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LECTURE 1

Introduction

0.1. Organization. First some general info:

Lectures: Mondays 12.15-14.00 in R92,
and Thursdays 10.15-12.00 in R54.

Exercises: Thursdays 16.15-17.00 in R21, but NOT WEEKLY. We will dis-
cuss exercises futher in class.

Important: You will have to solve the exercises yourself. The exercise classes
will NOT consist of me giving solutions. If nobody comes up with suggestions,
there will be nothing going on. You need to work in order to learn...

General advice: Talk to each other and to me. Ask questions! Interact!!!

That’s how you learn. Do not sit quiet and just read.
Course webpage (on which I will try to put more information soon):
wiki.math.ntnu.no/tma4190/2018v /start
Office hours: Upon request.
Just send me an email: gereon.quick@ntnu.no
Text books: In the beginning we will follow the book
[GP] V. Guillemin and A. Pollack, Differential Topology.
Another excellent and very short book:
[M] J.W. Milnor, Topology from the Differentiable Viewpoint.
Some other useful books:
[D] B. Dundas, Differential Topology.
[T] L.W. Tu, An Introduction to Manifolds.



6 INTRODUCTION

There are many other good books out there. Ask me if you need more.

0.2. What is required? We will just assume some knowledge in multivari-
able calculus, corresponding to Calculus 1 and 2. For example, you should
know what it means for a map R” — R™ to be smooth or differentiable.
We will also assume knowledge on complex numbers and linear algebra,
corresponding to what you learn in Calculus 3. For example, you should know
what is a subspace of a vector space, what is the image of a linear map, when is
a linear map invertible.

Finally, it would be desirable if you have heard the words:

open, closed, compact in connection with subsets of R™. Ideally, you also
know, for example, what these notions have to do with convergence of sequences.
But no worries, I will try to remind you of as much as I can during class. If you
want to refresh your knowledge on Topology, you may want to have a look at the
books

[J] K. Jénich, Topology.
[D] B. Dundas, Appendix in Differential Topology.

As always, ASK ME if you wonder about anything!

0.3. What this class is about? Super roughly speaking, Topology is
some kind of Geometry. Classical geometers were interested in measruing
angles and distances. For example, two things are the "same” (congruent) in
classical geometry if you can transform one into the other by moving or flipping
them over. No stretching allowed. That means angles and lengths of edges stay
the same.
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A first variation to allow flexibility, is projective geometry: Two things are
considered the same if they are both views of the same object. For example, an
ellipse and a circle can be projectively equivalent; for one can look like the other
when you look at them from the right prespective.
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In topology, we take this idea one step further and consider two things the
same if we can continuously transform one into the other. For example, a
triangle is equivalent to a circle is equivalent to a square.

In differential topology, the part we will mostly be interested in, we only
allow smooth transformations. (Then square and circle are different, because
a square has edges which are not smooth.)

What Differential Topology is about:

Roughly speaking, differential topology is the study of properties that do not
change under diffeomorphisms (specified transformations that are allowed).

We will make sense of all this during the course. This is just a first super
rough distinction.

The goal of this class

Learn something about fundamental
e geometric objects, mostly we study smooth manifolds;
e methods and ideas in (differential) topology;
e applications of these objects and methods in different areas of
mathematics.

In order to get a first idea, let’s look at a fundamental example:

The Circle

Let us start with the unit circle
St ={(zy) ER*: 2 +9y* =1} C R
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The circle is something on-dimensional, isn’t it? But how do we describe
that precisely. Well, it’s clear if we zoom in at any point, it just looks
like a bended line segment. Looking very closely it even looks almost like a
striaght line segment.

So, ”locally” (whatever that means) the circle looks like a segment of R*.
The unit circle S, more generally, the n-dimensional sphere

Sn:{(xla"wxn+l) ER”+13$%+“'+$3+1=1}

is an example of a smooth manifold.

<
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Let us give a first working definition of what kind of objects we are going to

study:

Working definition: What is a manifold

A manifold is a geometric object such that each point has a neighborhood
which looks like R™.

We will make precise what "looks like” means. For smooth manifolds, we
need a condition that takes differentiable data into account. The right
notion is that of ”diffeomorphism”.

A universe of examples

The previous definition may sound quite strict. Every point looks the same
in a small neighborhood. But we will see that there is a huge universe of
examples of very different kind. In fact, one of the main goals in topology
is to classify all types of manifolds.

Here are two more pictures of examples of smooth manifolds: one of the

2-sphere, the other of the torus:
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And here is a NON-Example, the figure eight. The center point does not have
any "nice” neighborhood.

X=s'

0.4. Some nice theorems. Here are some examples of theorems we are
going to prove during this class:

Fundamental Theorem of Algebra

Let P(X) = X"+a, 1 X" ' +---+a; X +ap be a polynomial with complex
coefficients, i.e. ag,...,a,_1 € C.

Then P(X) has a zero in C, i.e. there exists at least one complex number
z € C such that P(z) = 0.

That means of course that P(X) has exaclty n zeroes in C (counted with
multiplicities).
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This has at first glance nothing to do with topology. But we can do it!
(Fundamental application)

Brouwer Fixed Point Theorem

Every continuous map f: D" — D" has a fixed point, i.e. there is an
x € D" such that f(z) = x. Here D™ is the n-dimensional unit disc

D" ={(z1,...,2) ER": 22 +--- + 22 < 1}

This may not look so exciting, but HOW can you show that a fixed point
always exists? (Fundamental method)

Hairy Ball Theorem

Assume you have a ball with hairs attached to it. Then it is impossible to
comb the hair continuously and have all the hairs lay flat. Some hair will
always be sticking right up.

A more mathematical formulation:

Every smooth vector field on a sphere has a singular point.

An even more general statement:

The n-dimensional sphere S™ admits a smooth field of nonzero tangent
vectors if and only if n is odd.

This just sounds like a fun fact. But wind speeds on the surface of the earth
is an example of a vector field on a sphere!
(Fundamental object AND application)

Something else one can prove using topological methods.

Multiplicative Structures on R”

Let R™ x R™ — R™ be a bilinear map with two-sided identity element e # 0
and no zero-divisors. Then n =1,2,4,or 8.

What we are looking for is a "multiplication map”. You know the cases
n =1and n = 2 very well. It’s just R and C = R? These are actually
fields.

For n = 4, there are the Hamiltonians, or Quaternions, H = R* with a
multiplication which as almost as good as the one in C and R, but it is
not commutative. (You add elements 4, j, k to R with certain multiplication
rules.)
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For n = 8, there are the Octonions @ = R®. The multiplication is not
associative and not commutative.
And that’s it!!

This is a really deep result!
The crucial and, at first glance maybe surprising, point to prove this fundamental
result is that the statement has something to do with the behavior of tangent
spaces on spheres. That’s a topological problem. Frank Adams was the first to
solve it. The prove goes way beyond the methods of this class, unfortunately.
So stay tuned on the Topology Chanel and lear more about it in Advanced
Aglebraic Topology...
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Topology in R” and smooth maps

Recall from Calculus 2 that the norm of a vector x = (z1,...,x,) € R" is
defined by

|x|:\/x%+m§+---+x%€R.

For any n, the space R" with this norm is called n-dimensional Euclidean
space. It is a topological space in the following way:

Open sets in R"”

e Let = be a point in R™ and r > 0 a real number. The ball
By(x) ={y eR": |z —y| <r}

with radius € around z is an open set in R".

e The open balls B,(z) are the prototypes of open sets in R™.

e A subset U C R” is called open if for every point © € U there
exists a real number € > 0 such that B.(x) is contained in U.

e A subset Z C R" is called closed if its complement R™\ Z is open
in R™.

s
pr= bak w IR
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e Familiar examples of open sets in R are open intervals, e.g. (0,1) etc.

e The cartesian product of n open intervals (an open rectangle) is open in
R™.

e Similarly, closed intervals are examples of closed sets in R.

13



14 TOPOLOGY IN R"™ AND SMOOTH MAPS

e The cartesian product of n closed intervals (a closed rectangle) is closed
in R".

e The empty set () and R™ itself are by both open and closed sets.

e Not every subset of R™ is open or closed. There are a lot of subsets
which are neither open nor closed. For example, the interval (0,1] in R;
the product of an open and a closed interval in R2.

WibhoF Doenddery 2 vifl. bexe
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Relative open sets

Let X be a subset in R™. Then we say that V' C X is open in X (or
relatively open) if there a an open subset U € R" with V =U N X.

4 2

R
X

>

It is important to note that that the property of being an open subset
really depends on the bigger space we are looking at. Hence open always
refers to being open in some given space.

For example, a set can be open in a space X C R?, but not be open in R2,
see the picture.
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Open sets are nice for a lot of reasons. First of all, they provide us with a
way to talk about things that happen close to a point.

Open neighborhoods

We say that a subset V' C X containing a point x € X is a neighborhood
of z if there is an open subset U C V with x € U. If V itself is open, we
call V an open neighborhood.

Second, the collection of all open subsets in a set X, define a topology on
X. A set together with a topology, is called a topological space.

We observe here that the word “topology” is used in different ways. On the
one hand, it is the name of a whole area in mathematics. On the other hand,
it is the name for a certain structure on a set.

We see that phenomenon happen quite often. For example,

e the term “algebra” denotes both a field in mathematics and a certain
type of structure on a set;

e the term “medicine” denotes the field, but a doctor can also prescribe
a specific medicine to cure a desease.

The type of maps that preserve open sets are the continuous maps:

Continuous maps

Let A be a subset in R®. A map f: A — R™ is called continuous at « if
for every € > 0, there is a 6 > 0 such that

O0<|z—a|l<d=|f(z)— fla)|] <e
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In our new fancy notation, we can reformulate the last condition as: given
any € > 0,

there is a 6 > 0 such that x € Bs(a) N A = f(x) € B.(f(a)).
Finally, in terms of limits, we could say: f is continuous at a if

lim £(z) = f(a).

The map f is called continuous if it is continuous at every a € A.

A more intrinsic characterization that serves as a definition for arbitrary topo-
logical spaces is the following.

Continuous maps: a more general characterization

A map f: A — R™ is continuous if and only if, for every open subset
U C R™, there is some open subset V' C R™ with f~1(U) = VN A (in other
words f~!(U) is open in A).

Proof:

First, assume f is continuous. Let U C R™ be an open set in R™. If f~1(U)
is empty, it is open by definition. So let a € f~1(U) be a point in f~1(U). The
fact that U is open means that there is an € > 0 such that B.(f(a)) C U. Given
this €, the fact that f is continuous means that

there is a § > 0 such that x € Bs(a) N A= f(x) € B(f(a)).
But
f(z) € B(f(a)) implies f(z) € U which implies x € f~1(U) N A.
Since = was arbitrary in Bs(a) N A this means Bs(a) N A C f~1(U).

Second, assume that f~1(U) is open in A for every open subset U C R™.
Given a € A and € > 0, let B.(f(a)) C R™ be the open ball around f(a) with
radius . Since B(f(a)) is open in R™, our assumption tells us that f~!(B.(f(a)))
is open in A. Since a € f~1(B.(f(a))) this means that

there is a § > 0 such that Bs(a) C f~1(B.(f(a))).
But that means
x € Bs(a) = f(x) € B(f(a)).

Hence f is continuous at a. Since a was arbitrary, f is continuous. QED
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Homeomorphisms

A continuous map f: X — Y is a homeomorphism if one-to-one and
onto, and its inverse f~! is continuous as well. Homeomorphisms preserve
the topology in the sense that U C X is open in X if and only if f(U) C Y
is open in Y.

