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LECTURE 1

Introduction

0.1. Organization. First some general info:

Lectures: Mondays 12.15-14.00 in R92,
and Thursdays 10.15-12.00 in R54.

Exercises: Thursdays 16.15-17.00 in R21, but NOT WEEKLY. We will dis-
cuss exercises futher in class.

Important: You will have to solve the exercises yourself. The exercise classes
will NOT consist of me giving solutions. If nobody comes up with suggestions,
there will be nothing going on. You need to work in order to learn...

General advice: Talk to each other and to me. Ask questions! Interact!!!
Solve exercises!!!!!
That’s how you learn. Do not sit quiet and just read.

Course webpage (on which I will try to put more information soon):

wiki.math.ntnu.no/tma4190/2018v/start

Office hours: Upon request.

Just send me an email: gereon.quick@ntnu.no

Text books: In the beginning we will follow the book

[GP] V. Guillemin and A. Pollack, Differential Topology.

Another excellent and very short book:

[M] J.W. Milnor, Topology from the Differentiable Viewpoint.

Some other useful books:

[D] B. Dundas, Differential Topology.

[T] L.W. Tu, An Introduction to Manifolds.
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6 INTRODUCTION

There are many other good books out there. Ask me if you need more.

0.2. What is required? We will just assume some knowledge in multivari-
able calculus, corresponding to Calculus 1 and 2. For example, you should
know what it means for a map Rn → Rm to be smooth or differentiable.
We will also assume knowledge on complex numbers and linear algebra,
corresponding to what you learn in Calculus 3. For example, you should know
what is a subspace of a vector space, what is the image of a linear map, when is
a linear map invertible.
Finally, it would be desirable if you have heard the words:
open, closed, compact in connection with subsets of Rn. Ideally, you also
know, for example, what these notions have to do with convergence of sequences.
But no worries, I will try to remind you of as much as I can during class. If you
want to refresh your knowledge on Topology, you may want to have a look at the
books

[J] K. Jänich, Topology.

[D] B. Dundas, Appendix in Differential Topology.

As always, ASK ME if you wonder about anything!

0.3. What this class is about? Super roughly speaking, Topology is
some kind of Geometry. Classical geometers were interested in measruing
angles and distances. For example, two things are the ”same” (congruent) in
classical geometry if you can transform one into the other by moving or flipping
them over. No stretching allowed. That means angles and lengths of edges stay
the same.

A first variation to allow flexibility, is projective geometry: Two things are
considered the same if they are both views of the same object. For example, an
ellipse and a circle can be projectively equivalent; for one can look like the other
when you look at them from the right prespective.
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In topology, we take this idea one step further and consider two things the
same if we can continuously transform one into the other. For example, a
triangle is equivalent to a circle is equivalent to a square.

In differential topology, the part we will mostly be interested in, we only
allow smooth transformations. (Then square and circle are different, because
a square has edges which are not smooth.)

What Differential Topology is about:

Roughly speaking, differential topology is the study of properties that do not
change under diffeomorphisms (specified transformations that are allowed).

We will make sense of all this during the course. This is just a first super
rough distinction.

The goal of this class

Learn something about fundamental
• geometric objects, mostly we study smooth manifolds;
• methods and ideas in (differential) topology;
• applications of these objects and methods in different areas of

mathematics.

In order to get a first idea, let’s look at a fundamental example:

The Circle

Let us start with the unit circle

S1 = {(x,y) ∈ R2 : x2 + y2 = 1} ⊂ R2.
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The circle is something on-dimensional, isn’t it? But how do we describe
that precisely. Well, it’s clear if we zoom in at any point, it just looks
like a bended line segment. Looking very closely it even looks almost like a
striaght line segment.
So, ”locally” (whatever that means) the circle looks like a segment of R1.
The unit circle S1, more generally, the n-dimensional sphere

Sn = {(x1, . . . ,xn+1) ∈ Rn+1 : x2
1 + · · ·+ x2

n+1 = 1}
is an example of a smooth manifold.

Let us give a first working definition of what kind of objects we are going to
study:

Working definition: What is a manifold

A manifold is a geometric object such that each point has a neighborhood
which looks like Rn.
We will make precise what ”looks like” means. For smooth manifolds, we
need a condition that takes differentiable data into account. The right
notion is that of ”diffeomorphism”.

A universe of examples

The previous definition may sound quite strict. Every point looks the same
in a small neighborhood. But we will see that there is a huge universe of
examples of very different kind. In fact, one of the main goals in topology
is to classify all types of manifolds.

Here are two more pictures of examples of smooth manifolds: one of the
2-sphere, the other of the torus:
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And here is a NON-Example, the figure eight. The center point does not have
any ”nice” neighborhood.

0.4. Some nice theorems. Here are some examples of theorems we are
going to prove during this class:

Fundamental Theorem of Algebra

Let P (X) = Xn+an−1X
n−1 + · · ·+a1X+a0 be a polynomial with complex

coefficients, i.e. a0, . . . ,an−1 ∈ C.
Then P (X) has a zero in C, i.e. there exists at least one complex number
z ∈ C such that P (z) = 0.
That means of course that P (X) has exaclty n zeroes in C (counted with
multiplicities).
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This has at first glance nothing to do with topology. But we can do it!
(Fundamental application)

Brouwer Fixed Point Theorem

Every continuous map f : Dn → Dn has a fixed point, i.e. there is an
x ∈ Dn such that f(x) = x. Here Dn is the n-dimensional unit disc

Dn = {(x1, . . . ,xn) ∈ Rn : x2
1 + · · ·+ x2

n ≤ 1}

This may not look so exciting, but HOW can you show that a fixed point
always exists? (Fundamental method)

Hairy Ball Theorem

Assume you have a ball with hairs attached to it. Then it is impossible to
comb the hair continuously and have all the hairs lay flat. Some hair will
always be sticking right up.
A more mathematical formulation:
Every smooth vector field on a sphere has a singular point.
An even more general statement:
The n-dimensional sphere Sn admits a smooth field of nonzero tangent
vectors if and only if n is odd.

This just sounds like a fun fact. But wind speeds on the surface of the earth
is an example of a vector field on a sphere!
(Fundamental object AND application)

Something else one can prove using topological methods.

Multiplicative Structures on Rn

Let Rn×Rn → Rn be a bilinear map with two-sided identity element e 6= 0
and no zero-divisors. Then n = 1, 2, 4, or 8.
What we are looking for is a ”multiplication map”. You know the cases
n = 1 and n = 2 very well. It’s just R and C ∼= R2. These are actually
fields.
For n = 4, there are the Hamiltonians, or Quaternions, H ∼= R4 with a
multiplication which as almost as good as the one in C and R, but it is
not commutative. (You add elements i, j, k to R with certain multiplication
rules.)
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For n = 8, there are the Octonions O ∼= R8. The multiplication is not
associative and not commutative.
And that’s it!!

This is a really deep result!
The crucial and, at first glance maybe surprising, point to prove this fundamental
result is that the statement has something to do with the behavior of tangent
spaces on spheres. That’s a topological problem. Frank Adams was the first to
solve it. The prove goes way beyond the methods of this class, unfortunately.
So stay tuned on the Topology Chanel and lear more about it in Advanced
Aglebraic Topology...
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Topology in Rn and smooth maps

Recall from Calculus 2 that the norm of a vector x = (x1, . . . ,xn) ∈ Rn is
defined by

|x| =
√
x2

1 + x2
2 + · · ·+ x2

n ∈ R.

For any n, the space Rn with this norm is called n-dimensional Euclidean
space. It is a topological space in the following way:

Open sets in Rn

• Let x be a point in Rn and r > 0 a real number. The ball

Br(x) = {y ∈ Rn : |x− y| < r}
with radius ε around x is an open set in Rn.
• The open balls Br(x) are the prototypes of open sets in Rn.
• A subset U ⊆ Rn is called open if for every point x ∈ U there

exists a real number ε > 0 such that Bε(x) is contained in U .
• A subset Z ⊆ Rn is called closed if its complement Rn \Z is open

in Rn.

• Familiar examples of open sets in R are open intervals, e.g. (0,1) etc.
• The cartesian product of n open intervals (an open rectangle) is open in
Rn.
• Similarly, closed intervals are examples of closed sets in R.

13



14 TOPOLOGY IN Rn AND SMOOTH MAPS

• The cartesian product of n closed intervals (a closed rectangle) is closed
in Rn.
• The empty set ∅ and Rn itself are by both open and closed sets.
• Not every subset of Rn is open or closed. There are a lot of subsets

which are neither open nor closed. For example, the interval (0,1] in R;
the product of an open and a closed interval in R2.

Relative open sets

Let X be a subset in Rn. Then we say that V ⊆ X is open in X (or
relatively open) if there a an open subset U ∈ Rn with V = U ∩X.

Warning

It is important to note that that the property of being an open subset
really depends on the bigger space we are looking at. Hence open always
refers to being open in some given space.
For example, a set can be open in a space X ⊂ R2, but not be open in R2,
see the picture.
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Open sets are nice for a lot of reasons. First of all, they provide us with a
way to talk about things that happen close to a point.

Open neighborhoods

We say that a subset V ⊆ X containing a point x ∈ X is a neighborhood
of x if there is an open subset U ⊆ V with x ∈ U . If V itself is open, we
call V an open neighborhood.

Second, the collection of all open subsets in a set X, define a topology on
X. A set together with a topology, is called a topological space.

We observe here that the word “topology” is used in different ways. On the
one hand, it is the name of a whole area in mathematics. On the other hand,
it is the name for a certain structure on a set.
We see that phenomenon happen quite often. For example,

• the term “algebra” denotes both a field in mathematics and a certain
type of structure on a set;
• the term “medicine” denotes the field, but a doctor can also prescribe

a specific medicine to cure a desease.

The type of maps that preserve open sets are the continuous maps:

Continuous maps

Let A be a subset in Rn. A map f : A→ Rm is called continuous at a if
for every ε > 0, there is a δ > 0 such that

0 < |x− a| < δ ⇒ |f(x)− f(a)| < ε.
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In our new fancy notation, we can reformulate the last condition as: given
any ε > 0,

there is a δ > 0 such that x ∈ Bδ(a) ∩A⇒ f(x) ∈ Bε(f(a)).

Finally, in terms of limits, we could say: f is continuous at a if

lim
x→a

f(x) = f(a).

The map f is called continuous if it is continuous at every a ∈ A.

A more intrinsic characterization that serves as a definition for arbitrary topo-
logical spaces is the following.

Continuous maps: a more general characterization

A map f : A → Rm is continuous if and only if, for every open subset
U ⊆ Rm, there is some open subset V ⊆ Rn with f−1(U) = V ∩A (in other
words f−1(U) is open in A).

Proof:

First, assume f is continuous. Let U ⊆ Rm be an open set in Rm. If f−1(U)
is empty, it is open by definition. So let a ∈ f−1(U) be a point in f−1(U). The
fact that U is open means that there is an ε > 0 such that Bε(f(a)) ⊂ U . Given
this ε, the fact that f is continuous means that

there is a δ > 0 such that x ∈ Bδ(a) ∩ A⇒ f(x) ∈ Bε(f(a)).

But

f(x) ∈ Bε(f(a)) implies f(x) ∈ U which implies x ∈ f−1(U) ∩ A.

Since x was arbitrary in Bδ(a) ∩ A this means Bδ(a) ∩ A ⊆ f−1(U).

Second, assume that f−1(U) is open in A for every open subset U ⊆ Rm.
Given a ∈ A and ε > 0, let Bε(f(a)) ⊂ Rm be the open ball around f(a) with
radius ε. Since Bε(f(a)) is open in Rm, our assumption tells us that f−1(Bε(f(a)))
is open in A. Since a ∈ f−1(Bε(f(a))) this means that

there is a δ > 0 such that Bδ(a) ⊆ f−1(Bε(f(a))).

But that means

x ∈ Bδ(a)⇒ f(x) ∈ Bε(f(a)).

Hence f is continuous at a. Since a was arbitrary, f is continuous. QED



TOPOLOGY IN Rn AND SMOOTH MAPS 17

Homeomorphisms

A continuous map f : X → Y is a homeomorphism if one-to-one and
onto, and its inverse f−1 is continuous as well. Homeomorphisms preserve
the topology in the sense that U ⊂ X is open in X if and only if f(U) ⊂ Y
is open in Y .

Examples:

• tan: (−π/2,π/2)→ R is a homeomorphism.
• f : R→ R, x 7→ x3 is a homeomorphism.

Example: Bijection which is not a homeomorphism

Let
S1 = {(x,y) ∈ R2 : x2 + y2 = 1} ⊂ R2

be the unit circle considered as a subspace of R2. Define a map

f : [0,1)→ S1, t 7→ (cos(2πt), sin(2πt)).

We know that f is bijective and continuous from Calculs and Trigonometry
class. But the function f−1 is not continuous. For example, the image
under f of the open subset U = [0,1

4
) (open in [0,1)!) is not open in S1.

For the point y = f(0) does not lie in any open subset V of R2 such that

V ∩ S1 = f(U).

Spaces

From now on, when we talk about a space we mean a set together with a
specified topology or collection of open subsets.
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Remark:
For topological spaces X and Y , a map f : X → Y is defined to be continu-
ous if for every open set U ⊆ Y the subset f−1(U) is open in X. Just in case
you have heard of categories before: Topological spaces form a category with
morphisms given by continuous maps.

Here is another extremely important property a subset in a topological space
can have. We are going to use it quite often in fact.

Compact sets in Rn

• A subset Z in a topological space is called compact if every open
cover {Ui}i of Z has a finite subcover. That is, among the {Ui}i it
is always possible to pick Ui1 , . . . , Uin with

Z = Ui1 ∪ . . . ∪ Uin .
• By the Theorem of Heine-Borel, a subset Z ⊂ Rn is compact if

and only if it is closed and bounded. Being bounded means,
that there is some (possibly huge) r >> 0 such that Z ⊂ Br(0).

Compactness is an important example of a topological property:

Homeomorphisms preserve

Slogan: Topology is the study of properties which are preserved under
homeomorphisms. From this point of view, a topological property is
by definition a property that is preserved under homeomorphisms. For
example, if f : X → Y is a homeomorphism, then Z ⊆ X is compact if and
only if f(Z) ⊆ Y is compact.

Finally, open sets are nice because we can say what it means to be differen-
tiable on an open set.

Recall: Smooth maps on open subsets

Let U ⊆ Rn and V ⊆ Rm be open sets. A map f : U → V is called smooth
if it has continuous partial derivatives of all orders (i.e. all the partial
derivatives ∂kfj/∂xi1 . . . ∂xik exist and are continuous for all k ≥ 1).
Recall also: another way to say that f is differentiable at a ∈ U if there
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is a linear map λ : Rn → Rm such that

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

= 0.

Note that if such a λ exists, it is unique and is often denoted dfa.

Note that a smooth map is in particular also continuous. More generally, we
can define smoothness for maps between arbitrary sets subsets of Rn:

Smooth maps

Let X ⊆ Rn and Y ⊆ Rm be arbitrary subsets. A map f : X → Y is called
smooth if for each x ∈ X there exist an open subset U ⊆ Rn and a smooth
map F : U → Rm that coincides with f on all of X ∩ U , i.e. FX∩U = f .

• The identity map of any set X is of course smooth.
• If f : X → Y and g : Y → Z are smooth, then the composition g ◦ f is

also smooth.
• Note that smoothness is a local property, that means we need to

check it only in a small neighborhood of any point.

Diffeomorphisms

A smooth map f : X → Y is called a diffeomorphism if f one-to-one and
onto, and its inverse f−1 is smooth as well.
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We say that X and Y are diffeomorphic if there exists a diffeomorphism
f : X → Y .

Note that every diffeomorphism is a homeomorphism, but not the other way
around. For example, f : R → R, x → x3 is a homeomorphism, but not a
diffeomorphism. Exercise!

Diffeomorphic spaces are “equivalent”

Differential topology is the study of those properties of spaces which do not
change under diffeomorphisms. In other words, from the point of view of
differential topology, diffeomorphic spaces are equivalent, and we may (and
will) consider them as copies of the same abstract space, which may happen
to be differently situated in their surrounding Euclidean spaces.
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Smooth manifolds

Recall that we defined what it means for subset X ⊆ Rn to be open. One
reason why open sets are useful is that give us a way to talk about things that
happen close to a point. In order to stress this way of thinking we are going to
use the following way of speaking:

Open neighborhoods

We say that a subset V ⊆ X containing a point x ∈ X is a neighborhood
of x if there is an open subset U ⊆ V with x ∈ U . If V itself is open, we
call V an open neighborhood.

Local properties

If we refer to something that happens in the neighborhood of a point x ∈ X,
then we are often going to say that it happens locally (at x). Moreover, a
property of a space or a function that we only need to test for a neigh-
borhood of each point is a local property. For example, smoothness of
a map is a local porperty (for we test it in a neighborhood of each point).
In contrast, there are global properties which are properties that describe
the whole space.

Manifolds are now spaces that locally look like Euclidean spaces in the
following sense.

Smooth manifolds

Let RN be some big Euclidean space.
• A subset X ⊆ RN is a k-dimensional smooth manifold if it is

locally diffeomorphic to Rk. The latter means that for every point
x ∈ X there is an open subset V ⊂ X containing x and an open
subset U ⊆ Rk such that U and V are diffeomorphic.

21
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• Any such diffeomorphism φ : U → V is called a (local)
parametrization.
• The inverse diffeomorphism φ−1 : V → U is called a (local) coor-

dinate system on V .

The natural number N in the previous definition is not specified. We just
assume that there is some RN big enough to fit X into it. We are going to discuss
what we can say about the minmal N later. It is actually a very interesting
question.

Remember that U is a subset of Rk. Hence it makes sense to express a point
u ∈ U by its coordinates u = (u1, u2, . . . , uk). Hence, given a coordinate system
φ−1 : V → U on V , we can talk about the coordinates φ−1

1 (x), φ−1
2 (x), . . . , φ−1

k (x))
of a point x ∈ V . Writing ui(x) = φ−1

i (x) for i = 1, . . . ,k, we usually drop
mentioning φ−1 and just talk about the coordinates (u1(x), u2(x), . . . , uk(x)) of
x. Hence the u1, . . . , uk are really coordinate functions.)

First examples

• An obvious example of a k-dimensional manifold is an open subset
U ⊆ Rk. The identity map U → U is a parametrization of all of
U . For example, any k-dimensional open ball Br(x) around some
point is a manifold of dimension k.
• A 0-dimensional manifold M just consists of a collection of discrete

points. Given x ∈ M , the set {x} ⊂ M consisting of x alone is
open in M and is diffeomorphic to the one-point set R0.

A fundamental example that will play an important role during the whole
semester is the n-dimensional sphere.

The unit circle

We start with n = 1: Let

S1 = {(x,y) ∈ R2 : x2 + y2 = 1} ⊂ R2

be the unit circle. We are going to show that S1 is a 1-dimensional
manifold.
First, suppose that (x,y) lies in the upper semicircle where y > 0. Then

φ1(x) = (x,
√

1− x2)
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maps the open interval W = (−1,1) bijectively onto the upper semicircle.
Its inverse is the projection map

φ−11 (x,y) = x

which is defined on the upper semicircle. This φ−1
1 is smooth, since it extends

to a smooth map of all of R2 to R1. Therefore, φ1 is a parametrization.
A parametrization of the lower semicircle where y < 0 is similarly defined
by

φ2(x) = (x,−
√

1− x2) with inverse φ−1
2 (x,y) = x.

These two maps give local parametrizations of S1 around any point except
the two points (1,0) and (−1,0). To cover these points, we can use the maps

φ3(y) = (
√

1− y2, y) and φ4(y) = (−
√

1− y2, y)

which map W to the right and left semicircles, respectively.
This shows that S1 is a 1-dimensional manifold.

Need at least 2 parametrizations

Note that we have used 4 parametrization maps in the above example. It is
an exercise to show that it is possible to cover S1 with only two parametriza-
tions. (But just one parametrization cannot be enough, because S1 is com-
pact. For, if such a difeomorphism φ : S1 → U ⊂ R1 to an open subset
existed, it would mean that U is compact contradicting the Theorem of
Heine-Borel.)
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More generally:

n-sphere

The n-sphere
Sn = {x ∈ Rn+1 : |x| = 1} ⊂ Rn+1

is an n-dimensional smooth manifold.

Stereographic projection

The method of stereographic projection yields a cover of the k-sphere with
only two parametrizations. It is an exercise to find the formulae for the
corresponding diffeomorphisms.

Submanifolds

If Z and X are both manifolds in RN and Z ⊂ X, then Z is a submanifold
of X. In particular, X itself is a submanifold of RN . Any open subset of X
is a submanifold of X.



SMOOTH MANIFOLDS 25

Creating new manifolds out of old ones

Let X ⊆ RN and Y ⊆ RM be manifolds of dimensions k and l, respectively.
Then X×Y ⊆ RN+M is a manifold of dimension k+ l. For let W ⊂ Rk

an open set with φ : W → X a local parametrization around x ∈ X, and
U ⊂ Rk an open set with ψ : U → Y a local parametrization around y ∈ Y .
Then we can define the map

φ× ψ : W × U → X × Y, φ× ψ(w,u) = (φ(w), ψ(u)).

from the open set W × U ⊆ Rk ×Rl = Rk+l to X × Y . This map defines a
local parametrization around (x,y). (Check this!)

Here is a picture of two smooth manifolds:

And a picture of a hyperboloid (a manifold) and a cone (not a mani-
fold), see the exercises.
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Coordinate axes in R2

Let us show that the union of the two coordinate axes in R2 is not a
manifold.
Let us call the union X. The critical point is of course the origing (0,0), since
every other point on X has an open neighborhood which is diffeomorphic
to an open intervall in R. But no point in Rd with d ≥ 2 has an open
neighborhood homeomorphic to an open intervall. Hence X could only be
1-dimensional.
Now let us check the point O = (0,0). If X was a manifold, there would
be an open subset V ⊆ X around O diffeomorphic to an open intervall
in R. By definition of open sets in a subset of R2, there must be an open
ball Bε(O) such that Bε(O)∩X contained in V . Let I be the open intervall
in R homeomorphic to Bε(O) ∩X.
The subset Bε(O) ∩X contains, in particular, the points

P1 = (−ε/2,0), P2 = (0,ε/2), and P3 = (ε/2,0).

In Bε(O) ∩X, there are paths
• from P1 to P2 not passing through P3

• from P1 to P3 not passing through P2

• from P2 to P3 not passing through P1.
But there is no triple of distinct points with this property in the
open intervall I ⊂ R. Hence I cannot be homoeomorphic to Bε(O)∩X.
Hence O does not have a neighborhood homeomorphic to an open intervall
in R, and X is not a manifold.
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LECTURE 4

Tangent spaces and derivatives

Let us get back to the derivative of a smooth map f : Rn → Rm. Let x be a
point in the domain of f and h ∈ Rn be any vector in Rn. Then the derivative
of f in the direction h can be defined as the limit

dfx(h) = lim
t→0

f(x+ th)− f(x)

t
.

Hence for a fixed x, the derivative is a map

dfx : Rn → Rm

sending a vector h ∈ Rn to the vector dfx(h) ∈ Rm. In Calculus we learned that
this map is linear (which means dfx(h + g) = dfx(h) + dfx(g) and dfx(λh) =
λdfx(h) for all h,g ∈ Rn and λ ∈ R). Note that dfx is defined on all of Rn

even if f is not.

The derivative is a linear approximation

The derivative of f is a map on its own. We think of the parallel translate
of dfx to x, i.e. h 7→ x+dfx(h) as the best linear approximation of f at x.

Note that if f = L : U → Rm is a itself a linear map, then

dfx = L for all x ∈ U.

In particular, the derivative of the inclusion map U ⊆ Rn at any point x ∈ U is
the identity map on Rn.

29
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In Calculus 1, we visualized the derivative by saying that f ′(x) is the slope of
the tangent line at the graph of f at the point (x,f(x)). But the derivative
f ′(x) really is the linear map dfx : R → R given by multiplying with the
real number f ′(x). The tangent line at (x,f(x) corresponds to the parallel
translate of the linear map dfx, whose graph is the line through the origin
with slope f ′(x).
We observe that, in order to get a vector space, the tangent space to the
graph of f at (x,f(x) is the image of R under dfx in R2.

dfx and the tangent line

We are going to use this picture of parallel translates to define the tangent
space of a manifold at a point.

Let X ⊆ RN be k-dimensional manifold and x ∈ X a point. Let φ : U → X
be a local parametrization around x (i.e. there is an open subset V ⊆ X
containing x and an open subset U ⊆ Rk together with a diffeomorphism φ : U →
V ; we then also write φ : U → X for the composite U

φ−→ V ↪→ X).
We assume φ(0) = x.

Tangent space

Then the best linear approximation to φ : U → X at 0 is the map

u 7→ φ(0) + dφ0(u) = x+ dφ0(u).
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We define the tangent space Tx(X) of X at x to be the image of the
linear map dφ0 : Rk → RN . Note that Tx(X) is a vector subspace of
RN .
Its parallel translate x+ Tx(X) is the best linear approximation to X
through the point x.

By this definition, a tangent vector to X ⊆ RN at x is a point v ∈ RN

that lies in the vector subspace Tx(X) of RN . However, we usually picture v
geometrically as the arrow running from x to x+v in the translate x+Tx(X).

In order to define Tx(X) we made a choice of a parametrization φ. We have
to check what happens if we choose a different parametrization. Are we getting
the same tangent space?
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So let ψ : V → X be another local parametrization around x with ψ(0) =
x. By shrinking both U and V we

can assume φ(U) = ψ(V)

(replace U by φ−1(φ(U) ∩ ψ(V )) ⊂ U
and V by ψ−1(φ(U) ∩ ψ(V )) ⊂ V ). Then the map

θ := ψ−1 ◦ φ : U → V

is a diffeomorphism (its the composite of two diffeomorphisms). By definition
of θ, we have φ = ψ ◦ θ. Differentiating yields

dφ0 = dψ0 ◦ dθ0

(where we have used the chain rule). This implies that the image of dφ0 is
contained in the image of dψ0:

dφ0(Rk) ⊆ dψ0(Rk) in RN.

By switching the roles of φ and ψ in the argument, we also get:

dψ0(Rk) ⊆ dφ0(Rk) in RN.

Hence dφ0(Rk) = dψ0(Rk) in RN . This shows that whatever local
parametrization around x we start with, the vector subspace Tx(X) ⊆ RN is
always the same. In mathematical terms we say that Tx(X) is well-defined.

Tx(X) is well-defined

Dimension of Tx(X)

If X is a k-dimensional manifold, then Tx(X) is a k-dimensional vector
space over R. (For we know from Calculus that the derivative of a diffeo-
morphism is a linear isomorphism. Hence dφ0 is an isomorphism of vector

spaces dφ0 : Rk
∼=−→ Tx(X).)

Example: Tangent space at the unit circle

Let p = (a,b) ∈ S1 be a point with b > 0. A local parametrization around
p with φ(0) = p is given by

φ : (−ε,ε)→ S1, x 7→ (t+ a,
√

1− (x+ a)2).
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The derivative at x is the linear map

dφx : R→ R2, dφx = (1,− x+ a√
1− (x+ a)2

).

Hence the image of R under dφ0 in R2 is the line spanned by (−b,a) (writing
b =
√

1− a2).

Example: Tangent space at S2

Let p = (a,b,c) be point on S2 which is not the north pole. Then we use
the stereographic projection φN : R2 → S2 as a local parametrization. (We
do not need to translate first to get φN(0) = p. That is up to us.)
Recall that

φN(x,y) =
1

1 + x2 + y2

(
2x,2y,x2 + y2 − 1

)
.

The derivative at (x,y) is the linear map dφN : R2 → R3 defined by the
matrix (in the standard basis):

d(φN)(x,y) =
2

(1 + x2 + y2)2

1− x2 + y2 −2xy
−2xy 1 + x2 − y2

2x 2y

 .

The image of R2 under the linear map d(φN)(x,y) is the tangent space
TφN (x,y)S

2. This image is spanned by the two column vectors of the ma-
trix d(φN)(x,y). Let us check that we get the space we would have expected,
i.e. a plane which is orthogonal to the vector φN(x,y) (neglecting the first
factors):

(
2x,2y,x2 + y2 − 1

)
·

1− x2 + y2

−2xy
2x


= 2x(1− x2 + y2)− 2xy2 + 2x(x2 + y2 − 1)

= 2x− 2x3 + 2xy2 − 4xy2 + 2x3 + 2xy2 − 2x

= 0.
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Similarly,

(
2x,2y,x2 + y2 − 1

)
·

 −2xy
1 + x2 − y2

2y


= −4x2y + 2y(1 + x2 − y2) + 2y(x2 + y2 − 1)

= −4x2y + 2y + 2x2y − 2y3 + 2x2y + 2y3 − 2y

= 0.

Hence the plane spanned by the column vectors is orthogonal to φN(x,y).

The induced derivative

Now let f : X → Y be a smooth map from a k-dimensional smooth manifold
X ⊆ RN to an l-dimensional smooth manifold Y ⊆ RM . We would like to define
a map best linear approximation of f at a point x. For y = f(x), this
should result in a linear map of vector spaces

Tx(X)→ Ty(Y ).

Suppose that φ : U → X is a local parametrization around x with U ⊆ Rk, and
ψ : V → Y a local parametrization around y with V ⊆ Rl. We can assume
φ(0) = x and ψ(0) = y. Then we define a map θ : U → V by the following
commutative diagram (which means that it does not matter which way we walk
around from U to Y ):

X
f

// Y

U

φ

OO

θ=ψ−1◦f◦φ
// V.

ψ

OO

Define dfx

Taking derivatives yields a diagram of linear maps and we define dfx to be
the linear map which makes the diagram commutative:

Tx(X)
dfx

// Ty(Y )

Rk

dφ0

OO

dθ0

// Rl.

dψ0

OO
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Since dφ0 is an isomorphism, we have to define dfx as

dfx := dψ0 ◦ dθ0 ◦ dφ−10 .

We call dfx also the derivative of f at x.

Again, we need to check that our definiton of dfx does not depend on the
choices of parametrizations. This is left as an exercise. (See below.)

Tangent space of products

Given two smooth manifolds X ⊆ RN and Y ⊆ RM and points x ∈ X,
y ∈ Y , then the tangent space of the product X and Y is the product of
the tangent spaces, i.e.

T(x,y)(X × Y ) = Tx(X)× Ty(Y ).

This follows from the fact that we can choose neighborhoods in X × Y by
taking the product of neighborhoods in X and Y , respectively.
Moreover, it is easy to check that if : X → X ′ and g : Y → Y ′ are smooth
maps, then the derivative of the prdoct map is the product of the derivatives,
i.e.

d(f × g)(x,y) = dfx × dgy
for all (x,y) ∈ X × Y .

Finally, we would like to have that the new derivative satisfies the chain
rule. So let g : Y → Z be another smooth map. Let η : W → Z be a local
parametrization around z = g(y) with an open subset W ⊆ Rm and η(0) = z.
Then we have a commutative diagram

X
f

// Y
g

// Z

U

φ

OO

θ=ψ−1◦f◦φ
// V

ψ

OO

ι=η−1◦g◦ψ
// W

η

OO

which gives us the commutative square

X
g◦f

// Z

U

φ

OO

ι◦θ
// W.

η

OO
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Thus, by definition,

d(g ◦ f)x = dη0 ◦ d(ι ◦ θ)0 ◦ dφ−1
0 .

The Chain Rule from Calculus 2 for maps of open sets of Euclidean spaces, then
gives

d(ι ◦ θ)0 = (dι0) ◦ (dθ0).

Thus

d(g ◦ f)x = (dη0 ◦ dι0 ◦ dψ−1
0 ) ◦ (dψ0 ◦ dθ0 ◦ dφ−1

0 ) = dgy ◦ dfx.
Hence we have in fact the desired rule.

Chain Rule

If X
f−→ Y

g−→ Z are smooth maps of manifolds, then

d(g ◦ f)x = dgf(x) ◦ dfx.

Let φ′ : U → X and ψ′ : V ′ → Y be another choice of local parametrizations
around x and y, respectively. Again by shrinking both U and U ′, both V and V ′

accordingly we can assume that φ(U) = φ′(U ′) ⊆ X and ψ(V ) = ψ′(V ′) ⊆ Y .
Then dφ0 and dφ′0 differ by a linear isomorphism of Rk, say α: dφ0 = dφ′0 ◦ α.
Similarly, there is a linear isomorphism β of Rl such that dψ0 = dψ′0 ◦ β. Let
θ′ : U → V be defined similarly to θ, i.e. θ′ = ψ′−1 ◦ f ◦ φ′. This gives us the
following diagram in which each square commutes

Tx(X)
dfx

// Ty(Y )

Rk

dφ′0

OO

dθ′0

// Rl

dψ′0

OO

Rk

dφ0

AA

α

OO

dθ0

// Rl.

β

OO
dψ0

]]

Hence we get the desired identity

dψ′0 ◦ dθ′0 ◦ dφ′0
−1

= dψ0 ◦ dθ0 ◦ dφ−1
0 = dfx.

For more examples of tangent spaces have a look at the exercises.



LECTURE 5

The Inverse Function Theorem and Immersions

The Inverse Function Theorem

For our quest to understand smooth manifolds, it can be smart to study maps
between manifolds (even though it sounds like making things even more difficullt;
but if we know something about X and about a map f : X → Y then we might be
able to say something interesting about Y ). Anyway, there are a lot of interesting
problems than can be stated in terms of properties of maps.

We have learned about the derivative of a map as a linear transformation
between tangent spaces. We may think of the derivative as the best linear
approximation at a point.

So let f : X → Y be a smooth map between smooth manifolds. Remember
that the derivative at x ∈ X, dfx : TxX → Tf(x)Y , is a linear map between vector
spaces. Since it is easier to understand linear maps, it would be nice if we could
classify maps like f by the behaviour of dfx (with x varying in X).

A natural question:

How much does dfx tell us about the map f?

For the behavior dfx, there are three basic cases:

• dimX = dimY in which case the nicest possbile behavior of f at x is
that dfx an isomorphism.
• dimX < dimY in which case the nicest possbile behavior of f at x is

that dfx one-to-one.
• dimX > dimY in which case the nicest possbile behavior of f at x is

that dfx onto.

We are going to consider these cases separately.

37
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First case: dfx is an isomorphism

We begin with the nicest case when dfx is an isomorphism. This implies in
particular: dimX = dimY .

Manifolds are characterized by the way they look in a neighborhood around
any point (they look like Euclidean space). So let us think locally. In the nicest
case, f sends a neighborhood of a point x diffeomorphically to a neighborhood of
y = f(x). In this case, f is called a local diffeomorphism at x.

If f is a diffeomorphism U → V between neighborhoods U arround x ∈ X
and y = f(x) ∈ Y , respectively, let f−1 be its smooth inverse. Then we have
f−1 ◦ f = IdU and f ◦ f−1 = IdV . Then the chain rule implies

d(IdU)x = d(f−1)y ◦ dfx, and d(IdV )y = dfx ◦ d(f−1)y.

But we obviously have d(IdX) = IdTx(X) for any manifold X and any point x ∈ X.
Hence dfx is an isomorphism with inverse d(f−1)f(x).

Thus a necessary condition for f to be a local diffeomorphism at x is that
its derivative dfx : Tx(X)→ Ty(Y ) is an isomorphism.

It is an important result that this is actually a sufficient condition.

In order to prove this, we recall the corresponding important result for Eu-
clidean space from Calculus:

The Inverse Function Theorem in Calculus

Suppose that f : Rn → Rn is continuously differentiable in an open set
containing a, and det dfa 6= 0, i.e. dfa is an invertible linear map Rn → Rn.
Then there is an open set V ⊆ Rn containing a and an open set W ⊆ Rn

containing f(a) such that f : V → W has a continuous inverse f−1 : W → V
which is differentiable and for all y ∈ W satisfies

d(f−1)y =
(
dff−1(y)

)−1
.

Note that this is exactly the formula you are used to from Calculus 1 where
we learned

(f−1)′(y) = (f ′(f−1(y)))−1.

(You may be used to this formula as (f−1)′(y) = 1
f ′(f−1(y))

. But the fraction

here is misleading, since (f−1)′(y) is a linear map. The superscript “to the −1”
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really means take the inverse map! In dimension 1, the inverse map happens
to be given by multiplication by the inverse number. But for linear maps or
matrices in dimensions > 1, we cannot write the inverse as a fraction.)

The Inverse Function Theorem

Let X and Y be smooth manifolds. Suppose that f : X → Y is a smooth
map whose derivative

dfx : Tx(X)→ Tf(x)(Y )

at a point x ∈ X is an isomorphism. Then f is a local diffeomorphism
at x.

The great thing about the IFT is that it tells us that in order to check that
f is a diffeomorphism in a neighborhood of a point x, we just need to check that
a single number, the determinant of dfx, is nonzero.

Idea of Proof: We can assume that X and Y are subsets in RN for some large
N . Let φ : U → X be a local parametrization around x ∈ X, and ψ : W → Y a
local parametrization around y = f(x) ∈ Y with U ⊂ Rn and W ⊂ Rn open and
φ(0) = x and ψ(0) = y. (The dimension has to be the same when the tangent
spaces are isomorphic.)

We define the map θ : U → W as in the following diagram:

X
f

// Y

U

φ

OO

θ=ψ−1◦f◦φ
// W.

ψ

OO

Then recall that dfx is defined such that the following diagram commutes

Tx(X)
dfx

// Ty(Y )

Rk

dφ0

OO

dθ0

// Rl.

dψ0

OO

Our assumption is that dfx is an isomorphism which implies that dθ0 is an
isomorphism. By the IFT in Calculus, this implies that there is

• an open neighborhood V ⊆ U around 0 and
• an open neighborhood V ′ ⊆ W aroud 0 such that
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• θ|V : V → V ′ is a diffeomorphism.

Since φ and ψ are diffeomorphisms, φ(V ) ⊆ X and ψ(V ′) ⊆ Y are open neigh-
borhoods of x and y, respectively. Moreover, φ|V and ψ|V ′ are local parametriza-
tions around x and y, respectively, and

f|φ(V ) : φ(V )→ ψ(V ′)

is a diffeomorphism. QED

Note that this is a local statement, i.e. if dfx is invertible, it only tells us
that f is invertible in a neighborhood of x. Even if dfx is invertible for every
x ∈ X, one cannot conclude that f : X → Y is globally a diffeomorphism. But
such an f is a local diffeomorphism for every point x ∈ X. We call such a map
a local diffeomorphism (without having to refer to a point).

Example 1: A global diffeomorphism

The map

(−π/2,π/2)→ R, t 7→ tan t

is a global diffeomorphism.

Example 2: A local but not global diffeomorphism

A standard example of a local diffeomorphism which is not a global diffeo-
morphism is the map

f : R1 → S1 ⊂ R2, t 7→ (cos t, sin t)

that we have already met in Lecture 2. Let us check how this example
works:
First, f is not a global diffeomorphism because it is not injective. And
in Lecutre 2 we have seen that f is not a homeomorphism even when we
restrict it to [0,2π) → S1. But anyway, S1 is compact and R is not, so
there is no chance of finding a diffeomorphism between them.
Second, the IFT tells us that f is indeed a local diffeomorphism, since
dft is an isomorphism for every t ∈ R. For, let t0 ∈ R such that cos(t0) < 0
(for other points the argument is similar, we just want to be able to choose
a parametrization), and consider the local parametrization

ψ : (−1,1)→ V, y 7→ (−
√

1− y2,y)

of S1 around f(t0) with V = {(x,y) ∈ S1 : x < 0}.
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For an ε > 0 such that both cos(t0 − ε) < 0 and cos(t0 + ε) < 0, we let
φ : U = (t0 − ε,t0ε) → R be the local parametrization around t0 given by
the identity (we don’t shift U to be centered around 0). Then the map
θ : U → W (see proof of the IFT) is defined as

θ = ψ−1 ◦ f ◦ φ, t 7→ sin t.

Then we get
dθt : R→ R, z 7→ (cos t) · z

and
dψt : R→ R2, z 7→ (− y√

1− y2
, 1) · z.

Since φ is the identity, we have

dft0 = dψsin t0 ◦ dθt0
and hence

dft0(z) =(− sin t0
cos t0

,1)(cos t0) · z

=(− sin t0, cos t0) · z.
Summarizing we have

dft0 : Tt0R =R→ Tf(t0)S
1 = dψ(R) = (− sin(t0), cos(t0)) · R2,

z 7→ (− sin(t0), cos(t0)) · z
which is an isomorphism (when cos(t0) 6= 0).
For any other point in R, there is a similar argument.

We close this first case, with an observation and some new terminology (way
of speaking).

In some situations it would be nice if we could assume that the linear iso-
morphism dfx was the identity. This is usually not the case of course. But our
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freedom of choosing local parametrizations allows us to do the following. Assume
that dfx is an isomorphism as in the IFT. Then, after possibly shrinkning U , we
can assume U = V and find a diffeomorphism γ : U → U such that dθ0 composed
with dα0 becomes the identity.

dfx looks like the identity

If dfx is an isomorphism, we can choose local parametrizations φ : U → X
and ψ : U → Y around x and f(x), respectively, with the same open domain
U ⊂ Rn, such that the diagram commutes:

X
f

// Y

U

φ

OO

IdU

// U.

ψ

OO

For example, in Example 2 above, we would replace
• (−1,1) with U = (t0 − ε,t0 + ε) and
• ψ with

ψ ◦ θ : t 7→ (−
√

1− sin2 t, sin t) = (cos t, sin t)

(remember cos t < 0 for t ∈ (t0 − ε,t0 + ε) by our choice of t0 and
ε).

In general, we are going to explain how to choose suitable parametrizations
in the next section.

We would like to reformulate the IFT by saying that f is equivalent to the
identity. To make this precise, we introduce the following terminology:

Equivalence of maps

We say that two maps f : X → Y and g : X ′ → Y ′ are equivalent if there
exist diffeomorphisms α and β completing a commutative square

X
f

// Y

X ′

α

OO

g
// Y ′.

β

OO

(One might also want to say that f and g are the same up to diffeomor-
phism.)
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Hence the IFT says that if dfx is an isomorphism, then f is locally equivalent
at x to the identity. Since a linear map is equivalent to the identity if and only
if it is an isomorphism, we get:

IFT revisited

f is locally equivalent to the identity precisely when dfx is.

Immersions

We move on to the next case:

Second case: dfx is injective

Let us now assume dimX < dimY . Then the best possible behavior of dfx
is that

dfx : Tx(X)→ Tf(x)(Y )

is an injective linear map.

Let us introduce some terminology for this case.

Immersions

If dfx is injective, we say that f is an immersion at x. If f is an immersion
at every point, we say that f is an immersion.

The canonical immersion is the standard inclusion for n ≤ m:

Rn ↪→ Rm, (a1, . . . ,an) 7→ (a1, . . . ,an,0, . . . ,0).

Following our previous observation (i.e. up to diffeomorphism), the canonical
immersion is locally the only immersion:

Local Immersion Theorem

Suppose that f : X → Y is an immersion at x, and y = f(x). Then there
exist local coordinates around x and y such that

f(x1, . . . ,xn) = (x1, . . . ,xn,0, . . . ,0).

In other words, f is locally equivalent to the canonical immersion.
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We should read the statement in the LIT as follows: We can choose local
parametrizations φ : U → X around x and ψ : V → Y around y such that in
the commutative diagram

X
f

// Y

U

φ

OO

θ=ψ−1◦f◦φ
// V

ψ

OO

the map θ is the canonical immersion restricted to U .

How to read the Local Immersion Theorem

Proof of the Local Immersion Theorem:
We start by choosing any local parametrization φ : U → X with φ(0) = x and
ψ : V → Y with ψ(0) = y:

X
f

// Y

U

φ

OO

θ=ψ−1◦f◦φ
// V

ψ

OO

Now the plan is to manipulate φ and ψ such that g becomes the canonical im-
mersion.

By the assumption, we know dθ0 : Rn → Rm is injective. Now recall that we
can represent a linear map between the vector spaces Rn and Rm by an m × n-
matrix. In order to do that we have to choose a basis for the vector spaces.
(For Rn we usually use the standard basis. That’s why we often don’t think about
bases when we look at a linear map Rn → Rm.)
By choosing a suitable basis for Rm, we can assume that dθ0 is the matrix

M

(
In
0

)
which consists of the n × n-identity matrix sitting in the first n rows, and the
zero (m− n)× n-matrix occupying the remaining rows.

Choosing a basis

Recall that choosing a suitable basis works as follows:
Let en1 , . . . ,e

n
n ∈ Rn be the standard basis, and let b1 = dθ0(en1 ), . . . ,bn =



THE INVERSE FUNCTION THEOREM AND IMMERSIONS 45

dθ0(enn) ∈ Rm be the images under dθ0. In terms of the standard basis of
Rm, the matrix for dθ0 is given by the m×n-matrix A with bi as ith column
vector.
Since dθ0 is injective, the vectors b1, . . . ,bn are linearly independent. We
would to extend these vectors to a suitable basis of Rm. Let span(b1, . . . ,bn)
be the image of dg0 in Rm, and let span(b1, . . . ,bn)⊥ be its orthogonal com-
plement in Rm. Let cn+1, . . . ,cm be a basis for span(b1, . . . ,bn)⊥. (You
learned in Matte 3 how to find such a basis: span(b1, . . . ,bn)⊥ is the null
space or kernel of the matrix A above.) We define a new basis for Rm as
b1, . . . ,bn,cn+1, . . . ,cm ∈ Rm.
In terms of this basis, the matrix of dθ0 is exactly M

(
In
0

)
. (Recall also

that, in order to switch from the standard basis of Rm to that new basis,
we apply the m ×m-matrix B whose first n columns are b1, . . . ,bn and re-
maining m− n columns are cn+1, . . . ,cm. Again, since dθ0 is injective, B is
an invertible matrix which sends the standard basis em1 , . . . ,e

m
m ∈ Rm to the

basis b1, . . . ,bn,cn+1, . . . ,cm ∈ Rm.)

Back to the proof: We define a new map

Θ: U × Rm−n → Rm, by Θ(x,z) = θ(x) + (0,z).

It is related to θ by the picture

U
canonical

immersion
//

θ
!!

U × Rm−n

Θyy

Rm.

Since θ is a local diffeomorphism at 0, we can choose U and V small enough
such that θ sends open sets to open sets. Moreover, the matrix representing dΘ0

(in our chosen basis) is just the m×m-identity matrix Im (it’s M
(
In
0

)
with the

zero replaced with the remainind standard basis vectors emn+1, . . . ,e
m
m). By the

Inverse Function Theorem, this implies that Θ is a local diffeomorphism of Rm of
itself at 0. Since ψ and Θ are local diffeomorphisms at 0, so is the composition
ψ ◦Θ. Hence we can use ψ ◦Θ as a local parametrization around y. Finally, after
possibly shrinking U and V we get the desired commutative diagram

X
f

// Y

U

φ

OO

canonical

immersion
// V

ψ◦Θ

OO

which proves the theorem. QED
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Still an immersion in a neighborhood

We observe from the proof of the theorem that if f : X → Y is an immersion
at x, then it is also an immersion for all points in a neighborhood of
x. For, local parametrization φ : U → X of the proof also parametrizes any
point in the image of φ which is an open subset around x (open because φ
is a diffeomorphism onto its image).

Local nature

To be an immersion is a local condition. For example, if dimX = dimY ,
then being an immersion means being a local diffeomorohism. Hence in
order to say more about f we need to add some (more global) topological
properites to the local differential data.
For example, for a local diffeomorphism to be a global one, it has to be
one-to-one and onto.



LECTURE 6

Immersions and Embeddings

Last time we studied immersions. Recall:

Local nature

To be an immersion is a local condition. For example, if dimX = dimY ,
then being an immersion means being a local diffeomorohism. Hence in or-
der to say more about f we need to add some (more global) topological
properties to the local differential data.
For example, for a local diffeomorphism to be a global one, it has to be
one-to-one and onto.

Let us look at the image of an immersion. The nicest possible case is the
image of the canonical immersion Rn ↪→ Rm. The Local Immersion Theorem
tells us that locally any immersion looks like the canonical one. But we are
now going to see:

Be aware!

The image of an immersion is not always a submanifold.

Let us try to understand what can go wrong:

Let f : X → Y be an immersion. Then we know from the Local Immersion
Theorem that f maps any sufficiently small neighborhood W of any point x
in X diffeomorphically onto its image f(W ) ⊂ Y . (By the LIT, W is diffeo-
morohic to a U ⊂ Rn which sits canonically in V ⊂ Rm which is diffeomorphic
to f(W ), see the picture.)
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Not open in Y ?

Hence every point in f(X) lies in a subset which is diffeomorphic to an open
subset in Rn. Isn’t that the definition of f(X) being a submanifold?
No. The problem is that f(W ) does not need to be open in Y . Hence
we cannot garantuee that points in f(X) are in parametrizable open
neighborhoods. UGH!

Before we try to find a global condition to fix this issue, let us look at some
examples of immersions whose image is not a submanifold.

In the example above, f is not one-to-one and f(X) has a point that is not
smooth.
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But even when f is one-to-one, this can happen, as the next example demon-
strates. The image f(X) is the same as above and not a manifold.

Figure eight immersion

In this example, the map f can be defined as

f : R→ R2, t 7→ (sin(4 arctan t)), sin(2 arctan t)).

(The image of f is called a lemniscate, the locus of points (x,y) satisfying
x2 = 4y2(1− y2).)
We can check that f is smooth, one-to-one and an immersion (dft is
never zero and hence as a linear map between one-dimensional vector spaces
an isomorphism).
But f(X) is not a submanifold and f is not a diffeomorphism onto its
image, because f(X) is compact while X is not (an open interval in R).

Torus by gluing:
Let g : R→ S1 be the local diffeomorphism t 7→ (cos(2πt), sin(2πt)). We define

G : R2 → S1 × S1 =: T 2, G(x,y) = (g(x),g(y))

The map G is a local diffeomorphism from the plane onto the torus T 2. (G
“glues” opposite sides of the square together, see the picture.)
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We define the map γ by

γ : R→ T 2, γ(t) = (g(t),g(α · t))

where α is an irrational number.

Note that another way to describe γ = γα would be to define it by

γα : R→ S1 × S1, t 7→ (e2πit,e2πiαt)

where we consider S1 as a subset of C ∼= R2. Then we require that the quotient
α is irrational.

Image of a line with irrational slope

The map γ is an immersion because dγt is nonzero for every t (and as
before a nonzero linear map from a one-dimensional vector space to another
is automatically injective; its image is a line in that other vector space).
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And γ is injective, since γ(t1) = γ(t2) implies

g(t1) = g(t2) and g(αt1) = g(αt2)

⇒ cos(2πt1) = cos(2πt2) and cos(2παt1) = cos(2παt2)

⇒t1 − t2 ∈ Z and α(t1 − t2) ∈ Z
which is impossible, since α is irrational, unless t1 = t2.
Actually, one can show that the image of γ is a dense subset in T 2. But γ
is not a diffeomorphism onto its image, since it is not even a homeo-
morphism:
For, look at the set γ(Z) = {γ(n) : n ∈ Z}. By Dirichlet’s approximation
theorem, for every ε > 0, there are integers n and m such that

|αn−m| < ε.

Since the line segment between two points (cos t1, sin t1) and (cos t2, sin t2)
on the unit circle is shorter than the circular arc of length |t1 − t2| we have

|(cos(2παn), sin(2παn))− (1,0)|
=|(cos(2παn), sin(2παn))− (cos(2πm), sin(2πm))|
≤2π|αn−m|
≤2πε.

Therefore,

|γ(n)− γ(0)|
=|((g(n),g(αn))− (g(0),g(0))|
=| ((1,0),(cos(2παn), sin(2παn)))− ((1,0),(1,0)) |
=|(cos(2παn), sin(2παn))− (cos(2πm), sin(2πm))|
≤2π|αn−m|
≤2πε.

Thus, there is a sequence of integers such that γ(n) converges to γ(0), i.e.
γ(0) is a limit point in γ(Z). But Z does not have any limit points in R.
But note that the image of a convergent sequence under a continuous
map is again a convergent sequence. Hence if γ−1 was continuous, then
0 = γ−1(γ(0)) had to be a limit point as well. Hence γ is not a homeo-
morphism onto its image.
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Aside: LIT for the above example

Let t0 = 0 for simplicity. We apply the LIT to the map

γ : R→ S1 × S1

above. First, we parametrize R by the identity and pick some U = (−1,1).
Then we parametrize S1 × S1 around γ(0) = (1,0,1,0) by

ψ : V = (−1,1)× (−1,1)→ S1 × S1,

(x,y) 7→ (
√

1− x2,x,
√

1− y2,y).

The corresponding map θ : U → V is then

t 7→ (sin(2πt), sin(2παt)).

Now we would like to modify the local parametrization ψ around γ(0) such
that θ becomes

U → U × R, t 7→ (t,0).

For that we define a new map

Θ: U × R→ R2, (t,s) 7→ θ(t) + (0,s).

Then we compose ψ with Θ to get a new local parametrization around γ(0):

ψ ◦Θ: (t,s) 7→(
√

1− sin2(2πt), sin(2πt),√
1− (sin(2παt) + s)2, sin(2παt) + s)

=(cos(2πt), sin(2πt),√
1− (sin(2παt) + s)2, sin(2παt) + s).

Finally, in order to make everything work, we have to make U and V small
enough such that sin(2πt) and sin(2παt) + s stay in (−1,1) for all t ∈ U
and θ(t) + (0,s) ∈ V .

