xn +

∑
j<n τnj(x)xj
τnn(x)

)
.

Why does this substitution define a change of coordinates and where is it valid? We have
to merely compute the Jacobian matrix J(y; x) and check that it is invertible at x = 0. By
the inverse function theorem, it then follows that in a smaller neighborhood, the substitution
is invertible, i.e., there exists smooth functions ψi(y) such that xi = ψi(y), i = 1, 2, . . . , n.
If ψ = (ψ1, . . . , ψn) then it follows that

f ◦ ψ(y1, y2, . . . , yn) = ±y2
n +

∑
i,j<n

ρij(y)yiyj,

for some smooth functions ρij(y), say. Once again, since the Hessian of f is nonsingular at
0, it follows that the (n − 1) × (n − 1) matrix ((ρij(0))) is nonsingular. All this amounts
to saying that by a suitable change of coordinates in a suitable neighborhood of 0 we may
assume that

f(x) =
∑
i,j<n

τij(x)xixj ± x2
n.

By repeated application of this process it follows that by a suitable change of coordinates
in a suitable neighborhood of 0 we may assume that

f(x) = ±
n∑
i=1

x2
i .

We now make a permutation of coordinates to get the form (8.3). ♠
Following such a fundamental result, we make a few definitions:

Definition 8.2.1 At a nondegenerate critical point p of a smooth function f, the Hessian
Hf (p) is nonsingular and the number k that occurs in (8.3) is nothing but the number of
negative eigenvalues of Hf (p). This number is called the index of f at p.

Remark 8.2.2

1. Now, if the index is zero, then it is clear that f(p) is a local minimum and if the index
is equal to n then f(p) is a local maximum. For any other value of the index, f(p)
fails to be either a minimum or a maximum. Such points are collectively called saddle
points.
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1

2S

S

H

L

Figure 40 A maximum, two saddles, and a minimum.

In the above picture we have the torus on which we are considering the height function
f(x, y, z) = z. H,L indicate the points at which the maximum and the minimum occur.
S1 and S2 are saddle points. At S1, the function f decreases in the direction of the
x-axis and increases in the direction of the y-axis, whereas, the reverse holds at S2.
Clearly, the indices at the critical points H,S1, S2, L are respectively 2, 1, 1, 0.

2. Consider the vector field gradf where f is a Morse function. By definition, the critical
points of f are precisely the zeros of this vector field. Moreover, the local index of the
vector field is precisely equal to (−1)k where k is the index of the critical point as
will be seen below. If νk denotes the number of critical points of f of index k, let us
denote the alternate sum

e(f) :=
∑
k

(−1)kνk. (8.6)

Lemma 8.2.2 The number e(f) is equal to the index of the vector gradf and hence is
equal to the self-intersection number of the manifold X.

Proof: Indeed if p is a critical point of f of index k we shall show that indp(grad f) = (−1)k,
from which the lemma would follow.

By Morse Lemma, we can choose coordinates at p for X so that

f(x) = f(p)−
k∑
x2
i +

∑
k+1

x2
i .

Therefore, in this neighborhood of p, gradf has the form

x 
→ (−2x1, . . . ,−2xk, 2xk+1, . . . , 2xn).

Therefore, the local index of gradf around this point is (−1)k as required. ♠
We shall soon see that the Morse functions give much more information on the manifold.

Exercise 8.2

1. Let X be the subspace of R
3 consisting of points

((2 + cos θ) cosψ, (2 + cos θ) sinψ, sin θ), 0 ≤ θ, ψ ≤ 2π.
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Observe that this is the surface of revolution of the circle

(x− 2)2 + z2 = 1

about the z-axis.
(i) Draw a decent picture of the surface.
(ii) Show that the projection on the x-axis is a Morse function on X. Determine the
critical points and whether they are local maxima, minima or saddle points.
(iii) Are the projections to the y-axis and the z-axis Morse functions?
(iv) Determine all orthogonal projections f : R3 → R, which are Morse functions
restricted to X.
(v) Show that all Morse functions which occur in (iv) have the property that different
critical points occur at different levels.
(vi) Write down an algebraic equation for this surface.
(vii) Observe that portion of the surface lying in x ≤ 0 forms a copy of the cylinder.
Use this to obtain a Morse function on the cylinder with exactly two critical points,
one of index 0 and the other of index 1.
(viii) Use a similar parameterization to obtain a Morse function on the Möbius band
with exactly the same property as in (vii).

2. If f : X → R, g : Y → R are Morse functions, show that h(x, y) = f(x) + g(y) is a
Morse function on X × Y.

3. Show that sinx, cosx : R → R are Morse functions and because of periodicity, they
define Morse functions on S1.

4. Use the above two exercises to obtain a Morse function on S
1 × S

1 with (ν0, ν1, ν2) =
(1, 2, 1) and with precisely three critical values, −2, 0, 2.

5. If X is a compact manifold without boundary, show that every smooth function f :
X → R has at least two critical points.

6. Give an example of an isolated critical point that need not be nondegenerate.

7. Show that f(x, y) = y2 + x4 − 2x2 is a Morse function, with three critical points
of index 0, 0, 1 at the points (−1, 0), (0, 0), (1, 0), respectively. Find another Morse
function with similar critical indices and which sends the three critical points to three
distinct values.

8.3 Operations on Manifolds

The basic idea here is to build new manifolds out of old ones. The central theme is
Lemma 5.3.1 that was employed in Chapter 5 for defining the tangent bundle of an abstract
manifold and also to classify 1-dimensional manifolds. Here we shall see this lemma being
used again and again.

We shall first introduce the notion of connected sum, then the noting of gluing manifolds
along common boundary components, and finally the notion of “attaching handles”. In the
next section, we shall revert back to the study of Morse functions.

Definition 8.3.1 Connected Sum: Recall the notation: for r > 0,

D
n
r := {x ∈ R

n : ‖x‖ ≤ r}; D
n = D

n
1 .
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Let M1 and M2 be any two connected manifolds of dimension n and let fi : Dn → intMi

be embeddings, i = 1, 2. Consider the quotient space of the disjoint union

M1 \ {f1(0)}
∐

M2 \ {f2(0)} (8.7)

by the relation

f1(x)  f2 ◦ η(x), 0 < ‖x‖ < 1, (8.8)

where η is the inversion map

η(x) =

√
(1− ‖x‖2)x
‖x‖ . (8.9)

Temporarily, we shall denote this quotient space by [f1, f2].

1
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Figure 41 The connected sum.

Lemma 8.3.1 The diffeomorphism class of [f1, f2] depends on the isotopy classes of the
embeddings fi, i.e., if fi is isotopic to gi in Mi, i = 1, 2 then [f1, f2] is diffeomorphic to
[g1, g2].

Proof: We shall prove that both of them are diffeomorphic to [f1, g2]. An isotopy of f2 to
g2 yields an isotopy H : K × I →M2 of the inclusion map to g2 ◦ f−1

2 , where K = f2(Dn).
By the isotopy extension theorem, we get Ĥ : M2 × I → M2, an isotopy of IdM2 which
extends H. Now in Lemma 5.3.1, put

M = M1 \ {f1(0)})
∐

(M2 \ {f2(0)})

α(x) =
{
x, x ∈M1;
Ĥ(x, 1), x ∈M2.
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Then for x ∈ U =: f1(Dn \ {0}), we have, α ◦ φ(x) = ψ ◦ α(x), where φ = f2 ◦ η ◦ f−1
1 ,

and ψ = g2 ◦ η ◦ f−1
1 . Therefore, by (iii) of Lemma 5.3.1, [f1, f2] is diffeomorphic to [f1, g2].

Similarly, we can prove that [f1, g2] is diffeomorphic to [f2, g2]. ♠

Remark 8.3.1

1. Appealing to the Disc Theorem 6.3.7, the hypothesis in the above lemma can be
assured always if Mi are connected nonorientable, and whenever Mi is orientable, by
assuming that gi ◦ f−1

i is orientation preserving. Whenever, both Mi are oriented, we
shall actually assume that one of the two fi is orientation preserving and the other
is orientation reversing, which is the same as saying f2 ◦ f−1

1 is orientation reversing.
In this case, it is clear that f2 ◦ η ◦ f−1

1 is orientation preserving and hence [f1, f2]
will inherit an orientation compatible with those of Mi. With these conventions, we
can now say that the quotient space [f1, f2] is well-defined for connected manifolds
M1,M2. We denote this space by M1#M2. The notion easily gets extended to the case
when Mi are not connected, since only one component each of Mi will be involved in
the entire operation.

2. Observe that the quotient map q given by (8.7) and (8.8) restricted to the smaller set

M1 \ f1(Dnε1)
∐

M2 \ f2(Dnε2),

where 0 < ε1, ε2 < 1/2, is also surjective and hence defines the same manifold below.

3. The simpler way of identifying “f1(x) ∼ f2(x)” will not produce a Hausdorff space.
This is the reason why we have to involve the inversion map η. Since η is orientation
reversing (in all dimensions), it is necessary to choose one of the embeddings f1 or
f2 to be orientation reversing. Beyond this, there is nothing very sacrosanct about
the inversion map η either. Observe that η fails to be a diffeomorphism at 0 and at
the boundary. Therefore, it is better to restrict this to a suitable open annular region
{x : 0 < s < ‖x‖ < r < 1}. This is where the previous remark comes handy. Then
in the construction of M1#M2, we can replace η also by any diffeomorphism isotopic
to η. We leave the details of this to you as an exercise.

Definition 8.3.2 The space M1#M2 is called the connected sum of M1 and M2.

Remark 8.3.2
(i) Put Bni = fi(Dn1/2). We may then think of M1#M2 as obtained by gluingM1\intBn1 with
M2\intBn2 along the boundaries ∂Bn1 and ∂Bn2 via a diffeomorphism f : Sn−1 → Sn−1. This
description of the connected sum is much more intuitive and helpful. It is perfectly suited in
case we are dealing with topological manifolds (or the so called “piecewise linear manifolds”
which we have not introduced here). However, in the category of smooth manifolds, first of
all, this approach does not display the smooth structure on the connected sum. One has to
prove this separately and indeed, there is no way we get a canonical smooth structure. All
that one can hope to prove is that there do exist smooth structures on the quotient that
extends the smooth structure on open parts Mi \ Bni . Second, the diffeomorphism type of
the new manifold depends on the isotopy class of f and not all diffeomorphisms of a sphere
are isotopic to Id. Hence, even the diffeomorphism structure on the glued manifold is not
well-defined. However, in dimensions less than four, we do not have this problem, since there
are just two isotopy classes of diffeomorphisms of Sn for n ≤ 3.
(ii) The operation of taking connected sum is associative on the collection of diffeomor-
phism classes of connected n-dimensional manifolds. i.e., (M1#M2)#M3 is diffeomorphic
to M1#(M2#M3) for any three n-manifolds. (Apply the Disc Theorem appropriately.)
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Clearly this operation is commutative.
(iii) The standard sphere Sn plays the role of identity for this operation: M#Sn = M.
(iv) When we allow nonconnected manifolds, it is necessary to mention the components
along which the operation is being performed.
(v) We remark again that the connected sum is orientable iff both the original manifolds are
so. Also, if you are not particular about retaining the original orientations on the manifolds,
then it is not necessary to assume that f1◦f−1

2 is orientation reversing, for the simple reason
that this can always be arranged by choosing appropriate orientations on Mi. This remark
is applicable whenever we are gluing along single connected components taken from each
connected manifold.
(vi) For some interesting results on connected sums, see [Sh1].

Example 8.3.1 Recall that we have constructed the Klein bottle as the quotient K = Mψ

of M = (−1/2, 1)×S1 where ψ : (−1/2, 0)×S1 → (1/2, 1)×S1 is the map (t, v) 
→ (1+ t, v̄).
Check that the image of the two lines (−1/2, 1) × {−ı, ı} in the Klein bottle K is an
embedded loop that separates K into two copies of the Möbius band. If you recall that
capping off the Möbius band yields P2, you have just proved that K = P2#P2.

We shall now describe an operation that is also a special case of gluing.

Definition 8.3.3 Attaching Handles: Fix integers n, k such that 0 ≤ k �= n. Write
Rn = Rk × Rn−k and elements v ∈ Rn in the form (x,y). Put Sk−1 = Sk−1 × 0 and
Sn−k−1 = {0} × Sn−k−1. Put T = Dn \ 0×Dn−k. Along with the projection map (x,y) 
→
x/‖x‖, we shall refer to T as a tubular neighborhood of Sk−1 in Dn. There is an obvious
diffeomorphism λ : Dn \ Sk−1 → Bk × Dn−k given by

(x,y) 
→ (x, (1− ‖x‖2)−1/2y). (8.10)

Consider the inversion

α : D
n \ (Sk−1 ∪ 0× D

n−k) → D
n \ (Sk−1 ∪ 0× D

n−k) (8.11)

given by α = λ−1 ◦ (η, Id) ◦ λ, where η : Bk \ {0} → Bk \ {0} is the inversion map as given
in (8.9). Indeed, we have,

α(x,y) =

(√
1− ‖x‖2
‖x‖ x,

‖x‖√
1− ‖x‖2

y

)
. (8.12)

Let nowM be a n-dimensional manifold with boundary and f : T →M be an embedding
such that f(∂T ) ⊂ ∂M. Consider the quotient space of the disjoint union

[
(M \ f(Sk−1)

∐
(Dn \ Sk−1)

]
/ ∼

where for each x ∈ T \ Sk−1, we have the identification x ∼ fα(x). Clearly this is a n-
manifold with boundary. We shall call this space “M with a k-handle attached along the
attaching-sphere f(Sk−1)” and denote it by M ∪ Hk. Note that the quotient map is an
embedding restricted to M \f(Sk−1) as well as Dn \Sk−1, which we shall use for identifying
these manifolds as submanifolds of M ∪Hk. With this understanding, Dn \ Sk−1 is called
the k-handle, the (n − k)-disc 0 × Dn−k is called the belt disc and its boundary, the belt
sphere, which we shall denote by Σn−k−1.
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Remark 8.3.3
(a) As in the case of the connected sum, it is clear that the diffeomorphism class of the
result of attaching a handle depends on the isotopy class of the attaching map. This being a
tubular neighborhood of the attaching sphere, it further depends on the isotopy class of the
attaching sphere itself except perhaps in the case of 1-handles, when the attaching sphere S0

consists of two points. In this special case, the two points with “the same orientation” and
with opposite orientation’ has to be distinguished. Simply speaking, now the orientations
on the tubular neighborhood of these points enter into the picture.
(b) One of the drawbacks of the above definition of attaching handles is that it does not
readily exhibit the original manifold M as a subspace of M ∪Hk. The other is, of course,
it is less intuitive. The first reason indeed produces a serious handicap in the computation
of homology and homotopy. In order to tackle this, it is necessary to see the relation of this
construction with the more intuitive definition of attaching a handle, which we shall call
combinatorial attaching.

Definition 8.3.4 Combinatorial Attachment: Let 0 ≤ k ≤ n. Let M be a (topological)
n-manifold with boundary and h : Sk−1×Dn−k → ∂M be an embedding. The quotient space
of the disjoint union M

∐
D
k×D

n−k by the identification x ∼ h(x) for all x ∈ S
k−1×D

n−k

is called the space obtained by combinatorial attachment of a k-handle to M. We shall denote
it by M ∪h Dk × Dn−k.

Remark 8.3.4 It is clear that M ∪h Dk × Dn−k is a topological manifold that contains
M and Dk × Dn−k as closed subspaces such that their intersection is h(Sk−1 × Dn−k).
The biggest disadvantage of this construction is when we start with a smooth manifold
M, the construction does not provide any way to put a smooth structure on the space so
constructed. The following proposition gives a clear relation between combinatorial attach-
ment and attaching (smooth) handles so that we can go from one to the other as and when
necessary. This result can be viewed as a “smoothing” of the combinatorial attachment.

Proposition 8.3.1 Let M∪Hk be obtained by attaching a k-handle to M via the attaching
map f. Then there exists a diffeomorphism h : Sk−1 ×Dn−k → ∂M and a homeomorphism
Θ : M ∪Hk → M ∪h Dk × Dn−k, which is the identity map on the boundary of M ∪Hk

and on the belt disc.

Proof: The first step is similar to Remark 8.3.2.(i), viz., under the quotient map q we take
the image of some smaller subsets restricted to which q is surjective. So, put A = {(x,y) ∈
D
n : ‖x‖2 ≤ 1/2} and B = T̂ (1/2) = {(x,y) ∈ D

n : ‖x‖2 ≥ 1/2}. Clearly α interchanges
A \ Sk−1 and B \ Sk−1 and is the identity map on A ∩ B. Therefore, M ∪Hk is equal to
the identification space M \ f(B) ∪g A, where g = f |A∩B.

The second step is to “rewrite” M \ f(B) ∪g A as M ∪h Dn. Consider γ1 : A→ Dn, γ2 :
A→ Dk × Dn−k given by

γ1(x,y) =
{

(x,y), if ‖y‖2 ≥ 1/2,
(
√

2(1− ‖y‖2)x,y), if ‖y‖2 ≤ 1/2;

γ2(x,y) =
{ √

2(x,y), if ‖y‖2 ≤ 1/2,
(1− ‖x‖2)−1/2(x,y), if ‖y‖2 ≥ 1/2.

Check that γ1 is a homeomorphism whereas γ2 is a diffeomorphism and both are equal to
the identity map on the belt-disc 0× Dn−k. Now consider ω : M \ f(B) →M given by

ω(q) =
{
q, if q ∈M \ f(A),
f ◦ γ1 ◦ f−1(q), if q ∈ f(T \B).
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Once again, the above said properties of γ imply that ω is a homeomorphism. Now ω and
γ2 together define a homeomorphism

Θ : M ∪Hk = M \ f(B) ∪g A→M ∪h D
k × D

n−k

where h : Sk−1 × Dn−k →M is given by h = γ1 ◦ g ◦ γ−1
2 . Check that Θ is as required. ♠

1
2

1
W  21 2

(c)(b)(a)   

W  W  W  
W  W  

Figure 42 The three cases of attaching handles in dimension 2.

Remark 8.3.5
(i) The figures (a),(b),(c) above show attaching a k-handle, for k = 2, 1, 0 respectively, in
2-dimension.
(ii) In the above definition, the role of the integer k, 0 ≤ k ≤ n is important. The two
extreme cases are the easiest to understand. For k = 0, since the sphere S−1 is empty, this
just means that W1∩W2 = ∅. Equivalently, M is the disjoint union of W1 and Dn. We next
take up the case k = n which turns out to be nothing but “capping off” which we have
discussed earlier in Chapter 6.

Theorem 8.3.1 Let M be a smooth n-manifold. Suppose M = W1 ∪W2 with W1 ∩W2 =
∂W1 = ∂W2 and both W1 and W2 are diffeomorphic to the closed unit disc Dn.
(i) Then M is homeomorphic to Sn.
(ii) M is diffeomorphic to Sn iff there are diffeomorphisms fj : Dn →Wj such that f−1

2 ◦f1 :
Sn−1 → Sn−1 extends to a diffeomorphism Dn → Dn.

Proof: (i) Let fj : Dn →Wj be homeomorphisms. Consider the restrictions to the bound-
ary and the composite homeomorphism f−1

2 ◦ f1 : Sn−1 → Sn−1. Extend this to a home-
omorphism φ : D

n → D
n (via the cone construction, for instance). Let η± : D

n → S
n be

embeddings given by
x 
→ (x,±

√
1− ‖x‖2).

Define ψ : M → S
n by the formula:

ψ(x) =
{
η+ ◦ f−1

1 (x), x ∈ W1,
η− ◦ φ−1 ◦ f−1

2 (x), x ∈ W2.

To see that ψ is a homeomorphism, the only thing we need to check is that its two definitions
on the boundary ∂Wj agree.
(ii) Now assume that fj are diffeomorphisms and that the diffeomorphism f−1

2 ◦ f1 extends
to a diffeomorphism λ : Dn → Dn. Let τ : Dn → Dn be a diffeomorphism, which is the
identity map on the boundary and the radial component of its derivative at any point on the
boundary is equal to the radial component of D(f−1) ◦D(f2) ◦D(λ−1). Take φ = τ ◦λ and
follow the steps in (i). The extra work that is needed here is to check the smoothness of ψ
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along the equator. This is precisely the role played by τ here, so that the radial components
of the derivatives of f−1

1 and φ−1 ◦ f−1
2 coincide.

Conversely, suppose we have a diffeomorphism ψ : M → S
n. Consider the embedding

ψ ◦ f1 : Dn → Sn. By an ambient isotopy of the sphere Sn, we may (change ψ and) assume
that the image of this embedding is the upper hemisphere and it is the identity map on the
boundary. This means that ψ(W2) is the lower hemisphere and ψ(∂W1) = ψ(∂W2) is equal
to the equator in Sn. Therefore, we can take diffeomorphism φ = f−1

2 ◦ψ−1 ◦ η− : Dn → Dn

and see that it extends f−1
2 ◦ f1. ♠

Corollary 8.3.1 With M as in the above theorem if n = 2, then M is diffeomorphic to S
2.

Proof: It is enough to prove that every diffeomorphism S
1 → S1 extends to a diffeomor-

phism D2 → D2. [This depends on the result given in Exercise 6.3.2. Since this step is
crucial, we offer a solution here.] In view of Theorem 6.4.1, we need to prove that every
orientation preserving diffeomorphism φ : S1 → S1 is isotopic to the identity map. With-
out loss of generality, (by composing with a rotation), we will assume that φ(1) = 1. Let
f : R → R be a map such that exp ◦f = φ ◦ exp and f(0) = 0 as in Theorem 7.3.4. Then
it follows that f(1) = 1 and f : [0, 1] → [0, 1] is an orientation preserving diffeomorphism.
In particular, f is strictly increasing. Therefore, for each fixed t, x 
→ tf(x) + (1 − t)x is a
diffeomorphism of [0, 1]. Check that the diffeotopy

(x, t) 
→ tf(x) + (1− t)x

actually factors down to give a diffeotopy of Id with φ on S1. ♠

Remark 8.3.6 The above theorem deals with a very special case of attaching an n-handle
to an n-manifold. The arguments, however, go through in the general case as well with a
weaker conclusion, viz., the homeomorphism type of a manifold obtained by capping off at
a boundary component which is homeomorphic to a sphere is unique. Indeed, we can go one
step further. If W is connected, among such boundary components of W, it does not matter
at which component we are attaching the n-handle—the homeomorphism type of the new
manifold is the same. This is an easy consequence of Exercise 6.4.3. For ready reference,
below we state the corresponding result for the case n = 2.

Theorem 8.3.2 Let M be a connected (compact) smooth 2-manifold obtained by attaching
a 2-handle to a connected surface W1. Then the diffeomorphism class of M is uniquely
determined by the diffeomorphism class of W1 irrespective of which boundary component of
W is being used in the attaching process.

We shall consider one more special case when n = 2 and k = 1.

Theorem 8.3.3 Attaching a 1-handle to a 2-disc produces either the cylinder or the Möbius
band.

Proof: The attaching sphere consists of two points on ∂D2, which, we may assume, are
{(±1, 0)}, up to isotopy. The tubular neighborhoods of these points can be chosen to be
D2 \ (0 × [−1, 1]). Again, up to isotopy, the attaching diffeomorphism has two choices : it
may preserve (or reverse) orientation on both the components or it may preserve orientation
on one component and reverse it on the other. In the first type, by changing the orienta-
tion on the handle, we can assume that the orientation is preserved on both components.
Accordingly, we get two possibly distinct diffeomorphism classes of surfaces. One class will
be orientable and other nonorientable and hence the two are diffeomorphically distinct.

We need to determine these two manifolds. Here, Exercises 8.2.1.(vii)-(viii) come to our
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aid. We have constructed Morse functions on the cylinder as well as the Möbius band with
exactly two critical points one of index 0 and the other of index 1. Therefore, both are
obtained by the process of attaching a 1-handle to a 2-disc. Therefore, of the two surfaces
obtained, the orientable one must be the cylinder and the nonorientable one must be the
Möbius band. ♠

We shall now take up a little bit of the general theory of attaching handles.

Definition 8.3.5 By a (finite) handle presentation for an n-manifold M, we mean a se-
quence M0 ⊂ M1 ⊂ · · · ⊂ Mp = M of submanifolds, where M0 is diffeomorphic to Dn

and each Mi is obtained by attaching a ki-handle to Mi−1, 0 ≤ k ≤ n, 1 ≤ i ≤ p. The
presentation is said to be monotonic if i < j implies ki ≤ kj .

Remark 8.3.7 The following theorem immediately tells us that any handle presentation
can be converted to a monotonic one.

Theorem 8.3.4 Let W be a manifold obtained from M by attaching a k-handle first and
then attaching a l-handle. If k ≥ l, then W is diffeomorphic to a manifold obtained from M
by attaching a l-handle first and then a k-handle.

Proof: On the boundary ∂(M ∪ Hk) look at the attaching sphere Sl−1 of the l-handle
and the belt-sphere Σn−k−1. Since l − 1 + n − k − 1 < n − 1, it follows that (see Exercise
6.5.2) there is an ambient isotopy of ∂(M ∪Hk) that moves Sl−1 away from Σn−k−1. Of
course, this isotopy can be extended to the whole of M ∪Hk. But any compact subset that
is disjoint from Σn−k−1 can further be isotoped into ∂M \ Sk−1. We can now perform the
attaching of the two handles in any order. ♠

Corollary 8.3.2 If M admits a finite handle presentation then it admits a monotone one.

Remark 8.3.8 Caution is needed in the correct interpretation of this result when k = l = 1
and n = 2. No doubt the two handles can be attached in whichever order you like. However,
the relative location of the four points on the boundary of the 2-manifold comes into play
now since you cannot shuffle them any which way you like by an isotopy.

Remark 8.3.9 We shall prove in the next section that every compact smooth manifold has
a handle presentation and hence a monotonic one. We shall now see the homotopy theoretic
aspect of attaching a k-handle. This was the original point of view of M. Morse. This part
may demand a little bit more familiarity with elementary homotopy theory on your part.

Definition 8.3.6 Let X be a topological space and Y be a subspace of X. By a strong
deformation retraction r : X → Y we mean a continuous map r such that there is a
homotopy H : X × I → X such that H(x, 0) = x,H(x, 1) = r(x) and H(y, t) = y for all
y ∈ Y and 0 ≤ t ≤ 1. If such a strong deformation retraction r exists then Y is called a
strong deformation retract of X.

Lemma 8.3.2 There is a strong deformation retractionR : [0, 1]×D
l → {1}×D

l∪[0, 1]×{0}
with the additional property R(0, y) = (0, 0) for all y ∈ Dl.

Proof: See the picture and try to write down an expression for R, before reading further.
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Figure 43 A typical deformation.

For θ ∈ S
l−1, 0 ≤ r ≤ 1, 0 ≤ s ≤ 1 take

R(r, θ, s) =

⎧⎨
⎩

(
2s

2−r , θ, 0
)
, r + 2s ≤ 2,(

r+2(s−1)
s , θ, 1

)
, r + s ≥ 2.

Verify that R has the required properties. ♠
By “spinning” the above result, we get:

Lemma 8.3.3 S
k−1 × Dl ∪Dk × {0} is a strong deformation retract of Dk × Dl.

Proof: Express elements of Dk in polar coordinates (θ, t) where 0 ≤ t ≤ 1 and θ ∈ Sk−1.
Let R : [0, 1]× Dl → {1} × Dl ∪ [0, 1]× {0} be a strong deformation retraction as provided
by the above lemma. Put R̂((θ, t), y) = (θ,R(t, y)). Check that R̂ is the required strong
deformation retract. ♠

Corollary 8.3.3 If W ′ is obtained from W by attaching a k-handle, then W ∪Dk ×{0} is
a strong deformation retract of W ′.

Proof: This is because, wherever the identification takes place, that part is not disturbed
by the strong deformation retraction and so the two operations can be performed inter-
changeably. ♠

Definition 8.3.7 By an n-cell, or a cell of dimension n, we mean a topological space
homeomorphic to the closed unit disc Dn in Rn. Attaching an n-cell to a topological space
means that we have a continuous map α : ∂Dn → X and we are taking the quotient space
of the disjoint union X

∐
Dn by the relation x ∼ α(x) for all x ∈ ∂Dn. Note that a 0-

cell is a singleton space and attaching a 0-cell means just taking the disjoint union with a
singleton space. We say a topological space X is a finite CW-complex if it can be obtained
by attaching successively finitely many cells of nondecreasing dimensions, beginning with a
0-cell.

Corollary 8.3.4 Every monotone handle presentation of a manifold M defines a homotopy
equivalence of M with a finite CW complex X with one cell of dimension k for each k-handle
in the presentation.
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Proof: This follows from the following observations and a simple induction:
(i) If f : X → Y is a homotopy equivalence, λ : Sk−1 → X is a continuous map, then
the space obtained by attaching a k-cell to X via λ is homotopy equivalent to the space
obtained by attaching a k-cell to Y via f ◦ λ. Indeed, the homotopy f extends to a map
f̂ : X ∪λ Dk → Y ∪f◦λ Dk by sending the interior of the first k-cell in a one-to-one fashion
into the interior of the second k-cell. A similar comment applies to a homotopy inverse of
f and defines the homotopy inverse of f̂ .
(ii) If M ′ is obtained from M by attaching a k-handle, then M ′ has the homotopy type of
attaching a k-cell to M. This is a direct consequence of Corollary 8.3.3. ♠

Definition 8.3.8 Let X be a finite CW-complex, with the number of k-cells equal to nk.
Then the number

χ(X) :=
∑
k

(−1)knk

is called the Euler characteristic of the space X. Let M be a manifold with a handle presen-
tation P . Let hk denote the number of k-handles in P . We define the Euler characteristic
of the presentation P to be the alternate sum:

χ(P) :=
∑
k

(−1)khk.

Remark 8.3.10 It follows immediately from corollary 8.3.4 that χ(X) = χ(P), where X is
the CW-complex associated with the handle presentation P of a given smooth manifold M
We shall soon relate this number with I(M) via the Morse theory and that is the celebrated
Poincaré-Hopf index theorem.

Remark 8.3.11 Closely associated with the operation of attaching handles is another no-
tion called “surgery”, or “spherical modification”. Roughly speaking this is what happens
to the boundary M = ∂W of a manifold W to which you are attaching a handle. In partic-
ular, given a closed manifold M, we can consider M × [0, 1] and perform the operation of
attaching a handle along the boundary part M × {1} (i.e., without involving M × {0}). If
W is the resulting manifold, we then consider ∂W \M × {0} as the result of performing a
surgery on M. We shall not go into the details here.

Of particular interest to us here is the case of 1-surgery on a surface F, which is the
result of attaching a 1-handle to F × [0, 1]. For this reason, this operation also justifiably
goes under the name “attaching a 1-handle”, though technically incorrect. This limited
study will be taken up in the next section, where it will help us in completely classifying
the result of attaching 1-handles to surfaces.