Examples:

e tan: (—7/2,7/2) — R is a homeomorphism.
o f: R =R, v — 2 is a homeomorphism.

Example: Bijection which is not a homeomorphism

Let
St ={(zy) e R?: 2® +9* =1} C R?

be the unit circle considered as a subspace of R2. Define a map
f:[0,1) = S*, t > (cos(2mt), sin(27t)).

We know that f is bijective and continuous from Calculs and Trigonometry
class. But the function f~! is not continuous. For example, the image
under f of the open subset U = [0,7) (open in [0,1)!) is not open in S*.
For the point y = f(0) does not lie in any open subset V of R? such that

Vst = fU).

X i {w)
1 vt

{ ) \ N :
5k ) ) cws' 7
§00)
Spaces

From now on, when we talk about a space we mean a set together with a
specified topology or collection of open subsets.
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Remark:
For topological spaces X and Y, a map f: X — Y is defined to be continu-
ous if for every open set U C Y the subset f~1(U) is open in X. Just in case
you have heard of categories before: Topological spaces form a category with
morphisms given by continuous maps.

Here is another extremely important property a subset in a topological space
can have. We are going to use it quite often in fact.

Compact sets in R"

e A subset Z in a topological space is called compact if every open
cover {U;}; of Z has a finite subcover. That is, among the {U;}; it
is always possible to pick U;,, ..., U; with

e By the Theorem of Heine-Borel, a subset Z C R" is compact if

and only if it is closed and bounded. Being bounded means,
that there is some (possibly huge) » >> 0 such that Z C B,(0).

Compactness is an important example of a topological property:

Homeomorphisms preserve

Slogan: Topology is the study of properties which are preserved under
homeomorphisms. From this point of view, a topological property is
by definition a property that is preserved under homeomorphisms. For
example, if f: X — Y is a homeomorphism, then Z C X is compact if and
only if f(Z) CY is compact.

Finally, open sets are nice because we can say what it means to be differen-
tiable on an open set.

Recall: Smooth maps on open subsets

Let U CR™ and V C R™ be open sets. A map f: U — V is called smooth
if it has continuous partial derivatives of all orders (i.e.all the partial
derivatives 0" f;/0z;, ... Ox;, exist and are continuous for all k > 1).

Recall also: another way to say that f is differentiable at a € U if there
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is a linear map A: R™ — R™ such that

i W@t h) = fla) = AB)| _
h—0 |h| .

Note that if such a \ exists, it is unique and is often denoted df,.

Note that a smooth map is in particular also continuous. More generally, we
can define smoothness for maps between arbitrary sets subsets of R™:

Smooth maps

Let X CR"” and Y C R™ be arbitrary subsets. A map f: X — Y is called
smooth if for each x € X there exist an open subset U C R™ and a smooth
map F': U — R™ that coincides with f on all of X N U, i.e. Fxny = f.

(oD
xr/
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e The identity map of any set X is of course smooth.
olf f: X Y and g: Y — Z are smooth, then the composition g o f is

also smooth.
e Note that smoothness is a local property, that means we need to

check it only in a small neighborhood of any point.

Diffeomorphisms

A smooth map f: X — Y is called a diffeomorphism if f one-to-one and
onto, and its inverse f~! is smooth as well.
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We say that X and Y are diffeomorphic if there exists a diffeomorphism
X =Y.

Note that every diffeomorphism is a homeomorphism, but not the other way
around. For example, f: R — R, x — 2® is a homeomorphism, but not a
diffeomorphism. Exercise!

S f Affonothc aud vnelflorerpl

Diffeomorphic spaces are “equivalent”

Differential topology is the study of those properties of spaces which do not
change under diffeomorphisms. In other words, from the point of view of
differential topology, diffeomorphic spaces are equivalent, and we may (and
will) consider them as copies of the same abstract space, which may happen
to be differently situated in their surrounding Euclidean spaces.
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Smooth manifolds

Recall that we defined what it means for subset X C R" to be open. One
reason why open sets are useful is that give us a way to talk about things that
happen close to a point. In order to stress this way of thinking we are going to
use the following way of speaking:

Open neighborhoods

We say that a subset V' C X containing a point x € X is a neighborhood
of z if there is an open subset U C V with z € U. If V itself is open, we
call V an open neighborhood.

Local properties

If we refer to something that happens in the neighborhood of a point z € X,
then we are often going to say that it happens locally (at z). Moreover, a
property of a space or a function that we only need to test for a neigh-
borhood of each point is a local property. For example, smoothness of
a map is a local porperty (for we test it in a neighborhood of each point).
In contrast, there are global properties which are properties that describe
the whole space.

Manifolds are now spaces that locally look like Euclidean spaces in the
following sense.

Smooth manifolds

Let RY be some big Euclidean space.
e A subset X C R¥ is a k-dimensional smooth manifold if it is
locally diffeomorphic to R*. The latter means that for every point
x € X there is an open subset V' C X containing x and an open
subset U C R*¥ such that U and V are diffeomorphic.

21
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e Any such diffeomorphism ¢: U — V is called a (local)
parametrization.

e The inverse diffeomorphism ¢—': V — U is called a (local) coor-
dinate system on V.

The natural number N in the previous definition is not specified. We just
assume that there is some RY big enough to fit X into it. We are going to discuss
what we can say about the minmal N later. It is actually a very interesting
question.

Remember that U is a subset of R¥. Hence it makes sense to express a point
u € U by its coordinates u = (uy, ug, ..., u;). Hence, given a coordinate system
¢tV — U on V, we can talk about the coordinates ¢; ' (), ¢35 (7), ..., ¢, (z))
of a point € V. Writing u;(z) = ¢; *(z) for i = 1,...,k, we usually drop
mentioning ¢! and just talk about the coordinates (ui(z),us(x), ..., ux(z)) of
x. Hence the uy, ..., u are really coordinate functions.)

First examples

e An obvious example of a k-dimensional manifold is an open subset
U C R*. The identity map U — U is a parametrization of all of
U. For example, any k-dimensional open ball B,(x) around some
point is a manifold of dimension k.

e A 0-dimensional manifold M just consists of a collection of discrete
points. Given # € M, the set {z} C M consisting of x alone is
open in M and is diffeomorphic to the one-point set R°.

A fundamental example that will play an important role during the whole
semester is the n-dimensional sphere.

The unit circle

We start with n = 1: Let
St ={(z,y) e R*: 2* +y* =1} C R?
be the unit circle. We are going to show that S' is a 1-dimensional

manifold.
First, suppose that (x,y) lies in the upper semicircle where y > 0. Then

¢1(x) = (x, V1 —x?)
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maps the open interval W = (—1,1) bijectively onto the upper semicircle.
Its inverse is the projection map

o1t (xy) = x

which is defined on the upper semicircle. This ¢; ' is smooth, since it extends
to a smooth map of all of R? to R!. Therefore, ¢, is a parametrization.

A parametrization of the lower semicircle where y < 0 is similarly defined
by

$2(z) = (x,—V1 — 22) with inverse ¢, ' (z,y) = =.

These two maps give local parametrizations of S' around any point except
the two points (1,0) and (—1,0). To cover these points, we can use the maps

¢3(y) = (V1 —9%y) and ¢u(y) = (V1 -9 y)
which map W to the right and left semicircles, respectively.
This shows that S! is a 1-dimensional manifold.

ey) #(x)

& %,
W »
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Need at least 2 parametrizations

Note that we have used 4 parametrization maps in the above example. It is
an exercise to show that it is possible to cover S! with only two parametriza-
tions. (But just one parametrization cannot be enough, because S* is com-
pact. For, if such a difeomorphism ¢: S' — U C R! to an open subset
existed, it would mean that U is compact contradicting the Theorem of
Heine-Borel.)
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More generally:

n-sphere

The n-sphere
S" = {r e R : |z| = 1} c R™™

is an n-dimensional smooth manifold.

Stereographic projection

The method of stereographic projection yields a cover of the k-sphere with
only two parametrizations. It is an exercise to find the formulae for the
corresponding diffeomorphisms.

v (S

" Shragafic pefckn

Submanifolds

If Z and X are both manifolds in RY and Z C X, then Z is a submanifold
of X. In particular, X itself is a submanifold of RY. Any open subset of X
is a submanifold of X.
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Creating new manifolds out of old ones

Let X C RY and Y C RM be manifolds of dimensions k and [, respectively.
Then X x Y C RY*M js a manifold of dimension k+1[. For let W C R¥
an open set with ¢: W — X a local parametrization around z € X, and
U C R¥ an open set with ¢»: U — Y a local parametrization around y € Y.
Then we can define the map

dx: W xU—=X XY, ¢ xp(wu) = (p(w),Y(u)).

from the open set W x U C RF x R! = R¥* to X x Y. This map defines a
local parametrization around (x,y). (Check this!)

Here is a picture of two smooth manifolds:

‘\‘ Usi* :
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And a picture of a hyperboloid (a manifold) and a cone (not a mani-
fold), see the exercises.



26

SMOOTH MANIFOLDS

-

bupwbe i 42" | u x4-¢0

"""'“JH‘{/ wfam}{{

Coordinate axes in R?

Let us show that the union of the two coordinate axes in R? is not a
manifold.

Let us call the union X. The critical point is of course the origing (0,0), since
every other point on X has an open neighborhood which is diffeomorphic
to an open intervall in R. But no point in R? with d > 2 has an open
neighborhood homeomorphic to an open intervall. Hence X could only be
1-dimensional.

Now let us check the point O = (0,0). If X was a manifold, there would
be an open subset V' C X around O diffeomorphic to an open intervall
in R. By definition of open sets in a subset of R?, there must be an open
ball B.(O) such that B.(O)N X contained in V. Let I be the open intervall
in R homeomorphic to B.(O) N X.

The subset B.(O) N X contains, in particular, the points

Pl = (—6/2,0), P2 = (0,6/2), and P3 = (6/2,0)

In B.(O)N X, there are paths

e from P, to P, not passing through P;

e from P, to P; not passing through P,

e from P, to P; not passing through P;.
But there is no triple of distinct points with this property in the
open intervall / C R. Hence I cannot be homoeomorphic to B.(O) N X.
Hence O does not have a neighborhood homeomorphic to an open intervall
in R, and X is not a manifold.
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LECTURE 4

Tangent spaces and derivatives

Let us get back to the derivative of a smooth map f: R” — R™. Let = be a
point in the domain of f and h € R™ be any vector in R”. Then the derivative
of f in the direction h can be defined as the limit

df.(h) = lim fla +th) — f(z)

t—0 t

Hence for a fixed z, the derivative is a map
df,: R" — R™

sending a vector h € R™ to the vector df,(h) € R™. In Calculus we learned that
this map is linear (which means df,(h + g) = df.(h) + df.(g) and df,(A\h) =
Adf.(h) for all h,g € R" and A € R). Note that df, is defined on all of R"

even if f is not.

The derivative is a linear approximation

The derivative of f is a map on its own. We think of the parallel translate
of df, to z,i.e. h — x+df,(h) as the best linear approximation of f at x.
Note that if f = L: U — R™ is a itself a linear map, then

df, = L for all z € U.

In particular, the derivative of the inclusion map U C R" at any point x € U is
the identity map on R".

29
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df, and the tangent line

In Calculus 1, we visualized the derivative by saying that f’(x) is the slope of
the tangent line at the graph of f at the point (z,f(x)). But the derivative
f'(x) really is the linear map df,: R — R given by multiplying with the
real number f'(z). The tangent line at (x,f(z) corresponds to the parallel
translate of the linear map df,, whose graph is the line through the origin
with slope f'(x).