The pathologies of the last two examples arise because the map sends points
near infinity in R into small regions of the image. So if we want to tame
our immersions we have to try to avoid such a behavior. It will turn out that this
is the only problem.

The topological analog of points near infinity in a topological space X is
the exterior or complement of a compact set.
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Proper maps

A map f : X → Y between topological spaces is said to be proper if the
preimage of any compact subset is a compact subset.
(Recall: For a general continuous map, the image of any compact set is
compact. Check that you understand why!)

Let f : X → Y be a proper map and let Z ⊂ Y be a compact subset of Y .
Then f−1(Z) ⊂ X is a compact subset of X, since f is proper. The complement
X \ f−1(Z) of f−1(Z) in X is the largest subset of X which is not mapped to
Z under f . Since f is proper, every point x ∈ X \ f−1(Z) is contained in the
complement of a compact set and f(x) /∈ Z. Thus f sends x to the complement
of a compact subset in Y . Therefore, morally speaking, a proper map sends the
complement of a compact set to the complement of a compact set. In other words:

Proper maps respect infinity

Proper maps send points near infinity to points near infinity.

Let us give proper immersions a name:

Embeddings

An immersion that is one-to-one and proper is called an embedding.

Properness turns out to be a sufficient global topological constraint for a
local immersion. For proper maps we have the following extension of the Local
Immersion Theorem.

Embedding theorem

An embedding f : X → Y maps X diffeomorphically onto a submanifold
of Y .

Proof of the theorem:
By the assumption of f being a one-to-one immersion, we know that f is a
local diffeomorphism from X to f(X). Moreover, f : X → f(X) is bijective
(injective by assumption and obviously surjective onto its image), and the inverse
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f−1 exists as a map of sets. But locally f−1 is smooth, since f is a local
diffeomorphism.

Hence in order to prove that f(X) is a manifold, it remains to show that
the image of any open subset W of X is an open subset of f(X). For
then f maps local parametrizations diffeomorphically to local parametrizations.
Hence we need to show the general statement: A bijective proper map is a
homeomorphism.

If f(W ) was not an open subset, then there would be a point y ∈ f(W )
and an open neighborhood of y which is not contained in f(W ). In different
words, there would be a point y ∈ f(W ) such that in any small neighborhood
of y there would be points yi which are not in f(W ). We can rephrase this by
saying:

If f(W ) is not an open subset, then there exists a sequence of points
yi ∈ f(X) that do not belong to f(W ), but converge to a point y in
f(W ).

The set S := {y,yi}i is compact (a countable union of compact sets). Since f
is proper, the preimage f−1(S) of S in X must be compact, too.

Since f is injective, there is exactly one preimage x of y in X and exaclty
one preimage xi for each yi. Since y ∈ f(W ), x must belong to W .

Since f−1(S) = {x,xi}i is compact, after possibly restricting to a subse-
quence, we may assume that the sequence of the xi converges to a point
z ∈ X, we write xi → z. That implies f(xi)→ f(z) (since f is continuous). But
since f(xi)→ f(x), the injectivity of f implies x = z.

Now W is open, which implies that, for large i, xi ∈ W . But this implies
yi = f(xi) ∈ W and contradicts yi /∈ f(W ). Hence f(W ) is open in Y , and
f(X) is indeed a manifold. QED

A corollary for compact domains

If X is compact, then any continuous map f : X → Y is proper (closed
subsets of compact sets are compact).
Hence, for compact X, every one-to-one immersion f : X → Y is an em-
bedding and f maps X diffeomorphically onto a submanifold of Y .



LECTURE 7

Submersions

Let f : X → Y be a smooth map between smooth manifolds. Remember that
the derivative at x ∈ X, dfx : TxX → Tf(x)Y , is a linear map between vector
spaces, and we are trying to answer the question:

A natural question:

How much does dfx tell us about f?

We move to the third case:

Third case: dfx is surjective

Assume dimX > dimY . The best possible behavior of dfx is then that

dfx : Tx(X)→ Tf(x)(Y )

is a surjective linear map.

Again, there is a name for this case:

Submersions

If dfx is surjective, we say that f is a submersion at x. If f is a submersion
at every point, we say that f is an submersion.

The canonical submersion for n ≥ m is the standard projection

Rn → Rm, (a1, . . . ,an) 7→ (a1, . . . ,am)

onto the first m coordinates (i.e. omitting the remaining n−m coordinates).

Up to diffeomorphism the canonical submersion is locally the only submer-
sion:

55
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Local Submersion Theorem

Suppose that f : X → Y is a submersion at x, and y = f(x). Then there
exist local coordinates around x and y such that

f(x1, . . . ,xn) = (x1, . . . ,xm).

In other words, f is locally equivalent to the canonical submersion.

Proof of the Local Submersion Theorem:
As for the immersion case, we start by choosing any local parametrization φ : U →
X with φ(0) = x and ψ : V → Y with ψ(0) = y:

X
f

// Y

U

φ

OO

θ=ψ−1◦f◦φ
// V

ψ

OO

Now we are going to manipulate φ and ψ such that θ becomes the canonical
submersion.

By the assumption, we know dθ0 : Rn → Rm is surjective. Hence, after choos-
ing a suitable basis for Rm, we can assume that dθ0 is the matrix

M(Im|0)

which consists of the m ×m-identity matrix sitting in the first n columns, and
the zero n× (n−m)-matrix occupying the remaining columns.

Choosing a basis

This time we need to choose a suitable basis for Rn. Let em1 , . . . ,e
m
m ∈ Rm

be the standard basis. Since dθ0 is surjective, the induced linear map

dθ̄0 : Rn/Ker (dθ0)→ Rm

from the quotient vector space Rn modulo the kernel of dθ0 to Rm is an
isomorphism. Hence we can choose unique vectors b1, . . . ,bm ∈ Rn/Ker (dθ0)
with dθ̄0(bi) = emi for i = 1, . . . ,m, and these b1, . . . ,bm form a basis of
Rn/Ker (dθ0). Now we choose a basis vector bm+1, . . . ,bn of Ker (dθ0). This
gives us a basis b1, . . . ,bn of Rn such that dθ0(bi) = emi for i = 1, . . . ,m and
dθ0(bi) = 0 for i = m+1, . . . ,n. Hence in this basis for Rn and the standard
basis for Rm the matrix for dθ0 is exactly M(Im|0) (remember: the columns
are the images of the basis vectors).
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Back to the proof: We define a new map

Θ: U → Rn, by Θ(a) = (θ(a),am+1, . . . ,an)

for a point a = (a1, . . . ,an). It is related to θ by the commutative diagram

U
θ

//

Θ !!

Rm

Rn.
canonical submersion

<<

The derivative dΘ0 at 0 is given by the identity matrix In. Hence Θ is a local
diffeomorphism at 0. Thus we can find a small neighborhood U ′ around 0 in Rn

such that Θ−1 exists as a diffeomorphism from U ′ onto some small neighborhood
around 0 in U .

By construction,

θ = canonincal submersion ◦Θ, i.e. θ ◦Θ−1 = canonincal submersion.

This gives us the commutative diagram

X
f

// Y

U
g

//

φ

OO

V.

ψ

OO

U ′

φ◦Θ−1

AA

Θ−1

>>

canonical

submersion

66

Hence it suffices to replace U with U ′ and φ with φ ◦ Θ−1 to get the desired
commutative diagram

X
f

// Y

U ′

φ◦Θ−1

OO

canonical

submersion
// V

ψ

OO

which proves the theorem. QED

We observe from the proof of the theorem that if f : X → Y is a submersion
at x, then it is also a submersion for all points in a neighborhood of x. For,
local parametrization φ : U → X of the proof also parametrizes any point in the
image of φ which is an open subset around x (open because φ is a diffeomorphism
onto its image).
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Given a map f : X → Y and a point y ∈ Y , we would like to study the fiber
of f over y, i.e. the set

f−1(y) = {x ∈ X : f(x) = y} ⊆ Y.

Be aware

In general, there is no reason for that set f−1(y) has any nice geometric
structure.

But life is much nicer in the world of submersions. So suppose that f : X → Y
is a submersion at a point x ∈ X with f(x) = y or in other words x ∈ f−1(y).
By the Local Submersion Theorem, we can choose local coordinates around x and
y such that, expressed in these local coordinates, y = (0, . . . ,0) and f becomes
the canonical submersion. Let V ⊂ X be the chosen local neighborhood around
x on which the local coordinates are defined. We write u1, . . . ,un for the local
coordinate functions. Expressed in these local coorindates f becomes

f(u1, . . . ,un) = (u1, . . . ,um).

Moreover, still in these coordinates, the fiber over y is the set of points

f−1(y) ∩ V = {p ∈ V : u1(p) = · · · = um(p) = 0}.

Hence we can use the remaining functions um+1, . . . ,un to define a local co-
ordinate system on f−1(y) ∩ V which is an open subset in f−1(y). With these
local coordinates, f−1(y) looks like Euclidean space Rm−n in a neighborhood of
x.

We would like this to be the case for every point in the fiber f−1(y). This is
not always the case. So let us give the desired case a name:

Regular values

For a smooth map of manifolds f : X → Y , a point y ∈ Y is called a
regular value for f if dfx : Tx(X) → Ty(Y ) at every point x ∈ X such
that f(x) = y.
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Then the above argument shows the following important result:

Preimage Theorem

If y is a regular value for f : X → Y , then the fiber f−1(y) over y is a
submanifold of X, with dim f−1(y) = dimX − dimY .

As a first application, we can show once again that spheres are smooth man-
ifolds.



60 SUBMERSIONS

Example: Spheres at preimages

Let f : Rk+1 → R be the map

x = (x1, . . . ,xk+1) 7→ |x|2 = x2
1 + · · ·+ x2

k+1.

The derivative dfa at the point a = (a1, . . . ,ak+1) has the matrix
(2a1 . . . 2ak+1). Thus dfa : Rk+1 → R is surjective unless f(a) = 0, so every
nonzero real number is a regular value of f . In particular, we get again that
the sphere Sk = f−1(1) is a k-dimensional manifold.

Since regular values are so nice, we also want to have a name for other values:

Critical values

For a smooth map of manifolds f : X → Y , a point y ∈ Y which is not a
regular value, is called a critical value for f .
Note that critical values got their name from the fact that f−1(y) can be
very complicated if y is critical.

Note that all values y which are not in the image of f are also regular values
for f . For, if f−1(y) is the empty set, then there is no condition to be satisfied.

Summary for regular values

Suppose f : X → Y is a smooth map of manifolds. Then y being a regular
value for f has the following meaning:

• when dimX > dimY , then f is a submersion at each point x ∈
f−1(y);
• when dimX = dimY , then f is a local diffeomorphism at each

point x ∈ f−1(y);
• when dimX < dimY , then y is not in the image of f ; for, all

values in the image are critical (dfx cannot be surjective when
dimTx(X) < dimTf(x)(Y )).

Matrix subgroups are manifolds

A very important application of the Preimage Theorem, is that we can use
it to show that various matrix groups sare smooth manifolds. Let M(n) denote

the space of real n × n-matrices. It is isomorphic as a vector space to Rn2
(we

can write every n × n-matrix as a column vector of length n2). Let O(n) be
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the subgroup of matrices A in M(n) which satisfy AAt = I where At denotes the
transpose of A and I is the n×n-identity matrix. Note that O(n) is the subgroup
of matrices which preserve the scalar product of vectors. In particular, matrices
in O(n) preserve distances in Rn.

Our goal is to show that O(n) is a smooth manifold of dimension n(n−
1)/2.

First, we note that AAt is a symmetric matrix. For

(AAt)t = (At)tAt = AAt.

The subspace S(n) of symmetric matrices in M(n) is a smooth submanifold of
M(n) of dimension Rk with k = n(n + 1)/2 (everything below the diagonal is
determined by what happens above the diagonal such that there are n(n + 1)/2
free entries). We define the map

f : M(n)→ S(n), A 7→ AAt.

This map is smooth, since multiplication of matrices is smooth and taking trans-
poses is obviously smooth as well.

Now we observe O(n) = f−1(I). Hence, in order to show that O(n) is a
smooth manifold, we just need to show that I is a regular value for f . So let
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us compute the derivative of f at a matrix A:

dfA(B) = lim
s→0

f(A+ sB)− f(A)

s

= lim
s→0

(A+ sB)(A+ sB)t − AAt

s

= lim
s→0

(A+ sB)(At + sBt)− AAt

s

= lim
s→0

AAt + sBAt + sABt + s2BBt − AAt

s

= lim
s→0

sBAt + sABt + s2BBt

s
= lim

s→0
BAt + ABt + sBBt

= ABt +BAt.

In order to check that I is a regular value, we need to show that

dfA : TA(M(n))→ Tf(A)(S(n))

is surjective for all A ∈ O(n). Since M(n) ∼= Rn2
and S(n) ∼= Rn(n+1)/2 are

diffeomorphic to Euclidean spaces, we have

TA(M(n)) = M(n) and Tf(A)(S(n)) = S(n).

Hence, given a matrix C ∈ S(n), we need to show that there is a matrix B ∈M(n)
with dfA(B) = BAt + ABt = C.

Since C is symmetric, we have C = 1
2
(2C) = 1

2
(C+Ct). Since ABt = (BAt)t,

we set B = 1
2
CA. Then, using AAt = I, we get

dfA(B) = (
1

2
CA)At + A(

1

2
CA)t =

1

2
CAAt +

1

2
AAtCt =

1

2
C +

1

2
Ct = C.

Thus I is a regular value, and O(n) is a submanifold of M(n). We can also
calculate the dimension of O(n):

dimO(n) = dimM(n)− dimS(n) = n2 − n(n+ 1)

2
=
n(n− 1)

2
.

Lie groups

The manifold O(n) is an example of a very important class of smooth mani-
folds. For, O(n) is both a smooth manifold and a group such that the group
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operations are smooth. For both the multiplication map

O(n)×O(n)→ O(n), (A,B) 7→ AB

and the map of forming the inverse

O(n)→ O(n), A 7→ A−1

are smooth (for the latter note A−1 = At for A ∈ O(n), but taking inverse
is also smooth for other matrix groups).
In general, a group which is also a manifold such that the group operations
are smooth is called a Lie group.
Lie groups are extremely interesting and important and have a rich and
exciting theory. For example, the tangent space at a Lie group at the
identity element is a Lie algebra, a vector space with a certain additional
operation. Such Lie algebras can be classified completely. Lie groups and
Lie algebras play an important role in many different areas of mathematics
and physics.
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Milnor’s proof of the Fundamental Theorem of Algebra

Last time, we forgot to mention a useful fact about tangent spaces of subman-
ifold given as the preimage of a regular value. We remedy this sin of omission
today before we move on.

Tangent space of regular fibers

Let Z be the preimage of a regular value y ∈ Y under the smooth map
f : X → Y . Then the kernel of the derivative

dfx : Tx(X)→ Ty(Y )

at any point x ∈ Z is the tangent space to Tx(Z).

Proof: Since f(Z) = y, f is constant on Z. Therefore, dfx vanishes on the
subspace Tx(Z) ⊂ Tx(X). Hence dfx sends all of Tx(Z) to zero. In other words,
Tx(Z) ⊆ Ker dfx.

But dfx is surjective, since f is a submersion at any regular point. Hence the
dimension of the kernel of dfx is

dimTx(X)− dimTy(Y ) = dimX − dimY = dimZ.

Hence Tx(Z) is a subspace of the kernel of dfx of the same dimension as Ker dfx.
Thus Tx(Z) = Ker dfx. QED

The Stack of Records Theorem

In order to make the final preparations for Milnor’s proof, we have a closer
look at a specific situation for regular values.

Suppose f : X → Y is a smooth map with dimX = dimY and X compact.
Let y ∈ Y be a regular value for f .

Let x be a point in f−1(y). Since y is a regular value, x is a regular point, i.e.
dfx is surjective. But, since dimX = dimY , this implies dfx is an isomorphism.
Hence f is a local diffeomorphism at x.

65
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Let V ⊂ X and U ⊂ Y be open neighborhoods around x and y, respectively,
such that f|V : V → U is a diffeomorphism.

Now suppose x′ is another point in f−1(y) with x 6= x′. Then dfx′ is an
isomorphism as well, and we can choose an open neighborhood V ′ ⊂ X around
x′ such that f|V ′ is a diffeomorphism onto an open subset U ′ ⊂ Y containing y.

Then V and V ′ are disjoint. For, if V ∩ V ′ 6= ∅, then f restricts to a
diffeomorphism from V ∩V ′ onto U ∩U ′. Since y ∈ U ∩U ′ and f(x) = y = f(x′),
this would imply x = x′ ∈ V ∩ V ′. So if x 6= x′, we must have V ∩ V ′∅.

Hence all the points in f−1(y) lie in pairwise disjoint open subsets of
X. We conclude that f−1(y) is discrete. Since the subset {y} is closed in Y , the
fiber f−1(y) is a closed subset of X. Since X is compact, this implies that f−1(y)
is compact as well (closed subsets in compact spaces are compact). Hence as a
compact and discrete space, f−1(y) is a finite set.

(For, given a compact discrete subset S in Rn. Assume S was not finite. Since
S is bounded, there is an ε > 0 such that S is contained in the n-dimensional
box with edges of length ε and center 0. Divide this box into 2n n-dimensional
boxes of equal size. The lenght of their edge is ε/2. If S was infinite there must
be at least one small box which still contains infinitely many points of S. We
take this box and divide it into 2n n-dimensional boxes of equal size. The lenght
of their edges is now ε/4. Again, if S was infinite there must be at least one of
the smaller boxes which still contains infinitely many points of S.
By repeating the argument, we see that we can find an infinite sequence of points
in S which converges. Since S is closed, any convergent infinite sequence of points
in S must have a limit in S. Call this limit s. But then the subset {s} would
not be open in S, since every open subset of Rn containing s would also contain
other points of S. Hence S would not be discrete. QED)

Let f−1(y) = {x1, . . . ,xn}. We can pick finitely many open subets W1, . . . ,Wn

in X with xi ∈ Wi which map diffeomorphically onto open subsets U1, . . . ,Un in
Y each containing y. The finite intersection U := U1 ∩ · · · ∩ Un is open in Y
and with y ∈ U . The inverse image f−1(U) is a disjoint union of open subsets
V1, . . . ,Vn and each Vi is mapped by f diffeomorphically onto U and xi ∈ Vi.
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Hence we have shown the following very useful result:

Stack of Records Theorem

Suppose dimX = dimY , f : X → Y is a smooth map and X is compact.
Let y ∈ Y be a regular value for f . Then the set f−1(y) is a discrete finite
subset {x1, . . . ,xn} of X, and we can choose an open neighborhood U ⊂ Y
around y such that f−1(U) ⊂ X is the disjoint union V1 ∪ · · · ∪ Vn of open
subsets of X with xi ∈ Vi and f maps each Vi diffeomorphically onto U .

Aside

If in addition to the assumptions of the theorem all values in Y are regular,
then X → Y is an example of a covering. In Topology, a continuous
map f : X → Y is an (unramified) covering if every point in Y has an
open neighborhood U such that f−1(U) is the disjoint union of open sets
Vi such that f maps each Vi homeomorphically onto U . Coverings play an
important role in Topology and Homotopy Theory.
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Since f−1(y) is finite, it makes sense to talk about the number of elements in
f−1(y) which we denote by #f−1(y).

Locally constant fiber

The function y 7→ #f−1(y) on the set of regular points for f is locally
constant, i.e. for every regular value y there is an open neighborhood U ⊂ Y
of y such that #f−1(y) = #f−1(y′) for all y′ ∈ U .

Proof: Given a regular value y, let x1, . . . ,xn be the points in f−1(y). We
just learned that there is an open neighborhood U of y such that f−1(U) =
V1 ∪ · · · ∪ Vn is the pairwise disjoint union of open neighborhoods Vi of xi which
all map diffeomorphically onto open subset U . This means that for every point
y′ ∈ U , there is exactly one point in Vi which maps to y′. And these are the only
points which map onto y′. Hence #f−1(y′) = #f−1(y). QED

A short detour to general topology

To know that a function is locally constant can be very convenient in many
situations. For example, locally constant functions on connected spaces are con-
stant.

Recall that a topological space X is called connected if X cannot be written
as the union of two nonempty disjoint open subsets; or equivalently, if X and ∅
are the only subsets which are both open and closed in X.

Connectedness is a “global” property of a topological space, i.e. it is invariant
under homeomorphisms. In particular, two spaces cannot be homeomorphic if
one is connected and the other is not. Familiar examples of connected spaces are
intervals in R. For example, the closed interval [0,1] is connected.

The criterion for connectedness is rather elegant to state, but it does not tell
us if we can actually “walk” from one point to another, as one would expect for
a connected space. This is the point of a related and more concrete property.
A topological space X is called path-connected if for any two points x,y ∈ X
there is a continuous map γ : [0,1] → X with γ(0) = x and γ(1) = y. Again,
path-connectedness is a topological property, i.e. it is preserved under homeo-
morphisms.

Path-connectedness is the stronger property, i.e. if a space is path-connected,
then it is also connected. For, suppose X is path-connected. If X was not
connected, then there would be two disjoint nonempty open subsets A and B
with X = A ∪B. Since A and B are nonempty, we can choose two points a ∈ A
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and b ∈ B. Since X is path-connected, there is a continuous map γ : [0,1] → X
with γ(0) = a and γ(1) = b. Hence 0 ∈ γ−1(A) ⊂ [0,1] and 1 ∈ γ−1(B) ⊂ [0,1].
Since A and B are disjoint and open, both γ−1(A) and γ−1(B) are disjoint and
open in [0,1]. Since X = A ∪ B, we would have [0,1] = γ−1(A) ∪ γ−1(B) which
contradicts the fact that [0,1] is connected. Hence X must be connected.

But be aware that there are connected spaces which are not path-
connected. A standard example is the subspace

X = {(x, sin(log x)) ∈ R2 : x > 0} ∪ (0× [−1,1]).

Though the usual examples of connected spaces we will meet are path-connected.
For example, every sphere is path-connected, and every sphere with finitely many
points removed is still path-connected.

We conclude our detour with a lemma we will use in the next section. Given
a map f : X → S from a topological space X to any setS. Recall that f is called
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locally constant if for every x ∈ X there is an open neighborhood Ux ⊂ X such
that f|Ux is constant.

A useful lemma

Let X be a connected space and f : X → S be locally constant. Then f is
constant.

Proof: Let s ∈ S be a value of f , i.e. s = f(x) for some x ∈ X. We can write
X as the disjoint union of the sets

A = {x ∈ X : f(x) = s} and B = {x ∈ X : f(x) 6= s}.

Since f is locally constant, both A and B are open. For if a ∈ A, then there is
an open neighborhood Ua ⊂ A with f(Ua) = {s}, i.e.Ua ⊂ A. Similarly, if b ∈ B,
then there is an open neighborhood Ub ⊂ X with f(Ub) = {f(b)}, i.e.Ub ⊂ B.
But since X is connected and A 6= ∅, we must have A = X, and f is constant.
QED

Milnor’s proof of the Fundamental Theorem of Algebra

Now we are ready to see how Milnor used the previous ideas for a simple proof
of the following important result:

Fundamental Theorem of Algebra

Every nonconstant complex polynomial

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

with an 6= 0 must have a zero.

As a consequence, P (z) must have exactly n zeroes when we count them
with multiplicities.

We are going to identify the complex numbers C with the points in real plane
R2, but we keep in mind how that we can mutliply and form inverses for points
in C. To prove the theorem we need to extend the map P : C→ C to a map on
a compact space. Recall that S2 is a compact subspace of R3 and that we can
relate S2 and the real plane R2 via stereographic projection:
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The formulae for the projection from the northpole N = (0,0,1) ∈ S2 are

φ−1
N : S2 \ {N} → R2, (x1,x2,x3) 7→ 1

1− x3

(x1,x2) and

φN : R2 → S2 \ {N}, (x1,x2) 7→ 1

1 + |x|2
(
2x1,2x2,|x|2 − 1

)
.

The formulae for the projection from the south pole S = (0,0,− 1) ∈ S2:

φ−1
S : S2 \ {S} → R2, (x1,x2,x3) 7→ 1

1 + x3

(x1,x2) and

φS : R2 → S2 \ {S}, (x1,x2) 7→ 1

1 + |x|2
(
2x1,2x2,1− |x|2

)
.

Considering our polynomial P as a map from R2 to R2 we define a new map

f : S2 → S2,

{
f(x) := φN ◦ P ◦ φ−1

N (x) for all x ∈ S2 \ {N}
f(N) := N for x = N.

Claim: The map f is smooth.

Since φN and φ−1
N are smooth and polynomials are smooth as well, it is clear

that f is smooth at all points which are not the northpole. It remains to show
that it is also smooth in a neighborhood of N .
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In order to do this we use the projection from the south pole and define a
map

Q : C→ C by Q := φ−1
S ◦ f ◦ φS.

Comparing the definitions of f and Q, we need to calculate

φ−1
N ◦ φS(x1,x2) = φ−1

N

(
1

1 + |x|2
(2x1,2x2,|x|2 − 1)

)
=

1

1− 1
1+|x|2

(
2x1

1 + |x|2
,

2x2

1 + |x|2

)
=

1 + |x|2

2|x|2

(
2x1

1 + |x|2
,

2x2

1 + |x|2

)
=

1

|x|2
(x1,x2).

Remembering complex conjugation z 7→ z̄ on C, we can rewrite this as:

φ−1
N ◦ φS(z) =

z

|z|2
= 1/z̄ for all z ∈ C \ {0}.

Similarly, we also get

φ−1
S ◦ φN(z) =

z

|z|2
= 1/z̄ for all z ∈ C \ {0}.

Thus we get

Q(z) = φ−1
S ◦ φN ◦ P ◦ φ

−1
N ◦ φS(z)

= φ−1
S ◦ φN(P (1/z̄))

= φ−1
S ◦ φN(anz̄

−n + an−1z̄
n−1 + · · ·+ a1z̄

−1 + a0)

= 1/
(
ānz

−n + ān−1z
n−1 + · · ·+ ā1z

−1 + ā0

)
= zn/

(
ān + ān−1z + · · ·+ ā1z

n−1 + ā0z
n
)
.

This shows that Q is smooth at z = 0 for

Q(0) = φ−1
S (f(φS(0)) = φ−1

S (f(N)) = φ−1
S (N) = 0

and hence

lim
h→0

Q(h)−Q(0)

h

= lim
h→0

hn/ (ān + ān−1h+ · · ·+ ā0h
n)− 0

h

= lim
h→0

hn−1/ (ān + ān−1h+ · · ·+ ā0h
n)

= 0.
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Since smoothness is a local property, Q is smooth in a small open neighborhood of
0. Since φS and φ−1

S are diffeomorphisms and since φS sends an open neighborhood
of N in S2 to an open neighborhood of 0 in C, this implies that

f = φ−1
S ◦Q ◦ φS

f is smooth in an open neighborhhod of N .

Next, we observe that the smooth map f : S2 → S2 has only finitely many
critical points, i.e. points x where dfx fails to be surjective. For, since φN and
φ−1
N are diffeomorphisms, the only points that might be critical for f are the points

where P fails to be a local diffeomorphism, and possibly N . But the derivative
of P is given by the polynomial

dPz = P ′(z) =
n∑
j=1

jajz
j−1

which has at most n− 1 zeroes. Hence there are only finitely many z where dPz
is not an isomorphism.

Thus the set R of regular values for f is S2 with finitely many points removed
and is therefore connected. This implies that the function

R→ Z, y 7→ #f−1(y),

which we have seen is locally constant, must be constant.

This enables us to show:

Claim: f is onto.

For, assume there is a y0 ∈ S2 with f−1(y0) = ∅, i.e. #f−1(y0) = 0. Then y0 is
a regular value for f by definition. Since the function y 7→ #f−1(y) is constant on
the set of regular values, it would have to be zero for every regular value. Hence
#f−1(y) would be nonzero only for cricital values y. But that would mean that
f had only finitely many values. Since f is continuous and S2 connected,
this would imply that f is constant. (If f had different values y1, . . . ,yk ∈ S2,
then S2 = f−1(y1) ∪ · · · ∪ f−1(yk) with f−1(yi) ∩ f−1(yj) 6= ∅ and each f−1(y1)
would be nonempty and open (and closed), since f is continuous. That is not
possible, since S2 is connected.) But P is not constant, and φN and φ−1

N are
diffeomorphisms. Thus f is not constant. We conclude that f must be onto.

Conclusion: In particular, f−1(S) 6= ∅ and there must be at least one point
p ∈ S2 with f(p) = S. Since φN is a diffeomorphism and φN(0) = S, p must
satisfy P (φ−1

N (p)) = 0. Hence z := φ−1
N (p) ∈ C is a zero of P . QED





LECTURE 9

A brief excursion into Lie groups - Part 1

Lie groups

A Lie group is a group G which is also a smooth manifold such that the
two maps

µ : G×G→ G, (g,h) 7→ g · h
and

ι : G→ G, g 7→ g−1

corresponding to the two group operations of multiplication and taking
inverses, respectively, are both smooth. (We usually omit the dot and just
write gh instead of g · h.)
In fact, we can summarize the condition that µ and ι are smooth by requiring
that

G×G→ G, (g,h) 7→ gh−1

is smooth.

If G is a Lie group, then any element g ∈ G defines maps

Lg and Rg : G→ G,

called left translation and right translation, respectively, by

Lg(h) = gh and Rg(h) = hg.

Since Lg can be expressed as the composition of smooth maps

G
ig−→ G×G µ−→ G,

with ig(h) = (g,h), it follows that Lg is smooth. It is actually a diffeomorphism
of G, because Lg−1 is a smooth inverse for it. Similarly, Rg : G → G is a diffeo-
morphism. In fact, many of the important properties of Lie groups follow from
the fact that we can systematically map any point to any other by such a global
diffeomorphism. This translation makes the study of Lie groups much more ac-
cessible compared to arbitrary smooth manifolds. In particular, we can move

75
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an open neighborhood around any point in G to make it an open neighborhood
of the identity element. Hence, in a Lie group, we basically only need to study
neighborhoods of the identity element.

Here are some simple examples of Lie groups:

• The real numbers R and Euclidean space Rn are Lie groups under ad-
dition, because the coordinates of x− y are linear and therefore smooth
functions of (x,y).
• Similarly, C and Cn are Lie groups under addition.
• Any finite group with the discrete topology is a (compact) Lie group.
• Suppose G is a Lie group and H ⊆ G is an open subgroup (i.e. a subgroup

which is also an open subspace). Then H is a Lie group as well.
• The set R∗ = R \ {0} of nonzero real numbers is a 1-dimensional Lie

group under multiplication. The subset R+ of positive real numbers is
an open subgroup, and is thus itself a 1-dimensional Lie group (still under
multiplication).
• The set C∗ of nonzero complex numbers is a 2-dimensional Lie group

under complex multiplication.
• The unit circle S1 ⊂ C∗ is a Lie group under the operations induced by

multiplication of complex numbers.
• A finite product of k copies of S1 is a Lie group. We denote it by Tk. In

particular, the 2-dimensional torus T2 = S1 × S1 is a Lie group.
• More generally, the product of Lie groups is again a Lie group.

We will see more examples below. But before, we introduce the notion of
maps between Lie groups which respect the Lie group structure.

Lie group homomorphisms

If G and H are Lie groups, a Lie group homomorphism from G to H is
a smooth map F : G→ H that is also a group homomorphism. It is called
a Lie group isomorphism if it is also a diffeomorphism, which implies
that it has an inverse that is also a Lie group homomorphism. In this case,
we say that G and H are isomorphic Lie groups.

Here are some examples of Lie group homomorphisms:

• The inclusion map S1 ↪→ C is a Lie group homomorphism.
• Considering R as a Lie group under addition, and R∗ as a Lie group

under multiplication, the map

exp: R→ R∗, t 7→ et
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is smooth, and is a Lie group homomorphism, since es+t = eset. The
image of exp is the open subgroup R+ consisting of positive real numbers.
In fact, exp: R→ R+ is a Lie group isomorphism with inverse log : R+ →
R.
• Similarly, exp: C → C∗ given by exp(z) = ez is a Lie group homomor-

phism. It is surjective but not injective, because its kernel consists of
the complex numbers of the form 2πik, where k is an integer.
• The map

ε : R→ S1, t 7→ e2πit

is a Lie group homomorphism whose kernel is the set Z of integers.
• Similarly, the map

εn : Rn → Tn, (t1, . . . ,tn) 7→ (e2πit1 , . . . ,e2πitn)

is a Lie group homomorphism whose kernel is Zn.
• If G is a Lie group and g ∈ G , conjugation by g is the map Cg : G→ G

given by Cg(h) = ghg−1. Because group multiplication and inversion are
smooth, Cg is smooth and it is a group homomorphism:

Cg(hh
′) = gh1hh

′g−1 = (ghg−1)(gh′g−1) = Cg(h)Cg(h
′).

In fact, it is a Lie group isomorphism, because it has Cg−1 as an
inverse. A subgroup H ⊆ G is said to be normal if Cg(H) = H for
every g ∈ G.

Here is an important theorem about Lie group homomorphisms:

Constant Rank Theorem

Let f : G→ H be a Lie group homomorphism. Then the derivative dfg has
the same rank (as a linear map) for all g ∈ G.

Proof: Let eG and eH denote the identity elements in G and H, respectively.
Suppose g0 is an arbitrary element of G. We will show that dfg0 has the same
rank as dfe. The fact that f is a homomorphism means that for all g ∈ G,

f(Lg0(g)) = f(g0g) = f(g0)f(g) = Lf(g0)(f(g));

or in other words, f ◦ Lg0 = Lf(g0) ◦ f . Taking differentials of both sides at the
identity and using the chain rule yields

dfg0 ◦ d(Lg0)eG = d(Lf(g0))eH ◦ dfeG .

Recall that left multiplication by any element of a Lie group is a diffeomor-
phism, so both d(Lg0)eG and d(Lf(g0))eH are isomorphisms. Because composing
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with an isomorphism does not change the rank of a linear map, it follows that
dfg0 and dfeG have the same rank. QED

Lie group isomorphisms revisited

Every bijective Lie group homomorphism f : G→ H is automatically a Lie
group isomorphism.
For, there must be a point g ∈ G where dfg is an isomorphism. Otherwise
the Local Immersion and Submersion Theorems would imply that f looked
like the canonical immersion or submersion, respectively, and f would not be
bijective. By the previous theorem, this implies that dfg is an isomorphism
for all g ∈ G. Hence it is a bijective local diffeomorphism everywhere.
Bijective local diffeomorphisms are global diffeomorphisms. Since the map
is a Lie group homomorphism, it is a Lie group isomorphism.

Now let us study some more interesting examples:

The General Linear Group

The general linear group

GL(n) = {A ∈M(n) : detA 6= 0}

of all invertible n×n-matrices with entries in R, is a smooth manifold of dimension
n2, since it is an open subset of M(n) ∼= Rn2

. To check that it is open, look at
its complement

M(n) \GL(n) = {A ∈M(n) : detA = 0} = det−1(0).

Since det : M(n) → R is continuous (it is a polynomial in the entries of the
matrix) and since {0} is a closed subset of R, det−1(0) is closed in M(n).

We claim that GL(n) is a Lie group. To show this we need to check that
multiplication and taking inverses are smooth operations. Given two matrices A
and B in GL(n), the entry in position (i,j) in AB is given by

(AB)ij =
n∑
k=1

aikbkj.

Hence (AB)ij is a polynomial in the coordinates of A and B. Thus matrix
multiplication

µ : GL(n)×GL(n)→ GL(n)

is a smooth map.
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Recall that the (i,j)-minor of a matrix A is the determinant of the submatrix
of A obtained by deleting the ith row and the jth column of A. By Cramer’s
rule from linear algebra, the (i,j)-entry of A−1 is

(A−1)ij =
1

detA
· (1)i+j((j,i)-minor of A),

which is a smooth function of the aij’s provided detA 6= 0, i.e. the map

M(n)→ R, A 7→ (A−1)ij

is smooth because it depends smoothly on the entries of A. Therefore, the map
of taking inverses

ι : GL(n)→ GL(n)

is also smooth.

GL(n) exists over many bases

In fact, we can matrices with entries in any ring K. We denote the cor-
responding matrix groups by M(n,K), GL(n,K), . . .. Since K = R is the
most important case for us, we omit mentioning the base when it is clear
that we work over R.
Another very important case is K = C. The complex general linear group
GL(n,C) is also a Lie group. It is a group under matrix multiplication, and
it is an open submanifold of M(n,C) and thus a 2n2-dimensional smooth
manifold. It is a Lie group, since matrix products and inverses are smooth
functions of the real and imaginary parts of the matrix entries.
Note that the determinant is a Lie group homomorphism for both R and C:

det : GL(n,R)→ R∗ and det : GL(n,C)→ C∗.
For n = 1, we just have GL(1,R) = R∗ and GL(1,C) = C∗.

The Special Linear Group

Another example of a Lie group is the special linear group

SL(n) = {A ∈M(n) : detA = 1}.

Note that SL(n) consists of all transformations of Rn into itself which preserve
volumes and orientations. (We will discuss orientations later.)

In order to show that SL(n) is a manifold, we would like to use the preimage
theorem for regular values of the map

det : M(n)→ R.
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For SL(n) = det−1(1). To do this, we need to show that 1 is a regular value of
det. In fact, we are going to show that 0 is the only critical value of det.

As a preparation, we are going to look at the following general situation.

Euler’s identity for homogeneous polynomials

Let P (x1, . . . ,xk) be a homogeneous polynomial of degree m in k variables.
First, we are going to show Euler’s identity∑

i

xi∂P/∂xi = mP.(1)

Define a new function Q by

Q(x1, . . . ,xk,t) := P (tx1, . . . ,txk)− tmP (x1, . . . ,xk).

Since P is homogeneous, we know Q is always 0. Hence its derivative with respect
to t is zero as well. Hence we get

0 = ∂Q/∂t =
∑
i

xi∂P/∂xi(tx1, . . . ,txk)−mtm−1P (tx1, . . . ,txk)(2)

where we apply the chain rule to the first summand of Q which is the composite
t 7→ tx 7→ P (tx). Setting t = 1 in (2) yields (1).

Fibers of homogeneous polynomials form manifolds

Now we consider our homogeneous polynomial P as a map

Rk → R, (x1, . . . ,xk) 7→ P (x1, . . . ,xk).

We claim that 0 is the only critical value of P .

The derivative of P at a point (x1, . . . ,xk) is

dPx : Rk → R, (z1, . . . ,zk) 7→(∂P/∂x1(x) . . . ∂P/∂xk(x)) ·

z1
...
zk


=
∑
i

zi∂P/∂xi(x).

To show that dPx is nonsingluar, i.e. surjective, it suffices to show that dPx is
nontrivial. But applying dPx to x and using Euler’s identity yields

dPx(x) =
∑
i

xi∂P/∂xi(x1, . . . ,xk) = mP (x1, . . . ,xk).

Hence if x = (x1, . . . ,xk) is not a zero of P , then dPx(x) is nonzero.
Hence only points in the fiber over 0 might be critical points, and all nonzero real
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numebrs are regular values of P . This shows that P−1(a) is a k − 1-dimensional
submanifold of Rk for all a 6= 0.

Given two real numbers a,b > 0, then (b/a)1/m exists and we if P (x) = a, we
have

P ((b/a)1/mx1, . . . ,(b/a)1/mxk) = b/aP (x1, . . . ,xk) = b.

Multiplying each coordinate with (b/a)1/m corresponds to multiplicatin with the
diagonal matrix with (b/a)1/m on the diagonal. This map is a linear isomorphism
of Rk to itself. Hence we have the diffeomorphism

P−1(a)→ P−1(b), (x1, . . . ,xk) 7→ ((b/a)1/mx1, . . . ,(b/a)1/mxk).

Similarly, if both a,b < 0 are negative, then (b/a)1/m exists and the same
argument shows that P−1(a) and P−1(b) are diffeomorphic.

Algebraic Geometry in a nutshell

The study of the zeroes of polynomials is the central theme in Algebraic
Geometry. This is a classical and fascinating part of pure mathematics. In
the past 2-3 decades, strong and fascinating conncetions between Algebraic
Geometry and Homotopy Theory have been developed, summarized in the
field of Motivic Homotopy Theory. Just ask to learn more about it.

Back to matrices: If we think of the entries in an n×n-matrix A as variables,
then detA is a homogeneous polynomial of degree n. It is given by Leibniz’
formula

det(A) =
∑
σ

(sgn(σ)
n∏
i=1

aiσ(i))(3)

where the sum runs over all permutations of the set {1, . . . ,n} and sgn(σ) denotes
the sign of the permutation σ. Hence we can apply the previous argument to

P = det : M(n) = Rn2 → R
and get that 0 is the only critical value of det. Thus the special linear group
SL(n) = det−1(1) is a smooth submanifold of dimension n2 − 1 in M(n).





LECTURE 10

A brief excursion into Lie groups - Part 2

The Special Linear Group

We continue our study of the special linear group

SL(n) = {A ∈M(n) : detA = 1}.

Last time, we learned that SL(n) is a smooth manifold of dimension n2 − 1.
The same argument as for GL(n) shows that it even is a Lie group. We will see
another argument for that today.

But first we would like to calculate the tangent space of SL(n) at the
identity matrix.

This space plays a special role for any Lie group. In fact, the translation
property of Lie groups implies that the tangent to a Lie group G at any matrix
in G is isomorphic to tangent space to G at the identity element. It carries an
additional structure and is an example of a Lie algebra.

To determine the tangent space at the identity, we use a result we proved last
week which said: if Z = f−1(y) ⊆ X is a submanifold defined by a regular value
y of a smooth map f : X → Y , then Tx(Z) = Ker (dfx) ⊆ Tx(X).

Hence we need to calculate the derivative of det at the identity.

Recall that the determinant of a matrix A is given by Leibniz’ formula

det(B) =
∑
σ

(sgn(σ)
n∏
i=1

biσ(i))(4)

where the sum runs over all permutations of the set {1, . . . ,n} and sgn(σ) denotes
the sign of the permutation σ.

Given a matrix A, in the determinant of B := I+sA, every summand contains
at least a factor s2 unless it is the product of at least n − 1 diagonal entries
bii = 1 + saii (because we need n − 1 factors not containing s which is only
possible when we multiply n− 1 times 1). But if a permutation {1, . . . ,n} leaves

83
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n− 1 numbers fixed, it also has to leave the remaining one fixed. Hence the only
summand in (4) which does not contain a factor s2 is the summand

n∏
i=1

(1 + saii) = (1 + sa11) · · · (1 + sann) = 1 + s · tr (A) +O(s2).

The derivative of the determninant at the identity

d(det)I : TI(M(n)) = M(n)→ T1(R) = R

is then given by

d(det)I(A) = lim
s→0

det(I + sA)− det I

s

= lim
s→0

1 + s · tr (A) +O(s2)− 1

s

= lim
s→0

s · tr (A) +O(s2)

s
= lim

s→0
tr (A) +O(s)

= tr (A).

By the result from the previous lecture, we get

TI(SL(n)) = Ker (d(det)I) = {A ∈M(n) : tr (A) = 0}.

In other words, the tangent space to SL(n) at the identity is the space of
matrices whose trace vanishes.

The Special Orthogonal Group

Recall that the orthogonal group O(n) is defined as the subset of matrices A
in M(n) such AAt = I. This equation implies, in particular, that every A ∈ O(n)
is invertible with A−1 = At. Hence the determinant of an A ∈ O(n) must satisfy
(detA)2 = 1, i.e. detA = ±1. Thus, O(n) splits into two disjoint parts, the subset
of matrices with determinant +1 and the subset of matrices with determinant −1.

If A and B have determinant −1, then their product AB has determinant +1.
Hence the subset of matrices with determinant −1 is not closed under multiplica-
tion and therefore not a subgroup of O(n). But the other part is a Lie subgroup
of O(n) and is called the Special Orthogonal Group SO(n):

SO(n) = {A ∈ O(n) : detA = 1} ⊂ O(n).
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Unitary and Special Unitary Groups

The unitary group U(n) is defined to be

U(n) := {A ∈ GL(n,C) : ĀtA = I},

where Ā denotes the complex conjugate of A, the matrix obtained from A by
conjugating every entry of A. A similar argument as for O(n) shows that U(n)
is a submanifold of GL(n,C) and that dimU(n) = n2.

The special unitary group SU(n) is defined to be the subgroup of U(n) of
matrices of determinant 1.

Some identities

There are a couple of identities, most of which are incidental and do not reflect
any deeper pattern. They are interesting nevertheless. For example:

(a) For n = 1, O(1) consists of just two points: O(1) = {−1,+ 1}.
(b) For n = 2, SO(2) is diffeomorphic to S1:

For, any A =

(
a b
c d

)
∈ SO(2) satisfies

AtA =

(
a c
b d

)(
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
=

(
1 0
0 1

)
.

Hence A corresponds to two points (a,c) and (b,d) on S1 ⊂ R2 whose
corresponding vectors are orthongonal to each other. Since we also know
detA = ad− bc = 1, one of these points uniquely determines the other
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and we can write A as

(
cos t − sin t
sin t cos t

)
for some real number t. Now one

can check that the map

S1 → SO(2), (cos t, sin t) 7→
(

cos t − sin t
sin t cos t

)
is a diffeomorphism and Lie group isomorphism.

(c) For n = 2, SU(2) is diffeomorphic to S3: Any A =

(
a b
c d

)
∈ SU(2)

satisfies

ĀtA =

(
ā c̄
b̄ d̄

)(
a b
c d

)
=

(
āa+ c̄c āb+ c̄d
b̄a+ d̄c b̄b+ d̄d

)
=

(
1 0
0 1

)
.

Together with detA = ad − bc = 1 we get four linear equations for the
complex numbers a, b, c, d, and their complex conjugates. Unraveling
these equations shows that we can write A as

A =

(
a b
−b̄ ā

)
with aā+ bb̄ = 1.

Hence A corresponds uniquely to a pair of complex numbers (a,b) which
satisfies aā + bb̄ = 1. Since this is exactly the defining condition for
elements of S3 ⊂ C2, we see that

S3 → SU(2), (a,b) 7→
(
a b
−b̄ ā

)
is a diffeomorphism.

Spin groups

There are other important examples of Lie groups which, in general, do
not arise as closed subgroups of GL(n,R) or GL(n,C). For example, the
nth Spin group Spin(n) is the n-dimensional Lie group which is a double
cover of SO(n). The latter means that Spin(n) is equipped with a smooth
surjective map π : Spin(n)→ SO(n) such that each point in SO(n) has an
open neighborhood U such that π−1(U) is a disjoint union of open subsets in
Spin(n) each of which is mapped diffeomorphically onto U by π. (We have
seen covering spaces when we discussed the Stack of Records Theorem.)
The map π is part of a short exact sequence of groups

1→ Z/2→ Spin(n)→ SO(n)→ 1.

Spin groups can be constructed for example via Clifford algebras. However,
there are some exceptional isomorphisms in low dimensions which we can



A BRIEF EXCURSION INTO LIE GROUPS - PART 2 87

write down:

Spin(1) ∼= O(1),

Spin(2) ∼= SO(2),

Spin(3) ∼= SU(2),

Spin(4) ∼= SU(2)× SU(2),

Spin(6) ∼= SU(4).

Topology of Lie groups

Just as O(n) (this was an exercise), SO(n) is compact (whereas GL(n) is not
compact as an open subset of M(n)). Similarly, U(n) and SU(n) are compact.

Moreover, note that both SO(n) and its complement are both open and closed
in O(n). They are the two connected components of O(n). In particular,
there is no continuous path in O(n) from a matrix with determinant +1 to one
with determinant −1. In fact, there is no such path in GL(n):

The real general linear group is not connected

Let γ be a path in GL(n), i.e. a continuous map

γ : [0,1]→ GL(n).

Since γ and det are continuous, so is their composite

det ◦γ : [0,1]
γ−→ GL(n)

det−→ R.
Hence if det(γ(0)) > 0 and det(γ(1)) < 0, then the Intermediate Value
Theorem from Calculus implies that there must be a real number t0 ∈ (0,1)
such that det(γ(t0)) = 0 /∈ GL(n). Hence γ would have to leave GL(n).

Thus also GL(n) has two connected components, one of which is an open
subgroup consisting to all matrices A with detA > 0. The other one is just an
open subset consisting to all matrices A with detA < 0.

The complex general linear group is connected

However, GL(n,C) is path-connected. We see the difference between
GL(n,R) and GL(n,C) most clearly for the case n = 1: GL(1,R) = R∗



88 A BRIEF EXCURSION INTO LIE GROUPS - PART 2

is not path-connected, since we cannot cross 0; whereas GL(1,C) = C∗ is
path-connected, since we can just walk around 0 in the plane.
More generally, to show that GL(n,C) is path-connected, it suffices to show
that there is path from any matrix A ∈ GL(n,C) to the identity matrix
I ∈ GL(n,C). Therefore, we define first the function

P : C→ C, z 7→ det(A+ z(I − A)).

Then we have P (0) = detA 6= 0 and P (1) = det I = 1 6= 0. Since
P is a polynomial of degree n, it has only finitely many zeroes. Since
C \ {set of finitely many points} is path-connected, we can find a path
γ : [0,1]→ C with γ(0) = 1, γ(1) and which avoids the zeroes of P , i.e.

P (γ(t)) 6= 0 for all t.

Then the continuous map

Γ = P ◦ γ : [0,1]→ GL(n,C), t 7→ A+ γ(t)(I − A)

is the desired path from A to I.

The fact that GL(n,C) is connected while GL(n,R) is not plays a crucial role
for orientations of vector spaces, vector bundles, manifolds etc. For, every com-
plex vector space, complex vector bundle, complex manifold, etc has a natural
orientation. We will get back to this later.

Open neighborhoods of the identity.

Recall that if G is a group and S ⊂ G is a subset, the subgroup generated
by S is the smallest subgroup containing S, i.e., the intersection of all subgroups
containing S. One can check that the subgroup generated by S is equal to the
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set of all elements of G that can be expressed as finite products of elements of S
and their inverses.

Neighborhoods of the identity

Suppose G is a Lie group, and W ⊂ G is any neighborhood of the identity.
Then

(a) W generates an open subgroup of G.
(b) If G is connected, then W generates G. In particular, an open

subgroup in a connected Lie group must be equal to the whole
group.

Proof: Let W ⊂ G be any neighborhood of the identity, and let H be the
subgroup generated by W . To simplify notation, if A and B are subsets of G, we
write

AB := {ab : a ∈ A, b ∈ B}, and A−1 := {a−1 : a ∈ A}.

For each positive integer k, let Wk denote the set of all elements of G that can be
expressed as products of k or fewer elements of W ∪W−1. As mentioned above,
H is the union of all the sets Wk as k ranges over the positive integers.

Now, W−11 is open because it is the image of W under the inversion map,
which is a diffeomorphism. Thus, W1 = W ∪W−1 is open, and, for each k > 1,
we have

Wk = W1Wk−1 = ∪g∈W1Lg(Wk−1).

Because each Lg is a diffeomorphism, it follows by induction that each Wk is
open, and thus H is open as a union of open subsets.

(b) Assume G is connected. We just showed that H is an open subgroup of
G. It is an exercise to show that an open subgroup in a connected Lie group is
equal to the whole group. QED

Lie subgroups

In the previous paragraph we talked about subgroups of a Lie group. But we
did not disucss how the subgroup structure relates to the structure as a smooth
manifold. Actually, this is a subtle and interesting point that illustrates the
importance of the distinction between immersions and embeddings once again.
So here is the definition of a Lie subgroup:
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Definition of Lie subgroups

A Lie subgroup of a Lie group G is an abstract subgroup H such that if
there exists a smooth manifold X and an immersion f : X → G from X to
G such that H = Im (f) ⊆ G is the image of f , and the group operations on

H are smooth, in the sense that X ×X f×f−−→ G×G µ−→ G and X
f−→ G

ι−→ G
are smooth.

Let us have a closer look at this rather complicated definition:

An “abstract subgroup simply means a subgroup in the algebraic sense. The
group operations on the subgroup H are the restrictions of the multiplication
map µ and the inverse map ι from G to H.

If H were defined to be a submanifold of G, then the multiplication map
H × H → H and similarly the inverse map H → H would automatically be
smooth, and the definition would be much shorter. But since a Lie subgroup
is defined to be an “immersed submanifold”, it is necessary to impose the last
condition.

If H is in fact also a submanifold, then life is easier:

Embedded Lie subgroups

If H is an abstract subgroup and a submanifold of a Lie group G, then
it is a Lie subgroup of G. In this case, the inclusion map H ↪→ G is an
embedding, and we call H an embedded subgroup.

Proof: Since H is a subgroup, multiplication and taking inverses in H are
just the restrictions of multiplication and taking inverses in G and both have
image in H. Since H is a submanifold we can take X = H in the above definiton,
the restrcitions of smooth maps to H are again smooth. QED

For example, the subgroups SL(n) and O(n) of GL(n) are both submanifolds,
and therefore embedded Lie subgroups. Another example is given as follows:



A BRIEF EXCURSION INTO LIE GROUPS - PART 2 91

Complex vs Real

One easily verifies that

C→M(2,R), z = x+ iy 7→
(
x y
−y x

)
is an embedding. More generally, this map induces an embedding

GL(n,C) ↪→ GL(2n,R)

by replacing each entry z = x+ iy in A ∈ GL(n,C) by the block

(
x y
−y x

)
:

x11 + iy11 . . . x1n + iy1n
...