Exercise 8.3 Show that Rn#Rn is diffeomorphic to Sn−1 × R.

8.4 Further Geometry of Morse Functions

In the example 8.2.1, we had hinted at a certain change in the topology of the level sets
h−1(−∞, r] where h was the height function on the sphere. We shall now consolidate this
idea.

Definition 8.4.1 For simplicity of the exposition, we take M to be a manifold without
boundary. Let f : M → R be a Morse function. For any r ∈ R, put Mr = f−1(−∞, r] and
for r < s, put Mr,s = f−1[r, s]. If r and s happen to be regular values, then it follows that
Mr and Mr,s are submanifolds of M with boundary f−1(r) and f−1({r, s}) respectively.
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Theorem 8.4.1 Regular Interval Theorem If f has no critical values in [r, s], and Mr,s

is compact, then Mr,s is diffeomorphic to f−1(r)× [r, s]. Moreover, Mr is diffeomorphic to
Ms.

r s

Figure 44 No change occurs in a regular interval.

Proof: We observe that f(Mr,s) = [r, s]. (why?) Now, consider the vector field σ =
gradf/‖gradf‖2 on Mr,s. We take a smooth function c : M → R which is identically
1 on Mr,s and vanishes outside a compact neighborhood of Mr,s. We then consider the vec-
tor field ρ = cσ. Let φ : M ×R→M be the 1-parameter group of diffeomorphism generated
by ρ. Then we have the identity

∂φ

∂t
(x, t) = ρ(φ(x, t)).

For any fixed x ∈ M, consider the map τ : t 
→ f(φ(x, t)). Then by the chain rule, we
have,

dτ

dt
(t) = 〈grad f(φ(x, t)), ρ(φ(x, t))〉

This is equal to 1 for all values of t such that φ(x, t) ∈ Mr,s, for, then ρ = σ =
gradf/‖gradf‖2. Therefore, it follows that τ(t + s) = τ(t) + s in this range. In partic-
ular, it follows that φ(−, t) carries Mr to Mr+t diffeomorphically for all 0 ≤ t ≤ s − r.
Clearly, then the map ψ : f−1(r) × [r, s] →Mr,s defined by

(x, t) 
→ φ(x, t − r)

is a diffeomorphism. Also, the map φs−r : M →M takes Mr to Ms diffeomorphically. ♠

Remark 8.4.1

1. Observe that the diffeomorphism ψ satisfies the property f ◦ ψ(x, t) = t+ r.

2. The compactness assumption onMr,s is necessary. Usually, this is ensured by assuming
that f is a proper map. By simply deleting a point from Mr,s we can break the
conclusion of the theorem whereas, in the hypothesis, only the compactness of Mr,s

is not satisfied.

As an immediate corollary let us prove:



228 Geometry of Manifolds

Theorem 8.4.2 Let M be a closed n-manifold with a smooth function f : M → R hav-
ing exactly two critical points. Suppose the critical points are nondegenerate. Then M is
homeomorphic to S

n.

Proof: Since M is compact, f must attain its minimum, say, at p with f(p) = a. Likewise,
f attains its maximum also, say, at q �= p with f(q) = b. Since M is boundaryless, these
points must be critical points of f. It also follows that f−1(a) = {p} and f−1(b) = {q}. Now
by the Morse lemma, it follows that for sufficiently small ε > 0, f−1[a, a+ε] and f−1[b−ε, b]
are closed n-cells. In particular, f−1(a+ ε) is diffeomorphic to Sn−1. From Theorem 8.4.1,
it follows that f−1[a+ ε, b− ε] is diffeomorphic to Sn−1 × I. This means that M is actually
obtained by gluing two discs to Sn−1× I. Hence, we can obtain a homeomorphism between
Sn and M. ♠

Remark 8.4.2

1. In general, we cannot say that M is diffeomorphic to S
n since we do not have any con-

trol over the diffeomorphisms that we have used in gluing the discs. Indeed, there are
examples of closed connected 7-dimensional manifolds, which have a Morse function
with precisely two critical points but not diffeomorphic to S7 (see [M3]).

2. However, we know that any diffeomorphism of a circle is isotopic to either the identity
map or to the antipodal map. Using this, it would follow that, if n = 2 then M is
actually diffeomorphic to S

2.

3. The hypothesis “nondegenerate” may be dropped from the above theorem but the
proof will be much harder since we do not have the ready made Morse Lemma here.
Therefore, careful analysis of the fact that there are only two critical points has to be
made. Indeed, on Sn itself, there do exist Morse functions with exactly two critical
points neither of which is a nondegenerate one (exercise).

4. Since we would like to concentrate on one critical point at a time, it helps to have
a Morse function that maps different critical points to different values. That is the
content of the next lemma.

Lemma 8.4.1 There exists Morse function f : M → R which maps different critical points
to different values.

Proof: Add suitable “bump functions” to modify a Morse-function near a critical point.
We leave the details to the reader as an exercise. ♠

Theorem 8.4.3 Let M be a compact manifold without boundary and f : M → R be a
Morse function such that p ∈ M is the only critical point inside f−1(c), where c = f(p).
Suppose the index of p is k. Then there exists ε > 0 such that Mc+ε is obtained by attaching
a k-handle to Mε.

Proof: Replacing f by f − c we shall assume c = 0.
The idea is to find a new Morse function F : M → R, which is equal to f outside

a small neighborhood U of p and F < f inside a smaller neighborhood V of p so that
the region F−1(−∞,−ε] will consist of M−ε together with a small portion H inside V and
F−1(−∞, ε] = Mε. Moreover, F will have no critical values in [−ε, ε], so that, from Theorem
8.4.1, we have F−1(−∞,−ε] is diffeomorphic to F−1(−∞, ε]. It then remains to describe
the portion H and how it is glued to M−ε and to prove that F−1(−∞,−ε] is obtained by
attaching the k-handle to M−ε.
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Using the Morse Lemma, we get a diffeomorphism φ : Rk × Rn−k → U ⊂ M onto an
open subset of M such that φ(0) = p and

f(φ(x,y)) = −
k∑
i=1

x2
i +

n−k∑
i=1

y2
i = −‖x‖2 + ‖y‖2

for all points (x,y) inside a disc of radius 1, say. Choose 1/3 > ε > 0 so that [−ε, ε] does
not have any critical values of f other than 0.

Let μ : R → R be a smooth function so that
(i) μ(0) > ε;
(ii) μ(t) = 0, ∀ t ≥ 2ε;
(iii) −1 < μ′(t) ≤ 0, for all t.
(See Exercise 1.7.8.)

For (x,y) ∈ R
l × R

n−k put q = φ(x,y). Define F : M → R by

F (q) =
{
f(q), q ∈M \ φ(Dn),
f(q)− μ(‖x‖2 + 2‖y‖2), q = φ(x,y) ∈ U.

Observe that the second formula yields F = f outside φ(Dn2ε). Therefore, it is well defined
and smooth, all over M.

Note that F−1(−∞,−ε] \ M−ε is contained in φ(Dn). Therefore, by replacing
F−1(−∞,−ε] and M−ε by their inverse image under φ : Dn → U and replacing f, F by
f ◦ φ, F ◦ φ, etc., we can also replace M by Dn.

M

M

H

S

−M −M ε

ε

ε

ε

r(x)

x x

y

Figure 45 The k-handle H.

Thus, we now have

M−ε = {(x,y) ∈ D
n : − ‖x‖2 + ‖y‖2 ≤ −ε}

and

F−1(−∞,−ε] = {{(x,y) ∈ D
n : − ‖x‖2 + ‖y‖2 + μ(‖x‖2 + 2‖y‖2) ≤ −ε},

etc.
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Claim I: F−1(−∞, ε] = Mε = f−1(−∞, ε].
Since F ≤ f, it follows that f−1(−∞, ε] ⊂ F−1(−∞, ε]. Now, suppose F (q) ≤ ε. If q = (x,y)
and ‖x‖2 + 2‖y‖2 > 2ε, then F (q) = f(q) and we have nothing to do. Otherwise,

f(q) = −‖x‖2 + ‖y‖2 ≤ ‖x‖2 + 2‖y‖2
2

≤ ε.

Therefore, F−1(−∞, ε] = f−1(−∞, ε].

ε
cf Fp

c− p

c+ε εc+

Figure 46 Modification of the function near a critical point.

Claim II: The critical points of F are the same as that of f.
We have to compare the two functions:

−‖x‖2 + ‖y‖2; − ‖x‖2 + ‖y‖2 − μ(‖x‖2 + 2‖y‖2).

The derivatives of these are respectively,

2(−x,y);

2(−(1 + μ′)x, (1 − 2μ′)y)

each of which vanishes iff (x,y) = (0, 0), since −1 < μ′ ≤ 0. Hence the claim.
Claim III: F−1(−∞,−ε] is diffeomorphic to Mε.

Since F and f have same set of critical points and q is the only critical point of f inside
f−1[−ε, ε] ⊃ F−1[−ε, ε], and F (q) = f(q) − μ(0) < −ε, it follows that F has no critical
points in F−1[−ε, ε]. Therefore, F−1(−∞,−ε] is diffeomorphic to F−1(−∞, ε] = Mε.
Claim IV: For each x ∈ Rk, the intersection F−1(−∞,−ε]∩ ({x}×Rn−k) = x×D

n−k
r(x) for

some r(x) > 0. The function x 
→ r(x) is smooth and if ‖x‖2 > 2ε then r(x) = (‖x‖2−ε)1/2.
In particular, F−1(−∞,−ε] = M−ε ∪H where,

H = {(x,y) ∈ R
n : ‖x‖2 < 2ε, ‖y‖2 ≤ r(x)2}.

For a fixed x, we are looking at points (x,y), which satisfy

−‖x‖2 + ‖y‖2 − μ(‖x‖2 + 2‖y‖2) ≤ −ε.

Putting t = ‖x‖2 + 2‖y‖2, this is the same as

μ(t)− t

2
+

3‖x‖2
2

≥ ε. (8.13)

Since μ(t) − t
2 is a strictly monotonically decreasing function, there is a unique t0 such

that equality occurs in (8.13) and (8.13) holds iff t ≤ t0 iff ‖x‖2 + 2‖y‖2 ≤ t0 iff ‖y‖2 ≤
(t0 − ‖x‖2)/2.
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Since μ(t) > ε for t ≤ 0, it follows that t0 > 0. Also since μ′(t) > −1, it follows that
μ(t) + t > μ(0) = ε for all t ≥ 0. Therefore,

ε = μ(t0)− t0
2

+
3‖x‖2

2
= μ(t0) + t0 −

3
2

(t0 − ‖x‖2) > ε− 3
2

(t0 − ‖x‖2)

which proves that t0 > ‖x‖2.
Putting r(x) =

√
(t0 − ‖x‖2)/2, the first part of this claim is done.

Now consider the function μ(t)− t
2 + 3‖x‖2

2 − ε, and apply the implicit function theorem.
It follows that the function x 
→ t0 is smooth. Therefore, x 
→ r(x) is smooth.

[At this stage, it is clear that F−1(−∞,−ε] is obtained from M−ε by a combinatorial
attachment of a k-handle. The following details are necessary to see that the attachment is
indeed smoothly performed.]
Claim V: The space F−1(−∞,−ε] is obtained from M−ε by attaching a k-handle along
the (k − 1)-sphere S := S

k−1√
ε
× 0.

The k-handle is attached to M−ε along the (k − 1)-sphere

S = {(x, 0) : ‖x‖2 = ε}.

The attaching map is the diffeomorphism h : T → T ′ :

h(x,y) =
√

2ε
(

(3/2− ‖x‖2)1/2

‖x‖ x,y
)

where T ′ = {(x,y) ∈M−ε : ‖x‖2 < 3ε} is a tubular neighborhood of S in M−ε. Therefore,
M−ε ∪Hk is the quotient of the disjoint union[

(M−ε \ S)
∐

(Dn \ S
k−1)

]
/ ∼

where

(x,y) ∼ hα(x,y) =
√

2ε

(
x,

(
‖x‖2 − 1/2
1− ‖x‖2

)1/2

y

)
.

[See (8.12) for the definition of α.]
In order to define a diffeomorphism g : M−ε ∪Hk with F−1(−∞,−ε], we consider two

smooth maps σ : M−ε \ S → F−1(−∞,−ε] and τ : Dn \ Sk−1 → F−1(−∞,−ε] given by

σ(x,y) =
(
x,
r(x)
‖x‖ y

)
; τ(x,y) =

(
√

2εx,
r(
√

2εx)√
1− ‖x‖2

y

)
.

It is readily checked that both σ and τ are embeddings. Since σ ◦ h ◦ α = τ, it follows that
these two patch up to define a smooth embedding g of M−ε ∪Hk. It remains to show that
g(M−ε ∪Hk) = F−1(−∞,−ε].

For each fixed x such that ‖x‖ < 1, let Lx = {(x,y) ∈ D
n}. Then Lx is a (n − k)-disc

of radius (1 − ‖x‖2)1/2. Under τ, this is mapped onto a (n − k)-disc in L√
2εx of radius

r(
√

2εx). Now by Claim IV, it follows that τ(Lx) = F−1(−∞,−ε] ∩ L√
2εx. Therefore,

τ(Dn \ S
k−1) = F−1(−∞,−ε] ∩ {(x,y) ∈ D

n : ‖x‖2 < 2ε}. (8.14)

Now suppose that ‖x‖2 > ε and put Sx = M−ε ∩Lx. Then Sx is a (n− k)-disc of radius
(‖x‖2− ε)1/2. Its image under σ is a disc of radius r(x). As seen in Claim IV, it follows that
σ(Sx) = Lx ∩ F−1(−∞,−ε]. Since M−ε \ S ⊂ {(x,y) : ‖x‖2 > ε}, it follows that

σ(M−ε \ S) = {(x,y) ∈ F−1(−∞,−ε] : ‖x‖2 > ε}. (8.15)
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Together with (8.14), this implies

g(M−ε ∪Hk) = F−1(−∞,−ε].

That completes the proof of the theorem. ♠

Theorem 8.4.4 Handle Decomposition: Every closed manifold M has a handle pre-
sentation.

Proof: Begin with a Morse function f : M → [a, b], which sends distinct critical points
to distinct values a = c0 < c1 · · · < ck−1 = b. Put Mi = f−1[a, ci + ε], where ε is half the
minimum of all ci − ci−1. If p ∈ M is such that f(p) = a then p must be a local minimum
and hence the index at p is 0. Therefore, by the Morse Lemma M0 is a disc. The rest of the
claim follows from the previous lemma. ♠

Remark 8.4.3 Combined with Corollary 8.3.4, we conclude that every compact manifold
has a monotone handle presentation and hence is the homotopy type of a finite CW-complex.

Note that starting with a Morse function f on a closed manifold M, we get a handle
presentation P for M, which, in turn, yields a homotopy equivalence of M with a CW-
complex X. We also note that for each 0 ≤ k ≤ n, the number νk of critical points of index
k of f is equal to the number hk of k-handles in P , which, in turn, is equal to the number
of k-cells in X. Therefore, we get

e(f) = χ(P) = χ(X). (8.16)

On the other hand, we also get the vector field σ = gradf for which we have seen I(M) =
e(f) (see (8.6)). Combining these two we have:

I(M) = e(f) = χ(X). (8.17)

Thus we have the following celebrated result:

Theorem 8.4.5 Poincaré-Hopf: The Euler characteristic of a closed manifold M is equal
to the index of any vector field on M with finitely many zeros.

Remark 8.4.4
(i) In particular, it follows that the combinatorial quantity χ(X) is a diffeomorphism invari-
ant. Indeed, it is an easy consequence of homology theory that χ(X) is a homology (and
hence a homotopy) invariant of the underlying topological space of any finite CW-complex.
(ii) Classically, Euler-characteristic is defined for any finite simplicial complex as the al-
ternate sum of number of face numbers. You will learn this in a first course in Algebraic
Topology.
(iii) It may be noted that the underlying topological space X (geometric realization) of a
finite simplicial complex K can be treated as a finite CW complex in a natural way. Then
our definition of χ(X) for this CW-complex coincides with the classical definition χ(K).
Thus, when X denotes the CW complex obtained via a Morse function on a manifold M,
we can define χ(X) to be the Euler characteristic of the manifold M itself and denote it by
χ(M).

We shall end this section with a result that is useful for computing the Euler character-
istic and that will be used in the classification of surfaces in the next section.

Theorem 8.4.6 Let M1,M2 be any two n-dimensional manifolds. Then

χ(M1#M2) = χ(M1) + χ(M2) + a(n) (8.18)

where a(n) = 0 if n is odd and = −2 if n is even.
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Proof: Choose Morse functions fi : Mi → R, i = 1, 2 such that p1 ∈ M1 is the only
maximum for f1 and p2 ∈M2 is the only minimum for f2. Choose coordinate neighborhoods
(Ui, φi), around pi, i = 1, 2 such that

f1(φ−1
1 (x)) = f(p1)−

∑
i

x2
i ; f2(φ−1

2 (x)) = f2(p2) +
∑
i

x2, 0 ≤ ‖x‖ ≤ 1.

1

2

1 2

1 2

M

f f

M
p p

Figure 47 Connected sum of two Morse functions.

Now take c = f1(p1)− 1 + f2(p2) and g2 : M2 → R to be g2(x) = f2(x) + c. Verify that
f1

∐
g2 : M1\{p1}

∐
M2\{p2} → R factors down to define a smooth function h on M1#M2

(see Definition 8.3.1). The critical points of h are precisely those of f1 and f2 minus the set
{p1, p2}. Indeed, in a neighborhood of any of these critical points, h coincides with either
f1 or with f2 + c. The index at p1 for f1 is 1 whereas the index at p2 for f2 is (−1)n. This
proves

e(h) = e(f1) + e(f2) + a(n).

Now use (8.17) to derive formula (8.18). ♠

Remark 8.4.5

1. In summary, we have related half-a-dozen different versions of “Euler characteristic”:
(i) as the alternate sum

∑
k(−1)kνk of the number of k-cells of a CW-structure (or

the number of k-faces of a simplicial structure),
(ii) as

∑
k(−1)khk of the numbers hk of k-handles of a handle presentation,

(iii) as self-intersection number of a manifold,
(iv) as the index of a vector field with finitely many zeros,
(v) as the Lefschetz number of a self-map homotopic to identity, and
(vi) as the alternate sum of number of critical points of a Morse function.
We have also discussed a simple version of Gauss-Bonnet Theorem, which relates the
Euler characteristic of a hypersurface in R2n+1 to its curvature. These ideas have
motivated a large number of deep results which go under the generic name index
theorems, such as Atiyah-Singer Index Theorem. What we have seen so far is just the
tip of an ice-berg.

2. For a compact manifold M with nonempty boundary, one can find a Morse function
f : M → [a, b] such that f−1(a) = ∂M. From this, information similar to the above
can be extracted.

Example 8.4.1 Consider the unit sphere

S
2n+1 = {(z0, . . . , zn) ∈ C

n+1 :
∑
j

|zj |2 = 1}.

The group of unit complex numbers S1 acts on S2n+1 as scalars and the quotient space is
called the complex projective space CPn. Writing an element of CPn in the form

z = [z0 : z0 : · · · : zn],
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we have
∑
|zj |2 = 1, and [z0 : z0 : · · · : zn] = [wz0 : wz0 : · · · : wzn], for all w ∈ S1. Let

λ1 < λ2 < · · · < λn be any real numbers and consider f(z) =
∑

j λj |zj |2. Let us verify that
f is indeed a nice Morse function on CPn.

Put Uj = {z ∈ CPn : zj �= 0}. Let B2n denote the open unit disc in Cn and consider
the map φ0 : B2n → CPn given by

(z1, . . . , zn) 
→

⎡
⎢⎣
⎛
⎝1−

∑
j

|zj |2
⎞
⎠

1/2

: z1 : · · · : zn

⎤
⎥⎦ .

This map defines a diffeomorphism of B2n onto U0 and so defines a chart around the
point [1 : 0 : · · · : 0]. Likewise, we can consider diffeomorphisms of B2n onto Uj for other
j’s and get an atlas for CPn.

Clearly f ◦φ0(z) = λ0 +
∑
j(λj −λ0)|zj|2. Hence, [1 : 0 : · · · : 0] is the only critical point

of f in U0; it is nondegenerate and is of index 0. Likewise, we see that in Uj , f takes the
form

cj +
∑
i�=j

(λj − λi)|zi|2.

Hence, [0 : 0 : · · · : 1 : · · · : 0] is the only critical point of f in Uj , is nondegenerate and is of
index 2j. Observe that the value of the function at this point is λj . Thus, we obtain

CPn  e0 ∪ e2 ∪ · · · ∪ e2n

as a finite CW-complex, the cells being attached in the increasing order of their dimension.

Exercise 8.4

1. Prove that Mr is a strong deformation retract of Ms.

2. Read a proof of Poincaré duality for smooth manifolds based on Theorem 8.4.4 from
[B] or from [K].

8.5 Classification of Compact Surfaces

In any classification problem, we must first of all have a sufficiently large list of the type
of objects that we want to classify. The second step is to get rid of redundant elements from
this list. The final task is to prove that our list is “complete”.

Naturally, the boundary surfaces of solid objects that we are familiar with are the first
set of examples of 2-dimensional manifolds that we come across– the surface of a football,
of a bicycle tube, of a teacup, of a Swiss cheese, and so on. Surprisingly, as we shall see
soon, these are all the surfaces that could be there, had we made just one restriction, viz.,
orientability. That is, all smooth orientable, (closed) surfaces occur as the boundary of some
smooth solid objects in R3.

Beginning with a connected solid and assuming that it is somewhat symmetric in shape,
let us choose our coordinates so that the solid is situated symmetrically about the XY -
plane. We then see that the boundary of this solid intersects the XY -plane in a number of
Jordan curves, arranged in a certain pattern. What is this pattern? We may further assume
that these curves are all circles. It is important to notice that there is one large circle and all
other circles are interior to it. The smaller circles themselves are external to each other. We
can easily write down equations for these circles. Let pi = 0, i = 1, 2, . . . , g be the equations
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for smaller circles and p0 = 0 be the equation for the large one. Then the curve C defined
by p0 · · · pg = 0 is the union of all these circles.

Now observe that the closed and bounded region A defined by these circles is a disc
with g holes in it. We can then think of the portion of the surface above the XY -plane
being the graph z = f(x, y) of a suitable smooth function f, which takes positive values in
the interior of A and which vanishes on ∂A = C. By symmetry, we can say that the lower
portion is given by the graph of z = −f(x, y). These two can be combined into a single
equation z2 = f(x, y)2.

Where do we look for such a function f? Luckily, we need not search for it much long:
we can simply take the function f so that f2 = −p0p1 · · · pg.

More specifically, we may take

(x2 + (y − g − 1)2 − (g + 1)2)
g∏
k=1

(x2 + (y − k)2 − 1/9) + z2 = 0 (8.19)

to represent our surface. (Use the Pre-image Theorem to see that this actually represents a
smooth surface.)

z

x

y

Figure 48 A surface of genus 3.

We can think of these surfaces as obtained by taking two copies of a disc with some holes
and identifying each boundary circle of the first copy with one boundary of the second copy
in a one-to-one fashion. In order to get an orientable surface, we need to be a bit careful
in choosing the identifying homeomorphisms. What happens if we are careless? Well, the
result would still be a surface, but probably not orientable. So, this is then a good way
of producing nonorientable surfaces. Indeed, it turns out that all connected, nonorientable
closed surfaces can also be obtained in this way. It seems that we have found our list. What
to do next?

An interesting fact about surfaces given by (8.19) is that the projection to the y-axis is
a Morse function on it with critical points at (0, 0, 0), (0, 2(g+ 1), 0), and (0, k±1/3, 0), k =
1, 2, . . . , g. The indices at the first and the second one are 0, 2 respectively and all others
are of index 1. It turns out that this information is enough to distinguish homologically,
and hence diffeomorphically, one surface from the other.

However, in our classification scheme, we shall take a route through an entirely different
geometric description of the surfaces.

Starting with a teacup, suppose we just break its handle. The boundary of the resulting
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object is then seen to be diffeomorphic to the surface of a ball. Reversing this procedure,
we would like to think of the surface of the teacup as being obtained from the surface of the
ball by “attaching a handle”. We can then repeat this process to obtain other surfaces. This
single idea turns out to be sufficient to classify all compact orientable surfaces. Of course, we
have to take care of a few technical details, for which, we have done enough preparation in
the previous chapters. The key role is played by the fact that attaching handles in dimension
2 can more or less be completely described by another operation, viz., taking “connected
sum”.

In what follows, we are speaking about diffeomorphism classes of manifolds, even though
we may simply refer to them as manifolds.
A Family M of Model Surfaces

We generate a family M of compact surfaces by the following simple procedure:
(i) We put the sphere S2, the torus T := S1 × S1 and the projective plane P := P2 in M.
(ii) Given any two members X1 and X2 in M, we take X1#X2 to be also a member of M.
It should be noted that for this operation, we do not insist that X1 and X2 are distinct.
(iii) Given a member X of M, we allow the surface obtained by deleting the interior of
finitely many disjoint discs in X to be a member of M. Also, the reverse operation of
“capping off” any number of boundary components is allowed.
(iv) Disjoint union of finitely many copies of finitely many members ofM is again a member
of M.

Since any compact surface is the disjoint union of its connected components, it is enough
to consider only those that are connected. Also, observe that the two operations (ii) and (iii)
commute with each other. For, discs that we want to remove can be, first of all, isotoped
away from the scene of action of taking the connected sums and vice versa. Therefore, the
operation of taking connected sum needs to be performed only on pairs of members of M
that are closed and connected manifolds. Let us denote the orientable surface obtained by
taking the connected sum of g copies of T by Tg (g ≥ 0, with the convention: T0 = S2)
and the (nonorientable surface obtained by taking the connected sum of k copies of P

2 by
Pk, k ≥ 1. Next, let us denote the surface obtained by making h holes in Tg (respectively,
in Pk) by Tg,h (resp. by Pk,h.)

The classification theorem for compact surfaces states:

Theorem 8.5.1 Every compact connected surface is diffeomorphic to precisely one member
of the following list:
(a) Tg,h g, h ≥ 0;
(b) Pk,h, k ≥ 1, h ≥ 0.

The proof of this will be broken up into proving the following three propositions:

Proposition 8.5.1 Every compact surface is diffeomorphic to a member of M.

Proposition 8.5.2 Every connected member ofM is diffeomorphic to either a Tg,h, g, h ≥
0, or to Pk,h, k ≥ 1, h ≥ 0.

Proposition 8.5.3 Distinct members of the family

{Tg,h : g, h ≥ 0} ∪ {Pk,h, : k ≥ 1, h ≥ 0}

are nondiffeomorphic.

We shall take up the proof of Proposition 8.5.3 first. Here the Euler characteristic plays
a crucial role.
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Lemma 8.5.1 χ(Tg) = 2− 2g; χ(Pk) = 2− k.

Proof: We already know that χ(T0) = χ(S2) = 2 (see Example 7.8.2). On the torus
T1 = S1 × S1, we have plenty of nowhere vanishing vector fields, e.g., (x, y) 
→ (ıx, ıy).
Therefore, χ(T1) = 0. Now appeal to (8.18) (with α(n) = −2 to get,

χ(Tg) = χ(Tg−1) + χ(T1)− 2.

Therefore, by induction

χ(Tg) = 2− 2(g − 1)− 2 = 2− 2g.

Likewise, starting with the fact that χ(P) = 1 (see Example 7.8.4), it follows that χ(Pk) =
2− k.
Proof of Proposition 8.5.3: Since orientability is a diffeomorphism invariant, it follows
that no member of {Tg,h g, h ≥ 0} is diffeomorphic to any member of {Pk,h, k ≥ 1, h ≥ 0}.
Since the number of connected components of the boundary is a diffeomorphism invariant,
it follows that different values of h will mean different diffeomorphism types in each of these
sets. Now if Tg,h is diffeomorphic to Tg′,h by capping of all the boundary components on
either side we conclude that Tg is diffeomorphic to Tg′ . Since the Euler characteristic is a
diffeomorphism invariant, we have

2− 2g = χ(Tg) = χ(Tg′ ) = 2− 2g′

and hence g = g′. Similarly, if Pk is diffeomorphic to Pk′ then 2−k = χ(Pk) = χ(Pk′) = 2−k′
and hence k = k′. ♠

We now move toward the proof of Proposition 8.5.1.

Lemma 8.5.2 Let W ′ be obtained by attaching a 0-handle or a 2-handle to a member W
of M. Then W ′ ∈M.

Proof: Suppose we are attaching a 0-handle. This is the same as taking the disjoint union
with a 2-disc. By (i) and (iii) it follows that a 2-disc is in M. Therefore, by (iv) it follows
W ′ = W

∐
D2 ∈ M, in this case.

Similarly, attaching a 2-handle is the same as capping off a boundary component and
so, W ′ ∈ M. ♠

We now consider the case of attaching a 1-handle. The following lemma is self-evident
in view of the isotopy theorems of Section 6.3.

Lemma 8.5.3 Let W be the result of attaching a 1-handle to a surface M.
(i) If the attaching sphere belongs to two different components of M or
(ii) M is nonorientable.
Then the diffeomorphism type of W is uniquely determined by M and the isotopy class of
the attaching sphere.
Otherwise there are precisely two isotopy classes of attaching maps which determine two
distinct possibilities for the diffeomorphism class for W. In the first case, the attaching
diffeomorphisms are both orientation preserving (or reversing); this case will be called ori-
entation preserving attaching maps. In the second case, one attaching diffeomorphism is
orientation preserving and the other is orientation reversing; this case will be called the
case of orientation reversing attaching maps.

Proposition 8.5.4 Let W be a manifold obtained by attaching a 1-handle to a disjoint
union of two copies of the 2-disc in such a way that the two points of the attaching 0-sphere
belong to the two different components. Then W is a disc.
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Proof: With the specific condition on the attaching sphere mentioned, we know that the
resulting surface is unique. So, it is enough to show that a 2-disc can be obtained in this
fashion.

This is the same as finding a Morse function f : D2 → R with three critical points of
indices 0, 0, 1 respectively. For then we know that the domain of such a function can be
obtained by attaching a 1-handle to the disjoint union of two 2-discs. Of course then there
are two possibilities for the attaching sphere. The first one is as described above. The second
possibility actually gives a surface which is disconnected and hence ruled out.

Finally, we just appeal to the Exercise 8.2.7, where we have constructed such a Morse
function. ♠

Example 8.5.1 We consider the parameterization of the torus T :

(θ, ψ) 
→ ((2 + cos θ) cosψ, (2 + cos θ) sinψ, sin θ),

where −π/2 ≤ θ ≤ 3π/2 and −π/2 ≤ ψ ≤ 3π/2. The coordinate projection onto the x-axis
defines a Morse function f with precisely four critical points (−3, 0, 0), (−1, 0, 0), (1, 0, 0),
and (3, 0, 0) of indices 0, 1, 1, and 2, respectively. Let us denote Tr the subspace of T consist-
ing of points with x-coordinate ≤ r. It follows that T−2 ⊂ T0 ⊂ T2 ⊂ T3 = T is a monotone
handle presentation of T.