We observe that, in order to get a vector space, the tangent space to the
graph of f at (z,f(x) is the image of R under df, in R

b
w (x, Jco) trlw(cri the
A’im Ade cg(-' EP—-’)[R

h— j’wl\

T
PP Rage Gl

We are going to use this picture of parallel translates to define the tangent
space of a manifold at a point.

Let X C R be k-dimensional manifold and x € X a point. Let ¢: U — X
be a local parametrization around z (i.e. there is an open subset V' C X
containing = and an open subset U C R* together with a diffecomorphism ¢: U —

V'; we then also write ¢: U — X for the composite U LA VN X).
We assume ¢(0) = z.

Tangent space

Then the best linear approximation to ¢: U — X at 0 is the map
u > ¢(0) + dpo(u) = z + dpo(u).



TANGENT SPACES AND DERIVATIVES 31

We define the tangent space 7,(X) of X at z to be the image of the
linear map d¢,: R* — RY. Note that T,(X) is a vector subspace of
R,

Its parallel translate x + 7,.(X) is the best linear approximation to X
through the point z.

By this definition, a tangent vector to X C RY at z is a point v € R¥

that lies in the vector subspace T,(X) of RY. However, we usually picture v
geometrically as the arrow running from z to +wv in the translate z+7,,(X).

xt & (X)

o/”“.

MM %ﬁT{.Funfr

In order to define 7, (X) we made a choice of a parametrization ¢. We have
to check what happens if we choose a different parametrization. Are we getting
the same tangent space?
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T,(X) is well-defined

Solet ¢: V' — X be another local parametrization around x with ¥ (0) =
x. By shrinking both U and V' we

can assume ¢(U) = (V)
oU)Ny((V)) cU
)N (V) C V). Then the map
=9y lop:U—=V
is a diffeomorphism (its the composite of two diffeomorphisms). By definition
of 6, we have ¢ = 1 o . Differentiating yields
dog = dipg o dfy
(where we have used the chain rule). This implies that the image of dgg is
contained in the image of dvy:
doo(R¥) C diso(R¥) in RN,
By switching the roles of ¢ and 1 in the argument, we also get:
d)o(R*) C dgo(R¥) in RN,
Hence dog(R*) = diyo(RF) in RY. This shows that whatever local

parametrization around z we start with, the vector subspace T,(X) C R" is
always the same. In mathematical terms we say that 7,,(X) is well-defined.

(replace U by ¢ (
and V by ¢y~ (p(U

Dimension of T,(X)

If X is a k-dimensional manifold, then 7,(X) is a k-dimensional vector
space over R. (For we know from Calculus that the derivative of a diffeo-
morphism is a linear isomorphism. Hence d¢, is an isomorphism of vector

spaces dgy: RF =5 T,(X).)

Example: Tangent space at the unit circle

Let p = (a,b) € S be a point with b > 0. A local parametrization around
p with ¢(0) = p is given by

¢: (—ee) > SH s (t+a,v/1— (z+a)?).
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The derivative at z is the linear map
dby: R >R, dgy— (1, — —21% )
1—(z+ a)?

Hence the image of R under dg¢g in R? is the line spanned by (—b,a) (writing

b= vI—a).

Example: Tangent space at S

Let p = (a,b,c) be point on S? which is not the north pole. Then we use
the stereographic projection ¢ : R? — S? as a local parametrization. (We
do not need to translate first to get ¢x(0) = p. That is up to us.)

Recall that
1 2 2
¢N($7y) - 1+ 2 + y2 (25672:%m + Yy — 1) .

The derivative at (x,y) is the linear map d¢y: R?> — R? defined by the
matrix (in the standard basis):

9 1— 22 + o2 —2zy
2 .2
d(ON) (zy) = m —22939 1 +$2 -y
€z Yy

The image of R? under the linear map d(@n)(,y) is the tangent space
T ¢N(x7y)52. This image is spanned by the two column vectors of the ma-
trix d(¢n)(z,y)- Let us check that we get the space we would have expected,
i.e. a plane which is orthogonal to the vector ¢y (z,y) (neglecting the first
factors):
1 — 22 492
(2x,2y,x2 + 97 — 1) . —2xy
2z

=2z(1 — 2>+ %) — 2zy® + 2z(x® + > - 1)
=27 — 23 + 2xy2 — 4xy2 + 223 + 2:z:y2 —
= {0,
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Similarly,
—2zy
(2x,2y,x2 + g2 — 1) |14 2% — 92
2y
= —dz’y + 2y(1 + 2° — %) + 2y(a® +y° — 1)
= —d2’y + 2y + 222y — 2% + 22%y + 2y° — 2y
=0.

Hence the plane spanned by the column vectors is orthogonal to ¢x(x,y).

The induced derivative

Now let f: X — Y be a smooth map from a k-dimensional smooth manifold
X C R” to an [-dimensional smooth manifold Y € R™. We would like to define
a map best linear approximation of f at a point z. For y = f(z), this
should result in a linear map of vector spaces

T.(X) = T,(Y).

Suppose that ¢: U — X is a local parametrization around z with U C R*, and
Y:V — Y a local parametrization around y with V' C R!. We can assume
¢(0) = x and 9(0) = y. Then we define a map 6: U — V by the following
commutative diagram (which means that it does not matter which way we walk
around from U to Y):

X

|

»Y

i@b

=y~ lofop

Define df,

Taking derivatives yields a diagram of linear maps and we define df, to be
the linear map which makes the diagram commutative:

df

Ty(X) oot iy T (Y)
dd)OT Td’ll)o
RF s RE

dbo
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Since dgy is an isomorphism, we have to define df, as
dfy := dyg o dfp o dgy .
We call df, also the derivative of f at x.

Again, we need to check that our definiton of df, does not depend on the
choices of parametrizations. This is left as an exercise. (See below.)

Tangent space of products

Given two smooth manifolds X C RY and Y € R™ and points x € X,
y € Y, then the tangent space of the product X and Y is the product of
the tangent spaces, i.e.

Ty (X xY) =To(X) x T,(Y).
This follows from the fact that we can choose neighborhoods in X x Y by
taking the product of neighborhoods in X and Y, respectively.
Moreover, it is easy to check that if : X — X’ and ¢: Y — Y are smooth

maps, then the derivative of the prdoct map is the product of the derivatives,
i.e.

d(f x 9)(w,y) = df, x dg,
for all (z,y) € X x Y.

Finally, we would like to have that the new derivative satisfies the chain
rule. So let g: Y — Z be another smooth map. Let n: W — Z be a local
parametrization around z = ¢(y) with an open subset W C R™ and 7(0) = z.
Then we have a commutative diagram

X ! Y g 7z
4 Ti/) Tn
U W

V
0=y~ lofo¢ v=n""togoy
which gives us the commutative square

X 9o/ . 7

‘| [r

U W.

o6
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Thus, by definition,
d(go f)e =dnyod(to8)yodpy’.
The Chain Rule from Calculus 2 for maps of open sets of Euclidean spaces, then
gives
d(to8)y = (dig) o (dby).
Thus
d(go f)e = (dnoodiyodipyt) o (diby o dfy o degt) = dg, o df.
Hence we have in fact the desired rule.

Chain Rule

it X L v % Z are smooth maps of manifolds, then
d(g o [z = dgs) © dfs.

Let ¢': U — X and ¢': V' — Y be another choice of local parametrizations
around x and y, respectively. Again by shrinking both U and U’, both V" and V'
accordingly we can assume that ¢(U) = ¢'(U’) C X and (V) =¢'(V') C Y.
Then d¢o and de), differ by a linear isomorphism of R*, say a: dgy = d¢j o a.
Similarly, there is a linear isomorphism S of R! such that dyy = di} o 3. Let
¢': U — V be defined similarly to 6, i.e. @ = ¢/ ' o fo¢. This gives us the
following diagram in which each square commutes

dfa

To(X) oo T (V)
o W
deo R* 7, R dipo
| d
R* R'.
dfo

Hence we get the desired identity
dip}y o dfy o dely ™" = dip o df o oy = df,.

For more examples of tangent spaces have a look at the exercises.



LECTURE 5

The Inverse Function Theorem and Immersions

The Inverse Function Theorem

For our quest to understand smooth manifolds, it can be smart to study maps
between manifolds (even though it sounds like making things even more difficullt;
but if we know something about X and about a map f: X — Y then we might be
able to say something interesting about Y). Anyway, there are a lot of interesting
problems than can be stated in terms of properties of maps.

We have learned about the derivative of a map as a linear transformation
between tangent spaces. We may think of the derivative as the best linear
approximation at a point.

Solet f: X — Y be a smooth map between smooth manifolds. Remember
that the derivative at x € X, df,: T, X — Ty(;)Y, is a linear map between vector
spaces. Since it is easier to understand linear maps, it would be nice if we could
classify maps like f by the behaviour of df, (with x varying in X).

A natural question:

How much does df,. tell us about the map f7

For the behavior df,, there are three basic cases:

e dim X = dimY in which case the nicest possbile behavior of f at x is
that df, an isomorphism.

e dim X < dimY in which case the nicest possbile behavior of f at z is
that df, one-to-one.

e dim X > dimY in which case the nicest possbile behavior of f at z is
that df, onto.

We are going to consider these cases separately.

37
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First case: df, is an isomorphism

We begin with the nicest case when df, is an isomorphism. This implies in
particular: dim X = dimY.

Manifolds are characterized by the way they look in a neighborhood around
any point (they look like Euclidean space). So let us think locally. In the nicest
case, f sends a neighborhood of a point z diffeomorphically to a neighborhood of
y = f(x). In this case, f is called a local diffeomorphism at x.

If f is a diffeomorphism U — V between neighborhoods U arround x € X
and y = f(z) € Y, respectively, let f~! be its smooth inverse. Then we have
flof=1Idy and fo f~! = Idy. Then the chain rule implies

d(Idy), = d(f~1), o dfs, and d(Idy), = df, o d(f™1),.

But we obviously have d(Idx) = Idr, (x) for any manifold X and any point z € X.
Hence df, is an isomorphism with inverse d(f™") ().

Thus a necessary condition for f to be a local diffeomorphism at x is that
its derivative df,: T,,(X) — T,(Y) is an isomorphism.

It is an important result that this is actually a sufficient condition.

In order to prove this, we recall the corresponding important result for Eu-
clidean space from Calculus:

The Inverse Function Theorem in Calculus

Suppose that f: R" — R™ is continuously differentiable in an open set
containing a, and det df, # 0, i.e. df, is an invertible linear map R” — R™.
Then there is an open set IV C R" containing a and an open set W C R”
containing f(a) such that f: V' — W has a continuous inverse f~1: W — V
which is differentiable and for all y € W satisfies

1

d(f_l)y = (dff‘l(y))_ :

Note that this is exactly the formula you are used to from Calculus 1 where
we learned

(You may be used to this formula as (f~!)'(y) = m But the fraction

here is misleading, since (f~!)'(y) is a linear map. The superscript “to the —1”
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really means take the inverse map! In dimension 1, the inverse map happens
to be given by multiplication by the inverse number. But for linear maps or
matrices in dimensions > 1, we cannot write the inverse as a fraction.)

The Inverse Function Theorem

Let X and Y be smooth manifolds. Suppose that f: X — Y is a smooth
map whose derivative

dfx: Tx(X) — Tf(m) (Y)

at a point € X is an isomorphism. Then f is a local diffeomorphism
at x.