. . .
...

xn1 + iyn1 . . . xnn + iynn

 7→

x11 −y11

y11 x11
. . .

x1n −y1n

y1n x1n
...

. . .
...

xn1 −yn1

yn1 xn1
. . .

xnn −ynn
ynn xnn


This way, GL(n,C) is an embedded Lie subgroup of GL(2n,R).

Now let us get back to understanding the definition of a Lie subgroup. The
subleties of immersed and embedded subgroups can be illustrated by a familiar
example:

Example of an immersed but not embedded Lie sub-
group

Recall the maps g : R→ S1, t 7→ (cos(2πt), sin(2πt)), and

G : R2 → S1 × S1 = T2, G(x,y) = (g(x),g(y))

The map G is a local diffeomorphism from the plane onto the torus T 2.
Given a real number α, we defined the map γα by

γα : R→ T2, γ(t) = (g(t),g(α · t)).
We learned that γα is always an immersion, but its image is not a sub-
manifold of T2 ifα is an irrational number. However, when α is rational,
then γα(R) is a submanifold of T 2.
After checking that γα(R) is an abstract subgroup, we see that γα(R) is in
fact a Lie subgroup of T2 for every real number α. (Note that, in this
example, the smooth manifold X and the smooth map f : X → G in the
definition of Lie subgroups is X = R, f = γα, and H = γα(R).)
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For an explanation of why a Lie subgroup is defined in such a complicated
way, we refer to a fact we will only be able to appreciate later when we learn
more about Lie theory:

Why so complicated?

A fundamental theorem in Lie group theory asserts the existence of a one-
to-one correspondence between the connected Lie subgroups of a Lie
group G and the Lie subalgebras of its Lie algebra g (tangent space at the
identity with its Lie bracket):

{connected Lie subgroups in G} 1−1←→ {Lie subalgebras in g}.
In the previous example, the Lie algebra of T2 has R2 as the underlying vec-
tor space, and the one-dimensional Lie subalgebras are all the lines through
the origin (with addtion as group operation). Such a line is determined by
its slope α. Hence every α should correspond to a Lie subgroup γα(R)
in T2.
However, if a Lie subgroup had been defined as a subgroup that is also
a submanifold, then one would have to exclude all the lines with irrational
slopes as Lie subgroups of the torus. In this case it would not be possible to
have a one-to-one correspondence between the connected subgroups of a Lie
group and the Lie subalgebras of its Lie algebra. But this correspondence
is extremely useful in Lie theory.

The following theorem is a very useful fact which we state here without proof
(you can find it in Lee’s book, Chapter 7, Theorem 7.21):
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Closed Subgroup Theorem

Suppose G is a Lie group and H ⊆ G is a Lie subgroup. Then H is closed
in G if and only if it is an embedded Lie subgroup.





LECTURE 11

Transversality

Cut out submanifolds as zeros of functions

In order to prepare the following discussion of transversality, let us have an-
other look at the conditions of when preimages are submanifolds.

Question

Suppose that g1, . . . ,gk are smooth, real-valued functions on a manifold X
of dimension n > k (each gi is a smooth function X → R). Under what
conditions is the set Z of common zeros a reasonable geometric object?
In particular, when is Z a manifold?

We have seen an answer to this question. Collect the n functions to define
the map

g = (g1, . . . ,gk) : X → Rk.

Then we know that Z = g−1(0) is a submanifold of X if 0 is a regular value
of g.

Remark

Historically, the study of zero sets of collections of functions has been of
considerable mathematical interest. For, think of the zeroes as solutions to
equations. Solving equations is a fundamental goal in mathematics (though
not the only one!). In classical algebraic geometry, for example, one studies
sets cut out in (complex) Euclidean space as the zero sets of polynomials
(in several complex variables).

In order to make it easier to find an answer to our question, we would like
to reformulate the regularity condition for 0 directly in terms of the functions gi.
Since each gi is a smooth map of X into R, its derivative at a point x is a linear
map

d(gi)x : Tx(X)→ R.
95
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We call such a map a linear functional on the vector space Tx(X). The set

Tx(X)∗ := HomR(Tx(X),R)

of all linear functionals on Tx(X) is a vector space with pointwise addition and
scalar multiplication.

The derivative of g

dgx : Tx(X)→ Rk

equals the k-tuple of the linear functionals (d(g1)x, . . . ,d(gk)x). For, each (d(gi)x
is a (1× n)-matrix which is the ith row of the matrix representing dgx.

Hence, as a linear map to a k-dimensional vector space, we see that

dgx is surjective

⇐⇒ dgx has full rank

⇐⇒ the row vectors d(g1)x, . . . ,d(gk)x are linearly independent.

This is the same as to say that d(g1)x, . . . ,d(gk)x are linearly independent
in the vector space Tx(X)∗ of linear functionals on Tx(X). We are going to
rephrase this condition by saying that the k functions g1, . . . ,gk are independent
at x.

This yields another way of stating the Preimage Theorem:

Preimage Theorem revisited

If the smooth, real-valued functions g1, . . . ,gk on X are independent at
each point x where they all vanish (i.e. g1(x) = · · · = gk(x) = 0), then the
set Z of common zeros is a submanifold of X with dimension equal to
dimX − k.

It is convenient here to define the codimension of an arbitrary submanifold
Z of X by the formula

codimZ = dimX − dimZ.

We can think of the codimension as a measure of how much bigger X is
compared to Z. In particular, note that the codimension depends not only on
Z, but also on the surrounding manifold X. Hence we should always speak of
the codimension of Z in X. However, the number of functions we use to cut
out a submanifold determines the codimension, independently of the size of X:
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Cut out manfiolds

Thus k independent functions on X cut out a submanifold of codimen-
sion k.

Once again, a natural question arises:

Question

Can every submanifold Z of X be “cut out” by independent functions?

Answer

The answer is no, in general.

However, there are two useful partial converses:

Cut out manfiolds: Partial Converse 1

If y is a regular value of a smooth map f : X → Y , then the preimage
submanifold f−1(y) can be cut out by independent functions.

Note that the point here is that we express f−1(y) as the set of common
zeros for some function, not just as the preimage of some value in Y .

Proof: Assuming dimY = m, we just need to choose local coordinates around
y, i.e. a diffeomorphism h : W → V with W ⊂ Y and V ⊂ Rm open and h(y) = 0.
Then we define the new map

g = h ◦ f : f−1(W )→ Rm with g−1(0) = f−1(h−1(0)) = f−1(y) ⊆ X.
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The origin 0 ∈ Rm is a regular value for g, for if x ∈ g−1(0) then

dgx = dhf(x) ◦ dfx
is surjective, since dhf(x) is an isomorphism and dfx is surjective (x being a regular
point for f). Hence every point in g−1(0) is regular, and 0 is a regular value for g.
Thus the components g1, . . . ,gm of g with gi : X → R are independent functions
which cut out f−1(y). QED

Simple Example

In many cases, the result does not tell us too much new. It is just convenient
to know that we can choose 0 as the regular value.
A simple example is given by defining Sn as f−1(0) of the map

g : Rn+1 → R, x2
1 + · · ·+ x2

n+1−1.

As we pointed out, it is not possible to write every submanifold as the zero
set of some map. But locally we can!

Cut out manfiolds: Partial Converse 2

Every submanifold Z of X is locally cut out by independent functions.
More specifically, let m be the codimension of Z in X, and let z be any point
of Z. Then there exist m independent functions g1. . . . ,gm defined on some
open neighborhood W of z in X such that Z ∩W is the common vanishing
set of the gi. In other words, Z ∩W is cut out be independent functions in
W .
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Proof: This is just Exercise 5 of Exercise Set 3 applied to the immersion Z →
W . The idea is to use the Local Immersion Theorem and pick local coordinate
functions g1, . . . ,gn (n = dimX) defined on W such that Z ∩ W is the set of
common zeros of the m functions gn−m+1, . . . ,gn, i.e.

Z ∩W = {x ∈ W : gn−m+1(x) = 0, . . . ,gn(x) = 0}.

QED

As a consequence we see that every manifold can be cut out locally by inde-
pendent functions on Euclidean space (but not globally in general!)

Cut out manifolds by smooth conditions

Now we would like to understand what happens when we do not take the
preimage of just a single point, but of a whole submanifold (not an arbitrary
subset, since we need some control).

Given a smooth map f : X → Y between smooth manifolds. Assume that
Z ⊆ Y is a submanifold of Y . We would like to understand:

Question

Under which conditions is the subset f−1(Z) ⊆ X an interesting geometric
object? In particular, when is f−1(Z) a manifold, and therefore a subman-
ifold of X?

Note that f−1(Z) is the set of all x ∈ X such that f(x) ∈ Z. In other words,
it is the colllection of all the fibers f−1(z) for all z ∈ Z. This gives us a hint to
how we can answer the question. We look at the points z ∈ Z each at a time.
This fits nicely into our general strategy: whether a space is a manifold or not is
determined by the neighborhoods of points.

Strategy

More precisely, in order to check that f−1(Z) is a manifold, it suffices to
check that for each point x ∈ f−1(Z) there is an open neighborhood U ⊂ X
of x in X such that f−1(Z)∩U is a manifold. For then f−1(Z)∩U inherits
the local coordinate functions from U (by restricting them to the subset
f−1(Z) ∩ U).
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So let us pick a point z ∈ Z and let x ∈ X satisfy f(x) = z. We have just
learned that we can write Z in a neighborhood W ⊆ Y around z as the zero set
of independent functions g1, . . . ,gk, where k denotes the codimension of Z in
Y . This means:

W ∩ Z = {w ∈ W : g1(w) = · · · = gk(w) = 0}(5)

and d(g1)w, . . . ,d(gk)w are linearly independent in Tw(Y )∗ for all w ∈ W ∩ Z.

We set U := f−1(W ) which is an open neighborhood of x in X. Since taking
preimages of sets commmutes with intersecting sets, we have

f−1(W ∩ Z) = f−1(W ) ∩ f−1(Z) = U ∩ f−1(Z).

Hence equation (5) implies that, near x, the preimage f−1(Z) is the zero set
of the functions g1 ◦ f, . . . ,gk ◦ f in U :

U ∩ f−1(Z) = {u ∈ U : (g1 ◦ f)(u) = · · · = (gk ◦ f)(u) = 0}.

Let g : W → Rk denote the submersion (g1, . . . ,gk) defined around z. Then
the Preimage Theorem applied to the composite smooth map g◦f : U → Rk gives
us:

U ∩ f−1(Z) = (g ◦ f)−1(0) is a manifold if 0 is a regular value of g ◦ f .

Hence in order to show that f−1(Z) is a manifold we need to understand when
0 is a regular value of g ◦ f .

So what does it mean that 0 is a regular value of the composite g ◦ f? The
chain rule tells us

d(g ◦ f)x = dgz ◦ dfx.
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Thus, the linear map

d(g ◦ f)x : Tx(X)→ Rk is surjective

⇐⇒ dgz maps the image of dfx onto Rk.

We know that dgz : Tz(Y )→ Rk, on the whole tangent space to Y at z, is a
surjective linear map whose kernel is the subspace Tz(Z). Thus dgz induces an
isomorphism

dḡz : Tz(Y )/Tz(Z)
∼=−→ Rk.

In particular, (dgz)|Im (dfx) can only be surjective if Im (dfx) and Tz(Z) to-
gether span all of Tz(Y ).

We conclude that g ◦ f is a submersion at x ∈ f−1(Z) if and only if

Im (dfx) + Tz(Z) = Tz(Y ).

We give this condition a name:

Transversality

Let f : X → Y be a smooth map and Z ⊆ Y a submanifold. Then f is said
to be transversal to the submanifold Z, denoted f −t Z, if

Im (dfx) + Tf(x)(Z) = Tf(x)(Y)

at each point x ∈ f−1(Z) in the preimage of Z.

The above discussion then shows

Transversality Theorem

If the smooth map f : X → Y is transversal to a submanifold Z ⊆ Y , then
f−1(Z) is a submanifold of X. Moreover, the codimension of f−1(Z) in
X equals the codimension of Z in Y .

The number of independent functions g1, . . . ,gk we needed to locally write Z as
a zero set in Y , is the same as the number of independent functions g1◦f, . . . ,gk◦f
we needed to locally write f−1(Z) as a zero set in X. Therefore the codimension
of f−1(Z) in X is equal the codimension of Z in Y .
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Transversality revisited

To make this explicit, note that our discussion showed that f −t Z equivalent
to: for every x ∈ X with f(x) ∈ Z, there is an open neighborhood W
around f(x) in Y and a submersion g : W → Rk, with k = codimZ, such
that W ∩ Z = g−1(0) and 0 is a regular value of g ◦ f .

For some very simple examples of transversality and non-transversality, con-
sider Y = R2 with the submanifold Z being the x-axis. Then

• The map f : R1 → R2 defined by f(t) = (0,t) is transversal to Z, with
f−1(Z) = {(0,0)}.
• The map f : R1 → R2 defined by f(t) = (t,t2), however, is not transver-

sal to Z, with f−1(Z) = {(0,0)}.

• The map f : R1 → R2 defined by f(t) = (t,t2 − 1) is transversal to Z,
with f−1(Z) = {(−1,0),(1,0)}.
• The map f : R1 → R2 defined by f(t) = (t, cos t − 1) is not transversal

to Z, with f−1(Z) = {(0,0)}.



LECTURE 12

Transversality of submanifolds

Today, we are going to study some important special cases of transversality.

First, transversality is in fact a generalization of Regularity:

Regular vs Transversal

When Z is just a single point z, its tangent space is the zero subspace of
Tz(Y ). Thus f is transversal to {z} if dfx(Tx(X)) = Tz(Y ) for all x ∈ f−1(z).
This is exactly what it means to say that z is a regular value of f . So
transversality includes the notion of regularity as a special case.

The second one tells us how we should actually think of and visualize transver-
sality. Roughly speaking, we want to know how the image of f and Z meet in
Y :

Intersection of submanifolds

The most important situation is the transversality of the inclusion map i of
one submanifold X ⊂ Y with another submanifold Z ⊂ Y .
To say a point x ∈ X belongs to the preimage i−1(Z) simply means that x
belongs to the intersection X ∩Z. Also, the derivative dix : Tx(X)→ Tx(Y )
is merely the inclusion map of Tx(X) into Tx(Y ). So i−t Z if and only if,
for every y ∈ X ∩ Z,

Ty(X) + Ty(Z) = Ty(Y).(6)

Notice that this equation is symmetric in X and Z. When it holds, we shall
say that the two submanifolds X and Z are transversal, and write
X −t Z.

Warning: For equation (6) to be true, it is not sufficient that dimTx(X) +
dimTx(Z) = dimTx(Y ). The two subspaces must span together all of Tx(Y ).

The transversality theorem for this specialize case then says:
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Intersection of transversal submanifolds

The intersection of two transversal submanifolds X and Z of Y is again
a submanifold. Moreover, the codimensions in Y satisfy

codim (X ∩ Z) = codimX + codimZ.

The additivity of codimensions follows from the codimension formula of the
Transversality Theorem:

codim i−1(Z) in X = codimZ in Y

⇒ dimX − dimX ∩ Z = dimY − dimZ

⇒ dimY − dimX ∩ Z = (dimY − dimZ) + (dimY − dimX)

⇒ codimX ∩ Z = codimZ + codimX.

Intersect as a little as possible

We have just seen that two manifolds intersect transversally if their tangent
spaces together span the whole ambient space. A different way to think of
transversality is: Two manifolds intersect transversally if they intersect as
little as possible at every point. And we measure the degree of inter-
section in terms of tangent spaces: If two submanifolds intersect, then
they transversally if the intersection of their tangent spaces in the ambient
space is minimal.

Note that the converse of the Transversality Theorem is not true. Weh
ave seen a simple example last time: the submanifolds X{(x,y) ∈ R2 : y = x2}
and Z = {(x,y) ∈ R2 : y = 0} do not intersect transversally at 0 in Y = R2,
but their intersection X ∩Z = {0} is a zero-dimensional manifold. However,
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there do, of course, exist intersections which are not transversal and where the
intersection is not a manifold. See the example below!

Empty intersections are transversal

It is useful to note that any smooth map f : X → Y whose image does
not meet a submanifold Z of Y , i.e. f−1(Z) = ∅, is transversal to Z for
trivial reasons. For in this case there is no condition to be satisfied. In
particular, two submanifolds which do not intersect at all, are transversal.
Moreover, if f : X → Y is a submersion, then f is transversal to any
submanifold Z of Y , since then Im (dfx) = Tf(x)(Y ) for every x.

The ambient space matters

It is important to note that the transversality of X and Z also depends
on the ambient space Y . For example, the two coordinate axes intersect
transversally in R2, but not when considered to be submanifolds of R3. In
general, if the dimensions ofX and Z do not add up to at least the dimension
of Y , then they can only intersect transversally by not intersecting at all.
For example, if X and Z are curves in R3, then X −t Y if and only if
X ∩ Y = ∅.

Let us have a look at an example:
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Example

In Y = R3, we consider the two submanifolds

X = {(x,y,z) ∈ R3 : x2 + y2 − z2 = 1}
and the sphere

Za = {(x,y,z) ∈ R3 : x2 + y2 + z2 = a}.
We would like to understand for which a these two submanifolds intersect
transversally in Y .
Therefore, we need to determine the tangent space of X and Za at points
where they intersect. We observe that X = f−1(0) for the map

f : R3 → R, (x,y,z) 7→ x2 + y2 − z2 − 1

and Za = g−1(0) for the map

g : R3 → R, (x,y,z) 7→ x2 + y2 + z2 − a.
Since 0 is a regular value of f , the tangent space to X at a point p = (x,y,z)
is the kernel of the derivative of f at p (expressed as a matrix in the standard
basis)

dfp = (2x,2y,− 2z) : R3 → R.
Hence the tangent space to X at p = (x,y,z) is

Tp(X) = Ker (dfp) = span({(z,0,x),(0,z,y)}) ⊂ R3.

Similarly, since 0 is a regular value of g, the tangent space to Za at a point
p = (x,y,z) is the kernel of the derivative of g at p (expressed as a matrix
in the standard basis)

dgp = (2x,2y,2z) : R3 → R.
Hence the tangent space to Za at p = (x,y,z) is

Tp(Za) = Ker (dgp) = span({(−z,0,x),(0,− z,y)}) ⊂ R3.

Now X and Z intersect in the points p = (x,y,z) which satisfy

x2 + y2 − z2 − 1 = 0 = x2 + y2 + z2 − a.
Subtracting both equations yields the condition

2z2 = a− 1.(7)

This gives us three cases for the intersection X ∩ Za:
• If a < 1, then X and Za do not intersect, since there is no z which

can satisfy condition (7): X ∩ Za = ∅.
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• If a = 1, then X and Z1 intersect in the circle with radius 1 in the
xy-plane in R3 with the origin as center, i.e.

X ∩ Z1 = {(x,y,z) ∈ R3 : x2 + y2 = 1 and z = 0}.
• If a > 1, then X and Za intersect in two disjoint circles with

lie in the planes parallel to the xy-plane in R3 with z-coordinate
z = ±

√
(a− 1)/2:

X ∩ Za = {(x,y,z) ∈ R3 :

x2 + y2 =
a+ 1

2
and z = ±

√
(a− 1)/2}.

Now we need to check transversality (recall Tp(R3) = R3 at every p):
• If a < 1, then the intersection is empty and therefore transversal.
• If a = 1, then Tp(X) and Tp(Z1) span the xy-plane in R3, and

not all of R3, at every p ∈ X ∩ Z1. Thus the intersection is not
transversal.
• If a > 1, let p = (x,y,z) ∈ X ∩ Za. Then Tp(X) and Tp(Za)

together span all of R3, for the vector (−z,0,x) ∈ Tp(X) is not a
linear combination of (z,0,x) and (0,z,y) (z 6= 0). Since Tp(Za) is 2-
dimensional, this shows Tp(X) +Tp(Za) = R3 at every p ∈ X ∩Za.
Thus the intersection is transversal.

Here is an example of an intersection which is not transversal and where the
intersection is not a manifold:
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Non-transversal intersection which is not a manifold

Let Y = R3 and let Z be the hyperplane defined by

Z = {(x,y,z) ∈ R3 : x = 1}
and let X be the hyperboloid defined by

X = {(x,y,z) ∈ R3 : x2 + y2 − z2 = 1}.
The intersection of X and Z is given by the points satisfying x = 1 and
x2 + y2 − z2 = 1, i.e. all points such that x = 1 and y2 = z2. This means

X ∩ Z = {(x,y,z) ∈ R3 : x = 1, y = ±z}.
We have seen in one of the first lectures that a space consisting of two lines
crossing each other is not a manifold. The intersection point, here the point
p = (1,0,0) does not have a neighborhood in X ∩ Z which is diffeomorphic
to an open subset in Euclidean space. Thus X ∩ Z is not a manifold.
As a reality check, let us look at the tangent spaces to X and Z at p: Since Z
is a parallel translate of a vector subspace of R3, we see that Tp(Z) is the yz-
plane in R3 (all points with x = 0). The tangent space to X was calculated
in the previous example (and in an exercise). At p = (1,0,0), Tp(X) is the
vector subspace in R3 spanned by the vectors (0,1,0) and (0,0,1). In other
words, Tp(X) is the xy-plane in R3. Thus Tp(Z) and Tp(X) do not span
Tp(Y ) = R3. (The problem here is that Z “is” the tangent plane to X at
p.)

Codimension Formula revisited

Another way to rephrase the codimension formula is to say that when
X is locally cut out by k independent functions and Z is locally cut out by
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l independent functions, then X ∩ Z is locally cut out by k + l independent
functions.

In fact, we can reprove the theorem by using independent functions:

Let y be a point in X ∩ Z ⊆ Y . Around y, the submanifold X is cut out
of Y by k = codimX independent functions, i.e. there is an open neighborhood
U ⊆ Y around y and k independent functions

f1, . . . ,fk : U → R

such that X ∩ U is defined by the vanishing of the fi:

X ∩ U = {u ∈ U : f1(u) = · · · = fk(u) = 0}.

The independence of the fi implies that 0 is a regular value of f = (f1, . . . ,fk) : U →
Rk. In particular,

dfx : Tx(Y )→ Rk is surjective.(8)

By the corollary to the Preimage Theorem we know

Ty(X) = Ker (dfy) ⊆ TY (Y ).

Then (8) implies

dim Ker (dfy) = dimTx(X) = dimTx(Y )− k.

Similarly, around y, the submanifold Z is cut out by l = codimZ independent
functions, i.e. there is an open neighborhood V ⊆ Y around y and l independent
functions

g1, . . . ,gl : V → R
such that Z ∩ V is defined by the vanishing of the gi:

Z ∩ V = {v ∈ V : g1(v) = · · · = gl(v) = 0}.

The independence of the gi means that 0 is a regular value of g = (g1, . . . ,gl) : V →
Rl. In particular,

dgy : Ty(Y )→ Rl is surjective.(9)

The tangent space to Z at y is

Ty(Z) = Ker (dgy) ⊆ TY (Y ).

Then (9) implies

dim Ker (dgy) = dimTy(Z) = dimTy(Y )− l.
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We set W := U∩V which is an open neighborhood of y. Then, arond y, X∩Z
is locally cut out by the combined collection of k+ l functions f1, . . . ,fk,g1, . . . ,gl,
i.e.

(X ∩ Z) ∩W
= {w ∈ W : f1(w) = · · · = fk(w) = g1(w) = · · · = gl(w) = 0}.

We write h for the collection of functions f and g:

h = (f1, . . . ,fk,g1, . . . ,gl) : W → Rk+l.

The derivative of h at y is

dhy : Ty(Y ) : Rk+l, v 7→ dhy(v) = (dfy(v),dgy(v)).

Now we want to relate the independence of the fi’s and gi’s to transversality:

As vector subspaces of Ty(Y ), Ker (dfy) and Ker (dgy) satisfy the dimension
formula

dim Ker (dfy) + dim Ker (dgy)

= dim(Ker (dfy) + Ker (dgy)) + dim(Ker (dfy) ∩Ker (dgy)).

From (8) and (9) we get that this equation is equivalent to

dimTy(Y )− k + dimTy(Y )− l
= dim(Ker (dfy) + Ker (dgy)) + dim(Ker (dfy) ∩Ker (dgy)).(10)

Hence the left hand side is 2 dimTy(Y )− (k + l). For the right hand side, we
have

dim(Ker (dfy) + Ker (dgy)) ≤ dimTy(Y )(11)

and

dimTy(Y )− dim(Ker (dfy) ∩Ker (dgy)) ≤ k + l,

i.e. dim(Ker (dfy) ∩Ker (dgy)) ≥ dimTy(Y )− (k + l).(12)

Hence, given (10), the two inequalities (11) and (12) imply

dim(Ker (dfy) + Ker (dgy)) = dimTy(Y )(13)

⇐⇒ dim(Ker (dfy) ∩Ker (dgy)) = dimTy(Y )− (k + l).(14)

Now the first equation (13) means exactly that X and Z are transversal in
Y , while the second equation (14) is true if and only if d(h)y is surjective, i.e. if
and only if the k + l functions f1, . . . ,fk,g1, . . . ,gl are independent.
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We are going to exploit what we just observed a bit further. Let us keep the
above notation. Now we assume again that X and Z meet transversally
in Y . Then 0 is a regular value of h. This implies that the tangent space to
X ∩ Z at y equals Ker (dhy). For v ∈ Ty(Y ), we have dhy(v) = 0 if and only if
both dfy(v) = 0 and dgy(v) = 0. Thus Ker (dhy) is the intersection of the kernel
of Ker (dfy) and Ker (dgy) in Ty(Y ):

Ker (dhy) = Ker (dfy) ∩Ker (dgy) in Ty(Y ).

Thus we have proved the following useful fact:

Tangent space of intersections

IfX and Z are submanifolds which meet transversally in Y , then the tangent
space to the intersection X ∩Z is the intersection of the tangent spaces, i.e.

Ty(X ∩ Z)) = Ty(X) ∩ Ty(Z) for all y ∈ X ∩ Z.

In the exercises for this week we prove a generalization of this fact to the
preimage of a submanifold Z under a smooth map f when f −t Z:

Tangent space of preimages

Let f : X → Y be a map transversal to a submanifold Z in Y . Then
Tx(f

−1(Z)) is the preimage of Tf(x)(Z) under the linear map dfx : Tx(X)→
Tf(x)(Y ):

Tx(f
−1(Z)) = (dfx)

−1(Tf(x)(Z)).

A famous example of transversal intersections is given by Brieskorn Manifolds.

Exotic Spheres

Consider the following intersections in C5 \ {0}:
S7
k ={z2

1 + z2
2 + z2

3 + z3
4 + z6k−1

5 = 0}
∩ {|z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2 = 1}.

In this week’s exercises, we show that this is a transversal intersection. One
can show that, for each value k = 1, . . . , 28, S7

k is a smooth manifold which is
homeomorphic to S7. But none of these manifolds are diffeomorphic. These
are so called exotic 7-spheres were constructed by Brieskorn and repre-
sent each of the 28 diffeomorphism classes on S7. That such exotic 7-spheres



112 TRANSVERSALITY OF SUBMANIFOLDS

is a famous and groundbreaking result of Milnor. Milnor’s work started an
amazing story about the diffeomorphic structures on spheres which culmi-
nated in the solution of the Kerviare Invariant One Problem by Hill,
Hopkins and Ravenel in 2009.



LECTURE 13

Homotopy and Stability

Today we are going to introduce one of the most important concepts in topol-
ogy. Actually, the idea of studying objects up to homotopy has turned out be
extremely influential and successful in many areas in mathematics.

Homotopy

Let I denote the unit interval [0,1] in R. We say that two smooth maps
f0 and f1 from X to Y are homotopic, denoted f0 ∼ f1, if there exists a
smooth map F : X × I → Y such that

F (x,0) = f0(x) and F (x,1) = f1(x).

F is called a homotopy between f0 and f1. We also write ft(x) for F (x,t).
In other words, a homotopy is a family of smooth functions ft which
smoothly interpolates between f0 and f1

To require that F is smooth is necessary because we are working with smooth
manifolds. For general topological spaces, one just requires that F is continuous.

Some examples:

• f0 : R → R2, x 7→ (x,0) and f1 : R → R2, x 7→ (x, sinx) with homotopy
F : R× [0,1]→ R2, (x,t) 7→ (x,t sinx).
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• Let γ : S1 → R2 be a smooth loop (a smooth path where start and end
points agree). Then γ is homotopic to the constant map S1 → {0} ⊂
R2. In fact, this is true when we replace R2 with any Rk, since Rk is
contractible (see the exercises).

• In the exercises, we will show that the antipodal map on the k-sphere
Sk → Sk, x 7→ −x (which sends a point to the point on “the other side”
of the sphere) is homotopic to the identity on Sk.

• An important example of two maps which are not homotopic: The
constant map f : S1 → R2 \ {0}, p 7→ (1,0) and the map g : S1 →
R2 \ {0}, p 7→ p are not homotopic. We will learn more about this later,
and there are much better conceptual arguments in algebraic topology
which explain this fact. Here is a first, hands-on argument:

Assume there were a smooth homotopy F : S1× [0,1]→ R2\{0} from
f to g. For every fixed point p ∈ S1, F (p,t) defines a path from p to
(1,0) in R2 \ {0}. Let Z be the subspace of S1 of points with negative
x-coordinate:

Z := {p = (x,y) ∈ S1 : x ≤ 0}.

Then by the Intermediate Value Theorem, for every p ∈ Z, there is
t such that the x-coordinate of F (p,t) is 0. Since [0,1] is compact, there
is in fact a minimal such t for each p ∈ Z. We denote this minimum by
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t0(p) and write

F (p,t0(p)) = (0,y0(p)).

As (0,0) is not a point of R2 \ {0}, for each p, we have either y0(p) > 0
or y0(p) < 0.

Since F is smooth in both variables, y0(p) depends smoothly on p as
well. Thus, if y0(p) > 0 for some p, then there is an open neighborhood
U ⊂ S1 around p such that y0(q) > 0 for all q ∈ U . In other words, the
subset

U>0 := {p = (x,y) ∈ Z : y0(p) > 0} is open in Z.

Similarly, the subset

U<0 := {p = (x,y) ∈ Z : y0(p) < 0} is open in Z.

Both spaces are nonempty, since (0,1) ∈ U>0 and (0, − 1) ∈ U<0.
Moreover, they are disjoint and mutual complements of each other in Z,
i.e.

U>0 = Z \ U<0 and U<0 = Z \ U>0.

Thus, Z is the disjoint union of the two nonempty and both open and
closed subsets U>0 and U<0. Since Z is connected (being the continuous
image of a closed interval), this would imply either Z = U>0 or Z = U<0.
But this is impossible. Thus the smooth homotopy F cannot exist.
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Homotopy is an equivalence relation

Given two smooth manifolds X and Y , homotopy is an equivalence relation
on smooth maps from X to Y . The equivalence class to which a mapping
belongs is its homotopy class.

Proof:

We need to check that ∼ is reflexive, symmetric, and transitive:

Reflexivity is clear as every map is homotopic to itself via the homotopy ft = f
for all t.

For symmetry, suppose f ∼ g and let F be a homotopy. Then the map defined
by (x,t) 7→ F (x,1− t) is a homotopy from g to f . Hence g ∼ f as well.

For transitivity, we need to introduce a smart technique first:

Smooth bump functions

An extremely useful tool in differential topology are smooth bump functions
which allow smooth transitions. We start with the function

f : R→ R, f(x) =

{
e−1/x2 x > 0

0 x ≤ 0.

We observe that f is smooth: We only need to think about x ≥ 0. Since
the ith derivative has the form e−1/x2 times a rational polynomial. Such a
product is differentiable and

lim
x→0

f (i)(x) = 0,

since e−1/x2 goes to 0 faster than any rational polynomial can go to ±∞.
Now, for any given real numbers a < b, we define a function

g(x) := f(x− a)f(b− x)

As a product of two smooth functions, g is smooth, and
g(x) = 0 x ≤ a (since f(x− a) = 0)

g(x) > 0 a < x < b

g(x) = 0 x ≥ b (since f(b− x) = 0)
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Next we define yet another function

h : R→ R, h(x) :=

∫ x
−∞ g(t)dt∫∞
−∞ g(t)dt

.

By the Fundamental Theorem of Calculus, h is smooth, nondecreasing, and
h(x) = 0 x ≤ a

0 < h(x) < 1 a < x < b

h(x) = 1 x ≥ b

Then h is a smooth bump function.
Finally, we can also define higher dimensional smooth bump functions by
setting

H : Rk → R, H(x) := 1− h(|x|).
Then H(x) is equal 1 on the closed ball around the origin with radius a, is 0
outside the open ball with radius b, and between 0 and 1 on the intermediate
points: 

H(x) = 1 x ∈ B̄a(0)

0 < H(x) < 1 a < |x| < b

H(x) = 0 x ∈ Rk \Bb(0)

Back to the proof:
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Suppose f ∼ g and g ∼ h, and let F be a homotopy from f to g and G be a
homotopy from g to h. We would like to compose F and G to get a homotopy
from f to h. Since we require our homotopies to be smooth, we need to make
sure that the transition from F to G is smooth.

In order to this, we need to manipulate F and G a bit. And here we are lucky
that we have our smooth bump functions at our disposal. So let ϕ : R→ R be a
smooth function such that

ϕ(t) =

{
0 x ≤ 1/4

1 x ≥ 3/4

and define new homotopies F̃ from f to g and H̃ from g to h by

F̃ (x,t) := F (x,ϕ(t)) and G̃(x,t) := G(x,ϕ(t)).

Now we can define the map

H : X × [0,1]→ Y, H(x,t) =

{
F̃ (x,2t) t ∈ [0,1/2]

G̃(x,2t− 1) t ∈ [1/2,1].

This is map well-defined and smooth, since F̃ (x,2t) = G̃(x,2t−1) for t ∈ [3/8,5/8].
Thus H is a smooth homotopy from f to h. Hence ∼ is also transitive and an
equivalence relation. QED

Homotopy is one of the most crucial notions in topology. In fact, a lot of
properties in topology are invariant under homotopy. Therefore, they can be
studied by considering maps only “up to homotopy”. This led to the construction
of the homotopy category of spaces in which morphisms are continuous maps
modulo homotopy, i.e. f ∼ g if and only if f and g are homotopic. To be able
to pass to the homotopy category is a very powerful method which has had great
influences in many areas of mathematics. We will not be able to fully appreciate
the homotopy category this semester.

However, we would like to start to exploit homotopy for our purposes. Despite
the above remark, there also a lot of properties of maps which are not invariant
under homotopy.

In fact, many of the properties we have studied so far are not invariant,
i.e. if f0 has a property P and ft is a homotopy from f0 to f1, then it is often not
true that f1 has property P . For example, we could start with an embedding f0

and end up with a constant map.

So let us ask a more modest question: given f0 has property P , is there
always a small ε > 0 such that ft has property P for all t ∈ [0,ε)? For example,
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if f0 is an embedding there is always a small ε > 0 such that ft remains an
embedding for 0 ≤ t < ε. In other words, embeddings are a so called stable class:

Stable properties

A property P is stable provided that whenever f0 : X → Y possesses the
property and ft : X → Y is a homotopy of f0 then, for some ε > 0, each ft
with t < ε also possesses the property.
We also call the maps which have a stable property, a stable class. Exam-
ples are the classes of embeddings, local diffeomorphisms, submersions,...
as we will learn soon.

Note that stability is a very natural condition to ask for. For real-world
measurements, only stable properties are interesting, since any tiny perturbation
of the data would make an unstable property appear or disappear.

In order to get a better idea of stability, let us look at the difference between
requiring that things merely intersect or that they intersect transversally:

• That a smooth map f0 : R → R2 passes through a fixed point in R2 is
not a stable property. It disappears immediately.

• That a smooth map f0 : R → R2 merely intersects the x-axis is not a
stable property. It disappears immediately.

• However, that a smooth map f0 : R→ R2 intersects the x-axis transver-
sally is a stable property. It persists after a small perturbartion.
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• That two smooth curves (connected 1-dimensional manifolds) meet in
R3 is not a stable property. It disappears immediately.

• That a smooth curve and a smooth surface (2-dimensional manifold)
intersect transversally in R3 is a stable property. It persists after a small
perturbartion.

This reveals yet another very important feature of transversality. The follow-
ing theorem tells us that the properties which turned out to be useful for us so
far are all stable.

Stability Theorem

The following classes of smooth maps from a compact manifold X to a
manifold Y are stable classes:

(a) local diffeomorphisms.
(b) immersions.
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(c) submersions.
(d) maps which are transversal to any specified closed submanifold Z ⊂

Y .
(e) embeddings.
(f) diffeomorphisms.

Proof:

(a) First we note that local diffeomorphisms are just immersions in the
special case when dimX = dimY , so (a) follows from (b).

(b) Assume f0 : X → Y is an immersion and dimX = m. Letft be a
homotopy of f0. That f0 is an immersion means that d(f0)x is injective for all
x ∈ X. We need to show that there is an ε > 0 such that d(ft)x is injective for
all points (x,t) in X × [0, ε) ⊂ X × I.

Given a point x0 ∈ X, that d(f0)x0 is injective implies that the matrix rep-
resenting d(f0)x0 (in local coordinates) has an m × m-submatrix A(x0,0) with
nonvanishing determinant. Since the determinant is continuous, this submatrix
will have nonvanishing determinant in an open neighborhood of (x0,0) in
X × [0,1]. Since X is compact, finitely many such neighborhoods suffice to
cover all of X × {0}. Hence there is a small ε > 0 (it is the minimum for the
open intervals [0,εi) covering {0}) such that the intersection of these finitely many
neighborhoods contains X × [0,ε). This is what we needed.

(c) If f0 is a submersion, almost the same argument works. We just need
to choose an n× n-submatrix of the surjective map d(f0)x with n = dimY .

(d) Let Z ⊂ Y be a closed submanifold, and assume that f0 is a map which
is transversal to Z. Then we have shown that, for every point x ∈ X, there is a
smooth function g which sends a neighborhood of f(x) to 0 ∈ RcodimZ and such
that g ◦ f0 is a submersion. Since Z is closed in Y , f−1(Z) is closed in X and
therefore also compact. Therefore, by (c), there is an ε > 0 such that g ◦ ft is
still a submersion for all t < ε. This is means that ft is still transversal to Z
for all t < ε.

(e) Assume that f0 is an embedding, and let ft be a homotopy of f0. Since X
is compact, f0 and each ft are automaticlly proper maps. Hence we need to show
that when f0 is a one-to-one immersion, then so is ft in a small neighborhood.
We just checked that being an immersion is stable. Hence it remains to show
that ft is still one-to-one if t is small enough.
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Therefor we define a smooth map

G : X × I → Y × I, G(x,t) := (ft(x),t).

Then if (e) is false, i.e. if ft not one-to-one in some small neighborhood of
0, then, for every ε > 0, we can find a t with 0 < t < ε and x,y ∈ X such that
ft(x) = ft(y). For example, for every εi = 1/i, we could find such a ti, xi and yi.
Thus there is an infinite sequence ti → 0, and an infinite sequence of points
xi 6= yi ∈ X where fti fails to be injective, i.e. such that

fti(xi) = G(xi,ti) = G(yi,ti) = fti(yi).

Since X is compact, we may pass to subsequences which converges
xi → x0 and yi → y0. Then

G(x0,0) = lim
i
G(xi,ti) = lim

i
G(yi,ti) = G(y0,0).

But G(x0,0) = f0(x0) and G(y0,0) = f0(x0). By assumption, f0 is injective,
and hence x0 = y0.

Now, after choosing local coordinates, we can express the derivative of G
at (x0,0) by the matrix

dG(x0,0) =


∗

d(f0)x0
...
∗

0 · · · 0 1


where the 0’s in the lowest row arise from the fact that the first coordinates do
not depend on t, and the 1 is the derivative of the function t 7→ t.

Since f0 is an immersion, d(f0)x0 has k = dimX independent rows. Thus the
matrix of dG(x0,0) has k + 1 independent rows, and hence dG(x0,0) is an injective
linear map. Thus, G is an immersion around (x0,0) and hence G must be one-
to-one on some neighborhood of (x0,0). But, since the sequences (xi,ti) and
(yi,ti) both converge to (x0,0), for large i, both (xi,ti) and (yi,ti) belong to this
neighborhood. This contradicts the injectivity of G.

(f) Assume that f0 : X → Y is a diffeomorphism. Since X is compact, this
implies that Y is compact as well. Let ft be a homotopy of f0. We need to
show that there is an ε > 0 such that ft is diffeomorphism for all t < ε.

Since X is compact, X has only finitely many connected components, and so
does Y . Hence we can check the statement for each of these connected components
separately. For, this gives us an εi for each component. Since there are finitely
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many components, we can just take the minimum of the εi’s as the ε for all of X
and Y .

Thus we may assume that X and Y are connceted. By (a) and (e), we know
that being a local diffeomorphism and being an embedding is a stable property.
Thus there is a ε > 0 such that ft is a local diffeomorphism and an embedding.
For ft being a diffeomorphism, it remains to show that ft is surjective.

We fix a t < ε. Since ft is a local diffeomorphism, it is open and hence ft(X)
is open in Y . But ft(X) is also closed, since it is compact being the image of a
compact space. Since Y is connected, this implies ft(X) = Y . QED

Note that the condition that Z is closed in Y in point (d) is necessary. For
a simple example, in Y = R2 we consider the subspace

Z = {(x,y) ∈ R2 : 0 < x < 1,y = 0} ⊂ R2

(which is just image of an interval in R2). It a subspace which is neither open nor
closed in R2. But Z is a one-dimensional submanifold of R2. Now, for X = [−1,0],
we define f0 to be the smooth map

f0 : [−1,0]→ R2, x 7→ (x,0).

Since f−1
0 (Z) = ∅, f0 is transversal to Z. But, for the homotopy ft, given by

ft : [−1,0]× [0,1]→ R2, (x,t) 7→ (x+ t,0),

we have f−1
t (Z) 6= ∅ for every t > 0. But both Im (dfx) and Tf(x)(Z) are just

R embedded as the x-axis in R2 = Tf(x)(Y ). Hence ft is not transversal to Z
for any t > 0. Note that this would not have happened if Z had been the closed
submanifold {(x,0) : 0 ≤ x ≤ 1}.

An even more important assumption we made in the theorem is that X is
compact. The next example will show that we cannot drop this assumption for
any of the properties in theorem.

Compactness matters

The Stability Theorem fails when X is not compact. For a simple example,
let ρ : R → R be a smooth function with ρ(s) = 1 for |s| < 1 and ρ(s) = 0
for |s| > 2. Then we define

ft : R→ R, ft(x) = xρ(tx).

For t = 0, f0(x) = x for all x, i.e. f0 = Id. Hence f0 is a local diffeomor-
phism, an immersion, a submersion, an embedding, a diffeomorphism and
transversal to every submanifold of R.
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But for any fixed t > 0, we have |tx| > 2 when x > 2/|t|. Hence, for this
fixed t, ft(x) = 0 for all x > 2/|t|.
Thus ft is neither a local diffeomorphism, an immersion, a submersion, an
embedding, nor a diffeomorphism, and is not transversal to {0} ⊂ R.
We see what is going wrong when we replace the domain with a closed
interval, i.e. a compact subspace of R. Say X = [a,b] with b > 0. Then we
can choose ε > 0 which is small enough such that 1/ε > max(|a|,|b|), and it
would not be possible to choose x bigger than 1/|t|. Then we had ft(x) = x
for all x and all t < ε.



LECTURE 14

Sard’s Theorem and Morse functions

Now we are going to shift perspectives and ask:

Given a map f which does not have a property P . Is it possible to bump f
a little bit such that it gets property P?

If this is possible for every map, P is a particularly nice property:

Generic properties

A property P of maps is called generic if, for any f0, there is a homotopy
F for f0 and an ε > 0 such that ft has property P for all t ∈ (0, ε).

If we look back at the images we used to illustrate stable and unstable prop-
erties, we see that non-transversal intersections are rather the exception than the
norm. Now we have a way to give this feeling a precise meaning: Transversality
is generic.

We are not going to prove this statement for the moment, but content our-
selves with looking at an important special case. Recall that transversality is a
generalization of regularity:

f −t {y} ⇐⇒ y is a regular value of f.

An analog, though not equivalent, version of the above question is now: Given
a smooth map f : X → Y and a critical value y. Is it possible to bump y a little
bit such that it gets regular?

The answer is yes and is the content of a famous theorem:

Sard’s Theorem

If f : X → Y is any smooth map of manifolds, then almost every point in
Y is a regular value of f .
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To say that ”almost every point” is a regular value of f sounds sloppy, but is a
well-defined term in measure theory. It means by definition that the complement
of regular values in Y has measure zero. Since the complement of the regular
values are the critical values, Sard’s theorem says that the set of critical values
of a smooth map of manifolds has measure zero.

Sard’s Theorem for manifolds follows from Sard’s Theorem in Calculus. We
are not going to prove either of them, since the required techniques are not so
interesting for this course.

Measure zero in a measure zero box

A rectangular solid in Rn is just a cartesian product of n intervals in Rn,
and its volume is the product of the lengths of the n intervals. An arbitrary
set A in Rn is said to have (Lebesgue) measure zero if, for every ε > 0,
there exists a countable collection {S1,S2, . . .} of rectangular solids in Rn,
such that A is contained in the union of the Si, and

∞∑
i=1

vol (Si) < ε.

Then in a manifold X, an arbitrary subset C ⊂ X has measure zero if,
for every local parametrization φ of X, the preimage φ−1(C) has measure
zero in Euclidean space.
(Note that measure and volume depend on the ambient space.)
An example of a measure zero subset is given by the set of rational
numbers in R. Hence for measure theorists, “almost every” real number
is irrational. This example illustrates that something that happens almost
never, can still happen often enough to be noticed.

We learn from the previous box: By definition, no nonempty rectangular
solid in Rn has measure zero. Hence it cannot be contained in a set of measure
zero. Now, every nonempty open subset of Rn contains some nonempty rectan-
gular solid. Thus, no nonempty open subset of Rn has measure zero. Hence, no
nonempty open subset of a manifold Y has measure zero. In other words, no set
of measure zero in a manifold Y can contain a nonempty open subset of Y .

In view of Sard’s Theorem, this tells us that the set of critical values of a
smooth map f : X → Y cannot contain any nonempty open subset of Y . Thus,
its complement, the set of regular values, must have a nonempty intersection
with every nonempty open subset of Y . A subset of a topological space
with this property, i.e. having a nonempty intersection with every nonempty
open subset, is called dense.
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Hence we can rephrase Sard’s Theorem in more topological terms by:

Sard’s Theorem in dense form

The set of regular values of any smooth map f : X → Y is dense in Y .
More generally, if fi : Xi → Y are any countable number of smooth maps,
then the points of Y that are simultaneously regular values for all of the fi,
are dense.

Morse Functions

Before we study a very interesting application of Sard’s Theorem, we recall
some terminology (we have already used these terms in the proof of the Funda-
mental Theorem of Algebra, but did not make a fuzz about it).

If f : X → Y is a smooth map, a regular value of f is a point y ∈ Y such
that dfx is surjective for every x ∈ X with f(x) = y. We call such an x ∈ X also
a regular point of f . Note that this is the same as to say that f is regular at x.
Hence y is a regular value of f if every x ∈ f−1(y) is a regular point.

On the other hand, if dfx is not surjective, we call x a critical point of f .
Hence y ∈ Y is a critical value if at least one of the points x ∈ f−1(y) is a
critical point.

We understand the local behavior of smooth maps at regular points by the
Local Submersion Theorem (up to diffeomorphism look like the canonical sub-
mersion). But what about the local behavior at critical points? In fact, it is often
at critical points that the interesting stuff happens. It is often at critical points
that the topology of a manifold can change.

For example, for a smooth map f : X → R, if X is compact, then we know
that f must have a maximum and a minimum. At a point x ∈ X where f(x)
is either a maximal or a minimal value, f cannot change in any direction in X.
In other words, the derivative dfx must vanish (recall dfx(h) is a measure for the
change of f in direction h). Hence x is a critical point in our terminology.

A standard example is given by the height function on a torus:
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So let us stick to smooth functions, i.e. smooth maps to R. We want to
understand how critical points look like locally. Let us look a smooth function
f : Rk → R. Locally around a point c ∈ X, we can describe f by

f(x) = f(c) +
k∑
i=1

∂f

∂xi
(c) · (xi − ci) +

1

2

k∑
i,j=1

∂2f

∂xi∂xj
(c) · (xi − ci)(xj − cj) + o(|x|3).

If c is a critical point, then by definition

dfc = (∂f/∂x1(c), . . . ,∂f/∂xk(c)) = 0

(otherwise dfc was surjective as a linear map Rk → R). Hence the best possible
measure for the local behavior of f at c is the Hessian matrix of the second partial
derivatives. Critical points where the Hessian matrix is invertible is the best we
can hope for.

Nondegenerate critical points and Morse functions

For a smooth function f : Rk → R, a point c ∈ Rk where dfc vanishes,

but the Hessian matrix H(f)c =
(

∂2f
∂xi∂xj

(c)
)

is invertible at c, is called a

nondegenerate critical point.
A smooth function f : Rk → R for which all critical points are nondegenerate
is called a Morse function.
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Nondegenerate critical points are much easier to study than arbitrary critical
points, since they are isolated from the other critical points, i.e. there is
an open neighborhood which does not contain any other critical points. Hence
Morse functions are easier to understand than arbitrary smooth functions.

To see that nondegenerate critical points are isolated, we define a map g : Rk →
Rk by the formula

g =

(
∂f

∂x1

, . . . ,
∂f

∂xk

)
.(15)

Then dfx = 0 ⇐⇒ g(x) = 0.

Moreover, the matrix representing the derivative dgx is the Hessian of f at x. So
if x is nondegenerate, then not only is g(x) = 0, but g maps a neighborhood
of x diffeomorphically onto a neighborhood of 0 as well. In particular, g
is injective in that neighborhood of x. Thus g can be zero at no other points in
this neighborhood, and f has no other critical point in this neighborhood.

Another reason to be interested in Morse functions is the fact that there are
a lot of them.

Morse functions on Rk are generic

Let f : U → R be a smooth function defined on some open U ⊆ Rk and
a ∈ Rk, define

fa(x) = f(x) + a · x.
Then, for almost all a ∈ Rk, fa is a Morse function.

Proof: We us again the function g from (15).The derivative of fa at a point
p ∈ U then satisfies

(dfa)p =

(
∂fa
∂x1

(p), . . . ,
∂fa
∂xk

(p)

)
= g(p) + a.

Hence the critical points of fa are the points p ∈ U with g(p)+a = 0. Moreover,
the Hessian of fa at p is the matrix dgp, i.e.

H(fa)p = H(f)p = dgp.

Hence

fa is Morse ⇐⇒ det(H(fa)p) 6= 0 at all critical points p

⇐⇒ det(dgp) 6= 0 at all p with g(p) + a = 0

⇐⇒ −a is a regular value of g.
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By Sard’s Theorem, −a is a regular value of g for almost all a ∈ Rk. Therefore
almost every fa is a Morse function. QED

Now we would like to transport the concept of nondegenerate critical points
to manifolds. So let X be a smooth manifold. Suppose that f : X → R has a
critical point at x and that φ : U → X is a local parametrization with φ(0) = x.
Then

d(f ◦ φ)0 = dfx ◦ dφ0

and hence 0 is a critical point for the function f ◦φ. We call x a nondegenerate
critical point for f if 0 is a nondegenerate critical point for f ◦ φ.

Independence of choice

Since we made a choice of a local parametrization for this definition, we
need to make sure that the criterion is independent of the choice.
So let ψ : V → X be another local parametrization with ψ(0) = x. We
define θ := ψ−1 ◦φ : U → V . Since θ is a diffeomorphism, the critical points
of f ◦ φ and f ◦ ψ ◦ θ are the same.
Assuming that x is a critical point of f , i.e. dfx = 0, the chain rule implies
for the two Hessian matrices at 0:

H(f ◦ φ)0 = (dθ0)tH(f ◦ ψ)0dθ0.

Since dθ0 is invertible, we see

H(f ◦ φ)0 is invertible ⇐⇒ H(f ◦ ψ)0 is invertible.

An important result on Morse functions is that they can be described in some
sort of canonical form. It extends our understanding of the local behavior of
smooth maps.

Morse Lemma

Let X be a smooth manifold and f : X → R. Suppose that a ∈ X is a
nondegenerate critical point of f . Then there is a local parametrization
φ : U → X with φ(0) = a and local coordinate functions φ−1 = (x1, . . . ,xk)
around a such that

f(x) = f(a) +
∑
ij

hijxixj
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for all x ∈ φ(U) where the hij are the entries of the Hessian of f at a:

hij = (H(f ◦ φ))0)ij =
∂2(f ◦ φ)

∂xi∂xj
(0).

(Note that the hij depend on the chosen coordinate system.)

We are not going to discuss the proof of this classical result. However, we are
going to show that it applies to many functions.

In fact, we can generalize the fact that “almost all” functions are Morse to
the level of manifolds: Suppose X ⊂ RN , and let x1, . . . ,xN ∈ RN be the
usual coordinate functions on RN . If f : X → R is a smooth function on X
and a = (a1, . . . ,aN) is an N -tuple of numbers, we define again a new function
fa : X → R by

fa := f + a1x1 + · · ·+ aNxN .

Morse functions on any manifold are generic

For every smooth function f : X → R and for almost every a ∈ RN , fa is
a Morse function on X, i.e. all its critical points are nondegenerate.