Going back to the parameterizing space [−π/2, 3π/2] × [−π/2, 3π/2], we can consider
the function f(θ, ψ) = (2 + cos θ) cosψ. This has four critical points precisely at

(θ, ψ) = (0, π), (π, π), (π, 0), (0, 0).

The identification on the boundary (θ,−π/2) ∼ (θ, 3π/2), (−π/2, ψ) ∼ (3π/2,−ψ + 2π)
produces the Klein bottle K. The function f respects this relation and hence defines a
smooth map f̃ : K → R. Since the quotient map is a local diffeomorphism, it follows that
f̃ is a Morse function with the critical behaviour similar to that of f.

We shall first discuss the case of the Klein bottle along with the Morse function f̃ . Let
us denote f̃−1(−∞, r] := Kr. It then follows that

K−2 ⊂ K0 ⊂ K2 ⊂ K3 = K

is a monotone handle presentation of K. Clearly K−2 is a 2-disc. Observe that K0 is the
image [−π/2, 3π/2]× [π/2, 3π/2] and hence is the Möbius band. Since K0 is obtained by
attaching a 1-handle to the disc K−2, there were only two possibilities for K0 corresponding
to the two cases whether the 1-handle is oriented or not. Since the orientable handle case
would have produced an orientable manifold and since the Möbius band is nonorientable,
we conclude that the result of attaching a nonorientable 1-handle to a 2-disc is precisely
the Möbius band.

It now follows that the diffeomorphism type of K2 is unique. Since attaching a 2-handle
to it, or which is the same as capping off the boundary component, produces the Klein
bottle K3, K2 is nothing but the surface obtained by removing a disc from K3 = K.

We now consider the torus T and the Morse function f. As before, let Tr = f−1(−∞, r].
We then have a monotone handle presentation

T−2 ⊂ T0 ⊂ T2 ⊂ T3 = T.

As usual, T0 is a disc and T2 is clearly a cylinder. It follows that attaching an orientable
1-handle to a 2-disc produces the cylinder.

Now suppose we are attaching a 1-handle to a cylinder. As seen before, there are two
distinct cases to be considered: (i) orientable handle and (ii) nonorientable handle.
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Since T2 is an orientable surface obtained by attaching a 1-handle to the cylinder, it
follows that this is the unique surface corresponding to case (i). What is the surface corre-
sponding to (ii)?

By Theorem 8.3.4, we can first perform the two operations of attaching handles in the
reverse order. We already know that attaching a nonoriented 1-handle to a 2-disc gives the
Möbius band M. Once a manifold is nonorientable, we also know that the orientability of
the 1-handle does not matter any more. So the diffeomorphism type of the surface obtained
by attaching another 1-handle to M is unique, which is nothing but K2 as seen before.

Let us summarize the results that we have seen in the above discussion.

Proposition 8.5.5 Let M be a surface obtained by attaching a 1-handle to a cylinder or
a Möbius band. Then the surface M̂ obtained by capping off M is diffeomorphic to either
(i) a 2-sphere, (ii) a projective space, (iii) a torus, or (iv) a Klein bottle. Equivalently, M
is either (i) T0,1, (ii) P1,1, (iii) T1,1 or (iv) P2,1 respectively.

H

Figure 49 Attaching a 1-handle to a cylinder.

Proof: The first two cases correspond to the case when we start with a cylinder and attach
the 1-handle along a 0-sphere contained in the same boundary component of the cylinder,
which can be converted into attaching a 1-handle to a disc, by first capping off the other
boundary component of the cylinder. The rest of the cases are as in the above example. ♠

We are now ready to discuss attaching 1-handle to a general surface.

Lemma 8.5.4 Let W be a surface with a connected boundary ∂W = C. Let M be a
smooth surface obtained by attaching a 1-handle to W along C. Then M̂ is diffeomorphic
to either Ŵ or Ŵ#P2.

Proof: Choose a collar neighborhood C × [0, 1] of C in W. Then W ′ = W \ C × [0, 1)
is diffeomorphic to W itself (ambient isotopy of collar neighborhoods). Now W = Ŵ ′#D
where the 2-disc D is obtained from the collar C × [0, 1] by capping of at the boundary
component C × {1}. Note that the operation of attaching a 1-handle is performed on the
collar C × [0, 1] along the boundary component C × {0} away from the scene of operation
of connected sum. Therefore, we may interchange the order of these two operations and
think of M as obtained by taking the connected sum of Ŵ ′ with the result Z of attaching
a 1-handle to a disc. We know that Z is either a cylinder or a Möbius band.

To obtain M̂ we have to further cap off Z. Clearly Ẑ is either S
2 or P

2. The conclusion
follows. ♠
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Lemma 8.5.5 Let W be a connected surface with precisely two boundary components
C1, C2. Let M be a smooth surface obtained by attaching 1-handle to W where the attaching
0-sphere consists of points one from each Ci. Then M is diffeomorphic to either Ŵ#T1,2 or
Ŵ#P2,1.

Proof: Since W is connected, Ŵ is connected. By the Disc Theorem, the two discs D1, D2

in Ŵ which we have used for capping of C1, C2, may be assumed to be inside a larger disc
D. This produces as in the previous lemma a diffeomorphism of W with W ′#T0,2, where
Ŵ ′ itself is diffeomorphic to Ŵ . Now the operation of attaching the handle is carried out
on T0,2 part and we have already seen that this produces either T1,1 or P2,1. ♠

Lemma 8.5.6 Let W1 and W2 be two connected surfaces with connected boundary com-
ponents C1 and C2 respectively. Let M be the result of attaching a 1-handle to W1 ∪W2

where the new handle intersects both C1 and C2. Then M̂ is diffeomorphic to Ŵ1#Ŵ2.

Proof: By taking collar neighborhoods of C1, C2, etc., as before we conclude that M̂ is
diffeomorphic to Ŵ1#Ŵ2#Ŵ3, where W3 is the result of attaching a handle to a disjoint
union of two discs D1, D2 wherein both the components ∂D1, ∂D2 are involved in the
attaching process. We know that this produces a disc again. Therefore, Ŵ3 is S2 and the
conclusion follows. ♠

Lemma 8.5.7 Let W be a member of M and W ′ be obtained by attaching a 1-handle to
W. Then W ′ is also in M.

Proof: There are three distinct possibilities.
(a) The attaching 0-sphere is contained in a single boundary component of W. This is the
case described in Lemma 8.5.4 and we conclude that W ∈ M.
(b) The attaching sphere intersects two boundary components that are both in the same
component of W. This case is taken care by Lemma 8.5.5 and we are done.
(c) Finally, the attaching sphere intersects two boundary components, that belong to dif-
ferent components of W. This is described in Lemma 8.5.6 and we are through again. ♠
Proof of Proposition 8.5.1 : Given a compact surface M, to show that it is a member of
M, we can first cap-off all its boundary components and assume that it is a closed manifold.
Then by Theorem 8.4.4, M has a handle decomposition,

M0 ⊂M1 ⊂ · · · ⊂Mk = M.

Since M0 is a disc, M0 ∈ M. Also, each Mi is obtained by attaching k-handle (k = 0, 1, 2)
to Mi−1. By Lemmas 8.5.2 and 8.5.7 each Mi is in M and we are done. ♠

Now toward the proof of Proposition 8.5.2, we first prove:

Theorem 8.5.2 Let W be a connected nonorientable closed surface. Then W#T is diffeo-
morphic to W#K, where T,K denote the torus and the Klein bottle, respectively.

Proof: In the Gluing Lemma 5.3.1, let M = (−1/2, 1) × S1, U = (−1/2, 0) × S1, V =
(1/2, 1)× S

1. Take φ, ψ : U → V given by

φ(t, v) = (1 + t, v); ψ(t, v) = (1 + t, v̄).

Then we know that the quotient spaces Mφ,Mψ are respectively the torus and the Klein
bottle (see Example 8.5.1). Consider the connected sum W#M. We may assume that the
connected sum is being performed via a disc in M which is disjoint from Ū and V̄ . It then
follows that W#T (respectively, W#K) is diffeomorphic to the quotient space (W#M)φ
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(respectively (W#M)ψ). By (ii) of Lemma 5.3.1, if we find a diffeomorphism α : W#M →
W#M such that φ ◦ α = α ◦ ψ on U, then it follows that (W#M)φ is diffeomorphic to
(W#M)ψ.

So, in order to produce a diffeomorphism α as required, we consider the manifold X
obtained by filling up the two holes in W#M at the two boundary components {−1/2}×S1

and {1}×S1. Let the two discs be denoted by D1, D2 and let U ′ = D1∪U, V ′ = D2∪V. Then
Ū ′ and V̄ ′ are themselves disjoint embedded discs in X. Let f, g : D2 → X be embeddings
such that f(D2) = Ū ′ and g(D2) = V̄ ′. Note that the diffeomorphism ψ ◦ φ−1 : V → V
extends to a diffeomorphism λ : V̄ ′ → V̄ ′. Put f ′ = f and g′ = g ◦ λ : B2 → V ′. Then by
the Disc Theorem, we get a diffeomorphism α : X → X such that α ◦ f = f and α ◦ g = g′.
It follows that α restricts to a diffeomorphism of W#M → W#M such that α|U = IdU
and on U

α ◦ φ = (α ◦ g) ◦ g−1 ◦ φ = (g′ ◦ g−1) ◦ φ
= (ψ ◦ φ−1) ◦ φ = ψ = ψ ◦ α

as required. This completes the proof. ♠

T

K

M

Figure 50 An oriented handle T can be moved onto K, an unoriented one.

Remark 8.5.1 In the figure above, we have taken W = P2 but have drawn only a Möbius
band (which is all that one can draw on a piece of paper). One can either attach an oriented
1-handle as shown by T or an unoriented 1-handle as shown by K. The result is the same
since the Möbius band has no sides. One can actually “move” the handle K onto the handle
T.

Proof of Proposition 8.5.2: By capping off boundary components, it is enough to consider
only closed manifolds in M. As we have seen these objects are obtained by taking connected
sums of copies of T and P. If only copies of T are involved or only copies of P are involved,
we are within this list. It remains to identify Tg#Pk the connected sum of g copies of T and
k copies of P g, k > 0. But then by the above theorem along with the fact K = P2, we get

Pk#Tg = (Pk#T)#Tg−1 = (Pk#K)#Tg−1 = Pk+2#Tg−1 = · · · = Pk+2g.

This completes the proof of the proposition 8.5.2. ♠

Remark 8.5.2 To summarize, given any connected compact surface without boundary, by
the Morse theory, it has a handle decomposition and hence is a connected sum of finitely
many copies of the torus and the projective space. If it is orientable then there cannot be
any projective space involved and hence it is diffeomorphic to Tg for some g ≥ 0. Otherwise,
it has to be diffeomorphic Pk, for some k ≥ 1. This completes the proof of the classification
of smooth compact surfaces.



242 Geometry of Manifolds

Remark 8.5.3

1. The unique number g in Tg is called the genus of the surface. The Euler characteristic
of this surface is equal to 2 − 2g which determines g. In fact, using the technique of
Mayer-Vietoris sequence, one can easily find all the homology groups of this surface.
It turns out that the first homology group is a free abelian group of rank 2g and the
0th and the 2nd one are isomorphic to Z. The number k in Pk is also significant. It is
equal to 2 − χ(Pk). The first Betti number (the rank of the first homology group) of
Pk is equal to k − 1 and the 2nd homology group vanishes.

2. It turns out that the homeomorphic classification of all compact surfaces coincides
with the diffeomorphism classification. In some sense, topological classification should
be easier since we have to deal with homeomorphisms rather than diffeomorphisms
at each stage. However, while dealing with topological manifolds, we do not have the
tools of differential topology either, such as Morse functions. So, after all, the problem
seems to be not so easy. One could first try to prove that every topological surface
carries a smooth structure. Though this happen to be a fact, (at least as a consequence
of the classification) solving this problem independently seems to be not easy at all.

3. A well-known approach to topological classification of surfaces is as follows: One first
proves that every compact 2-dimensional topological manifold (surface) is triangula-
ble. (This classical result is attributed to Tibor Rado.) Using the triangulation one
then proves that every connected surface is the quotient of a regular polygon with
even number of sides, by certain edge identifications on the boundary. One then gets
rid off all superfluous identifications and bring them to a number of “standard form”
(what are called “canonical polygons”) each of which happens to produce a topologi-
cally distinct (Euler characteristic again) surface. This approach also helps to actually
write down generators and relations for the fundamental group of the surface.

4. Slightly on a different track, by “the smoothing theory” developed by several authors,
it follows that every triangulated surface admits a “unique” smooth structure. Com-
bined with the above cited result of T. Rado, it follows that every topological surface
has a smooth structure. Our classification theorem then shows that the smooth struc-
ture itself is unique of the topological surface. Of course, there is also the combinatorial
equivalence of any two triangulations on a given surface. None of these results are el-
ementary. The reader is urged to go through the “Foreword” to this book once again
at this stage.

Exercise 8.5

1. Show that the tubular neighborhood of any embedded circle in a surface is diffeomor-
phic to either S1 × (−1, 1) or an open Möbius band.

2. Show that every nonorientable surface contains a Möbius band.
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In this last chapter, we introduce the reader to some basic results in Lie groups. On the
one hand, it serves the purpose of supplying a large number of interesting examples of
smooth manifolds and on the other, it gives the reader an opportunity to see some basic
tools of differential topology being employed fruitfully. In the first section, we quickly recall
some results from matrix theory and in the second some results from topological groups.
Mastering everything in these sections is not all that necessary to go ahead. In Section 9.3,
we introduce the Lie groups and in Section 9.4, the Lie algebras. In section 9.5 and 9.6, the
fundamental inter-relation between the Lie group and its Lie algebra is discussed. The next
two sections exploit this relation to get information on the structure of Lie groups such as
subgroups, normal subgroups, conjugation action and so on. The last two sections deal with
the fundamental problem of existence of Lie subgroups and we take this opportunity to
introduce yet another differential topological/geometrical notion–foliation. The treatment
in this chapter is somewhat different from other chapters, in the sense that we assume more
maturity and indulgence on the part of the reader. As a result, exercises are spread out all
over the chapter, instead of at the end of each section.

9.1 Review of Some Matrix Theory

This section is a quick review of some linear algebra. We hope that you are familiar with
most of the stuff here and will be able to figure out a lot of routine checking which we are
going to leave as exercises for you.
The Quaternions

Consider the group of quaternions with eight elements: Q = {±1,±i,±j,±k} with the
following group law:

i2 = j2 = k2 = −1; ij = k; jk = i; ki = j.

The “associated group algebra H over R” consisting of linear combinations

a = a0 + a1i + a2j + a3k, ar ∈ R

is a four dimensional vector space of over R with a multiplication that extends the group
law of Q linearly.

243



244 Lie Groups and Lie Algebras: The Basics

We define the conjugation in H by

ā = a0 − a1i− a2j− a3k

Clearly aā =
∑

r a
2
r and hence we define

|a| :=
√∑

r

a2
r

It follows that a = 0 iff |a| = 0.
We say a ∈ H is purely imaginary if its real part a0 = 0.
The following two results are easy to prove.

Theorem 9.1.1 H is a skew field and it contains the field of complex numbers.

Theorem 9.1.2 The set of elements of modulus 1 in H form a group denoted by S
3.

Remark 9.1.1 Note that H is a 2-dimensional vector space over C in two different ways:
the left- and right-module structures do not coincide. On the other hand, there is no such
problem with H as a 4-dimensional vector space over R.

Exercise 9.1.1

1. Express a ∈ H as z1 + z2j, where zi ∈ C.
(a) Verify that

ai = i(z1 − z2j); aj = j(z̄1 + z̄2j); ak = k(z̄1 − z̄2j) (9.1)

(b) Use the cosine rule and the fact that |z1 + z2j|2 = |z1|2 + |z2|2 to show that

|ab| = |a| |b|, a,b ∈ H.

2. View S3 as the space of unit quaternions and S2 as the space of unit quaternions that
are purely imaginary.

(a) Show that q ∈ S
2 =⇒ pqp−1 ∈ S

2 for all p ∈ S
3.

(b) Show that for each p ∈ S3, the map q 
→ pqp−1 is the restriction of a rotation
R3 → R3.

(c) Denote by Ap, the 3× 3 matrix representing the rotation q 
→ pqp−1. Show that
p 
→ Ap defines a continuous homomorphism ψ : S3 → S0(3). What is the kernel
of this homomorphism?

(d) Show that p 
→ pip−1 defines a smooth map h : S3 → S2.

(e) Show that the map h given above is a submersion.

(f) Show that (p, q) 
→ pqp−1 defines a transitive action of S
3 on S

2. Determine the
isotropy subgroup Iq of any element q ∈ S2.

(g) For any element q ∈ S2, and p ∈ Iq , show that q is an eigenvector corresponding
to the eigenvalue 1 of Ap.

(h) Show that the axis of rotation Ap is the line spanned by a vector q where p ∈ Iq .
(i) If p = r+p′ where p′ is purely imaginary, then show that p ∈ Iq where q = p′/|p′|.
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From now onward K will denote R,C, or H. Each of them is endowed with the topology
of the underlying Euclidean space.

We shall reserve the notation c to denote the vector space dimension of K over R. Thus,
c = 1, 2, 4 according as K = R,C,H.

The General Linear Group
We consider finite dimensional vector spaces over K. When K = H, we have to specify

whether V is a left-vector space or a right-vector space. We have to make a choice here
between two equally good things and our choice is to take left vector spaces V over K

always so that we don’t have to mention it again and again. In particular, Hn will denote
the left-vector space of row vectors of size n with entries in H.

The set of n× n matrices with entries over K will be denoted by M(n,K). The space of
all K-linear endomorphisms on a K-vector space V will be denoted by End (V ). The right
multiplication by a matrix A ∈M(n,K) on Kn gives an element of End (Kn) :

RA : v 
→ vA.

The map A 
→ RA itself is a K-linear isomorphism, by which we identify M(n,K) with
End (Kn).

Thus, topologically, End (Kn) is homeomorphic to Rcn.

Remark 9.1.2 The left multiplication v 
→ Av is K-linear only if K is commutative.
This is the reason why we would like to deal with right-multiplication instead of the left
multiplication, even though the latter is more conventional in linear algebra textbooks.
Thus, caution is needed while dealing with the skew field H.

Definition 9.1.1 We define the general linear group GL(V ) of V to be the group of all
K-linear automorphisms of V. The group of all invertible elements of M(n,K) is denoted
by GL(n,K).

Exercise 9.1.2 There is an obvious multiplication rule on M(n,K), that makes it a K-
algebra. Check that RA ◦RB = RBA. Deduce that A ∈ GL(n,K) iff RA ∈ GL(n,K). In the
cases K = R,C, we have,

GL(n,K) = {A ∈M(n,K) : detA �= 0}.

Recall that Cn can be thought of as a 2n-dimensional vector space over R. Let us fix
such a structure on Cn, e.g.,

Cn : (x1 + y1ı, . . . , xn + ynı) 
→ (x1, y1, . . . , xn, yn).

(Some authors may prefer to use another structure, viz.,

(x1 + y1ı, . . . , xn + ynı) 
→ (x1, x2, . . . , xn, y1, y2, . . . , yn).

There will be corresponding changes throughout the following discussion that are not diffi-
cult to figure out.)

Given A ∈M(n,C), the C-linear map RA : Cn → Cn is also a R-linear map. Let Cn(A)
denote the unique 2n× 2n real matrix that represents RA. Thus, we have a commutative
diagram

C
n

Cn 



RA

��

R2n

RCn(A)

��
Cn

Cn 


R2n
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Example 9.1.1 For n = 1, recall how complex numbers were embedded in M(2,R), viz.,

a + bı 
→
(

a b
−b a

)
. Check that this coincides with C1. Take J2 =

(
0 1

−1 0

)
. Prove

that {A ∈M(2,R) : AJ2 = J2A} is precisely the image of C1.

Exercise 9.1.3 Put J2n = diag(J2, . . . , J2) the block matrix in which each 2 × 2 matrix
along the main diagonal are equal to J2 and the rest of the entries are zero. Show that

Cn(M(n,C)) = {A ∈M(2n,R) : AJ2n = J2nA}. (9.2)

In a similar manner, taking {1, j} as a C-basis for H, the right multiplication by an
element z + wj ∈ H on H gets identified with(

z w
−w̄ z̄

)
∈M(2; C).

This in turn induces the identification of Hn with C2n via:

Qn : (z1 + w1j, . . . , zn + wnj) 
→ (z1, w1, . . . , zn, wn)

and the corresponding identification of M(n,H) :

Qn(M(n,H)) = {A ∈M(2n,C) : AJ2n = J2nĀ}. (9.3)

Theorem 9.1.3 Cn : GL(n,C) → GL(2n,R) and Qn : GL(n,H) → GL(2n,C) define
monomorphisms of groups.

Definition 9.1.2 We define the determinant function on M(n,H) by the formula

detA = det (Qn(A)). (9.4)

Exercise 9.1.4

1. Show that A ∈ GL(n,H) iff detA �= 0.

2. Show that detA ∈ R for all A ∈M(n,H).

3. Show that GL(n,K) is an open subspace of M(n,K).

4. Show that GL(n,K) is path connected for K = C,H and has two connected compo-
nents for K = R. (Hint: Use induction and the Gauss Elimination Method).

5. Prove that detA > 0 for all A ∈ GL(n,H).

The Orthogonal Group
We fix the standard inner product 〈 , 〉K on Kn defined as follows:

〈a,b〉K =
∑
r

arb̄r

where a := (a1, . . . , an) ∈ Kn etc.. We define the norm on Kn by

‖a‖K =
√
〈a, a〉K.

Note that for a ∈ Cn, ‖a‖C = ‖Cn(a)‖R. Similarly, for b ∈ Hn, ‖b‖H = ‖Qn(b)‖C. Thus,
the embeddings Cn and Qn are norm preserving. For this reason, we may soon drop the
subscript K, from ‖ − ‖K unless we want to draw your attention to it.

Check that 〈 , 〉K is sesqui-linear, conjugate symmetric, non degenerate and positive
definite. (In case K = R, the conjugation is the identity map and hence it is bilinear and
symmetric.) Orthogonality, orthonormal basis, etc., are taken with respect to this norm.
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Theorem 9.1.4 Cn preserves the inner product. In particular, {x1, . . . ,xn} ⊂ Cn is an
orthonormal basis for Cn iff

{Cn(x1), Cn(ıx1), . . . , Cn(xn), Cn(ıxn)}

is an orthonormal basis for R2n.

Exercise 9.1.5

1. State and prove a result similar to Theorem 9.1.4, for Qn.

2. Prove Schwartz’s inequality: ‖〈x,y〉‖ ≤ ‖x‖ ‖y‖.

For any A ∈ M(n,K) we shall use the notation A∗ := AT = ĀT . Observe that the
identity

〈xA,y〉 = 〈x,yA∗〉, x,y ∈ K
n

defines A∗.

Theorem 9.1.5 For A ∈M(n,K) the following conditions are equivalent:
(i) 〈xA,yA〉K = 〈x,y〉K.
(ii) RA takes orthonormal sets to orthonormal sets.
(iii) The row-vectors of A form an orthonormal basis for Kn.
(iv) AA∗ = Id.
(v) A∗A = Id.

Definition 9.1.3 On(K) = {A ∈Mn(K) : AA∗ = I} is called the orthogonal group of the
standard inner product on Kn. For K = R,C,H, it is also denoted by O(n), U(n), Sp(n)
respectively and called the orthogonal group, the unitary group, and the symplectic group,
respectively.

Observe that Cn(A∗) = (Cn(A))∗ for all A ∈ M(n,C). Similarly, Qn(B∗) = (Qn(B))∗ for
all B ∈M(n,H). The following theorem is then an easy consequence.

Theorem 9.1.6 For each n ≥ 1, we have:
(i) Cn(U(n)) = O(2n) ∩ Cn(GL(n,C));
(ii) Qn(Sp(n)) = U(2n) ∩Qn(GL(n,H));
(iii) C2n ◦ Qn(Sp(n)) = O(4n) ∩ C2n ◦ Qn(GL(n,H)).

Corollary 9.1.1 A ∈ On(K) iff RA is norm preserving.

Proof: For K = R, this is a consequence of the fact that the norm determines the inner
product via the polarization identity:

〈x,y〉 =
1
2

(‖x + y‖2 − ‖x‖2 − ‖y‖2).

For K = C,H we can now use the above theorem and the fact that Cn and Qn are norm
preserving. ♠

Exercise 9.1.6

1. Show that |detA| = 1 for A ∈ On(K).

2. Show that On(K) is compact.
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3. Show that the Gram-Schmidt process is valid in a finite dimensional vector space over
H.

4. Show that Sp(n,C) := {A ∈ M(2n,C) : AtJ2nA = J2n} forms a subgroup of
GL(2n,C). This is called the complex symplectic group of order n.

5. Show that Sp(n,C) ∩ U(2n) = Sp(n,C) ∩ Qn(M(n,H)) = Qn(Sp(n)).

The Special Orthogonal Group

Definition 9.1.4 SL(n; K) = {A ∈ M(n,K) : detA = 1}. This forms a subgroup of
GL(n,K). We define SO(n) = SL(n,R)∩O(n);SU(n) = SL(n,C)∩U(n). These are called
the special orthogonal and the special unitary group, respectively.

Remark 9.1.3 We do not need to define the special symplectic groups. Why?

Example 9.1.2

1. O(1) = {±1} ≈ Z2 and SO(1) = (1) is the trivial group. It is not difficult to see that

SO(2) =
{(

cos θ sin θ
− sin θ cos θ

)
: θ ∈ [0, 2π)

}

and

0(2) =
{(

cos θ sin θ
± sin θ ∓ cos θ

)
: θ ∈ [0, 2π)

}

Thus, SO(2) can be identified with the group of unit complex numbers under multi-
plication. Topologically this is just the circle. Similarly, O(2) just looks like disjoint
union of two circles. However, the emphasis is on the group structure rather than just
the underlying topological space.

2. Again, it is easy to see that U(1) is just the group of complex numbers of unit length
and hence is isomorphic to SO(2). Indeed, it is not hard to see that C1 defines this
isomorphism. Clearly, SU(1) = (1).

3. The group Sp(1), is nothing but the group of unit quaternions that we have met. As
a topological space, it is S3. Thus, we have now got three unit spheres, viz., S0, S1, S3

endowed with a group multiplication. A very deep result in topology says that spheres
of other dimensions have no such group operations on them.

4. We also have Q1 : Sp(1) → SU(2) is an isomorphism. It is easily seen that
Q1(Sp(1)) ⊂ SU(2). The surjectivity of Q1 is the only thing that we need to prove.
This we shall leave as an exercise.

Exercise 9.1.7

1. A function f : R
n → R

n is called a rigid motion (isometry) if

d(f(x), f(y)) = d(x, y) ∀ x, y ∈ R
n.

(Recall that the Euclidean distance is defined by d(x, y) = ‖x − y‖.) Show that for
A ∈ O(n), RA : Rn → Rn is an isometry.

2. Show that every isometry of R
n is continuous and injective. Can you also show that

it is surjective and its inverse is an isometry?
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3. Show that composite of two isometries is an isometry.

4. Show that x 
→ x+ v is an isometry for any fixed v ∈ Rn.

5. Let f be an isometry of R
n. If v,u ∈ Rn are such that f(v) = v and f(u) = u then

show that f fixes the entire line L passing through v and u and keeps invariant every
hyperplane perpendicular to L.

6. Let f : R
n → R

n be an isometry such that f(0) = 0. If f(ei) = ei, i = 1, 2, . . . , n,
where ei are the standard orthonormal basis for Rn, then show that f = Id.

7. Given any isometry f of R
n show that there exists a vector v ∈ Rn and A ∈ O(n) such

that f(x) = xA + v, x ∈ R
n. Thus, isometries of R

n are all “affine transformations”.
(In particular, this answers Exercise 2 completely.)

8. Show that the set of all A ∈ GL(n+1,R), which keep the subspace Rn×{1} invariant
forms a subgroup isomorphic to the group of affine transformations of Rn. Is it a
closed subgroup?

9. Show that GL(n,K) is isomorphic to a closed subgroup of GL(n+ 1,K).

10. Show that A ∈ O(3) is an element of SO(3) iff the rows of A form a right-handed
orthonormal basis, i.e., RA(e3) = RA(e1)×RA(e2).

11. Show that every element of A ∈ O(n) is the product A = BC where B ∈ SO(n) and
RC is either Id or the reflection in the hyperplane xn = 0, i.e.,

RC(x1, . . . , xn−1, xn) = (x1, . . . , xn−1,−xn).

12. Show that eigenvalues of any A ∈ O(n) are of unit length.

13. Show that one of the eigenvalues of A ∈ SO(3) is equal to 1.

14. Given A ∈ SO(3), fix v ∈ S
2 such that vA = v. Let P be the plane perpendicular to

v.
(a) Show that RA(P ) = P.
(b) Choose any vector u ∈ P of norm 1. Let w = v × u. Show that every element of
P can be written as (cos θ)u + (sin θ)w, for some θ.
(c) Show that there exists ϑ such that

RA(cos θu + sin θw) = cos(θ + ϑ)u + sin(θ + ϑ)w.

Thus, every element of SO(3) is a rotation about some axis.

The Exponential Map

We can endow M(n,K) with various norms. The Euclidean norm is our first choice. If
we view M(n,K) as the space of linear maps, then the so-called L2-norm becomes quite
handy. There are other norms such as row-sum norm, column-sum norm, maximum norm,
etc. For the discussion that follows, you can use any one of them. But let us concentrate on
the Euclidean norm.

Lemma 9.1.1 For any x, y ∈M(n,K), we have ‖xy‖ ≤ ‖x‖‖y‖.

Proof: Straightforward. ♠
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Definition 9.1.5 By a formal power series in one variable T with coefficients in K we
mean a formal sum

∑∞
r=0 arT

r, with ar ∈ K. In an obvious way, the set of all formal
power series in T forms a module over K denoted by K[[T ]]. We define the Cauchy product
of two power series p =

∑
r arT

r, q =
∑

r brT
r to be another power series s =

∑
r crT

r

where cr =
∑r
l=0 albr−l. (Note that except for being noncommutative, H[[T ]] has all other

arithmetic properties of C[[T ]] or R[[T ]].]

Theorem 9.1.7 Suppose for some k > 0, the series
∑

r |ar|kr is convergent. Then for all
A ∈M(n,K) with ‖A‖ < k, the series

∑
r arA

r is convergent.

Proof: The convergence of the series is the same as the convergence of each of n2 series∑
r arA

r
ij , formed by the entries. Since |Arij | ≤ ‖Ar‖ ≤ ‖A‖r < kr, we are done. ♠

Definition 9.1.6 Taking p(T ) = exp(T ) = 1+T+
T 2

2!
+· · · , which is absolutely convergent

for all T ∈ R, we define the exponential of A ∈ M(n,K) to be the value of the convergent
sum

exp(A) = Id+A+
A

2!
+ · · · .