The great thing about the IFT is that it tells us that in order to check that
f is a diffeomorphism in a neighborhood of a point z, we just need to check that
a single number, the determinant of df,, is nonzero.

Idea of Proof: We can assume that X and Y are subsets in RY for some large
N. Let ¢: U — X be a local parametrization around x € X, and ¢: W — Y a
local parametrization around y = f(x) € Y with U C R™ and W C R" open and
»(0) = z and ¥(0) = y. (The dimension has to be the same when the tangent
spaces are isomorphic.)

We define the map 6: U — W as in the following diagram:

X ! Y

4 Tw

U W
0=y~ lofod

Then recall that df, is defined such that the following diagram commutes

df

To(X) oo T (V)
d(boT Td?bo
RF R,
dfo

Our assumption is that df, is an isomorphism which implies that df, is an
isomorphism. By the IFT in Calculus, this implies that there is

e an open neighborhood V' C U around 0 and
e an open neighborhood V' C W aroud 0 such that
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o Ojy: V — V'is a diffeomorphism.
Since ¢ and v are diffeomorphisms, ¢(V') C X and (V') C Y are open neigh-

borhoods of z and y, respectively. Moreover, ¢, and 1)y are local parametriza-
tions around x and y, respectively, and

fisrys o(V) = (V')
is a diffeomorphism. QED
Note that this is a local statement, i.e. if df, is invertible, it only tells us
that f is invertible in a neighborhood of x. Even if df, is invertible for every
x € X, one cannot conclude that f: X — Y is globally a diffeomorphism. But

such an f is a local diffeomorphism for every point z € X. We call such a map
a local diffeomorphism (without having to refer to a point).

Example 1: A global diffeomorphism

The map
(=m/2,m/2) = R, t — tant

is a global diffeomorphism.

Example 2: A local but not global diffeomorphism

A standard example of a local diffeomorphism which is not a global diffeo-
morphism is the map

f: R = S* C R? t — (cost,sint)

that we have already met in Lecture 2. Let us check how this example
works:

First, f is not a global diffeomorphism because it is not injective. And
in Lecutre 2 we have seen that f is not a homeomorphism even when we
restrict it to [0,2r) — S'. But anyway, S' is compact and R is not, so
there is no chance of finding a diffeomorphism between them.

Second, the IFT tells us that f is indeed a local diffeomorphism, since
df; is an isomorphism for every ¢ € R. For, let ¢, € R such that cos(ty) < 0
(for other points the argument is similar, we just want to be able to choose
a parametrization), and consider the local parametrization

i (=11 = Viy = (=vV1 =32y
of S* around f(ty) with V = {(z,y) € S* : x < 0}.
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For an € > 0 such that both cos(ty — €) < 0 and cos(ty + €) < 0, we let
¢: U = (ty — €,tpe) — R be the local parametrization around ¢, given by
the identity (we don’t shift U to be centered around 0). Then the map
0: U — W (see proof of the IFT) is defined as

0 =1¢""ofoptrs sint.
Then we get

df;: R — R, z > (cost) -z
and

dipy: R = R? 2 (———x

Since ¢ is the identity, we have
dfto = dwsin to o deto

and hence
sin tg

dfy,(2) :(—COS to,l)(cos to) - 2

=(—sintg, costy) - 2.
Summarizing we have
dfty: TR =R — Ty(1)S" = dip(R) = (—sin(to), cos(ty)) - R?,
2+ (—sin(tg), cos(ty)) - 2

which is an isomorphism (when cos(t) # 0).
For any other point in R, there is a similar argument.

We close this first case, with an observation and some new terminology (way
of speaking).

In some situations it would be nice if we could assume that the linear iso-
morphism df, was the identity. This is usually not the case of course. But our
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freedom of choosing local parametrizations allows us to do the following. Assume
that df, is an isomorphism as in the IFT. Then, after possibly shrinkning U, we
can assume U =V and find a diffeomorphism v: U — U such that df, composed
with dagy becomes the identity.

df, looks like the identity

If df, is an isomorphism, we can choose local parametrizations ¢: U — X
and ¢: U — Y around x and f(z), respectively, with the same open domain
U C R”, such that the diagram commutes:

X J Y
4 Tw
U U.
dy

For example, in Example 2 above, we would replace
e (—1,1) with U = (tp — €,tp + €) and
e 1 with
pof:trs (—\/1—sin’t,sint) = (cost,sint)
(remember cost < 0 for t € (g — €,tp + €) by our choice of ¢, and

€).
In general, we are going to explain how to choose suitable parametrizations
in the next section.

We would like to reformulate the IFT by saying that f is equivalent to the
identity. To make this precise, we introduce the following terminology:

Equivalence of maps

We say that two maps f: X — Y and ¢g: X’ — Y’ are equivalent if there
exist diffeomorphisms o and g completing a commutative square

f

X > Y
g &
X' Y’

g

(One might also want to say that f and g are the same up to diffeomor-
phism.)
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Hence the IFT says that if df, is an isomorphism, then f is locally equivalent
at x to the identity. Since a linear map is equivalent to the identity if and only
if it is an isomorphism, we get:

IFT revisited

f is locally equivalent to the identity precisely when df, is.

Immersions

We move on to the next case:

Second case: df, is injective

Let us now assume dim X < dim Y. Then the best possible behavior of df,
is that
dfx: Tz(X) — Tf(m) (Y)

is an injective linear map.

Let us introduce some terminology for this case.

Immersions

If df, is injective, we say that f is an immersion at z. If f is an immersion
at every point, we say that f is an immersion.

The canonical immersion is the standard inclusion for n < m:

R™ — R™, (a,...,an) = (a1,...,a,,0,...,0).

Following our previous observation (i.e. up to diffeomorphism), the canonical
immersion is locally the only immersion:

Local Immersion Theorem

Suppose that f: X — Y is an immersion at z, and y = f(x). Then there
exist local coordinates around z and y such that

fe, ... ,mn) = (21, .., 2,,0,...,0).
In other words, f is locally equivalent to the canonical immersion.
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How to read the Local Immersion Theorem

We should read the statement in the LIT as follows: We can choose local
parametrizations ¢: U — X around x and ¢: V — Y around y such that in
the commutative diagram

X ! Y
4 Tw
U %4
0=y~ lofod

the map 6 is the canonical immersion restricted to U.

Proof of the Local Immersion Theorem:
We start by choosing any local parametrization ¢: U — X with ¢(0) = z and
YV =Y with ¢¥(0) = y:

X Y
4 }zz
U %4
0:1/1_10fo¢

Now the plan is to manipulate ¢ and 1 such that g becomes the canonical im-
mersion.

By the assumption, we know dfy: R™ — R™ is injective. Now recall that we
can represent a linear map between the vector spaces R™ and R™ by an m X n-
matrix. In order to do that we have to choose a basis for the vector spaces.

(For R™ we usually use the standard basis. That’s why we often don’t think about
bases when we look at a linear map R” — R™.)
By choosing a suitable basis for R™, we can assume that df, is the matrix

()

which consists of the n x n-identity matrix sitting in the first n rows, and the
zero (m — n) X n-matrix occupying the remaining rows.

Choosing a basis

Recall that choosing a suitable basis works as follows:
Let e},....el € R" be the standard basis, and let by = dfy(el}),...,b, =
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dfy(el) € R™ be the images under dfy. In terms of the standard basis of
R™, the matrix for dfy is given by the m x n-matrix A with b; as ¢th column
vector.

Since df is injective, the vectors by, ... b, are linearly independent. We
would to extend these vectors to a suitable basis of R™. Let span(by, ... ,by,)
be the image of dgy in R™, and let span(by, ... ,b,)* be its orthogonal com-
plement in R™. Let c,y1,...,¢,, be a basis for span(by,...,b,)~. (You
learned in Matte 3 how to find such a basis: span(by,...,b,)" is the null
space or kernel of the matrix A above.) We define a new basis for R™ as
bl, ° 00 7bn7cn+17 A = R™.

In terms of this basis, the matrix of df, is exactly M (%") (Recall also
that, in order to switch from the standard basis of R to that new basis,
we apply the m x m-matrix B whose first n columns are by, ... b, and re-
maining m — n columns are ¢, 1, ...,c,. Again, since df is injective, B is
an invertible matrix which sends the standard basis ef, ... el € R™ to the
basis by, ... ,bp,Cpi1, - - - ,Cm € R™.)

Back to the proof: We define a new map
©: UxR™"™ — R™ by O(x,2) = 0(z) + (0,2).
It is related to @ by the picture

canonical m—n
U immersion U xR
N 5
R™.
Since 6 is a local diffeomorphism at 0, we can choose U and V small enough
such that € sends open sets to open sets. Moreover, the matrix representing d©,
(in our chosen basis) is just the m x m-identity matrix I, (it’s M (&) with the
zero replaced with the remainind standard basis vectors e]',,,....eq). By the
Inverse Function Theorem, this implies that © is a local diffeomorphism of R™ of
itself at 0. Since v and © are local diffeomorphisms at 0, so is the composition

1o ©. Hence we can use )0 O as a local parametrization around y. Finally, after
possibly shrinking U and V' we get the desired commutative diagram

! Y

‘| [vse

canonical
U \%4

immersion

which proves the theorem. QED
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Still an immersion in a neighborhood

We observe from the proof of the theorem that if f: X — Y is an immersion
at x, then it is also an immersion for all points in a neighborhood of
x. For, local parametrization ¢: U — X of the proof also parametrizes any
point in the image of ¢ which is an open subset around x (open because ¢
is a diffeomorphism onto its image).

To be an immersion is a local condition. For example, if dim X = dimY,
then being an immersion means being a local diffeomorohism. Hence in
order to say more about f we need to add some (more global) topological
properites to the local differential data.

For example, for a local diffeomorphism to be a global one, it has to be
one-to-one and onto.



LECTURE 6

Immersions and Embeddings

Last time we studied immersions. Recall:

To be an immersion is a local condition. For example, if dim X = dimY’,
then being an immersion means being a local diffeomorohism. Hence in or-
der to say more about f we need to add some (more global) topological
properties to the local differential data.

For example, for a local diffeomorphism to be a global one, it has to be
one-to-one and onto.

Let us look at the image of an immersion. The nicest possible case is the
image of the canonical immersion R” < R™. The Local Immersion Theorem
tells us that locally any immersion looks like the canonical one. But we are
now going to see:

Be aware!

The image of an immersion is not always a submanifold.

Let us try to understand what can go wrong:

Let f: X — Y be an immersion. Then we know from the Local Immersion
Theorem that f maps any sufficiently small neighborhood W of any point z
in X diffeomorphically onto its image f(IW) C Y. (By the LIT, W is diffeo-
morohic to a U C R"™ which sits canonically in V' C R™ which is diffeomorphic
to f(W), see the picture.)
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w—2 gy T

| NN

®" > U @1 mdsim V"'R“'

Not open in Y?

Hence every point in f(X) lies in a subset which is diffeomorphic to an open
subset in R™. Isn’t that the definition of f(X) being a submanifold?

No. The problem is that f(W) does not need to be open in Y. Hence
we cannot garantuee that points in f(X) are in parametrizable open
neighborhoods. UGH!

Before we try to find a global condition to fix this issue, let us look at some
examples of immersions whose image is not a submanifold.

X=S' y-'-"rl'am eﬁf'

doist @ (Y(X) is ot a
- | /—D @ — s folol

uda!-v:“ J (5 Wit Owe-bou,
. ) Z ‘ F
ag‘::*fm

In the example above, f is not one-to-one and f(X) has a point that is not
smooth.