Proof: We would like to use the above result for U ⊂ Rk open. Since X ⊂ RN

is in general not open (in fact, it is never open if dimX < N), the strategy
is to cover X by open subsets and then try to lift the k-dimensional result to
open sets in RN .

So let x be any point in X. First we are going to choose a suitable local
coordinate system around x. Let v1, . . . ,vk ∈ RN be a basis of Tx(X) (for k =
dimX). Then the matrix [v1 · · · vk], having the vi’s as columns, has rank k. Hence
it has k linearly independent rows, say i1, . . . ,ik. Let π : RN → Rk be projection
defined by (x1, . . . ,xN) 7→ (xi1 , . . . ,xik) where the x1, . . . ,xN denote the standard
coordinates on RN . Then

(dπx)|Tx(X) : Tx(X)→ Rk is an isomorphism

by construction. Hence, by the Inverse Function Theorem,

π|X : X → Rk is a local diffeomorphism.

Hence we can take the k-tuple of functions (xi1 , . . . ,xik) : X → Rk to define a
local coordinate system around x.
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Therefore we can cover X with open subsets Uα ⊆ RN such that on each
Uα some k-tuple of the functions x1, . . . ,xN on RN form a coordinate system.
Moreover, it is always possible to choose a countable subfamily of the Uα’s.
Hence we may assume there are only countably many Uα.

Let S ⊂ RN be the subset of a such that fa is not Morse. Since the countable
union of sets with measure zero has measure zero, it suffices to show that for each
Uα the set Sα of a’s such that fa : Uα → R is not Morse, has measure zero.

So let us look at one of the Uα’s. We want to show that Sα has measure zero
in RN .

For simplicity, assume x1, . . . ,xk form a coordinate system around x on Uα.
We can write any a ∈ RN as a = (b,c), where b denotes the first k coordinates
and c denotes the last N − k coordinates. Around a given point x, we can thus
write

fa(x) = f(x) + c · (xk+1, . . . ,xN) + b · (x1, . . . ,xk).

The function x 7→ f(x) + c · (xk+1, . . . ,xN) is smooth. Hence we can apply
our previous result on genericity of Morse functions on open subsets in Rk to this
function and get that fa is a Morse function for almost every b ∈ Rk.

Thus, for a fixed c, the subset of all b ∈ Rk where fa is not Morse, has measure
zero in Rk. Hence Sα∩ (Rk×{0}) has measure zero in RN . It is a calssical result
in Measure Theory, called Fubini’s Theorem, which then implies that the set
Sα of all a = (b,c) where a does not yield a Morse function has measure zero in
RN . Hence fa is a Morse function for almost every a. QED

Finally, we can also show that being a Morse function is a stable property. In
order to prove stability, we start with a little lemma:

First Lemma

Let f be a smooth function on an open set U ⊂ Rk. For each x ∈ U , let
H(f)x be the Hessian matrix of f at x. Then f is a Morse function if and
only if

(det(H(f)x))
2 +

k∑
i=1

(
∂f

∂xi
(x)

)2

> 0 for all x ∈ U.(16)

Proof: A point x is regular if dfx = ( ∂f
∂x1

(x), . . . , ∂f
∂xk

(x)) 6= 0, and x is a

nondegenerate critical point if dfx = 0 and det(H(f)x) 6= 0. Hence f is Morse if
and only if (16) is satisfied. QED
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Second Lemma

Suppose that ft is a homotopic family of functions on Rk. If f0 is a Morse
function on some oepn subset U ⊂ Rk containing a compact set K ⊂ Rk,
then so is every ft for t sufficiently small.

Proof: We define the map

F : U × [0,1]→ R, (x,t) 7→ (det(H(ft)x))
2 +

k∑
i=1

(
∂f

∂xi
(x)

)2

.

Since f is smooth, F depends smoothly on both variables. By the First Lemma
and the assumption, we know F (x,0) > 0 for all x ∈ U × {0}. Since K ⊂ U is
compact, F has a minimum on K×{0}, i.e. there is a δ > 0 such that F (x,0) ≥ 2δ
for all x ∈ K. Since F is continuous, there an open neighborhood W ⊂ U × [0,1]
containing K × {0} such that F (x,t) > δ for all (x,t) ∈ W . In fact, we can cover
K × {0} by open subsets Wi ⊂ U × [0,1] such that F (x,t) > δ for all (x,t) ∈ Wi.
Each such open subset Wi has the form Vi × [0,εi) for some open Vi ⊂ U and
εi > 0. Since K is compact, finitely many such open Wi suffice to cover K×{0}.
Let ε be the minimum of the finitely many εi. Then we have F (x,t) > δ for all
(x,t) ∈ K × [0,ε). Since F is continuous, for any fixed t ∈ [0,ε), there is again
an open subset V Rk containing K such that F (x,t) > 0 for all (x,t) ∈ V × {t}.
Thus ft is Morse in a neighborhood of K for all sufficiently small t. QED

Finally, we are ready to prove stability of Morse functions.

Stability of Morse functions

Let X be a compact smooth manifold, let f0 : X → R be a smooth function
and ft be a homotopy of f0. If f0 is Morse, then there is an ε > 0 such that
ft is a Morse function for all t ∈ [0,ε).

Proof: For x ∈ X, let φx : Ux → X be a local parametrization around x.
Then f0 ◦ φx is a Morse function on U . Since {0} is a compact subset of U , the
Second Lemma above implies that there is an open subet Vx ⊂ Ux containing
{0} and an ε(x) > 0 such that ft is Morse on Vx for all t ∈ [0,ε(x)). The images
φx(Vx) are open in X and cover X. Since X is compact, finitely many suffice to
cover X, say

X = φx1(Vx1) ∪ · · · ∪ φxn(Vxn)

Then we can set ε := minimum of ε(x1), . . . ,ε(xn). Then ft : X → R is a Morse
function for all t ∈ [0,ε). QED





LECTURE 15

Embedding Manifolds in Euclidean Space

We have two objectives today. The first one is to study how manifolds can be
embedded into Euclidean space. In particular, given a k-dimensional manifold,
what is the minimal N such that we can be sure that there is an embedding
X ⊂ RN? The second one is to give an intrinsic definition of manifolds. In the
next lecture, we are going to relate these two objectives and show that every
abstract smooth manifold can be embedded into some Euclidean space.

To address the first question we need a useful new device, the tangent bundle.

The Tangent Bundle

Let X ⊂ RN be a smooth manifold. For every x ∈ X, the tangent space
Tx(X) to X at x is a vector subspace of RN . If we let x vary, these tangent space
will in general overlap in RN . (For example, if X is a vector space, they will all
be equal.)

Hence, in order to be able to keep track of the information contained in all the
different tangent spaces, we need a smart device that keeps those spaces apart:

Tangent bundles

The tangent bundle of X, denoted T (X), is the subset of X×RN defined
by

T (X) := {(x,v) ∈ X × RN : v ∈ Tx(X)}.
In particular, T (X) contains a natural copy X0 of X, consisting of the
points (x,0). In the direction perpendicular to X0, it contains copies of
each tangent space Tx(X) embedded as the sets

{(x,v) ∈ T (X) : for a fixed x}.
There is a natural projection map

π : T (X)→ X, (x,v) 7→ x.

135
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Any smooth map f : X → Y induces a global derivative map

df : T (X)→ T (Y ), (x,v) 7→ (f(x), dfx(v)).

Note that, since X ⊂ RN and Tx(X) ⊂ RN for every x, T (X) is also a subset
of Euclidean space:

T (X) ⊂ RN × RN .

Therefore, if Y ⊂ RM , then df maps a subset of R2N into R2M .

We claim that df is smooth. For since f : X → RM is smooth, it extends
by definition around any point x ∈ X to a smooth map F : U → RM , where U
is an open set of RN . Then dF : T (U) → R2M locally extends df . But, since
U ⊂ RN is open and hence Tu(U) = RN for every u ∈ U , T (U) is all of U × RN .
Since U×RN is an open set in R2N , dF is a linear and hence smooth map defined
on an open subset of R2N . This shows that df : T (X) → R2M may be locally
extended to a smooth map on an open subset of R2N , meaning that df is smooth.

Given smooth maps f : X → Y and g : Y → Z, the global derivative of the
composite is equal to the composite of global derivatives:

d(g ◦ f) = dg ◦ df : T (X)→ T (Z).

For, the chain rule implies that, for any (x,v) ∈ T (X),

d(g ◦ f)(x,v) = ((g ◦ f)(x),d(g ◦ f)x(v)

= ((g(f(x)), (dgf(x) ◦ dfx)(v))

= dg(df(x,v))

= dg ◦ df(x,v).

As a consequence we get:

Tangent bundles are intrinsic

If f : X → Y is a diffeomorphism, so is df : T (X) → T (Y ). For the chain
rule implies that df−1 ◦ df is the identity map of T (X) and df ◦ df−1 is the
identity map of T (Y ). Thus diffeomorphic manifolds have diffeomorphic
tangent bundles. As a result, T (X) is an object intrinsically associated to
X.

Finally, we are going to show that T (X) is in fact itself a smooth manifold.
Let W be an open set of X. In particular, W is also a manifold, and we can
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consider its tangent bundle T (W ). Since Tx(W ) = Tx(X) for every x ∈ W ,
T (W ) is by definition

T (W ) = {(x,v) ∈ T (X) : x ∈ W} = T (X) ∩ (W × RN) ⊂ T (X).

Since W × RN is open in X × RN , T (W ) is open in T (X).

Now suppose that W is the image of a local parametrization φ : U → W ,
where U is an open set in Rk. Then the global derivative dφ : T (U) → T (W )
is a diffeomorphism. But T (U) = U × Rk is an open subset of R2k, so dφ is a
parametrization of the open set T (W ) in T (X). Since every point of T (X) sits
in such a neighborhood, we have proved the following useful result:

Tangent bundles are manifolds

The tangent bundle of a manifold X is a smooth manifold of dimension
dimT (X) = 2 dimX.

Whitney’s Theorem

Whitney’s Theorem

Every k-dimensional manifold admits a one-to-one immersion in R2k+1.

Proof: Let X ⊂ RN be k-dimensional manifold which is a subset in RN for
some N > 2k+1. In particular, we are given an injective immersion X → RN .
Our goal is to show that we can choose N to be 2k+ 1 and still have an injective
immerison. Therefor we are going to construct a linear projection RN → R2k+1

that restricts to a one-to-one immersion X → R2k+1 on X.

The construction works by induction: Whenever we are given an injective
immersion f : X → RM with M > 2k+ 1, then there exists a unit vector a ∈ RM

such that the composition of f with the projection map carrying RM onto the
orthogonal complement of a is still an injective immersion. The complement
H := {b ∈ RM : b ⊥ a} is an M − 1-dimensional vector subspace of RM , hence
isomorphic to RM−1. Thus, after choosing a basis for H, we obtain an injective
immersion into RM−1.

Continuing this procedure yields a chain of linear maps

RN → RN−1 → · · · → R2k+1

such that the composition X → RN → R2k+1 is still an injective immersion.
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So let us assume we have an injective immersion

f : X → RM with M > 2k + 1.

We define two smooth maps

X ×X × R
h
��

T (X) g
// RM

by

h : X ×X × R→ RM , (x,y,t) 7→ t(f(x)− f(y)).

and

g : T (X)→ RM , (x,v) 7→ dfx(v).

By Sard’s theorem, the sets Sg and h of critical values of g and h, respec-
tively, have measrure zero in RM . Hence the union of Sg and Sh still has measure
zero in RM . Thus the intersection of the sets of regular values of g and h, which
is the complement of Sg ∪ Sh, is nonempty.

Since dimT (X) = 2k, dimX × X × R = 2k + 1, but M > 2k + 1, the only
regular values of g and h are the points in RM which are not in the image of g or
h. Hence there exists a point a ∈ RM which is neither in the image of g nor in
the image of h. Note that, since 0 belongs to both images, we must have a 6= 0.

Let π be the projection of RM onto the orthogonal complement H of a.

First claim: π ◦ f : X → H is injective.

For suppose that π ◦ f(x) = π ◦ f(y). Then, since π is linear, we have
π(f(x)− f(y)) = 0, i.e.

f(x)− f(y) ∈ Ker (π) = span(a) in RM

= {w ∈ RM : w = t · a for some t ∈ R}.

Thus there is a t ∈ R with f(x) − f(y) = ta. If x 6= y then t 6= 0, since f is
injective. But then

a = 1/t(f(x)− f(y)) = h(x,y,1/t)

which contradicts the choice of a.

Second claim: π ◦ f : X → H is an immersion.
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For suppose there was a nonzero vector v in Tx(X) for which d(π ◦ f)x = 0.
Because π is linear, the chain rule yields

d(π ◦ f)x = π ◦ dfx.

Thus π(dfx(v)) = 0, so dfx(v) = ta for some t ∈ R. Because f is an immersion,
we must have ta 6= 0. But since we know a 6= 0, this implies t 6= 0. Thus, since
dfx is linear,

a =
1

t
dfx(v) = dfx(

1

t
v) = g(x,

1

t
v)

which again contradicts the choice of a. QED

For compact manifolds, one-to-one immersions are the same as embeddings.
So we have just proved the embedding theorem in the compact case.

Whitney’s Embedding for compact manifolds

Every compact k-dimensional manifold admits an embedding in R2k+1.

Note that Whitney’s result does not give us the minimal N for an individual
manifold. For example, we know that Sn is embedded in Rn+1 for every n. The
result tells us that, in general, N = 2k + 1 will always work. In fact, Whitney
showed that N = 2k always works. But the proof is much harder, and we will
not discuss it in this course.

In order to extend Whitney’s theorem (for N = 2k + 1) to noncompact man-
ifolds, we must modify the immersion to make it proper. This is a topological,
not a differential problem.

Before we develop the necessary tools to address this problem, we are going
to contemplate a bit on a way to define manifolds without referring to a given
embedding into some RN . The key idea that should be preserved in any new
definition should be that a manifold is a space which locally looks like
Euclidean space.

Abstract smooth manifolds

Hausdorff spaces

A topological space X is called Hausdorff if, for any two distinct points
x,y ∈ X, there are two disjoint open subsets U,V ⊂ X such that x ∈ U
and y ∈ V .
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In other words, in a Hausdorff space we can separate points by open neigh-
borhoods.

Every subspace of RN (with the relative topology) is a Hausdorff space. How-
ever, there are spaces which are not Hausdorff.

For a typical example, consider two copies of the real line Y1 := R× {1} and
Y2 := R× {2} as subspaces of R2. On Y1 ∪ Y2, we define the equivalence realtion
(x,1) ∼ (x,2) for all x 6= 0.

Let X be the set of equivalence classes. The topology on X is the quotient
topology defined as follows: a subset W ⊂ X is open in X if and only if both its
preimages in R× {1} and R× {2} are open.

Then X looks like the real line except that the origin is replaced with two
different copies of the origin. Away from the double origin, X looks perfectly nice
like a one-dimensional manfiold. But every neighborhood of one of the origins
contains the other. Hence we cannot separate the two origins by open subsets,
and X is not Hausdorff.

For our definition of an abstract manifold, we want to avoid such pathological
spaces.

Abstract manifolds

Let X be a topological space.
A chart on X is a pair (V,φ) where V ⊂ X is an open subset and φ : V → U
is a homeomorphism from V to an open subset U ⊂ Rk of Rk.
An abstract smooth k-manifold is a Hausdorff space X together with a
(countable) collection of charts (Vα,φα) on X such that

(1) every point in X is in the domain of some chart, and



EMBEDDING MANIFOLDS IN EUCLIDEAN SPACE 141

(2) for every pair of overlapping charts φα and φβ, i.e.

Vαβ := Vα ∩ Vβ 6= ∅,
the change-of-coordinates map

φβ ◦ φ−1
α : φα(Vαβ)→ φβ(Vαβ)

is smooth (as a map between open subsets of Rk). In fact, this
means that the change-of-coordinates maps are diffeomorphisms,
since they are mutual smooth inverses to each other.

Let X be an abstract smooth k-manifold and f : X → Rn be a continuous
map. Then f is smooth if for every chart φα : Vα → Uα, the composition
f ◦ φ−1

α : Uα → Rn is smooth.
More generally, let X be an abstract smooth k-manifold and Y an abstract
smooth m-manifold and f : X → Y a continuous map. Then f is smooth
at x ∈ X if, for every chart φ : V → U on X around x and every chart
ψ : V ′ → U ′ on Y around f(x), the map

ψ ◦ f|V ∩f−1(V ′) ◦ φ−1
|U∩φ(f−1(V ′)) : U ∩ φ(f−1(V ′))→ U ′

is a smooth map as a map from an open subset of Rk to an open subset of
Rm. We call f smooth if it is smooth at every x ∈ X.

Note that the smooth k-dimensional manifolds X ⊂ RN we have been study-
ing so far are examples of abstract smooth k-manifolds:
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• The Hausdorff property is satisfied in RN and therefore also for every
subspace of RN (with relative topology we have been using).
• Moreover, every open cover {Uα} of RN has a countable refinement.

For, we can take the collection of all open balls which are contained in
some Uα, which have rational radii, and which are centered at points
having only rational coordinates.
• For an open cover {Vα} of a subset X ⊂ RN , we can write Vα = Uα∩X for

some open subsets Uα of RN . Then let {Ũi} be a countable refinement
of {Uα} in RN , and define Ṽi = Ũi ∩X.
• The charts are just what we called local coordinates and the inverses

of charts are what we called local parametrizations. One difference is
that we required local parametrizations to be diffeomorphisms. For an
abstract manifold X, we need the charts to define what smoothness
means for a map on X. Hence a priori it makes only sense to talk about
the smoothness of the change of coordinate maps. A posteriori we can
then check that charts are in fact diffeomorphisms.
• Similarly for smooth maps between manifolds. We only know what

smoothness of maps between Euclidean spaces means. Hence we need to
use the charts to first translate the maps into maps between Euclidean
spaces.
• In the abstract definition, we take care of the fact that the images of

the charts/local parametrizations overlap. In fact, we use the overlap to
define the smooth structure.
• Finally, a chosen collection of charts is called an atlas on the manifold.

One can show that every manifold has a maximal atlas, i.e. the images
of the charts are as “big as possible”.

Here is an important example which we can easily be described with the new
definition of an abstract manifold, but for which it is not obvious how we can
embedd it into RN .

(Actually, it is a difficult question how to embedd these guys into RN with N
as small as possible. In fact, if n = 2m for some m and if there is an immersion
RPn → RN , then N must be at least 2m− 1. You will learn about the techniques
to show this in the Algebraic Topology course.)

Real Projective Space

The real projective n-space RPn is the set of all straight lines through
the origin in Rn+1. As a topological space, RPn is the quotient space

RPn = (Rn+1 \ {0})/ ∼
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where the equivalence relation is given by x ∼ y if there is a nonzero real
number λ such that x = λy. This means that a subset V is open in RPn

if and only if its preimage U = {x ∈ Rn+1 \ {0} : [x] ∈ V } is open in
Rn+1 \ {0}.
Note that since each line through the origin intersects the unit sphere in
two (antipodal) points, RPn can alternatively be described as

Sn/ ∼
where the equivalence relation is x ∼ −x. As a quotient of Sn, we see that
RPn is compact.
We claim that RPn is an abstract n-dimensional smooth manifold.
If x = (x0, . . . ,xn) ∈ Rn+1 \ {0}, we write [x] for its equivalence class
considered as a point in RPn. One also often writes [x] = [x0 : . . . : xn].
For 0 ≤ i ≤ n, let

Vi := {[x] ∈ RP n : xi 6= 0}.
The preimage of Vi in Rn+1 is the open subset {x ∈ Rn+1 : xi 6= 0}. Hence
each Vi is open in RPn. By varying i, this gives an open cover of RPn because
every representative (x0, . . . ,xn) of a point [x] ∈ RPn must have at least one
coordinate 6= 0 (otherwise it would be the origin which is excluded).
For each i, we have the maps φi : Rn → Vi

(x0, . . . ,x̂i, . . . ,xn) 7→ [x0 : . . . : xi−1 : 1 : xi+1 : . . . : xn].

and φ−1
i : Vi → Rn

[x0 : . . . : xi : . . . : xn] 7→ 1

xi
(x0, . . . ,x̂i, . . . ,xn)

where x̂i means that xi is omitted.
Since we use a representative of an equivalence class for the definition of
φ−1
i , we need to check that the definition is independent of the chosen rep-

resentative. But if [x0 : . . . : xi : . . . : xn] = [λx0 : . . . : λxi : . . . : λxn] for
some λ 6= 0, then

φ−1
i ([λx]) =

1

λxi
(λx0, . . . ,λxi−1,λxi+1, . . . ,λxn)

=
1

xi
(x0, . . . ,xi−1,xi+1, . . . ,xn) = φ−1

k ([x]).

It is easy to see that φ and φ−1
i are mutual inverses which are both contin-

uous.
Finally, the change-of-coordinate maps are smooth: For

φ−1
i (Vi ∩ Vj)

φi−→ Vi ∩ Vj
φ−1
j−−→ φ−1

j (Vi ∩ Vj)
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is just

(x0, . . . ,x̂i, . . . ,xn) 7→ 1

xj
(x0, . . . ,xi−1,1,xi+1, . . . ,x̂j, . . . ,xn)

which is smooth whenever xj 6= 0.

To have such an intrinsic definition of a manifold is important and nice. How-
ever, the definition is quite abstract indeed. And, in fact, we are going to show
that every abstract smooth manifold can be embedded into Euclidean space and
is therefore a manifold for our previous definition. Hence all the machinery we
have developed can be applied to abstract manifolds.



LECTURE 16

Embedding Abstract Manifolds in Euclidean Space

We start with some general facts and some terminology.

The closure of a subset

Let X be a topological space and A be an arbitrary subset. The closure
of A in X, denoted A, is the intersection of all closed subsets on X which
contain A.
For example, the closure of an open ball Bε(0) in RN is just the closed ball

Bε(0) = {x ∈ RN : |x| ≤ ε}.

We need the closure of a subset for example when we want to talk about the
support of a function:

Support of a function

Let X be a smooth manifold and f : X → R be a smooth function f : X →
R. The closed subset

supp(f) := {x ∈ X : f(x) 6= 0}
is called the support of f .

We are now going to introduce a fundamental tool for studying manifolds.

Partition of unity

Let X be an abstract smooth k-manifold and let {Uα} be an open cover,
i.e. a collection of open subsets in X which cover X. A sequence of smooth
functions {ρi : X → R} is called a partition of unity subordinate to
the open cover {Uα} if it has the following properties:

(a) 0 ≤ ρi(x) ≤ 1 for all x ∈ X and all i.

145
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(b) Each x ∈ X has a neighborhood on which all but finitely many
functions ρi are identically zero.

(c) For each i, supp(ρi) ⊂ Uα for some α.
(d) For each x ∈ X,

∑
i ρi(x) = 1. (Note that according to (b), this

sum is always finite.)

The most general existence result for partitions of unity (without assuming
that each ρi is smooth) is that they exist on every paracompact space, i.e. spaces
on which every open cover has a locally finite refinement (every point has a
neighborhood that intersects only finitely many sets in the cover).

Before we prove that partictions of unity exist on manifolds, we need some
preparation.

Separating closed subsets

Let A and C be disjoint closed subsets in RN . Then there are disjoint open
subsets U and V such that A ⊂ U and C ⊂ V .

Proof: For each a ∈ A, choose an εa > 0 such that B2εa(a) ∩ C = ∅. This is
possible since C is closed. Similarly, for each c ∈ C, choose an εc > 0 such that
B2εc(c) ∩ A = ∅. We define

U := ∪a∈ABεa(a) and V := ∪c∈CBεc(c).

Then U and V are open subsets with A ⊂ U and C ⊂ V . We claim that U and
V are disjoint.

For, if x ∈ U ∩ V , then

x ∈ Bεa(a) ∩Bεc(c)

for some a ∈ A and c ∈ C. By the triangle inequality, this implies

|a− c| < εa + εc.

But, if εa ≤ εc, then |a − c| < 2εc and a ∈ B2εc(c). And, if εc ≤ εa, then
|a− c| < 2εa and c ∈ B2εa(a). Both cases are impossible. QED

Another important tool that we wil need are smooth bump functions. We
have met them in a previous lecture. Today we will need them in a slightly more
interesting form:
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Smooth bump functions revisited

Let U ⊂ RN be open and K ⊂ U be compact. Then there is a smooth
function ϕ : RN → R with ϕ(x) = 1 for all x ∈ K and ϕ(x) = 0 for all
x ∈ RN \ C for some closed subset C with K ⊂ C ⊂ U .

Proof: Recall the smooth function

f : R→ R, f(x) =

{
e−1/x2 x > 0

0 x ≤ 0.

For any given ε > 0, we define a function

fε(x) := f(x)f(x− ε).

As a product of two smooth functions, fε is smooth.

Next we define yet another function

gε : R→ R, gε(x) :=

∫ x
0
fε(t)dt∫ ε

0
fε(t)dt

.

By the Fundamental Theorem of Calculus, gε is smooth, nondecreasing, and
gε(x) = 0 x ≤ 0

0 < gε(x) < 1 0 < x < ε

gε(x) = 1 x ≥ ε

Finallly, for any fixed point a ∈ RN and for any given r > 0, we define

hrε : RN → R, hrε(x) = 1− gε(|x− a| − r).

Then hrε is smooth, nonincreasing, and
hrε(x) = 1 |x− a| ≤ r

0 < hrε(x) < 1 r < |x− a| < r + ε

hrε(x) = 0 |x− a| ≥ r + ε
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This gives us a smooth function φ : RN → R which has value 1 on the compact
subset Br(a) and has value 0 outside the closed subset Br+ε(a).

Now let U ⊂ RN be open and K ⊂ U be compact. For this general situation
we need to work a bit harder and rearrange the argument as follows:

Let ψ be the function

ψε : RN → R, ψε(x) =

{
e−1/|x|2 |x| < 1

0 |x| ≥ 1.

This is a smooth map with
∫
RN ψdx = 1 (using a standard Lebesgue measure dx

on RN).

For a given ε > 0, define ψε : R
N → R by ψε(x) := ε−Nψ(x/ε). This is still a

smooth function with
∫
RN ψεdx = 1.

Since RN \ U is closed and K is compact, we can choose a small ε > 0 such
that, for each point x ∈ K, we have B2ε(x) ∩ U = ∅. Then the V := ∪x∈KBε(x)
is an open set containing K with compact closure V̄ ⊂ U contained in U .

Let χV be the characteristic function on V , i.e. the function

χV : RN → R,

{
χV (x) = 1 for x ∈ V
χV (x) = 0 for x /∈ V.

The function χV is identically 1 on K and has compact support contained in
U . But it is of course not smooth on RN , not even continuous. Hence we need
to modify it, to make it smooth. The function ψε, for the fixed ε, will serve as a
tool to “smoothen” χV .
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Then the desired smooth function ϕ is the convolution ψε ∗ χV of χV and ψε:

ϕ : RN → R, x 7→
∫
RN
ψε(x− y)χV (y)dy.

Note that the integral is well-defined, since the closure of V , which is the support
of χV , is compact. QED

Finally some terminology:

The interior of a set

Let X be a topological space, and S a subset of X. Then the interior of
S, denoted int(S), is the union of all open subsets of X contained in S. By
definition, the interior of any S is an open subset of X. In fact, it is the
largest open subset of X which is contained in S.
If S ⊂ RN then int(S) is the set of all points s ∈ S such that there is a
small open ball centered at x which is contained in S.
Obviously, if U is an open subset of X then int(U) = U . In particular, if
X ⊂ RN is open then int(X) = X. But in general int(S) is a proper subset
of X.

Existence of partitions of unity

We are going to show that partitions of unity exist on manifolds step by
step with increasing difficulty. We start with the case of compact subspaces in
RN . Then we are going to transport this result to compact abstract smooth
manifolds. Finally, we discuss arbitrary compact smooth k-manifolds. There is
no need to restrict to compact manifolds. In fact, partitions of unity exist on
every paracompact topological space (every open cover has a locally finite
refinement), a class of spaces much larger than abstract manifolds.
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First case: X ⊂ RN compact.

Let {Uα} be an open cover of X. Since X is compact, {Uα} has a finite
subcover {U1, . . . ,Un}. A partition of unity subordinate to the finite subcover is
also a partition of unity subordinate to the original cover.

Step 1: We are going to show that we can shrink the covering to an open
covering {V1 . . . ,Vn} such that V̄i ⊂ Ui for each i.

Consider the closed subset

A := X \ (U2 ∪ · · · ∪ Un)

of X. Since {U1, . . . ,Un} cover X, we know A ⊂ U1. Since A and X\U1 are closed
disjoint, we can choose an open subset V1 containing A such that V1 is disjoint to
an open subset W which contains X \U1. Thus V1 is contained in the complement
X \W . Since X \W is a closed subset which contains V1, we know V̄1 ⊂ X \W ,
since the closure of V1 is the intersection of all closed subsets which contain V1.
Since X \ U1 ⊂ W by the choice of W , we have X \W ⊂ X \ (X \ U1) = U − 1.
Thus we have V̄1 ⊂ U1. Since V1 contains the complement of U2 ∪ · · · ∪ Un in X,
the collection {V1,U2, . . . ,Un} covers X.

Now we proceed by induction as follows: Given open subsets V1, . . . ,Vk−1 such
that

X = {V1, . . . ,Vk−1,Uk,Uk+1, . . . ,Un},

let Ak be the subset

Ak = X \ (V1 ∪ · · · ∪ Vk−1) ∪ (Uk+1 ∪ · · · ∪ Un).

Then Ak is a closed subset of X which is contained in the open set Uk. Choose an
open subset Vk containingAk such that V̄k ⊂ Uk. Then {V1, . . . ,Vk−1,Vk,Uk+1, . . . ,Un}
covers X. At the nth step of the induction we are done.

Step 2: Given the open covering {U1, . . . ,Un} of X, we use Step 1 to choose
an open covering {V1, . . . ,Vn} of X such that V̄i ⊂ Ui for each i. Then we repeat
this process and choose an open covering {W1, . . . ,Wn} of X such that W̄i ⊂ Vi
for each i.

For each i, we choose a smooth bump function

ϕi : X → [0,1] such that ϕi(W̄i) = {1} and ϕi(X − Vi) = {0}.

Since ϕ−1
i (R \ {0}) ⊂ Vi, we have

supp(ϕi) ⊂ V̄i ⊂ Ui.
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(Here is the point where see why we need to apply Step 1 twice: If we were
working with the Vi’s instead of Wi’s, then we would have supp(ϕ) ⊂ Ūi instead
of supp(ϕ) ⊂ Ui as required for a partition subordinate to the cover {Ui}.)

Since {W1, . . . ,Wn} covers X, we have

ϕ(x) :=
n∑
i=1

ϕi(x) > 0 for all x ∈ X.

Finally, for each i, we define

ρi(x) :=
ϕi(x)

ϕ(x)
.

Second case: X ⊂ RN and X = X1 ∪ X2 ∪ X3 ∪ · · · where each Xi is
compact and Xi ⊂ int(Xi+1).

Let {Uα} be an open cover of X. For each i, we define

U i
α := Uα ∩ (Xi+1 \ int(Xi−2)).

Then {U i
α} is an open cover of Yi := Xi \ int(Xi−1). Since int(Xi−1) is an open

subset, Yi is a closed subset of Xi and therefore Yi is also compact. Then, for each
i, the first case implies that there is a partition of unity ϕiα on Yi subordinate to
the cover {U i

α}.

For each x ∈ X, there is an i such that x ∈ Xi and hence ϕjα(x) = 0 for all
j ≥ i+ 2. Hence, for each x ∈ X, the sum

ϕ(x) :=
∑
α,i

ϕiα(x)

is a finite sum in some open set containing x.

Now for each α we define

ρiα(x) :=
ϕiα(x)

ϕ(x)

This is partition of unity subordinate to the open cover {Uα}.

Third case: X ⊂ RN is open.

Define subsets

Xi := {x ∈ X : |x| ≤ i and the distance to RN \X ≥ 1/j}.

Then these subsets satisfy:
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• eachXi is compact, since it is the intersectionX∩Bi(0)∩(X\(∪p∈RN\XB1/i(p))

and therefore closed and bounded in RN ;
• for each i: Xi ⊂ int(Xi+1);
• X = X1 ∪X2 ∪ · · · .

Hence we can apply the second case.

Fourth case: X ⊂ RN arbitrary.

Let {Uα} be an open cover of X. By the definition of the topology on X, for
each α, there is a subset Vα ⊂ RN open in RN such that Uα = X ∩ Vα. Let Y
be the union of all the Vα in RN . By the third case, there is a partition of unity
on Y subordinate to the open cover {Vα}. This is also a partition of unity on X
subordinate to the open cover {Uα}.

Last case: X is a compact abstract smooth k-manifold.

Let {Vα} be an open over of X. By intersecting with the domains of charts
on X, we get a refinement of the cover. Hence we can assume that Vα are the
domains of charts on X. Since X is compact, the domains of finitely many
charts on X suffice to cover X. Let us lable them (V1,φ1), . . . ,(Vn,φn). Then each
Ui = φi(Vi) is an open subset in Rk.

Now we can proceed exactly as in the case of a compact subspace in
RN for the finite cover {U1, . . . ,Un} of the space Y := U1 ∪ · · · ∪ Un ⊂ Rk. This
yields a partition of unity {ρi} subordinate to the cover {U1, . . . ,Un}. Composi-
tion of each ρi with φi yields a partition of unity {ρi ◦ φi} on X subordinate to
the cover {V1, . . . ,Vn}. QED

Now we are ready to prove the following embedding result.

Embedding abstract manifolds into Euclidean space

Let X be a compact abstract smooth k-manifold. Then there is an embed-
ding, i.e. an injective proper map, X ↪→ RN for some large N .

Proof:

The collection of all Vα for all charts (Vα,φα) is an open cover of X. Since
X is compact, we can cover X by the images of a finite number of charts
V1, . . . ,Vn.

Let {ρi} be a partition of unity subordinate to the open cover defined by the
Vi’s.
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For a chart φi : Vi → Ui ⊂ Rk, we define a new map

gi : X → Rk, gi(x) =

{
ρi(x) · φi(x) for x ∈ Vi
0 for x ∈ X \ supp(ρi).

The map gi is well-defined, since if x ∈ Vi \ supp(ρi), then both definitions
agree to be 0. Moreover, gi is continuous, since its restrictions to the two open
subsets Vi and X \ supp(ρi) are continuous (this is why we do not use X \ Vi in
the definition because that would be a closed subset).

Now we define a map

g : X → Rn × Rnk, x 7→ (ρ1(x), . . . ,ρn(x), g1(x), . . . ,gn(x)).

We observe that g is continuous, since the gi’s and the ρi’s are continuous.

Claim: g is an injective proper map.

Since X is compact, g is a proper map.

Now we show that g is injective. For assume g(x) = g(y). Then ρi(x) = ρi(y)
for all i by the definition of g. But, by the definition of a partition of unity, for
at least one i, we must have ρi(x) = ρi(y) 6= 0.

Thus x and y must lie in the same Vi, since ρi is supported on Vi, i.e. ρi(x) 6= 0
implies x ∈ Vi. Hence, since gi(x) = gi(y) and ρi(x) = ρi(y) 6= 0,we must have
φi(x) = φi(y). Since φi is a bijection, this shows x = y. Thus g is injective.
QED

Actually, g is also an immersion, but we have not defined what that means for
an abstract manifold. Since this is just an exercise in translating the defintions,
we omit this point and rather move on.

All manifolds can be embedded in Euclidean space

In fact, every abstract k-manifold X can be embedded in Euclidean space.
One can just keep on going with the above argument in the non-compact
case and use local coordinates to map pieces of X into Rk. Though when
using only finitely many copies of Rk to accomodate infinitely many neigh-
borhoods of X, we loose injectivity. The key tool that restores injectivity
are partitions of unity which even out the troubles occuring because of
overlapping neighborhoods.
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For this to work, it is crucial that the topology on X has a countable basis.
This is a technical point which we did and will not discuss because it would
divert us too far from the main story.
We just remark that it is possible to construct topological spaces without
a countable basis which are locally homeomorphic to Euclidean space, but
which cannot be embedded into Euclidean space.

Another application of the existence of partitions of unity is the following
lemma which will turn out to be key tool in the proof of Whitney’s Theorem.

Existence of proper functions on manifolds

On any manifold X, there is a proper map p : X → R.

Proof: Let {Uα} be the collection of open subsets of X that have compact
closure, and let ρα be a subordinate partition of unity. Then

p(x) =
∞∑
i=1

iρi(x)

is a well-defined smooth function, since, in a neighborhood of every point, it is a
finite sum of smooth functions.

In order to show that p is proper, we need to show that the preimage of any
compact subset of R is again compact. Every compact subset K ⊂ R is contained
in a closed interval of the form [−j,j] for some natural number j. Hence if we can
show that p−1([−j,j]) is compact, then p−1(K) is a closed subset of a compact
set and therefore also compact.

For given j, if for any x we had ρ1(x) = · · · = ρj(x), then

∞∑
i=j+1

ρi(x) = 1

and therefore

p(x) ≥ (j + 1)
∞∑

i=j+1

ρi(x).

This shows

p−1([−j,j]) ⊂ ∪ji=1{x : ρi(x) 6= 0}.
Since supp(ρi) ⊂ Ui and Ui has compact closure, this shows that p−1([−j,j]) is a
closed subset in a compact set and therefore it is also compact. QED
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Whitney’s Theorem

Every smooth k-dimensional manifold X ⊂ RN admits an embedding into
R2k+1.

Recall that the strongest result is that N = 2k suffices. But that is much
harder. And again, this is an upper bound which works for every k-dimensional
manifold. For a many manifolds, an even lower dimension suffices, e.g. Sn ⊂
Rn+1.

Proof: The idea is to replace the injective immersion f : X ↪→ RN with the
map (f,p) : X ↪→ RN+1 with a proper p : X → R. Then (f,p) is still an injective
immersion, and it is proper, since p is proper. It remains to reduce the dimension
N + 1. The details are a bit more involved:

Starting with X ⊂ RN we have seen that we can find an injective immersion
f : X → R2k+1. By composing f with the injective immersion map

R2k+1 → B1(0), x 7→ x

1 + |x|2
,

we can assume that |f(x)| < 1 for all x ∈ X.

Let p : X → R be a proper function which we know to exist by the revious
lemma. We define a new injective immersion

F : X → R2k+2, x 7→ (f(x),p(x)).

Since 2k + 2 > 2k + 1, we can apply the argument from last time and find a
nonzero vector a ∈ R2k+2 such that

π ◦ F : X → H

is still an injective immersion, where π is the projection onto the orthogonal
complement H = {b ∈ R2k+2 : b ⊥ a} of a in R2k+2. By rescaling we can assume
|a| = 1.

Since π ◦ F is an injective immersion for almost every a ∈ S2k+1, we can
assume that a is neither the north nor the south pole on S2k+1. This will
allow us tp show that π ◦ F is proper:

Claim: Given any bound c, there exists another number d such that

{x ∈ X : |(π ◦ F )(x)| ≤ c} ⊂ {x ∈ X : |p(x)| ≤ d}.
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As p is proper,

{x ∈ X : |p(x)| ≤ d} = p−1([−d,d])

is a compact subset of X.

Thus the claim implies that the preimage under π ◦ F of every closed ball
in H is a compact subset of X. Sicne every compact subset K of H is a closed
subset of some closed ball in X, this shows that (π ◦ F )−1(K) is a closed subset
of compact subset in X and therefore also compact.

If the claim is false, then there exists a c and a sequence of points {xi} in
X for which

|(π ◦ F )(xi)| ≤ c, but |p(xi)| → ∞
(becasue there is no d bounding |p(xi)|).

By definition of the projection onto an orthogonal complement, for every
z ∈ R2k+2, π(z) is the one point in H for which z − π(z) is a multiple of a. In
particular,

F (xi)− π ◦ F (xi) is a multiple of a for each i,

and hence so is the vector

wi :=
1

p(xi)
(F (Xi)− π ◦ F (xi)).

Let us look at what happens when i→∞:

F (xi)

p(xi)
=

(
f(xi)

p(xi)
,1

)
→ (0, . . . ,0,1)

because |f(xi)| < 1 for all i and p(xi)→∞. We have∣∣∣∣π ◦ F (xi)

p(xi)

∣∣∣∣ ≤ c

|p(xi)|
.

Thus
π ◦ F (xi)

p(xi)
→ 0⇒ wi → (0, . . . ,0,1).

But each wi is a multiple of a. Hence the limit of thw wi must be a mutiple
of a. We conclude that a must be either the north or south pole of Sk+1 which
contradicts our assumption on a. This proves the claim and the theorem. QED



LECTURE 17

Manifolds with Boundary

In order to be able to analyze a wider class of phenomena we would like to
enlarge the class of manifolds. A typical example which we would like to include
is the domain of a homotopy X × [0,1] for a smooth k-dimensional manifold X.
The points on X × {0} and X × {1} do not have an open neighborhhod which
is diffeomorphic to Rk. In fact, those subsets for the boundary of X × [0,1].
Another example is the closed unit ball in Rk. So far such guys do not qualify
as a manifold. From now on, We would like to allow such subsets. We will see
that most of the theorems we have proved so far are also valid for manifolds with
boundary.

The idea for what a manifold with boundary should be is the same as before:
it is a space which locally looks like some model space with boundary which we
understand well. Hence we need to choose a good model space. But that is not
hard to do.

In fact, the standard model of a Euclidean space with boundary is the half-
plane

Hk = {(x1, . . . ,xk) ∈ Rk : xk ≥ 0}

in Rk. The boundary of Hk, denoted ∂Hk, is given by the points

∂Hk = {(x1, . . . ,xk) ∈ Rk : xk = 0} = Rk−1 × {0} ⊂ Rk.

Now a manifold with boundary is a space which locally looks like Hk:

Manifolds with boundary

A subset X of RN is a k-dimensional manifold with boundary if every
point x of X there is an open neighborhood V ⊂ X containing x and an
open neighborhood U ⊂ Hk together with a diffeomorphism φ : U → V . As
before, any such a diffeomorphism is called a local parametrization of
X.

157



158 MANIFOLDS WITH BOUNDARY

The boundary of X, denoted ∂X, consists of those points that belong
to the image of the boundary of Hk under some local parametrization. Its
complement is called the interior of X, denoted Int(X) = X \ ∂X.
A manifold X with ∂X = ∅ is just a smooth manifold in our initial termi-
nology. In order to make the distinction clear if necessary, we call them also
boundaryless manifolds or manifolds without a boundary.

Warning: The interior of X ⊂ RN as a manifold is in general different from
the interior of X as a subspace of RN . The interior of X as a manifold is the
complement of the boundary, whereas the interior of the topologocal space X is
the union of all its open subsets. But also every point in ∂X lies in some open
neighborhood of X.

Let X be a manifold with boundary. We need to check that our definition of
points in the interior and on the boudnary is independent of the choice of a local
parametrization.

So let x ∈ X be a point which is in the image of a local parametrization
φ : U → V ⊂ X such that U ⊂ Hk is an open set of Hk which is contained in the
interior of Hk. Then Rk is an open subset of Rk. Now assume x is also in the image
of another local parametrization φ′ : U ′ → V ′ ⊂ X. Then x ∈ W := V ∩ V ′ ⊂ X,
and the composition φ′ ◦ φ−1 : φ−1(W )→ (φ′)−1(W ) is a diffeomorphism. Hence,
after possibly shrinking U ′, we see that U ′ is also an open subset in Rk. Thus x
is being an interior point is well-defined.
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This shows in particular: if X is a manifold with boundary, then the interior
of X, Int(X), is a boundaryless manifold of the same dimension as X.

It remains to show that being a boundary point is also well-defined. We show
this by proving the following interest result:

Boundaries are manifolds

If X is a k-dimensional manifold with boundary, then ∂X is a (k − 1)-
dimensional manifold without boundary.

Proof: Let x ∈ X and let φ and ψ be two local parametrizations around
x. After possibly shrinking the domains and codomains, we can assume that
φ : U → V and ψ : W → V are both diffeomorphisms from open sets U ⊂ Hk,
W ⊂ Hk to the same open subset V ⊂ X.

We would like to show φ(∂U) = ψ(∂W ). For then ∂V = φ(∂U) is independent
of our choice of local parametrization and therefore well-defined. Moreover, since
∂U = U ∩ ∂Hk is an open subset of Rk−1, we would get that every point y ∈ ∂X
is contained in a local parametrization φ|∂U : U ∩∂Hk → ∂X. This will show that
∂X is a manifold of dimension k − 1.

By our assumption on φ and ψ, it suffices to show ψ(∂W ) ⊂ φ(∂U). The
other inclusion will follow by symmetry. Hence we woud like to show:

Claim: φ−1(ψ(∂W )) ⊂ ∂U .

To simplify notation, we define the map g = φ−1 ◦ ψ : W → U .

Suppose that the claim is false and there is a point w ∈ ∂W which is
mapped to an interior point u = g(w) of U by g. Since both φ and ψ are
diffeomorphisms, g is a diffeomorphism of W onto an open subset g(W ) of U .
The chain rule implies that the derivative d(g−1)u of its inverse is bijective. But,
since u ∈ Int(U), g(W ) contains a neighborhood of u that is open in Rk. Thus
the Inverse Function Theorem, applied to the map g−1 defined on this open
subset of Rk, implies that the image of g−1 contains a neighborhood of w that is
open in Rk. This contradicts the assumption w ∈ ∂W . QED

Tangent spaces and derivatives are still defined in the setting of manifolds
with boundary.
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Derivatives and tangent spaces vs boundaries

Derivatives of smooth maps can be defined as before. Since smoothness at a
point requires a functions to be defined on open neighborhhod around that
point, we need to be a bit more careful at boundary points:
Derivatives on Hk:
Suppose that g is a smooth map of an open set U of Hk to Rl. If u is an
interior point of U , then the derivative dgu is defined as before.
If u ∈ ∂U is a boundary poin, the smoothness of g means that it may be
extended to a smooth map G defined in an open neighborhood of u in RK .
We define dgu to be the derivative dGu : Rk → Rl.
We must show that this definition is independent of the choice of G. So let
G′ be another local extension of g. We need to show dG′u = dGu.
The equality of the two derivatives is no problem at points in the interior
int(U) of U , because then we have a small open neighborhood which is still
in int(U). We are going to use this and approximate u be a sequence {ui}
of interior points ui ∈ int(U) which converge to u.
Since G and G′ agree with g on int(U), we have

dGui = dG′ui for all i.

Since the derivative of a smooth map at a point depends continuously on
the change of point, wthis implies that dGui → dGu and dG′ui → dG′u when
ui → u and both limits agree. This shows that dgu is also well-defined at
boundary points.
One should note that, at all points, dgu is still a linear map of all of Rk to
Rl. For we have defined dgu as the derivative dGu of an extension G to an
open subset of Rk.
Tangent spaces:
Let X ⊂ RN be a smooth manifold with boundary, and x ∈ X. Let
φ : U → X be a local parametrization with U ⊂ Hk open. Let u ∈ U
be the point with φ(u) = x. (Note that we cannot assume u = 0 when x is
an interior point.)
Then we have just learned that we can form the derivative

dφu : Rk → RN

no matter what kind of point x is. Thus, as before, we can define the
tangent space to X at x, denoted Tx(X), to be the image of Rk in RN

under the linear map dφu. (One can check that Tx(X) does not depend as
a subspace of RN on the choice of φ just as before using the chain rule.)
Derivatives on tangent spaces:
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Now let f : X → Y be a smooth map between manifolds with boundaries
with X ⊂ RN and Y ⊂ RM . Given a point x ∈ X. Then after choosing
local parametrizations φ : U → X with φ(u) = x and ψ : V → Y with
ψ(v) = f(x), then we define

dfx : Tx(X)→ Tf(x)(Y )

as the linear map which makes the following diagram commutative

Tx(X)
dfx

// Ty(Y )

Rk

dφu

OO

dθu

// Rl.

dψv

OO

where θ is the map ψ−1 ◦ f ◦ φ (note v = θ(u)).

However, sometimes we do have to be careful when we apply our developed
concepts to manifolds with boundaries. For example, the product of two mani-
folds with boundary may not be a manifold anymore. A simple example is the
product [0,1]× [0,1].

But if only one manifold has a boundary we are ok:

Products and Boundaries

The product of a manifold without boundary X and a manifold with bound-
ary Y is another manifold with boundary. Furthermore,

∂(X × Y ) = X × ∂Y,
and

dim(X × Y ) = dimX + dimY.

Proof: If U ⊂ Rk and V ⊂ Hl are open, then

U × V ⊂ Rk ×Hl = Hk+l

is open. Moreover, if φ : U → X and ψ : V → Y are local parametrizations, so is
φ× ψ : U × V → X × Y . QED

Regular values and transversality

One of the most important concepts we have studied is transversality of
smooth maps to submaifolds. We would like to extend this to manifolds with
boundary. This is possible, but requires some care.
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We start with the special case of regular values for functions on manifolds
without boundary. This is a well-known case, but it turns out that it actually
produces manifolds with boundary as follows:

Regular values for real-valued functions

Suppose that S is a manifold without boundary and that π : S → R is a
smooth function with regular value 0. Then the subset {s ∈ S : π(s) ≥ 0}
is a manifold with boundary, and the boundary is π−1(0).

Proof: The set {x ∈ S : π(x) > 0} is open in S, since it is the continuous
preimage of the open subset (0,∞) ⊂ R. It is therefore a submanifold of the
same dimension as S. Hence every point in {x ∈ S : π(x) > 0} has an open
neighborhood which is diffeomorphic to an open subset of Rk, k = dimS.

So suppose that π(s) = 0. By assumption, 0 is a regular value which means
that s is a regular point of π. Hence π is locally near s equivalent to the canonical
submersion. But for the canonical submersion

π : Hk → R, (x1, . . . ,xk)→ xk

the lemma just states the definition of the boundary of Hk:

∂Hk = π−1(0) = {(x1, . . . ,xk) ∈ Rk : xk = 0}.

QED

An immediate consequence of this fact is:

Spheres are boundaries

Let π be the smooth function defined by

π : Rk → R, (x1, . . . ,xk) 7→ 1−
∑
i

x2
i .

Then 0 is a regular value of π, and the unit ball Bk in Rk can be described
as

Bk = {x ∈ Rk : π(x) ≥ 0}.
The boundary of Bk is the (k − 1)-sphere Sk−1 = π−1(0).

Recall that transversality is formulated as a criterion on tangent spaces and
derivatives. We would like to formulate a similar criterion for maps between
manifolds with boundary.
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As we learned above, the boundary ∂X of a k-manifold with boundary X is
a manifold of dimension k − 1 without boundary. Let x ∈ ∂X be a point on the
boundary. We have dimTx(∂X) = k − 1 and dimTx(X) = k. Moreover, since
∂X is a submanifold of X, we know that

Tx(∂X) ⊂ Tx(X)

is a vector subspace of codimension 1 in Tx(X).

For any smooth map f : X → Y , we introduce the notation

∂f = f|∂X

for the restriction of f to ∂X. The derivative of ∂f at x is just the restriction of
dfx to the subspace Tx(∂X):

d(∂f)x = (dfx)|Tx(∂X) : Tx(∂X)→ Tf(x)(Y ).

Now let f : X → Y be a smooth map from a smooth manifold with boundary
X to a boundaryless manifold Y , and let Z ⊂ Y be a submanifold. We would like
to know under which circumstances is f−1(Z) a submanifold with boundary
of X (i.e. a subset of X which is itself a smooth manifold with boundary) with

∂f−1(Z) = f−1(Z) ∩ ∂X.(17)

It turns out that it is not enough to ask that f is transversal to Z in the
previous sense, i.e. Im (dfx) + Tf(x)(Z) = Tf(x)(Y ).

A simple example

Even for the restriction of the canonical submersion

π : H2 → R, (x1,x2) 7→ x2

this is not sufficient. For, dπ(x1,x2) : R2 → R is just the projection onto the
second factor. Hence it is surjective at every point (x1,x2). In particular, 0
is a regular value fo π. Let Z := {0}. Then

π−1(Z) = {(x1,x2) ∈ R2 : x2 = 0} = ∂H2.

Since 0 is regular value, we knew that π−1(Z) is a submanifold. The problem
is that the boundary does not satisfy condition (17). For

∂π−1(Z) = ∅, whereas π−1(Z) ∩ ∂X = ∂H2 6= ∅.

In order to make sure that the boundary behaves well, we need to impose an
additional transversality condition on ∂f .
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We start again with regular values:

Preimages of regular values in manifolds with bound-
ary

Let g be a smooth map of a k-manifold X with boundary onto a bound-
aryless n-manifold Y , and suppose that y ∈ Y is a regular value for both
g : X → Y and ∂g : ∂X → Y . Then the preimage g−1(y) is a (k − n)-
dimensional manifold with boundary

∂(g−1(y)) = g−1(y) ∩ ∂X.

Proof: To show that g−1(y) is a manifold with boundary is a local question,
i.e. it suffices that each point in g−1(y) has an open neighborhood which is a
manifold with boundary. So let x ∈ X be a point with g(x) = y. After choosing
local coordinates, we can assume that g is a map

g : Hk → Rn.

If x is an interior point in X, then g−1(y) is a manifold without boundary
in an open neighborhood around x by the Preimage Theorem for boundaryless
manifolds.

So let us look at what happens if x ∈ ∂X. That g is smooth at x means by
definition that there is an open subset U ⊂ Rk and a smooth map

G : U → Rn such that GU∩Hk = gU∩Hk .