Lemma 9.1.2 For any invertible B ∈M(n,K) we have B exp(A)B−1 = exp(BAB−1).

Proof: Check this first on the partial sums. ♠

Lemma 9.1.3 If AB = BA, then exp(A+B) = exp(A) exp(B).

Proof: In this special case, the Cauchy product becomes commutative and hence binomial
expansion holds for (A+B)n. The rest of the proof is similar to the case when the matrix
is replaced by a complex number. ♠

Corollary 9.1.2 For all A ∈M(n,K), exp(A) ∈ GL(n,K).

Proof: We have exp(A) exp(−A) = exp(A−A) = exp(0) = Id. ♠

Theorem 9.1.8 The function exp : M(n,K) → GL(n,K) is smooth (indeed, real analytic).
The derivative at 0 is the identity transformation.

Proof: The analyticity follows since the n2-entries are all given by convergent power series.
To compute the derivative at 0, we fix a “vector” A ∈ M(n,K) and take the directional
derivative of exp in the direction of A : viz.,

D(exp)0(A) = lim
t→0

exp(tA) − exp(0)
t

= A.

Corollary 9.1.3 The function exp defines a diffeomorphism of a neighborhood of 0 in
M(n,K) with a neighborhood Id ∈ GL(n,K).

Proof: Appeal to Inverse Function Theorem 1.4.2.

Polar Decomposition

Lemma 9.1.4 Given any A ∈M(n,C), there exists U ∈ U(n) such that UAU−1 is a lower
triangular matrix.
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Proof: If λ is a root of the characteristic polynomial of A there exists a unit vector v1 ∈ Cn

such that v1A = λv1. The Gram-Schmidt process allows us to complete this vector to an
orthonormal basis {v1, . . . ,vn}. Take U to be the matrix with these as row vectors. Then
e1UAU

−1 = v1AU
−1 = λe1. Hence, UAU−1 is of the form(

λ, 0
� B

)
.

Now a simple induction completes the proof. ♠

Definition 9.1.7 We say A is normal if AA∗ = A∗A. A square matrix A is called symmet-
ric, skew-symmetric, Hermitian, skew-Hermitian, respectively, if A = AT A = −AT , A =
A∗, A = −A∗.

Corollary 9.1.4 Spectral Theorem If A ∈ M(n,C) is normal, then there exists U ∈
U(n) such that UAU−1 is a diagonal matrix.

Proof: If A is normal then so is UAU−1 for any U ∈ U(n). On the other hand a lower
triangular normal matrix is a diagonal matrix. ♠

Remark 9.1.4 In particular, if A is hermitian or symmetric or skew symmetric etc., then
it is diagonalizable. The entries on the diagonal are necessarily the characteristic roots of
the original matrix. Moreover, if A is real symmetric matrix, then all its eigenvalues are real
with real eigenvectors and hence U can be chosen to be inside O(n).

Definition 9.1.8 A Hermitian matrix A defines a sesqui-linear (Hermitian) form on Cn :

(u,v) 
→ uAv∗,

i.e., linear in the first slot u and conjugate linear in the second slot v. Recall that A∗ satisfies
the property

〈uA,v〉C = 〈u,vA∗〉C.
Therefore, for a Hermitian matrix A, 〈uA,u〉C is always a real number. In particular, all
eigenvalues of a Hermitian matrix are real. We say A is positive semidefinite (positive defi-
nite) if 〈uA,u〉C ≥ 0 for all u (respectively, > 0 for all nonzero u.)

Lemma 9.1.5 A Hermitian matrix is positive semidefinite (positive definite) iff all its eigen-
values are nonnegative (respectivey, positive).

Lemma 9.1.6 If A is Hermitian so is, Exp (A).

Theorem 9.1.9 The space of all n× n complex Hermitian matrices is a real vector space
of dimension n2. Exponential map defines a diffeomorphism of this space onto the space of
all positive definite Hermitian matrices.

Proof: The first part is obvious. Given a positive definite Hermitian matrix B let U be a
unitary matrix such that

UBU−1 = diag (λ1, . . . , λn).

Then we know that λj > 0 and hence we can put μj := log λj . Put

A := U−1diag (μ1, . . . , μn)U.

Then Exp (A) = B. This shows Exp is surjective. For the proof of the injectivity of Exp on
the space of hermitian matrices, see the exercise 9.1.8 below, which is completely elementary
linear algebra modulo the spectral theorem. ♠
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Theorem 9.1.10 Polar Decomposition: Every element A of GL(n,C) can be written
in a unique way as a product A = UH where U is unitary and H is positive definite
Hermitian. The decomposition defines a diffeomorphism of ϕ : GL(n,C) → U(n) × R

n2
.

Furthermore, if A is real, then U is orthogonal and H is symmetric and hence ϕ restricts
to a diffeomorphism ϕ : GL(n,R) → O(n)× Rn(n−1)/2.

Proof: Consider the matrix B = A∗A, which is Hermitian. Since A is invertible, so is
A∗. Therefore, for a nonzero vector v, 〈vA∗A,v〉 = 〈vA∗,vA∗〉 > 0, which shows that B
is positive definite. Choose C ∈ GL(n,C) such that CBC−1 = diag(λ1, . . . , λn) and put
H = C−1diag(

√
λ1, . . . ,

√
λn)C. Then H is clearly a positive definite Hermitian matrix and

H2 = B. Put U = AH−1. Then A = UH and we can directly verify that U is unitary.
Finally, if A = U1H1 where U1 is unitary and H1 is positive definite Hermitian, then

X = U−1U1 = HH−1
1 is both unitary and positive definite Hermitian. Therefore, X has all

its eigenvalues of unit length, as well as, positive. Thus, all its eigenvalues are 1. Since it is
diagonalizable also, it follows that X = Idn.

The construction of H from A is indeed a smooth process, though this is not clear from
the way we have done this. But we can simply write

H = Exp (
1
2
log A∗A)

where log is the (local) inverse map of Exp in Corollary 9.1.3. It follows that the assignment
ϕ : A 
→ (U,H) is smooth. The inverse map is clearly smooth. ♠

Exercise 9.1.8

1. Let D = diag (λ1Ik1 , . . . , λrIkr ). If AD = DA then show that A is of the form
diag (Ak1 , . . . , Akr ) where Akj are kj × kj matrices.

2. Let D = diag (λ1, . . . , λn), D′ = diag (λ′1, . . . , λ′n) where λi ≥ λi+1, λ
′
i ≥ λ′i+1 for

all i. If U is an invertible matrix such that UExpD1U
−1 = ExpD2 then show that

D1 = D2 and UD1U
−1 = D1.

3. Let A,B be hermitian matrices such that ExpA = ExpB. Then show that A = B.

9.2 Topological Groups

The interaction of the group multiplication and the Euclidean topology in the discussion
of matrix groups in the previous section motivates the study of so-called topological groups
in an abstract setup. This section is just a brief introduction to topological groups.

Definition 9.2.1 Let G be a group together with a topology on it such that the function
G×G→ G given by (x, y) 
→ xy−1 is continuous, where G×G is given the product topology.
We then call G a topological group. A subgroup together with the subspace topology will be
called a topological subgroup. (However, when the context is clear, we may simply mention
this as a subgroup.) Homomorphisms g : G → H between topological groups are always
assumed to be continuous.

We shall consider topological groups that are Hausdorff (T2) only. (Extra caution should
be taken when you are studying topological groups that arise in algebraic geometry with
Zariski topology–these are non-Hausdorff.)
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Example 9.2.1

1. Any group together with the discrete topology is a topological group.

2. The real numbers, the complex numbers etc., along with the standard addition and
standard topology are topological groups. The nonzero real (complex) numbers and
the positive real numbers form topological groups under multiplication. The complex
(real) numbers of unit length form a closed subgroup of the respective multiplicative
topological groups.

3. The skew field of quaternions is a topological group under addition with the standard
Euclidean topology.

4. Any finite dimensional vector space over K is also a topological group. Indeed, there
is an obvious notion of topological vector spaces, and these are easy examples of
topological groups.

5. GL(n,K) is a topological group for any of the three (skew) fields K. The orthogonal
groups are all subgroups of GL(n,K).

For any two subsets A,B of a group G, we set up the notation

AB = {ab : a ∈ A, b ∈ B}; A−1 = {a−1 : a ∈ A}.

The following easily proved fundamental result is at the heart of various special topological
properties of a topological group that we are going to see. Most of them are in the exercises
that follow.

Lemma 9.2.1 Let U be an open subset of topolgical group G.
(a) If e ∈ U, then there exist neighborhoods V,W of e such that V V −1 ⊂ U,WW ⊂ U.
(b) Given any x ∈ G, there a neighborhood A of e such that xAx−1 ⊂ U.
(c) UX and XU are open subsets for any arbitrary subset X of G.

Exercise 9.2.1 Let G denote a topological group.

1. For each g ∈ G, the left (and right) multiplication Lg : G → G (Rg : G → G) is a
homeomorphism.

2. A group homomorphism f : G → G′ of topological groups is continuous iff it is
continuous at e ∈ G.

3. The commutator subgroup, the center, etc., are all topological subgroups. If H is a
topological subgroup then its centralizer, the normalizer, etc., are topological sub-
groups.

4. Every open subgroup is a closed subgroup also.

5. Closure of a subgroup is a subgroup.

6. If a subgroup H is not closed then H̄ \H itself is dense in H̄.

7. If a topological group is T0, then it is T1. This is equivalent to the condition that the
intersection of all neighborhoods of e is equal to {e}.

8. There are plenty of interesting topological groups which are T1 but not T2. They
especially occur in the theory algebraic groups. (For example you can take the co-
finite topology on the multiplicative group S

1 of unit complex numbers.) However, we
will be interested mostly in topological groups which are T2 (Hausdorff).
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9. The connected component of G containing the identity element e is a closed, normal
topological subgroup of G. If G is locally connected, then it is also an open subgroup.

10. The product of any family of topological groups is a topological group, with the
product topology.

11. Let V be a neighborhood of e ∈ G. If G is connected, then V is a set of generators
for G.

12. Let G be a connected topological group and H be a normal discrete subgroup. Then
H is contained in the center. (Hint: If N is a neighborhood of x ∈ H such that
N ∩ H = {x}, choose a neighborhood V of e such that V xV −1 ⊂ N. Now use the
previous exercise.)

Definition 9.2.2 Let H be a closed subgroup of G. Then the set of left (or right) cosets is
given the quotient topology and is called a homogeneous space and is denoted by G/H (or
by H\G.)

Remark 9.2.1 Observe that the group G acts on the left of G/H transitively. (This is the
reason for the name “homogeneous”.) Therefore, local topological properties of the space
G/H are the same at any of its points.

Exercise 9.2.2 Let H be a closed subgroup of a topological group G.

1. Show that the quotient map q : G→ G/H is an open mapping.

2. If H is a closed subgroup of G then the homogeneous space G/H is a Hausdorff space.

3. If G is compact then so are H and G/H. The converse is also true. (Hint: First prove
the following version of the tube lemma, using compactness of H : Given an open set
W ⊃ H, there exists a neighborhood U of e in G such that UH ⊂W.)

4. If G is connected then G/H is connected. Conversely, if both H and G/H are con-
nected then G is connected.

5. The special orthogonal group SO(n) acts on Sn−1 transitively. The isotropy sub-
group (stabilizer) of (0, . . . , 0, 1) is equal to SO(n − 1). Therefore, there is a bijec-
tive continuous map f : SO(n)/S0(n − 1) → Sn−1. Since SO(n) is compact, so is
SO(n)/SO(n − 1). Since Sn−1 is Hausdorff, f is a homeomorphism. Similarly, it fol-
lows that U(n)/U(n − 1) ≈ S

2n−1 and Sp(n)/Sp(n − 1) ≈ S4n−1. Write full details
for the above claims.

6. Use the results in the above exercise to prove that for n ≥ 1, the groups
GL(n,C), U(n), SL(n,R), SO(n,R), Sp(n) are all connected. Show thatGL(n,R), O(n), n ≥
1 have precisely two connected components.

Example 9.2.2 Consider the action of x ∈ Sp(1) on H by conjugation: Cx : y 
→ x−1yx.
Clearly the action is linear. Let T be the linear span of {i, j,k} in H. Using Exercise 9.1.1.2a,
show that Cx maps i, j,k into T and hence Cx(T ) = T. Moreover, since |ab| = |a||b|
for a,b ∈ H, it follows that Cx is norm preserving. Therefore, Cx defines an element
Θ(x) ∈ O(3). Check that Θ : Sp(1) → O(3) is a homomorphism of groups. Clearly, it is
a smooth map and hence is a homomorphism of topological groups. Since Sp(1) = S3 is
connected, the image of Θ is contained in the connected component of Id ∈ O(3). Therefore,
we have Θ : Sp(1) → S0(3).

What is the kernel of this homomorphism? To answer this, observe that x ∈ KerΘ
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iff x commutes with i, and j. (why?) That x = (a0, a1, a2, a3) commutes with i implies
a2 = a3 = 0. Similarly, a1 = 0. Therefore, x = ±1. Since {−1, 1} is the center of Sp(1), it
follows that the group Sp(1)/{−1, 1} is isomorphic to a subgroup of SO(3).

Since the action of the subgroup {−1, 1} on Sp(1) = S3 is nothing but the antipodal,
we know that the quotient map q : Sp(1) → Sp(1)/{−1, 1} is the double cover S3 → P3.
Thus, we have shown that P3 is a closed subgroup of S0(3). Since both the groups are of
the same dimension = 3, it follows that P3 is also an open subgroup of SO(3). But SO(3)
is connected. Therefore, P3 = SO(3).

Exercise 9.2.3

1. An element σ ∈ S0(3) is a rotation about xi-axis iff σ(xi) = xi.

2. Show that elements of S0(3) can be written as σ1σ2σ
′
1 where σi, σ′

i are rotations about
the xi-axis, i = 1, 2.

3. Show that Θ(a0 + a1i) is a rotation about the x1-axis. Similarly, obtain an element
x ∈ Sp(1) such that Θ(x) is a rotation about x2-axis.

4. Deduce that Θ : Sp(1) → S0(3) is surjective. (This gives an alternative proof of the
last part of Example 9.2.2.)

5. Show that P3 is diffeomorphic to the space UT (S2) of unit tangents to S2. [Hint:
Consider the mapping x→ (xix−1, xjx−1) from S3 to UT (S2) ⊂ R3 × R3.]

6. Use the above exercise to construct an explicit embedding of P3 in R5.

In the remaining part of this section, we assume that the reader is familiar with rudiments
of fundamental group and covering space theory. (See any basic algebraic topology book
such as [Spa] or [Hat]). She may choose to skip this part until she acquires such knowledge
and come back to it later. Only some results in the sections to follow will depend on it.

Theorem 9.2.1 Let G be a locally connected and connected topological group, H be a locally
connected closed subgroup and H0 be the connected component of H containing e. Then the
quotient map q̄ : G/H0 → G/H is a covering projection.

Proof: Observe that H0 is a normal subgroup. Since H is locally connected, H0 is an
open subgroup of H. Therefore, we can find an open neighborhood V of e in G such that
V −1V ∩H ⊂ H0. Let q : G → G/H and q0 : G → G/H0 be the respective quotient maps.
Both are open maps and q = q̄ ◦ q0. Hence, q̄ is a surjective continuous open mapping.

Given any g ∈ G, we claim that the open neighborhood p(gV ) of p(g) is evenly covered
by q̄. Let us choose a complete set of representatives R of the left-cosets of H0 in H so that
H =

∐
h∈R hH0, a disjoint union. It then follows that

(q̄)−1(p(gV )) =
⋃
h∈R

q0(gV h),

where each member on the right-hand side is open in G/H0. First, we claim that any two
of them are disjoint.

Suppose q0(gV h1) ∩ q0(gV h2) �= ∅, hi ∈ R, i = 1, 2. This means gv1h1 = gv2h2h0 for
some vi ∈ V, i = 1, 2 and h0 ∈ H0. Therefore, v−1

2 v1 = h2h0h
−1
1 ∈ V −1V ∩H ⊂ H0. Since H0

is normal in H this means that h2h
−1
1 = v−1

2 v1h1h
−1
0 h−1

1 ∈ H0. That means h2H0 = h1H0

and hence h2 = h1 since they are both in R.
It remain to prove that q̄ : q0(gV h) → p(gV ) is a homeomorphism for each h ∈ R.

We already know that it is a surjective, continuous, open mapping. So, we check that it
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is injective. If for some h ∈ R, q̄(gv1hH0) = q̄(gv2hH0), i.e,, gv1H = gv2H, then v−1
2 v1 =

h0 ∈ H0. But then gv1hH0 = gv2h0hH0 = gv2hH0, since H0 is normal in H. This proves
the injectivity of q̄ restricted to each q0(gV h). ♠

Corollary 9.2.1 If G/H is simply connected, then H is connected.

Corollary 9.2.2 For any discrete normal subgroup H of a connected locally connected
topological group G, the quotient map G→ G/H is a covering group homomorphism.

Lemma 9.2.2 Let f : X → Y, g : Y → Z be maps of locally connected, connected topo-
logical spaces. Suppose g ◦ f is a covering projection. Then f is a covering projection iff g
is.

Proof: Exercise.

Theorem 9.2.2 Every locally simply connected topological group admits a simply connected
covering group.

Remark 9.2.2 We shall not prove this. For our purpose, it suffices to remark that, in gen-
eral, every locally simply connected space admits a simply connected covering. In particular,
every topological manifold has this property. Further, if it is a topological group then we
know how to make the covering into a covering group.

Theorem 9.2.3 Let H ⊂ G be locally simply connected and connected topological groups.
Suppose H is a closed subgroup and G/H is simply connected. Then π1(G) is isomorphic
to a quotient of π1(H).

Proof: Consider the following commutative diagram,

F̄
f0 



� �

��

F� �

��

F � �

��
H̄

f 

 



q

����

H̃
� � 



p0

����

G̃ 

 



p

����

G̃/H̃

H H
� � 

 G 

 

 G/H

in which p : G̃ → G is the (universal) simply connected covering, H̃ = p−1(H) ⊂ G̃, and
p0 = p|H̃ . It follows easily that G̃/H̃ is naturally homeomorphic to G/H. Let q : H̄ → H be
the universal cover. By the lifting property, it follows that there is a unique map f : H̄ → H̃
such that p0 ◦ f = q and f(ē) = ẽ, where ē, ẽ, etc., denote the identity elements in the
corresponding group. It follows that f is a group homomorphism. From Theorem 9.2.1, it
follows that H̃ is connected. From Lemma 9.2.2, it follows that f is a covering projection.
Therefore, f is surjective. Let F, F̄ denote the kernel of p and q, respectively. Then π1(G)
is isomorphic to F and π1(H) is isomorphic to F̄ . Also, it follows easily that f restricts to
a surjective homomorphism f0 : F̄ → F. ♠

Exercise 9.2.4

1. Let X be a locally path connected and connected topological space, which admits a
(simply connected) universal covering projection p : X̄ → X. Let Y be a subspace
of X and η : Y → X be the inclusion map. Then η# : π1Y → π1X is surjective iff
p−1(Y ) is path connected.
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2. Use this to give an alternative proof of Theorem 9.2.3.

3. Let G be a topological group. Suppose Ĝ is a simply connected topological space and
p : Ĝ→ G is a covering projection. Show that Ĝ can be made into a topological group
in such a way that p is a homomorphism of topological groups. Show further that a
simply connected covering of a topological group is unique up to isomorphisms.

4. Show that if G admits a simply connected covering then it is the quotient of a simply
connected topological group by a central subgroup.

5. Let G,G′ be topological groups. By a local homomorphism f from G to G′ we mean
a continuous mapping f : V → G′ defined on a neighborhood V of e in G such that

x, y, xy ∈ V =⇒ f(xy) = f(x)f(y).

(a) Principle of Monodromy Show that if G is simply connected and V is connected
then there is a unique continuous homomorphism f̂ : G→ G′ such that f̂ |V = f.

(Hint: By Exercise 9.2.1.(11), V is a set of generators for G and hence if at all f̂ :
G → G′ is defined then we must have f(g1 · · · gk) = f(g1) · · · f(gk) where gi ∈ V.

The problem is precisely, in verifying why f̂ is well defined. This is where the simply
connectedness has to be used. Assume that G is path connected and follow arguments
similar to the one that you have used in analytic continuation.)
(b) If a connected topological group G′ has a neighborhood of e′ isomorphic to a
neighborhood of e in a simply connected topological group G, then G′ is the quotient
of G by a normal discrete subgroup of G.

9.3 Lie Groups

Definition 9.3.1 By a Lie group we mean a topological group whose underlying topological
space is a smooth manifold and whose group operations are smooth with respect to the
smooth structure of this manifold. Mappings between two Lie groups will be always assumed
to be smooth homomorphisms. A submanifold, which happens to be a topological subgroup,
is automatically a Lie group on its own and is called a Lie subgroup.

The proto-type of Lie groups for us are matrix groups some of which you have seen
in Section 9.1. We shall now deal with a “general method” which gives you many more
examples.

Definition 9.3.2 We say A ∈ M(n,K) is nonexceptional if det (I + A) �= 0. For such a
matrix its Cayley transformation A# is defined by the formula

A# := (I − A)(I +A)−1. (9.5)

Let us denote the set of all nonexceptional matrices in M(n,K) by Kn
0 .

Lemma 9.3.1 Kn
0 is an open set in M(n,K) on which the map A 
→ A# is smooth and is

an involution, i.e., A ∈ Kn
0 =⇒ A# ∈ Kn

0 and (A#)# = A.

Theorem 9.3.1 Let G be a matrix group in M(n,K) and G0 = G ∩Kn
0 . Then G is a Lie

group if the image of G0 under the Cayley map is an open subset of a real vector subspace
of M(n,K).
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Proof: Being a closed subgroup of GL(n,K), G is a Hausdorff topological group. Therefore,
the only thing that is needed for it to be a Lie group is that G is a smooth manifold. For
this, it is enough to prove that Id ∈ G has a neighborhood that is diffeomorphic to an open
subset of a finite dimensional vector space over R. This is precisely what is being provided
by the hypothesis. ♠

Definition 9.3.3 Let J ∈ GL(n,K) be fixed. Consider the set OJ (n) of all matrices in
M(n,K) such that

AtJA = J. (9.6)

Such a matrix A is called a J-orthogonal matrix. Let ssJ(n,K) denote the set of all B such
that

BtJ = −JB. (9.7)

Such a matrix B is called a J-skew-symmetric matrix.

Lemma 9.3.2 A ∈ OJ (n,K) ∩Kn
0 ⇐⇒ A# ∈ ssJ (n; K) ∩Kn

0 .

Theorem 9.3.2 OJ (n; K) forms a closed Lie subgroup of GL(n,K) and ssJ(n,K) forms a
real vector subspace of M(n,K).

Proof: That it is a topological closed subgroup is easy to see. Similarly, the fact that
ssJ(n,K) is a vector subspace of M(n,K) is easily verified. The previous lemma together
with Theorem 9.3.1 complete the proof. ♠

Taking J = Idn, we get the orthogonal group O(n; K). In this case, since ssId(n,K) is
the space of skew-symmetric matrices, with real dimension equal cn(n−1)/2, it follows that
O(n; K) is a Lie group of dimension cn(n− 1)/2. For K = R, clearly O(n; R) = O(n). But
for K = C, or H, this is not the same as U(n) or Sp(n).

Similarly, taking J = J2n, we get various symplectic matrices as Lie groups.

Remark 9.3.1 It follows easily that composites of two Lie group homomorphisms is again
a Lie group homomorphism. Also, the Cartesian product of finitely many Lie groups is
again a Lie group. At this stage, it is not at all clear that if H is normal Lie subgroup of
G, whether G/H is a Lie group. So, let us take up this problem now.

Theorem 9.3.3 Let H be a closed Lie subgroup of a Lie group and q : G → G/H be the
quotient map onto the space of left-cosets. Then G/H is a smooth manifold of dimension
equal to the codimension of H in G such that the left action of G on G/H is smooth.
Moreover, the quotient map is a smooth locally trivial fiber bundle. Further, if H is normal,
then G/H is a Lie group and q is a surjective Lie-homomorphism with Ker q = H.

Proof: The quotient space G/H is a Hausdorff space since H is closed [see Exercise
9.2.2.(2)]. Choose a local coordinate system x1, . . . , xn, (dim G = n) around a neighborhood
U of e ∈ G for G such that xi(e) = 0, i = 1, . . . , n, and

H ∩ U = {g ∈ U : xi(g) = 0, i = 1, . . . , k}

where k = codimH. Put

T := {g ∈ U : xi(g) = 0, for i = k + 1, . . . , n}.

Consider μ : T ×H → G given by μ(t, h) = th. Then μ(t, e) = t, μ(e, h) = h. Therefore,

dμe(u,v) = dμe(u, 0) + dμe(0,v) = u + v.
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Hence, by the inverse function theorem, μ : T ′ × H ′ → U ′ is a diffeomorphism where
T ′, H ′, U ′ are some open neighborhoods of e in T,H,G, respectively. Choose a neighborhood
S ⊂ T of e such that S−1S ⊂ U ′. Put V = μ(S ×H). We then claim that q : S → q(V ) is a
homeomorphism and μ : S ×H → V is a diffeomorphism such that the following diagram

S ×H
μ 



π1

��

V

q

��
S

q 

 q(V )

is commutative, where, π1 denotes the projection to the first factor.
Assuming this, we can then transfer the smooth structure of S to q(V ). Then for any

point g ∈ G, the neighborhood g(q(V )) = q(gV ) gets the smooth structure from gS. If
g1S ∩ g2S �= ∅, then the two transition functions on S ∩ g−1

1 g2S differ by the multiplication
by g−1

1 g2, which is a diffeomorphism. Hence, this would define a smooth structure on G/H as
desired. The rest of the claims are all straightforward. Clearly, q : S → q(V ) is a continuous
bijection. Since q : G → G/H itself is an open mapping, it follows that q : S → q(V )
is also open. The commutativity of the above diagram is obvious. It remains to see why
μ : S × H → V is a diffeomorphism. That it is a surjective submersion is clear. Suppose
μ(s1, h1) = μ(s2, h2). This means s1h1 = s2h2 =⇒ s−1

1 s2 = h1h
−1
2 ∈ H ∩U ′ = H ′ =⇒ s2 =

s1h for some h ∈ H ′. Since si ∈ T ′ and μ : T ′×H ′ → U ′ is injective, it follows that s1 = s2
and h1 = h2. This shows that μ : S ×H → V is injective. ♠

Corollary 9.3.1 Let H be a closed subgroup of a Lie group G. Then corresponding to the
exact sequence H ↪→ G → G/H, there is long a exact sequence of homotopy groups and
sets:

· · · → πi(H) → πi(G) → πi(G/h) → πi−1(H) →
· · · → π1(G/H) → π0(H) → π0(G). (9.8)

Proof: This is an immediate consequence of the fact that the quotient map G → G/H is
a locally trivial fiber bundle over a manifold G/H and hence is a fibration, i.e., it possesses
the homotopy lifting property. (See [Spa].) ♠

Corollary 9.3.2 Let H be a closed subgroup of a connected Lie group G such that G/H
is simply connected. Then H is connected.

Exercise 9.3.1

1. Let X,Y, Z be smooth manifolds. Suppose φ : X ×Z → Y is a smooth map such that
for each z ∈ Z the map φz : X → Y given by φz(x) = φ(x, z) is a diffeomorphism.
Then show that the map ψ : Y × Z → X defined by ψ(y, z) = φ−1

z (y) is a smooth
map. (Hint: Consider the track of φ and apply the inverse function theorem.)

2. Let G be a smooth manifold together with a group operation such that the multipli-
cation G×G→ G given by (g, h) 
→ gh is smooth. Then G is a Lie group. (Note that
similar statement is false for arbitrary topological groups.)

3. Let μ : G×G→ G the multiplication in a Lie Group G. Compute the derivative of μ
at (e, e). Show that D(η)e = −Id, where η : G→ G is the inverse map g → g−1.

4. Let f, g : X → G, where X is a manifold and G is a Lie group. Put h(x) =
f(x)g(x), x ∈ X. Assume that f(x0) = g(x0) = e. Show that d(h)x0 = d(f)x0 +d(g)x0 .
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5. By an action α of a Lie group G on a smooth manifold X we mean a group homo-
morphism α : G → Diff (X), such that the map (g, x) 
→ (α(g))(x) is smooth. (For
example, typically, G acts on itself in three different ways: left action, right action,
and by conjugation.) For any x ∈ X the sets

Gx := {g ∈ G : α(g)x = x}; α(G)x := {α(g)x : g ∈ G}

are called stabilizer of x and orbit of x, respectively.
(a) Show that for each x ∈ X, the map αx : G→ X defined by g 
→ α(g)x is a smooth
map of constant rank k and hence deduce (from the rank theorem) that Gx = α−1

x (x)
is a submanifold of G of dimension = dim G−k. Also show that TeGx = KerD(αx)e.
(b) Show that for some neighborhood U of e ∈ G, α(U)x is a k-dimensional subman-
ifold of X with Te(α(U)x) = D(αx)e(Te(G)).
(c) In particular, if α(G)x is a submanifold of X , then its dimension is = k.

6. Consider the action of R on S1 × S1 via the left multiplication by α(t) = (ea1ıt, ea2ıt)
where a1, a2 ∈ R. Show that if {a1, a2} is linearly independent over Q, then the orbit of
any element is dense in S1×S1. Show that any one of these orbits is a (1-dimensional)
submanifold iff {a1, a2} is linearly dependent over Q.

7. Generalize the above example to an action of R on T
n = S1 × · · · × S1 (n copies).

8. Let G be a compact Lie group acting on a manifold X. Show that every orbit is a
submanifold. [Hint: Prove that α(U)x is an open set of α(G)x in X containing the
point x.]

9. Let f : G → H be a homomorphism of Lie groups. If G is compact, show that f(G)
is a compact Lie subgroup of H.

10. Flag Manifolds: The above exercise is a rich source of examples of smooth manifolds.
Here is an illustration: Fix a sequence of integers 1 ≤ k1 < k2 < · · · < kr < kr+1 = n.
For K = R,C, or H, let Gk,n := Gk,n(K) denote the Grassmannian variety of k-
diemnsional subspaces of Kn. In the product of Grassmannian manifolds

M = Gk1,n × · · · ×Gkr ,n,

consider the point P = (V1, . . . , Vr), where Vj is the linear span of the standard basis
elements, {e1, . . . , ekj} in Kn. Consider the diagonal action of O(n) = O(n,K) on M.
From the above exercise, it follows that the orbit of P under this action is manifold.
It is called the flag manifold and is denoted by F(k1, k2, . . . , kr). Show that it is
diffeomorphic to the homogeneous space

O(n)/O(l1)× · · · × O(lr)×O(lr+1),

where l1 = k1 and li = ki − ki−1, i ≥ 2.