IMMERSIONS AND EMBEDDINGS 49

But even when f is one-to-one, this can happen, as the next example demon-
strates. The image f(X) is the same as above and not a manifold.

Iy s uf @
/w_vl;:skn 8,(0) Mm'faé(,m
=R %o«al-'fis oveTo-ove.

}Q. .
mu{tnaa 509 a0 above

Figure eight immersion

In this example, the map f can be defined as
f: R — R? t s (sin(4arctant)),sin(2 arctant)).

(The image of f is called a lemniscate, the locus of points (x,y) satisfying
2? = 4y*(1 - y?).)

We can check that f is smooth, one-to-one and an immersion (df; is
never zero and hence as a linear map between one-dimensional vector spaces
an isomorphism).

But f(X) is not a submanifold and f is not a diffeomorphism onto its
image, because f(X) is compact while X is not (an open interval in R).

Torus by gluing:
Let g: R — S! be the local diffeomorphism ¢ + (cos(27t), sin(2nt)). We define

G:R? = St x S'=T% G(z,y) = (9(z),9(y))

The map G is a local diffeomorphism from the plane onto the torus 7°. (G
“glues” opposite sides of the square together, see the picture.)
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We define the map v by

iR = T2, ~(t) = (g(t),9(x - 1))

where « is an irrational number.

G

ivedd. P
ar SEED;
3/

l'mac. 03 lie with  swathiomal Slepe

Note that another way to describe v = ~, would be to define it by
Vo ! R — Sl % Sl7 t (627rit,627riat)

where we consider S* as a subset of C = R2. Then we require that the quotient
« is irrational.

Image of a line with irrational slope

The map v is an immersion because dv,; is nonzero for every ¢ (and as
before a nonzero linear map from a one-dimensional vector space to another
is automatically injective; its image is a line in that other vector space).
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And v is injective, since y(t;) = y(t2) implies
9(t1) = g(t2) and g(aty) = g(ats)

= cos(2mty) = cos(2mty) and cos(2maty) = cos(2mats)

=t —ty € Z and a(t; — t3) € Z
which is impossible, since « is irrational, unless t; = 5.
Actually, one can show that the image of 7 is a dense subset in T2. But v
is not a diffeomorphism onto its image, since it is not even a homeo-
morphism:
For, look at the set v(Z) = {y(n) : n € Z}. By Dirichlet’s approximation
theorem, for every € > 0, there are integers n and m such that

lan —m| < e.

Since the line segment between two points (costy,sint;) and (costs, sints)
on the unit circle is shorter than the circular arc of length |t; — t5| we have

|(cos(2man), sin(2ran)) — (1,0)]
=|(cos(2man), sin(2ran)) — (cos(2wm), sin(2rm))|
<2m|an — m)|
<2me.

Therefore,
[(n) = 7(0)]

=[((g(n),g(an)) — (9(0),9(0))|

:’ ((170)7(COS(27TO[”)7 Sin(QWan))) o ((170)7(170)) ‘

=|(cos(2man), sin(2ran)) — (cos(2wm), sin(2rm))|

<2m|an — m)|

<2me.
Thus, there is a sequence of integers such that v(n) converges to v(0), i.e.
7(0) is a limit point in v(Z). But Z does not have any limit points in R.
But note that the image of a convergent sequence under a continuous
map is again a convergent sequence. Hence if 7! was continuous, then

0 = 7 !(7(0)) had to be a limit point as well. Hence v is not a homeo-
morphism onto its image.
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Aside: LIT for the above example

Let to = 0 for simplicity. We apply the LIT to the map
v:R— S'x S
above. First, we parametrize R by the identity and pick some U = (—1,1).
Then we parametrize St x S! around ~(0) = (1,0,1,0) by
Y: V= (-11) x (-1,1) = S* x S*,
(z,) = (VI —2%2,\/1 - 2y).
The corresponding map 6: U — V is then
t — (sin(27t), sin(2wat)).

Now we would like to modify the local parametrization ¢ around (0) such
that 6 becomes

U—UXxR,t— (t,0).
For that we define a new map
0: U xR — R? (t,5) = 0(t) + (0,s).

Then we compose ¢ with © to get a new local parametrization around +(0):

1o O: (t,5) —(y/1 — sin®(2xt), sin(2nt),

V1 — (sin(2wat) + s)2,sin(2mat) + s)
=(cos(2nt), sin(27t),
V1 — (sin(2rat) + )2, sin(27rat) + s).

Finally, in order to make everything work, we have to make U and V' small
enough such that sin(27t) and sin(2rat) + s stay in (—1,1) for all t € U
and 6(t) + (0,s) € V.

The pathologies of the last two examples arise because the map sends points
near infinity in R into small regions of the image. So if we want to tame
our immersions we have to try to avoid such a behavior. It will turn out that this
is the only problem.

The topological analog of points near infinity in a topological space X is
the exterior or complement of a compact set.
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Proper maps

A map f: X — Y between topological spaces is said to be proper if the
preimage of any compact subset is a compact subset.

(Recall: For a general continuous map, the image of any compact set is
compact. Check that you understand why!)

Let f: X — Y be a proper map and let Z C Y be a compact subset of Y.
Then f~'(Z) C X is a compact subset of X, since f is proper. The complement
X\ f7YZ) of f7YZ) in X is the largest subset of X which is not mapped to
Z under f. Since f is proper, every point x € X \ f7'(Z) is contained in the
complement of a compact set and f(x) ¢ Z. Thus f sends x to the complement
of a compact subset in Y. Therefore, morally speaking, a proper map sends the
complement of a compact set to the complement of a compact set. In other words:

Proper maps respect infinity

Proper maps send points near infinity to points near infinity.

Let us give proper immersions a name:

Embeddings

An immersion that is one-to-one and proper is called an embedding.

Properness turns out to be a sufficient global topological constraint for a
local immersion. For proper maps we have the following extension of the Local
Immersion Theorem.

Embedding theorem

An embedding f: X — Y maps X diffeomorphically onto a submanifold
of Y.

Proof of the theorem:
By the assumption of f being a one-to-one immersion, we know that f is a
local diffeomorphism from X to f(X). Moreover, f: X — f(X) is bijective
(injective by assumption and obviously surjective onto its image), and the inverse
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f~1 exists as a map of sets. But locally f~! is smooth, since f is a local
diffeomorphism.

Hence in order to prove that f(X) is a manifold, it remains to show that
the image of any open subset W of X is an open subset of f(X). For
then f maps local parametrizations diffeomorphically to local parametrizations.
Hence we need to show the general statement: A bijective proper map is a
homeomorphism.

If /(W) was not an open subset, then there would be a point y € f(W)
and an open neighborhood of y which is not contained in f(W). In different
words, there would be a point y € f(W) such that in any small neighborhood
of y there would be points y; which are not in f(W). We can rephrase this by
saying:

If f(W) is not an open subset, then there exists a sequence of points
y; € f(X) that do not belong to f(I¥), but converge to a point y in

Fw).

The set S := {y,y;}; is compact (a countable union of compact sets). Since f
is proper, the preimage f~!(S) of S in X must be compact, too.

Since f is injective, there is exactly one preimage = of y in X and exaclty
one preimage x; for each y;. Since y € f(W), x must belong to W.

Since f7'(S) = {x,x;}; is compact, after possibly restricting to a subse-
quence, we may assume that the sequence of the r; converges to a point
z € X, we write z; — z. That implies f(x;) — f(2) (since f is continuous). But
since f(z;) — f(x), the injectivity of f implies = = z.

Now W is open, which implies that, for large i, x; € W. But this implies
y; = f(x;) € W and contradicts y; ¢ f(WW). Hence f(W) is open in Y, and
f(X) is indeed a manifold. QED

A corollary for compact domains

If X is compact, then any continuous map f: X — Y is proper (closed
subsets of compact sets are compact).

Hence, for compact X, every one-to-one immersion f: X — Y is an em-
bedding and f maps X diffeomorphically onto a submanifold of Y.
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Submersions

Let f: X — Y be a smooth map between smooth manifolds. Remember that
the derivative at x € X, df,: T, X — Tj,)Y, is a linear map between vector
spaces, and we are trying to answer the question:

A natural question:

How much does df, tell us about f7

We move to the third case:

Third case: df, is surjective

Assume dim X > dim Y. The best possible behavior of df, is then that
dfa: Tul(X) = Tyo(¥)

is a surjective linear map.

Again, there is a name for this case:

Submersions

If df,. is surjective, we say that f is a submersion at x. If f is a submersion
at every point, we say that f is an submersion.

The canonical submersion for n > m is the standard projection
R™ = R™, (ay,...,a,) — (a1, ...,an)
onto the first m coordinates (i.e. omitting the remaining n — m coordinates).

Up to diffeomorphism the canonical submersion is locally the only submer-
sion:
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Local Submersion Theorem

Suppose that f: X — Y is a submersion at z, and y = f(x). Then there
exist local coordinates around z and y such that
flz, .. zn) = (21, ., Tm)-

In other words, f is locally equivalent to the canonical submersion.

Proof of the Local Submersion Theorem:
As for the immersion case, we start by choosing any local parametrization ¢: U —
X with ¢(0) =z and ¢: V — Y with ¢(0) = y:

X ! Y
4 }p
U \%
0=y~ lofoo

Now we are going to manipulate ¢ and v such that 6 becomes the canonical
submersion.

By the assumption, we know df,: R® — R™ is surjective. Hence, after choos-
ing a suitable basis for R™, we can assume that df, is the matrix

M(I;n|0)

which consists of the m x m-identity matrix sitting in the first n columns, and
the zero n X (n — m)-matrix occupying the remaining columns.

Choosing a basis

This time we need to choose a suitable basis for R". Let e*,...,el" € R™
be the standard basis. Since df), is surjective, the induced linear map

dfy: R"/Ker (dfy) — R™

from the quotient vector space R™ modulo the kernel of dfy to R™ is an
isomorphism. Hence we can choose unique vectors by, . . . ,b,, € R"/Ker (dfy)
with dfy(b;) = e for i = 1,...,m, and these bi,...,b,, form a basis of
R" /Ker (dfy). Now we choose a basis vector by, 41, .. .,b, of Ker (dfy). This
gives us a basis by, . ..,b, of R” such that dfy(b;) = el* for i = 1,...,m and
dfy(b;) = 0 for i = m+1,... ,n. Hence in this basis for R™ and the standard
basis for R™ the matrix for df, is exactly M([,,|0) (remember: the columns
are the images of the basis vectors).
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Back to the proof: We define a new map

©: U — R", by O(a) = (6(a),am+1; - - - ,0n)

for a point a = (aq, . ..,a,). It is related to € by the commutative diagram

0
U R™
k Alical submersion
R™

The derivative dOg at 0 is given by the identity matrix /,,. Hence O is a local
diffeomorphism at 0. Thus we can find a small neighborhood U’ around 0 in R”
such that ©~! exists as a diffecomorphism from U’ onto some small neighborhood
around 0 in U.

By construction,

6 = canonincal submersion o ©, i.e. # 0o ® ! = canonincal submersion.

This gives us the commutative diagram

X Y
4 I
o —1
$oO U g V.

%1 canonica

submersion

U/

Hence it suffices to replace U with U’ and ¢ with ¢ o ©~! to get the desired
commutative diagram

X

oot [v

canonical
U’ \%4

submersion

which proves the theorem. QED

We observe from the proof of the theorem that if f: X — Y is a submersion
at z, then it is also a submersion for all points in a neighborhood of x. For,
local parametrization ¢: U — X of the proof also parametrizes any point in the
image of ¢ which is an open subset around x (open because ¢ is a diffeomorphism
onto its image).
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Given amap f: X — Y and a point y € Y, we would like to study the fiber
of f over y, i.e. the set

[y ={reX: flx)=y}CY.