After possibly replacing U with a smaller subset, we can assume that G has
no critical points in U . Then G−1(y) is a smooth manifold by the Preimage
Theorem for boundaryless manifolds. We need to show that

g−1(y) = G−1(y) ∩HK is a manifold with boundary.

In order to show this, we define a new smooth function π on the manifold
S := G−1(y)

π : S → R, (x1, . . . ,xk) 7→ xk

as the projection to the last coordinate. Then

S ∩Hk = {s ∈ S : π(s) ≥ 0}.

Claim: 0 is a regular value of π.
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If we can show the claim, then our previous lemma shows that S ∩ Hk is a
manifold with boundary and the boundary is π−1(0).

To show the claim, assume there was an s ∈ S with both π(s) = 0, i.e.
s ∈ S ∩ ∂Hk, and dπs = 0. We want to show that the assumption dπs = 0 leads
to a contradiction.

To do so, first note that π is a linear map, and therefore dπs = π. Thus,

dπs = π : Ts(S)→ R

being trivial, just means that the last coordinate of every vector in Ts(X) is 0,
i.e.

dπs = 0⇒ Ts(S) ⊂ Ts(∂Hk) = Rk−1.

Hence we want to show Ts(S) 6⊂ Rk−1.

The tangent space to S = G−1(y) at s is the kernel of dGs:

Ts(S) = Ts(G
−1(y)) = Ker (dGs = dgs : Rk → Rn)

where dgs = dGs by definition of dgs.

We know that d(∂g)s is the restriction of dgs : Rk → R to Rk−1:

d(∂g)s = (dgs)|Rk−1 .

Thus, if Ts(S) = Ker (dgs) ⊆ Rk−1, then

Ker (dgs) = Ker (d(∂g)s).(18)

Now, finally, we apply the assumption of regularity of y. Since y is a regular
value of both g and ∂g, we know that both dgs and d(∂g)s are surjective.
This implies

dim Ker (dgs) = k − n and dim Ker (d(∂g)s) = k − 1− n.

This contradicts assertion (18) about the kernels when Ker (dgs) ⊂ Rk−1.
Thus this assumption must be false, i.e.

Ts(S) = Ker (dgs) 6⊆ Rk−1

and hence dπs 6= 0 and therefore dπs is surjective.

In other words, 0 is a regular value. QED



166 MANIFOLDS WITH BOUNDARY

Preimages of manifolds with boundary

Let f be a smooth map of a manifold X with boundary onto a boundaryless
manifold Y , and suppose that both f : X → Y and ∂f : ∂X → Y are
transversal with respect to a boundaryless submanifold Z in Y . Then the
preimage f−1(Z) is a manifold with boundary

∂(f−1(Z)) = f−1(Z) ∩ ∂X,
and the codimension of f−1(Z) in X equals the codimension of Z in Y .

Proof: The restriction of f to the boundaryless manifold Int(X) is transversal
to Z. Hence, by the Preimage Theorem for boundaryless manifolds, f−1(Z) ∩
Int(X) is a boundaryless manifold of correct codimension. Thus it remains
to examine f−1(Z) in a neighborhood of a point x ∈ f−1(Z) ∩ ∂X.

Let l := codimZ in Y . As in the boundaryless case, we can choose a submer-
sion h : W → Rl defined on an open neighborhood W of f(x) in Y to Rl such
that Z ∩W = h−1(0). Then h ◦ f is defined in a neighborhood V of x in X, and
f−1(Z) ∩ V = (h ◦ f)−1(0).

Now let φ : U → X be a local parametrization around x, where U is an open
subset of Hk. Then define

g := h ◦ f ◦ φ : U → Rl.

Since φ : V → φ(V ) is a diffeomorphism, the set

f−1(Z) is a manifold with boundary in a neighhorhood of x

⇐⇒ (f ◦ φ)−1(Z) = g−1(0) is a manifold with boundary near u = φ−1(x) ∈ ∂U.

But the transversality assumptions of f and ∂f with respect to Z imply the
0 is a regular value of g. Hence we can apply the previous theorem and we are
done. QED

Finally, also Sard’s Theorem has a version with boundary.

Sard’s Theorem with boundary

For any smooth map f : X → Y of a manifold X with boundary to a
boundaryless manifold Y , almost every point of Y is a regular value of both
f and ∂f .
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Proof: For any point x ∈ ∂X on the boundary of X,

d(∂f)x = (dfx)|Tx(∂X) : Tx(∂X)→ Tf(x)(Y ).

Hence if d(∂f)x is surjective, then dfx is surjective. Hence if ∂f is regular at x,
so is f .

Thus a point y ∈ Y fails to be a regular value of both f and ∂f only when it
is a critical value if both dfx fails to be surjective for all x ∈ f−1(y)∩ Int(X) and
d(∂f)x fails to be surjective for all x ∈ f−1(y) ∩ ∂X.

But since Int(X) and ∂X are both boundaryless manifolds, both sets of critical
values have measure zero by Sard’s Theorem. Thus the complement of the set
of common regular values for f and ∂f is the union of two sets of measure zero,
and therefore itself a set of measure zero. QED
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Brouwer Fixed Point Thereom and One-Manifolds

The following theorem gives us a complete list of smooth one-dimensional
manifolds. Note that in genera, since every manifold is the disjoint union of its
connected components, it suffices to classify connected manifold.

Classification of One-Manifolds

(a) Every compact, connected, one-dimensional smooth manifold with-
out boundary is diffeomorphic to S1.

(b) Every compact, connected, one-dimensional smooth manifold with
boundary is diffeomorphic to [0,1].

(c) Every noncompact, connected, one-dimensional smooth manifold
with boundary is diffeomorphic to either [0,1), (0,1] or (0,1).

The details of the proof are surprisingly complicated. We content ourselves
with a rough idea.

Some heuristics on why the theorem may be true:

(a) Let X be a nonempty, compact, connected 1-manifold. Each point has
a neighborhood diffeomorphic to (−1,1). By compactness, finitely many such
neighborhoods U1, . . . ,Un cover X. If n was equal 1, then X ∼= (−1,1). But an
open interval is not compact. Thus, there must be at least two neighborhoods.
Since X is connected, these two charts must intersect. The union of these two
intervals has to be either an open interval (if they intersect on one side of each) or a
circle (if they intersect on both sides). But if their union is an open interval, there
has to be another chart, by the compactness of X. Since there are only finitely
many Ui’s, we must eventually arrive at the situation where the neighborhoods
intersect on both sides and form a circle. Then one has to use this to construct
a diffeomorphism to S1.

(b) Let X be a compact, connected, one-dimensional smooth manifold with
boundary. Since X has at least one boundary point, there must be neighborhood
in X containing that boundary point. This neighborhood must be diffeomorphic

169
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to [a,b) for some a, b. Since this interval is not compact, there must be another
neighborhood in X. This neighborhood either intersects another boundary point
which would yield us X ∼= [a,c] for some c, or it does not contain a boundary
point. In the latter case, the union of the neighborhoods is diffeomorphic to a
half-open interval [a,d) which is not compact. Hence there has to be another
neighborhood. Since X is compact, this process will end after finitely many
steps when we eventually get that X is the union of neighborhoods which is
diffeomorphic to a closed interval.

(c) When X is not compact, we repeat the above processes. The difference
is that the process may not terminate and we end up with open or half-open
intervals.

Much more interesting than the actual theorem are its consequences which
are surprisingly rich.

Boundary of One-Manifolds

The boundary of any compact one-dimensional manifold with boundary
consists of an even number of points.

Proof: Every compact one-manifold with boundary X is the disjoint union of
finitely many connected components. Each component is diffeomorphic to
a copy of [0,1]. Hence the boundary of each component consists of two points.
The boundary of X consists of these finitely many pairs of points. QED
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Retractions

Let X be a smooth manifold and Z ⊂ X be a submanifold. Then a retrac-
tion is a smooth map f : X → Z such that f|Z is the identity.

There is an important restriction for the existence of such retractions for
manifolds with boundary:

No retractions onto boundaries

If X is any compact manifold with boundary, then there is no retraction
of X onto its boundary.

Proof: Suppose there is such a smooth map g : X → ∂X such that ∂g : ∂X →
∂X is the identity. By Sard’s Theorem, we can choose a regular value z ∈ ∂X of
g. Since ∂g is the identity, all values in ∂X a regular for ∂g. Hence z is regular
for both g and ∂g. By the Preimage Thoerem for manifolds with boundary, we
know that g−1(z) is a submanifold of X with boundary

∂(g−1(z)) = g−1(z) ∩ ∂X.

Moreover, the codimension of g−1(z) in X equals the codimension of {z} in
∂X, namely dimX−1 as {z} has dimension 0. Hence g−1(z) is one-dimensional.
Since it is a closed subset in the compact manifold X, it is also compact.

By definiton of ∂g as the restriction of g to ∂X, we have

(∂g)−1(z) = (g|∂X)−1(z) = g−1(z) ∩ ∂X = ∂(g−1(z)).

But, since ∂g = Id∂X ,

{z} = (∂g)−1(z) = ∂(g−1(z)).

This contradicts the previous result that the boundary ∂(g−1(z)) of the compact
one-dimensional manifold g−1(z) consists of an even number of points. QED

This theorem has a famous consequence:

Brouwer Fixed-Point Theorem for smooth maps

Let f : Bn → Bn be a smooth map of the closed unit ball Bn = {x ∈ Rn :
|x| ≤ 1} ⊂ Rn into itself. Then f must have a fixed point, i.e. there is an
x ∈ Bn with f(x) = x.
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Before we prove the theorem, let us have a look at dimension one, where the
result is very familiar:

Brouwer FPT is familiar in dimension one

Note that we have seen this theorem for n = 1 in Calculus 1. Let f : [0,1]→
[0,1] be a continuous map. Then it must have a fixed point. For, if not, then
g(x) = f(x) − x is a continuous map defined on [0,1]. We have g(0) ≥ 0
and g(1) ≤ 0, since f(0) ≥ 0 and f(1) ≤ 1. If g(0) = 0 or g(1) = 1, we are
done. But if g(0) > 0 and g(1) < 1, then the Intermediate Value Theorem
implies that there is an x0 ∈ (0,1) with g(x0) = 0, i.e. f(x0) = x0.

Proof of Brouwer FPT: Suppose that there exists an f without fixed points.
We will show that such an f would allow us to construct a retraction g : Bn →
∂Bn. But, since Bn is compact, we have just proved that such a retraction
cannot exist.

So suppose f(x) 6= x for all x ∈ Bn. Then, for every x ∈ Bn, the two
points x and f(x) determine a line. Let g(x) be the point where the line segment
starting at f(x) and passing through x hits the boundary ∂Bn. This defines a
map g : Bn → ∂Bn.
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If x ∈ ∂Bn, then g(x) = x by construction of g. Hence g : Bn → ∂Bn is the
identity on ∂Bn. Thus, in order to show that g is a retraction, it remains to show
that g is smooth.

To show this, we describe g(x) explicitly. As a point on the line from f(x) to
x, g(x) can be written in the form

g(x) = x+ tv, where v :=
x− f(x)

|x− f(x)|

for some real number t. Note that, since we assume x 6= f(x), the vector v is
always defined. In fact, it is the unit vector pointing from f(x) to x. Moreover,
since f is smooth, v depends smoothly on x.

We need to calculate t and show that t depends smoothly on x. Since g(x)
is a point on boundary of Bn, we know |g(x)| = 1, and t is determined by the
equation

1 = |g(x)|2 = (x+ tv) · (x+ tv) = x · x+ 2tx · v + t2v · v

or, equivalently,

0 = (v · v)t2 + (2x · v)t+ x · x− 1.(19)

By definition of v, we know v · v = |v|2 = 1. Since v points from f(x) to x,
we know that t must be positive. Now we just need to find the positive solution
of the quadratc equation (19) for t and get

t =
−2x · v +

√
4(x · v)2 − 4(x · x− 1)

2

= −x · v +
√

(x · v)2 − x · x+ 1
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where (x · v)2 − x · x+ 1 is positive, since x · x = |x|2 ≤ 1 and (x · v)2 > 0. Since
the scalar products and square roots involved depend smoothly on x, we see that
t depends smoothly on x. Hence g is smooth. QED

Note that, for n = 1, in the above proof we would construct a map g : [0,1]→
{0,1} which would send 0 to 0 and 1 to 1. Such a map cannot be smooth, not
even continuous by the Intermediate Value Theorem.

Brouwer Fixed-Point Theorem for continuous maps

Any continuous map F : Bn → Bn must have a fixed point.

Proof: The idea is to reduce this theorem to the statement on smooth maps
by approximating F by a smooth mapping. This is possible by Weierstrass’
Approximation Theorem, an important result from Calculus, which applies
as Bn is compact and says:

Given ε > 0, there is a polynomial function Q : Bn → Rn with

|Q(x)− F (x)| < ε for all x ∈ Bn.

(Recall that a polynomial function is a function that arises by finitely many
additions and multiplications of the coordinate functions. Such functions are
obviously smooth.)

However, it is possible that Q sends points in Bn to points outside of Bn. In
order to remedy this defect, we replace Q with

P (x) :=
Q(x)

1 + ε
.

Since |F (x)| ≤ 1, this new polynomial P satisfies:

(1 + ε)|P (x)| = |Q(x)| ≤ |Q(x)− F (x)|+ |F (x)| < ε+ 1

where we appy the trianlge inequality. Hence |P (x)| ≤ 1 and P is a map
Bn → Bn. Moreover,

(1 + ε)|P (x)− F (x)| = |Q(x)− (1 + ε)F (x)| = |Q(x)− F (x) + εF (x)|
≤ |Q(x)− F (x)|+ ε|F (x)| < 2ε

where we use that |F (x)| ≤ 1. Since 1 + ε > 1, this shows

|P (x)− F (x)| < 2ε.(20)
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Now suppose that F (x) 6= x for all x ∈ Bn. Then the continuous function

Bn → Bn, x 7→ |F (x)− x|

must have a minimum µ, since Bn is compact. Since F (x) 6= x for all x, we
must have µ > 0.

Now,for ε = µ/2, we choose polynomials Q and then P as above. Since
|F (x)− x| ≥ µ for all x ∈ Bn, the triangle inequality yields

µ ≤ |F (x)− x| = |F (x)− P (x) + P (x)− x|
≤ |F (x)− P (x)|+ |P (x)− x|.

But by (20), we know

|F (x)− P (x)| < µ for all x ∈ Bn.

Thus |P (x)− x| > 0, and therefore P (x) 6= x for all x ∈ Bn.

Hence P : Bn → Bn is a smooth map from Bn to itself without a fixed
point. This contradicts the statement on smooth maps and completes the proof.
QED

The theorem is not true for the open ball:

Counterexamples on open balls

Let Bk
1 (0) = {x ∈ Rk : |x| < 1} be the open ball in Rk. We define the map

ϕ : Bk
1 (0)→ Rk, x 7→ x√

1− |x|2
.

This is a smooth map with smooth inverse

ϕ−1 : Rk → Bk
1 (0), y 7→ y√

1 + |y|2

Thus ϕ is a diffeomorphism Bk
1 (0)→ Rk.

The translation T : Rk → Rk, x 7→ x+1 does not have a fixed point. Hence
the composite map

ϕ−1 ◦ T ◦ ϕ : Bk
1 (0)→ Bk

1 (0)

does not have a fixed point. For if it had a fixed point x, then

ϕ−1(T (ϕ(x))) = x⇒ T (ϕ(x)) = ϕ(x)

and T had a fixed point, which is not the case.



176 BROUWER FIXED POINT THEREOM AND ONE-MANIFOLDS

Brouwer’s Fixed-Point Theorem has many important consequences. Here is
one of them:

Brouwer Invariance of Domain

Let U be an open subset of Rn, and let f : U → Rn be a continuous
injective map. Then f(U) is also open.

Instead of studying the proof of this theorem, let us note a consequence of
this result:

Topological Invariance of Dimension

If n > m, and U is a nonempty open subset of Rn, then there is no
continuous injective map from U to Rm. In particular, Rn and Rm are
not homeomorphic whenever n 6= m.

Even though it sounds like an obvious fact, this is a rather deep theorem.
Note that there exist weird things like a continuous surjection from Rm to Rn for
n > m due to variants of the Peano curve construction. Hence often we have to
be careful with our topological intuition.

Proof of Topological Invariance of Dimension: If there was such a con-
tinuous injective map from U to Rm, then we could compose it with the embedding
Rm ↪→ (Rm×{0}) ⊂ Rn. Hence the composite would yield a continuous injec-
tive map from U into Rn. By the theorem, the image would be both open in Rn

and lie in the subspace Rm × {0}. But no open subset of Rn can be contained
in Rm × {0}, since we must be able to fit at least a tiny open ball of Rn into
that subset and there is no room for such a ball in the direction of the remaining
n−m coordinates.

Finally, a homeomorphism from Rn to Rm would be such a continuous injective
map. QED

Note that invariance of domain and dimension for smooth injective maps is
just a consequence of the Inverse Function Theorem. But for maps which are just
continuous and injective, it is much harder to achieve.
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Transversality is generic

Today we are going to review what we have learned about transversality and
show that it is actually a generic property. We start with the following extension
of Sard’s Theorem:

Transversality Theorem

Suppose that F : X × S → Y is a smooth map of manifolds, where only X
has a boundary, and let Z be any boundaryless submanifold of Y . If both
F and ∂F are transversal to Z, then for almost every s ∈ S, both fs and
∂fs are transversal to Z (where fs denotes the map x 7→ fs(x) = F (x,s),
and similarly ∂fs(x) = ∂F (x,s)).

Note that, roughly speaking, the difference between requiring that F is transver-
sal to Z versus fs is transversal to Z is that for F the image of T(x,s)(X×S) under
dF(x,s) has to be big enough, whereas for fs we look at the potentially smaller
image of T(x,s)(X × S) under d(fs)x. Similarly for ∂F and ∂fs.

Proof: By the Preimage Theorem, the preimage W := F−1(Z) is a subman-
ifold of X × S with boundary ∂W = W ∩ ∂(X × S). Let π : X × S → S be the
natural projection map.

We will show that whenever s ∈ S is a regular value for the restriction
π : W → S then fs

−t Z, and whenever s is a regular value for ∂π : ∂W → S, then
∂fs
−t Z. By Sard’s theorem (which also holds for manifolds with boundary),

almost every s ∈ S is a regular value for both maps, so the theorem follows.

In order to show that fs
−t Z, suppose that fs(x) = z ∈ Z. Because F (x,s) = z

and F −t Z, we know that

dF(x,s)(T(x,s)(X × S)) + Tz(Z) = Tz(Y ).

Hence, given any vector a ∈ Tz(Y ), there exists a vector b ∈ T(x,s)(X × S) such
that

dF(x,s)(b)− a ∈ Tz(Z).

177
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What we need is to find a vector v ∈ Tx(X) such that

dfs(v)− a ∈ Tz(Z),

as that would show that dfs(Tx(X)) + Tz(Z) = Tz(Y ).

Since

T(x,s)(X × S) = Tx(X)× Ts(S),

we can write b as a pair (w,e) for vectors w ∈ Tx(X) and e ∈ Ts(S).

If e was zero, we would be done, for since the restriction of F to X ×{s} is
fs, it follows that

dF(x,s)(w,0) = dfs(w).

Although e need not be zero, we may use the projection π to kill it off.

It is easy to check that

dπ(x,s) : Tx(X)× Ts(S)→ Ts(S)

is just projection onto the second factor (this holds for every projection map from
a product of manifolds).

Now we use the assumption that s is a regular value of π. For this implies
that

dπ(x,s) : T(x,s)(W )→ Ts(S)

is surjective. In particular, the fiber over e ∈ Ts(S) is nonempty, and there is
some vector of the form (u,e) in T(x,s)(W ).

But F : W → Z, so dF(x,s)(u,e) is an element in Tz(Z). Consequently, the
vector v := w − u ∈ Tx(X) is our solution. For

dfs(v)− a = dF(x,s)((w,e)− (u,e))− a = (dF(x,s)(w,e)− a)− dFs(u,e),

and both of the latter vectors belong to Tz(Z).

Precisely the same argument shows that ∂fs
−t Z when s is a regular value of

∂π. QED

Transversality is generic - first case

Transversality for smooth maps X → RM is generic in the following sense:
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Let f : X → RM be any smooth map. Let S be an open ball in RM , and
define

F : X × S → RM , F (x,s) = f(x) + s.

The derivative of F at (x,s) is

dF(x,s) = (dfx, IdRM ) : Tx(X)× RM → RM .

Thus dF(x,s) is obviously surjective at any (x,s). Hence F is a submersion.
This implies that F is transversal to every submanifold Z ⊂ RM .
Now we can apply the Transversality Theorem we have just proven:
Since F and ∂F are transversal to Z, for almost every s ∈ S, the map
fs(x) = f(x) + s is transversal to Z. Thus, for any submanifold Z ⊂ RM ,
there is an s, with arbitrarily small norm in RM , such that f may be
deformed into a map fs transversal to Z by the translation by s.

This shows us that transversality is generic for maps X → RM . We would like
to generalize this result to an arbitrary boundaryless smooth manifold Y ⊂ RM

and smooth map f : X → Y .

Given a submanifold Z ⊂ Y , we have just learned how to vary f : X → Y ⊂
RM as a family of maps X → RM such that fs

−t Z for arbitrarily small s, where
we consider Z as a submanifold in RM .

It remains to understand how we can project these maps down onto Y such
that a small perturbation fs of f remains transversal to the given submanifold
Z ⊂ Y . To do so, we must understand a little of the geometry of Y with
respect to its environment. As usual, the compact case is clearest.

ε-Neighborhood Theorem

For a compact boundaryless manifold Y in RM and a positive number ε,
let Y ε be the open set of points in RM with distance less than ε from Y .
If ε is sufficiently small, then each point w ∈ Y ε possesses a unique closest
point in Y , denoted π(w). Moreover, the map π : Y ε → Y is a submersion.
When Y is not compact, there still exists a submersion π : Y ε → Y that
is the identity on Y , but now ε must be allowed to be a positive smooth
function ε : Y → R>0 on Y , and Y ε is defined as

Y ε = {w ∈ RM : |w − y| < ε(y) for some y ∈ Y } ⊂ RM .

The manifold Y ε is called a tubular neighborhhood of Y in RM .
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Note that the important point of the theorem is not so much the existence of
the Y ε, but rather that they come equipped with the submersion π. As we will
see in a bit, this is related to a key tool, the normal bundle.

Before we prove this theorem, we study a first consequence:

Creating families of submersions

Let f : X → Y be a smooth map where Y is a boundaryless manifold. Let
S be the open ball in RM . Then there is a smooth map F : X × S → Y
such that F (x,0) = f(x), and for any fixed x ∈ X, the map

S → Y, s 7→ F (x,s) is a submersion.

In particular, both F and ∂F are submersions.

Proof: Let Y ⊂ RM and S be the unit ball in RM . We define

F : X × S → Y, F (x, s) = π(f(x) + ε(f(x))s).(21)

Since π : Y ε → Y restricts to the identity on Y , we have

F (x,0) = π(f(x) + 0) = f(x).

For fixed x, the map

ϕ : S → Y ε, s 7→ f(x) + ε(f(x))s

is the translation of a linear map. Thus dϕs is just given by multiplying a vector in
Ts(S) = RM by the real number ε(f(x)) > 0 (to get a vector in Tϕ(s)(Y

ε) ⊂ RM).
This derivative is just ε(f(x)) times the identity of RM , and therefore surjective.
Thus ϕ is a submersion.

As the composition of two submersions is a submersion, we get that

S → Y, s 7→ F (x,s) is a submersion.

Hence the restriction F{x}×S : {x} × S → Y of F to the submanifold {x} × S
is submersion for every x ∈ X. Since every point of X × S lies in one of these
submanifolds, F must be a submersion as well, since its derivative dF(x,s) is
already surjective onto TF (x,s) when restricted to T(x,s)({x}× S) ⊂ T(x,s)(X × S).

The same argument applied to ∂F and ∂X, shows that ∂F is a submersion.
QED

Now we can prove that transversality is generic:
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Transversality Homotopy Theorem

For any smooth map f : X → Y and any boundaryless submanifold Z of the
boundaryless manifold Y , there exists a smooth map g : X → Y homotopic
to f such that g −t Z and ∂g −t Z.

Proof: For the family of mappings F of the previous conesequence of the
ε-Neighborhood Theorem, the Transversality Theorem implies that fs

−t Z and
∂fs
−t Z for almost all s ∈ S. But each fs is homotopic to f , the homotopy being

X × I → Y, (x,t) 7→ F (x,ts).

QED

Now we are going to prove the ε-Neighborhood Theorem. To do this we
introduce an important geometric tool similar to the tangent bundle.

The Normal Bundle

For each y ∈ Y , define Ny(Y ), the normal space of Y at y, to be the
orthogonal complement of Ty(Y ) in RM . The normal bundle N(Y ) is then
defined to be the set

N(Y ) = {(y,v) ∈ Y × RM : v ∈ Ny(Y )}.
Note that unlike T (Y ), N(Y ) is not intrinsic to the manifold Y but depends
on the specific relationship between Y and the surrounding RM . There is a
natural projection map σ : N(Y )→ Y defined by σ(y,v) = y.

The normal bundle N(Y ) is actually a manifold itself. In order to show this,
we must recall an elementary fact from linear algebra:

Suppose that A : RM → Rk is a linear map. Its transpose is a linear map
At : Rk → RM characterized by the dot product equation

Av · w = v · Atw for all v ∈ RM , w ∈ Rk.

Claim: If A is surjective, then At maps Rk isomorphically onto the orthogonal
complement of the kernel of A.

First we note that At is injective. For if Atw = 0, then Av · w = v · Atw = 0,
so that w ⊥ A(RM). Since A is surjective, w must be zero.

Now, if v ∈ Ker (A), i.e. Av = 0, then 0 = Av · w = v · Atw. Thus
At(Rk) ⊥ Ker (A). Hence At maps Rk injectively into the orthogonal complement
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of Ker (A). As Ker (A) has dimension M − k, its complement has dimension k,
so At is surjective, too.

Normal bundles are manifolds

If Y ⊂ RM , then N(Y ) is a manifold of dimension M and the projection
σ : N(Y )→ Y is a submersion.

Proof: We need to find loal parametrizations for N(Y ).

Therefor, we use that we have learned that we can write every manifold locally
as the zeros of a smooth function. Hence around every point in Y , there is an
open neighborhood U ⊂ Y and an open subset Ũ ⊂ RM with U = Y ∩ Ũ such
that we can write U as the zeros of a submersion

ϕ : Ũ → Rk (k = codimY ) with U = Y ∩ Ũ = ϕ−1(0).

The set N(U) equals N(Y ) ∩ (U × RM), thus is open in N(Y ).

For each y ∈ U , dϕy : RM → Rk is surjective and has kernel Ty(Y ) by the
Preimage Theorem.

Therefore its transpose maps Rk isomorphically onto the orthogonal com-
plement of Ker (dϕy) = Ty(Y ) which is Ny(Y ) by definition:

(dϕy)
t : Rk ∼=−→ (Ty(Y ))⊥ = Ny(Y ).

Hence the map

ψ : U × Rk → N(U), (y,v) 7→ (y,dϕty(v))

is bijective. It is also an embedding of U×Rk into U×RM , since it is the identity
on the first factor and an injective linear map on the second factor. Hence ψ is a
diffeomorphism, and N(U) is a manifold with local parametrization ψ.

The dimenion of N(U) is

dimN(U) = dimU + k = dimY + codimY = M.

Since every point of N(Y ) has such a neighborhood, N(Y ) is a manifold.

Note that σ◦ψ : U×Rk → U is just the projection onto the first factor, which
is a submersion. Thus d(σ ◦ψ)(u,w), is surjective at every point (u,w). Hence dσu
is surjective at every u, and σ is a submersion. QED

Before the get to proof the actual theorem, we start with a lemma that will
give us the existence of the ε-neighborhood Y ε.
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ε-Neighborhood Lemma

Let Y ⊂ RM be a boundaryless manifold. Then any neighborhood Ũ of Y
in RM , i.e. any open subset Ũ of RM with Y ⊂ Ũ , contains

Y ε = {w ∈ RM : |w − y| < ε(y) for some y ∈ Y }
where ε : Y → R>0 is a suitable smooth function. Moreover, if Y is com-
pact, ε can be chosen constant.

Proof: For each point α ∈ Y , we can find a small radius εα such that the
open ball B2εα(α) ⊂ Ũ is contained in Ũ . We set

Uα := Y ∩Bεα(α).

Claim:

U ε(α)
α = {w ∈ RM : |w − y′| < ε(α) for some y′ ∈ Uα} ⊂ Ũ .

For, w ∈ U εα
α means there is an y′ ∈ Uα with |w−y′| < εα. But y′ ∈ Uα means

|y′ − α| < εα. Thus the triangle inequality implies

|w − α| ≤ |w − y′|+ |y′ − α| < 2εα.

Thus w ∈ B2εα(α) ⊂ Ũ by the choice of εα.

The collection of all Uα forms an open cover {Uα} of Y ⊂ RM . By the
Theorem in the Existence of Partitions of Unity for subsets in RM , we can choose
a partition of unity {ρi} subordinate to the cover {Uα}.

Now we define the function

ε : Y → R>0, y 7→
∑
i

ρi(y)εi

Note that ε is a smooth function, since all the ρi’s are smooth.

Claim: Y ε ⊂ Ũ .

Let w ∈ Y ε. Then there is a y ∈ Y such that |w − y| < ε(y). For this y,
only finitely many of the numbers ρi(y) are nonzero, say ρi1(y), . . . ,ρin(y). This
implies y ∈ Ui1 ∩ · · · ∩ Uin .

Let εim be the maximum of the finitely many numbers εi1 , . . . ,εin . Then, since∑
i ρi(y) = 1, we have ε(y) ≤ εim . Hence

|w − y| < ε(y) ≤ εim implies w ∈ U εim
im
⊂ Ũ .
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Thus Y ε ⊂ Ũ .

If Y is compact, we can reduce {Uα} to a finite cover Uα1 , . . . ,Uαn and let ε
be equal the maximum of the εαj . QED

Now we are equipped for the proof of the ε-Neighborhood Theorem.

Proof of the ε-Neighborhood Theorem:

The idea of the proof is to use a version of the Inverse Function Theorem
to show that the ε-neighborhood Y ε of Y = Y × {0} in RM × RM is diffeomor-
phic to an open subspace in the normal bundle. Then we use the natu-
ral submersion σ : N(Y ) → Y from the normal bundle to get the submersion
π : Y ε → Y :

Y ε h−1
//

π
""

N(Y )

σ

��

Y

To make this precise, we define the map

h : N(Y )→ RM , (y,v) 7→ y + v.

We claim that h is regular at every point of Y × {0} in N(Y ).

For, since h is just the restriction of the linear map

H : RM × RM → RM , (w,z)) 7→ w + z,

the derivative of h at (y,v) is just

dh(y,v) = H : RM × RM → RM .

Hence at any point (y,v) we have

dh(y,v)(w,0) = w and dh(y,v)(0,z) = z.

The tangent space to N(Y ) at (y,0) is just

T(y,0)(N(Y )) = Ty(Y )× {0} ⊕ {0} ×Ny(Y ),

since Ty(Y ) and Ny(Y ) are orthogonal complements in RM and dimN(Y ) = M .

At the point (y,0), dh(y,0) maps

T(y,0)(Y × {0}) onto Ty(Y ) in RM ,
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and it maps

T(y,0)({y} ×Ny(Y )) = {0} ×Ny(Y ) onto Ny(Y ) in RM ,

where we use that Ny(Y ) is a vector space and hence its own tangent space.

Hence, in total, we get

dh(y,0)(T(y,0)(N(Y ))) = T(y,0)(Y × {0}) + T(y,0)({y} ×Ny(Y ))

= Ty(Y ) +Ny(Y ) = RM .

Thus dh(y,0) is surjective and h is regular at (y,0).

Since h maps Y × {0} diffeomorphically onto Y and is regular at each (y,0),
a generalization of the Inverse Function Theorem which we prove in the ap-
pendix implies that h must map a neighborhood of Y × {0} in N(Y ) diffeo-
morphically onto a neighborhood of Y in RM .

Now any neighborhood of Y contains some Y ε by the ε-Neighborhood
Lemma. Thus h−1 : Y ε → N(Y ) is defined, and

π = σ ◦ h−1 : Y ε → Y

is the desired submersion.

It is an exercise to check that we can describe π for compact manifolds as
given in the theorem. QED

As a consquence of the proof of the theorem we note the following useful
result:

Tubular Neighborhoods and Normal Bundles

Let Y ⊂ RM be a boundaryless smooth manifold. Then there is a diffeo-
morphism of an open neighborhood Y ε of Y in RM to an open neighborhood
N ε(Y ) of Y × {0} in N(Y ).

Proof: In the proof of the ε-Neighborhood Theorem, we constructed the
smooth map h which restricts to a diffeomorphism of open neighborhoods as
claimed. QED

In the final part of today’s lecture, we look at another application of the
ε-Nieghborhoood Theorem. In fact, there is a stronger form of the Transver-
sality Homotopy Theorem. In order to be able to formulate it, we need some
terminology.
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Transversality on subsets

Let f : X → Y be a smooth map, Z ⊂ Y a submanifold, and C ⊂ X be
a subset. We will say f is transversal to Z on C, if the transversality
condition

Im (dfx) + Tf(x)(Z) = Tf(x)(Y )(22)

for all x ∈ C ∩ f−1(Z).
Note that, even if C is a submanifold, this is different than requiring f|C

−t Z,
since (22) involves Im (dfx) = dfx(Tx(X)), not Im (d(f|C)x) = dfx(Tx(C)),
which is smaller in general.

Now we can formulate the next important technical result.

Extension Theorem

Let f : X → Y be a smooth map, Y boundaryless, and Z a closed sub-
manifold of Y without boundary. Let C be a closed subset of X. Assume
that f −t Z on C and ∂f −t Z on C ∩ ∂X. Then there exists a smooth
map g : X → Y homotopic to f , such that g −t Z and ∂g −t Z, and on a
neighborhood of C we have g = f .

Since ∂X is always closed in X, we obtain the important special case:

Extension of maps on boundaries

Assume f : X → Y is a smooth map such that the boundary map ∂f : ∂X →
Y is transversal to Z. Then there exists a map g : X → Y homotopic to
f such that ∂g = ∂f and g −t Z.
In particular, suppose there is a smooth map h : ∂X → Y transversal to Z.
Then, if h extends to any map on the whole manifold X → Y , it extends
to a map that is transversal to Z on all of X.

For the proof of the Extension Theorem we need lemma first:

Lemma

If U is an open subset which contains the closed set C in X, then there exists
a smooth function γ : X → [0,1] that is identically equal to one outside U
but that is zero on a neighborhood of C.
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Proof: Let C ′ be any closed set contained in U that contains C in its interior,
and let {ρi} be a partition of unity subordinate to the open cover {U,X\C ′}. Here
it comes handy that we proved the existence of partition of unity for arbitrary
subsets of RN . Then just take γ to be the sum of those ρi that vanish outside of
X \ C ′. QED

Proof of the Extension Theorem:

First we show that f −t Z on a neighborhood of C i.e. an open subset
containing C. If x ∈ C but x /∈ f−1(Z), then since Z is closed, X \ f−1(Z) is a
neighborhood of x on which f −t Z automatically.

If x ∈ f−1(Z), then there is a neighborhood W of f(x) in Y and a submersion
ϕ : W → Rk such that f −t Z at a point x′ ∈ f−1(Z ∩W ) precisely when ϕ ◦ f is
regular at x′. But if ϕ ◦ f is regular at x, so it is regular in a neighborhood of x.
Thus f −t Z on a neighborhood of every point x ∈ C, and so

f −t Z on a neighborhood U of C in X.

Second, let γ be the function in the above lemma for the closed subset C
and the open neighborhood U of C in X. We set τ := γ2. Since

dτx = 2γ(x)dγx, hence γ(x) = 0 = τ(x)⇒ dτx = 0.

Now we modify the map F : X × S → Y which we defined in (21) in proving
the Homotopy Theorem, where S is the unit ball in RM . and set

G : X × S → Y, G(x,s) := F (x, τ(x)s).

Claim: G−t Z.

For suppose that (x,s) ∈ G−1(Z), and let us assume first τ(x) 6= 0. Then the
map

S → Y, r 7→ G(x,r),

is a submersion, since it is the composition of the

diffeomorphism r 7→ τ(x)r with the submersion r 7→ F (x,r).

Hence G is regular at (x,s), so certainly G−t Z at (x,s).

To show the claim when τ(x) = 0, we need to check that the image of the
derivative dG(x,s) is big enough. To do this, we introuce the map

m : X × S → X × S, (x,s) 7→ (x,τ(x)s).
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We would like to calculate the derivative of m. Therefor, we apply the product
rule to the second coordinate and remember that τ : X → [0,1], i.e. τ(x) and
dτx(v) are both in R for any v ∈ Tx(X). Then we get

dm(x,s)(v,w) = (v,τ(x) · w + dτx(v) · s)

where w and s are vectors in RM .

We observe that G = F ◦m. Hence in order to calculate the derivative of G,
we can apply the chain rule. Since we are interested in the case where τ(x) = 0
and dτx = 0 we get

dG(x,s)(v,w) = dF(x,s)(v,0).

Moreover, since F (x,0) = f(x) for all x by construction of F , we know F|X×{0} =
f . This implies

dF(x,s)(v,0) = dF(x,0)(v,0) = dfx(v).

Hence we get

dG(x,s)(v,w) = dfx(v)

and therefore

Im (dG(x,s)) = Im (dfx(v)) ⊂ Tf(x)(Y ).(23)

Now τ(x) = 0, implies x ∈ U by definition of γ and τ . But by the choice of
U above, this implies f −t Z at x. Hence (23) implies G−t Z at (x,s).

The same argument shows ∂G−t Z.

Now we can apply the Transversality Theorem to G : X × S → Y and get
that we can pick and fix an s (almost every s works) for which the map

g(x) := G(x, s) satisfies g −t Z and ∂g −t Z.

The map G is then a homotopy

f = F|X×{0} = G|X×{0} ∼ G|X×{s} = g.

Finally, if x belongs to the neighborhood of C on which τ = 0, then we even
have g(x) = G(x,s) = F (x,0) = f(x). QED

Let us summarize what we have done today:
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This lecture in a nutshell

We have proven three key results about transversality which can be roughly
summarized as follows:

(a) The Transversality Theorem says that when a homotopy F is
transversal to Z, then, in this homotopy family, almost every
fs = F (−,s) is transversal to Z.

(b) The Transversality Homotopy Theorem says that given a map
f and a submanifold Z, then there exists a map g transversal
to Z and g is homotopic to f .

(c) The Extension Theorem says that, given a map f which is
transversal to Z on a subset C, then we can always replace f
with a homotopic map g which is transversal to Z everywhere
(not only on C) and f = g on an open set containing C.

(a) is a generalization of Sard’s Theorem. For (b) and (c), the key for the
proof is the ε-Neighborhood Theorem.

Appendix 1: The Inverse Function Theorem revisited

In the course of this lecture, we used a generalization of the Inverse Func-
tion Theorem that we are now going to prove. It will also allow us to show an
interesting result on normal bundles and tubular neighborhoods.

As always We start with the compact case:

Generalization of the IFT - compact case

Let f : X → Y be a smooth map that is one-to-one on a compact subman-
ifold Z of X. Suppose that for all x ∈ Z,

dfx : Tx(X)→ Tf(x)(Y )

is an isomorphism. Then f maps an open neighborhood of Z in X diffeo-
morphically onto an open neighborhood of f(Z) in Y . If Z is a single point,
this is just the usual IFT.

Proof: We know that f maps Z diffeomorphically onto its image f(Z),
since f : Z → f(Z) is a bijective local diffeomorphism and therefore a diffeomor-
phism. We would like to show that we can extend this to an open neighborhood
around Z.



190 TRANSVERSALITY IS GENERIC

Since dfx is an isomorphism for all x ∈ Z, for each x ∈ Z, there exists an
open neighborhood Ux in X around x on which f|Ux is a diffeomorphism. The
collection {Ux} is an open cover of Z. Since Z is compact, we can choose a
finite subcover {U1, . . . ,Un}. We set U := ∪iUi. Restricted to the open subset
U , f|U is a local diffeomorphism.

Hence, by a previous exercise, it suffices to show that there is some open
subset V in X which contains Z such that f|V is injective. Then f|U∩V is
an injective local diffeomorphism and therefore a diffeomorphism onto its image.
Since Z ⊂ U and Z ⊂ V , we also have Z ⊂ U ∩ V and the assertion is proven.

We are going to show that V exists by assuming the contrary.

That means that there exists at least one point z ∈ Z such that in any small
open neighborhood Wi of z there are points ai and bi with

ai 6= bi, but f(ai) = f(bi).

For otherwise, every point in Z had an open neighborhood on which f was injec-
tive, and we were done.

By choosing the Wi smaller and smaller around z0 and by choosing subse-
quences aj and bj, we can assume that both the ai and bi converge to z. Since
f(ai) = f(bi) for all i and f is continuous, we have f(ai)→ f(z) and f(bi)→ f(z).
But since dfz is an isomorphism, the usual Inverse Function Theorem implies that
there is a small open neighborhood Wz in X around z such that f|Wz is a diffeo-
morphism. Since ai → z and bi → z, for N large enough, we have ai,bi ∈ Wz

and hence f(ai) = f(bi) ∈ f(Wz) for all i ≥ N . But since f|Wz is injective, this
implies ai = bi for all i ≥ N . This contradicts the choice of the ai and bi. QED

As it is often the case, it is the existence of partitions of unity that allows us
to move from the compact to the general case. We use the technique to show the
following lemma:

Local finiteness lemma

An open cover {Vα} of a manifold X is called locally finite if each point
of X possesses a neighborhood that intersects only finitely many of the sets
Vα. Any open cover {Uα} admits a locally finite refinement {Vα}.

Now we are equipped to generalize the Inverse Function Theorem.
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Generalization of the IFT - general case

Let f : X → Y be a smooth map that is one-to-one on a submanifold Z of
X. Suppose that for all x ∈ Z,

dfx : Tx(X)→ Tf(x)(Y )

is an isomorphism. Assume that f maps Z diffeomorphically onto f(Z).
Then f maps an open neighborhood of Z in X diffeomorphically onto an
open neighborhood of f(Z) in Y .

Proof: Since dfx is an isomorphism for all x ∈ Z, for each x ∈ Z, there exists
an open neighborhood Vx in X around x on which f|Vx is a diffeomorphism. Let
Ux = f(Vx) be the open image in Y . The collection of all Ux is an open cover of
f(Z), since each f(x) ∈ f(Z) lies in some Ux = f(Vx). By the lemma above, we
can choose a locally finite subcover {Ui} of f(Z) in Y . For each Ui, there is a
local inverse gi : Ui → X of f .

We define

W := {y ∈ Ui : gi(y) = gj(y) whenever y ∈ Ui ∩ Uj}.

On the subset W , we can define an inverse

g : W → X, g(y) = gi(y) for any i.

This is well-defined by construction of W , since g(y) = gi(y) = gj(y) whenever
y ∈ Ui ∩ Uj. Since the gi’s are local inverses of f , we have f(Z) ⊂ W .

It remains to show that W contains an open subset which still contains f(Z).
Let x ∈ Z, and hence f(x) ∈ f(Z). Then f(x) lies at least one Uk. We fix one
such Uk with f(x) ∈ Uk. After shrinking Uj if necessary, we can assume yy the
local finiteness of the cover {Ui}, that there are only finitely many of the Ui’s
which intersect Uk, say U1, . . . ,Un. If U ⊂ W , we are done, since then every point
in f(Z) has an open neighborhood which is contained in W .

If U is not contained in W , then, for i = 1, . . . ,n, we set Cik be the closure of
the set {y ∈ Ui ∩ Uk : gi(y) 6= gk(y)}. Since the union of a finite union of closed
subsets is closed, Ck := C1k ∪ · · · ∪ Cnk is closed. Hence

U := Uk \ Ck

is open in Y .

By definition of W and the Ck, we know U ⊂ W . It remains to make sure
that we f(x) is still in U , i.e. that it does not beling to one of the closures Cik.
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Note that f(x) satisfies gi(f(x)) = x = gk(f(x)) for all i = 1, . . . ,n. Since
dfx is an isomorphism, the usual Inverse Function Theorem implies that there is
a small open neighborhood Vε ⊂ U around x such that f|Vε is a diffeomorphism.
Hence, for each i = 1, . . . ,n, we have

gi(f(x′)) = x′ = gk(f(x′)) for all x′ ∈ Vε ∩ gi(Ui) ∩ gk(Uk).

Hence the finite intersection f(Vε) ∩ Uk ∩ U1 ∩ · · · ∩ Un is an open which is not
contained in any of the sets {y ∈ Ui ∩ Uk : gi(y) 6= gk(y)}. Thus f(x) is not
contained in Ck. Therefore, U ⊂ W is an open neighorhood of f(x). QED

Appendix 2: The Tubular Neighborhood Theorem

We are going to show a generalization of the Tubular neighborhood theorem
for submanifolds. First a definition:

Normal Bundles revisited

Let Y ⊂ RM be a boundaryless manifold, and let Z be a submanifold of Y .
We define the normal bundle to Z in Y to be the set

N(Z;Y ) := {(z,v) : z ∈ Z, v ∈ Tz(Y ) and v ⊥ Tz(Z)}.

Normal bundles are actually manifolds themselves:

Normal bundles are manifolds

One can show that N(Z;Y ) is itself a smooth manifold of dimension equal
to dimY . Moroever, the canonical map

σ : N(Z;Y )→ Z, σ(z,v) = z,

is a submersion.

Proof: We showed previously that every manifold can be defined locally by
independent functions. So let Ũ ⊂ RM be an open neighborhood of z and
g1, . . . ,gn be independent functions Ũ → R such that

U = Z ∩ Ũ = {u ∈ RM : g1(u) = · · · = gn(u) = 0}
and Y ∩ Ũ = {u ∈ RM : gk+1(u) = · · · = gn(u) = 0}

where n is the codimension of Z in RM and k is the codimension of Z in Y .

Let g = (g1, . . . ,gn) : Ũ → Rn. We observed above that the map

ψ : U × Rn → NU(Z;RM) := (U × RM) ∩N(Z;RM), (u,v) 7→ (u,dgtu(v))
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is a local parametrization of N(Z;RM) = N(Z).

By restricting ψ to elements in U × Rk ⊂ U × Rn, we get a smooth map φ
defined as the composite

U × Rk ψ
//

φ
&&

NU(Z;RM)

id×p
��

NU(Z;Y )

where NU(Z;Y ) := (U × RM) ∩ N(Z;Y ) and p is the map induced by the or-
thogonal projection pz : RM → Tz(Y ) at each z. Note for a vector w ∈ RM

which satisfies w ⊥ Tz(Z), we have p(w) ∈ Tz(Y ) and p(w) ⊥ Tz(Z). Let
g̃ = (gk+1, . . . ,gn) : Ũ → Rn−k. We observe that, by our choice of g and g̃, we
know

Tz(Z) = (Ker dgz) ⊂ Ker (dg̃z) = Tz(Y )

and the orthogonal projection pz varies smoothly with z.

At each z ∈ U , the dimension of the kernel of the composite

Rn dgtz−−→ Nz(Z;RM)
pz−→ Nz(Z;Y )

is

dim Ker (pz) = dimNz(Z;RM)− dimNz(Z;Y ),

since dgtz is an isomorphism. We can calculate this dimension by

dimNz(Z;RM)− dimNz(Z;Y ) = M − dimZ − (dimY − dimZ) = n− k.
Thus, φ is a diffeomorphism being the identity on the factor and a linear iso-
morphism on the second factor at each point which varies smoothly with that
point.

Hence φ : U × Rk → NU(Z;Y ) is a local parametrization of N(Z;Y ). Since
NU(Z;Y ) is open inN(Z;Y ) and every point inN(Z;Y ) lies in such anNU(Z;Y ),
we conclude that N(Z;Y ) is a smooth manifold. Its dimension is

dimN(Z;Y ) = dimU + dimRk = dimZ + dimY − dimZ = dimY.

We note again that σ ◦φ : U ×Rk → U is just the projection onto the first
factor, which is a submersion. Thus d(σ ◦ φ)(u,v), is surjective at every point
(u,v). Hence dσu is surjective at every u, and σ is a submersion. QED

Note that for any z ∈ Z, the preimage σ−1(z) =: Nz(Z;Y ) is the space of
normal vectors to Z at z in Tz(Y ) that we have met before.
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Tubular Neighborhoods and Normal Bundles

Let Y ⊂ RM be a boundaryless manifold, and let Z be a submanifold of Y .
Then there is a diffeomorphism of an open neighborhood Zε of Z in Y to
an open neighborhood N ε(Z;Y ) of Z × {0} in N(Z;Y ).

Proof:

Recall from the ε-Neighborhood Theorem the map

π : Y ε → Y.

We consider again the map

h : N(Z;Y )→ RM , (z,v) 7→ z + v.

By the same argument as before, we can show that dh(z,v) is an isomorphism
at every point of Z × {0} in N(Z;Y ).

Hence the inverse image

W := h−1(Y ε) ⊂ N(Z;Y )

is an open neighborhood of Z × {0} in N(Z;Y ).

Since h(z,0) = z for all z ∈ Z, the composition

W
h−→ Y ε π−→ Y

is the identity when we restrict it to Z×{0}. Hence, since dπz is the identity for all
z ∈ Z ⊂ Y ε, the assumptions of the generalized Inverse Function Theorem,
are satisfied. Thus we can conclude that there is an open neighborhood of
Z × {0} in N(Z;Y ) which is mapped diffeomorphically onto a neighborhood
of Z in Y by π ◦ h. QED

Crucial Point

Note that the fact that we can find an open neighborhood of Z × {0}
in N(Z;Y ) which is diffeomorphic to an open neighborhood of Z in Y is
crucial. For it is clear that Z is diffeomorphic to Z × {0}.
To point out the difference between a submanifold Z which is not oepn in
Y and an open neighborhood Zε of Z in Y , we remark the difference of
dimensions:

dimZε = dimY, whereas dimZ < dimY.
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Moreover, an open neighborhood of Z ×{0} is actually diffeomorphic to
N(Z;Y ) as a whole, since we can extend each fiber linearly. This will turn
out to be extremely useful for the Pontryagin-Thom construction later.

Let us look at an example for a normal bundle of an embedded submanifold:

An example of a normal bundle

Consider Sk−1 as a submanifold of Sk via the usual embedding mapping

(x1, . . . ,xk) 7→ (x1, . . . ,xk,0).

The tangent space Tp(S
k−1) is embedded in Tp(S

k) as the subspace consist-
ing of vectors with last coordinate being 0.
Hence the orthogonal complement of Tp(S

k−1) in Tp(S
k) is spanned by the

vector with coordinates vk := (0, . . . ,0,1) (in Tp(S
k)). Hence we can define

a map

Sk−1 × R→ N(Sk−1;Sk), (p,λ) 7→ (p,λvk).

This map is a diffeomorphism with inverse (p,λvk) 7→ (p,λ).

Note that a n-dimensional vector bundle which is diffeomorphic to the product
of the base space with Rn is called trivial. Hence we just showed thatN(Sk−1;Sk)
is a trivial one-dimensional bundle.

We get a similar result when we consider Sk−1 ⊂ Rk for k ≥ 2. Then, at any
p ∈ Sk−1, the unit vector p/|p| spans the normal complement to Tp(S

k−1) in Rk.
Hence there is a diffeomorphism

Sk−1 × R→ N(Sk−1;Rk), (p,λ) 7→ (p,λp/|p|).

Hence N(Sk−1;Rk) is a trivial one-dimensional bundle over Sk−1.

However, there are a lot of nontrivial vector bundles as well. Important
examples are the tangent bundle T (S2) over S2 and the universal line bundle
over RPn.
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Intersection Numerbs and Degree modulo 2

A classical geometric approach to classifying maps is to study their fibres.
This appraoch is directly related to other fundamental problems in mathematics.
For example, if f : X → Y is a map defined by an equation and given a value
y ∈ Y , the set {x ∈ X : f(x) = y} is the set of solutions of the equation. In
geometric terms, we could rephrase the question which x solve equation f by
asking how f meets or intersects the subspace {y} in Y .

Building on the methods we have developed so far, we are going to exploit
this geometric approach to derive interesting and powerful invariants. We will
start with intersection numbers modulo 2. In order to define a Z-valued invariant
we will have to introduce orientations later.

Before we get to work, here is a brief summary of the previous long lecture
the results of which will play a key role today:

The previous lecture in a nutshell

We proved three key results about transversality which can be roughly sum-
marized as follows:

(a) The Transversality Theorem says that when a homotopy F is
transversal to Z, then, in this homotopy family, almost every
fs = F (−,s) is transversal to Z.

(b) The Transversality Homotopy Theorem says that given a map
f and a submanifold Z, then there exists a map g transversal
to Z and g is homotopic to f .

(c) The Extension Theorem says that, given a map f which is
transversal to Z on a subset C, then we can always replace f
with a homotopic map g which is transversal to Z everywhere
(not only on C) and f = g on an open set containing C.

(a) is a generalization of Sard’s Theorem. For (b) and (c), the key for the
proof was the ε-Neighborhood Theorem.
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We are going to apply these results today. First let us start with a natural
situation.