11. Let f : G → H be a homomorphism of Lie groups. Suppose H1 ⊂ H is a Lie
subgroup. Then show that G1 = f−1(H1) is a Lie subgroup of G with Te(G1) =
(Dfe)−1(Te(H1)). [Consider the action of G on H/H1 via f and apply Exercise 5.(a).]

12. Show that intersection of finitely many Lie subgroups is a Lie subgroup.

13. Let H be a Lie subgroup of G. Show that any subgroup F of G such that H0 ⊂ F ⊂ H
is a Lie subgroup, where H0 denotes the connected component of H.
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9.4 Lie Algebras

In this section, let K denote a field of characteristic �= 2.

Definition 9.4.1 Let g be a finite dimensional vector space over K. A binary operation
[, ] : g× g → g is called a Lie bracket if it satisfies the following conditions:
(LI) [ , ] is bilinear, i.e., [a1u1 + a2u2,v] = a1[u1,v] + a2[u2,v].
(LII) [ , ] is anti-symmetric, i.e., [v,u] = −[u,v] for all u,v ∈ g.
(LIII) [ , ] satisfies the Jacobi identity: [[u,v],w] + [[v,w],u] + [[w,u],v] = 0.

A vector space g together with such a Lie bracket operation is called a Lie Algebra.

Definition 9.4.2 By a Lie-homomorphism φ : g1 → g2 between two Lie algebras over K

we mean a K-linear map such that φ([u,v]) = [φ(u), φ(v)].

Remark 9.4.1

1. If φ is invertible, then automatically its inverse is also a Lie homomorphism and hence
φ is an isomorphism of Lie algebras.

2. Observe that the [ , ] can be thought of as a multiplication rule so that g becomes an
algebra over K except that usually, the multiplication is assumed to be associative.
Here, [ , ] is perhaps highly nonassociative and instead of associativity, we have the
Jacobi Identity.

3. Given an associative algebra A on K if we define [u,v] = uv − vu, it is not difficult
to see that g becomes a Lie algebra. On the other hand, there seems to be no way to
recover the associative multiplication from the Lie bracket. Also observe that this Lie
bracket measures the amount of noncommutativity of the associative multiplication.
The most important example of this for us is the matrix algebra M(n,K) from which
we get the Lie bracket in the above manner, to make it into a Lie algebra. This Lie
algebra will be denoted by gl(n,K). There are several sub-algebras of this Lie algebra,
which are of interest to us: viz., the space of all Hermitian matrices denoted by o(n,K),
the space of all trace zero matrices denoted by sl(n,K), and so on.

4. Let g be a 1-dimensional Lie algebra, say v ∈ g is a nonzero vector. By property (LII)
it follows that [v,v] = 0. Thus, there is a unique 1-dimensional Lie Algebra. Any Lie
algebra in which the Lie bracket is identically zero is called an abelian Lie Algebra.

5. We shall not be able to pursue the study of Lie algebras on its own here. The foremost
important example of Lie algebra is something inside the the space T (X) of all smooth
vector fields on a smooth manifold X. Recall from Section 5.6 (Exercise 2) that we
have defined a “Lie bracket” operation on T (X) which satisfies properties (LI),(LII)
(LIII) of Definition 9.4.1. Thus (T (X), [ , ]) is a Lie algebra over R. In particular, we
are interested in a very special subalgebra of this Lie algebra, when X = G is a Lie
group.

Example 9.4.1 Let G be a Lie group. For each g ∈ G, the left-multiplication Lg : G→ G
is a diffeomorphism. Clearly, D(Lg)e : Te(G) → Tg(G) is a linear isomorphism for each g.
Consider the map TG→ G× Te(G) given by

(g,v) 
→ (g, (D(L−1
g )g(v)).

Check that this defines an isomorphism of the vector bundles. (To see that this is a smooth
map, use local coordinates and an argument similar to the one that occurred in Exercise
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9.3.1(1).) In other words, the tangent bundle of a Lie group is trivial, i.e., every Lie group
is parallelizable. It follows that the module T (G) of all smooth vector fields on G is a free
C∞(G) module of rank = dimension of G. Now let us take a closer look at this module
along with its Lie algebra structure.

Given a vector field σ on Y and a diffeomorphism f : X → Y the pullback vector field
or the induced vector field f∗(σ) on X is defined by x 
→ D(f−1)f(x)(σ(f(x))).

Thus, in particular, for a Lie group G, since each element g ∈ G defines a diffeomorphism
Lg : G→ G, we can talk about L∗

g(σ) for each σ ∈ T (G). Thus, we get an action

G× T (G) → T (G) (g, σ) 
→ L∗
g(σ).

Definition 9.4.3 We say that a smooth vector field σ on G is left-invariant, iff σ = L∗
g(σ)

for all g ∈ G.

Remark 9.4.2 From (5.5), it follows that σ is left-invariant, iff σ is Lg-related to itself for
all g ∈ G.

Lemma 9.4.1 A vector field σ on G is left-invariant iff

σ(g) = D(Lg)e(σ(e)), g ∈ G. (9.9)

T (G)
D(Lg)e

 T (G)

G
Lg 



σ

��

G

σ

��

Proof: Verify directly. ♠

Theorem 9.4.1 For a Lie group G, the space g of all left-invariant vector fields over G
forms a Lie subalgebra of the Lie algebra of all vector fields T (G).

Proof: That g is a R-linear subspace is easily verified. To see that if σi ∈ g, i = 1, 2 then
[σ1, σ2] ∈ g, we appeal to Corollay 5.6.1 and the Remark 9.4.2 above. ♠

Definition 9.4.4 The Lie algebra g of all left-invariant smooth vector fields over a Lie
group G is called the Lie algebra of G.

Remark 9.4.3 The evaluation map σ 
→ σ(e) defines a linear map Ev : g→ Te(G). Given
a vector v ∈ Te(G) the formula

γv(g) = (DLg)e(v) (9.10)

defines an element of g such that Ev(γv) = γv(e) = v. Moreover, for any σ ∈ g, by the
invariance, we have σ(g) = (DLg)e(σ(e)). Therefore, γ is the inverse of Ev. Thus, as a
vector space, g is isomorphic to Te(G). It seems we have not done anything great except
that the tangent space Te(G) has been now equipped with a Lie bracket. The simplest point
to note at this stage is the fact that there was no way to define a Lie algebra bracket of
the tangent space Te(G) directly. This Lie bracket is going to dictate a lot of algebraic and
geometric behaviour of G. We shall deal with only a few of the interrelationships between
G and its Lie algebra g.
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Example 9.4.2 Consider the additive group R of real numbers. Its Lie algebra r is a 1-
dimensional vector space. The map L : C∞(R) → C∞(R) defined by L(f)(t0) = df

dt (t0)
is a generator of the vector space r. Clearly, [L,L] = 0, which can be seen directly or by
referring to Remark 9.4.1.(4).

Example 9.4.3 Take G = GL(n,K) and let A = (aij), B = (bij) ∈ TId(G) = M(n,K).
We want to compute [A,B] by interpreting A,B as left-invariant vector fields γA, γB, on
G. Let xij denote the coordinate functions on M(n,R.) We shall compute the effect of
the operator (γB ◦ γA) on xij at e = Id. For this, we have to first compute the operator
γA : C∞(G) → C∞(G) at least in a neighborhood of e. Recall that γA at e is nothing but
taking the directional derivative of a function in the direction of A at e. Similarly, (γA)g
is nothing but taking the directional derivative in the direction of D(Lg)e(A) = gA. In
particular, we have

γA(g)(xij) = (gA)ij =
∑
k

gikakj = xij(gA).

We must treat the assignment g 
→
∑

k gikakj as a function of g and compute (γB)e on
this. Since g 
→ gA is a linear map (right multiplication by A), its derivative is RA itself.
Therefore the directional derivative of this map in the direction B is nothing but BA.
Therefore, its (i, j)th-coordinate is xij(BA). This just means that the matrix of γB ◦ γA is
nothing but BA. It follows that the matrix of [γA, γB] is equal to AB −BA.

On a more canonical fashion, we may drop out the matrix notation. Thus, let V denote
any finite dimensional vector space, gl(V ) the algebra of endomorphism of V, and GL(V ),
the open subset of invertible elements of gl(V ). Clearly GL(V ) is a Lie group which is indeed
isomorphic to GL(n,K), where n = dimV with its Lie algebra equal to gl(V ). Workout the
following exercises.

Exercise 9.4.1 Let V denote a finite dimensional vector space, in these exercises.

1. If X is an open subset of V, then for all x ∈ X, we have, TxX = V.

2. A closed subgroup H of GL(V ), which is an open subspace of a subalgebra h of gl(V ),
has its Lie algebra equal to h.

3. Let W ⊂ U ⊂ V be any subspaces. Show that

{A ∈ GL(V ) : AU ⊂ U}; {A ∈ GL(V ) : (A− Id)U ⊂W}

are Lie subgroups of GL(V ). Describe the corresponding Lie subalgebras. [Hint: Start
with a basis of W, extend it to a basis of U and then to a basis of V. You can then
work inside GL(n,K).]

4. Let α : G → GL(V ) be any homomorphism (i.e, linear representation), where V is a
finite dimensional vector space. Let U,W be subspaces of V such that W ⊂ U. Then
G(U), G(U ;W ) respectively given by

{g ∈ G : α(g)(U) ⊂ U} & {g ∈ G : (α(g)− Id)(U) ⊂W}

are Lie subgroups of G with their respective Lie algebras

{v ∈ g : (Dα)e(v)(U) ⊂ U} & {v ∈ g : (Dα)e(v)(U) ⊂W}.
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5. Show that the derivative of Exp : M(n; K) → GL(n; K) at a point A ∈ M(n,K) is
given by the formula:

DA(Exp ) = RExpA ◦
(

Exp (adA)− Id
adA

)
, (9.11)

where Exp X −Id
X is understood as the operator

∞∑
n=0

Xn

(n+ 1)!
and RX is the right

multiplication by X.

6. (Theorem of Nono) Show that Exp is not a local diffeomorphism at A ∈ M(n; K)
iff adA has an eigenvalue of the form 2πık, where k �= 0 is an integer.

Lemma 9.4.2 Let h : G1 → G2 be a Lie homomorphism. Then given any left invariant
vector field σ on G1, there is a unique left-invariant vector field h∗(σ) on G2 such that σ
and h∗(σ) are h-related.

Proof: If τ is any vector field on G2, which is h-related to σ then τe = dheσe. Since
τe is completely determined by σe, the uniqueness follows. It remains to show that the
left-invariant vector field defined by

τ(g) = d(Lg)e(dhe(σe)), g ∈ G2 (9.12)

is h-related to σ. First observe that h : G1 → G2 is a homomorphism implies that h ◦Lg =
Lh(g) ◦ h for any g ∈ G1. Therefore, for any g ∈ G1, putting v = σ(e), we have,

d(h)g(σ(g)) = d(h)g(d(Lg)e(v))
= d(h ◦ Lg)e(v)
= d(Lh(g) ◦ h)e(v)
= d(Lh(g))e(dhe(v))
= d(Lh(g) ◦ h)e(v) = τ(h(g)).

We can now define h∗(σ) := τ as defined in (9.12). ♠

Theorem 9.4.2 Given a Lie-homomorphism h : G1 → G2 of two Lie groups, d(h)e : g1 →
g2 defines a homomorphism of Lie algebras. The assignment G� g is a covariant functor
from the category of Lie groups and Lie homomorphisms to the category of Lie algebras over
R.

Proof: Since d(h)e : TeG1 → TeG2 is a linear map, it follows that h∗ : g1 → g2 is a linear
map. Since σi ∼h h∗(σi), it follows from Corollary 5.6.1, that [σ1, σ2] ∼h [h∗(σ1), h∗(σ2)].
Therefore, from the uniqueness in the previous lemma, we have

h∗[σ1, σ2] = [h∗(σ1), h∗(σ2)].

This proves that h∗ is a homomorphism of Lie algebras.
If k : G2 → G3 is another Lie homomorphism, then clearly, by the chain rule, d(k◦h)e =

d(k)e ◦ d(h)e and also d(Id)e = Id, for the identity homomorphism of any group G. This is
precisely what we mean by saying that G� g defines a covariant functor. ♠

Theorem 9.4.3 Let H be a Lie subgroup of a Lie group G. Then the inclusion map η :
H → G induces an identification dηe : h ↪→ g of the Lie algebra with a Lie subalgebra of g.

Proof: This is clear since the only thing that we have to observe is that d(η)e is injective,
η being an embedding. ♠
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Remark 9.4.4 It becomes important to classify all finite dimensional Lie algebras up to an
isomorphism. Fixing a basis {Ei} for the vector space, the Lie-algebra structure is completely
determined by the “structural constants”

cijk = [[Ei, Ej ], Ek]

which satisfy a certain symmetry condition dictated by the properties (LII) and (LIII) and
extended over the whole vector space via (LI). For dimensions ≤ 3, workout the following
exercises. You will find that as the dimension increases the problem becomes more and more
cumbersome. Cartan developed a different approach for such a classification. You may read
about it from several available expositions. (See [Hum].)

Exercise 9.4.2

1. On a real vector space of dimension 2, show that any two nontrivial Lie algebras are
isomorphic. (And, of course, there is a nontrivial one.)

2. Consider the set L of all strictly upper triangular 3 × 3 real matrices. Compute the
Lie brackets of the following elements that form a basis for L.

E1 =

⎛
⎝ 0 1 0

0 0 0
0 0 0

⎞
⎠ ; E2 =

⎛
⎝ 0 0 0

0 0 1
0 0 0

⎞
⎠ ; E3 =

⎛
⎝ 0 0 1

0 0 0
0 0 0

⎞
⎠ .

3. Show that the vector product [u,v] = u× v defines Lie algebra structure on R3.

4. Show that the Lie algebra in the above exercise is isomorphic to the Lie algebra so(3) of
3×3 real skew-symmetric matrices. Indeed check that you can map i, j,k respectively
to: ⎛

⎝ 0 1 0
−1 0 0

0 0 0

⎞
⎠ ;

⎛
⎝ 0 0 −1

0 0 0
1 0 0

⎞
⎠ ;

⎛
⎝ 0 0 0

0 0 1
0 −1 0

⎞
⎠

5. Show that ‘direct” sum of two Lie algebras is again a Lie algebra in an obvious way,
where the bracket of vectors from different factors is defined to be zero. If a Lie algebra
can be written as a direct sum of two or more Lie algebras of nonzero dimension then
it is called decomposable. For example, you can write R3 = R2⊕R or R3 = R⊕R⊕R

and take the Lie algebra structures accordingly.

6. Determine whether or not the two Lie algebras L and so(3) given above on R
3 are

decomposable or not.

7. Can you find some more 3-dimensional Lie algebras?

9.5 Canonical Coordinates

We first recall some basic facts from the theory of ordinary differential equations. Let
X,Y be smooth manifolds. Let σ : X × Y → TX be a smooth map such that π ◦ σ = IdX ,
i.e., σ is a smooth family of vector fields on X. For a given smooth function α : X → X
consider the equation

∂f

∂t
(x, t, y) = σ(f(x, y, t), y); f(x, 0, y) = α(x) (9.13)
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where f : X × R× Y → X is a smooth function.
By the theory of ordinary differential equations, given any point (x, y) ∈ X × Y there

exists a unique smooth solution f of this problem in a sufficiently small neighborhood of
(x, 0, y). (Compare theorem 6.3.1.)

Now look at the special case when X = GL(n,R) and Y = M(n,R). Take α = IdX
and σ to be the left-invariant vector field (g,A) 
→ (g, gA) for A ∈M(n,R). Then the map
f given by (g, t, A) 
→ getA satisfies (9.13). Putting g = e, t = 1, we get the exponential
map. Thus, we are lead to define exponential map in the case of arbitrary Lie groups via
solutions of (9.13). That is what we shall do now.

Let now X = G be any Lie group, Y = g its Lie algebra, σ : X × Y → TG be the
left-invariant vector field given by (g,A) 
→ (g, gA). Let α = IdG : G → G. Let f be the
unique solution of (9.13) in a neighborhood U × (−ε, ε)× V of (e, 0, 0).

We may, and shall assume that V is a convex neighborhood of 0 in g.

Lemma 9.5.1 For A ∈ V, g ∈ U, |s| < 1 and t1, t2, such that |t1|, |t2| and |t1 + t2| all
being < ε, we have,

f(g, t1 + t2, A) = f(g, t1, A)f(e, t2, A) (9.14)

and

f(g, st, A) = f(g, t, sA). (9.15)

Proof: Fix t1 and put g0 = θA(t1). Consider the two functions

φ1(g, t, A) = f(g, t1 + t, A)g; φ2(g, t, A) = f(g, t1, A)f(e, t, A).

Let us check that both are solutions of the initial value problem (9.13), with α replaced
by β(g) = f(g, t1, A)g. Then by the uniqueness of the solution, it follows that φ1 = φ2 from
which (9.14) follows.

Clearly,
φ1(g, 0, A) = f(g, t1, A)g = β(g)

and
φ2(g, 0, A) = f(g, t1, A)f(e, 0, A) = f(g, t1, A)α(g) = β(g).

Next
dφ1

dt
(g, t, A) =

df

dt
(g, t1 + t, A) = σ(f(g, t1 + t, A), A) = σ(φ1(g, t, A), A);

also,
dφ2

dt
(g, t, A) = f(g, t1, A)

df

dt
(e, t, A)

= f(g, t1, A)σ(f(e, t, A), A) = σ(φ2(g, t, A), A),

the last equality being given by the left-invariance of σ. Thus, we have verified that both φi
are solutions of (9.13). The proof of (9.15) is similar. This time use the vector field sσ and
see that both the functions f(g, st, A) and f(g, t, sA) are solutions of (9.13). Details are left
as exercise to the reader. ♠

For any A ∈ V, let us put

θA(t) = f(e, t, A). (9.16)

Then it follows that

θA(t1 + t2) = θA(t1)θA(t2), (9.17)

for t1, t2, t1 + t2 ∈ (−ε, ε). As an immediate consequence, it follows that the map θ(t, A) =
f(e, t, A) can be extended uniquely on R × V → G so that for each fixed A ∈ V, the map
θA : R → G is a homomorphism. It also follows that θ is smooth.
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Definition 9.5.1 Let G be any Lie group and g be its Lie algebra. Let V be a convex
neighborhood of 0 ∈ g as given above. We define the mapping Exp : V → G by the formula

Exp (A) = θA(1). (9.18)

Now given any A ∈ g, we can choose a positive integer m, such that A/m ∈ V. Using
(9.15), we can define

Exp (A) = θA/m(m) = (θA/m(1))m = (Exp (A/m))m. (9.19)

Verify that this way, Exp gets extended on the whole of g as a smooth map.

Theorem 9.5.1 The map Exp : g → G is a local diffeomorphism at 0.

Proof: Since D(Exp )0 : T0(g) → TeG is nothing but Id : g → g, we can use the inverse
function theorem to see that Exp is a diffeomorphism in a neighborhood V of 0. ♠

Remark 9.5.1 It is not true that Exp is a local diffeomorphism at other points of g, in
general (see under Exercises 9.4.1).

Definition 9.5.2 A local inverse of Exp in a suitable neighborhood of e ∈ G is called a
canonical coordinate system for G.

The following lemma justifies this name.

Lemma 9.5.2 Let f : G→ H be a Lie homomorphism. Then Exp ◦dfe = f ◦Exp : g → H.

G
f 

 H

g
dfe 



Exp
��

h

Exp
��

Proof: Fix A ∈ g and put B = Dfe(A) ∈ h. Consider the homomorphism θ : R → H given
by θ(t) = f(Exp (tA)). Then dθ

dt (0) = Dfe(Exp (A)) = B. Therefore, θ = θB and hence
θ(1) = Exp (B). ♠

As an immediate corollary we have:

Theorem 9.5.2 Let G be a connected Lie group. Then any Lie homomorphism f : G→ H
is completely determined by d(f)e : g → h.

Proof: By the previous lemma and the theorem, it follows that f is completely determined
in a neighborhood of e ∈ G. But then since G is connected, f is defined on a set of generators
for G. ♠

Remark 9.5.2 An easy corollary of the exponential map is that any Lie group is a real
analytic manifold. This follows from the fact that the canonical local charts are real analytic
on the overlaps, being given as solutions of a suitable initial value problem. Further, it follows
from the above theorem that any (smooth) homomorphism of Lie groups is actually real
analytic.

Corollary 9.5.1 Let G be a Lie subgroup of H. Then for any neighborhood U of 0 ∈ h
Exp (U ∩ g) = Exp (U) ∩G defines a neighborhood of e ∈ G.

One can generalize the “canonical coordinates” a little bit.



268 Lie Groups and Lie Algebras: The Basics

Theorem 9.5.3 Let G be a Lie group and g be its Lie algebra. Let g = V1 ⊕ · · · ⊕ Vk be a
direct sum decomposition of g into linear subspaces. Let U be a neighborhood of 0 ∈ g and
φi : U ∩ Vi → G, 1 ≤ i ≤ k be smooth maps such that D(φi)0 is the inclusion map Vi → g.
Then the map

Ψ : (v1, . . . ,vk) 
→ φ1(v1) · · ·φk(vk) (9.20)

defines a local coordinate system for G around e.

Proof: All that we need to see is that the derivative of Ψ at 0 ∈ g is nonsingular. Since the
derivative of the product is the sum of the derivatives, it follows that d(Ψ)0 = Id. By the
inverse function theorem, we are through. ♠

Remark 9.5.3 In particular, if φi = Exp |Vi , then Ψ is called a canonical coordinate of the
II-kind by some authors.

Exercise 9.5.1 Verify that Exp : g → G as given in (9.19) is well-defined and smooth.

We end this section with a computation of the power series expansion for the multipli-
cation rule in any Lie group in terms of canonical coordinates.

Let G be any Lie group, U be some suitably small neighborhood of e ∈ G such that
UU ⊂ U and U is diffeomorphic to a neighborhood of 0 ∈ g via the exponential map. Let
{x1, . . . , xn} be the coordinate functions of the inverse of the exponential map. Then we
know that xi are analytic functions. We would like to find the power series expression for
the functions U × U → R given by

(g, h) 
→ xi(gh).

So for the time being fix g, h ∈ U such that gh ∈ U. Let u,v ∈ g be such that Exp (u) =
g, Exp (v) = h. We shall treat elements of g as elements of D(X). (See Section 5.6.) Let
now f be any analytic function around e ∈ G. Put α(t) = gExp (tv). Then we know that

d

dt
(f ◦ α) = v(f) ◦ α. (9.21)

Applying this to the functions vk(f) successively yields

dk

dtk
(f ◦ α) = vk(f) ◦ α, k ≥ 1. (9.22)

Therefore it follows that

f ◦ α(t) =
∞∑
k=0

vk(f)(α(0))
tk

k!
. (9.23)

Taking g = e, and t = 1, we get

f(h) = f(e) +
∞∑
k=1

vk(f)(e)
k!

. (9.24)

Replacing h by g and therefore v by u, we have

f(g) = f(e) +
∞∑
k=1

uk(f)(e)
k!

. (9.25)
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Applying this to each vl in place of f, we get

vl(f)(g) = vl(f)(e) +
∞∑
k=1

ukvl(f)(e)
k!

. (9.26)

Putting t = 1 in (9.23) and substituting from (9.26), we get,

f(gh) =
∞∑
l=0

vl(f)(g)
k!

=
∞∑

k,l=0

ukvl(f)(e)
k!l!

. (9.27)

We can now put f = xi in each of the above identities to obtain the power series expansion
for xi(g), xi(gh), etc. Since xi(e) = 0, we get

xi(g) =
∞∑
k=0

uk(xi)(e)
k!

. (9.28)

Given two analytic functions, α, β in a neighborhood of e, we shall use the notation
α ∼ β to denote that the terms of order ≤ 2 vanish in the power series expansion of α− β.
Thus, we can write,

xi(gh) ∼ xi(g) + xi(h) + uv(xi)(e). (9.29)

It also follows that

xi(gh)− xi(hg) ∼ [u,v](xi)(e). (9.30)

Lemma 9.5.3 Let f(x, y) be a (smooth) analytic function in a convex neighborhood U of
(0, 0) such that f(x, 0) = f(0, y) = 0. Then there exists (smooth) analytic functions αij in
U such that

f(x, y) =
∑
ij

αij(x, y)xiyj . (9.31)

We apply this to the function xi(gh)− xi(g)− xi(h) and to the function xi(h−1g−1hg)
to obtain

xi(gh)− xi(g)− xi(h) =
∑
jk

αijk(g, h)xj(g)xk(h). (9.32)

xi(h−1g−1hg) =
∑
jk

βijkxj(g)xk(h). (9.33)

Therefore, replacing g by gh and h by h−1g−1hg in (9.32) we obtain

xi(hg)− xi(gh)− xi(h−1g−1hg)
=

∑
jk

αijk(gh, h−1g−1hg)xj(gh)xk(h−1g−1hg)

∼ 0.

Combining this with (9.30), we get,

xi(h−1g−1hg) ∼ [v,u](xi)(e). (9.34)
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Replacing h by g−1h−1gh in (9.32), we get

xi(h−1gh)− xi(g)− xi(g−1h−1gh) ∼ 0.

Using (9.34), this gives,

xi(h−1gh) ∼ xi(g) + [u,v](xi)(e). (9.35)

Interchanging g and h and then g and g−1, we get

xi(ghg−1) ∼ xi(h) + [u,v](xi)(e). (9.36)

Corollary 9.5.2 D(Cg)e(u) = u + [u,v], where g = Exp v.

Proof: We use (9.36). Putting h = Expu, we have,

xi(D(Cg)e(u)) = limt→0
xi(Cg(Exp tu))

t

= limt→0
xi(tu)
t

= xi(u) + [u,v](xi)(e)

which proves the corollary. ♠
These derivations will become very handy for several purposes later on.

9.6 Topological Invariance

As an application of canonical coordinates of the second kind, let us prove the topological
invariance of Lie groups. First we have,

Lemma 9.6.1 Let α : (−ε, ε) → R be a continuous local homomorphism. Then f is the
restriction of a linear map. In particular, α(x) = xα(1) for all x ∈ R.

Proof: For any −ε < x < ε, and any integer k �= 0, we have α(x) = kα(x/k). For the same
reason, if p/q is any (nonzero) rational number with |p/q| < 1, then α(p

qx) = pα(xq ) = p
qα(x).

By continuity, it follows that for all −1 ≤ r ≤ 1, we have α(rx) = rα(x). Now for any
0 < |x| < |y| < ε, we have α(ry) = rα(y) implies that, (by taking r = x/y) α(x) = x

yα(y).
Therefore α(y) = y

xα(x). This implies that for all r ∈ R such that −ε < rx < ε, we have
α(rx) = rα(x). Thus, this formula can be used to extend α : R → R. In particular, it follows
that α(1) = 1

xα(x). Therefore, α(y) = y
xα(x) = yα(1) for all y ∈ R. ♠

Theorem 9.6.1 If f : G1 → G2 is a continuous homomorphism of Lie groups, then it is
analytic. In particular, the underlying topological group determines the structure of a Lie
group completely.

Proof: It is enough to prove that f is analytic at e ∈ G1. First consider the case when
G1 = R. Let {x1, . . . , xn} denote a canonical coordinate system around e ∈ G2. It is enough
to prove that xi(f) is analytic in a neighborhood of 0 ∈ R.

We know that for any v ∈ g and m ∈ Z, Exp (v) = (Exp (v/m))m. Thus, if g, gm

are inside a canonical neighborhood then we know that ln(gm) = m ln(g). Therefore,
xi(f)(mt) = xi((f(t))m) = mxi(f(t)) for all t ∈ R and for all integers. This just means
that xi(f) is a local homomorphism. From Lemma 9.6.1, we conclude that xi(f) is analytic.
This completes the proof in the case G1 = R.
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In the general case, let {v1, . . . ,vn} be a basis for g and let Φ : U → G1 be the associated
canonical coordinate system as in Theorem 9.5.3. This means that for some ε > 0 every
element belonging to Φ(U) has a unique expression

g = Exp (t1v1) · · ·Exp (tnvn); |ti| < ε.

Since f : G→ H is a homomorphism, we have,

f(g) = f(Exp (t1v1)) · · · f(Exp (tnvn)).

Each ti 
→ f(Exp (tivi)) is a continuous local homomorphism and hence analytic. Being the
product of finitely many analytic maps, f is also analytic. ♠

Remark 9.6.1 It is easy to see that if Exp : B → G is a diffeomorphism where B is a ball
of radius r around 0 in g, then U = Exp (1

2B) is a neighborhood e in G that does not contain
any subgroup H �= {e} of G. This property of a Lie group is referred to as “having no small
subgroups”. Gleason and Yamabe proved that any Hausdorff topological group is a Lie
group iff it is locally compact and has no small subgroups. In a series of papers by various
authors (Montgomery, Zippin, Iwasawa, Gleason, Yamabe, etc.), it has been established that
a topological group that is a topological manifold does not have small subgroups. Together
with the above result of Gleason and Yamabe, this proves that a topological manifold that
is a topological group is a Lie group, which answers Hilbert’s 5th problem affirmatively.

9.7 Closed Subgroups

In this section, we shall see another application of generalized canonical coordinates.
Often it may happen that we do get subgroups that are not closed. On the other hand,

experience tells us that closed subgroups are always better behaved. So, we begin with a
basic theorem due to Lie, which justifies our definition of matrix groups.

Lemma 9.7.1 For 1 ≤ i ≤ k, let γi : (−ε, ε) → G be smooth maps such that γi(0) = e and
dγi

dt |0 = ui ∈ Te(G) are linearly independent. Let h be the subspace of Te(G) spanned by
{u1, . . . ,uk}. For |ti| < ε, consider the map

Γ

(∑
i

tiui

)
= γ1(t1) · · · γk(tk).

Then Γ is smooth and D(Γ)0(u) = u, u ∈ h.

Proof: Enough to show that D(Γ)0(ui) = ui. But the left-hand side is the directional
derivative of Γ in the direction of ui, which is equal to γ′i(0) = ui. ♠

Theorem 9.7.1 Let H be a closed topological subgroup of a Lie group G. Then H is a Lie
subgroup.

Proof: The only thing that we need to verify is that H is a submanifold. For this, it is
enough to give a coordinate chart for H around e.

Let g be the Lie algebra of G. Since we do not know whether or not H is a manifold,
we cannot talk about the tangent space to H at e as such. This difficulty is overcome by
using an appropriate description of the tangent space, viz., we consider the set T (H) of all
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vectors γ′(0) ∈ g, where γ is a smooth curve in H such that γ(0) = e. We hope that T (H)
indeed plays the role of the Lie algebra of H.