Be aware

In general, there is no reason for that set f~!(y) has any nice geometric
structure.

But life is much nicer in the world of submersions. So suppose that f: X — Y
is a submersion at a point x € X with f(x) =y or in other words z € f~!(y).
By the Local Submersion Theorem, we can choose local coordinates around x and

y such that, expressed in these local coordinates, y = (0,...,0) and f becomes
the canonical submersion. Let V' C X be the chosen local neighborhood around
x on which the local coordinates are defined. We write uq,...,u, for the local

coordinate functions. Expressed in these local coorindates f becomes

flug, . uy) = (Ug, .. ty).

Moreover, still in these coordinates, the fiber over y is the set of points

fTly)nV={peV up) = =un(p) = 0}.

Hence we can use the remaining functions u,,1,...,u, to define a local co-
ordinate system on f~!(y) NV which is an open subset in f~!(y). With these
local coordinates, f~1(y) looks like Euclidean space R™™" in a neighborhood of
x.

We would like this to be the case for every point in the fiber f~*(y). This is
not always the case. So let us give the desired case a name:

Regular values

For a smooth map of manifolds f: X — Y, a point y € Y is called a
regular value for f if df;: T,(X) — T,(Y) at every point z € X such
that f(z) = v.
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Then the above argument shows the following important result:

Preimage Theorem

If y is a regular value for f: X — Y, then the fiber f~1(y) over y is a
submanifold of X, with dim f~!(y) = dim X — dimY".

As a first application, we can show once again that spheres are smooth man-
ifolds.
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Example: Spheres at preimages

Let f: R¥! — R be the map
T = (331, o0 ,$k+1) = |'9’,"|2 = Q’)% +o +$i+1.

The derivative dfa at the point a = (ay,...,axr1) has the matrix
(2a; . ..2a511). Thus df,: RFt? — R is surjective unless f(a) = 0, so every
nonzero real number is a regular value of f. In particular, we get again that
the sphere S¥ = f~1(1) is a k-dimensional manifold.

Since regular values are so nice, we also want to have a name for other values:

Critical values

For a smooth map of manifolds f: X — Y, a point y € Y which is not a
regular value, is called a critical value for f.

Note that critical values got their name from the fact that f~'(y) can be
very complicated if y is critical.

Note that all values y which are not in the image of f are also regular values
for f. For, if f~!(y) is the empty set, then there is no condition to be satisfied.

Summary for regular values

Suppose f: X — Y is a smooth map of manifolds. Then y being a regular
value for f has the following meaning:
e when dim X > dimY, then f is a submersion at each point x €
()
e when dim X = dimY, then f is a local diffeomorphism at each
point z € f1(y);
e when dim X < dimY, then y is not in the image of f; for, all
values in the image are critical (df, cannot be surjective when
dim Tw(X) < dim Tf(z) (Y))

Matrix subgroups are manifolds

A very important application of the Preimage Theorem, is that we can use
it to show that various matrix groups sare smooth manifolds. Let M (n) denote
the space of real n x n-matrices. It is isomorphic as a vector space to R™ (we
can write every n x m-matrix as a column vector of length n?). Let O(n) be
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the subgroup of matrices A in M (n) which satisfy AA* = I where A" denotes the
transpose of A and [ is the n x n-identity matrix. Note that O(n) is the subgroup
of matrices which preserve the scalar product of vectors. In particular, matrices
in O(n) preserve distances in R"™.

R mw Ch
ZCE}, 4%4%

-
o

Our goal is to show that O(n) is a smooth manifold of dimension n(n —

1)/2.

First, we note that AA! is a symmetric matrix. For

(AANE = (AN A = AAL.

The subspace S(n) of symmetric matrices in M (n) is a smooth submanifold of
M(n) of dimension R* with k¥ = n(n + 1)/2 (everything below the diagonal is
determined by what happens above the diagonal such that there are n(n + 1)/2
free entries). We define the map

f: M(n) — S(n), A AA"

This map is smooth, since multiplication of matrices is smooth and taking trans-
poses is obviously smooth as well.

Now we observe O(n) = f~!(I). Hence, in order to show that O(n) is a
smooth manifold, we just need to show that [ is a regular value for f. So let
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us compute the derivative of f at a matrix A:

f(A+sB) - f(A)

df+(B) = lim
s—0 S
. (A4 sB)(A+sB)" — AA
gy L
. (A+sB)(A'+sB") — AA
iy :
_ AAt + sBAt + sABt + s2BBt — AA?
o sLI;% S
_ sBA! + sAB! + s>BB!
~ 20 5
= lir% BA' + AB! + sBB'
S—>
= AB' + BA.

In order to check that [ is a regular value, we need to show that
deZ TA(M(TL)) — Tf(A)(S(TL))
is surjective for all A € O(n). Since M(n) = R" and S(n) = R™"*1/2 are

diffeomorphic to Euclidean spaces, we have
Ta(M(n)) = M(n) and Tyoa)(S(n) = S(n),
Hence, given a matrix C' € S(n), we need to show that there is a matrix B € M (n)

with dfa(B) = BA! + AB! = C.

Since C'is symmetric, we have C' = 1(2C) = £(C' + C"). Since AB' = (BA")",
we set B = CA. Then, using AA" = I, we get

dfa(B) = (%CA)At + A(%CA)t - %CAAt + %AAtCt = %C + %Ct ~C.

Thus [ is a regular value, and O(n) is a submanifold of M(n). We can also
calculate the dimension of O(n):
n+1) nn-—1)

dim O(n) = dim M (n) — dim S(n) = n* — n( 5 = 5

The manifold O(n) is an example of a very important class of smooth mani-
folds. For, O(n) is both a smooth manifold and a group such that the group
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operations are smooth. For both the multiplication map
O(n) x O(n) — O(n), (A,B) — AB
and the map of forming the inverse
O(n) — O(n), Ars A7!

are smooth (for the latter note A=* = A* for A € O(n), but taking inverse
is also smooth for other matrix groups).

In general, a group which is also a manifold such that the group operations
are smooth is called a Lie group.

Lie groups are extremely interesting and important and have a rich and
exciting theory. For example, the tangent space at a Lie group at the
identity element is a Lie algebra, a vector space with a certain additional
operation. Such Lie algebras can be classified completely. Lie groups and
Lie algebras play an important role in many different areas of mathematics
and physics.
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Milnor’s proof of the Fundamental Theorem of Algebra

Last time, we forgot to mention a useful fact about tangent spaces of subman-
ifold given as the preimage of a regular value. We remedy this sin of omission
today before we move on.

Tangent space of regular fibers

Let Z be the preimage of a regular value y € Y under the smooth map
f: X — Y. Then the kernel of the derivative

dfy: Tp(X) = T,(Y)
at any point z € Z is the tangent space to T,(Z).

Proof: Since f(Z) =y, f is constant on Z. Therefore, df, vanishes on the
subspace T,(Z) C T,(X). Hence df, sends all of T,,(Z) to zero. In other words,
T.(Z) C Ker df,.

But df, is surjective, since f is a submersion at any regular point. Hence the
dimension of the kernel of df, is

dim7,(X) —dim7T,(Y) = dim X —dimY = dim Z.

Hence T,(Z) is a subspace of the kernel of df, of the same dimension as Ker df,.
Thus T,(Z) = Ker df,. QED

The Stack of Records Theorem

In order to make the final preparations for Milnor’s proof, we have a closer
look at a specific situation for regular values.

Suppose f: X — Y is a smooth map with dim X = dimY and X compact.
Let y € Y be a regular value for f.

Let = be a point in f~1(y). Since y is a regular value, z is a regular point, i.e.
df, is surjective. But, since dim X = dim Y, this implies df, is an isomorphism.
Hence f is a local diffeomorphism at z.
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Let V C X and U C Y be open neighborhoods around x and y, respectively,
such that fj: V — U is a diffeomorphism.

Now suppose z’ is another point in f~'(y) with  # 2/. Then df, is an
isomorphism as well, and we can choose an open neighborhood V' C X around
2’ such that fjy- is a diffeomorphism onto an open subset U’ C Y containing y.

Then V and V' are disjoint. For, if V. NV’ # (), then [ restricts to a
diffeomorphism from VNV’ onto UNU'. Sincey € UNU" and f(x) =y = f(a),
this would imply z =2’ € VN V'. So if x # 2/, we must have V N V().

Hence all the points in f~!(y) lie in pairwise disjoint open subsets of
X. We conclude that f~'(y) is discrete. Since the subset {y} is closed in Y, the
fiber f~!(y) is a closed subset of X. Since X is compact, this implies that f~!(y)
is compact as well (closed subsets in compact spaces are compact). Hence as a
compact and discrete space, f~!(y) is a finite set.

(For, given a compact discrete subset S in R”. Assume S was not finite. Since
S is bounded, there is an ¢ > 0 such that S is contained in the n-dimensional
box with edges of length € and center 0. Divide this box into 2" n-dimensional
boxes of equal size. The lenght of their edge is €/2. If S was infinite there must
be at least one small box which still contains infinitely many points of S. We
take this box and divide it into 2" n-dimensional boxes of equal size. The lenght
of their edges is now €/4. Again, if S was infinite there must be at least one of
the smaller boxes which still contains infinitely many points of S.
By repeating the argument, we see that we can find an infinite sequence of points
in S which converges. Since S is closed, any convergent infinite sequence of points
in S must have a limit in S. Call this limit s. But then the subset {s} would
not be open in S, since every open subset of R" containing s would also contain
other points of S. Hence S would not be discrete. QED)

Let f~(y) = {x1,...,2,}. We can pick finitely many open subets Wy, ... ,W,
in X with z; € W; which map diffeomorphically onto open subsets Uy, ...,U, in
Y each containing y. The finite intersection U := U; N --- N U, is open in Y
and with y € U. The inverse image f~'(U) is a disjoint union of open subsets
Vi,...,V, and each V; is mapped by f diffeomorphically onto U and z; € V;.
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Hence we have shown the following very useful result:

Stack of Records Theorem

Suppose dim X = dimY, f: X — Y is a smooth map and X is compact.
Let y € Y be a regular value for f. Then the set f~!(y) is a discrete finite
subset {z1,...,2,} of X, and we can choose an open neighborhood U C Y’
around y such that f~'(U) C X is the disjoint union V4 U--- UV, of open
subsets of X with x; € V; and f maps each V; diffeomorphically onto U.

If in addition to the assumptions of the theorem all values in Y are regular,
then X — Y is an example of a covering. In Topology, a continuous
map f: X — Y is an (unramified) covering if every point in Y has an
open neighborhood U such that f~!(U) is the disjoint union of open sets
V; such that f maps each V; homeomorphically onto U. Coverings play an
important role in Topology and Homotopy Theory.
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Since f~!(y) is finite, it makes sense to talk about the number of elements in

f~Y(y) which we denote by #f1(y).

Locally constant fiber

The function y — #f !(y) on the set of regular points for f is locally
constant, i.e. for every regular value y there is an open neighborhood U C Y
of y such that #f~!(y) = #f1(¢/) for all y € U.