Intersecting manifolds

Two submanifolds X and Z inside Y have complementary dimension if
dimX+dimZ = dimY . (We assume all manfifolds are boundaryless for the
moment.) If X −t Z, the Preimage Theorem tells us that their intersection
X ∩ Z is manifold with codim (X ∩ Z) in X being equal to codimZ in Y .
Since codimZ = dimX, X ∩ Z is a zero-dimensional manifold.
If we further assume that both X and Z are closed and that at least one of
them, say X, is compact, then X ∩Z must be a finite set of points. We
are going to think of this number of points in X ∩ Z as the intersection
number of X and Z, denoted by #(X ∩ Z).

We would like to generalize the notion of intersection numbers. A first obstacle
is that if X and Z do not intersect transversally, then it makes in general no
sense to count the points in X ∩ Z. Hence, once again, transversality is key.

Luckily, we have learned how to move or deform manifolds to make in-
tersections transversal: we can alter them in homotopic families. And since
embeddings form a stable class of maps, i.e. for any homotopy it of an em-
bedding i0, there is an ε > 0 such that it is still an embedding for all t < ε, any
small homotopy of i gives us another embedding X ↪→ Y and thus produces an
image manifold that is a diffeomorphic copy of X adjacent to the original.

But we still have to be careful. For the intersection number may depend on
how we move or deform the manifold.

For example, take two circles in R2. Assume they intersect nontransversally,
i.e. they touch each other in a point such that both tangent spaces agree and
together just span a line. Then we can move the cricles by a simple translations
x 7→ x+ ta in direction a such that they either in two points or in no points. In
both cases, the intersection is transversal, but the intersection numbers do not
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agree. But we observe that parity of the intersection numbers is preserved. i.e.
up to a multiple of 2 the intersection numbers after moving into a transversal
intersection agree.

This observation is the starting point for the following generalization.

Mod 2 Intersection numbers

Let X be a compact manifold, and let f : X → Y be a smooth map
transversal to the closed manifold Z in Y . Assume dimX + dimZ =
dimY . Then f−1(Z) is a closed submanifold of X of codimension equal to
dimX. Hence f−1(Z) is of dimension zero, and therefore a finite set.
We define the mod 2 intersection number of the map f with Z, denoted
I2(f,Z), to be the number of points in f−1(Z) modulo 2:

I2(f,Z) := #f−1(Z) mod 2.

For an arbitrary smooth map g : X → Y , we can choose a map f : X → Y
that is homotopic to g and transversal to Z by the Transversality
Homotopy Theorem. Then we define I2(g,Z) := I2(f,Z).

Of course, we need to check that the intersection number does not depend on
the choice of homotopic map. The key technical result that allows us to show
independence is the Extension Theorem. We did not have time to discuss the
theorem and its quite technical proof in the lecture. So here is the thereom and
one of its applications that will be crucial for us.

The Extension Theorem says the following: Let f : X → Y be a smooth
map, Y boundaryless, and Z a closed submanifold of Y without boundary. Let
C be a closed subset of X. Assume that f −t Z on C and ∂f −t Z on C ∩ ∂X.
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Then there exists a smooth map g : X → Y homotopic to f , such that g −t Z
and ∂g −t Z, and on a neighborhood of C we have g = f .

We apply this result in the situation we were discussing for intersection num-
bers, i.e. X, Y and Z ⊂ Y are boundaryless manifolds. The product X × [0,1] is
then a manifold with boundary. We let C be the boundary of X × [0,1], i.e. C is
the closed subset

C := ∂(X × [0,1]) = X × {0} ∪X × {1}.

Now we apply the theorem to the case of a smooth homotopy

F : X × [0,1]→ Y.

Then ∂F , i.e. F restricted to the boundary of X× [0,1], is given by the two maps

f0 = F (−,0) : X → Y and f1 = F (−,1) : X → Y.

The two conditions F −t Z on C and ∂F −t C on C ∩∂X are thus equivalent, and
mean f0

−t Z and f1
−t Z.

Hence, assuming f0
−t Z and f1

−t Z, the Extension Theorem says that there
is a smooth map

G : X × [0,1]→ Y with G−t Z and ∂G−t Z,

and G = F on a neighborhood of C. The latter means that

G is still a homotopy from f0 = G(−,0) to f1 = G(−,1).

Mod 2 Intersection Numbers are well-defined

If f0 : X → Y and f1 : X → Y are homotopic and both transversal to Z,
then I2(f0,Z) = I2(f1,Z).

Proof: Let F : X × I → Y be a homotopy of f0 and f1. By the above dis-
cussion, we may assume that F −t Z. By the Preimage Theorem with boundary,
this implies F−1(Z) is a submanifold of X × [0,1] such that

codimF−1(Z) in X × [0,1] = codimZ in Y.

Hence

dimF−1(Z) = dim(X × [0,1]) + dimZ − dimY

= dimX + 1 + dimZ − dimY

= 1

since we assume that dimX + dimZ = dimY .
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Moreover, the boundary of F−1(Z) is

∂F−1(Z) = F−1(Z) ∩ ∂(X × [0,1]) = f−1
0 (Z)× {0} ∪ f−1

1 (Z)× {1}.
Since X is compact, F−1(Z) is compact. Hence the classification of compact
one-manifolds implies that ∂F−1(Z) must have an even number of points. Thus

I2(f0,Z) = #f−1
0 (Z) = #f−1

1 (Z) = I2(f1,Z) mod 2.

QED

We can generalize this a bit further.

All homotopic maps have equal Intersection Numbers

If g0 : X → Y and g1 : X → Y are arbitrary homotopic maps, then
I2(g0,Z) = I2(g1,Z).

Proof: As before, we can choose maps f0
−t Z and f1

−t Z such that g0 ∼ f0,
I2(g0,Z) = I2(f0,Z), and g1 ∼ f1, I2(g1,Z) = I2(f1,Z). Since homotopy is a
transitive relation (we showed that it is, in fact, an equivalence relation), we
have

f0 ∼ g0 ∼ g1 ∼ f1, and hence f0 ∼ f1.

By the previous theorem, this implies

I2(g0,Z) = I2(f0,Z) = I2(f1,Z) = I2(g1,Z).

QED

Now that we have a solid notion of intersection numbers modulo 2 for maps
and submanifolds, let us return to situation we started with.

mod 2 Intersction Numbers of submanifolds

Assume X is a compact submanifold of Y and Z a closed submanifold of
Y . Assume the dimensions are complementary, i.e. dimX + dimZ =
dimY . Then we can define the mod 2 intersection number of X with
Z, denoted by I2(X,Z), by

I2(X,Z) := I2(i,Z)

where i : X ↪→ Y is the inclusion.
Note that when X −t Z, then I2(X,Z) = #(X ∩ Z). In general, we have to
move or deform X into a transversal position.

Some particular situations:
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• If I2(X,Z) 6= 0, then no matter how X is moved or deformed, it cannot
be pulled entirely away from Z.

For example, on the torus Y = S1×S1, the two circles S1×{1} and
{1}×S1 have complimentary dimensions and nonzero mod 2 intersection
number.
• If dimX = 2 dimY , for then we may consider I2(X,X) as the mod 2

self-intersection number of X.
An illustrative example is the central curve on the open Möbius band

(see Exercise Set 9). Check that I2(X,X) = 1.

• If X happens to be the boundary of some W in Y , then I2(X,Z) =0.
For if Z −t X, then, roughly speaking, Z must “pass out” of W as often
as it “enters”. Hence #(X ∩ Z) is even.

The latter case can be made rigorous as follows:

Boundary Theorem

Suppose that X is the boundary of some compact manifold W and
g : X → Y is a smooth map. If g can be extended to all of W , then
I2(g,Z) = 0 for any closed submanifold Z in Y of complementary di-
mension, i.e. dimX + dimZ = dimY .

Proof: Let G : W → Y be an extension of g, i.e. ∂G = g. From the
Transversality Homotopy Theorem, we obtain a map F : W → Y homo-
topic to G with F −t Z and ∂F −t Z. We write f := ∂F . Then f ∼ g and
hence

I2(g,Z) = I2(f,Z) = #f−1(Z) mod 2.
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Now F−1(Z) is a compact submanifold whose codimension in W is the same
as the codimension of Z in Y . Here we use again that X is the boundary of W ,
for this implies dimW = dim ∂W + 1 = dimX + 1, and hence

dimF−1(Z) = dimX + 1− dimY + dimZ = 1.

Hence F−1(Z) is a compact one-dimensional manifold with boundary,
so

#∂(F−1(Z)) = #(∂F )−1(Z) = #f−1(Z) is even.

QED

Intersection theory gives us an interesting homotopy invariant attached to
maps between manifolds of the same dimension. The definition depends on the
following fact.

The Degree mod 2

If f : X → Y is a smooth map of a compact manifold X into a connected
manifold Y and dimX = dimY , then I2(f,{y}) is the same for all points
y ∈ Y . This common value is called the mod 2 degree of f , denoted
deg2(f).

Note: The degree mod 2 is defined only when the range manifold Y is con-
nected, the domain X is compact, and dimX = dimY . Whenever we write
deg2, we assume that these assumptions are satisfied.

Proof: Given any y ∈ Y , we can assume that f is transversal to {y}.
For otherwise we can replace it with a homotopic map which is transversal by
the Transversality Homotopy Theorem. Now by the Stack of Records
Theorem, we can find a neighborhood U of y such that the preimage f−1(U) is
a disjoint union V1 ∪ · · · ∪ Vn, where each Vi is an open set in X mapped by f
diffeomorphically onto U :
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Hence, for all points z ∈ U , we have

I2(f,{z}) = #f−1({z}) = n mod 2.

Consequently, the function

Y → Z/2, y 7→ I2(f,{y})
is locally constant. Since Y is connected, it must be globally constant.
QED

Since deg2 is defined as an intersection number, we immediately obtain the
following theorems.

deg2 is a homotopy invariant

Homotopic maps have the same mod 2 degree, i.e.

f0 ∼ f1 ⇒ deg2(f0) = deg2(f1).

Proof: If f0 ∼ f1, then for every y ∈ Y :

deg2(f0) = I2(f0,{y}) = I2(f1,{y}) = deg2(f1).



INTERSECTION NUMERBS AND DEGREE MODULO 2 205

QED

Extensions of maps on boundaries have deg2 equal zero

If X = ∂W for some compact manifold W , and if f : X → Y can be
extended to all of W , then deg2(f) = 0.

Note that when W is compact, then the closed subset X = ∂W is also com-
pact. Hence deg2(f) is defined.

Proof: This is the Boundary Theorem applied to the zero-dimensional sub-
manifold {y} for any y ∈ Y . QED

This has an interesting immediate consequence:

Obstruction for extending maps

Let W be a compact manifold, and f : ∂W → Y a smooth map. If
deg2(f) 6= 0, then f cannot be extended to a smooth map W → Y
on all of W .

Now that we have the invariant deg2, there are upsides and downsides equipped
to deg2:

The good news is that deg2(f) is easy to calculate: just pick any regular
value y for f and count preimage points

deg2(f) = #f−1(y) mod 2.

The bad news is that its power is limited. For example, the map

C→ C, z 7→ zn,

which wraps the circle S1 smoothly around S1 n times, has mod 2 degree zero if
n is even, and one if n is odd. Hence deg2 cannot distinguish between many
different maps, for example deg2 of the constant map S1 → S1 is equal to deg2

of the map S1 → S1 sending z 7→ z2.

We will remedy this defect soon, when we define intersection numbers and
degree functions which have values in Z. This will lead us to the notion of orien-
tation. the idea is that, for example in the case of intersection with a boundary,
we need to distinguish between points where a map “goes in” and points where
it “goes out”.
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Nevertheless, there are some nice and powerful applications of deg2.

Application: Existence of zeros for complex valued functions.

Suppose that p : C → C is a smooth (as a map R2 → R2), complex function
and W ⊂ C is a smooth compact region in the plane, i.e. a two-dimensional
compact manifold with boundary.

Question: Is there a z ∈ W with p(z) = 0?

Assume that p has no zeros on the boundary ∂W . Then

p

|p|
: ∂W → S1

is defined and smooth as a map of compact one-manifolds.

Now if p has no zeros inside W , then p
|p| is defined on all of W , i.e.

p
|p| : ∂W → C can be extended to a smooth map W → C. If this is the case, we

just learned that we must have deg2( p
|p|) = 0. In other words:

Existence of zeros via deg2

If the mod 2 degree of p
|p| : ∂W → S1 is nonzero, then the function p has

a zero inside W .

Note that calculating deg2( p
|p|) simply consists of picking a point z ∈ S1, we

could think of it as a direction, and just counting the number of times we find a
w ∈ ∂W with p(w) = z, i.e. how often p(w) points in the chosen direction. The
theorem tells us that this simple procedure can tell us whether p has a
zero inside W . (If you have learned about Complex Analysis, then this should
remind you of the Residue Theorem and Cauchy’s formula.)
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Application: Fundamental Theorem of Algebra in odd degrees.

The condition on the degree arises from the defect of deg2 that it cannot
distinguish different even numbers. Since we have already seen Milnor’s proof of
the Fundamental Theorem of Algebra, this is in principle an old story for us. But
since we have already done the hard work, so let us have a look at it anyway.

Let

p(z) = zm + a1z
m−1 + · · ·+ am

be a monic complex polynomial. We can define a homotopy from p0(z) = zm to
p1(z) = p(z) by

pt(z) = tp(z) + (1− t)zm = zm + t(a1z
m−1 + · · ·+ am).

For large z, consider

p(z)

zm
= 1 + (

a1

z
+ · · ·+ am

zm
).

As z →∞, the term a1
z

+ · · ·+ am
zm
→ 0. Hence, if W is a closed ball around the

origin in C with sufficiently large radius, none of the pt has a zero on ∂W .

Thus the homotopy

pt
|pt|

: ∂W → S1

is defined for all t ∈ [0,1]. Thus

deg2

(
p

|p|

)
= deg2

(
p0

|p0|

)
.
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Since p0(z) = zm and #{z ∈ ∂W : zm = 1} for closed ball W ⊂ C around 0,
we have

deg2

(
p0

|p0|

)
= m mod 2.

Hence if m is odd, then deg2

(
p
|p|

)
6= 0, and there must be w ∈ W with

p(w) = 0 by the previous result.

More examples: Intersections in projective space

Remember real projective n-space RPn which consists of the set of equivalence
classes [x0 : . . . : xn] of n+1-tuples of real numbers whith the equivalence relation

(x0, . . . ,xn) ∼ (λx0, . . . ,λxn) for λ ∈ R \ {0}.

Recall that we showed that RP2 is a two-dimensional smooth manifold.

Consider the two embeddings of the unit circle into RP2:

ι1 : S1 → RP2, (cos(2πt), sin(2πt)) 7→ [cos(2πt) : sin(2πt)) : 0]

and

ι2 : S1 → RP2, (cos(2πt), sin(2πt)) 7→ [0 : sin(2πt)) : cos(2πt)].

As an exercise, check that ι1 and ι2 actually are embeddings.

The images of ι1 and ι2 meet in the point

[0 : 1 : 0] ∈ ι1(S1) ∩ ι2(S1).

Note that in RP2, there is exactly one intersection point. For (0,1,0) and
(0,− 1,0) represent the same point in RP2.

Moreover, we can check that the intersection in [0 : 1 : 0] is transversal. Thus
the mod 2 intersection number satisfies

I2(ι1(S1),ι2(S1)) = 1.

This implies that it is impossible to move ι1(S1) and ι2(S1) within RP2 such
that they do not meet.

However, in the Euclidean plane R2 it is very well possible to move two circles
such that they do not meet. The mod 2 intersection number of two circles in R2

is 0 for a transversal intersection either consists of exactly two points or is empty.
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This is an example of a phenomenon which motivates the introduction of
projective spaces:

A plane V in R3 can be described as the orthogonal complement of given
vector v 6= 0 in R3:

V = {(x0,x1,x2) ∈ R3 : x0v0 + x1v1 + x2v2 = 0}.

Since multiplying the equation x0v0 + x1v1 + x2v2 = 0 with a nonzero real
number does not change the set of solutions, we can consider the equivalence
classes RP2 of the points of V . This gives us a line L in RP2:

L = {[x0 : x1 : x2] ∈ RP2 : x0v0 + x1v1 + x2v2 = 0}.

In fact, every line in RP2 is represented by a plane through the origin in R3

and is hence determined by a nonzero vector vin R3.

Now given two distinct lines L1 and L2 in RP2 determined by two distinct
vectors v,w 6= 0 in R3, i.e.,

L1 = {[x0 : x1 : x2] ∈ RP2 : x0v0 + x1v1 + x2v2 = 0}
L2 = {[x0 : x1 : x2] ∈ RP2 : x0w0 + x1w1 + x2w2 = 0}.

The orthogonal complements of v and w, respectively, are two planes through
the origin. Hence they meet in a line through the origin in R3 which is the set
of solutions of the two linear equations defining L1 and L2 above. This is a one-
dimensional vector subspace of R3 (the kernel of a 2 × 3-matrix). By definition
of RP2, this line corresponds to a point in RP2. This is the intersection point of
L1 and L2 in RP2.

If this line happens to be the z-axis, i.e., when L1 and L2 are represented by
the planes given by the xz-plane and the yz-plane, then the intersection point is
[0 : 0 : 1] ∈ RP2. We can think of it as the point at infinity in RP2.

However, in the Euclidean plane R2 it may very well happen that two lines
are parallel and hence do not intersect. The idea for RP2 is to add a point at
infinity which is the intersection point for all parallel lines.





LECTURE 21

Winding Numbers and the Borsuk-Ulam Theorem

Today we are going to exploit intersection numbers and degree modulo 2 a
bit further and prove a famous theorem. As a starter, we introduce a useful new
invariant.

Let X be a compact, connected smooth manifold, and let

f : X → Rn

be a smooth map. We assume dimX = n− 1.

Let z be a point of Rn not lying in the image f(X). We would like to
understand how f(x) winds around z. To do this, we look at the unit vector

u(x) =
f(x)− z
|f(x)− z|

.

It points in the direction from z to f(x) and has length one.

With z fixed and x varying, we can consider u as a map

u : X → Sn−1.

We would like to know how often this vector points in a given direction, i.e.
how often u(x) has a given value. We learned from the previous lecture, that
the degree of u is an invariant that encodes this information. For, we know that,
modulo 2, #u−1(y) is constant for regular values y of u, i.e. where y − z hits
f(X) transversally, and is equal deg2(u) by definition of the latter. (We will see
in the proof of our main theorem today, that y being a regular value of u means
that the line through z and y must be tranversal to f(X).)

We give this number a name and call it the winding number of f around
z. We denote it by

W2(f,z) := deg2(u).

211



212 WINDING NUMBERS AND THE BORSUK-ULAM THEOREM

The goal for today is to prove the following famous result:

Borsuk-Ulam Theorem

Let f : Sk → Rk+1 \ {0} be a smooth map, and suppose that f is odd, i.e.
satisfies the symmetry condition

f(−x) = −f(x) for all x ∈ Sk.(24)

Then W2(f,0) = 1.
In other words, any map that is odd, i.e. symmetric around the origin, must
wind around the origin an odd number of times.

A we will see below, there is a nice interpretation of this result for the meteo-
rologists among us: At any given time, there are two antipodal points on the
Earth that have the same temperature and pressure. (Assuming tempera-
ture and pressure vary smoothly on the Earth.)

Before we approach the proof, we observe:

Equivalent formulation of BUT

The Borsuk-Ulam theorem is equivalent to the following assertion:
If f : Sk → Sk is a map which sends antipodal points to antipodal points,
i.e. f(−x) = −f(x), then deg2(f) = 1.
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Proof: Assume BUT is true: given a smooth map f : Sk → Sk with f(−x) =
−f(x), we can consider it as a map f : Sk → Sk ⊂ Rk+1. Then we have 1 =
W2(f,0) = deg2(f/|f |) = deg2(f).

Assume the assertion is true: given a smooth map f : Sk → Rk+1 \ {0} with
f(−x) = −f(x), then f/|f | is a well-defined smooth map f/|f | : Sk → Sk. Hence
1 = deg2(f/|f |) = W2(f,0) by definition of winding number. QED

As a slogan, we can remember the Borsuk-Ulam Theorem for a smooth map
f : Sk → Sk as follows:

BUT in a nutshell

If f is odd, its degree is odd.

In order to prove the theorem, we first need to investigate the relationship of
winding numbers and boundaries:

Winding numbers and boundaries

Suppose that X is the boundary ∂D of a compact manifold D of dimension
n with boundary, and let F : D → Rn be a smooth map extending f : X →
Rn, i.e. ∂F = f . Suppose that z is a regular value of F that does not
belong to the image of f .
Then F−1(z) is a finite set, and

W2(f,z) = #F−1(z) mod 2.

In other words, f winds X around z as often as F hits z, at least modulo
2.

Proof:

First case: F−1(z) = ∅, i.e. #F−1(z) = 0.

In this case, the map

u : X = ∂D → Sn−1, x 7→ f(x)− z
|f(x)− z|

can be extended to a map

D → Sn−1, x 7→ F (x)− z
|F (x)− z|
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since F (x)− z is never 0. Hence by the Boundary Theorem,

W2(f,z) = deg2(u) = 0 mod 2.

Second case: F−1(z) 6= ∅.

Since D is compact and of dimension n, F−1(z) is a zero-dimensional closed
submanifold of D, and hence compact and hence a finite set. Suppose

F−1(z) = {y1, . . . ,ym}.

Then we can choose local parametrizations around each yi in D and let Bi be the
image of a closed ball in Rn around yi. Since z is a regular value, the Stack
of Records Theorem shows that F−1(z) is discrete and disjoint to X = ∂D.
Thus we can choose the radii of these balls small enough such that

Bi ∩Bj = ∅ and Bi ∩X = ∅ for all i 6= j, and i = 1, . . . ,m.

We define

fi := F|∂Bi : ∂Bi → Rn.

to be the restriction of F to ∂Bi.

Now we observe that the subset

D̃ := D \ (∪iInt(Bi))

is a closed submanifold of D with boundary

∂D̃ = ∂D ∪̇ ∂B1∪̇ · · · ∪̇ ∂Bm

the disjoint union of the boundaries of D and the Bi’s.

By the choice of the Bi’s, we have F−1(z) ∩ D̃ = ∅. Hence

F−1(z) ∩ D̃ = (F|D̃)−1(z) = ∅.

Hence the winding number of ∂F|D̃ at z is zero.
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Since degrees and hence winding numbers are additive with respect to
connected components this yields

0 = W2(∂F|D̃,z) = W2(f,z) +W (f1,z) + · · ·+W2(fm,z) mod 2.

Since we are working modulo 2, this implies

W2(f,z) = W (f1,z) + · · ·+W2(fm,z) mod 2.

Now it remains to show W2(fi,z) = 1 for each i = 1, . . . ,m. For then

#F−1(z) = m =
∑
i

W2(fi,z) = W (f,z) mod 2.

Since z is a regular value, dFyi is an isomorphism (remember dimD = n).
Thus, by the Inverse Function Theorem, we can choose the radius of Bi small
enough such that F|Bi is a diffeomorphism onto its image (which contains z).
By continuity, this implies also that fi = ∂F|Bi is one-to-one onto the boundary
of F (Bi).

By possibly rescaling and translating, we are reduced to showing:

Let B be the closed unit ball in Rn and F : B → B be a diffeomorphism. Let
f = ∂F : Sn−1 → Sn−1. Then

#F−1(0) = W (f,0) = 1 mod 2.

But this is obvious, since W (f,0) = deg2(f) = #f−1(v) = 1 for any v ∈ Sn−1.
QED

Now we are ready to attack the proof of BUT.

Proof of the Borsuk-Ulam Theorem: The proof is by induction.

The case k = 1:

By the previous remark, to show that theorem is equivalent to showing that
a map f : S1 → S1 with f(−x) = −f(x) has deg2(f) = 1.

The idea is that, given any smooth map f : S1 → S1, we can lift f locally
using the Stack of Records Theorem and then patch the pieces together to
get a smooth map

g : R→ R such that p(g(t)) = f(p(t))

where p is the (covering) map

p : R→ S1, t 7→ e2πit.
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To make g compatible with f in the above sense, we must have

p(g(t+ 1)) = f(p(t+ 1)) = f(p(t)) = p(g(t))⇒ p(g(t+ 1)− g(t) = 1.

Since p(t) = 1 if and only if t ∈ Z, we must have g(t + 1) − g(t) ∈ Z. Since
the function t 7→ g(t + 1) − g(t) takes only values in the discrete space Z, it is
locally constant. Since R is connected, it must be constant. Hence q is a
fixed integer depending only on f . In other words, for all t ∈ R, we have

g(t+ 1) = g(t) + q for some fixed q ∈ Z.

Then we have deg2(f) = q, since q tells us how often f hits the same point
when t moves from 0 to 1, or vary t around S1 once.

When f is odd, then

p(g(t+ 1/2)) = f(p(t+ 1/2)) = f(−p(t)) = −f(p(t))

= −p(g(t)) = p(g(t) + q/2) for some fixed odd q ∈ Z.

(For p(s1) = −p(s2) ⇐⇒ e2πis1 = −e2πis2 = e2πis2eqπi for some odd q ∈ Z, and
hence p(s1) = −p(s2) ⇐⇒ s1 = s2 + q/2 for this odd q.)

Hence deg2(f) = q = 1 mod 2.
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Aside: There is a deeper general reason why this works. For R is a (universal)
covering space of S1, and continuous paths can always be lifted to a cavering
space. You will learn more about this phenomenon later.

Induction step: Assume the theorem is true for k − 1 and k ≥ 2. Let
f : Sk → Rk+1 \ {0} satisfy the symmetry condition (24). We consider k−1 to be
the equator of Sk, embedded by

(x1, . . . ,xk) 7→ (x1, . . . ,xk,0).

The idea is to compute W2(f,0) by counting how often f intersects a
line L in Rk+1. By choosing L disjoint from the image of the equator, we can
use the inductive hypothesis to show that the equator winds around L an odd
number of times. Finally, it is easy to calculate the intersection of f with L once
we know the behavior of f on the equator.

Let g : Sk−1 → Rk+1 \ {0} be the restriction of f to the equator. By Sard’s
Theorem, we can choose a value y ∈ Sk which is regular for both smooth maps

g

|g|
: Sk−1 → Sk, and

f

|f |
: Sk → Sk.

The symmetry condition implies that y is regular for both these maps
if and only if −y is regular for both maps , since the derivatives at preimages
of y and −y just differ by multpying with (−1).

Since dimSk−1 < dimSk, the only way y can be a regular value of g
|g| is

when y is not in the image. Hence neither y nor −y are in the image of g
|g| .

Thus, for the line L := R · y = span(y), we have

y is a regular value of g ⇐⇒ Im (g) ∩ L = ∅.

That y is regular for f
|f | means by definition

Im

(
d

(
f

|f |

)
x

)
= Ty(S

k).

The tangent space to Sk at y is the orthogonal complement of the line pointing

in direction of y. The map x 7→ f(x)
|f(x)| is the composite of f and x 7→ x/|x| (which

is smooth in dimensions k ≥ 2).

The derivative of the latter map satisfies

Im (d(x/|x|)x) = (span(x))⊥ ⊂ Rk+1, i.e. Ker (d(x/|x|)x) = Span(x).
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For f/|f |, this means

Ker

(
d

(
f

|f |

)
x

)
= span(f(x)) ∩ Im (dfx).

Thus

Im

(
d

(
f

|f |

)
x

)
= Ty(S

k) ⇐⇒ Ker

(
d

(
f

|f |

)
x

)
= {0}

⇐⇒ span(f(x)) ∩ Im (dfx) = {0}
⇐⇒ span(f(x)) 6⊂ Im (dfx)

⇐⇒ L+ Im (dfx) = Rk+1

⇐⇒ f −t L.

Summarzing the argument, we have obtained

y is a regular value of
f

|f |
⇐⇒ f −t L.(25)

Now we are going to exploit these two observations for calculating W2(f,0).
By definition, we have

W2(f,0) = deg2

(
f − 0

|f − 0|

)
= deg2

(
f

|f |

)
= #

(
f

|f |

)−1

(y) mod 2.

By symmetry, we have

#

(
f

|f |

)−1

(y) = #

(
f

|f |

)−1

(−y).

From (25) we know

f−1(L) = {x ∈ Sk : f(x) ∈ L}

= {x ∈ Sk :
f(x)

|f(x)|
= ±y}

=

(
f

|f |

)−1

(y) ∪
(
f

|f |

)−1

(−y).

Thus

#

(
f

|f |

)−1

(y) =
1

2
#f−1(L).

Hence we need to calculate the number 1
2
#f−1(L), at least modulo 2.
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By symmetry, we can do this on the upper hemisphere Sk+ of Sk, i.e. the
points on Sk with xk+1 ≥ 0. Let f+ be the restriction of f to Sk+. By the choice of
y, L does not meet the equator, and hence no point on the equator is in f−1(L).
This implies

1

2
#f−1(L) = #f−1

+ (L).

The upper hemisphere is a manifold with boundary

∂Sk+ = {x = (x1, . . . ,xk+1) :
∑
i

x2
i = 1 and xk+1 = 0} = Sk−1

being the equator.

Now we would like to apply the previous theorem to the f+ and g = ∂f+ and
use the induction hypothesis. But the target of f+ has dimension k + 1, whereas
for both the theorem and the induction hypothesis we need as target a Euclidean
space of dimension k. So we need to fix this.

The key is that the orthogonal complement of L in Rk+1, denoted by V , is
a vector space of dimension k. By choosing a basis of V , we can identify it with
Rk.

To complete the argument, let π : Rk+1 → V be the orthogonal projection
onto V . Since g is symmetric and π is linear,

π ◦ g : Sk−1 → V is symmetric : π(g(−x)) = π(−g(x)) = −π(g(x)).

Moreover, we have

π(g(x)) = 0 ⇐⇒ g(x) ∈ L, hence π(g(x)) 6= 0 for all x ∈ Sk−1

by the definition of π and the choice of L.

Thus, after choosing a basis for V , we can consider π ◦ g as a map

π ◦ g : Sk−1 → Rk \ {0}.

Now we apply the induction hypothesis to π ◦ g and get W2(π ◦ g,0) = 1.

To finish, recall f+
−t L and hence for

π ◦ f+ : Sk → V, (π ◦ f+)−t {0}.

In other words, 0 is a regular value of π ◦ f+.
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Hence we can apply the previous theorem to π ◦f+ and its boundary map
∂(π ◦ f+) = π ◦ g to get

W2(π ◦ g,0) = #(π ◦ f+)−1(0).

But, by the choice of L, we have

π(f+(x)) = 0 ⇐⇒ f+(x) ∈ L, and hence (π ◦ f+)−1(0) = f−1
+ (L).

Thus

W2(f,0) = #f−1
+ (L) = W2(π ◦ g,0) = 1.

QED

Remark: Going back to the definition of W2(f,z) and the picture at the
beginning, we learn from the proof, in particular, that lines tangential to f(X)
are not allowed for calculating W2(f,z).

Let us look at some of the consequences of this theorem.

Corollary 1 of BUT

If f : Sk → Rk+1 \ {0} is symmetric about the origin, i.e. f(−x) = −f(x),
then f intersects every line through 0 at least once.

Proof: Let L be a line in Rk+1 through the origin. If f never hits L, then
#f−1(L) = 0 and f −t L. By repeating the above proof using this f and L for
calculating W2(f,0), we would get the contradiction

W2(f,0) = #f−1(L) = 0.

QED

Corollary 2 of BUT

Any k smooth odd real-valued functions f1, . . . ,fk on Sk must have a com-
mon zero.

Proof: If they did not have a common zero, then we can form the smooth
odd map

f := (f1, . . . ,fk,0) : Sk → Rk+1 \ {0}.
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Then we can apply Corollary 1 of BUT to f and L being the xk+1-axis. Hence f
intersects L at least once. But x with f(x) ∈ L is a common zero of the f1, . . . ,fk.
Contradiction. QED

Corollary 3 of BUT

For any k smooth real-valued functions g1, . . . ,gk on Sk, there exists a point
p ∈ Sk such that

g1(p) = g1(−p), . . . ,gk(p) = gk(−p).

Proof: We define functions f1, . . . ,fk on Sk by

fi(x) := gi(x)− gi(−x).

Then each fi is smooth and odd. Hence there is a common zero which is the
desired point p ∈ Sk. QED

In order to get the meteorologic interpretation, take g1 measuring temperature
and g2 measuring pressure.
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Orientations

Our next goal is to improve our definition of intersection numbers and remedy
the defect that they only distinguish between even and odd numbers. One of
the reasons for this limitation was that a homotopy can turn a nontransversal
intersection into either a empty intersection or an intersection in two points. The
idea for dealing this phenomenon is to take into account in which “direction”
the intersection happens. The solution to implement this idea is to introduce
orientations. We will see that, unfortunately, not all manifolds are orientable. But
for those manifolds that orientable, we will introduce an improved intersection
theory in the next lecture.

Orientations on vector spaces

An orientation for a finite dimensional real vector space V is an equivalence
class of ordered bases where the relation is defined as follows: the ordered basis
(v1, . . . ,vn) has the same orientation as the basis (v′1, . . . ,v

′
n) if the matrix A

with

v′i = Avi for all i has det(A) > 0.

It has the opposite orientation if det(A) < 0.

The fact, that this an equivalence relation follows from the multiplicativity of
the determinant function.

Thus each finite dimensional vector space has precisely two orientations,
corresponding to the two equivalence classes of ordered bases.

So an orientation of V is a choice of an equivalence class of ordered bases. To
make it easier to talk about the choice of orientation, we attach to the chosen
orientation a positive sign and a negative sign to the other orientation. We say
then that an ordered basis is positively oriented (respectively negatively oriented)
if its equivalence class belongs to the orientation +1 (respectively −1). We often
confuse an orientations with their corresponding signs +1 or −1.

The vector space Rn has a standard orientation corresponding to the or-
dered basis (e1, . . . ,en). We always assign +1 to the standard orientation of Rn.

223
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Warning: The ordering of the basis elements is essential. Interchanging
the positions of two basis vectors changes the sign of the orientation! Check this
by calculating the determinant of the corresponding permutation matrix.

In the case of the zero dimensional vector space it is convenient to define an
”orientation” as the symbol +1 or −1.

If ϕ : V → W is an isomorphism of vector spaces, then ϕ either preserves
or reverses the orientation. For, given two ordered bases β and β′ of V belonging
to the the same equivalence class, the ordered bases ϕ(β) and ϕ(β′) either still
belong to the same equivalence class of ordered bases of W or not. Whether ϕ
preserves or reverses the orientation is determined by its determinant. If det(ϕ) is
positive, then ϕ preserves orientations, and if det(ϕ) is negative, then ϕ reserves
orientations.

Orientations on manifolds

Orienting manifolds

An orientation of a smooth manifold X is a smooth choice of orien-
tations for all the tangent spaces Tx(X). That means: around each point
x ∈ X there must exist a local parametrization φ : U → X such that the
isomorphism dφu : Rk → Tφ(u)(X) preserves orientations at each point
u of U ⊆ Hk. The orientation on Rk is alsways assumed to be the standard
one.
For zero-dimensional manifolds, orientations are very simple. To each point
x ∈ X we simply assign an orientation number +1 or −1.

A manifold X is called orientable if such a smooth choice of orientations
of tangent spaces exists.

Warning: Not all manifolds possess orientations, the most famous example
being the Möbius strip.

Consequence: Orientability helps classifying manifolds: there is the
class of orientable manifolds, and the class of non-orientable manifolds.

A manifold is called oriented if it is orientable and a choice of orientation
has been made. Hence an oriented manifold really is a pair consisting of
a manifold together with a chosen orientation.
A smooth map f : X → Y between oriented manifolds is called orientation
preserving if its derivative preserves orientations at every point.
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We just learned that a manifold may or may not be orientable. To assign +1
or −1 to the orientation of Tx(X) for every point is a locally constant function.
If X is orientable this assignment is continuous. If X is in addition connected,
then this assignment must be constant. Hence on every connected component of
an orientable manifold, the orientation is constant +1 or −1.

Here is a rigorous proof of this fact:

Orientable manifolds have exactly two orientations

A connected, orientable manifold with boundary admits exactly two orien-
tations.

Proof: Assume we are given two orientations on X. (There are at least two,
since given one, we can reverse signs everywhere and get another orientation.)

We show that the set of points at which two orientations agree and the
set where they disagree are both open. Consequently, two orientations of a
connected manifold are either identical or opposite.

Since X is orientable, we can choose local parametrizations φ : U → X and
φ′ : U ′ → X around x ∈ X with φ(0) = x = φ′(0) such that dφu preserves
the first orientation and dφ′u′ preserves the second, for all u ∈ U and u′ ∈ U ′.
After possibly shrinking we can assume φ(U) = φ′(U ′) (replace U and U ′ with
φ−1(φ(U) ∩ φ′(U ′)) and φ′−1(φ(U) ∩ φ′(U ′)), respectively).

If the two orientations of Tx(X) agree, then the map

d(φ−1 ◦ φ′)0 : Rk → Rk

is an orientation preserving isomorphism. Thus the determinant of d(φ−1 ◦ φ′)0

is positive. Hence the function

ϕ : U ′ → R, u′ 7→ det(d(φ−1 ◦ φ′)u′)

satisfies ϕ(0) > 0.

Since the derivative depends continuously on u′ and the determinant function
is continuous, ϕ is continuous. Hence, since ϕ(0) > 0, there is an open neighbor-
hood V ′ around 0 in U ′ on which ϕ > 0. But this implies that the orientations of
Tx(X) induced by φ and φ′, respectively, agree for all x in the open subset φ′(V ′).
Since every point on X has such an open neighborhood, the set of points where
the orientations agree is open.
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If the orientations on Tx(X) indced by φ and φ′, respectively, disagree, the
same argument shows that the set of points where the orientations disagree is
open. QED

Reversed orientation

Hence if X is an oriented manifold X, then we can talk about the manifold
with the reversed orientation. This is again an oriented manifold which
we denote by −X.

It is now a long and techincal endeavour to check how orientations behave
under the main constructions and relate to the concepts we have developed so
far. We will go through them one by one:

Products:

If X and Y are oriented and one of them is boundaryless, then X × Y is a
manifold with boundary and inherits an orientation in the following way:

At a point (x,y) ∈ X × Y , let α = (v1, . . . ,vk) be an ordered basis of Tx(X),
and β = (w1, . . . ,wm) be an ordered basis of Ty(Y ). We denote by (α×0, 0×β) the
ordered basis ((v1,0), . . . ,(vk,0),(0,w1), . . . ,(0,wm)) of Tx(X)×Ty(Y ) = T(x,y)(X×
Y ).

Now it comes handy that we related orientations of ordered bases to signs.
For we can define the orientation of Tx(X)×Ty(Y ) simply by determining a sign
by setting

sign(α× 0, 0× β) = sign(α) · sign(β).

Induced orientation on the boundary

Let X be an oriented smooth manifold with boudary. Then ∂X inherits an
orientation as follows:

At every point x ∈ ∂X, Tx(∂X) is a subspace of codimension one in Tx(X).
Its orthogonal complement in Tx(X), is a line which contains exactly two unit
vectors: one is pointing inward into Tx(X), the other one is pointing outward
away from Tx(X).
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This can be made precise by choosing a local parametrization φ : U → X
around x with U ⊂ Hk open and φ(0) = x. The derivative dφ0 : Rk → Tx(X) is
by definition of Tx(X) an isomorphism.

In Rk, there are two unit vectors: ek = (0, . . . ,0,1) one pointing into Hk, and
−ek = (0, . . . ,0, − 1) pointing out of Hk Usng the Gram-Schmidt process we
can orthonormalize the image of ek under dφ0 with respect to Tx(∂X) and get
the inward pointing unit normal vector. The orthonormalization with respect to
Tx(∂X) of dφ0(−ek) is the outward pointing unit normal vector. (Note that the
inner product on Tx(X) is induced by the standard inner product on RN , where
X ⊂ RN and hence Tx(X) ⊂ RN .)

We denote the outward pointing unit normal vector by nx. We checked
on Exercise Set 9 that the construction of nx does not depend on the choice of φ
and that the assigment x 7→ nx is a smooth map on ∂X.

Now we are ready to orient Tx(∂X) by declaring the sign of any ordered basis
(v1, . . . ,vk−1) to be the sign of the ordered basis (nx,v1, . . . ,vk−1) for Tx(X):

sign(v1, . . . ,vk−1) := sign(nx,v1, . . . ,vk−1).

Since both the assignment x 7→ nx and the choice of sign for ordered bases on
Tx(X) are smooth, this defines an orientation of ∂X which is called the boundary
orientation.
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Orientations of One-manifolds

Let us apply what we just learned to the case of a one-manifold with bound-
ary. The boundary ∂X is zero dimensional. The orientation of the zero-
dimensional vector space Tx(∂X) is equal to the sign of the basis of Tx(X)
consisting of the outward-pointing unit vector nx.
As an example, let us look at the compact interval X = [0,1] with its
standard orientation inherited from being a subset in R. Note that local
parametrizations of [0,1] are given by

φ : [0,1)→ [0,1], x 7→ x

around 0 ∈ [0,1] and

ψ : [0,1)→ [0,1], x 7→ 1− x
around 1 ∈ [0,1].
Hence, at x = 1, the outward-pointing normal vector is 1 ∈ R = Tx(X). The
basis consisting of this vector is positively oriented. At x = 0 the outward-
pointing normal vector is the negatively oriented −1 ∈ R = T0(X). Thus
the orientation of T1(∂X) is +1, and the orientation of T0(∂X) is −1.

Reversing the orientation on [0,1] simply reverses the orientations at each
boundary point. Thus the sum of both orientation numbers at the boundary
points of [0,1] is always zero.

Since any compact one-manifold with boundary is diffeomorphic is the disjoint
union of copies of [0,1], we conlcude:



ORIENTATIONS 229

Boundary orientations of one-manifolds

The sum of the orientation numbers at the boundary points of any
compact oriented one-dimensional manifold with boundary is zero.
In particular, the boundary points of a smooth path γ on an oriented
manifold X, i.e. a smooth map γ : [0,1]→ X, must have opposite orien-
tation signs.
This will turn out to be the crucial point which will allow us to define
homotopy invariant intersection numbers with values in Z in the next
lecture.

Oriented Homotopies

As an application of product and boundary orientations, we would like to
orient the product [0,1] × X for a boundaryless smooth oriented manifold X
which is the domain of all homotopies on X. This will be crucial for the homotopy
invariance of intersection numbers in the next section.

We just learned that a products and boundaries inherit orientations. For each
t ∈ [0,1], the slice Xt := {t} × X is diffeomorphic to X, and the orientation on
Xt should be such that the diffeomorphism

X → Xt, x 7→ (t,x) preserves orientations.

For the future applications, we are particularly interested in the orientation
of the boundary

∂([0,1]×X) = {0} ×X ∪ {1} ×X.

So let us try to understand the induced orientation on the boundary.

We start with X1: We see from the local parametrization ψ above that along
X1 the outward-pointing normal vector is

n(1,x) = (1,0) = (1,0, . . . ,0) ∈ T1([0,1])× Tx(X),

If β = (v1, . . . ,vk) is an ordered basis of Tx(X), then 0×β = ((0,v1), . . . ,(0,vk))
is an ordered basis of Tx(X1). By definition of the boundary orientation, n(1,0),(0×
β) is positively oriented if and only if β is positively oriented, in terms of signs:

sign(n(1,0),(0× β)) = sign(β).
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If we calculate the orientation induced from the product structure, then we
get

sign((1,0),(0× β)) = sign(1)sign(β) = sign(β).

We learn from these two equations, that the boundary orientation of X1

is just the orientation of X as a copy in the product [0,1]×X.

This sounds obvious, but pay attention:

We see from the local parametrization φ that along X0 the outward-pointing
normal vector is

n(0,x) = (−1,0) = (−1,0, . . . ,0) ∈ T0([0,1])× Tx(X).

Hence the orientation on T0([0,1]) is opposite to the standard orientation of R.
Hence the formula for product orientations yields

sign((−1,0),0× β)) = sign(−1)sign(β) = −sign(β).

Thus the boundary orientation on X0 is the reverse of its orientation as a
copy of X in the product [0,1]×X.

Thus the orientation on the boundary is

∂([0,1]×X) = X1 ∪ (−X0).

We will also express this fact by using the notation

∂([0,1]×X) = X1 −X0.

Orientations on direct sums of vector spaces

Our next goal is to orient preimages. In order to do so, we will have to look
at direct sums (not just products) of vector spaces, and we need to orient those
guys.
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So suppose that V = V1⊕V2 is a direct sum of vector spaces. Then orientations
on any two of these vector spaces automatically induces a direct sum orientation
on the third, as follows. Note that this not only means, orientations on V1 and V2

determine an orientation on V , but also orientations on V and, say, V2 determine
an orientation on V1.

Choose ordered bases β1 of V1 and β2 of V2. Let β = (β1,β2) be the combined
ordered basis of V (in this order!). For orientations or signs to be compatible
with the structure as a direct sum, we require the formula

sign(β) = sign(β1) · sign(β2).

It follows immediately from the way matrices on direct sums are put together
that this formula determines an orientation on the third space if two orientations
are given. But note again that the order of the summands V1 and V2 is crucial.

Orientations of transversal preimages

Let f : X → Y be a smooth map with f −t Z and ∂f −t Z, where X, Y , and
Z are all oriented and Y and Z are boundaryless. We would like to define a
preimage orientation on the manifold with boundary S = f−1(Z).

If f(x) = z ∈ Z, then

Tx(S) = (dfx)
−1(Tz(Z)) ⊂ Tx(X).

Let Nx(S;X) be the orthogonal complement to Tx(S) in Tx(X). By defi-
nition, we have a direct sum decomposition

Nx(S;X)⊕ Tx(S) = Tx(X).

Hence, by our observation on orientations on direct sums, we need only
choose an orientation on Nx(S;X) to obtain a direct sum orientation
on Tx(S).

Since f −t Z, we have

Tz(Y ) = dfx(Tx(X)) + Tz(Z)

= dfx(Nx(S;X)⊕ Tx(S)) + Tz(Z)

= dfx(Nx(S;X))⊕ Tz(Z) since dfx(Tx(S)) = Tz(Z).

Thus the orientations on Z and Y induce a direct image orientation on
dfx(Nx(S;X)). It remains to show that this also induces an orientation on
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Nx(S;X). But

{0} ⊂ Tz(Z)⇒ Ker (dfx) ⊂ (dfx)
−1(Tz(Z)) = Tx(S),

and hence the restriction of dfx to Nx(S;X) is in fact an isomorphism onto its
image. Therefore the induced orientation on dfx(Nx(S;X)) defines an orientation
on Nx(S;X) via the isomorphism dfx.

Since the orientations on X, Y and Z vary smoothly and dfx also depends
smoothly on x, the induced orientation on Tx(S) varies smoothly with x.

Note that we did not really use that Nx(S;X) is orthogonal to Tx(S). All
we needed was a direct sum decomposition H ⊕ Tx(S) = Tx(X) with a space H
with an orientation induced by the orientation of X. We will exploit this fact in
the proof below.

Orientations on boundaries of preimages

Let f : X → Y be a smooth map with f −t Z and ∂f −t Z, where X, Y , and
Z are all otientid and Y and Z are boundaryless.

Then the manifold ∂f−1(Z) acquires two orientations:

• one as the boundary of the manifold f−1(Z), and
• one as the preimage of Z under the map ∂f : ∂X → Y ,

It turns out that there is a formlua that relates these two orientations:

Orientations on boundaries of preimages

∂(f−1(Z)) = (−1)codimZ(∂f)−1(Z).

This means the orientations of ∂f−1(Z), induced by being a boundary or by
being a preimage, are the same if codimZ is even, and opposite if codimZ
is odd.

Proof:

Denote f−1(Z) again by S.

Let H be a subspace of Tx(∂X) complementary to Tx(∂S), i.e.

H ⊕ Tx(∂S) = Tx(∂X).
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Note that H is also complementary to Tx(S) in Tx(X), i.e.

H ⊕ Tx(S) = Tx(X).

For we have

H ∩ Tx(S) = {0} and Tx(S) ∩ Tx(∂X) = Tx(∂S),

and

dimH = dimTx(∂X)− dimTx(∂S) = dimTx(X)− dimTx(S).

Hence we may use H to define the direct sum orientation of both S and ∂S
at x.

Since H ⊂ Tx(∂X) ⊂ Tx(X), the maps dfx and d(∂f)x agree on H, i.e.

dfx(H) = d(∂f)x(H).

As in the case of Nx(S;X), since

{0} ⊂ Tz(Z)⇒ Ker (dfx) ⊂ f−1(Tz(Z)) = Tx(S),

the intersection Ker (dfx)∩H is {0}. Hence the restrictions of dfx and d(∂f)x to
H are isomorphisms onto their common image.

Thus f −t Z and ∂f −t Z imply that we have two direct sum decompositions
dfx(H)⊕Tz(Z) = Tz(Y ) = d(∂f)x(H)⊕Tz(Z), and the two orients of H via these
direct sums agree.

To conclude, we obtained that H has a well-defined orientation. Hence we
can use this unique orientation on H to orient

S via H ⊕ Tx(S) = Tx(X) and ∂S via H ⊕ Tx(∂S) = Tx(∂X).

It remains to check how this orientation of Tx(∂S) relates to the orientation
of the boundary induced from the orientation of Tx(S).

Let nx be the outward unit vector to ∂S in Tx(S), and let R ·nx represent the
one-dimensional subspace spanned by nx. We orient this space by assigning the
sign +1 to the basis (nx).

Even though nx need not be perpendicular to all of Tx(∂X), it suffices to
know that nx lies in the halfspace pointing away from Tx(X) to know that the
orientations of R · nx, Tx(∂X) and Tx(X) are related by the direct sum

Tx(X) = R · nx ⊕ Tx(∂X).
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Now we use that H is complementary to both Tx(S) in Tx(X) and Tx(∂S) in
Tx(∂X) and plugg this into the above direct sum to get

H ⊕ Tx(S) = R · nx ⊕H ⊕ Tx(∂S).

This equation is already almost what we need, since we would like to com-
pare the orientations Tx(S) and R · nx ⊕ Tx(∂S). For doing so, we need to move
R · nx passed H. If dimH = m, H has m basis vectors (w1, . . . ,wm). Remem-
bering the rule for orienting direct sums, this means we have to apply exactly m
transpositions to the ordered set

(nx,w1, . . . ,wm) to get to (w1, . . . ,wm,nx).

This results in m shifts of signs. Hence we get

H ⊕ Tx(S) = (−1)codimZH ⊕ R · nx ⊕ Tx(∂S).

Since H appears on both sides as the first summand, we get disregard it for the
computation and get that if ∂S is oriented as a preimage under ∂f , then its
orientation relates to the one of Tx(S) by

Tx(S) = (−1)codimZR · nx ⊕ Tx(∂S).

Now, if ∂S is oriented as a boundary, then we have

Tx(S) = R · nx ⊕ Tx(∂S).

Thus

sign(∂S) as a boundary = (−1)codimZ · sign(∂S) as a preimage.

QED

The following theorem shows that an important class of manifolds is ori-
entable. Recall that a manifold X is called simply-connected if it is conneced
and every smooth map S1 → X is homotopic to a constant map.

Simply-connected implies orientable

Every simply-connected manifold is orientable.

Proof:

We start by picking any point x ∈ X, and choose an orientation for the
tangent space Tx(X). Since Tx(X) is a vector space, this is always possible.

Now let y ∈ X be any other point in X. Since X is simply-connected, it is in
particular also connected. By a previous exercise, since X is a smooth manifold,
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X is therefore even path-connected. Hence there is a smooth map γ : [0,1]→ X
with γ(0) = x and γ(1) = y. For every point in z ∈ γ([0,1]) we choose a local
parametrization φz : Vz → Uz around z. By shrinking Vz if necessary, we can
assume that each Vz is an open ball in Rk.

The sets Uz ∩ γ([0,1]) is open in γ([0,1]), and the collection of {Uz ∩ γ([0,1])}
for all z ∈ γ([0,1]) is an open covering of γ([0,1]). Since [0,1] is compact and γ
continuous, the image γ([0,1]) is compact. Hence finitely many of the Uz suffice
to cover γ([0,1]). We label these open sets U1, . . . ,Um and order them such that
Ui ∩ Ui+1 6= ∅ and x ∈ U1, y ∈ Um.

For U1, we choose the orientation which is compatible with the chosen orienta-
tion of Tx(X). That means: let φ1 : U1 → X be the associated local parametriza-
tion with φ1(0) = x. If d(φ1)0 : Rk → Tx(X) is orientation preserving, we orient
the vector space Ta(U1) such that d(φ1)φ−1

1 (z) : Rk → Ta(X) is orientation preserv-

ing for all a ∈ U1.

If d(φ1)0 → Rk → Tx(X) reverses orientation, we first replace φ1 with φ̃1 : V1 →
X, v 7→ φ1(−v). This new map φ̃1 is also a local parametrization of X with do-
main V1, since V1 is an open ball in Rk and φ1 is therefore symmetric with respect
to the origin.

Hence after replacing φ1 with φ̃1, we can assume that d(φ1)0 is orientation
preserving, and we orient all Ta(U1) as above. Note that switching from φ1(v) to
φ1(−v) corresponds to switching the orientation on Rk.