We first prove that T (H) is a vector subspace of g. Given γ such that γ′(0) = u ∈ T (H),
and a real number r, the curve t 
→ γ(rt) is a curve in H with velocity vector at 0 equal to
ru. Therefore, ru ∈ T (H). If γ1, γ2 are two such curves in H then the curve t 
→ γ1(t)γ2(t)−1

takes values in H and has its velocity vector at 0 equal to γ′1(0)− γ′2(0).
(We can go on to show that T (H) is indeed a Lie sub-algebra. But this seems to be not

necessary at all!)
Fix an ordered basis, {u1, . . . ,uk} for T (H). Let γi be a smooth curve in H such that

γ′i(0) = ui, γi(0) = e. Define

Γ

(∑
i

tiui

)
= γ1(t1)γ2(t2) · · · γk(tk). (9.37)

Then Γ makes sense for all |ti| < ε, for some ε > 0 and takes values in H. Also, Γ(0) = e
and D(Γ)(0)(u) = u for all u ∈ T (H) (see the lemma above). The claim is that Γ defines a
parameterization of a neighborhood of e in H. For this, fix a complementary subspace W
to T (H), i.e., T (H)⊕W = g and let

Φ(u + v) = Γ(u)Exp (v), u ∈ T (H); v ∈ W. (9.38)

Then by Theorem 9.5.3, we see that in a smaller neighborhood U around 0 ∈ g, Φ is a
diffeomorphism.

Clearly Φ(U ∩T (H)) ⊂ H. The only thing that is needed now is a smaller neighborhood
U ′ ⊂ U of 0 in g, such that H ∩Φ(U ′) ⊂ Φ(U ′ ∩ T (H)).

So, assume that this is not the case. Then there exists a sequence wi ∈ g \ h such
that wi → 0, and Φ(wi) ∈ H. Write wi = ui + vi. It follows that vi → 0,vi �= 0 and
vi ∈W. Consider the sequence vi/‖vi‖ of vectors of unit length. Passing to a subsequence,
if necessary, we may assume that this converges to a vector v of unit length in W. Since
Φ(wi) = Φ(ui)Exp (vi), it follows that Exp (vi) ∈ H for all i. For any t ∈ R, put ni =
&t/‖vi‖'. Check that nivi → tv. Therefore, Exp (nivi) → Exp (tv). Since each Exp (vi) ∈
H, so are Exp (nivi) = (Exp (vi))ni . Therefore, Exp (tv) ∈ H. Thus, we have proved that
the curve C : t 
→ Exp (tv) is in H. By definition, v = dC

dt

∣∣
0
∈ T (H), which is absurd. ♠

Remark 9.7.1 We draw your attention to the fact that in the course of the proof of the
above theorem, we have obtained an alternative description of the Lie subalgebra of a closed
subgroup H of G, viz. h = T (H). Also, Φ defines a diffeomorphism of a neighborhood of
0 ∈ h with a neighborhood of e ∈ H.

Exercise 9.7.1

1. Let Hα be a family of Lie subgroups of a Lie group G. Show that ∩αHα is a Lie
subgroup.

2. Give a similar description of the tangent space TxX to a smooth submanifold X of a
Euclidean space RN as in Remark 9.7.1.

9.8 The Adjoint Action

Definition 9.8.1 Let G be any group and V be a vector space. By a linear representation
of G on V, we mean a group homomorphism ϕ : G → Aut(V ) where Aut(V ) denotes the
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group of all vector space isomorphisms of V to itself. The representation ϕ is called faithful
if it is injective.

Definition 9.8.2 Let g be a Lie algebra over K. By a linear representation of g, we mean
a Lie algebra homomorphism α : g→ gl(n,K) for some n ≥ 1.

Example 9.8.1 Let g be a (finite dimensional) Lie algebra over a field K. Fix some basis
{v1, . . . ,vn} for g over K. For each v ∈ g consider the mapping u 
→ [u,v]. This is clearly
a linear map and hence gives an element P (v) ∈ gl(n,K). The mapping P : g → gl(n,K) is
itself linear. Moreover, using Jacobi-Identity and the antisymmetry property, we can easily
check (exercise) that P is a Lie algebra homomorphism and hence defines a representation
of g in gl(n,K). This is called the adjoint representation of g and is denoted by ad : g →
GL(n,K).

Example 9.8.2 Let G be a Lie group and Aut(G) denote the group of all Lie automor-
phisms of G. Given f ∈ Aut(G), the map Df : g→ g is Lie isomorphism of g to itself. By the
chain rule, it follows that f 
→ Df defines a linear representation D : Aut(G) → GL(n,K).
Now, for each g ∈ G, consider the conjugation Cg : G → G, given by h 
→ ghg−1. Then
Cg is Lie automorphism of G and hence Cg ∈ Aut(G). Moreover, check that g 
→ Cg is
a group homomorphism. Composing this with f 
→ Df considered above, yields a linear
representation of G on g denoted by Ad : G→ gl(n,K) and called the adjoint representation
of G.

Theorem 9.8.1 D(Ad)e = ad.

Proof: For any two elements v,u ∈ g, we have to show that D(Ad)e(v)(u) = adv(u) =
[u,v]. Consider the curve t 
→ Exp tv in G passing through e and with tangent at e equal
to v. Then

D(Ad)(v)(u) =
(

lim
t→0

Ad(Exp tv)− Id
t

)
(u)

=

(
lim
t→0

D(CExp tv)− Id
t

)
(u)

= lim
t→0

[u, tv]
t

(using Corollary 9.5.2)

= [u,v].

♠

Definition 9.8.3 The center z(g) of a Lie algebra g is defined to be the set of all u ∈ g
such that adu = 0.

Remark 9.8.1 Clearly z(g) is a subalgebra of G.

Theorem 9.8.2 Let G be a connected Lie group. Then its center is a closed Lie subgroup
with its Lie algebra equal to the center z(g) of g.

Proof: The representation Ad : G→ GL(n,R), where n = dim G is a Lie homomorphism.
The kernel of Ad is therefore a closed Lie subgroup with its Lie algebra equal to the kernel
of ad : g → gl(n,R), which is, by definition, the center of g. From Theorem 9.5.2, it follows
that Ad(g) = D(Cg)e = Id⇐⇒ Cg = Id⇐⇒ g ∈ z(G). ♠

Remark 9.8.2 That the center z(G) is a closed Lie subgroup also follows from Theorem
9.7.1, once we observe that it is a closed topological subgroup.
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Definition 9.8.4 By an ideal in a Lie algebra g we mean a subalgebra (subspace) h such
that [u, v] ∈ h for all u ∈ h, v ∈ g.

Remark 9.8.3 The center of a Lie algebra is an ideal.

Theorem 9.8.3 Let H be a connected Lie subgroup of a connected Lie group G. Then H
is normal in G iff its Lie algebra h is an ideal in g.

Proof: For any g ∈ G, consider the automorphism Cg : G → G. Given any connected Lie
subgroup H of G, Cg(H) = gHg−1 is again a Lie subgroup of G with its Lie algebra equal
to D(Cg)(h). Therefore, H is normal iff D(Cg)(h) = h for all g ∈ G.

Now suppose D(Cg)(h) = h for all g ∈ G. From Corollary 9.5.2, we have D(Cg)(u) =
u + [u,v] for g = Exp v. Therefore, it follows that for all u ∈ h and all v ∈ g, we have,
[u,v] ∈ h. Conversely, if h is an ideal, then for all points g ∈ Exp (U), we haveD(Cg)(h) ⊂ h.
The set of all g for which this property holds is a subgroup that contains a neighborhood
of e ∈ G. Since G is connected, this subgroup must be the whole of G. This completes the
proof. ♠

9.9 Existence of Lie Subgroups

A Lie algebra of a Lie group G can have a subalgebra that does not correspond to any
Lie subgroups: here is a simple example.

Example 9.9.1 Take G = T2 = S1 × S1, and h as the linear span of (1, π) in g = R2. It
follows that the corresponding algebra homomorphism is induced by the homomorphism
f : R → torus2 given by t → (eıt, eıπt), which has dense image in T2. (Compare Exercise
9.3.1.(6).) Therefore, if there were a Lie subgroup H ⊂ T 2 with its Lie algebra equal to h
as above, then H would contain the image of f which is dense in a 2-dimensional manifold.
So, H cannot be a submanifold.

However, the situation is no worse than this. Thus, we are led to make the following defi-
nition.

Definition 9.9.1 By a virtual subgroup H of a Lie group G, we mean a Lie group H
together with a smooth injective immersive homomorphism φ : H → G. (We identify H
with the underlying set φ(H) and get rid of φ.)

Remark 9.9.1 Thus, every Lie subgroup is a virtual subgroup. As seen above (the irra-
tional) image of f in T2 is a virtual subgroup but not a Lie subgroup. The induced topology
on a virtual subgroup H is often weaker than its topology. Of course, these two topologies
coincide iff H is a submanifold iff H is a Lie subgroup iff H is locally closed. In particular,
a virtual subgroup whose underlying set is open or closed is a Lie subgroup.

Lemma 9.9.1 Any immersive homomorphism α : H → G of Lie groups defines a virtual
subgroup α(H) of G.

Remark 9.9.2 Since φ : H → G is immersive, it follows that we can identify the Lie
algebra h of H with a subalgebra of g. It is also clear that two connected virtual subgroups
having the same Lie subalgebra are equal. So, we are now interested in the existence part.

Theorem 9.9.1 Let h be a Lie subalgebra of the Lie algebra g of a Lie group G. Then there
is a unique connected virtual subgroup H of G such that its Lie algebra is equal to h.
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We shall postpone the proof of this theorem to the end of this section. Let us see how
much of the Lie theory we can build up based on this result.

As an immediate corollary, we have,

Theorem 9.9.2 Let φ : h→ g be a Lie algebra homomorphism where h, g are Lie algebras
of Lie groups H,G, respectively. Then there is a local homomorphism f : H → G such that
dfe = φ. Further, if H is simply connected, then f extends to a homomorphism f : H → G.

Proof: Let Γφ ⊂ h×g be the graph of φ. Check that Γφ is a sub-algebra of h×g. Since h×g
is the Lie algebra of H × G, it follows that there is a unique connected virtual subgroup
K ⊂ H×G whose Lie algebra is Γφ. Consider the two projections π1 : H×G→ H and π2 :
H×G→ G. The tangent space to K at (e, e) is equal to Γφ and in fact, d(π1)(e,e)(v, φ(v)) =
v. Therefore, d(π1) : T(e,e)(Γφ) → TeH is an isomorphism and hence π1 : Γφ → H is a local
diffeomorphism onto a neighborhood U of e ∈ H say. Let f = π2 ◦ (π1)−1 on U. It is
easily verified that dfe = φ. Being the local inverse of a homomorphism, π−1

1 is a local
homomorphism. Since π2 is a homomorphism, it follows that f is a local homomorphism.
The last part follows from the Principle of Monodromy. (See Exercise 9.2.4.(5).) ♠

Corollary 9.9.1 If G,G′ are any two simply connected Lie groups, then G ≈ G′ iff their
Lie algebras are isomorphic: g ≈ g′.

Example 9.9.2 Consider a connected 1-dimensional Lie group G. By the above corollary,
its universal covering group is isomorphic to the additive group of real numbers. Thus, de-
pending on whether G were compact or not, it is either isomorphic to S1 or R. In particular,
we know that the multiplicative group of positive real numbers is isomorphic to R via the
exponential map.

Corollary 9.9.2 Given any σ ∈ g, there is a homomorphism h : R → G such that h∗(L) =
σ, where L = d

dt is the generator of the Lie algebra of R.

Proof: For, R is simply connected and the association L 
→ σ extends uniquely to a Lie
algebra homomorphism φ : r → g and hence we can apply the latter part of Theorem 9.9.2.

Theorem 9.9.3 Let g be a Lie algebra over R. Then there exists a connected Lie group G
whose Lie algebra is isomorphic to the quotient algebra g/z(g).

Proof: Consider the adjoint representation ad : g → gl(n,R) where n = dim g. The kernel
of this homomorphism is precisely equal to the center z(g). Therefore the image of ad is
a Lie sub-algebra h of gl(n,R) isomorphic to g/z(g). The connected virtual subgroup H
of G ⊂ GL(n,R) has its Lie algebra equal to h. But then H is the image of a one-to-one
immersion of a Lie group which is the Lie group that we are looking for. ♠

Remark 9.9.3 It is a fact (much harder to prove) that every Lie algebra is the Lie algebra
of a connected, simply connected Lie group.

Lemma 9.9.2 Let g be a Lie algebra. Then the linear span

[g, g] := L({[u,v] : u,v ∈ g})

is an ideal in g.

Proof: Easy. ♠

Definition 9.9.2 The ideal [g, g] is called the derived sub-algebra of g and often denoted
by g′.
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Remark 9.9.4 A Lie algebra g is abelian iff g′ = 0. It is easy to see that the factor algebra
g/g′ is always abelian. Moreover, g′ is contained in all ideals h of g such that g/h is abelian.

Theorem 9.9.4 Let G be a connected Lie group. Then the commutator subgroup [G,G] is
a connected Lie subgroup whose Lie algebra is equal to [g, g].

Proof: First consider the case, when G is simply connected. Let q : g → g/[g, g] be the
quotient homomorphism of Lie algebras. Observe that g/[g, g] is abelian and hence is iso-
morphic to the Lie algebra of the additive group Rd, where d = dim g/[g, g]. By Theorem
9.9.2, there is a Lie-homomorphism f : G→ Rd such that dfe = q. Clearly Ker f is a closed
Lie subgroup of G, whose Lie algebra is [g, g]. Since d(f)e is surjective, by implicit function
theorem, f defines a surjective map of some neighborhood of e ∈ G to a neighborhood of
0 in Rd. It follows that f : G→ Rd itself is surjective and hence G/Ker f ≈ Rd. From the
homotopy exact sequence of the fibration G→ G/Ker f, viz.,

π1(G/Ker f) → π0(Ker f) → π0(G)

it follows that Ker f is connected. (See Corollary 9.3.2.)
Since Rd is abelian, it follows that Ker f contains [G,G]. We claim that Ker f = [G,G].

It is enough to prove that a neighborhood of e in Ker f is contained in [G,G].
Choose a basis of [g, g] consisting of elements of the form

{Xi := [ui,vi] : i = 1, . . . , k}

where ui,vi ∈ g. We may assume that ui,vi are in a neighborhood V of 0 ∈ g where
Exp : V → G is a diffeomorphism onto a neighborhood of e ∈ G. Complete this to a basis

{X1, . . . , Xk, Xk+1, . . . , Xn}

of g and take canonical coordinates xi of G around a smaller neighborhood V ′ of e with
respect to this basis. Put gi(t) = Exp (tui);hi = Exp vi, i = 1, . . . , k and consider γi(t) =
[gi(t), hi]. Clearly, γi(0) = e and γi(t) ∈ [G,G]. From equation (9.36), it follows that γ′i(0) =
Xi. Therefore, as in the proof of Theorem 9.7.1, (see the Remark 9.7.1), the map Φ defined
as in (9.37), gives a diffeomorphism of V ′ with a neighborhood of e ∈ Ker f. At the same
time, we know that Φ takes values in [G,G]. Therefore, it follows that a neighborhood of
e ∈ Ker f is contained [G,G]. Since Ker f is connected, it follows that Ker f ⊂ [G,G].
This completes the proof in the case G is simply connected.

Now in the general situation, consider the simply connected covering homomorphism
φ : G̃ → G. Then [G̃, G̃] is the connected subgroup whose Lie algebra is [g, g]. The ho-
momorphism φ induces identity map Id = D(φ) : g → g and hence φ([G̃, G̃]) is the sub-
group of G whose Lie algebra is [g, g]. But since φ is surjective, φ([G̃, G̃]) = [G,G] and
φ−1([G,G]) = [G̃, G̃]. Since φ is a local diffeomorphism, it follows that [G,G] is a submani-
fold of G. ♠

Remark 9.9.5 In general, [G,G] may not be a closed subgroup.

We shall now take up the proof of the existence Theorem 9.9.1

Definition 9.9.3 Let G be a Lie group, g its Lie algebra, and let h be any subalgebra.
Consider the family of all Lie subgroups F of G whose Lie algebras contain h. The intersec-
tion of all these Lie subgroups is again a Lie subgroup (see Exercise 9.7.1.(1)), whose Lie
algebra is called the Maltsev (Malčev) closure of h and is denoted by hM . Clearly h ⊂ hM .

Lemma 9.9.3 (Maltsev) [hM , hM ] = [h, h].
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Proof: Clearly, h ⊂ hM and hence [h, h] ⊂ [hM , hM ]. We have to prove the other inclusion.
We apply Exercise 9.4.1.(4) to the adjoint representation of G taking W = [h, h] and U

to be any subspace of g containing W, to conclude that

HU := {g ∈ G : (Ad(g) − Id)(U) ⊂ [h, h]}

is a Lie subgroup of G with its Lie algebra

hU := {v ∈ g : ad(v)(U) ⊂ [h, h]}. (9.39)

Further, suppose that [U, h] ⊂ [h, h]. Then clearly h is contained in hU . Therefore, hM ⊂ hU .
This just means that [hM , U ] ⊂ [h, h].

In particular, taking U = h, we get [hM , h] ⊂ [h, h]. Now, taking U = hM , we get
[hM , hM ] ⊂ [h, h]. ♠
Proof of Existence Theorem 9.9.1
Let hM denote the Maltsev closure of h. Then from Lemma above we have [hM , hM ] = [h, h].
Let F be the Lie subgroup of G such that its Lie algebra f = hM . Let F̂ be the univer-
sal covering group of F. Then F̂ /[F̂ , F̂ ] is a simply connected abelian group and hence is
isomorphic to Rn for some n. (See Exercise 8 of 9.9.1.) Its Lie algebra is hM/[h, h] that con-
tains h/[h, h]. Therefore, there is a (unique) Lie subgroup J of F̂ /[F̂ , F̂ ] with its Lie algebra
equal to h/[h, h]. Let Ĥ be the inverse image of this under the quotient homomorphism
F̂ → F̂ /[F̂ , F̂ ]. Clearly, the Lie algebra of Ĥ is equal to h. The required virtual subgroup
H of G is the image of Ĥ in F ⊂ G. ♠

Exercise 9.9.1

1. Show that if H is a Lie subgroup of a connected Lie group G and dim H = dim G
then H = G.

2. Show that a connected Lie group is abelian iff its Lie algebra is abelian.

3. Show that Exp : g → G is a surjective covering homomorphism for any connected
abelian Lie group G.

4. By an n-dimensional torus we mean Tn := (S1)n := S1 × · · · × S1, the Cartesian
product of n copies of S1. Show that Tn is a matrix group.

5. Show that every Tn is isomorphic to Rn/Zn.

6. Let H be a discrete subgroup of Rn. Show that there exist a linearly independent set
S = {v1, . . . ,vk} in Rn such that the additive subgroup generated by S is equal to
H.

7. Let {v1, . . . ,vk} be a linearly independent set in Rn and let H be the additive sub-
group generated by this set. Show that the quotient group Rn/H is isomorphic to
Tk × Rn−k.

8. Show that a connected, simply connected abelian Lie group is isomorphic to Rn.

9. Show that any connected compact abelian Lie group is isomorphic to a torus. [Hint:
Show that Exp : g → G is a surjective homomorphism and hence a covering homo-
morphism. Then appeal to Exercise 6.]

10. By a torus T in G, we mean a subgroup T of G which is isomorphic to (S1)k for some
k. T is called a maximal torus if it is not contained in another torus in G which is
larger than T. Show that every compact Lie group G contains a maximal torus.
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11. Let T ⊂ G be a torus, where G is compact. Show that T is maximal iff any element
of G that commutes with every element of T is in T itself.

12. Let Rθ denote the 2 × 2 matrix representing the rotation through an angle θ in R2.
For any two square matrices A,B, we shall use the notation diag (A,B) to denote the
matrix whose diagonal blocks are A and B respectively and other blocks are zero:

diag (A,B) :=
(
A 0
0 B

)
.

Let T ⊂ G be described as below. In each case, show that T is a maximal torus of G.:
(a) T = {diag(eıθ1, . . . , eıθn) : θi ∈ [0, 2π)} ⊂ U(n) = G.
(b) T = {diag(eıθ1, . . . , eıθn) : θi ∈ [0, 2π)} ⊂ Sp(n) = G.

(c) T = {diag(eıθ1 , . . . , eıθn−1 , eıθn) : θi ∈ [0, 2π), θn = −
∑n−1
i=1 θi} ⊂ SU(n) = G.

(d) T = {diag(Rθ1, . . . , Rθn) : θi ∈ [0, 2π)} ⊂ SO(2n) = G.
(e) T = {diag(Rθ1 , . . . , Rθn , 1) : θi ∈ [0, 2π)} ⊂ SO(2n+ 1) = G.
These are called standard maximal tori in the respective matrix groups.

13. Use the above list to compute the center z(G) in each case.

14. Use the above exercise to show that SU(2) is not isomorphic to SO(3) and U(n) is
not isomorphic to SU(n)× U(1).

15. Show that any conjugate of a maximal torus is also a maximal torus.

16. For each G as in Exercise 12, show that conjugates of the standard maximal torus
T cover the entire group, i.e., for each x ∈ G there exists g ∈ G such that gxg−1 ∈
T. (This is just the diagonalization theorem for normal matrices, in case of G =
O(n), U(n). For other groups, you have to work a little further, especially for Sp(n).

17. By a generic element (also called a generator) in a Lie group G we mean an element
g ∈ G such that the closure of the subgroup generated by g is the whole group G.
Show that every torus T has a generic element. (One also says that T is monogenic.)
Indeed, most of the elements in T are generic.

18. Show that if g ∈ T is a generator of T as above, then the centralizer of g is T.

19. Let T be a maximal torus in a compact connected Lie group G. Let NG(T ) be the
normalizer of T in G. Show that W := NG(T )/T is finite. (W is called the Weil group
of G.).

20. Let T ⊂ G be a maximal torus, t be the corresponding Lie subalgebra. Let v ∈ t
be such that Expv = g is a generator of T. Consider the right-invariant vector field
σ(h) = D(Rh)e(v). Under the quotient map q : G → G/T, show that σ defines a
vector field σ̂ on G/T, which vanishes precisely at points of W ⊂ G/T. Show that at
each of these points the index of σ̂ is the same. Conclude that χ(G/T ) �= 0. (Indeed,
one can also prove that χ(G/T ) = #(W ).)

21. Let T be a maximal torus in a connected Lie group G. Show that given any x ∈ g
there exists g ∈ G such that gxg−1 ∈ T. (Hint: Show that the diffeomorphism Lg :
G/T → G/T has a fixed point.]

22. Show that any two maximal tori in a connected Lie group are conjugate.

23. Describe the Lie subalgebra of the standard maximal torus T of G in each case as in
Exercise 12.



Foliation 279

24. The reflection in the hyperplane B in Rn perpendicular to a unit vector v is given by
u 
→ u− 2〈u,v〉v. Show that every reflection is an element of O(n) but not SO(n).

25. Every element of O(n) \SO(n) is a product of an element of SO(n) with a reflection.

26. Conjugate of a reflection by an element of O(n) is a reflection.

27. Recall from your complex analysis course that any rotation in the plane can be written
as the composite of two reflections, i.e., z 
→ eıθz can be written as the composite of
z 
→ z̄ followed by reflection in the line making an angle θ/2 with the x-axis. Deduce
that every element of the maximal torus in SO(n) is a product of reflections. Deduce
that every element of O(n) is a product of reflections. Also, give a direct (geometric)
proof of this fact.

9.10 Foliation

In this section, we give a brief introduction to the fascinating topic of foliations and give
just one application, viz., the classical proof of the existence theorem for Lie groups.

Definition 9.10.1 Let M be a smooth manifold of dimension m. By an atlas of submer-
sions of codimension d on M, we mean a collection F = {(Uα, fα)} where {Uα} is an open
covering of M and fα : Uα → Rm−d are submersions satisfying the following compatibility
condition: for each x ∈ Uα ∩ Uβ , there exists an open neighborhood W of fα(x) in Rm−d

and a diffeomorphism h : W → fβ(f−1
α (W )) such that h ◦ fα = fβ. A maximal atlas of

submersions of codimension d is called a foliation of dimension d or simply a d-foliation.

Remark 9.10.1 Two atlases are compatible with each other if their union is an atlas.
Thus, it follows that given any atlas there is a unique atlas that is maximal and contains
the given one. The differential structure of a smooth manifold M itself is a 0-foliation on
M. A submersion f : M → N defines a d-foliation where, d = dimM − dimN. Given a
d-foliation F on M, we get a vector sub-bundle E(F) of the tangent bundle TM, by taking
E(F)x = KerDfα, where x ∈ Uα. (Use compatibility condition to see that this is well-
defined and use the implicit function theorem to see the local triviality.) Also it is clear that
if F1 and F2 are compatible d-foliations then E(F1) = E(F2). The following lemma will
enable us to study the interrelation between subbundles of TM and foliations on M.

Lemma 9.10.1 Let U be an open subset of Rn and f, g : U → Rm be two submersions such
that KerDf = KerDg on U. Then for each p ∈ U, there is a neighborhood W of f(p) in
Rm and a diffeomorphism h : W → g(f−1(W )) = W ′ such that g = h ◦ f on V = f−1(W ).
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Proof: This was an exercise to you earlier (see Exercise 1.4). Since we need to use it now,
here is a solution. By the implicit function theorem, we may replace f, g with f ◦ φ and
g ◦ φ for a suitable diffeomorphism and assume that f is actually the coordinate projection
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(x1, . . . , xn) 
→ (x1, . . . , xm). Now the condition that KerDf = KerDg implies that ∂g
∂xi

=
0, for i = m + 1, . . . , n. Therefore, on a connected neighborhood U ′ of the point p, g is
independent of the variables xm+1, . . . , xn and hence factors through a map h : W ′ =
f(U ′) → g(U ′), i.e., g = hf. Clearly, the rank of h is equal to m on W ′ and hence, by the
inverse function theorem, on a smaller neighborhood W of f(p), it is a diffeomorphism. ♠

Corollary 9.10.1 Let Fi, i = 1, 2 be any two foliations on M such that E(F1) = E(F2).
Then F1,F2 are compatible.

Corollary 9.10.2 Let E ⊂ TM be a subbundle of rank d. Suppose there is an open
covering {Uα} of M and submersions fα : Uα → Rn−d such that KerDfα = Ex, x ∈ Uα,
for all α. Then the collection {(Uα, fα)} is an atlas of submersions.

Definition 9.10.2 We shall call a subbundle of E of TM completely integrable if there
exists a foliation F such that E = E(F).

Clearly the entire bundle TM and the 0-bundle are completely integrable. However, it
is not at all clear, why there should be any completely integrable proper subbundles of TM
for an arbitrary manifold M.

Example 9.10.1 Every subbundle of rank 1 of TM is completely integrable. By corollary
9.10.2, this is a local property. Thus, we may assume that U is an open neighborhood
0 ∈ Rn, on which a nowhere vanishing vector field σ is given. We have to find a submersion
f : W → R

n−1 in a neighborhood of W of 0 such that D(f)(σ) = 0. In fact, we shall
find a coordinate system {y1, . . . , yn} around 0, such that ∂n = σ and then take f to be
the projection onto the first (n − 1) factors. First, choose a coordinate system such that
σ(0) = ∂n. Consider the initial value problem on U :

∂g

∂t

∣∣
(x,t) = σ(g(x, t)), g(x, 0) = x. (9.40)

There exists a neighborhood W of 0, ε > 0 and a smooth solution of this problem g :
W × (−ε, ε) → W. Since g(x, 0) = x, it follows that ∂g

∂xi
= 1 for i = 1, 2 . . . , n − 1. Let

V = W ∩ (Rn−1 × 0). It follows that g : V × (−ε, ε)∩W →W is of maximal rank at 0 and
hence is a diffeomorphism in a neighborhood of 0. Now the coordinate functions of g can
be taken as yi, i = 1, 2 . . . , n.

Let us denote by Γ(E) the set of all smooth sections of a smooth vector bundle E over
M. Recall that Γ(E) forms a module over the ring C∞(M). Also recall from Section 5.6
that on Γ(TM) = T (M) = D(M), we have the Lie bracket operation [ , ] which makes it
into a Lie algebra over R. We now consider C∞-submodules E of Γ(TM) which are Lie
subalgebras, i.e., those for which σ, τ ∈ E =⇒ [σ, τ ] ∈ E . As such there is no reason to
expect that given a vector subbundle E ⊂ TM, the submodule Γ(E) will be a subalgebra
of Γ(TM).

Theorem 9.10.1 Theorem of Frobenius: For any subbundle E ⊂ TM, Γ(E) is a Lie
subalgebra of Γ(TM) iff E is completely integrable.

Proof: Suppose E = E(F) for some foliation F of M. Let σ, τ ∈ Γ(E). To show that
[σ, τ ] ∈ Γ(E) is purely a local problem. So, let U be a neighborhood of a point on which
we have a submersion f : U → Rm−d such that KerDf = Ex, x ∈ U. This means that
σ(f) = 0 = τ(f), on U. But then it follows that σ ◦ τ(f) = τ ◦ σ(f) = 0 on U. Therefore
[σ, τ ](f) = 0. Therefore, [σ, τ ] ∈ Ex, x ∈ U.
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To prove the converse, we induct on the rank d of E. For d = 1, the above example
gives the result. So, let us assume that d ≥ 2 and for every manifold Y and every subbundle
E′ ⊂ TY of rank d−1 such that Γ(E′) is a subalgebra of Γ(TY ), E′ is completely integrable.
Let now E be a subbundle of rank d and that Γ(E) ⊂ Γ(TM) is a subalgebra. Once again, by
the above Corollary 9.10.2, the problem of showing that E is completely integrable is local in
nature. Therefore, we may simply assume that M = Rn and we have a system {σ1, . . . , σd}
of vector fields that are everywhere independent in a neighborhood U of 0 ∈ Rn. From the
example above, we may further assume that σ1 = ∂1 and σi(x1) = 0 for i ≥ 2 (by subtracting
the appropriate x1-components). Put W := {x ∈ U : x1 = 0} and τi = σi|W , i ≥ 2.
Clearly, τi are tangential to W and hence span a subbundle E′ of rank (d − 1) on W.
Observe that every element of Γ(E′) is a restriction of an element of Γ(E) to W. Thus, for
i = 1, 2, consider ωi =

∑d
j=2 aijτj on W. There exists smooth functions bij on W × (−ε, ε)

such that bij |W = aij . Put ω̂i =
∑

j≥2 bijσj ∈ Γ(E). We have,

[ω1, ω2] = [ω̂1, ω̂2]|W .

Since Γ(E) is a subalgebra, [ω̂1, ω̂2] is a linear combination of σi, i ≥ 1 at every point of
W × (−ε, ε). Since ω̂i(x1) = 0, it follows that [ω̂1, ω̂2](x1) = 0. Therefore [ω̂1, ω̂2] is actually
a linear combination of σi, i ≥ 2. Therefore, [ω̂1, ω̂2]|W ∈ Γ(E′). This proves that Γ(E′) is a
subalgebra of Γ(TW ). By induction hypothesis, it is completely integrable.