Proof: Given a regular value ¥, let zy,...,r, be the points in f~!(y). We
just learned that there is an open neighborhood U of y such that f~1(U) =
ViU---UV, is the pairwise disjoint union of open neighborhoods V; of x; which
all map diffeomorphically onto open subset U. This means that for every point
y' € U, there is exactly one point in V; which maps to 3’. And these are the only
points which map onto 3. Hence #f71(y') = #f '(y). QED

A short detour to general topology

To know that a function is locally constant can be very convenient in many
situations. For example, locally constant functions on connected spaces are con-
stant.

Recall that a topological space X is called connected if X cannot be written
as the union of two nonempty disjoint open subsets; or equivalently, if X and ()
are the only subsets which are both open and closed in X.

Connectedness is a “global” property of a topological space, i.e.it is invariant
under homeomorphisms. In particular, two spaces cannot be homeomorphic if
one is connected and the other is not. Familiar examples of connected spaces are
intervals in R. For example, the closed interval [0,1] is connected.

The criterion for connectedness is rather elegant to state, but it does not tell
us if we can actually “walk” from one point to another, as one would expect for
a connected space. This is the point of a related and more concrete property.
A topological space X is called path-connected if for any two points z,y € X
there is a continuous map v: [0,1] — X with v(0) = z and (1) = y. Again,
path-connectedness is a topological property, i.e.it is preserved under homeo-
morphisms.

Path-connectedness is the stronger property, i.e. if a space is path-connected,
then it is also connected. For, suppose X is path-connected. If X was not
connected, then there would be two disjoint nonempty open subsets A and B
with X = AU B. Since A and B are nonempty, we can choose two points a € A
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and b € B. Since X is path-connected, there is a continuous map ~: [0,1] — X
with 7(0) = a and (1) = b. Hence 0 € v *(A) C [0,1] and 1 € v~1(B) C [0,1].
Since A and B are disjoint and open, both v~!(A) and v~!(B) are disjoint and
open in [0,1]. Since X = A U B, we would have [0,1] = v~ *(A4) U~y~!(B) which
contradicts the fact that [0,1] is connected. Hence X must be connected.

G

But be aware that there are connected spaces which are not path-
connected. A standard example is the subspace

X = {(z,sin(logz)) € R? : & > 0} U (0 x [-1,1]).

f

s

“uol:zrﬂuly

Though the usual examples of connected spaces we will meet are path-connected.
For example, every sphere is path-connected, and every sphere with finitely many
points removed is still path-connected.

We conclude our detour with a lemma we will use in the next section. Given
amap f: X — S from a topological space X to any setS. Recall that f is called
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locally constant if for every € X there is an open neighborhood U, C X such
that fjy, is constant.

A useful lemma

Let X be a connected space and f: X — S be locally constant. Then f is
constant.

Proof: Let s € S be a value of f,i.e.s = f(z) for some z € X. We can write
X as the disjoint union of the sets

A={reX: f(x)=s}tand B={zx € X : f(x) # s}.

Since f is locally constant, both A and B are open. For if a € A, then there is
an open neighborhood U, C A with f(U,) = {s}, i.e. U, C A. Similarly, if b € B,
then there is an open neighborhood U, C X with f(U,) = {f(b)}, i.e.Uy C B.
But since X is connected and A # (), we must have A = X, and f is constant.
QED

Milnor’s proof of the Fundamental Theorem of Algebra

Now we are ready to see how Milnor used the previous ideas for a simple proof
of the following important result:

Fundamental Theorem of Algebra

Every nonconstant complex polynomial
P(2) = @n2" + ap 12" '+ -+ a1z +ap

with a,, # 0 must have a zero.

As a consequence, P(z) must have exactly n zeroes when we count them
with multiplicities.

We are going to identify the complex numbers C with the points in real plane
R2, but we keep in mind how that we can mutliply and form inverses for points
in C. To prove the theorem we need to extend the map P: C — C to a map on
a compact space. Recall that S? is a compact subspace of R? and that we can
relate S? and the real plane R? via stereographic projection:
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3 w.cp.sxh

The formulae for the projection from the northpole N = (0,0,1) € S? are
1

ng_\,lz 52 \{N} — R?, (1,m9,23) — .

(x1,75) and

b B2 = 82\ {N}, (31,02) = (221,223, [a]* =1) .

1+ |z|?
The formulae for the projection from the south pole S = (0,0, — 1) € 5%
1

1+ZL’3

¢§13 S2 \ {S} — ]R2, (%1,.%2,1‘3) —

(x1,m9) and

¢s: R? — 52\ {S}, (71,29) — (221,239,1 — |z) .

1 [z

Considering our polynomial P as a map from R? to R? we define a new map

£ 52 g2 f(z) :=¢noPopy(zx) foralaxecS?\{N}
' "l f(N):=N for x = N.

Claim: The map f is smooth.

Since ¢ and ¢]’V1 are smooth and polynomials are smooth as well, it is clear
that f is smooth at all points which are not the northpole. It remains to show
that it is also smooth in a neighborhood of N.
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In order to do this we use the projection from the south pole and define a
map

Q:(C—HbeQ::(bglofogbs.

Comparing the definitions of f and @), we need to calculate

1
—1 —1 2
= — (21,2 —1
Py © Ps(11,22) = by (1+ |$|2( 1,29, |7 ))
. 1 ( 21’1 21’2 )
1— —H'lxIQ 1+ 2271+ |z|?

- 14 ‘.T’Z 21171 2£B2
2z L+ |z]271 + |z|?

1

Remembering complex conjugation z — Z on C, we can rewrite this as:
z
Qb]_vl e} qbs(Z) = W = 1/2 for all z - C\{O}
z

Similarly, we also get
z

b5' o dn(2) = oE 1/z for all z € C\ {0}.

Thus we get
Q(z) = ¢g' 0 pn o Po gy o gs(2)

— 95" 0 o (P(1/2))

=¢g' odn(anZ "t a, 12"+ aZ +ap)

=1/ (Gnz™" + @Gpa 2" @z + ap)

= 2"/ (G + Gporz + -+ @12" " + ag2") .
This shows that @) is smooth at z = 0 for

Q(0) = o' (f(¢s(0)) = d5' (F(N)) = ¢5'(N) =0

and hence
iy Q) = Q(0)
h—0 h
_ g @ Gnah g G0h") — 0
h—0 h
= lim h"'/ (@, + Gp1h + -+ + ah™)
h—0

= 0.



MILNOR’S PROOF OF THE FUNDAMENTAL THEOREM OF ALGEBRA 73

Since smoothness is a local property, () is smooth in a small open neighborhood of
0. Since ¢ and ¢§1 are diffeomorphisms and since ¢g sends an open neighborhood
of N in S? to an open neighborhood of 0 in C, this implies that

f=¢5 0Qops
f is smooth in an open neighborhhod of N.

Next, we observe that the smooth map f: S? — S? has only finitely many
critical points, i.e. points x where df, fails to be surjective. For, since ¢ and
¢y are diffeomorphisms, the only points that might be critical for f are the points
where P fails to be a local diffeomorphism, and possibly N. But the derivative
of P is given by the polynomial

dP, = P'(z) = Zjajzj_l
j=1

which has at most n — 1 zeroes. Hence there are only finitely many z where dP,
is not an isomorphism.

Thus the set R of regular values for f is S? with finitely many points removed
and is therefore connected. This implies that the function

R—Z,y— #f'(y),

which we have seen is locally constant, must be constant.
This enables us to show:
Claim: f is onto.

For, assume there is a yo € S with f~(yo) = 0, i.e. #f ' (yo) = 0. Then yq is
a regular value for f by definition. Since the function y — #f~!(y) is constant on
the set of regular values, it would have to be zero for every regular value. Hence
#f~(y) would be nonzero only for cricital values y. But that would mean that
f had only finitely many values. Since f is continuous and S? connected,
this would imply that f is constant. (If f had different values yi,...,yr € S2,
then §? = f~X(yy) U--- U f~ () with f~(y;) N f~(3;) # 0 and each [~ ()
would be nonempty and open (and closed), since f is continuous. That is not
possible, since S? is connected.) But P is not constant, and ¢y and gzﬁj\,l are
diffeomorphisms. Thus f is not constant. We conclude that f must be onto.

Conclusion: In particular, f~!(S) # 0 and there must be at least one point
p € S? with f(p) = S. Since ¢y is a diffeomorphism and ¢x(0) = S, p must
satisfy P(¢x'(p)) = 0. Hence z := ¢'(p) € C is a zero of P. QED






LECTURE 9

A brief excursion into Lie groups - Part 1

A Lie group is a group G which is also a smooth manifold such that the
two maps

p: GxG— G, (g,h)—g-h
and
G =G, g—g!

corresponding to the two group operations of multiplication and taking
inverses, respectively, are both smooth. (We usually omit the dot and just
write gh instead of ¢ - h.)

In fact, we can summarize the condition that p and ¢ are smooth by requiring
that

G x G — G, (g,h) — gh™

is smooth.

If G is a Lie group, then any element g € G defines maps
L,and R;: G — G,
called left translation and right translation, respectively, by
L,(h) = gh and R,(h) = hg.

Since L, can be expressed as the composition of smooth maps
GLHaxaha,
with iz(h) = (g,h), it follows that L, is smooth. It is actually a diffeomorphism
of G, because L1 is a smooth inverse for it. Similarly, R;: G — G is a diffeo-
morphism. In fact, many of the important properties of Lie groups follow from
the fact that we can systematically map any point to any other by such a global

diffeomorphism. This translation makes the study of Lie groups much more ac-
cessible compared to arbitrary smooth manifolds. In particular, we can move

75
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an open neighborhood around any point in G to make it an open neighborhood
of the identity element. Hence, in a Lie group, we basically only need to study
neighborhoods of the identity element.

Here are some simple examples of Lie groups:

e The real numbers R and Euclidean space R™ are Lie groups under ad-
dition, because the coordinates of x — y are linear and therefore smooth
functions of (z,y).

e Similarly, C and C" are Lie groups under addition.

e Any finite group with the discrete topology is a (compact) Lie group.

e Suppose G is a Lie group and H C G is an open subgroup (i.e. a subgroup
which is also an open subspace). Then H is a Lie group as well.

e The set R* = R\ {0} of nonzero real numbers is a 1-dimensional Lie
group under multiplication. The subset R™ of positive real numbers is
an open subgroup, and is thus itself a 1-dimensional Lie group (still under
multiplication).

e The set C* of nonzero complex numbers is a 2-dimensional Lie group
under complex multiplication.

e The unit circle S' € C* is a Lie group under the operations induced by
multiplication of complex numbers.

e A finite product of k copies of S! is a Lie group. We denote it by T*. In
particular, the 2-dimensional torus T? = S! x S! is a Lie group.

e More generally, the product of Lie groups is again a Lie group.

We will see more examples below. But before, we introduce the notion of
maps between Lie groups which respect the Lie group structure.

Lie group homomorphisms

If G and H are Lie groups, a Lie group homomorphism from G to H is
a smooth map F': G — H that is also a group homomorphism. It is called
a Lie group isomorphism if it is also a diffeomorphism, which implies
that it has an inverse that is also a Lie group homomorphism. In this case,
we say that G and H are isomorphic Lie groups.