For U2, we choose the orientation which is compatible with the orientation of
the Ta(X) for all poins a ∈ U1 ∩ U2. That means: if d(φ2)φ−1

2 (a) is orientation

preserving on Ta(X) for a ∈ U1∩U2, we orient Ta(X) such that d(φ2)φ−1
2 (a) : Rk →

Ta(X) is orientation preserving for all a ∈ U2. If it is not orientation preserving,
then we replace φ2(v) by φ2(−v).

Continuing this way, we obtain an orientation for Um and therefore Ty(X)
after finitely many steps.

It remains to show that the induced orientation on Ty(X) does not de-
pend on the choice of γ and the Ui’s.

So let ω : [0,1]→ X be another smooth path with ω(0) = x and ω(1) = y. As
for γ, we choose open sets W1, . . . ,Wl covering all points in ω([0,1]) with x ∈ W1

and y ∈ Wl and Wi ∩ Wi+1 6= ∅. Then we orient Ty(X) following the same
procedure using the Wi’s.
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Arriving at y, we do not know a prioir whether the orientation of Ty(X)
induced by γ and the orientation of Ty(X) induced by ω agree. But now we can
use that X is simply-connected.

For, walking first along γ and then back on ω defines, after readjusting the
speed and smoothing things out, a loop α : [0,1]→ X with α(0) = x = α(1), i.e.
a smooth map α : S1 → X. Walking along α, we obtain an isomorphism

T (α) : Tx(X) = Tα(0)(X)
∼=−→ Tα(1)(X) = Tx(X)

by composing

Tx(X)
d(φ1)−1

•−−−−→ Rk d(φ2)•−−−→ Tz(X)
d(φ2)−1

•−−−−→ Rk d(φ2)•−−−→ · · · d(ψm−1)−1
•−−−−−−→ Rk d(ψm)•−−−−→ Tx(X)

where the subscript • stands for the varying points at which we take derivatives.
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Another way to picture how we get from Tx(X) to Ty(X) via γ and ω, respec-
tively, is the following diagram:

Ty(X)

Tbm−1(X)

66

Tam−1(X)

hh

... Rk

d(ψm−1)•

ee

d(φm−1)•yy

d(ψm)0

OO

d(φ1)0

��

d(φ1)•

%%

d(φm−1)•

99

...

Tb1(X)

LL

Ta1(X)

RR

Tx(X)

`` >>

The isomorphism T (α) is either orientation preserving or reversing. If it pre-
serves the orientation, then its determinant is positive, and if it reverses the
orientation, then its determinant is negative. And T (α) is orientation pre-
serving if and only if the two orientations on Ty(X) induced by γ and ω,
respectively, agree.

Since X is simply-connected, α is homotopic to the constant map cx : S1 →
{x}.

Let F : S1 × [0,1] → X be a homotopy from α to cx. Since S1 × [0,1] is
compact, its image in X is compact and we can add finitely many open subsets
to the collection U1, . . . ,Um,W1, . . . ,Wl to cover F (S1× [0,1]) with the codomains
of local parametrizations.

For each t ∈ [0,1], F (−,t) defines a smooth loop from x to x. Using the above
procedure for orienting tangent spaces along a path, we obtain an isomorphism

T (F (−,t)) : Tx(X) = TF (0,t)(X)
∼=−→ TF (1,t)(X) = Tx(X) for each t ∈ [0,1].

Taking the determinant of T (F (−,t)) defines a map

[0,1]→ R, t 7→ det(T (F (−,t)))

which is continuous, since each point of X is contained an open neighborhood on
which the orientation is determined by the derivatives of local parametrizations,
and these derivatives vary smoothly with the basepoints.
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Since each T (F (−,t)) is an isomorphism, its determinant is either strictly posi-
tive> 0 or strictly negative< 0. Since [0,1] is connected and t 7→ det(T (F (−,t)))
is continuous, we have

either det(T (F (−,t))) > 0 or det(T (F (−,t))) < 0 for all t ∈ [0,1].

But we know that, for t = 1, F (−,1) = cx is the constant loop at x. Thsus

det(T (F (−,1))) = det(IdTx(X)) > 0.

Hence we must have det(T (F (−,t))) > 0 for all t ∈ [0,1]. In other words,
T (F (−,t)) must be orientation preserving for all t, and in particular, T (α) is
orientation preserving.

This shows that the orientation of Ty(X) does not depend on the choice of γ.
QED

Let us summarize the key points we shoud remember from this technical
lecture.

• An orientation of a vector space is a choice of a sign, +1 or −1, for an
equivalence of orderings of a bases. We can think of it as choosing a positive
and negative direction.
• An orientation on a manifold is a smooth choice of orientations of the
tangent spaces for each point. Such a choice may or may not exist. Hence
manifolds can be orientable or not.
• Orientability helps us classifying manifolds: there is a box with orientable
and a box with non-orientable manifolds.
• The boundary of a cylinder has opposite orientations:

∂([0,1]×X) = X1 −X0.

• As a conseuqnce: For any compact oriented one-dimensional manifold with
boundary, the sum of the orientation numbers at the boundary points is zero.
This is the key point for defining homotopy invariant intersection numbers
soon.
• There is a formula for the boundary of preimages:

sign(∂f−1(Z)) as a boundary = (−1)codimZ · sign(∂f−1(Z)) as a preimage.

• Simply-connected manifolds are orientable.

Key points we need to take from this lecture
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Intersection Theory

The assumptions for our intersection theory to work will be always:

• We consider a smooth map f : X → Y , where X, Y are boundaryless
smooth manifolds, Z ⊂ Y is a boundaryless submanifold.
• The dimensions are complementary, i.e. dimX + dimZ = dimY .
• X will always be assumed to be compact.
• All manifolds are oriented, i.e. they are orientable and we have chosen an
orientation.

Assumptions for intersection theory

The idea for the new intersection number is now very simple:

If f : X → Y is transversal to Z, then f−1(Z) consists of a finite number of
points (since f−1(Z) is zero-dimensional and compact becasue of the assumptions
on X, Z and the dimensions; the assumptions are all important). Each point in
f−1(Z) has an orientation number ±1 provided by the preimage orientation.

If x ∈ f−1(Z) is a point in the preimage, the orientation number at x is
determined as follows. If f(x) = z ∈ Z, then transversality implies dfx(Tx(X)) +
Tz(Z) = Tz(Y ). But since the dimensions are complementary, this sum must be
direct, i.e.,

dfx(Tx(X)) ∩ Tz(Z) = {0}, and dfx(Tx(X))⊕ Tz(Z) = Tz(Y ).(26)

This direct sum decompostion implies that

dimTx(X) = dim dfx(Tx(X)),

since dimTx(X) = dimTz(Y ) − dimTz(Z). Thus dfx must be an isomorphism
onto its image. In particular, the orientation of Tx(X) provides an orientation
of dfx(Tx(X)).

Then the orientation number at x is +1 if the orientation of Tz(Y ) as the
direct sum in (26) induced by the orientations on dfx(Tx(X)) and Tz(Z) agrees

239
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with the given orientation of Tz(Y ). And it is −1 if the induced orientation
disagrees.

Intersection numbers as sums of orientation numbers

If f −t Z, we define the intersection number I(f,Z) to be the sum of
the orientation numbers at the finitely many points x ∈ f−1(Z).

We claimed that introducing orientations would yield homotopy invariant
intersection numbers in Z. Now we we have to demonstrate that this claim
holds. This will then allow us to define intersection numbers for nontransversal
intersections.

Suppose that X = ∂W is the boundary of a compact W and that f extends
to a smooth map F : W → Y , i.e. f = ∂F = F|∂W .

By the Extension Theorem, we may assume F −t Z. Thus, by the Preim-
age Theorem for manifolds with boundary, F−1(Z) is a compact oriented man-
ifold with boundary ∂F−1(Z) = f−1(Z). Since codim ∂W = 1 in W , we have
codimF−1(Z) = 1 in Y , and hence

dimW − dimF−1(Z) = codimF−1(Z) in W

= codimZ in Y = dimY − dimZ = dimX.

But dimW = dimX+1, and thus dimF−1(Z) = 1. Hence F−1(Z) is a compact
oriented one-manifold with boundary. As we learned in the previous lecture,
the sum of the orientation numbers at points in the boundary f−1(Z) must be
zero.

As a consequence we get:

Intersection numbers for maps on boundaries

If f −t Z and X = ∂W is the boundary of a compact W and that f extends
to a smooth map F : W → Y , then the sum of orientation numbers of points
in f−1(Z) is zero, i.e. I(f,Z) = 0.

This enables us to prove the key fact:
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Homotopy invariance for transversal maps

Let f0 and f1 be two homotopic maps X → Y which are both transversal
to Z. Then I(f0,Z) = I(f1,Z).

Proof: Let F : X × [0,1] → Y be a homotopy between them. Then we just
learned that I(∂F,Z) = 0. The boundary map ∂F is just f0 on the copy X0 at
0 and f1 on the copy X1 at 1. Now recall that the orientations of X0 and X1 as
the boundary of X × [0,1] are given by

∂(X × [0,1]) = X1 −X0.

Hence as oriented manifolds we get

∂F−1(Z) = f−1
1 (Z)− f−1

0 (Z).

By our definition of intersction numbers as sums of orientation numbers,
this implies

0 = I(∂F,Z) = I(f1,Z)− I(f0,Z).

QED

As in the mod 2-theory, the previous theorem allows us to define intersection
numbers for arbitrary maps.

Intersection numbers for arbitrary maps

Let g : X → Y be any smooth map. By the Transversality Homotopy
Theorem, we can choose a smooth map f : X → Y which is homotopic to
g and transversal to Z. Then we define I(g,Z) to be I(f,z), i.e.

I(g,Z) := I(f,Z).

We just shows that the definition does not depend on the choice of f . More-
over, all homotopic maps have equal intersection numbers:

All homotopic maps have equal Intersection Numbers

If g0 : X → Y and g1 : X → Y are arbitrary homotopic maps, then
I(g0,Z) = I(g1,Z).

Proof: The proof is the same is in the mod 2-case. We can choose maps
f0
−t Z and f1

−t Z such that g0 ∼ f0, I(g0,Z) = I(f0,Z), and g1 ∼ f1, I(g1,Z) =
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I(f1,Z). Since homotopy is a transitive relation, we have

f0 ∼ g0 ∼ g1 ∼ f1, and hence f0 ∼ f1.

By the previous theorem, this implies

I(g0,Z) = I(f0,Z) = I(f1,Z) = I(g1,Z).

QED

The Brouwer degree

Let us look again at the special case when dimX = dimY :

The Brouwer degree

Let f : X → Y be a smooth map with dimX = dimY , X compact, and
Y connected. We define the degree of f , denoted by deg(f), to be the
intersection number I(f,{y}) at any regular value y ∈ Y of f . In particular,
we claim that the integer I(f,{y}) does not depend on the choice of the
regular value y.
The degree is homotopy invariant, i.e. f0 ∼ f1 implies deg(f0) = deg(f1).

Proof of the claim of independence: Actually, the proof in the mod 2-
case gave us this result already. But only observed the weaker consequence for
mod 2-intersction numbers. To be sure, let us go through it again.

Given any y ∈ Y , we can assume that f is transversal to {y}. For otherwise
we can replace it with a homotopic map which is transversal by the Transver-
sality Homotopy Theorem. Now by the Stack of Records Theorem, we
can find a neighborhood U of y such that the preimage f−1(U) is a disjoint union
V1 ∪ · · · ∪ Vn, where each Vi is an open set in X mapped by f diffeomorphically
onto U :
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Hence, for all points z ∈ U , we have #f−1({z}) = n. But this is not enough for
knowing that the intersection numbers agree. For we we have to take orientations
into account.

Since f|Vi : Vi → U is a diffeomorphism, we know that

dfxi : Txi(X)→ Ty(Y )

is an isommorphism. Now both Txi(X) and Ty(Y ) are oriented, and hence dfxi is
either orientation preserving or reversing. But by our definition of orientations
on manifolds, we have either

• det(dfxi) > 0 and hence, for all z ∈ U , det(dfwi) > 0, where wi is
the unique point in Vi with f(wi) = z; in other words, dfwi preserves
orientations for all points wi ∈ Vi;
• or det(dfxi) < 0 and hence, for all z ∈ U , det(dfwi) < 0, where wi is

the unique point in Vi with f(wi) = z; in other words, dfwi reverses
orientations for all points wi ∈ Vi.

Thus the orientation number is the same for all points in Vi. Hence the sum
of orientation numbers of the points in f−1(z) is the same for all points z ∈ U .

Consequently, the function

Y → Z, y 7→ I(f,{y})
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is locally constant. Since Y is connected, it must be globally constant.
QED

Here is a simple example of how to calculate a degree:

Degree of a diffeomorphism

A special case of the situation dimX = dimY is that of a diffeomorphism
f : X → Y . It follows immedtiately from the definition that f has degree
+1 or −1 according to if f preserves or reverses orientation. In particular,
we get:
An orientation reversing diffeomorphism of a compact boundaryless
manifold is not smoothly homotopic to the identity.
An example of such an orientation reversing diffeomorphism is provided by
the reflection ri : S

n → Sn which we have seen in the Exercises before:

ri(x1, . . . ,xn+1) = (x1, . . . ,− xi, . . . ,xn+1).

As in the mod 2-case, the boundary result for intersection numbers imply the
following fact on extensions of maps.
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Extendable maps on boundaries have degree zero

Suppose that f : X → Y is a smooth map of compact oriented manifolds
having the same dimension and that X = ∂W is the boundary of a compact
manifold W . If f can be extended to all of W , then deg(f) = 0.

Example: Degree of self-maps of S1

Recall that the restriction of complex multiplication z → zm defines a smooth
map fm : S1 → S1 for every m ∈ Z. For m 6= 0, let us calculate the derivative
d(fm)z : Tz(S

1)→ Tfm(z)(S
1).

We use the parametrization φt 7→ (cos t, sin t). We have the commutative
diagram

S1 fm
// S1

R

φ

OO

t7→mt
// R.

φ

OO

Taking derivatives yields, where we note that t 7→ mt is a linear map and therefore
equal to its derivative:

Tz(S
1)

d(fm)z
// Tzm(S1)

R

dφt

OO

t7→mt
// R.

dφmt

OO

In order to determine d(fm)z, recall

dφt : R→ R2, s 7→ (− sin t, cos t) · s
and, hence at z = φ(t) (we have done this a long time ago):

Tz(S
1) = (− sin t, cos t) · R.

Putting these information together we obtain we get

d(fm)z : Tz(S
1)→ Tzm(S1),

(− sin t, cos t) · s 7→ m(− sin(mt), cos(mt)) · s.

Hence, when m > 0, fm wraps the circle uniformly around itself m times
preserving orientation. The map is everywhere regular and orientation preserving,
so its degree is the number of preimages of any point, that is m.
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Similarly, when m < 0 the map is everywhere regular but orientation revers-
ing. As each point has |m| preimages, the degree is −|m| = m.

Finally,when m = 0 the map is constant, so its degree is zero.

One homotopy class S1 → S1 for every integer

One immediate consequence of this calculation (which could not have been
proven with mod 2 theory) is the interesting fact that the circle admits an
infinite number of homotopically distinct mappings. For since deg(zm) =
m, none of these maps can be homotopic to another one.

Application: The Fundamental Theorm of Algebra - again

Now we can finish the proof of the Fundamental Theorem of Algebra using
degrees. Remember that mod 2-degrees were only good enough for polynomials
of odd order. Now we can deal with all of them.

So let

p(z) = zm + a1z
m−1 + · · ·+ am

be a monic complex polynomial. For the argument in the case m odd, we used
the homotopy from p0(z) = zm to p1(z) = p(z) defined by

pt(z) = tp(z) + (1− t)zm = zm + t(a1z
m−1 + · · ·+ am).

We observed that, if W is a closed ball around the origin in C with sufficiently
large radius, none of the pt has a zero on ∂W .

Thus the homotopy
pt
|pt|

: ∂W → S1

is defined for all t ∈ [0,1]. Thus

deg

(
p

|p|

)
= deg

(
p0

|p0|

)
.

Since p0(z) = zm, the degree of p0/|p0| is the same as deg(zm) = m, and hence

deg

(
p

|p|

)
= m.

Thus, if m > 0, p/|p| does not extend to all of W , since otherwise its degree
had to be zero. Hence p must have a zero inside W .
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Hopf Degree Theorem in dimension one

We return our attention to self-maps of S1. We learned that there is a homo-
topy class of maps S1 → S1 for every integer m. Actually, the following theorem,
the one-dimensional case of a famous theorem of Hopf, shows that the degree is
a bijective map

deg : [S1,S1]→ Z, f 7→ deg(f),

where [S1,S1] = Hom(S1,S1)/ ∼ denotes the set of equivalence classes of maps
from S1 to S1 modulo the homotopy relation.

The same is true for every n ≥ 1: For every m ∈ Z, there is exactly one
homotopy class of maps Sn → Sn. We will get back to this important result
later. Today we show:

Hopf Degree Theorem in dimension one

Two maps f0,f1 : S1 → S1 are homotopic if and only if they have the same
degree.

Proof: We already know that if f0 and f1 are homotopic, then deg(f0) =
deg(f1).

So assume deg(f0) = deg(f1), and we want to show f0 ∼ f1.

Remember that earlier we used the map p defined by

p : R→ S1, t 7→ e2πit,

and remarked that every smooth map f : S1 → S1 can be lifted (lift piecewise
and then patch together) to a map g : R→ R with

g(t+ 1) = g(t) + q for some q ∈ Z such that f(p(t)) = p(g(t)).
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If we can show q = deg(f), then we get a homotopy f0 ∼ f1 as follows:

Let g0 and g1 be smooth maps R→ R with g0(t+ 1) = g0(t) + q, g1(t+ 1) =
g1(t) + q and f0(p(t)) = p(g0(t)), f1(p(t)) = p(g1(t)). Then the map gs(t) :=
sg1 + (1− s)g0 also satifsies gs(t+ 1) = gs(t) + q. Note gs(t) defines a homotopy
G from g0 to g1 by G(t,s) = gs(t).

But any homotopy

G : R× [0,1]→ R with G(t+ 1,s) = G(t,s) + q for all t,s

induces a well-defined homotopy

F : S1 × [0,1]→ S1, (z,s) 7→ p(G(t,s)) for any t ∈ p−1(z).

Hence the above gs(t) induces a homotopy from

f0 = p ◦ g0 to p ◦ g1 = f1.

It remains to show:

Claim: q = deg(f).

First, note that if f is not surjective, then we can pick a point y /∈ f(S1).
This y is automatically a regular value. Since #f−1(p) = 0, we must have
deg(f) = 0. In this case, we need to have q = 0, i.e. g(t + 1) = g(t). For
otherwise p ◦ g was surjective and hence f would be surjective.
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Note that, since the stereographic projection map S1 \ {y} → R is a diffeo-
morphism and R is contractible, this shows directly that S1 \ {y} is contractible.
Hence f is a map to a contractible space and therefore homotopic to a constant
map.

Now we assume that f is surjective. Let y ∈ S1 be a regular value of f , and
let z ∈ f−1(y). Since p is surjective, there is a t ∈ R with p(t) = z. Since y is a
regular value, f is a local diffeomorphism around z. Its derivative is related to
the one of g by the chain rule

dfz ◦ dpt = dpg(t) ◦ dgt.

The derivative of p : R→ S1 at any t is

dpt : R→ Tp(t)(S
1), w 7→ 2π(− sin(2πt), cos(2πt)) · w.

Hence the determinant of dpt at any t is positive (in fact equal +2π). Thus the
sign of the determinant of dfz equals the sign of dgt ∈ R.

As above, let y ∈ S1 be a regular value of f and z ∈ f−1(y). Let us fix a
t0 ∈ R with p(t0) = z. When we walk from t0 to t0 + 1 we need to count how
many preimages of y we collect along the way, with their orientation (!).

We start with the case q = 0, i.e. g(t+ 1) = g(t). It will actually teach us all
we need to remember from this proof.

We need to count how often g(s) = g(t0) with dgs = g′(s) > 0 and how often
g(s) = g(t0) with dgs = g′(s) > 0. Note that since y is regular, dgs is always
6= 0 at such those s.

Since g is a smooth function R→ R, this is now just an exercise from Calculus.
Using the periodicity of g, i.e., that g′(t0) must have the same sign as g′(t0+1), we
see that there are exactly as many points s with g(s) = g(t0) and dgs = g′(s) >
0 as there are points with g(s) = g(t0) and dgs = g′(s) > 0. Thus deg(f) = 0.
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Now assume q > 0, and g(t+ 1) = g(t) + q.

Again, we walk from t0 to t0 + 1 and sum up the orientation numbers of all
the preimages of y that we collect along the way. This corresponds to counting
how often we have g(s) = g(t0) + i for some i = 0,1, . . . ,q − 1 and s ∈ [t0,t0 + 1].

Let us look at one interval [g(t0) + i,g(t0) + i+ 1] at a time. We would like to
know how many s ∈ [t0,t0 + 1] are sent to either g(t0) + i or g(t0) + i+ 1 together
with the sign of the derivative.

Therefore we look at the preimage

g−1([g(t0) + i,g(t0) + i+ 1]).

This set is a disjoint union of closed intervals. For each of these intervals the
start and endpoints are sent to either g(t0) + i or g(t0) + i+ 1.

Let us think of the graph of g passing g(t0) + iwith a positive sign of the
derivative as going in with +1 and passing g(t0) + i+ 1 with a positive sign of
the derivative as going out +1, and the other two alternatives as the ones with
−1. Then we see that the graph has to go in with +1 for a first time, and has
to go out with +1 for a last time (since the graph starts at g(t0) ≤ g(t0) + i and
ends at g(t0) + q ≥ g(t0) + i+ 1). In between those two points, the graph is going
out with −1 as often as it goes in +1 and goes in with −1 as often as it goes out
with +1.
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Thus in total the orientation numbers for g−1([g(t0) + i,g(t0) + i+ 1]) add up
to +2. Repeating this for all i = 0,1, . . . ,q−1 gives a sum of orientation numbers
equal to q, since we have to account for that we counted the inner points twice.

Since the sum of orientation numbers of f equals the one of g, this shows
deg(f) = q.

If q < 0, the same argument works with signs and directions reversed. QED
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Intersection Numbers and Euler Characteristics

Let us return to one of the initial motivations for the intersetion numbers and
see what happens if both X and Z are submanifolds.

Intersection of submanifolds

Let X and Z be submanifolds of Y , with X compact and complementary
dimensions dimX + dimZ = dimY , and all are oriented. Then we define
the intersection number of X and Z in Y to be

I(X,Z) := I(i,Z)

where i : X ↪→ Y is the inclusion map.

Recall that calculating I(X,Z) requires to bring X in transversal position
to Z and then take the sum of the orientation numbers at the finitely many
intersection points in X ∩ Z.

A point y ∈ X ∩ Z has sign +1 if the orientation of Ty(Y ) induced by the
direct sum decomposition

Ty(X)⊕ Ty(Z) = Ty(Y )

is the given orientation on Ty(Y ), and the sign is −1 if it is the opposite orienta-
tion.

Since the order of the summands in a direct sum matters for the orientation,
it is clear that when both X and Z are compact we cannot expect I(X,Z) to be
equal I(Z,X) in general.

All we should expect is I(X,Z) = ±I(Z,X). An example is given by inter-
secting the two circles on the torus. There we get I(X,Z) = −I(Z,X).

Our next goal is to show that I(X,Z) is homotopy invariant in both variables,
and to determine the sign when we flip the factors.

Homotopy Invariance of intersection numbers revisited

253
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Recall that a deformation of X in Y is a smooth homotopy from the em-
bedding i0 : X ↪→ Y of X in Y to an embedding i1 : X ↪→ Y such that each it is
an embedding.

We know that I(X,Z) is invariant under deformations of X, since we
calculate it point by point in X ∩Z and a deformation of X is a homotopy of the
inclusion. We need to prove that I(X,Z) is invariant under deformations of
Z as well. In order to show this we generalize our approach.

Let f : X → Y and g : Z → Y be two smooth maps with X and Z compact, all
manifolds ae boundaryless and the dimensions satisfy dimX + dimZ = dimY .
In particular, that the images of f and g are closed in Y and for g being the
inclusion of Z into Y , we are back at the familiar situation.

As always we start with the case of transversal maps and then extend our
defintion via homotopy.

In order to do so, we need to say what it means for two maps to be transver-
sal:

Transversal maps

We say that f : X → Y and g : Z → Y are transversal, denoted f −t g, if

dfx(Tx(X)) + dgz(Tz(Z)) = Ty(Y ) whenever f(x) = y = g(z).

In our situation, the assumption on dimensions implies that if f −t g then the
above sum is direct, i.e.

dfx(Tx(X))⊕ dgz(Tz(Z)) = Ty(Y ) whenever f(x) = y = g(z).

Moreover, the derivatives dfx and dgz are both injective. Thus these derivatives
map Tx(X) and Tz(Z) isomorphically onto their images. In particular, the
image spaces inherit an orientation from X and Z, respectively.

Intersection numbers for maps

We define the local intersection number at (x,z) to be +1 if the direct
sum orientation of dfx(Tx(X))⊕ dgz(Tz(Z)) equals the given orientation of
Ty(Y ), and −1 otherwise.
Then I(f,g) is defined as the sum of the local intersection numbers of
all pairs (x,z) at which f(x) = g(z).
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When g : Z ↪→ Y is the inclusion map of a submanifold then f −t g if and only
if f −t Z, and if so I(f,g) = I(f,Z). So everything remained consistent so far.

In the definition, we quietly assumed that the sum is finite. We should better
check this! To do so, we are going to look at intersections from yet another angle.
It will seem artificial at first glance, but it is actually a very useful perspective.
For it can be generalized to many other situations, e.g. in Algebraic Geometry.

Let ∆ denote the diagonal of Y × Y , i.e. the set of points (y,y), and let

f × g : X × Z → Y × Y, (x,z) 7→ (f(x),g(z))

be the product map. Then we have

f(x) = g(z) ⇐⇒ (x,z) ∈ (f × g)−1(∆).

The dimension of dim(X ×Z) is dimX + dimZ = dimY , and the dimension
of ∆ is dimY . Thus dim(X × Z) = codim (∆) in Y × Y . Hence if f × g −t ∆,
then (f × g)−1(∆) is a compact zero-dimensional manifold. Hence it is a
finite set.

Transversality, f × g −t ∆, will follow from the following lemma from linear
algebra:

Help from Linear Algebra

Let V be a finite dimensionsal vector space, and U and W be vector sub-
spaces of V . Let ∆ be the diagonal in V × V . Then

U ⊕W = V ⇐⇒ U ×W ⊕∆ = V × V.
Assume now that U ⊕W = V , and in addition that U and W are oriented,
and give V the direct sum orientation. We assign ∆ the orientation carried
from V by the natural isomorphism V → ∆ which sends v 7→ (v,v). Then
the product orientation on V × V agrees with the direct sum orien-
tation induced from U ×W ⊕∆ if and only if W is even dimensional.

We skip the proof of the lemma which can be found in [GP], page 113+114.
Instead we are ging to exploit its implications.
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Transversality and diagonals

The maps f and g are transversal if and only if f × g is transversal to ∆,
i.e.

f −t g ⇐⇒ (f × g)−t ∆.

If f −t g, then

I(f,g) = (−1)dimZI(f × g,∆).

Proof: We apply the lemma to U = dfx(Tx(X)), W = dgz(Tz(Z)), and V =
Ty(Y ). Then the first part of the lemma yields the equivalence of transversality.
The second part implies the formula on the signs, keeping in mind that we know
X ∩ Z = (f × g)−1(∆). QED

The main point of the previous effort is that considering intersections as preim-
ages of the diagonal allows us to extend our definition:

Intersection numbers via diagonals

For maps f and g as above which are not necessarily transversal, we define
I(f,g) to be

I(f,g) := (−1)dimZI(f × g,∆).

Moreover, the desired properties of I(f,g) follow right away:

Homotopy Invariance

If f0 and g0 are homotopic to f1 and g1, respectively, i.e. f0 ∼ f1 and
g0 ∼ g1, then

I(f0,g0) = I(f1,g1).

Proof: If F is a homotopy from f0 to f1 and G is a homotopy from g0 to g1,
then F ×G is a homotopy from f0× g0 to f1× g1. Then the homotopy invariance
of I(f × g,∆) which we proved before implies the invariance of I(f,g). QED
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Recovering the previous definition

If Z is a submanifold of Y and i : Z → Y is its inclusion map, then
I(f,i) = I(f,Z) for any map f : X → Y (with the usual assumption that X
is compact and complementary dimensions).

Proof: This follows just from the definition of f −t Z. If f is arbitrary, then
we use the homotopy invariance of both I(f,i) and I(f,Z). QED

When we applied I(f,Z) to the case dimX = dimY and Z = {y}, we obtained
the degree of f . Let us check that this definition still works in the new setup.

Degrees are still well defined

If dimX = dimY and Y is connected, then I(f,{y}) is the same for every
y ∈ Y . Thus deg(f) = I(f,{y}) is well defined.

Proof: Since Y is connected and a smooth manifold, it is path-connected.
Hence the inclusion maps i0 and i1 for any two points y0,y1 ∈ Y are homotopic.
Therefore

I(f,{y0}) = I(f,i0) = I(f,i1) = I(f,{y1}).

QED

How signs switch when we flip maps

When we flip the order of the maps, we get

I(f,g) = (−1)(dimX)(dimZ)I(g,f).

Proof: We must compare the direct sum orientations of

Ty(Y ) = dfx(Tx(X))⊕ dgz(Tz(Z)) and Ty(Y ) = dgz(Tz(Z))⊕ dfx(Tx(X)).

As we remarked in a previous lecture, switching the order of the summands
reuqires to apply dimX) · (dimZ) many transpositions of the basis vectors. This
gives the sign in the assertion. QED

Applying this result to the inclusions of two submanifolds yields the follwoing
formula for signs when we switch the order of factors in intersection numbers:
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How signs switch when we flip submanifolds

If X and Z are both compact submanifolds, then

I(X,Z) = (−1)(dimX)(dimZ)I(Z,X).

Self-intersections and Euler Characteristic

As a special case, we can look at at the self-intersection number I(X,X)
when dimY = 2 dimX.

But the above sign formula implies that if dimX is odd, then

I(X,X) = (−1)(dimX)2I(X,X) = −I(X,X) and hence I(X,X) = 0.

As a consequence we also get I2(X,X) = I(X,X) mod 2 = 0.

This observation yields an insight into the nonorientability of some manifolds.

Obstruction for orientability

Let Y be any smooth manifold of even dimension. Then we can calculate
the mod 2-self-intersection number I2(X,X) for any compact submanifold
X ⊂ Y of dimension dimX = 1

2
dimY as in the previous lecture without

assuming orientability of Y .
If one of these self-intersection numbers fails to vanish, then Y is not
orientable.

For example, the central circle in the Mobius strip has nonzero mod 2 self-
intersection number, so the Möbius strip is nonorientable.

Self-intersection numbers can be used to define a very powerful and famous
invariant. You will see different constructions for this invariant later in your
mathematical life. Here is the first:

Euler Characterstics

Let Y be a compact, oriented manifold. Its Euler characteristic, denoted
χ(Y ), is defined to be the self-intersection number of the diagonal ∆ in
Y × Y :

χ(Y ) := I(∆,∆).
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Note: Our methods and contruction here makes it look like a differential
invaiant. But note that the Euler characteristic is a topological invariant in
the sense that it only depends on the topology of Y and not the differentiable
structure.

As a first calculation of an Euler number, we deduce from the previous obser-
vations:

Euler characteristic in odd dimensions vanishes

The Euler characteristic of an odd-dimensional, compact, oriented manifold
is zero.

Proof: If dimY is odd, then dim ∆ = dimY is odd. Hence

χ(Y ) = I(∆,∆) = (−1)I(∆,∆) = 0

must be zero. QED

Lefschetz Fixed-Point Theorem

For a (smooth) map f → X → X it is often desirable to know if the equation
f(x) = x has a solution, i.e., if f has a fixed point. In particular, we could ask how
many fixed point does f have. On a compact oriented manifold X, intersection
theory can help us answering that question.

Again it turns out to formulate the question first using diagonals. A point
x ∈ X is a fixed point of f if and only if (x,f(x)) is a point in the intersection of
the graph Γ(f) of f with the diagonal ∆ of X in X ×X:

f(x) = x ⇐⇒ (x,f(x)) ∈ ∆ ∩ Γ(f).

Both ∆ and Γ(f) are submanifolds of X and their dimensions satisfy

dim ∆ + dim Γ(f) = dimX + dimX = dim(X ×X).

Moreover, both receive an orientation from X via the natural diffeomorphism
X → ∆ and X → Γ(f).

Thus we may use intersection theory to count their common points (if it is a
finite number):
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Global Lefschetz numbers

The global Lefschetz number of f , denoted by L(f), is defined to be
the intersection number

L(f) := I(∆,Γ(f))

Note: Again, our methods and contruction here makes it look like a differential
invaiant. But the Lefschetz number is a topological invariant in the sense
that it only depends on the topology of X and not the differentiable structure

Of course, f may have an infinite number of fixed points, as the identity
map demonstrates. Thus the sense in which L(f) measures the fixed-point set
is somewhat subtle. However, we shall see that when the fixed points of f do
happen to be finite, then L(f) may be calculated directly in terms of the local
behavior of f around its fixed points.

The significance of Lefschetz numbers may be illustrated by the following
immediate consequences of the intersection theory approach. The following fa-
mous theorem in its many variations plays a crucial role in many branches in
mathematics:

Smooth Lefschetz Fixed-Point Theorem

Let f : X → X be a smooth map on a compact orientable manifold. If
L(f) 6= 0, then f has a fixed point.

Proof: If f has no fixed points, then ∆ and Γ(f) are disjoint, and hence
trivially transversal. Consequently,

L(f) = I(∆,Γ(f)) = 0.

QED

Since L(f) is an intersection number, we immediately get:

Lefschetz numbers are homotopy invariant

If f0 ∼ f1, then L(f0) = L(f1).

The graph of the identity map is just the diagonal itself. thus L(Id) = χ(X)
is just the Euler characteristic of X:
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Lefschetz numbers and Euler characteristics

If f is homotopic to the identity, then L(f) equals the Euler characteristic
of X. In particular, if X admits any smooth map f : X → X that is
homotopic to the identity and has no fixed points, then χ(X) = 0.

Trnasversality is crucial for intersection theory. So let us call a smooth map
f : X → X a Lefschetz map if Γ(f)−t ∆.

Note that a Lefschetz map has only finitely many fixed points, since there are
only finitely many points in the coplementary intersection Γ(f) ∩ ∆. Also not
that the converse is false. Since Lefschetz maps are defined by a transversality
condition, it should be plausible that most maps are Lefschetz.

Most maps are Lefschetz

Every smooth map f : X → X is homotopic to a Lefschetz map.

Proof: In the lecture on transversality we proved the following fact: Given
X ⊂ RN and f : X → X, we can find an open ball S in RN and a smooth map
F : X × S → X such that F (x,0) = f(x) and s 7→ F (x,s) is a submersion for
each x ∈ X.

Given this F , the map

G : X × S → X ×X, (x,s) 7→ (x,F (x,s))

is also a submersion. For suppose that G(x,s) = (x,y). Since G acts like the
identity on the first X factor, the image of dG(x,s) contains a vector of the form
(u,w) for every u ∈ Tx(X). Since G restricted to {x} × S is a submersion to
{x}×X, the image also contains a vector of the form (0,w) for every w ∈ Ty(X).
Therefore G is a submersion.

In particular, G−t ∆. By the Transversality Theorem, for almost every s the
map

X → X ×X, x 7→ G(x,s)

is transversal to ∆.

Now we observe that the image of this map is just the graph of the map
x 7→ F (x,s). Hence, for any s, the map

X → X, x 7→ F (x,s)

is Lefschetz and homotopic to f . QED
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Let us try to understand Lefschetz maps better. Suppose that x is a fixed
point of f . As we showed in the exercises, the tangent space of Γ(f) in
Tx(X × X) is the graph of the derivative dfx : Tx(X) → Tx(X). Moreover, the
tangent space of the diagonal ∆ is the diagonal ∆x in Tx(X)× Tx(X).

This implies

Γ(f)−t ∆ in (x,x) ⇐⇒ Γ(f) + ∆x = Tx(X)× Tx(X).

As Γ(dfx) and ∆x are vector subspaces of Tx(X)× Tx(X) with complemen-
tary dimension, we have

Γ(f) + ∆x = Tx(X)× Tx(X) ⇐⇒ Γ(f) ∩∆x = {0}.

But Γ(f) ∩ ∆x = {0} just means that dfx does not have a fixed point.
In the language of linear algebra, this means that dfx has no eigenvector of
eigenvalue +1.

Lefschetz fixed points

We call a fixed point x a Lefschetz fixed point of f if dfx has no nonzero
fixed point, i.e., if the eigenvalues of dfx are all unequal to +1.
This shows that f is a Lefschetz map if and only if all its fixed points
are Lefschetz.

Notice that the Lefschetz condition on x is simply the infinitesimal analog of
the demand that x be an isolated fixed point of f . We have met Lefschetz
fixed points on Exercise Set 6.

Local Lefschetz fixed points

If x is a Lefschetz fixed point, we denote the orientation number ±1 of
(x,x) in the intersection ∆Γ(f) by Lx(f). It is called the local Lelschetz
number of f at x.
For Lefschetz maps, we have

L(f) =
∑
f(x)=x

Lx(f)

where the sum is taken over the finite number of fixed points of f .

Hence in order to calculate the global Lefschetz number L(f), it suffices to
calculate all the local Lefschetz numbers Lx(f).
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So let us have a closer look at the Lx(f). First we observe that the condition
for x to be a Lefschtz fixed point means that, for the identity map I on Tx(X),
dfx − I is still an isomorphism on Tx(X), since the kernel of dfx − I is the space
of fixed points of dfx. (We used that also to solve the exercise on Lefschetz fixed
points and Lefschetz maps.) Now we observe:

Local Lefschetz numbers and orientations

Let x be a Lefschetz fixed point of f . Then Lx(f) is +1 if the isomorphism
dfx − I preserves orientations on Tx(X), and it is −1 if dfx − I reverses
orientations.
In other words,

Lx(f) = sign(det(dfx − I)).

Again, we skip the proof of this exercise in linear algebra ([GP] pages 121+122)
and rther look at an important example.

The Euler characteristic of the two-sphere

As an example, we consider X = S2 ⊂ R3. Let g : R3 → R3 be the rotation
by π/2 about the z-axis. The matrix representing g in the standard basis is0 −1 0

1 0 0
0 0 1

 .

In particular, g is a linear map and its own derivative dgx at any point is just g.

Now let f : S2 → S2 be the restriction of g to S2. Then f has exactly two
fixed points, the north pole N = (0,0, + 1) and the south pole S = (0,0, − 1).

At both poles, dfx : Tx(S
2)→ Tx(S

2) can be represented by the matrix

(
0 −1
1 0

)
.

Hence det(dfx− I) = 2. In particular, f is a Lefschetz map, and the sign of the
determininant is +1 at both poles. Thus L(f) = LN(f) + LS(f) = 2.

Any rotation with positive determinant is homotopic to the identity map
of S2. For a concrete homotopy from g to the identity map we can take

F (−,t) =

 t t− 1 0
1− t t 0

0 0 1

 .

By our previous discussion, this implies L(f) = χ(S2). Hence we have proved
the folowing important fact:
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Euler characterstic of the two-sphere

The Euler characteristic of S2 is 2: χ(S2) = 2.

As a consequence we get:

Self-maps on the two-sphere

Every map S2 → S2 that is homotopic to the identity must possess a fixed
point. In particular, the antipodal map x 7→ −x is not homotopic to the
identity.
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Euler characteristic and surfaces
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-

Examples :  1) 52 # 52 ±  52 ( For  an  arbitrary surface X
,

52 # X  E  X . )

#  '  1  E

z ) T
2

# .
?

 - # T
2

=

g
( genus g)

I  #  I  I 1  1 I

.

XCX # Y ) = ?

Example : As 52 # 52  ± 52
,

XCS ' # 52 ) = 2
.  et  P be  a  cube

.
Then  we  remove  2 faces  and add 4

,  add 4 edges  and no  vertices

• o • • •

• •
o

0 • • • 0

• •
•

#

• • • • • •• •

•  • •  • •  

a•
•

when  constructing P # P as  above
.

Hence
,

XIP # P ) =  XCP ) + XIP ) +0 - 4+(4-2) =  XIP ) + XIP ) - 2 = 2
.

Theorem : X
,

Y  surfaces
.

 Then XIX # Y ) =  XIX ) +  Xl Y ) - 2
.

Thus Xl g) = 211 -

g )
,

and hence  it follows that  z  and
3 are  not  homeomorphic  as  X(

z
) =  211 - 2) = - 2  t X( 3) = 211 - 3) = - 4

.

- .  -
a  a = a  a  a÷

Theorem ( Classification  of  surfaces ) :  Two  connected compact  surfaces  are homeomorphie  if  and only if  they have the  same

Euler  characteristic  and the  same  number  of  boundary  components ,  and both are  orieutable  or both are  non - orieutable
.

By  a  deep theorem  in differential topology any pair  of  homeoworphic  smooth  surfaces  are  diffeomorphic .

( Holds for  dim  E 3
. )

The first  example of  homeomorphic  but not diffeomorphic was  given by Milnor  where he  constructed a  smooth 7 - manifold homeomorphie

but  not diffeomorphic to the  standard 57
.

A proof  of the  classification  of  surfaces ( as  stated above ) is given by Hirsch ( GTM 33
, Springer Link )

.
Another proof ( and

statement ) Is given by Lawson ( OUP
,

GT  in M 9 )
.

How do  we  relate the ' classical
'

and the '
intersection  number

'

definition  of the Euler  characteristic ( when they both make

sense ) ?

The  Poincare
'

- Hopf theorem

The  Poincare - Hopf theorem provides  a  way of  computing the  Euler  characteristic by relating It to the  indices  of  vector fields .

n

A  smooth manifold M  is parallelizabk if the tangent  bundle TM ( Lecture 15 ) Is trivial :  TME Mx Rn ,  Tpm  > { p } × IR
"

.

Using the Poincare
'  

- Hopf  theorem  we  can  compute the Euler  characteristic for  every parallelized  manifold M : X ( M ) - 0
.

Thus
,

X ( M ) =  0 for all Lie groups M
,  as  all Lie groups  are parallelizable
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Consider the following three ( smooth ) vector fields  in 1122 :

(1)

F.
( × , y ) = ( - ×

,  
-

y ) ( 2)

Ffx
, y ) = ( x

, y ) (3)

Ffx
, y )  =  C- x.  y )

y y y
i

e .

^

^  n

r  n

'
✓

"

, ,
)

↳
> • < × < • > X ×

n ^
r

<  , ) (v

v  u

sink source saddle

The  index  of  Fi  at  (0/0) counts the  number  of times Fi  rotates completely while traversing the ( small ) circle  centered at  ( 0,0 )

with rotation  of  Fi  counterclockwise  gives  +1  and rotation  of  Fi clockwise  gives -1
.

Hence
,  indo F ,  

=  + 1
,  indo Fz=  +1 and indo Fz  

= - 1
.

A  vector field on  a  manifold M in IRN is  a  smooth map F :  M >  IRN such that  Flx ) E  T×M for  every xe M
.

F  vector field in 112k with an  isolated zero  at  0
.

We define the  index  of F  at 0 as

indo ( F ) := deg ( U )
,

u : Se >  she '

X  FK ) /  FK ) .

Note that F
,  corresponds to the antipodal map on 5

'

,
hence  indo ( Fi ) = deg ( F

,
) = C- 1) 2=1

. Fz  corresponds to the

identity map ,
hence  indo 1 Fz ) = deg ( Fz ) = 1

. Finally , F3  corresponds to the map

(8) a (5) = ( I 9) (5) = (
"

y
)

,
detlak -1

with indo ( F3 ) = deg ( Fz ) = - |
.

To  define the index  of  vector fields  at  isolated zeros  on  arbitrary manifolds
,

use local parameterization  or  charts
.

 The  index

does  not  depend on the  choice  of local parameterization  or  chart
.

y : U > M local parameterization , y ( 0 ) - ×
,

OEUEIRK
.

The pullback vector field of
* F on U is defined by

y* Flu ) = doff Flqlu ) )
,

UEU
. ( dyu :  Tycu )M

±
> Rh )

If  F has  an isolated zero  at  ×
, 4*F has  an  isolated zero  at 0

.
Hence

,

indx 1 F ) :=  indo ( q*F )
.

Theorem ( Poincare
'

- Hopf ) : If F  is  a  smooth vector field on  a  compact  oriented manifold M with only finitely many zeros .  Then

×

indxlf ) = X ( M )
.

A  proof  using ( local ) Lefschetz numbers  is presented in Guillemin  and Pollack
, pp .

134 - 137
.



4

As  a  consequence ,  we have the following :

Theorem :  For  a  smooth  oriented compact  2 - manifold
,

the
' classical

'
and the ' intersection  number

'

definition  of the

Euler  characteristic  agree .

Proof ( sketch ) :  Triangulate the  manifold ( can  always  be done ;  see  Cairns (

1935
) )

.

Define  a  vector field F  on M

with a  source  on  each face
,  a  saddle  on  each edge  and a  sink at  each vertex :

go
For  each source there  Is  a  Zero  of F  of  index 1

,  and similarly

each saddle has  a  zero  of  index - l and each sink has  a  zero

a. ••

go of  index 1
.

so go so

By Poincare'  
- Hopf ,

×

indx I F) = X ( M ) =
 IC

,
) :  diagonal in M×M

.

But this  sum  is precisely ao - a
,

+  az  with ao  
= # vertices

,  a ,  
= # edges  and az  

= # faces
.

The theorem  also  holds for higher dimensions
.

The Euler  characteristic  can be defined in  many ways .

One  way that  uses homology Is  as follows :  For  a  space  X the  ith Betti

number  of X
,

bi ( X ) ,  is the  rank of Hi ( X ) ( rank of  an  abelian group Is  somewhat Like the dimension  of  a  vector

space )
.

bo ( × )
is the number  of path components  in X

. bi  ( X ) measure  a form  of higher - dimensional connectivity of X
.

The Euler  characteristic  of X is then given by

X( X ) =

,

C- 17 ib ; ( x )
.





LECTURE 26

Two dimensional Quantum Field Theories

271
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2 - dim  TQFTS

TQFTS  are  rich geometric gadgets ,  encoding many fundamental manifold Invariants
.

 Roughly speaking , they capture the  Idea  of  cutting a

manifold Into  pieces ( cobordisms ) ,  attaching Invariants to these  pieces ,  and then  gluing these  invariants together  to  obtain  an  invariant

of the  original manifold
.

A  TQFT is  a  symmetric  monoidal funetor Z :  ncob > Vecte ( linear  category )
.

When  n= 2 these  are  equivalent to Frobenius  algebras :

Theorem : ZTQFTC,
= CFA  a

Categorical preliminaries

category E consists  of

•  objects :  A
,

B
,

C
, ... ( AE E )

• morphisms ( '

arrows
' ) : A

+
>  B ( f  EEIA , B) )

subject to :

1) Given A
f

>  B
,

B
9

> ( we  can  compose : A
5°F

>  C

2) Composition  Is  associative : ho ( gof ) = ( ho g) of
 ,

A
f

>  B
9

C
h

> D

3) For  every A  E  C there  is  a ( unique ) identity morphs 'sm 1A ( ida ) : fola  
= f = 1,3 of

.

Examples : Vectc :  vector  spaces  over ¢
,

Linear  maps

Top : topological spaces ,
continuous  maps

A functor  F :  C > D consists  of

•map from the  objects  of  C to the objects  of D

•

map Fa
,  ,

: CCA , B) > DIFCA ) ,
FIB ) )

subject to :

1) Given  A
f

>  B
5

>  ( in C Fa ,c
( gof ) =  FB ,c

( g) ° FA
, ,3

( f ) ( F  covariant )

2) Fa ,a
( IA ) = 1f( A )

for  all A  E  C
.

F
,

G : E > D funetors
.  A  natural transformation 7

:  F G assigns  to  each  AEE a  morphism n ( A ) :  FCA ) >  G( A ) in D

such that for  each At>  B in C

FA
,
BIF ) x

FLA ) >  FLB )
y is  natural isomorphism  if y ( A )

, y
( B ) are  isomorphism : X

←.

IY pox  = lx
, ×°B=1y ,

XEY .

HA ) o y ( B ) p

v  v

GA
, ,z

( f )

GIA ) > GIB )
. We  write FEG

.

C  and D are  equivalent If  there  exists funetors  F : C > D
,

G :D >  C such that le  
± Got

, 1D±F°G .

A  strict  monoidal category ( E
,

@
, I ) Is  a  category E  with a functor  0 :  Exe >  e  which is  associative  and with  an  object  IEE

which Is  a Left  and right  unit for  0
.

( E
,

0
,

I ) Is  symmetric  If for  each pair  of  objects  A) B in  C there  is  a twist ( braid ) map

TA
,  B

:  AQB  >  13×0 A  subject to :

• for  every pair  A
t

>  A
'

,
B

9
13

'
in  e • for  every triple A

,
B

,
C  E E •  TB

,
A  °  TA

,  B  
= 1

A @ B

for  every  pair  A.  BEE
.

A @ B .

#  ' B
>  B @ A A @ B @  (

TA 'B0C
>  BOC @ A A @ B @  (

TA ×0 B' C
)  C 0 A @ B

n 1

f @ g 0 9×0 f
TA

,
,3x01c

°
1B@tA.c IAOTB ,c

,

°
TA ,c

@ 1/3
v

A
'

@ B
' B) OA

'

B @ A @ C A @  ( QB
TA !  13 '
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C obordisms

( See  exercise  set 11
,  problem 5

. ) We  will only consider  2 - dim  cobordisms .
( Manifolds  are  always  assumed to be  compact

smooth
.

)

Let Zcob be  the category  with

•  objects :  closed oriented  1 - manifolds

•

 morphisms :  M
, N E  Zcob

,  a  morphism from M to N is  a  cobordism W from M to  N
,  I.e. W is  an  oriented 2- manifold equipped

with an  orientation - preserving diffeomorphism  2W  
±

>  M H  I
.

W ,
W

'

define the  same  morphism  in Zcob if there  is  an  orientation - preserving diffeomorphism W
±

> W
'

( extending OWEM # I  Edw ' )
.

For

any
M  E  Zcob

, In  is  represented by the  cobordism W=M×I
.

M
, , Mz ,

M ]
E Zcob

,  cobordisms  W :  M
,  >  Mz , W

'
:  Mz >  M

} .
 The  composition W

'  °  W :  M
,

>  M
}  is defined to  be  the  morphism  represented

by W Hm
,

W
'

.

nfYwDn.ntiw@m-nl.D'D:# m
.

W In
,

W
'

Note :  To give WIM
,

W
'

a  smooth  structure
,  We  can  make  a  choice  of  a  smooth  collar  around Mz  inside  of W and W

)
.

 Different

choices  of  collars ( can ) lead to different  smooth  structures  on W Hm
,

W '
,

but the  resulting cobordisms  are diffeomorphic ( but

there  is  no  canonical diffeomorphism ) .
 See  Milnor 's  Lectures  on the h - cobordism theorem for full details .

( Zcob
,

1
,

0 ) is  a  monoidal category .

a

The  cobordism  induced by the twist  diffeomorphism  M H M '  > M
'

I M  is the twist  cobordism : ((#,

( 2 Cob
, 1

,
0

,
T ) Is  a  symmetric  mouoidal category .

2 ( ob can  be  described explicitly  in terms  of
 generators  and relations

,  where  we  use the  classification  of  surfaces .

A  generating set for  a  monoidal category Is  a  set 5 of  morphisms  such that  all morphisms  in the  category can  be  obtained from  elements  in

S  by  composition  and @ .

A skeleton of  Zcob ( full  subcategory comprising exactly  one  object from  each  isomorphism  class ) is the full subcategory { .0
,

1
, 1 ,  

. . .

} with

a =  15
'

.
 Let  Zcob denote this  skeleton .

Theorem : Zcob is generated by the six  cobordisms : CO
, HBO ,

4
 , €§ ,

CD
,

H,#\

( We  will use the  classification  of  surfaces for this theorem
.

)

The  normal form  of  a  connected surface  with  m  in - boundaries
,  n  out - boundaries

,  genus  g  is  a  decomposition  of the  surface  Into  a

number  of  basic  cobordisms .
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¥By - iii;¥ :P,:#.DE#i?D:E
c;

The  relations  we  need are  as follows :

1
. Identity : di, 0=4 0 etc

.

5
.

 Fresenius :

2
. Unit  and count :

#-c
'

E-(
.

"

Isao . .
in :#:pp¥€Y#I÷;B- -

3
. Associativity and coassociativity :

6
.

 Twisting :"

PP¥BT.at#.etay**c:

C i c ; c ;

4
.

 Commutativity  and cocommutativity :

g%µ¥¥ LD ,  etc
.

These  relations  are  sufficient  but  not  minimal
.

2- dim TQFTS and commutative Frobenius  algebras

A 2- dim  TQFT Is  a  symmetric  monoidal fwuetor Z :  Zcob  > Veetc .

Let Z ( S
'

) = Z ( 1) = A
.

 Then Z I a) = AON
.

 Furthermore
,

z ( Y¥O ) : A @ Am> A

mis  commutative  and  associative : ¥,¥'D Y;D § ,¥¥¥§;§¥)
Moreover

,

2- ( d) = Eus A

2- CCD ) . atr ,¢
,

"

d.;D l; o

f.;DM¥ 'D :  A @ A
m

>  A
tr

> e is  nondegenerate : g§"p) ; ( use the Frobenius  relation )
.