Let f : W ′ → Rm−d be a submersion where W ′ is a neighborhood of 0 in W such that
KerDf = E′. We claim that the submersion fπ : π−1(W ′) → Rm−d is the required one.

It is enough to prove that E ⊂ KerD(fπ). Write fπ = (f1, . . . , fm−d) where each
fj = fj(x2, . . . , xm). It is then enough to show that σi(fj) = 0 for all 1 ≤ i ≤ d, and
1 ≤ j ≤ n. Note that to begin with we have σ1(fj) = 0 for all j. So, fix any j and for brevity
write g = fj . We have to show that αi := σi(g) = 0 for all 2 ≤ i ≤ d. Again, to begin with
we have for any q ∈W ′, αi(0, q) = (τi)q(g) = 0 since g = fj ∈ KerDf. Since σ1(g) = 0, we
have

σ1(αi) = σ1σi(g) = (σ1σi − σiσ1)(g) = [σ1, σi](g).

Since Γ(E) is a Lie subalgebra, it follows that we can write [σ1, σi] =
∑d

k=1 akσk. Therefore,
it follows that [σ1, σi](g) =

∑d
k=2 akαk. Thus, for each fixed q ∈ W ′ the (d − 1) functions

αi(x1, q), 2 ≤ i ≤ d satisfy the initial value problem given by the following system of (d-1)
linear differential equations:

∂αi
∂x1

=
d∑
k=2

akαk; αi(0, q) = 0. (9.41)

Since αi(x1, q) = 0 is one solution of (9.41), by the uniqueness of the solution, it follows
that αi(x1, q) = 0. ♠

Definition 9.10.3 Let F be a d-foliation of a manifold X. By an integral manifold of F we
mean a pair (Y, f), where Y is a smooth manifold and f : Y → X is an injective immersion
such that Dfy(TyY ) ⊂ Ef(y)(F).

On the collection of all connected integral manifolds of F , there is an obvious partial
ordering, viz., (Y1, f1) ≤ (Y2, f2) iff Y1 ⊂ Y2 and f1 = f2|Y1 . A connected integral manifold
of dimension d, maximal with respect to this ordering is called a leaf of F .

Remark 9.10.2
(i) Often we allow ourselves to confuse image f(Y ) of f with the leaf (Y, f). In general, the
image of a leaf need not be a submanifold of the foliated manifold X.
(ii) If F is the foliation of a fibration then of course the leaves are submanifolds and every
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submanifold of the fiber is an integral manifold. For any foliation F , if (U, f) ∈ F then any
connected component of f−1(f(x)) ⊂ U passing through x is an integral manifold, which is
also a submanifold called a slice of F at x.
(iii) It is not difficult to see that every leaf is a union of slices. Also, note that the dimension
of a slice is always equal to d (where F is a d-foliation)

Lemma 9.10.2 Let (U, f) ∈ F and S be a slice in U.
(a) Let (Y, g) be a connected integral manifold of F such that g(Y ) ⊂ U and g(Y )∩ S �= ∅.
Then g(Y ) ⊂ S.
(b) For any (V, h) ∈ F , at most countably many slices of V will intersect S.

Proof: Since D(f ◦ g) = D(f) ◦D(g) = 0, it follows that f ◦ g is locally constant. Since Y
is connected, this implies f ◦ g is a constant. This implies (a).

Let S ′ be another slice of F . Let W be a connected component of S∩S′. Then ι : W → S
is an immersion and since both have same dimension, it follows that W is open in S. We
conclude that S ∩ S′ is open in both S and S′.

Therefore, {S ∩ S′ : S′} forms a disjoint family Ω of open sets in S as S′ varies. Now
let S′ vary over all slices of (V, h). Clearly, two distinct slices of (V, h) do not intersect.
Therefore, by II-countability of S, Ω has only countably many members. Therefore, only
countably many of S′ could intersect S. ♠

Lemma 9.10.3 Every slice is contained in a d-dimensional leaf.

Proof: Let S be a slice and L be the family of all d-dimensional connected integral manifolds
(Y ′, f ′) that contain S. If {(Yk, fk)} is a chain in L, then we can take Y = ∪kYk and
f : Y → X to be such that f |Yk = fk. Being a countable union of an increasing family of
smooth manifolds, Y is a smooth manifold, in which each Yk is open. It follows easily that
f is an injective immersion also. Therefore, every chain in L has an upper bound. Apply
Zorn’s lemma to conclude that L has a maximal element, (Y, f), which is easily seen to be
a leaf. ♠

Theorem 9.10.2 Let F be a d-foliation on X. Then X is the disjoint union of d-
dimensional leaves of F .

Proof: The only thing that we need to see is that any two distinct d-dimensional leaves are
disjoint, which follows easily from Lemma 9.10.2. ♠

Proof of Theorem 9.9.1 Let G be a Lie group and h be a subalgebra of g. Recall that g
itself is the subalgebra of Γ(TG) consisting of all left-invariant vector fields on G. If we define
Eg = D(Lg)e(h) ⊂ Tg(G) for each g ∈ G, one can easily verify that E is a vector subbundle
of TG. Moreover, Γ(E) will be a subalgebra of Γ(TG). (Exercise). By Frobenius Theorem
9.10.1, there exists a d-foliation F on G such that E = E(F), where d = dim h. Let H be
the maximal leaf of F passing through e ∈ G. We claim that H is a virtual subgroup of G
with its Lie algebra equal to h. Observe that ι : H ↪→ G is a smooth injective immersion.
Therefore, the only thing that we need to show is that H is closed under multiplication
and then being the composite of H × H → G × G → G the multiplication H × H → H
will be smooth. Given any h ∈ H, consider the diffeomorphism Lh−1 : G → G given by
the left multiplication by h−1. Since E is invariant under D(Lh), it follows that Lh−1(H)
is an integral submanifold of F , which passes through e. By maximality of H this means
that Lh−1(H) ⊂ H. This just means h−1H ⊂ H for all h ∈ H, i.e., H is closed under
multiplication. ♠
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Remark 9.10.3 Observe that the above argument actually shows us that other leaves of
F are nothing but left cosets of H.

Remark 9.10.4 We have seen two proofs of the existence theorem. Recall that in both the
proofs, Theorem 9.9.2 on the existence of local homomorphisms was derived from Theorem
9.9.1 on virtual subgroups. An alternative idea is to first prove Theorem 9.9.2 and then
derive Theorem 9.9.1. Observe that by virtue of Lemma 9.5.2, we have no choice in defining
f in a canonical coordinate neighborhood, viz., f = ExpH ◦ φ ◦ (ExpG)−1.

G
f 

 H

g
φ 



Exp G

��

h

Exp H

��

The problem is in proving that f is a local homomorphism. Indeed, this is an easy conse-
quence of the so called Campbell-Hausdorff series that describes the canonical coordinates
of the multiplication in a Lie group G completely in terms of the Lie bracket of the Lie
algebra g. However, this is beyond the scope of this book.





Hints/Solutions to Selected Exercises

§1.2
10. See Lemma 8.2.1.
11. Differentiate the identity f(tx) = tkf(x) with respect to t and put t = 1.
§1.3
1. (a) This is a linear map. Therefore, Df(A,B)(X,Y ) = f(X,Y ) = X + Y.
(b) Dg(A,B)(X,Y ) = AY +XB.
(c) DhA(X) = AX +XA.
2. This is also a linear map.
3. First, do it for m = 1 and coordinatewise.
4. We have

D(g ◦ f) = D(g)(f(x)) ◦D(f)(x).

Note that the composition on the RHS here is indeed matrix multiplication. Therefore,
Leibniz’s rule applies as in Exercise 3 above and we have

D(D(g ◦ f)) = D(D(g) ◦ f) ·D(f) + (D(g) ◦ f) ·D2(f).

Since D(g) happens to be a row vector, we convert it into a column vector by taking the
transpose, before taking the derivative and then use Exercise 2. Therefore,

D(D(g) ◦ f) = [D(D(g)t ◦ f)]t = [D2(g)t ◦ f ·D(f)]t = D(f)t ·D2(g) ◦ f.

The formula (1.46) follows.
§1.4.
1. Let f(x, y) = (x+ y2, y), g(x, y) = (x, y+x3). Then the first map is g ◦ f and the second
one is f ◦ g.
2. See Lemma 9.10.1.
§1.5
1. x2 = y2 = z2 = 1

3 .

2. Critical points are: (
√

2,−
√

2,−1), (−
√

2,
√

2,−1), (0, 0, 1) at which the function takes
values 5, 5, and 1, respectively. Clearly, the surface is unbounded and hence there is no
maximum; the minimum is 1.
3. (± 2√

3
,± 4√

3
,± 2√

3
).

4. Same answer for the complex case. Use the spectral theorem.
§1.6
1.(a) (−π/2, π/2); (b) (0, π); (c) (−π/2, π/2); (d) (0, 1).
2. From 1.(a), it is clear that the map defines a diffeomorphism Dnr \ {0} → Dns \ {0}. Also
the map extends to a homeomorphism of Dnr to Dns , sending the origin to the origin. The crux
of the matter is to verify that it is continuously differentiable at 0 as well and its derivative
at 0 is invertible. In this case, the derivative any point (v, t), t �= 0, is multiplication by cos t
and hence converges to the Identity map at the origin.
3,4,5,6. Let f̂ be any differentiable function in a neighborhood of a and which extends f on

285



286 Hints and solutions

that neighborhood. Then Df̂a is completely determined by its values on any set containing
n independent vectors. In each of these cases, these values in turn are completely determined
by f itself, since the domain of f contains curves with n independent tangent vectors.
7. This is a special case of 8.
8. Consider f : Rn+1 → Rm given by

f(t1e1 + · · ·+ tn+1en) =
n+1∑
i=1

ti(pi − p0).

Verify that f defines a diffeomorphism of the standard n simplex Δn spanned by e1, . . . , en+1

with the n simplex spanned by {p0, . . . , pn}.
9. Indeed you can find a diffeomorphism of the form z 
→ az + b for some 0 �= a ∈ C, b ∈ C.
10. {a}, {b}, {c}, {d, e}, {f, g}, {h}, {i, j}.
§1.7

1. Take φ(α, β, t) = β + (α− β)γa,b(t), where γ is given by (1.78).

2. (a) Choose b = ε/2M,a = b/2 and β > 0 such that (1 − b)β < ε/2 in the above
exercise and take g(α, t) = φ(α, β, t). Estimate the area.
(b) Patch two such functions.

3. Let ψ be any bump function on [0, 1] with support in the interior of [0, 1] and such
that the area under the curve is 1. Now take h as in the exercise above and put

fα,β(t) =
∫ t

0

h(α, β, s)ds +
(

1−
∫ 1

0

h(α, β, s)ds
)∫ t

0

ψ(s)ds.

4. Take e−1/x sin π
x .

5. Consider a smooth bump-function h as in (1.77) with a = 0, b = 1. Put M =
max{|h′(t)|} and take η(t) = 1

M h.

6. Assume first that −∞ < α < β < ∞ and −∞ < γ < δ < ∞. From Exercise 3 above
it follows that there are smooth functions ψi : [a2i, a2i+1] → [c2i, c2i+1], i = 0, 1, . . . , k
such that

ψi(a2i) = c2i, ψi(a2i+1) = c2i+1, ψ
′
i(a2i) = φ′i(a2i), ψ′

i(a2i+1) = φ′i+1(a2i+1)

and ψ′
i(t) > 0 for all t. Put ψ|[a2i,a2i+1] = ψi, i = 0, 1, . . . , k and

ψ|[a2i,a2i+1] = φi, i = 1, 2 . . . , k.
In case any one of the α, β, γ, δ is ±∞, we have only to use the open brackets at the
corresponding end. The answer to the last part is NO: Take φ(x) = x2, which cannot
be extended to a diffeomorphism on any interval containing zero.

7. In the construction of bump function α as in (1.79), choose a = r/2, b = r, where
r = min{c−a, b− c} for the given a < c < b. Now take g(x) = α(|t− c|) and f = g/k,

where k =
∫ b
a g(t) dt.

8. Choose α as in (1.79) with a, b replaced by a+ε, and b−ε for a suitable 0 < ε < (b−a)/2
and scale it down by 2max {|α′|}.

10. There is an open covering {Uj} of C and smooth functions fj : Uj → R such that
fj|Uj∩C = f. Let {θj} be a smooth partition of unity subordinate to the cover {Uj}∪
{Rn \ C}. Take f̂ =

∑
j θjfj .
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11. Take r > 0 so that f vanishes on the closed ball B̄r(p). Apply the smooth Urysohn’s
Lemma (Corollary 1.7.1) to the disjoint closed sets F0 = B̄r(p) and F1 = supp f.

12. Reflexivity is obvious. For symmetry, the map (x, t) 
→ H(x, 1− t) defines a homotopy
from g to f. Finally suppose H,G : X × R → Y are smooth maps such that Ht =
f,Hs = g,Gp = g,Gq = h. For transitivity, without loss of generality we can assume
that t < s < p < q. By composing each H,G with appropriate smooth step functions
as in (1.78), we can assume that Hr = f, r < t,Hr = g, r > s,Gr = g, r < p,Gr =
h, r > q. We can now define J(x, r) = H(x, r), r < p and J(x, r) = G(x, r), r > s.

§1.8
1. Apply Rolle’s theorem inductively to get a sequence xn,k → 0 such that f (n)(xn,k) = 0
and hence by continuity conclude that f (n)(0) = 0. (See Exercise 1.7.4 for a nontrivial
example of such a function. Also note that there does not exist any such analytic function.)
3. Each of them has a limit equal to 0 at (0, 0) and hence by taking the value also equal to
0 at (0, 0) each of them becomes continuous.
4. For (i) and (ii), use the fact addition and multiplication R×R → R are continuous. For
(iii) and (iv), use the fact

max{f, g} =
f + g + |f − g|

2
; and min{, f, g} =

f + g− |f − g|
2

.

If f and g are differentiable so are f ± g and fg. Maximum and minimum do not preserve
differentiability as illustrated by f(x) = x, g(x) = −x. One can actually determine the
troublesome points.
5. Every polynomial function in any number of variables is smooth.
6. Use the fact that if α(x) is bounded and β(x) → 0 then α(x)β(x) → 0 to conclude that
both functions are continuous everywhere.
9. Both the iterated limits exist and are equal to 0. Yet the total limit does not exist be-
cause, along the lines y = x and y = 2x, the two limits are different.
10. Observe that taking limit as (x, y) → (0, 0) is same as taking limit as r → 0 in polar
coordinates.
(i) and (iii) The function is independent of r and is a nonconstant. So the limit does not
exist.
(ii) As r → 0, the function |x|+|y|

x2+y2 → +∞. The required limit is π/2.
12. D(τ)I(B) = −(B +Bt).
13. κ is linear.
14. D(fg)x(A) = D(f)x(A)g(x) + f(x)D(g)x(A).
15. Each entry of η(A) is given by a rational function of the entries of A with the denom-
inator being the det(A). Therefore, η is smooth. To compute D(η), use Leibniz’s rule and
see that D(η)X(A) = −X−1AX−1.
16. Let S(X) = X2. Then D(S)X(A) = XA+AX.
18. (i) Equating fr and fs to 0 yields r − s and a = 2r2. Therefore, if a < 0 then there is
no extremum in the interior. For a > 0, r =

√
a/2 gives the maximum value of f equal to

a2.
(ii) Putting a = 2 cos θ, if cos θ < 0 we see that f(r, s) ≤ 0 for r, s ∈ [0, 1] whereas
2 + cos θ ≥ 0. For cos θ ≥ 0, from (i) we have f(r, s) ≤ 4 cos2 θ ≤ 2 + 2 cos θ.
19. (a) Both C(f) and C(f−1) are continuous and inverses of each other.
(b)-(d). Let f : S1 → S1 is any smooth map such that f(1) = 1 but f(−1) �= 1. Then C(f)
will map the line segment [−1, 1] to a union of two line segments broken at 0. Hence, C(f)
is not differentiable at 0. Therefore, we see that it is necessary that every pair of antipo-
dal points should be mapped onto antipodal pair of points. By continuity, it follows that
f = ±Id. And this condition is also enough to conclude that C(f) is a diffeomorphism.
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§2.1 Choose I1 = (a1, b1), such that b1 is the largest among all intervals containing a1.
Having chosen Ik = (ak, bk) choose Ik+1 = (ak+1, bk+1) such that bk+1 is the largest among
all intervals containing bk. This process clearly terminates and produces the subcovering
with the required property. The latter part follows by a simple induction on the number of
intervals involved.
§2.2
1. Let α be the bump function as in (1.79), with 0 < a < b < 1. Enumerate the set of
rationals in R : q1, q2, . . . Take f(x) =

∑
n

qn

α(0)α(x− 2n).
2. Any countable subset of R is of measure zero. Therefore, there is no contradiction.
4. Yes. If at all points x ∈ U, f has rank 1 means that every point in U is a critical point.
Therefore, f(U) is of measure zero in V and cannot be surjective since V is open.
5. Induct on n beginning with the fact that for a nonconstant analytic function g : C → C,
the zero set is discrete.
§2.3.
1. π1 ⊗ π2((1, 0), (0, 1)) = 1 whereas, π2 ⊗ π1((1, 0), (0, 1)) = 0.
3. Any independent subset of V ∗ can be completed to a basis. Then use Theorem 2.3.3.
4. If {φi} is dependent, then the rows of ((φi(vj))) are dependent. Otherwise they form a
basis for a vector subspace U ⊂ V ∗ and we can use (2.33).
§2.5.
1. df = 0 =⇒ ∂f

∂xi
= 0 for each i. Given any point x join it 0 by line segments parallel to

the axes. Then f constant along each line segment and therefore f(x) = f(0) for all x.
2,3,4. In each case, join points x ∈ R

n as in the above exercise to 0 and take integration
from 0 to x of the given form along the path. The integral is well-defined because the domain
is convex.
5. Statement in Exercise 1 still holds; every n-form on any open subset of Rn is a boundary
as well a closed form, so the statement is true somewhat vacuously. Exercise 2 does not hold
for R2 \ {0} : consider xdy−ydx

x2+y2 . Likewise, there are closed (n− 1)-forms on Rn \ {0}, which
are not exact.
§2.7.
1. Given τ ∈ ∧n−1

R
n, we can view it as a linear map Θ : (Rn)∗ → ∧n(Rn) = R by the

formula Θ(φ) = τ ∧ φ. If τ �= 0 then Θ is also a nonzero linear map and hence its kernel is
of dimension n − 1. Choose a basis {φ1, . . . , φn−1} of the KerΘ and extend it to a basis
{φ1, . . . , φn−1, φn} of (Rn)∗. Now the linear map Θ′(φ) = τ ′ ∧φ where τ ′ = φ1 ∧ · · · ∧φn−1,
also has the same kernel and hence Θ = rΘ′ for some 0 �= r ∈ R which gives τ = rτ ′.
2. Suppose {φi} is a basis for V ∗ so that φ1∧φ2+φ3∧φ4 = ψ1∧ψ2 for some ψi ∈ V ∗, i = 1, 2.
Write ψ1 =

∑
i α)iφi, ψ2 =

∑
i βiφi Then

φ1 ∧ φ2 + φ3 ∧ φ4 = ψ1 ∧ ψ2 =
∑
i<j

(αiβj − αjβi)φi ∧ φj .

Comparing the coefficients of φ1 ∧ φj for j = 3, 4, we get [α1 : β1] = [α3 : β3] = [α4 : β4].
But then we get α3β4−α4β3 = 0, which is the coefficient of φ3 ∧φ4. On the left-hand side,
this is equal to 1 which is a contradiction.
§3.2
1. A local homeomorphism preserves local compactness and local path connectedness. Being
locally homeomorphic to a Euclidean space, a manifold satisfies these two properties. Being
a subspace of a Euclidean space, it inherits the Hausdorffness and II-countability from the
Euclidean space. The last property follows since any locally path connected and connected
space is path connected.
2. First find a piecewise smooth path joining any two given points such that on each piece it
is one-to-one as follows: Cover a given path by finitely many coordinate charts. The problem
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reduces to the case when X is replaced by Rn, wherein you can actually join any two points
via the line segment itself. Now the entire path may have self-intersections, which can be
easily removed by cutting down the extra paths.
3. Apply (ii) of Remark 3.1.2, successively, backwards, beginning with Un−1 ⊂ Un.
4. Consider the case when ∂X �= ∅ and ∂Y = ∅. We have to worry about a point (x, y) ∈
∂X × Y. If U, V are coordinate nbds of x, y respectively, with diffeomorphisms φ : U → Hn

and ψ : V → Rm then clearly φ × ψ : U × V → Hn × Rm is a diffeomorphism which, in
turn is diffeomorphic to Hm+n. Thus, an atlas for X × Y can be constructed by taking
the product of two atlases for X and Y, respectively. If y is also a boundary point, the
product φ×ψ gives a diffeomorphism with a “quarter” space which is not diffeomorphic to
a half-space in R

n+m. Indeed look at Example 3.2.1.(4).
6. By the inverse function theorem, any submanifold of the same dimension is an open
subspace. If it is neat also, by definition, it is closed as well.
§3.3.
2. Choosing a local coordinate system t 
→ e2πıt for a point z ∈ S1, the map z 
→ zn becomes
t 
→ nt whose derivative at any point is the multiplication by n. Therefore, the derivative
of z 
→ zn is also the linear map obtained by multiplication by n. However, this argument
requires the knowledge that the tangent bundle of S1 is trivial and fixing a trivialization.
One can use complex numbers and see the same thing directly as follows in a more elegant
way: the complex derivative of the complex map z 
→ zn is nzn−1 at any point z. The
tangent space to S1 at z is the line spanned by ız. Restricted to this line the linear map
defined by multiplication by nzn−1 rotates the line onto the line spanned by izn (which
incidentally is the tangent line at zn) and also expands it by a factor of n.
3. Let φ : TX → X × R

n be a diffeomorphism such that φ(x, 0) = (x, 0) and such that for
each x the map v 
→ φ(x,v) is a linear isomorphism. Set theoretically, TU coincides with
all tangents to X which are drawn at points of U. Therefore, φ(TU) = U × Rn and hence
it follows that φ itself restricts to a trivialization TU → U × Rn. [Caution: It is important
to note that this argument is not available if we take arbitrary submanifolds in place of
an open set U. Indeed, the tangent space to a submanifold, in general, need not be trivial.
However, you will have to wait to see such an example.
4. T (V ) = V × V ;D(L) = L× L.
5. [See Remark 1.5.1.(iii)] Since ‖x‖ → ∞ implies d(z, x) →∞, it follows that the infimum
is attained. That proves (a). Now choose smooth functions g1, . . . gN−n in a nbd of z0 such
that X∩U is given by gi = 0, i = 1, . . . , N−n. Apply Lagrange Multiplier Method (Theorem
1.5.1) to f(x) = ‖z − x‖2 to see that x0 should satisfy (1.60), which is the same as saying
that the vector 2(z− x0) is in the linear span of vectors perpendicular to the tangent space
Tx0(X).
6. See Lemma 8.1.2.
7. The other two vector fields are

(. . . , zj ,−wj,−xj , yj , . . .); (. . . ,−wj ,−zj, yj , zj , . . .).

8. The other five vector fields are:
(d, c,−b,−a, h, g,−f,−e); (e, f,−g,−h,−a,−b, c, d);
(f,−e, h,−g, b,−a, d,−c); (g, h, e, f,−c,−d,−a,−b); (h,−g,−f, e,−d, c, b,−a).
§3.4
1.
(i) Open subset of the Euclidean space

{A = ((aij)) : aij = 0, i < j}.

(ii) D(det)A(B) = tr(adj(A)B). Therefore, 1 is a regular value of det and hence SL(n,R)
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is a codimension 1 manifold. The tangent space at Id is the kernel of the tr. Therefore, the
tangent space to SL(n,R) at Id is the space of all matrices A with tr(A) = 0.
(iii) This is the connected component of O(n) that contains Id.
(iv) Similar to the case of O(n) discussed in Example 3.4.2. TId(Op,q(R)) is the space of all
A such that AJp,q + Jp,qA

t = 0.
(v) This is the connected component of Op,q(R) that contains Id.
2. Consider α : SO(n) → Vn−1,n given by [v1, . . . ,vn] 
→ (v1, . . . ,vn−1). Show that this
defines the required diffeomorphism.
3. An affine isomorphism of Rn is of the form x 
→ Ax+v, where A ∈ GL(n,R) and v ∈ Rn,
and therefore can be identified with the subspace of M(n+ 1; R) of matrices of the form[

A v
0 1

]
, A ∈ GL(n,R),v ∈ R

n.

This is an open subspace of the Euclidean space of all (n + 1) × (n + 1) matrices of the

form
[
A v
0 1

]
and is of dimension n2 + n. Among them, those that satisfy AAt = Idn

correspond to the rigid motions of R
n. They form a submanifold of dimension n(n+ 1)/2.

4. In Example 3.4.2, replace R by C, transpose by conjugate-transpose, etc., to conclude
that the space U(n) of unitary matrices is a complex manifold of dimension n(n− 1)/2 and
hence a real manifold of dimension n2 − n.
5 Use the Gauss Elimination Method without pivoting: First, show that “sweeping” a
particular column (or row) can be done homotopically. This proves that every element of
GL(n,K) can be connected to ± a permutation matrix. Next, over the complex numbers,
using eıθ, connect every transposition to Id.

§3.5
1. If a < 1 the intersection is empty and hence transversal. For a = 1, the intersection
consists of the circle x2 + y2 = 1, z = 0. At any of these points the two tangent planes
coincide and hence the intersection is not transversal. For a > 1 the intersection consists of
two circles x2 + y2 = a2, z±

√
a2−1

2 . The tangent planes do not overlap and hence together
span R

3. Therefore, the intersection is transversal.
2. Take f : X → Y to be the inclusion map in Theorem 3.5.1. 3. Use the fact that for
y ∈W ′ = g−1(W ), we have TyW ′ = (dg)−1(Tg(y)W ).
4. Look at the circle (x − 1)2 + y2 = 1, (x − 2)2 + y2 = 4 in Rn, n ≥ 2. Their intersection
is a singleton and hence, is of 0 dimension irrespective of what n you take. In any case,
the intersection is not transversal. For n = 2, the intersection dimension is correct but
not otherwise. Thus, one cannot say anything about the intersection dimension in case the
intersection is not transversal.
§3.7.
1. Put U± = S1 \ {(0,±1)} and let φ± : U± → R be the stereographic projections from
(0,±1). Then the four maps φ±×φ± form an atlas for S

1×S
1. However, we can do better.

Consider the following three open sets:
U1 = S1 × S1 \ (1× S1 ∪ S1 × ω); U2 = S1 × S1 \ (ω × S1 ∪ S1 × ω2); and
U3 = S1 × S1 \ (ω2 × S1 ∪ S1 × 1).
It can also be shown that the torus cannot be covered by two charts, (each diffeomorphic
to R2) but that needs a little more knowledge of algebraic topology. On the other hand, we
have seen how to write the torus is a union two open sets each diffeomorphic to an annulus.
2 r �= 0. Preimage Theorem 3.4.2.
3. By Exercise 3.3.5, it follows that if z ∈ R

3 is a point at a distance b from the circle, and
if p is a point on the circle at this distance, then the vector z − p is perpendicular to the
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tangent at p. Conversely, if we take the circle of radius b with the center at p and in the
plane perpendicular to the tangent line at p then all the points on this circle are also at a
distance b from a small portion of the circle around p. They would actually be at distance
b if b < a. Therefore, in this case, the set of such points is the union of all these circles,
i.e., the surface generated by rotating the circle (x− 1)2 + z2 = b2 around the z-axis. This
is diffeomorphic to S1 × S1, which is a torus. When b = a, the point (0, 0, 0) lies on this
surface and is a singular point. (The surface is not even a topological manifold.) For b > a,
this surface is topologically a sphere but will have “corners” at (0, 0,±

√
b2 − a2).

4. The map x 
→ (x, f(x)) is smooth with its inverse given by the restriction of the first
projection X × Y → X to Γf . Being diffeomorphic to a manifold, Γf is a manifold on its
own.
5. The graph of f : x 
→ x1/3 is a smooth submanifold of R × R, it is the graph of the
function y 
→ y3 (interchanging the coordinates). However, we know that f is not smooth
at 0.
12. Let φ : Rn → X be a parameterization at p ∈ X. Then the tangent space at p is given
by dφ0(Rn). For any v ∈ Rn, consider the curve t 
→ φ(tv) through p in X. Its velocity
vector is equal to dφ0(v).
13. Use the mean value theorem to see that f is one-to-one.
14. Put g(z) = 2z3−3z2. The derivative vanishes precisely at z = 0, 1. Since g is generically
3-1 mapping, it follows that g : C\{0, 1} → C is a surjective, local diffeomorphism. Compose
this with λ to get a surjective 18. Every submersion is an open mapping. If X is compact
then f(X) is compact and hence closed also.
19. Use Euler’s identity,

∑
i xi

∂p
∂xi

= kp(x1, . . . , xn) for any homogeneous polynomial of
degree k to conclude that 0 is the only value that is not regular. Consider the map

x 
→ k

√
r2
r1

x

to give the required diffeomorphism. The two surfaces x2 + y2− z2 = ±1 in R3 are not even
homeomorphic to each other. [Use connectedness!]
20. Each φi is a proper mapping into R \ {0}. Therefore, φ is a proper mapping into an
appropriate open subset of Rn+1. Injectivity and immersiveness follow by linear algebra and
the fact that P1, . . . , Pn+1 are affinely independent. (Caution: φ is not a proper embedding
into Rn+1.
22. May assume that P and Q do not have common factors. Then send all zeros Q to ∞
and send ∞ to the limit limz→∞

P (z)
Q(z) to obtain f̂ . To verify the smoothness of f̂ at ∞,

replace z by 1/z; at points that are mapped to ∞, replace f̂ by 1/f̂.
24. Consider det : M(n; R) \ {0} → R.
26. The tangent space to the graph of a linear map f is equal to the graph Γf of f iteself,
viz., Γf := {(v, f(v); v ∈ Rn}. The tangent space to the diagonal is the diagonal itself.
Therefore, at any point of intersection, i.e., for f(v) = v the two tangent spaces span
R
n × R

n iff their intersection is (0, 0). This just means that there is no vector v �= 0 for
which f(v) = v.
27. The intersection of Γf and ΔX is transversal and hence is 0-dimensional and hence
discrete.
29. To show that SO(n) is connected, induct on n. Given any A ∈ SO(n), show that there
is a path A(t) in SO(n) from A to an element in SO(n − 1) ⊂ SO(n) as follows. Put
v = (0, . . . , 0, 1) ∈ Rn. If Av = v then it follows that A ∈ SO(n − 1) and hence there is
nothing to prove. If not, choose a plane P containing v and Av. Let θ denote the angle
from Av to v. Let Rθ denote the rotation in the plane P that maps Av onto v. Now
RtθA, 0 ≤ t ≤ 1 is a path that joins A to a point RθA ∈ SO(n− 1) as required.
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30. Similar to the above exercise.
31. Induct on n. For n = 2, we have V1,2 is nothing but S1. Assume that for n ≥ 2, Vk,n is
connected for all 1 ≤ k < n. Use the embedding Vk,n ⊂ Vk+1,n+1 via

(v1, . . . ,vk) 
→ (v1, . . . ,vk, en+1).