A  is  a  commutative Frobenius  algebra ( I.e.  commutative ¢ - algebra together  with a linear  map tr : A  > ¢  such  that ( a. b) trlab )

Is  nondegenerate .

Example : ( 1) A  = Mn ( CI )
, trl ( aij ) ) =

,
aii .

(2) A  =  e  t ( th - 1)
,

tr ( 1) = 1
,

tr ( ti ) = 0 for  i.  1,2 , ...

,  n - 1
.

Theorem :  ZTQFT  =  c FA  ¢ .

For  a proof  see J
.

Koch 's book ( CUP
,

No
.

 59 of  LMSST
,

2003 ) .
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TQFTS produce topological  invariants :  every closed surface  can  be  considered as  a  cobordism from  0 to  0
,

so  its  image

Under  a  TQFT is  a Linear  map
¢  >  e ( i.e.  a  constant ) which is  a topological invariant  of the  surface

.

TQFTS  and physics

TQFTS  posses  certain features that  we  expect from quantum gravity .

The  closed manifolds  represent  space .  The  cobordisms  represents  space - time
.

The ZIM ) 's  are the  state  spaces . An  operator
associated to  a  space

- time  Is the time - evolution  operator ( Feynman path integral ) .

Topological means that these do  not  depend on  any additional structure  on  space
- time ( e.g.  Riemannian  metric ,  curvature )

but  only on the topology .

see Barrett ( J
. Math

. Phys .
Vol . 36

,
1995 ) or Freed ( Bulletin AMS

,
2013 )

.

Also
,

Milnor 's
paper ( Bulletin

,
AMS

,
2015 ) Is definitely worth reading .

( No  physics .
)





LECTURE 27

The Hopf Degree Theorem

Today we are going to generalize an important result on the homotopy classes
of maps to spheres. We proved previously that there is exactly one homotopy class
of maps S1 → S1 for every integer n ∈ Z. By our classification of one-manifolds,
we can read this also as follows:

For every compact, connected, boundaryless one-manifold X, there is exactly
one homotopy class of maps X → S1 for every integer n ∈ Z.

Today we are going to prove a generalization of this result to higher dimen-
sions. It is a famous theorem of Hopf:

The Hopf Degree Theorem

Two maps X → Sk of a compact, connected, oriented, boundaryless k-
manifold X to Sk are homotopic if and only if they have the same degree.

Recall that the degree of a map f : X → Sk as in the theorem is defined as

deg(f) =
∑

x∈f−1(y)

sign(dfx)

where y is a regular value of f and sign(dfx) is +1 if dfx preserves orientations
and −1 if dfx reverses orientations. We will refer to this sign rule as our usual
orientation convention.

277
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• We can think of the degree as a map

Hom(X,Sk)/∼ =: [X,Sk]→ Z.
Hopf’s Theorem tells us that this map is injective, where ∼ denotes the
homotopy relation. One can show that it is also surjective, i.e., there is
exactly one homotopy class of maps X → Sk for every integer n ∈ Z.
• For X = Sk, one usually rephrases this result by saying that the kth
homotopy group of Sk is Z, i.e.,

πk(S
k) =: [Sk,Sk] := Hom(X,Sk)/∼ = Z.

• Note that the situation is different for nonorientable manifolds: Two maps
of a compact, connected, nonorientable, boundaryless k-manifold X to Sk

are homotopic if and only if they have the same degree modulo 2.

Some Remarks on Hopf’s Theorem

Now we start our march towards a proof Hopf’s theorem. We will follow the
guideline of Guillemin-Pollack as usual. But it is worth noting that there are
many different ways to prove this theorem. In particular, there is Pontryagin’s
proof as presented in Milnor’s book which introduces an extremely important
and interesting concept, called cobordism. We recommend to have a look at that
proof as well.
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Assume given two maps f0 and f1 from X to Sk.
• Set W := X× [0,1], define f : ∂W → Sk by f := f0 on X×{0} and f := f1

on X × {1}. Then deg(f) = deg(f1) − deg(f0) = 0. Moreover, a homotopy
between f0 and f1 is a global extension of f to W .
• Show the Extension Theorem: f : ∂W → Sk has a global extension
W → Sk if and only if deg(f) = 0, for any compact, connected, oriented k+1-
manifold W . (We knew already: existence of global extensions ⇒ deg(f) =
0.)
• To show the Extension Theorem, use the Isotopy Lemma to move W
inside some ball B ⊂ Rk+1 with Int(W ) ⊂ B. This reduces to checking an
extension statement on balls and spheres.
• Use winding numbers to show that a map which is homotopic to a con-
stant map on the boundary of a ball B extends to all of B.
• Show the Special Case: For f : Sk → Sk,

deg(f) = 0⇒ f ∼ constant map.

This follows by induction on the dimension k of Sk. We have shown
previously that f,g : S1 → S1 are homotopic if and only if deg(f) = deg(g).
The induction step is actually a zigzag argument using winding numbers.
The Isotopy Lemma is frequently used to move points into appropriate open
neighborhoods and balls.

Strategy for the proof of Hopf’s Theorem

In order to make this strategy work, we need to prove a series of technical
results. This will occupy the rest of the lecture. Two main technical ingredients
are isotopies which allow to move points, and winding numbers which help us
calculating degrees.

Isotopies and the Isotopy Lemma

We will need an important special type of homotopy which preserves more
information than homotopies in general:

Isotopies

An isotopy is a homotopy ht in which each map ht is a diffeomorphism,
and two diffeomorphisms are isotopic if they can be joined by an isotopy.
An isotopy is compactly supported if the maps ht are all equal to the
identity map outside some fixed compact set.



280 THE HOPF DEGREE THEOREM

A particular case of isotopies are linear isotopies.

Linear Isotopy Lemma

Suppose that E is a linear isomorphism of Rk that preserves orientations.
Then there exists a homotopy Et consisting of linear isomorphisms, such
that E0 = E and E1 is the identity. If E reverses orientation, then there
exists such a homotopy with E1 equal to the reflection map

r1(x1, . . . ,xk) = (−x1,x2, . . . ,xk).

Proof: First we remark that it suffices to deal with the case that E preserves
orientations. For if E is orientation reversing, then r1 ◦E preserves orientations.
Then if there is a homotopy F between r1 ◦ E and Id, then, after composing all
maps with r1, r1 ◦ F is a homotopy between E = r1 ◦ r1 ◦ E and r1.

So let E be a linear isomorphism of Rk that preserves orientations. The proof
is by induction on the dimension k. We need to check two initial cases.

First, let k = 1. Then E : RtoR is given by multiplication by a real number
λ > 0. Then Et = t · 1 + (1 − t) · λ is a homotopy between E = λ and Id = 1.
Note that each Et is nonzero and therefore a linear isomorphsm.

Now let k = 2 and assume that E has only complex eigenvalues. Then
Et = tE + (1 − t)Id is a linear homotopy between Id and E. Moreover, each Et
is a linear isomorphism. To show this we show that det(Et) 6= 0 for all t ∈ [0,1].

If E =

(
a b
c d

)
, then we get

det(Et) = (t(a− 1) + 1)(t(d− 1) + 1)− t2bc
= t2(a− 1)(d− 1) + t(a+ d− 2) + 1− t2bc
= t2(ad− bc− a− d+ 1) + t(a+ d− 2) + 1.

The discriminant of this quadratic equation in t is

(a+ d− 2)2 − 4(ad− bc− a− d+ 1)

=(a+ d)2 − 4(a+ d) + 4− 4(ad− bc) + 4(a+ d)− 4

=(a+ d)2 − 4(ad− bc).

But this is exactly the discriminant of the equation

t2 + t(a+ d)− (ad− bc) = 0



THE HOPF DEGREE THEOREM 281

which is the characteristic polynomial (in t) of E. By assumption, this polynomial
has only complex roots, i.e. its discriminant is negative. Hence there is no real t
such that det(Et) = 0.

Now we show the induction step. So assume k ≥ 2 and the assertion to be
true in all dimensions < k. Then E has either at least one real eigenvalue or
at least one complex eigenvalue. Let V ⊂ Rk be the corresponding eigenspace,
which is either one- or two-dimensional. Then E maps V into itself. Hence Rk

splits into a direct sum Rk = V ⊕W . By choosing a basis of Rk consisting of a
basis of V and one for W , we can represent E as a matrix of the form

E =

(
A B
0 C

)
.

(Here A is either a 1× 1- or a 2× 2-matrix given by the eigenvalue.)

Then we can define a linear homotopy Et by

Et =

(
A tB
0 C

)
.

Since E is a linear isomorphism and the determinant is multiplicative, we
have

0 6= det(E) = det(A) det(C) = det(Et).

Thus Et is also a linear isomorphism for every t.

For t = 0, we see that E0 maps V to V by A and W to W by C. Since dimW
is strictly less than k, we can apply the induction hypothesis to C and W and the
initial cases to A and V , respectively. Hence we have a homotopyCt consisting of
linear isomorphisms between C and the identity and a homotopy At between A
and the identity. Then (

At tB
0 Ct

)
is a homotopy consisting of linear homotopies between E and the identity of Rk.
QED

The following theorem will allow us to move points on connected manifolds
via a family of diffeomorphisms. The fact that every map in the homotopy family
is a diffeomorphism makes it much easier to keep track of the orientation numbers
at preimages.
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The Isotopy Lemma

Given any two points y and z in the connected manifold Y , there exists
a diffeomorphism h : Y → Y such that h(y) = z and h is isotopic to the
identity. Moreover, the isotopy may be taken to be compactly supported.

Today we are lazy and skip the proof of this reuslt (it is in [GP] on pages 142,
143). Instead we look at a consequence which we will actually use later.

Corollary to the Isotopy Lemma

Suppose that Y is a connected manifold of dimension greater than 1, and
let {y1, . . . ,yn} and {z1, . . . ,zn} be two sets of distinct points in Y . Then
there exists a diffeomorphism h : Y → Y which is isotopic to the identity
with

h(y1) = z1, . . . ,h(yn) = zn.

Moreover, the isotopy may be taken to be compactly supported.

Proof of the Corollary: The proof works by induction. The Isotopy Lemma
is the case n = 1. Now we assume the corollary being true for n − 1. Then we
have a compactly supported isotopy h′t : Y \ {yn,zn} → Y \ {yn,zn} such that
h′1(yi) = zi for all i < n and h′0 = Id.

Since dimY > 1, the punctured manifold Y \ {yn,zn} is connected. Since the
isotopy h′t has compact support, there are open neighborhoods around yn and zn
in Y on which the h′t are all equal to the identity. Hence we can extend the family
h′t to a family of diffeomorphisms of Y that fix those two points.

Now we apply the induction hypothesis again to the punctured manifold

Y \ {y1, . . . ,yn−1,z1, . . . ,zn−1} and the points yn,zn.

Then we get a compectly supported isotopy h′′t with h′′1(yn) = zn and h′′0 = Id.
By the same argument as for h′t, we can extend h′′t to an isotopy on all of Y such
that all h′′t satisfy h′′t (yi) = zi for all i < n. Then

ht := h′′t ◦ h′t

is the desired isotopy. QED

Winding numbers revisited
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As for many results on maps between spheres, the winding number is useful
concept. We used it before with values modulo 2. Today, we need an integral
version:

Integer winding numbers

Let X be a compact oriented k-dimensional smooth manifold, and let
f : X → Rk+1 be a smooth map. The winding number of f , denoted
W (f,z), around any point z ∈ Rk+1 \ f(X) is defined as the degree of the
map

u : X → Sk, x 7→ f(x)− z
|f(x)− z|

.

As a formula:

W (f,z) = deg(u).

The winding number will be the main tool in the proof of Hopf’s theorem. In
order to exploit it effectively, we investigate some of its properties:

Step 1

Let f : U → Rk be a smooth map defined on an open subset U of Rk, and
let x be a regular point, with f(x) = z. Let B be a sufficiently small closed
ball centered at x, and define ∂f : ∂B → Rk to be the restriction of f to
the boundary of B. Then we have

W (∂f,z) =

{
+1 if f preserves orientation at x,

−1 if f reerses orientation at x.

Proof: After possibly translating things, we can assume x = 0 = z, which
keeps the notation simpler. We set A = df0. We are going to show that W (A,0)
can be used to calculate W (∂f,0). This will follow if we show that we can choose
B small enough such that there is a homotopy Ft : ∂B × [0,1] → Sk−1 between
Ax/|Ax| and ∂f(x)/|∂f(x)|. For then

W (∂f,0) = deg

(
∂f(x)

|∂f(x)|

)
= deg

(
Ax

|Ax|

)
= W (A,0).
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Now we are going to construct the homotopy Ft. By Taylor theory, we can
write

f(x) = Ax+ ε(x), where ε(x)/|x| → 0 when x→ 0.(27)

We define

ft(x) = Ax+ tε(x) for t ∈ [0,1].

Then, ft is a homotopy from f0(x) = Ax to f1(x) = f(x).

Since x = 0 is a regularit point, we know that A is an isomorphism. Hence
the image of the unit ball in Rk under A strictly contains a closed ball of some
radius r > 0. Since every linear isomorphism is a diffeomorphism, we also know
that A maps boundaries to boundaries, i.e., Sk−1 to the boundary of the closed
ball of radius r. Hence

|Ax| > r for all x ∈ Sk−1.

As a consequence,

|A x

|x|
| > c and thus |Ax| > |rx| for all x ∈ Rk \ {0}.

Now we use (27). Since ε(x)/|x| → 0 as x→ 0, we can choose a ball B small
enough such that

ε(x)/|x| < r

2
for all x ∈ ∂B.

Then we have

|ft(x)| = |Ax| − t|ε(x)| > r|x| − r

2
|x| = r

2
|x|,

i.e., |ft(x)| > 0 for all x ∈ ∂B.

Hence we can define the desired homotopy Ft by

Ft : ∂B × [0,1]→ Sk, x 7→ ft(x)

|ft(x)|
.

Now we compute W (A,0). Therefor we apply the Linear Isotopy Lemma and
get that A is homotopic to the identity if it preserves orientions, and homotopic
to the reflection map (x1, . . . ,xk) 7→ (−x1,x2, . . . ,xk) if it reverses orientations.
In the former case, we have W (A,0) = +1, and in the latter case W (A,0) = −1.
QED

This result determines how local diffeomorphisms can wind. Now we are going
to use this information to count preimages.
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Step 2

Let f : B → Rk be a smooth map defined on some closed ball B in Rk.
Suppose that z is a regular value of f that has no preimages on the boundary
sphere ∂B, and let ∂f : ∂B → Rk be its restriction to the boundary. Then
the number of preimages of z, counted with our usual orientation convention,
equals the winding number W (∂f,z).

Proof: By the Stack of Records Theorem, we know that f 1(z) is a finite set
{x1, . . . ,xn}, and we can choose disjoint balls Bi around each xi. Since f 1(z) is
disjoint from ∂B by assumption, we can shrink these balls such that Bi∩∂B = ∅
and so that each Bi is sufficiently small so that Step 1 can be applied.

Let ∂fi = f|∂Bi . Then Step 1 implies that the number of preimage points,
counted with our usual orientation convention, equals

∑n
i=1W (∂fi,z).

Let B′ := B \ ∪iBi and consider the map

u : ∂B → Sk−1, x 7→ f(x)− z
|f(x)− z|

.

Since f(x) 6= z on B′, this map extends to all of B′. This implies

W (f|∂B′ ,z) = deg(u) = 0.

The orientations of the boundaries are related by

∂B′ = ∂B ∪ni=1 (−∂Bi).

This implies

W (f|∂B′ ,z) = W (∂f,z)−
n∑
i=1

W (∂fi,z).

Hence in total we get W (∂f,z) =
∑n

i=1W (∂fi,z). QED

Step 3

Let B be a closed ball in Rk, and let f : Rk \ Int(B)→ Y be a smooth map
defined outside the open ball Int(B). Let ∂f : ∂B → Y be the restriction
to the boundary. Assume that ∂f is homotopic to a constant map. Then f
extends to a smooth map defined on all of Rk into Y .

Proof: For simplicity, we assume that B is centered at 0. Then we can write
every non-zero point x ∈ B uniquely as x = ty for some y ∈ ∂B and some
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t ∈ [0,1]. By assumption, there is a homotopy gt : ∂B → Y with g1 = ∂f and g0

being a constant map.

Now we define the map F : Rk → Y by setting

F (x) =

{
f(x) if x ∈ Rk \ Int(B)

gt(x) if x ∈ B and x = ty for some y ∈ ∂B and t ∈ [0,1].

Note that F is well-defined on Rk \ Int(B), since f and gt agree on ∂B =
B∩ (Rk \ Int(B)) where we have f = ∂f = g1. Note also that F (0) is well-defined
as the constant value of g0.

Now it remains to use smooth bump function to turn F into a smooth homo-
topy (it is already smooth except, possibly, on ∂B). QED

The Special Case

Special case

Any smooth map f : Sk → Sk having degree zero is homotopic to a con-
stant map.

The special case implies:

Corollary

Any smooth map f : Sk → Rk+1 \ {0} having winding number zero with
respect to the origin is homotopic to a constant map.

Proof of the Corollary: By assumption, the degree of the map f
|f | is zero.

By the special case, this implies that f
|f | is homotopic to a constant map. But f

|f |
and f are homotopic via the homotopy

F : Sk × [0,1]→ Rk+1 \ {0}, (x,t) 7→ tf(x) + (1− t) f
|f |

Since homotopy is a transitive relation, f is also homotopic to a constant map.
QED

Proof of the special case:
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The proof is by induction on the dimension k. We have established the case
k = 1 in a previous lecture. So we assume the special case being true for k − 1
and want to deduce it for k.

We need to prove a lemma first:

A lemma

Let f : Rk → Rk be a smooth map with 0 as a regular value. Suppose that
f−1(0) is finite and that the number of preimage points in f−1(0) is zero
when counted with the usual orientation convention. Assuming the special
case in dimension k − 1. Then there exists a map g : Rk → Rk \ {0} such
that g = f outside a compact set.
In particular, the homotopy tf + (1t)g from g to f is constant outside this
compact set.

Proof: Since f−1(0) is a finite, we can choose a ball B centered at the origin
with f−1(0) ⊂ Int(B). By assumption, the number of preimages is zero when
counted with the usual orientation convention. By Step 2, the map ∂f : ∂B →
Rk \ {0} has winding number zero. Since ∂B is diffeomorphic to Sk−1, so ∂f is a
map from k−1 to Rk \ {0}.

Since we are assuming the special case being true in dimension k− 1, we can
apply its corollary in that dimension. Thus, ∂f is homotopic to a constant map.
Hence

f|Rk\Int(B) : Rk \ Int(B)→ Rk \ {0}

is a map to which we can apply Step 3. This implies that f extends to a smooth
map g : Rk → Rk \ {0} with f = g outside the compact space B. QED

Now we get back to the proof of the special case, and we are given a smooth
map f : Sk → Sk with deg(f) = 0.

The idea of the proof is to show that f is homotopic to a map h : Sk →
Sk \ {b}, where b is some point in Sk. But Sk \ {b} is diffeomorphic to Rk via
stereographic projection (from b). Since Rk is contractible, this implies h is
homotopic to a constant map. Then f is also homotopic to a constant map.

So we need to show:

Claim: f is homotopic to a smooth map g : Sk → Sk \ {b}.
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By Sards Theorem, we can choose distinct regular values a and b of f . By the
Stack of Records Theorem, the preimage sets are finite, say f−1(a) = {a1, . . . ,an}
and f−1(b) = {b1, . . . ,bm}.

Moreover, we can find an open neighborhood U of a1 such that U is diffeo-
morphic to Rk via a diffeomorphism α : Rk → U and such that bi /∈ U for all
i = 1, . . . ,m.

Since k > 1, we can apply the corollary of the Isotopy Lemma to the points
{a2, . . . ,an} in Y := Sk \ {b} to get a diffeomorphism which is isotopic to the
identity, compactly supported, and moves the points ai into U .

Since homotopy is a transitive relation, we can therefore assume that U is an
open neighborhood of f−1(a) with b /∈ f(U).

Now let β : Sk \ {b} → Rk be a diffeomorphism with β(a) = 0. Then

β ◦ f ◦ α : Rk α−→ U
f−→ Sk \ {b} β−→ Rk

is a smooth map from Rk to Rk. Since a is a regular value of f , 0 is a regular
value of β ◦f ◦α. Moreover, since f−1(a) is finite, (β ◦f ◦α)−1(0) is finite as well.

Now we use the assumption deg(f) = 0. For this means that the number
of preimages of a under f is zero when counted with our usual orientation
convention. Hence the number of preimages of 0 under β ◦ f ◦α is zero when
counted with the usual orientation convention.

Thus, we can apply the lemma to β ◦ f ◦ α : Rk → Rk and get a map
g : Rk → Rk \ {0} such that g = β ◦ f ◦ α outside a compact set B and g is
homotopic to β ◦ f ◦ α on Rk.

Since α and β are diffeomorphisms, this implies that f is homotopic to
β−1 ◦ g ◦ α−1 as a map from U to Sk \ {b}.

Since g = β ◦ f ◦ α outside B, we have

β−1 ◦ g ◦ α−1 = f on U \ α−1(B).

Thus, the map

h : Sk → Sk \ {b}

defined by setting

h =

{
f on Sk \ α−1(B)

β−1 ◦ g ◦ α−1 on α−1(B)
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is smooth, and h is the desired map homotopic to f . This proves the special case.
QED

Towards proof of Hopf’s theorem

Now we are almost ready to prove Hopf’s result.

Extending maps to Euclidean spaces

Let W be a compact smooth manifold with boundary, and let f : ∂W → Rk

be a smooth map. Then f can be extended to a globally defined map
F : W → Rk.

Proof: As always we assume that W is a subset of some RN . Since W
is compact, it is a closed subset of RN , and so is ∂W . Since f is a smooth
map defined on a closed subset of RN , it may be locally extended to a smooth
map on open sets. Since ∂W is compact and boundaryless, we can apply the
ε-Neighborhood Theorem to extend f to a map F defined on a neighborhood
U of ∂W in RN .

Now we choose a smooth bump function ρ that is constant 1 on ∂W and 0
outside some compact subset of U .

Then we can extend f to all of W by letting it be

ρ · F on U, and 0 outside of U.

This is a smooth function defined on all of RN with values in Rk and being
f = 1 · F on ∂W . QED

Now we apply this lemma to maps with values in spheres:

Extension Theorem

Let W be a compact, connected, oriented k+1-dimensional smooth manifold
with boundary, and let f : ∂W → Sk be a smooth map. Then f extends to
a globally defined map F : W → Sk with ∂F = f if and only if deg(f) = 0.

Proof: We already know that if f can be extended to all of W , then deg(f) =
0. It remains to show the opposite direction.

So let f be as in the thereom, and assume deg(f) = 0. By the previous
lemma, we can extend f to a smooth map F : W → Rk+1. By the Transversality
Extension Theorem, we can assume that 0 is a regular value of F . Since W
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is compact of dimension k + 1, we know that F−1(0) is a finite set. Hence we
can apply the corollary to the Isotopy Lemma to this finite set, and move F−1(0)
inside Int(B) where B is a closed ball contained Int(W ).

In particular, since F−1(0) ⊂ Int(B), the map F
|F | extends toW ′ := W\Int(B).

Hence

W

(
F

|F |
,0

)
= deg

(
F

|F |

)
= 0.

On the other hand, we know by our assumtpion that

W (F|∂W ,0) = W (f,0) = deg(f) = 0,

where we use f = f/|f |, since f has values in Sk.

Now let

∂F = F∂B : ∂B → Rk+1 \ {0}

be the restriction to the boundary. By the definition of W ′ and boundary orien-
tations, we have

∂W ′ = (∂W ) ∪ (−∂B).

Hence we get

W (F|∂W ′ ,0) = W (F|∂W ,0)−W (F|∂B,0)

and therefore W (F|∂B,0) by our previous observations.

Now the corollary to the special case implies that ∂F is homotopic to a con-
stant map. By Step 3, this implies that ∂F extends to a map G : W → Rk+1\{0}.
Then the map G

|G| : W → Sk is the global extension of f . QED

And, finally, the last step:

Proof the Hopf Degree Theorem: Let f0 and f1 be two maps X → Sk

and let W := X × [0,1]. We define a map f : ∂W → Sk by setting

f =

{
f0 on X × {0}
f1 on X × {1}.

By the Extension Theorem, f extends to a map on all of W if and only if
deg(f) = 0. By definition, such an extension would be a homotopy between f0

and f1. Thus we have

f0 ∼ f1 ⇐⇒ deg(f) = 0.
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It remains to relate deg(f) to deg(f0) and deg(f1). But, since ∂W = (X ×
{1}) ∪ (X × {0}) with the opposite orientation on X × {0}, it follows that

deg(f) = deg(f1)− deg(f0).

Thus

f0 ∼ f1 ⇐⇒ deg(f1) = deg(f0).

QED
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APPENDIX A

Exercises

1. Exercises after Lecture 3

1 Show that every k-dimensional vector subspace V of RN is a manifold
diffeomorphic to Rk and that any linear map V → Rm is smooth.
(Remember that choosing a basis for V corresponds to choosing a linear
isomorphism φ : Rk → V . Expressing a vector in V in terms of this basis,
means to attach coordinates to this vector. Since φ is linear, we refer to
the corresponding coordinates as linear coordinates.)

2 a) Prove that the subspace of R3, defined by x2 + y2 − z2 = a, is a
manifold if a > 0.

b) Explain why x2 + y2 − z2 = 0 does not define a manifold.

295
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3 The torus T (a,b) is the set of points in R3 at distance b from the circle
of radius a in the xy-plane, where 0 < b < a. Prove that each T (a,b) is
diffeomorphic to S1 × S1 ⊂ R4. What happens when b = a?

4 Let N = (0, . . . ,0,1) ∈ Sk be the “north pole” on the k-dimensional
sphere. The stereographic projection φ−1

N from Sk \ {N} onto Rk is the
map which sends a point p to the point at which the line through N and
p intersects the subspace in Rk+1 defined by xk+1 = 0. (See the picture
for k = 2.)
a) Show that φ−1

N is given by the formula

(x1, . . . ,xk+1) 7→ 1

1− xk+1

(x1, . . . ,xk).

b) Find a formula for the inverse φN of φ−1
N , and check that both maps

are smooth.
c) Let S = (0, . . . ,0, − 1) ∈ Sk be the “south pole”. Describe the

parametrization using the stereographic prjoction starting in S in-
stead of N , and conclude that Sk is a k-dimensional manifold.
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2. Exercises after Lecture 4

1 Let V be a vector subspace of RN . Show that Tx(V ) = V for x ∈ V .

2 Determine the tangent space to the torus S1 × S1 ⊂ R4 at an arbitrary
point p. Recall the description of the torus T (a,b) ⊂ R3 from the previous
exercise set. Can you describe the tangent space at a point in T (a,b) ⊂
R3?

3 Determine the tangent space to the subspace of R3 defined by x2 + y2 −
z2 = a at (

√
a,0,0) for a > 0.

4 The graph of a map f : X → Y is the subset of X × Y defined by

Γ(f) = {(x,f(x)) ∈ X × Y : x ∈ X}.

Define F : X → Γ(f) by F (x) = (x,f(x)). We assume that X and Y are
smooth manifolds and f is a smooth map.
a) Show F is a diffeomorphism, and conclude that Γ(f) is a smooth

manifold.
b) We also write F for the composite map F : X → X × Y , x 7→

(x,f(x)). Show that dFx(v) = (v, dfx(v)). (You can use T(x,y)(X ×
Y ) = Tx(X)× Ty(Y ).)

c) Show that the tangent space to Γ(f) at the point (x,f(x)) is the
graph of dfx : Tx(X)→ Tf(x)(Y ).

5 A curve in a manifold X is a smooth map t 7→ c(t) of an open interval
of R into X. The velocity vector of the curve c at time t0 in x0 = c(t0)
-denoted simply dc/dt(t0) - is defined to be the vector dct0(1) ∈ Tx0(X),
where dct0 : R1 → Tx0(X).
a) For X = Rk and c(t) = (c1(t), . . . , ck(t)), show that

dc

dt
(t0) = dct0(1) = (c′1(t0), . . . ,c′k(t0)) ∈ Tx0Rk.

b) For an arbitrary k-dimensional smooth manifold, use the above ob-
servation and local parametrizations to prove that every vector in
Tx0(X) is the velocity vector of some curve in X.

Aside: This shows that there is a unique correspondence between
tangent vectors at x0 ∈ X and velocity vectors at t0 of curves c : I → X
with c(t0) = x0. Note that two curves c1 : I → X and c2 : J → X,
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with I and J open in R, have the same velocity vector in c1(t1) = x0 =
c2(t2) if d(c1)t1(1) = d(c2)t2(1) ∈ Tx0(X). One can show that having
the same velocity vector in a point of X is an equivalence relation the
set of curves through x0 in X. Using this relation, we have shown that
there is a unique correspondence between tangent vectors at X in x and
equivalence classes of smooth curves through x0 in X.
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3. Exercises after Lecture 6

1 Let A : Rn → Rn be a linear map, and b ∈ Rn. Show that the mapping

f : Rn → Rn, x 7→ Ax+ b

is a diffeomorphism of Rn if and only if A is invertible.

2 Show that the map

f : R2 → R3, (s,t) 7→ ((2 + cos(2πs)) cos(2πt), (2 + cos(2πs)) sin(2πt), sin(2πs))

is an immersion. Is it an embedding?

3 Let γα be the curve on the torus defined by

γα : R→ S1 × S1, t 7→ (e2πit,e2πiαt)

where we consider S1 as a subset of C ∼= R2. Show that γα factors
through an embedding S1 → S1× S1 when α is rational, i.e. find a map
gα : S1 → S1 × S1 which is an embedding such that γα is the composite
of the map R→ S1, t 7→ e2πit, followed by gα.

4 Consider the map f : (0,3π/4)→ R2, t 7→ sin(2t)(cos t, sin t).
a) Show that f is an immersion.
b) Let Im (f) = f((0,3π/4)) ⊂ R2 be the image of f (considered as a

subspace in R2). Show that f : (0,3π/4) → Im (f) is not a homeo-
morphism. (Draw a picture of the image of f .)

c) To test your understanding answer the following questions (and give
reasons for your answer):
• What is the difference between Im (f) and the graph Γ(f)?
• Is the map F : (0,3π/4) → (0,3π/4) × R2, t 7→ (t,f(t)), an

embedding?
• Would f be an embedding if it was defined on the closed in-

terval [0,3π/4]?
• Is the map g : (0,3π/4) → R3, t 7→ sin(2t)(cos t, sin t,t) an

embedding?
• Is the map h : [0,3π/4]→ R3, t 7→ (sin(2t) cos t, sin(2t) sin t,2t)

an embedding?

5 Let X be an n-dimensional smooth manifold, Z be a k-dimensional
smooth submanifold of X, and let z ∈ Z. Show that there exists a
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local coordinate system (x1, . . . ,xn) defined in a neighborhood U of z in
X such that Z ∩ U is defined by the equations xk+1 = 0, . . . ,xn = 0, i.e.
Z ∩ U is the subset of points in U for which the functions xk+1, . . . ,xn
all vanish.



4. EXERCISES AFTER LECTURE 8 301

4. Exercises after Lecture 8

1 Let f : X → Y be a submersion and U an open subset of X. Show that
f(U) is open in Y . (In other words, submersions are open maps.)

2 a) If X is compact and Y connected, show that every (nontrivial) sub-
mersion f : X → Y is surjective. (Recall that a space Y is called
connected if Y cannot be written as the union of two nonempty dis-
joint open subsets; or equivalently, if Y and ∅ are the only subsets
which are both open and closed in Y ).

b) Show that there exist no submersions of compact manifolds into Rn

for any n.

3 Show that the orthogonal group O(n) is compact. (Hint: Show that if
A = (aij) lies in O(n), then for each i,

∑
j a

2
ij = 1.)

4 Show that the tangent space to O(n) at the identity matrix I is the
vector space of skew symmetric n×n-matrices, i.e. matrices B satisfying
Bt = −B.

5 Prove that the set R1 of all 2×2-matrices of rank 1 is a three-dimensional
submanifold of R4 = M(2). (Hint: Show that the determinant function
is a submersion on the manifold of nonzero 2× 2-matrices M(2) \ {0}.)
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5. Exercises after Lecture 10

1 a) Show that a local diffeomorphism f : X → Y which is bijective is a
diffeomorphism.

b) Show that a local diffeomorphism f : X → Y which is one-to-one is
a diffeomorphism of X onto an open subset of Y .

c) Show that a bijective smooth map f : X → Y of constant rank is a
diffeomorphism.
(Comment: You can assume that f is a submersion to simplify
things. If you want to challenge yourself, you could only assume
that X is compact. Showing that f also is a submersion in general
requires the use of Baire’s category theorem.)

d) Show that a bijective Lie group homomorphism is a Lie group iso-
morphism.

2 Show that an open subgroup H, i.e. a subgroup which is also an open
subset, of a connected Lie group G is equal to G.

3 Let G be a Lie group and let e ∈ G be the identity element.
a) Let µ : G×G→ G denote the multiplication map, and let g,h ∈ G.

Recall that we denote by Lg the left translation in G by g, and by Rh

the right translation by h. Using the identification T(g,h)(G×G) =
Tg(G)× Th(G), show that the differential of µ at (g,h)

dµ(g,h) : Tg(G)× Th(G)→ Tgh(G)

is given by

dµ(g,h)(X,Y ) = dµ(g,h)(X,0) + dµ(g,h)(0,Y ) = d(Rh)g(X) + d(Lg)h(Y ).

(Hint: Calculate dµ(g,h)(X,0) and dµ(g,h)(0,Y ) separately.)
b) Let ι : G → G denote the inversion map. Show that dιe : Te(G) →

Te(G) is given by dιe(X) = −X.
c) Use the previous point to show that, for any g ∈ G, the derivative

of ι at g is given by

dιg : Tg(G)→ Tg−1 , Y 7→ −d(Rg−1)e(d(Lg−1)g(Y )) for all Y ∈ Tg(G).

4 Show that for any Lie group G, the multiplication map µ : G× → G is a
submersion.
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5 Show that the differential of the determinant map det : GL(n,R)→ R at
A ∈ GL(n,R) is given by

d(det)A(B) = (detA) · (trA−1B) for all B ∈M(n).

In particular, d(det)A(AB) = (detA) · (trAB) for all B ∈M(n).
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6. Exercises after Lecture 12

1 As a first test of our understanding of transversality, answer the following
questions:
a) Let z = (a,b) ∈ S1 ⊆ R2 and let Nz = {(a,y) : y ∈ R} be the

vertical line intersecting the circle at z. When is S1 ⊆ R2 transverse
to Nz ⊆ R2?

b) Which of the following linear spaces intersect transversally?
• The plane spanned by {(1,0,0), (2,1,1)} and the y-axis in R3.
• Rk × {0} and {0} × Rl in Rn. (The answer depends on k, l,

and n.)
• V ×{0} and the diagonal in V ×V , for a real vector space V .
• The spaces of symmetric (At = A) and skew symmetric (At =
−A) matrices in M(n).

c) Do SL(n) and O(n) meet transversally in M(n)?

2 a) Let f : X → Y be a map transversal to a submanifold Z in Y . Then
we know that W = f−1(Z) is a submanifold of X. Prove that Tx(W )
is the preimage of Tf(x)(Z) under the linear map dfx : Tx(X) →
Tf(x)(Y ).

b) Let X and Z be transversal submanifolds of Y . Deduce from the
previous point that, for every y ∈ X ∩ Z,

Ty(X ∩ Z) = Ty(X) ∩ Ty(Z).

3 Let V be a vector space, and let ∆ be the diagonal of V ×V . For a linear
map A : V → V , consider the graph Γ(A) = {(v,Av) : v ∈ V }. Show
that Γ(A)−t ∆ if and only if +1 is not an eigenvalue of A.

4 Let f : X → X be a map, and let x be a fixed point of f , i.e. f(x) = x.
If +1 is not an eigenvalue of dfx : Tx(X) → Tx(X), then x is called a
Lefschetz fixed point of f . The map f is called a Lefschetz map if all its
fixed points are Lefschetz. Prove that if X is compact and f is Lefschetz,
then f has only finitely many fixed points.

(Hint: Show that the intersection of the graph of f and the diagonal
of X is a 0-dimensional submanifold of X ×X.)
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5 Consider the following intersections in C5 \ {0}:
S7
k = {z2

1 + z2
2 + z2

3 + z3
4 + z6k−1

5 = 0} ∩ {|z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2 = 1}.
Show S7

k is a 7-dimensional submanifold by showing that the inter-
section is transversal in C5 \ {0}.

(Hint: At some point you may want to show that, at a point z =
(z1, . . . ,z5), the vector w := (m

2
z1,

m
2
z2,

m
2
z3,

m
3
z4,

m
6k−1

z5), with m := 2 · 3 ·
(6k − 1), lies in one of the tangent spaces but not in the other.)



306 EXERCISES

7. Exercises after Lecture 13

1 A manifold X is contractible if its identity map is homotopic to some
constant map X → {x} where x is any point of X.
a) Show that ifX is contractible, then all maps of an arbitrary manifold

Y into X are homotopic.
b) Conversely, show that if all maps of an arbitrary manifold Y into X

are homotopic, then X is contractible.
c) Show that Rk is contractible.

2 A manifold X is simply connected if it is connected and if every smooth
map from the circle S1 into X is homotopic to a constant map. Show that
all contractible spaces are simply connected. (Note that the converse is
false.)

3 Show that the antipodal map Sk → Sk, x 7→ −x, is homotopic to the
identity if k is odd. (We will see later that this is not true if n is even.)

(Hint: Start off with k = 1 by using the linear maps defined by

[0,1]→M(2), t 7→
(

cos(πt) − sin(πt)
sin(πt) cos(πt)

)
.)

4 Show that every connected manifold X is path-connected, i.e. given any
two points x0,x1 ∈ X, there exists a smooth curve f : [0,1] → X with
f(0) = x0 and f(1) = x1.

(Hint: Use the fact that homotopy is an equivalence relation to show
that the relation “x0 and x1 can be joined by a smooth curve” is an
equivalence relation on X. Then show that the equivalence classes are
both open and closed subsets of X.)
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8. Exercises after Lecture 15

1 Recall that a manifold X is simply connected if it is connected and if
every smooth map of the circle S1 into X is homotopic to a constant
map. Prove that the sphere Sk is simply connected if k > 1. (Hint: If
f : S1 → Sk and k > 1, Sard’s Theorem gives us a point p /∈ f(S1). Now
use stereographic projection.)

2 Show that the determinant function onM(n) is a Morse function if n = 2,
but not if n > 2. (Hint: To find the partial derivatives of det, one can
use Laplace’s formula for the determinant: for any fixed j,

det(A) =
n∑
i=1

(−1)i+jaij · det(Aij)

where Aij is the submatrix of A with ith row and jth column removed.
Check if the zero matrix is nondegenerate.)

3 Show that the “height function” h : Sk → R, (x1, . . . ,xk+1) 7→ xk+1 on
the k-sphere Sk is a Morse function with two critical points, one of which
is a maximum and the other a minimum.

4 A vector field on X is a smooth section of π : T (X)→ X, i.e. a smooth
map σ : X → T (X) such that π◦σ = IdX . An equivalent way to describe
such a section is to give a map s : X → RN such that s(x) ∈ Tx(X) for
all x (with correspinding σ(x) = (x,s(x))). A point x ∈ X is a zero of
the vector field σ if σ(x) = (x,0) or equivalently s(x) = 0.
a) Show that if k is odd, there exists a vector field on Sk having no

zeros.
(Hint: For k = 1, use (x1,x2) 7→ (−x2,x1).)

b) Prove that if Sk has a vector field which has no zeros, then its
antipodal map x 7→ −x is homotopic to the identity.
(Hint: Show that you may assume |s(x)| = 1 everywhere. Now
contemplate about (cos(πt))x + (sin(πt))s(x) when t varies from 0
to 1.)

c) Show that if k is even, then the antipodal map on Sk is homotopic
to the reflection map

r : Sk → Sk, (x1, . . . ,xk+1) 7→ (−x1,x2, . . . ,xk+1).
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(Hint: Consider also the reflections ri(x1, . . . ,xk+1) = (x1, . . . , −
xi, . . . ,xk+1). Show that ri ◦ ri+1 is homotopic to the identity on
Sk.)

5 Let X be the set of all straight lines in R2 (not just lines through the
origin).
a) Show that X is an abstract smooth 2-manifold by showing that we

can identify X with an open subset of the real projective plane RP2.
(Here we use that open subsets of abstract smooth k-manifolds are
again abstract smooth k-manifolds.)

b) Show that there is a bijection bewtween X and the set of equivalence
classes

(S1 × R)/ ∼
where ∼ is the equivalence relation defined by

(s,x) ∼ (y,t) ⇐⇒ t = ±s and y = x.
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9. Exercises after Lecture 17

1 If U ⊂ Rk and V ⊂ Hk are open neighborhoods of 0, prove that there
exists no diffeomorphism of V with U . (Hint: Inverse Function Theo-
rem.)

2 Prove that if f : X → Y is a diffeomorphism of manifolds with boundary,
then ∂f maps ∂X diffeomorphically onto ∂Y . (Hint: Inverse Function
Theorem.)

3 We define the smooth maps

F : R× [−1/2,1/2]→ R3, (t,s) 7→(cos t, sin t,s), and

G : R× [−1/2,1/2]→ R3, (t,s) 7→((1 + s cos(t/2)) cos t,(1 + s cos(t/2)) sin t,s sin(t/2)).

We define X to be the image of F in R3, and Y to be the image of G in
R3.
a) Show that X is a 2-dimensional manifold with boundary whose

boundary is diffeomorphic to the disjoint union of two copies of
the unit circle. (Convince yourself that X is a cylinder obtained by
starting with a rectangular surface and then glueing two opposite
edges together.)

b) Show that Y is a 2-dimensional manifold with boundary whose
boundary is diffeomorphic to just one copy of the unit circle. (Con-
vince yourself that Y is a Möbius band obtained by starting with a
rectangular surface and then glueing two opposite edges after twist-
ing one edge once. If you do not get through all the formulae, make
sure you understand the answer visually at least.)

4 Suppose thatX is a manifold with boundary and x ∈ ∂X. Let φ : U → X
be a local parametrization with φ(0) = x, where U is an open subset
of Hk. Then dφ0 : Rk → Tx(X) is an isomorphism. Define the upper
halfspace Hx(X) in Tx(X) to be the image of Hk under dφ0, Hx(X) :=
dφ0(Hk).
a) Prove thatHx(X) does not depend on the choice of local parametriza-

tion.
b) Show that there are precisely two unit vectors in Tx(X) that are

perpendicular to Tx(∂X) and that one lies inside Hx(X), the other
outside. The one in Hx(X) is called the inward unit normal vector
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to the boundary, and the other is the outward unit normal vector
to the boundary. Denote the outward unit normal vector by n(x).

c) If X ⊂ RN , we consider n(x) as an element in RN and get a map
n : ∂X → RN . Show that n is smooth.

5 Let X = {(x,y) ∈ R2 : x ≥ −1}, Y = R and

f : X → Y, (x,y) 7→ x2 + y2.

a) What is the boundary of X? Show that 1 is a regular value of f . Is
1 a regular value of ∂f?

b) Determine f−1(1), ∂(f−1(1)) and f−1(1)∩∂X. Why does the answer
not contradict the assertion of the Preimage Theorem for manifolds
with boundary?
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10. Exercises after Lecture 19

1 Prove the Theorem of Perron-Frobenius: An n × n-matrix A with only
nonnegative entries, must have a real nonnegative eigenvalue.

(Hint: It suffices to assume A nonsingular, otherwise O is an eigen-
value. Let A also denote the associated linear map of Rn, and consider
the map v → Av/|Av| restricted to Sn−1 → Sn−1. Show that this maps
the first quadrant

Q = {(xl, . . . ,xn) ∈ Sn−1 : all xi ≥ 0}
into itself. Now use the fact that there is a homeomorphism Bn−1 → Q,
to get a continuous map Bn−1 → Bn−1.)

2 Let X and Y be submanifolds of RN . Show that for almost every a ∈ RN

the translate X + a intersects Y transversally.

3 a) Let Y be a compact submanifold of RM , and w ∈ RM . Show that
there exists a (not necessarily unique) point y ∈ Y closest to w,
and prove that w − y ∈ Ny(Y ). (Hint: If c(t) is a curve on Y with
c(0) = y, then the smooth function |w − c(t)|2 has a minimum at
0. Now use that we have shown on Exercise Set 2 that there is a
unique correspondence between tangent vectors at y and velocity
vectors at 0 of curves c : (−a,a)→ Y with c(0) = y.)

b) Use the previous point to show: Let Y be a compact submanifold of
RM , and w ∈ RM . Let h : N(Y )→ RM , h(y,v) = y+ v, be the map
used in the proof of the ε-Neighborhood Theorem in the lecture. We
know that h maps a neighborhood of Y in N(Y ) diffeomorphically
onto Y ε ⊂ RM , where ε > 0 is constant. Prove that if w ∈ Y ε, then
π(w) is the unique point of Y closest to w, where π = σ ◦ h−1.

4 Let X be a submanifold of RN . Show that “almost every” vector space
V of any fixed dimension k in RN intersects X transversally, i.e.

V + Tx(X) = RN for every x ∈ X.

(Hint: Use the fact that the set S ⊂
(
RN
)k

consisting of all linearly

independent k-tuples of vectors in RN is open in RNk. Show that the
map Rk × S → RN defined by

((t1, . . . ,tk),v1, . . . ,vk) 7→ t1v1 + · · ·+ tkvk

is a submersion, and apply the results of the lecture. )
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5 This is a harder problem, but it is an interesting application of the
Transversality Theorem and ε-neighborhoods. So try it!
a) Suppose that f : Rn → Rn is a smooth map with n > 1, and let

K ⊂ Rn be compact and ε > 0. Show that there exists a map
g : Rn → Rn such that dgx is never 0, and |f(x) − g(x)| < ε for all
x ∈ K.
(Hint: Let M(n) be the space of n × n-matrices. Show that the
map F : Rn ×M(n) → M(n), defined by F (x,A) = dfx + A, is a
submersion. Pick A so that FA

−t {0} for FA : x 7→ (x,A) as in
the lecture. Now use this knowledge to construct g. At some point
along this way you will have used n > 1. Make sure you see where
and how it has been used.)

b) Show that this result is false for n = 1 (i.e., find f , ε, K ⊂ R such
that we cannot find such a g).
(Hint: You could contemplate on the Mean Value Theory.)
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11. Exercises after Lecture 21

1 Show that there exists a complex number z such that

z7 + cos(|z|2)(1 + 93z4) = 0.

2 a) Assume dimX ≥ 1: Show hat if f : X → Y is homotopic to a
constant map, then I2(f,Z) = 0 for all complementary dimensional
closed submanifolds Z in Y .
(Hint: Show that if dimZ < dimY , then f is homotopic to a con-
stant X → {y}, where y /∈ Z.

b) For dimX = 0, show that this assertion is wrong. (If X is one point,
for which Z will I2(f,Z) 6= 0?)

c) Show that S1 is not simply-connected. (Recall that we call a man-
ifold X simply-connected if it is connected and if every map of the
circle S1 into X is homotopic to a constant map.)
(Hint: Consider the identity map.)

3 a) Show that intersection theory is trivial in contractible boundary-
less manifolds: if Y is boundaryless and contractible (i.e. its iden-
tity map is homotopic to a constant map) and dimY > 0, then
I2(f,Z) = 0 for every f : X → Y , X compact and Z closed, dimX+
dimZ = dimY . In particular, intersection theory is trivial in Eu-
clidean space.

b) Prove that no compact boundaryless manifold - other than the one-
point space - is contractible.
(Hint: Apply the previous point to the identity map.)

4 a) Let f : X → Sk be a smooth map with X compact and 0 < dimX <
k. Show that, for all closed submanifolds Z ⊂ Sk of dimension
complementary to X, I2(f,Z) = 0.
(Hint: Use Sard’s Theorem to show that there exists a p /∈ f(X)∩Z.
Now use stereographic projection and the previous exercises.)

b) Show that S2 and the torus T = S1 × S1 are not diffeomorphic.

5 a) Two compact manifolds X and Z of the same dimension in Y are
called cobordant in Y if there exists a compact manifold with
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boundary W ⊂ Y × [0,1] such that

∂W = X × {0} ∪ Z × {1}.

The manifold W is also called a cobordism between X and Z.
Show that if we can deform X into Z, i.e. if there is a smooth ho-
motopy from the embedding i0 : X ↪→ Y of X in Y to an embedding
i1 : X ↪→ Y with i1(X) = Z such that each it is an embedding, then
X and Z are cobordant.
Note that the standard image of a cobordism, a pair of pants, il-
lustrates that the converse is false: X and Z are cobordant, but
we cannot deform X into Z, since X has one connected component
whereas Z has two.

b) Show that if X and Z are cobordant in Y , then for every compact
submanifold C in Y with dimension complementary to X and Z, i.e.
dimX + dimC = dimZ + dimC = dimY (where dimX = dimZ
because they are cobordant), we have

I2(C,X) = I2(C,Z).

(Hint: Let f be the restriction to W of the projection map Y ×
[0,1]→ Y , and use the Boundary Theorem.)

6 Let p1, . . . ,pn be real polynomials in n + 1 variables. Assume each pi
is homogeneous of odd order, i.e. there is an odd number mi such that
pi(λx) = λmipi(x) for all λ ∈ R. We consider each pi also as a smooth
function Rn+1 → R by sending x to pi(x).
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Show that there is a line through the origin in Rn+1 on which all the
pi’s simultaneously vanish.

(Hint: Read Lecture 21 carefully.)

7 Let S1 = {(x,y) ∈ R2 : x2 + y2 = 1} be the unit circle and S2 =
{(x,y,z) ∈ R3 : x2 + y2 + z2 = 1} be the two-dimensional sphere.

Show that there is no continuous map f : S2 → S1 with f(−p) =
−f(p) for all p ∈ S2.

Hint: Assume such a map f existed. Then we could define the con-
tinuous map

g : B2 = {(x,y) ∈ R2 : x2 + y2 ≤ 1} → S1, g(x,y) := f(x,y,
√

1− x2 − y2).

Show that g satisfies g(−q) = −g(q) for all q ∈ S1 = ∂B2. What is the
degree modulo 2 of g? Conclude that f cannot exist.
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12. Exercises after Lecture 22

1 Let β = (v1, . . . ,vk) be an ordered basis of a vector space V .
a) Show that replacing one vi by a multiple cvi yields an equivalently

oriented ordered basis if c > 0, and an oppositely oriented one if
c < 0.

b) Show that transposing two elements, i.e., interchanging the places
of vi and vj for i 6= j, yields an oppositely oriented ordered basis.

c) Show that subtracting from one vi a linear combination of the others
yields an equivalently oriented ordered basis.

d) Suppose that V is the direct sum of V1 and V2. Show that the direct
sum orientation of V from V1 ⊕ V2 equals (−1)(dimV1)(dimV2) times
the orientation from V2 ⊕ V1.

2 The upper half space Hk is oriented by the standard orientation of Rk.
Thus ∂Hk acquires a boundary orientation. But ∂Hk may be identified
with Rk−1. Show that the boundary orientation agrees with the standard
orientation of Rk−1 if and only if k is even.

3 a) Write down the orientation of S2 as the boundary of the closed unit
ball B3 in R3, by specifying a positively oriented ordered basis for
the tangent space at each (a,b,c) ∈ S2.

b) Show that the boundary orientation of Sk equals the orientation of
Sk = g−1(1) as the preimage under the map

g : Rk+1 → R, x 7→ |x|2.

4 Suppose that f : X → Y is a diffeomorphism of connected oriented man-
ifolds with boundary. Show that if dfx : Tx(X) → Tf(x)(Y ) preserves
orientation at one point x, then f preserves orientation globally.

5 Let X and Z be transversal submanifolds in Y and assume X, Z and Y
are oriented. Let i : X ↪→ Y be the inclusion of X into Y , j : Z ↪→ Y
be the inclusion of Z into Y . We orient the intersection X ∩ Z as the
preimage i−1(Z), and the intersection Z ∩ X as the preimage j−1(X).
Show that the orientations of X ∩ Z and Z ∩X are related by

X ∩ Z = (−1)(codimX)(codimZ)Z ∩X.
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(Hint: Show that the orientation of S = X ∩ Z at any y is induced by
the direct sum

(Ny(S,X)⊕Ny(S,Z))⊕ Ty(S) = Ty(Y ).

What happens when you consider Z ∩X instead?)

6 a) Let V be a vector space. Show that both orientations on V define
the same product orientation on V × V .

b) Let X be an orientable manifold. Show that the product orientation
on X ×X is the same for all choices of orientation on X.

c) Suppose that X is not orientable. Show that X × Y is never ori-
entable, no matter what manifold Y may be. In particular, X ×X
is not orientable.
(Hint: First show that X ×Rm is not orientable, and then use that
every Y has an open subset diffeomorphic to Rm.)

d) Prove that there exists a natural orientation on some neighborhood
of the diagonal ∆ in X ×X, whether or not X can be oriented.
But note that ∆ itself is orientable if and only if X×X is orientable.
Why?
(Hint: Cover a neighborhood of ∆ by local parametrizations φ ×
φ : U ×U → X ×X, where φ : U → X is a local parametrization of
X, then apply the previous observations.)
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