Now given any F ∈ Vk+1,n+1 use rotation to connect it to an element of the form
(v1, . . . ,vk, en+1).
§4.1
1. (i) Assuming that there is no such loop in X we shall show that X is orientable. Fix
z0 ∈ X and for every z ∈ X fix some path γz from z0 to z. Fix an orientation θz0 on
Tz0X. Partition each path γz so that each segment is contained in one of the Uα. Obtain
an orientation θz on TzX as described in (b). Now given any Uα pick any point z ∈ Uα and
give the constant orientation to Uα, that agrees with θz. That this is well-defined on each
Uα and that it defines an orientation on X both follow from the assumption that there are
no orientation reversing loops.
(ii) Use the classification of 1-manifolds (see Chapter 5).
(iii) Follow the procedure in Exercise 3.2.2, to approximate γ by an embedded piecewise
smooth loop.
(iv) This can now be approximated by a smooth embedded loop.
3. Let H : I × I → X be a homotopy of a constant loop to a loop γ. Divide the square
into n2 squares [k/n, k + 1/n]× l/n, l + 1/n], 0 ≤ k ≤ n− 1, 0 ≤ l ≤ n− 1 so that H maps
each square into a coordinate chart. Now inductively show that the loops t 
→ H(t, l/n) are
orientation preserving for l = 0, 1, . . . , n.
§4.2
2 For each x ∈ Uα, we can then choose an ordered basis {v1(x), . . . ,vn(x)} for TxX such
that ωα(x) = v∗

1 ∧ · · · ∧ v∗
n defines a nonvanishing smooth n-form on Uα. Take a smooth

partition of unity θα(x) subordinate to this cover and put ω =
∑
α θαωα.

Conversely, let ω be a nowhere vanishing smooth n-form on X. Then it follows that given
any ordered basis {v1, . . . ,vn} for TxX either ω(v1, . . . ,vn) positive or negative. We may
assume that it is positive at some point. Since X is connected, it follows that it is positive
for all x ∈ X. Two such ordered bases define the same orientation class iff the values of ω
on them have same sign. It follows easily that if we can choose the orientation class at each
TxX such that ω takes positive values on each of them then we get a smooth orientation
on X.
§4.3. Let F : X × I → Y be a smooth homotopy. By Stokes’ theorem

0 =
∫
X×I

F ∗(dω) =
∫
∂X×I

F ∗(ω) =
∫
X

g∗(ω)−
∫
X

f∗(ω).

§4.5.
1. Write Sn = D1 ∪D2 as the union of upper and lower hemispheres. Find (n− 1)-forms τj
on Dj such that d(τj) = ω|Dj . Apply Stokes’ theorem and induction.
2. The inclusion map ι : ∂Bn → R

n \Bn is a homotopy equivalence. Therefore, η is exact
on Rn \Bn iff η is exact on ∂Bn ≈ Sn−1. Appeal to the above exercise.
3.
(a) Let η0 be an (n−1)-form on Rn such that d(η0) = ω. Let r > 0 be such that supp ω ⊂ Dnr .
Then

0 =
∫

Rn

ω =
∫

Dn
r

ω =
∫
∂Dn

r

η0.

By the previous exercise, η0 is exact on Rn \ Bnr . So, let θ be an (n − 2)-form such that
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d(θ) = η0 on Rn \Bnr . Let λ be a bump function ≡ 1 on Rn \Bn2r and such that supp λ ⊂
Rn \Bnr . Put η = η0 − d(λθ). Check that supp η ⊂ Bn2r and d(η) = ω.
(b) Let

∫
X ω = 0 and ω compactly supported. Using a bump function fix an n-form τ with

compact support contained in U1∩U2 such that
∫
X
τ = 1. (This can be done in a coordinate

neighbourhood.) Let {α, β} be a partition of unity subordinate to the cover {U1, U2}. Put
t =

∫
C
αω. Then αω − tτ is compactly supported in U1 and

∫
X

(αω − tτ) = 0. Similarly,
βω + tτ is compactly supported on U2 and∫

U2

βω + tτ =
∫
X

(1− α)ω + t

∫
X

τ =
∫
X

ω −
∫
X

αω + t = 0.

Therefore, there are (n− 1)-forms φ1, φ2 with compact supports that are respectively con-
tained in U1, U2 such that d(φ1) = αω− cτ and d(φ2) = βω+ cτ. Extend by 0 both of these
forms on the whole of X and take the sum.
(c) Write X = U1∪· · ·∪Uk, where each Ui is a coordinate chart and such that if Vl = ∪i≤lUi,
then Vl ∩ Ul+1 is nonempty. Apply (a) and (b) and induction.
4. We may assume n ≥ 2. First consider the case when X is orientable. Check that for
the orientation form ω,

∫
X
ω > 0. Therefore, it follows that [τ ] 
→

∫
X
τ defines a surjective

linear map Θ : Hn
dR(X) → R. We need to show that

∫
X τ = 0 implies that τ is exact, which

follows from (c) above.
Now consider the nonorientable case. One can argue as in (c) and (b) above. The impor-

tant case to consider is when U1 and U2 are orientable but U1 ∪U2 is not. This just means
that U1 ∩ U2 = V1

∐
V2, a disjoint union of two nonempty opens sets, such that on one of

them say, V1, the two orientations from U1 and U2 agree and on V2 they don’t. Choose a
partition {α, β} subordinate to {U1, U2} as before. Choose two n-forms τj with compact
supports contained respectively in Vj and such that

∫
Vj
τj = 1, where the orientations on

Vj are taken from U1. Put t1 = 1
2

(∫
U1
αω −

∫
U2
βω

)
; t2 = 1

2

(∫
U1
αω +

∫
U2
βω

)
. Consider

the n-forms φ1 = αω− t1τ1− t2τ2 on U1 and φ2 = βω+ t1τ1 + t2τ2 on U2. Then
∫
U1
φ1 = 0

and
∫
U2
φ2 = 0 and hence there exist (n− 1)-forms η1, η2 with compact supports contained

in U1 and U2, respectively such that d(ηj) = φj , j = 1, 2. It follows that d(η1 + η2) = ω.
Rest of the details are left to the reader.
§5.4. W can be expressed as U1 ∪ U2 ∪ U3 where each U1, U3 are half-open intervals, U2 is
an open interval and U1 ∩U3 = ∅, and U1 ∩U2, U2 ∩U3 are open intervals. Now use Lemma
5.4.5 (ii) twice.
§5.6 1. If σ =

∑
i αi(x) ∂

∂xi
, τ =

∑
i βi(x) ∂

∂xi
then

[σ, τ ] =
∑
j

[∑
i

αi(x)
∂βj
∂xi

− βi(x)
∂αj
∂xi

]
∂

∂xj
.

§5.8.
1. The map (x,v) 
→ ‖v‖2 is smooth TX → R and and 1 ∈ R is a regular value.
7. If γ were a smooth path, then f ◦ γ will be smooth and (f ◦ γ)′(t) = Dfγ(t) ◦ γ′(t) = 0.
This would mean that f is a constant on γ.
8. A biholomorphic mapping always preserves orientation. Since C comes with a preferred
orientation so are all open subsets of Cn.
9. Notice that there is no identification within the two open sets Rn×{j}×{±1}.Therefore,
p defines a diffeomorphism of these two open sets onto its image. It follows that p is a double
cover. We can declare the collection Rn × Λ × {−1, 1} as an atlas for X̃ with the quotient
map restricted to each of them being a local parameterization. We orient each member of
this atlas so that the image of Rn × j ×±1 will receive an orientation so that the quotient
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map will preserve the orientation or reverse it according to the sign ±. Under this rule, it
is clear that the atlas becomes an orientable atlas for X̃. Finally, if X is already oriented
then you see that all the identification will occur within those members with the same signs
and hence we get two disjoint copies of X itself as X̃. And conversely also.
10.
(i) Choose a basis for F ∈ Gk,n and express them as column vectors of a matrix A ∈
M(n× k; R)
(ii) Row rank = column rank implies that U = ∪AUA. Also, each UA is open in M(n×k; R)
itself.
(iii) This follows since each UA is a saturated open set, i.e., if Θ(F1) = Θ(F2) then F1 ∈
UA ⇐⇒ F2 ∈ UA. To see this, consider the projection πA : R

n → R
k, which sends xi → 0

for all i �∈ A. Then F ∈ UA iff πA(Θ(F )) = Rk.
(v) Given F ∈ UA consider the k× k matrix H = F̃ formed by the rows of F corresponding
to the indices in A. Then FF̃−1 is in the image of φA.
(vi) Follows from (v) and the fact that Θ(F ) = Θ(FF̃−1).
12. Define λ : Vk,n → S by the formula λ(F ) = FF t. Check that λ induces a map τ :
Gk,n → S such that τ ◦Θ = λ and τ is the inverse of η.
13. (i) In a coordinate nbd U of a point x ∈ X first get a smooth map β : U →M(N×n; R)
such that β(x) is a basis for Tx(X). Then follow by Θ to get the Gauss map.
14. See Exercise 3.7.31.

§6.1
1. Given a continuous function f : X → ∂X,which is identity on the boundary, by modifying
it in a collar neighbourhood of ∂X, we may assume that f is smooth around each point of
∂X. Think of ∂X as embedded in some RN . Fix a tubular neighbourhood U of ∂X in RN . If
ε is chosen sufficiently small, then a smooth approximation g to f will take its values inside
U, i.e., we have a smooth map g : X → RN such that ‖f(x)− g(x)‖ < ε/2 and so g(x) ∈ U.
Now take h = π ◦ g, where π : U → ∂X is the projection of the tubular neighbourhood. If g
is chosen so that g(x) = f(x) = x on ∂X, it follows that h : X → ∂X is a smooth function
such that h(x) = x on ∂X. Compactness hypothesis on X can be removed by taking proper
maps, i.e., there is no proper continuous map from X → ∂X, which is the identity map on
the boundary. However, if we remove the properness hypothesis also, then the result does
not hold: take X = [0, 1).

§6.3
2. See corollary 8.3.1.
3. The complement of the first embedding is such that removing a single point makes it
disconnected.
6. This requires the knowledge of the fundamental group of the complement of a knot:
For the trefoil knot this happens to be not isomorphic to Z. The fundamental group of
the complement of the real axis is indeed isomorphic to Z. If two proper embeddings of
R in R3 are properly isotopic to each other, then their complements will have isomorphic
fundamental groups, which is not the case here.

On the other hand, one can slowly pull one of the ends through the loop and “untie”
the knot that gives an isotopy of the given embedding with the inclusion map x 
→ (x, 0, 0).
Indeed take an isotopy of the identity map R → R with a diffeomorphism φ whose image is
any tiny open interval and then compose it with the given embedding f. This example also
illustrates that the isotopy extension theorem is not valid for noncompact case.
7. Use the smooth step function that we have constructed and consider a linear modification
of it.
8. Use the above exercise.
9. The isotopy given in example 6.3.1 restricted to Dn has compact support. Using the
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above exercise, “shrink” this isotopy so that the entire isotopy lies inside V. Then use the
isotopy extension theorem.
10. The result is false for n = 1. There is no diffeomorphism of R, which takes −1, 0, 1
respectively to 0, 1,−1, because every 1− 1 continuous map f : R → R is monotonic.

§6.4.
1. By Corollary 6.3.1, f : Sn−1 → Sn−1 ⊂ Rn extends to an embedding F : Dn → Rn. Since
F (Sn−1) = Sn−1 separates Rn into two components it follows that F (Dn) is contained in
the closure of one of them say C. Since it is an embedding and the dimensions are the same,
F is an open mapping. Since Dn is compact, F (Dn) is both closed and open in C. Therefore,
F (Dn) = C. Therefore, C is the bounded component and hence C = Dn.
2. Combine the arguments in the proofs of the Disc Theorem 6.3.7 and the Theorem 6.3.3.
3. Cap off W at all these boundary components and then use the above exercise.
4,5,6. Indeed, φ0 and φ1 patch-up to define a homeomorphism φ, which may fail to be a
diffeomorphism along {0, 1} × I. Use smoothing lemma to modify φ as required.
§6.5.
1. In the Theorem 6.1.2, sinceX is compact, we can choose ε to be a positive constant instead
of a continuous function. Any tubular neighbourhood looks like α(∪x∈Xx × Bε ∩ Nx(X))
where α(x,v) = x + v. A reparameterization by v 
→ ε

ε′ v will define an isotopy of the
ε-neighbourhood with the ε′-neighbourhood. Since X is compact, the isotopy extends to an
ambient one.
2. First find a homotopy H : A × I → M of the inclusion map A ↪→ M such that for
arbitrary small t, the map Ht : A → M is transversal to B. Since H0 is an embedding by
stability, it follows that there is an ε > 0 such that Ht is an embedding for t ≤ ε. This
means that H : A × [0, ε] → M is an isotopy. Extend this to an ambient isotopy. Clearly
Hε(A) ∩B = ∅.
3.(iii) Since f is proper, F = f−1(p) is a closed manifold. Therefore, we can choose ε > 0
so that f(Nε(F )) ⊂ U where U is a coordinate neighbourhood of the point p. Now consider
the map Θ : Nε(F ) → F ×U given by (x,v) 
→ (x, (f(x,v)). Verify that it is a submersion.
Restricted to F it is injective. Therefore, by arguments similar to the ones you have seen
in Theorem 3.6.1, Θ is a diffeomorphism Nε′(F ) → F × V for a suitable ε′ > 0 and a
neighbourhood V of p, as required.
§7.2.
1. 0, 1.
2. For any t > 1 the embedding [z1, z2] 
→ ([z1, z2], [tz1, z2]) is homotopic to the diagonal.
There are precisely two points of intersection ([1, 0], [1, 0]) and ([0, 1], [0, 1]) the intersection
is transversal and the intersection number at both the points is +1. Therefore, the self-
intersection number of the diagonal is 2.
§7.5
1. Use polar coordinates.
2. If i ≤ k − 1 and if α : Si → M is a smooth map, we can homotope this so as to be
transversal to N. This then implies α(Si) ⊂ M \ N. This proves surjectivity. Likewise for
i ≤ k − 2, a smooth map α : Si → M \N and a smooth extension β : Di+1 → M of α, we
can homotope β without disturbing it on the boundary sphere, to a map that is transversal
to N and then again this implies β(Dn) ⊂M \N. This proves injectivity.
3. At any point p ∈ N we can choose an embedded k−disc α : Dk ↪→ M such that
D = α(Dk) intersects N transversely at a single point {p}. Now the embedding restricted
to the boundary of the disc defines an element [α|Sk−1 ] ∈ πk−1(M \N). If this element were
trivial, then we can get an extension of α|Sk−1 to a smooth map β : Dk →M \N. Thinking
of these two discs as upper and lower hemispheres in S

k, and by the smoothing lemma, we
can arrange it so that α, β patch-up to define a smooth map γ : Sk →M so that the image
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γ intersects N transversely in a single point {p}. Now since πk(M) = (0) it follows that γ
extends to a smooth map γ̂ : Dk+1 → M. We can further assume that γ̂ is transversal to
N. Can you see the contradiction now?

§7.8.
1. You may treat σ as a smooth map σ : Dn → Rn. Let p1, . . . pk ∈ int Dn be the zeros of σ.
Choose ε > 0 small enough so that Bε(pj) are disjoint and contained in Dn. It follows that
the winding number W (σ/Sn−1, 0) of σ/Sn−1 around 0, which is equal to the degree of the
map σ/||σ|| : Sn−1 → Sn−1 is zero. By Hopf-degree theorem, there is a smooth extension of
σ : Sn−1 → Rn \ {0} to a smooth map σ̂ : Dn → Rn \ {0}.
2. Use Corollary 6.3.3 for n ≥ 2. For n = 1, this is an easy consequence of the classification.
3. Follows from 1. and 2. above.
4. There is one on the cylinder that quotients down to a nowhere vanishing field on the
Möbius band.
§7.9. 1. As seen in Misc. Excercises 4.5, ω 
→

∫
X ω defines the isomorphism Hn(X) → R.

Now use (7.13).
2. Let τ : X̃ → X̃ be the orientation revrsing diffeomorphism such that p ◦ τ = p. Let ω
be a n-form on X. Put ω̂ = p∗(ω). Then τ∗ω̂ = τ∗p∗ω = p∗(ω) = ω̂. Since τ is orientation
reversing at each point, it follows that∫

X̃

ω̂ =
∫
X̃

τ∗ω̂ = −
∫
X̃

ω̂ = 0.

Therefore, ω̂ is an exact form (see 4.5.4.)). Say ω̂ = dμ for some (n− 1)-form μ on X̃. Put
σ = (μ + τ∗μ)/2. Then it follows that σ = p∗(φ) for some (n − 1)-form φ on X. It also
follows that d(φ) = ω.

7.10.

1 Apply the Transversality Theorem 7.1.1 to the homotopy F : X × RN → RN given
by (x,v) 
→ x+ v.

2 In the proof of Theorem 7.1.3, we know that Fs is transversal for almost all s. By
stability theorem, for all sufficiently small s, each Fs is an embedding. Therefore, if
we choose ε > 0 small enough then for ||s|| < ε all Fs are embeddings, their image
will be contained in U and some of them will be transversal to Z. We can then define
the isotopy H : X × I → Y so that H1(X) ∩| Z. Using Isotopy Extension Theorem,
we can then get an ambient isotopy as required.

3 Let E = E(Gk,n) = {(L,v) ∈ Gk,n×Rn : v ∈ L}. Consider the projection to the first
factor π1 : E → Gk,n. (This is the projection of a vector bundle called the tautological
bundle over Gk,n.) Show that the second projection π2 : E → Rn is a submersion.
Now consider W = π−1

2 (X) and show that L ∈ Gk,n is a regular value of π1|W iff
L ∩| X.

4 Choose R such that K ⊂ BR(0). Since n ≥ 2 it follows that df(Rn) is of measure zero
in M(n; R). Therefore, there exist A ∈ M(n,R) \ df(Rn) such that 0 < ‖A‖ < ε/R.
Take g(x) = f(x) −Ax.
For n− 1, the argument fails: take f(x) = sinx, K = [0, 2π], and ε = 1/3.

5 (i) We know that the normal bundle of any sphere Sn ∈ Rn+1 is trivial and anyway
T (Sn) ⊕ N(Sn) = T (Rn+1) = Θn+1. Therefore T (Sn) ⊕ Θ1 = Θn+1, which shows
that the sphere is s-parallelizable. Inductively, assume that X is s-parallelizable. Then
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T (X × Sn) ⊕ Θ1 = T (X) ⊕ T (Sn) ⊕ Θ1 = T (X)⊕ Θn+1 = Θm+n+1. This shows all
finite products of spheres are s-parallelizable.
(ii) Recall every odd sphere has at least one nowhere vanishing vector field [viz.
(−x2, x1,−x4, x3, . . . ,−x2k+2, x2k+1)]. Therefore T (S2k+1) = ξ ⊕Θ1. Therefore,
T (X × S2k+1) = T (X)⊕Θ1 ⊕ ξ = Θm+1 ⊕ ξ
= Θm−1 + Θ1 + T (S2k+1) = Θm−1 ⊕Θ2k+2 = Θm+2k+1.
(iii) By the Jordan-Brouwer separation theorem, if X is a closed codim. 1 submani-
fold, then X bounds a compact submanifold of dimension n in Rn. Hence X has the
unit outward normals at every point, which means that the normal bundle is trivial.
Therefore T (X)⊕Θ1 = T (Rn) = Θn.
(iv) Inductively having embedded a product of spheres X in R

m+1, we shall show that
X×Sk can be embedded in Rm+k+1 : Consider X×0 ⊂ Rm+1×0 ⊂ Rm+1×Rk. The
normal bundle of X in Rm+1 × Rk is also trivial being the direct sum of its normal
bundle in Rm+1 and the trivial bundle X × Rk. Therefore, its unit normal bundle,
which is clearly a submanifold of Rm+1+k, is diffeomorphic to X × Sk.

6 If {(Ui, φi)} is any atlas for a manifold M, then {(T (Ui), Dφi)} forms an atlas for
TM. Then for any i, j, the transition function Ui ∩ Uj × Rn → Ui ∩ Uj × Rn is given
by (φ−1

j ◦φi, d(φ−1
j ◦ φi)). Now φ−1

j ◦ φi is orientation preserving iff d(φ−1
j ◦ φi) is and

hence in either case, (φ−1
j ◦ φi, d(φ−1

j ◦ φi)) is orientation preserving.

7 (i) Use Exercise 7.5.1.2 and the fact that Rn is simply connected.
(ii) Around a point p ∈ ∂M you can connect the ‘two- sides’ of N \M.
(iii) If the normal bundle (which is of rank 1 in this case) is nontrivial, you can find
an embedded loop γ in M restricted to which the bundle is non trivial, which gives
an embedding of a Möbius strip S in N such that S ∩M = γ.

8 If v ∈ Sn is a regular value then f−1(v) consists of pairs of point xi,−xi and hence
even number of points. Therefore the mod 2 degree is 0.

9 Covering space theory tells you that there is a covering projection p : Ỹ → Y such that
p#π1(Ỹ ) = f#(π1(X)). If Y is orientable then all its coverings are also orientable and
the degree of the covering map p is equal to the index of the subgroup p#π1(Ỹ ) = d

say. Also, the covering space theory tells you that f can be lifted to a map f̃ : X → Ỹ
such that f = p ◦ f̃ . Assuming that d is finite, it follows that deg f = (deg f̃)(deg p).
(If d is infinite then deg f = 0.)

10 (i) Take a path γ from x0 to x1 in R
n+1 \M to get the homotopy τγ(t).

(ii) If x is in the unbounded component then τx makes sense on all the bounded
components. Therefore, deg τx = 0 and hence by the Hopf degree theorem τx is null-
homotopic. The ‘if’ part follows from (iii).
(iii) Choose a disc D around x and contained in the bounded component U. Then τx
extends to U \ intD and hence deg (τx|M ) = deg (τx|∂D) = ±1.

11 (i) This is the property of the orientations on M ×N and N ×M.
(ii) Then the map τ is null homotopic or extends to X ×N, where ∂X = M, respec-
tively.
(iii) This goes back to the previous exercise.

12 We may assume that U is connected and detDfx takes values in [0,∞). Let K ⊂ Rn be
the set of all points at which detDfx = 0. Then K is compact. Given any point z ∈ R

n

we can choose R > 0 so that DnR contains f(K) ∪ {z} in its interior. Now consider
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M = f−1(∂DnR). Since S
n−1
R separates Rn, M = ∅ would imply that f(U) ⊂ Dn.

By properness of f this would imply U is compact, which is absurd. So M �= ∅. It
follows that M is a closed (n − 1)-dimensional submanifold of U, which bounds a
submanifold N of U. Put F = f |N . Since at every point x ∈ M we have Dfx is
orientation preserving, it follows that the local degree of f : M → S

n−1
R at any point

is +1. Therefore, deg f > 0. Use Theorem 7.5.1 now to conclude that for any regular
value w of F in DnR, the winding number #(F−1(w)) = W (f, w) = deg f is positive.
This implies F : N → DnR is surjective. In particular, z is in the image of f.

§8.2
1. (vii) (x, y, z) 
→ −x is a Morse function with two critical points, viz., (3, 0, 0) of index 0
and (1, 0, 0) of index 1.
(viii) The parameterization restricted to π/2 ≤ ψ ≤ 3π/2 gives the cylinder. The function
f(θ, ψ) = (2 + cos θ) cosψ will then have only two critical points at (θ, ψ) = (π, π), (0, π)
of indices 0 and 1, respectively The same domain can be used to define the Möbius band
by the identification (0, ψ) ∼ (2π,−ψ). The same map factors through this identification to
define f̃ : M → R, which has the same critical behavior because locally, f and f̃ behave the
same way.
7. Take f(x, y) = 3x4 + 4x3 − 12x2 + y2.
§8.4. Indeed f−1(r) is a strong deformation retract of f−1(r)× [r, s] = Mr,s from which the
conclusion follows.
§9.1.1.
2.2e By homogeneity, it is enough to check this at p = 1. The tangent space to S3 at
this point is the subspace of purely imaginary quaternions and the tangent space to S2 at
h(1) = i is the space spanned by {j,k}. Let λ be a unit vector in T1S3. Then

Dh(λ)1 = limt→0
h(1+tλ)−h(1)

t

= limt→0
1
t

(
(1+tλ)i(1−tλ)

1+t2 − i
)

= λi − iλ.

which is easily seen to be surjective.

§9.1.4.
1. If A ∈ M(n,H) is invertible, then we have Id = Qn(AA−1) = Qn(A)Qn(A−1), which
gives detA = detQn(A) �= 0. Conversely, if B is such that detB �= 0, then B is invertible.
Since BJ2n = J2nB̄, it follows that B−1J2n = J2nB−1 and hence there exists A′ ∈M(n,H)
such that Qn(A′) = B−1. It follows that Qn(AA′) = Id and hence AA′ = Id.
2. BJ2n = J2nB̄ implies that detB = det B̄ = detB.
5. Combine Exercises 2 and 4.
§9.1.5. Qn preserves inner product. i.e., if we write vr = zr+wrj, then 〈vr ,vk〉 = 〈zr, zk〉+
〈wr, wk〉 = 〈Qn(vr),Qn(vk)〉. Therefore, {v1, . . . ,vn} forms an orthonormal basis for Hn

iff {Qn(v1),Qn(jv1), . . . ,Qn(vn),Qn(jvn)} forms an orthonormal basis for C2n.
§9.3.1.
5.(a) D(αx)g = D(α(g)) ◦D(αx)e and α(g) : X → X is a diffeomorphism.
10. You have to copmute the stabilizer subgroup of the element P. The elements of On
which fix the subspace Vkr are precisely of the subgroup Okr ×On−kr . Now keep working
backwords. 12. Let H,K be subgroups of G. Consider the action of G on G/H and restrict
to the subgroup K and use Exercise 5.(a).
13 Union of connected components of a manifold is a submanifold.
§9.4.2.
1. If {u1,u2} is a basis, define [u,u1] = 0 = [u2,u2] and [u1,u2] = u1. Verify that this
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defines a Lie algebra. Any other 2-dimensional nonabelian Lie algebra has to be of the form
in which [u1,u2] = au1 + bu2 for some a, b ∈ R with (a, b) �= (0, 0). Suppose b �= 0. Then
take the basis {u1/b,w}, where w = [u1,u2]. It follows that [u1,w] = w.
2. [E1, E2] = E3, [E1, E3] = 0 = [E2, E3].
6. Both are indecomposable since both are dimension 3 and there are brackets (such as
[E1, E2] = E3, which involve three independent vectors.
7. Yes indeed. (a) There is a family of so-called nilpotent algebras (3-dimensional):

[E1, E2] = 0; [E1, E3] = aE1 + bE2; [E2, E3] = cE1 + dE2,

where ad− bc �= 0.
(b) Also, there are two more (nonnilpotent ones):

[E1, E2] = E3; [E2, E3] = ±E1; [E3, E1] = E2.

§9.8.1.1. Clearly H = ∩αHα is a subgroup. It will be a Lie subgroup if it is a submanifold.
It will be a submanifold, if H ∩ V is a submanifold of V, where V is any suitable neigh-
bourhood of e ∈ G. Since exp : g → G is a local diffeomorphism, which restricts to local
diffeomorphisms of hα → Hα, it is enough to see that ∩αhα is a subalgebra of G. But any
arbitrary intersection of vector subspaces of a finite dimensional vector space is actually
equal to a finite intersection. It follows that ∩αhα is a Lie subalgebra.
§9.9.1.
1. If U is a nbd of e in H then U is also open in G. Therefore, U generates G.
2. G abelian iff [G,G] = (1) iff [g, g] = (0) iff g is abelian.
3. By (9.30), it follows that if [u,v] = 0, then Exp (u + v) = Exp (u)Exp (v). Therefore,
if g is abelian then Exp : a → G is a homomorphism of the additive group g to the Lie
group G. We know Exp is a local diffeomorphism. Therefore, Exp (U) is open for some
neighbourhood of U of 0 in g. Since G is connected, Exp (U) generates G.
6. Choose a maximal subset of H that is linearly independent, say {v1, . . . ,vk}, where
k ≤ n. Put H1 =

∑
i Zvi. Clearly H1 is a subgroup of H, which is free abelian. Let P be

the parallelotope spanned by {v1, . . . ,vk}. Then P is compact and hence P ∩H is finite.
For each x ∈ H, write x =

∑
i xivi. Now for each integer m, define

xm = mx−
∑
i

&mxi'vi.

Note xm ∈ P ∩ H. Conclude that P ∩ H generates H. Since P ∩ H is finite, and Z is
infinite, there exists distinct integers k, l such that xk = xl. This implies that (k − l)x =∑

i(&kxi'−&lxi')vi. Therefore, H is contained in the rational linear span of H1. Since H is
finitely generated, it follows that (by taking a common denominator to all the coefficients in
the expressions of all members of P ∩H) there is an integer d such that dH ⊂ H1 which is
a free abelian group. By the structure theorem for finitely generated abelian groups, there
exists a basis {u1, . . . ,uk} for H1 and integers m1, . . . ,mk such that {m1u1, . . . ,mkuk}
generates dH. Now {m1u1/d, . . . ,mkuk/d} is a basis for H as required.
8. G is abelian and hence g is abelian and therefore isomorphic to Rn. By Exercise 3,
Exp : Rn → G is a surjective homomorphism. It is also a local diffeomorphism. Therefore,
its kernel is a discrete normal subgroup N ⊂ Rn. But then Exp induces an isomorphism of
Rn/N → G. On the other hand, the projection map q : Rn → Rn/N is a covering projection.
Therefore, (1) = π1(G) = π1(Rn/N) = N.
10. Every Lie algebra contains a maximal abelian subalgebra.
11. Do the same with abelian subalgebras of the Lie algebra.
13. (a) and (b) all scalar matrices; (c) nth roots of unity as scalar matrices; (d) so(2) for
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n = 1 and ±Id for n ≥ 2; (e) trivial group
14. z(SU(2)) ≈ Z2, z(SO(3)) = (1), z(U(n)) ≈ S1 and z(SU(n)× U(1)) ≈ Zn × U(1).
17. Fix a basis {v1, . . . ,vr} for the Lie algebra of T. Choose t1, . . . , tr ∈ R such that
{1, t1/tr, . . . , tr−1/tr} is linearly independent over Q. Put v =

∑
i tivi. Then show that

{Exp (nv) : n ∈ Z} is dense in T.
21. If γ is a path in G connecting g and id, then Lg is homotopic to Id. Therefore, L(Lg) =
L(Id) = χ(B/T ) �= 0.
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