Here are some examples of Lie group homomorphisms:

e The inclusion map S! < C is a Lie group homomorphism.
e Considering R as a Lie group under addition, and R* as a Lie group
under multiplication, the map

exp: R = R*, t — €
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is smooth, and is a Lie group homomorphism, since e**! = eet. The
image of exp is the open subgroup R™ consisting of positive real numbers.
In fact, exp: R — R* is a Lie group isomorphism with inverse log: R* —
R.

e Similarly, exp: C — C* given by exp(z) = €* is a Lie group homomor-
phism. It is surjective but not injective, because its kernel consists of
the complex numbers of the form 27ik, where k is an integer.

e The map

e: R — St e

is a Lie group homomorphism whose kernel is the set Z of integers.
e Similarly, the map
'R = T, (ty, ... t,) = (2™ .. ™)
is a Lie group homomorphism whose kernel is Z".
e If G is a Lie group and g € G, conjugation by g is the map C;: G — G
given by Cy(h) = ghg™'. Because group multiplication and inversion are
smooth, C, is smooth and it is a group homomorphism:

Og(hh/) = ghlhh'g_l = (ghg_l)(gh'g_l) = Og(h)og(h/)-

In fact, it is a Lie group isomorphism, because it has C,-1 as an
inverse. A subgroup H C G is said to be normal if C,(H) = H for
every g € G.

Here is an important theorem about Lie group homomorphisms:

Constant Rank Theorem

Let f: G — H be a Lie group homomorphism. Then the derivative df, has
the same rank (as a linear map) for all g € G.

Proof: Let e and ey denote the identity elements in G and H, respectively.
Suppose go is an arbitrary element of G. We will show that df,, has the same
rank as df.. The fact that f is a homomorphism means that for all g € G,

f(Lg(9)) = f(909) = f(90)f(9) = Ly(g0)(f(9));

or in other words, f o Ly, = L) o f. Taking differentials of both sides at the
identity and using the chain rule yields

dfgo © d(Lgo)ea = d<Lf(go))6H © dfec-

Recall that left multiplication by any element of a Lie group is a diffeomor-

phism, so both d(Lg,)e, and d(Lg))e, are isomorphisms. Because composing
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with an isomorphism does not change the rank of a linear map, it follows that

df4, and df.. have the same rank. QED

Lie group isomorphisms revisited

Every bijective Lie group homomorphism f: G — H is automatically a Lie
group isomorphism.

For, there must be a point g € G where df, is an isomorphism. Otherwise
the Local Immersion and Submersion Theorems would imply that f looked
like the canonical immersion or submersion, respectively, and f would not be
bijective. By the previous theorem, this implies that df, is an isomorphism
for all ¢ € G. Hence it is a bijective local diffeomorphism everywhere.
Bijective local diffeomorphisms are global diffeomorphisms. Since the map
is a Lie group homomorphism, it is a Lie group isomorphism.

Now let us study some more interesting examples:
The General Linear Group

The general linear group
GL(n)={A € M(n):det A # 0}

of all invertible n x n-matrices with entries in R, is a smooth manifold of dimension

n?, since it is an open subset of M(n) = R™. To check that it is open, look at

its complement
M(n)\ GL(n) = {A € M(n): det A =0} = det™*(0).

Since det: M(n) — R is continuous (it is a polynomial in the entries of the
matrix) and since {0} is a closed subset of R, det™"(0) is closed in M (n).

We claim that GL(n) is a Lie group. To show this we need to check that
multiplication and taking inverses are smooth operations. Given two matrices A
and B in GL(n), the entry in position (7,j) in AB is given by

(AB)” = Z aikbkj.
k=1

Hence (AB);; is a polynomial in the coordinates of A and B. Thus matrix
multiplication

p: GL(n) x GL(n) — GL(n)

is a smooth map.
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Recall that the (7,j)-minor of a matrix A is the determinant of the submatrix
of A obtained by deleting the ith row and the jth column of A. By Cramer’s
rule from linear algebra, the (i,j)-entry of A1 is

1
det A
which is a smooth function of the a;;’s provided det A # 0, i.e. the map

M(n) — R, A— (A_l)l'j

is smooth because it depends smoothly on the entries of A. Therefore, the map
of taking inverses

(AT = - (1)"*((j,4)-minor of A),

t: GL(n) — GL(n)

is also smooth.

GL(n) exists over many bases

In fact, we can matrices with entries in any ring K. We denote the cor-
responding matrix groups by M(n,K),GL(n,K),.... Since K = R is the
most important case for us, we omit mentioning the base when it is clear
that we work over R.

Another very important case is K = C. The complex general linear group
GL(n,C) is also a Lie group. It is a group under matrix multiplication, and
it is an open submanifold of M(n,C) and thus a 2n?-dimensional smooth
manifold. It is a Lie group, since matrix products and inverses are smooth
functions of the real and imaginary parts of the matrix entries.

Note that the determinant is a Lie group homomorphism for both R and C:

det: GL(n,R) — R* and det: GL(n,C) — C".
For n =1, we just have GL(1,R) = R* and GL(1,C) = C*.

The Special Linear Group

Another example of a Lie group is the special linear group
SL(n)={A€ M(n):det A=1}.

Note that SL(n) consists of all transformations of R™ into itself which preserve
volumes and orientations. (We will discuss orientations later.)

In order to show that SL(n) is a manifold, we would like to use the preimage
theorem for regular values of the map

det: M(n) — R.
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For SL(n) = det™'(1). To do this, we need to show that 1 is a regular value of
det. In fact, we are going to show that 0 is the only critical value of det.

As a preparation, we are going to look at the following general situation.

Euler’s identity for homogeneous polynomials

Let P(z1,...,xr;) be a homogeneous polynomial of degree m in k variables.
First, we are going to show Euler’s identity
(1) szﬁp/@xi =mP.

Define a new function @) by
Q(z1, ...\ xp,t) == P(tay, ... tay) —t"P(xq, ... ,2k).

Since P is homogeneous, we know () is always 0. Hence its derivative with respect
to t is zero as well. Hence we get

(2) 0=0Q/0t = Z 2,0P/0z;(try, ... try) — mt™ P (txy, . . . ty)
where we apply the chain rule to the first summand of ) which is the composite
t — tx — P(tz). Setting t = 1 in (2) yields (1).

Fibers of homogeneous polynomials form manifolds

Now we consider our homogeneous polynomial P as a map
RY = R, (z1,...,21) — P(21,...,28).

We claim that 0 is the only critical value of P.

The derivative of P at a point (z1,...,rg) is

21
dP,: R¥ =R, (21,...,2) —(0P/0x1(x) ... 0Pz (7)) -
2k

= Z 20P/0z;(x).

To show that dP, is nonsingluar, i.e. surjective, it suffices to show that dP, is
nontrivial. But applying dP, to x and using Euler’s identity yields

dP,(z) = Z 2, 0P/0x;(x1, ... ,x) = mP(xy,...,T).

Hence if © = (zy,...,x;) is not a zero of P, then dFP,(x) is nonzero.
Hence only points in the fiber over 0 might be critical points, and all nonzero real
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numebrs are regular values of P. This shows that P~'(a) is a k — 1-dimensional
submanifold of R* for all a # 0.

Given two real numbers a,b > 0, then (b/a)'/™ exists and we if P(z) = a, we
have
P((b/a)" ™z, ... (b/a)Y™xp) = b/aP(xy, ... x;) = b.
Multiplying each coordinate with (b/a)'/™ corresponds to multiplicatin with the
diagonal matrix with (b/a)'/™ on the diagonal. This map is a linear isomorphism

of R” to itself. Hence we have the diffeomorphism
P_l(a’) - P_l(b)a (xlv s 733/6) = ((b/a)l/mx17 cee 7(b/a)1/mxk)'

Similarly, if both a,b < 0 are negative, then (b/a)*/™ exists and the same
argument shows that P~!(a) and P~!(b) are diffeomorphic.

Algebraic Geometry in a nutshell

The study of the zeroes of polynomials is the central theme in Algebraic
Geometry. This is a classical and fascinating part of pure mathematics. In
the past 2-3 decades, strong and fascinating conncetions between Algebraic
Geometry and Homotopy Theory have been developed, summarized in the
field of Motivic Homotopy Theory. Just ask to learn more about it.

Back to matrices: If we think of the entries in an nx n-matrix A as variables,
then det A is a homogeneous polynomial of degree n. It is given by Leibniz’
formula

© det(4) = 3" (sgn(o) [T i)

[

where the sum runs over all permutations of the set {1,...,n} and sgn(o) denotes
the sign of the permutation o. Hence we can apply the previous argument to

P=det: M(n) =R"” - R

and get that 0 is the only critical value of det. Thus the special linear group
SL(n) = det™'(1) is a smooth submanifold of dimension 7> — 1 in M(n).
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A brief excursion into Lie groups - Part 2

The Special Linear Group

We continue our study of the special linear group

SL(n)={A € M(n):detA=1}.

Last time, we learned that SL(n) is a smooth manifold of dimension n? — 1.
The same argument as for GL(n) shows that it even is a Lie group. We will see
another argument for that today.

But first we would like to calculate the tangent space of SL(n) at the
identity matrix.

This space plays a special role for any Lie group. In fact, the translation
property of Lie groups implies that the tangent to a Lie group G at any matrix
in (G is isomorphic to tangent space to G at the identity element. It carries an
additional structure and is an example of a Lie algebra.

To determine the tangent space at the identity, we use a result we proved last
week which said: if Z = f~!(y) C X is a submanifold defined by a regular value
y of a smooth map f: X — Y, then T,(Z) = Ker (df,) C T,.(X).

Hence we need to calculate the derivative of det at the identity.

Recall that the determinant of a matrix A is given by Leibniz’ formula
(4) det(B) = > (sgn(o) | [ biow)

o =1

where the sum runs over all permutations of the set {1,... n} and sgn(o) denotes
the sign of the permutation o.

Given a matrix A, in the determinant of B := [+sA, every summand contains
at least a factor s? unless it is the product of at least n — 1 diagonal entries
bii = 1+ sa; (because we need n — 1 factors not containing s which is only
possible when we multiply 7 — 1 times 1). But if a permutation {1,...,n} leaves

83
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n — 1 numbers fixed, it also has to leave the remaining one fixed. Hence the only
summand in (4) which does not contain a factor s* is the summand

[+ sai) = (14 san) - (14 saun) =1+ s - tr (A) + O(s?).
i=1
The derivative of the determninant at the identity
d(det);: Ty(M(n)) = M(n) — T1(R) =R
is then given by
det(] + sA) —det I

d(det);(A) = lim

s—0 S
. 2 J—

:hml—i-s tr(A) +0O(s*) — 1

s—0 S

2

i S tr (A) + O(s?)

s—0 S
= lir% tr (A) + O(s)
= tr (A).

By the result from the previous lecture, we get

Tr(SL(n)) = Ker (d(det);) = {A € M(n) : tr (A) = 0}.

In other words, the tangent space to SL(n) at the identity is the space of
matrices whose trace vanishes.

The Special Orthogonal Group

Recall that the orthogonal group O(n) is defined as the subset of matrices A
in M(n) such AA" = I. This equation implies, in particular, that every A € O(n)
is invertible with A=! = A?. Hence the determinant of an A € O(n) must satisfy
(det A)? =1, i.e.det A = 1. Thus, O(n) splits into two disjoint parts, the subset
of matrices with determinant +1 and the subset of matrices with determinant —1.

If A and B have determinant —1, then their product AB has determinant +1.
Hence the subset of matrices with determinant —1 is not closed under multiplica-
tion and therefore not a subgroup of O(n). But the other part is a Lie subgroup
of O(n) and is called the Special Orthogonal Group SO(n):

SO(n) ={A € 0O(n) :det A= 1} C O(n).
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Unitary and Special Unitary Groups

The unitary group U(n) is defined to be
U(n):={A e GL(nC): A'A =TI},

where A denotes the complex conjugate of A, the matrix obtained from A by
conjugating every entry of A. A similar argument as for O(n) shows that U(n)

is a submanifold of GL(n,C) and that dim U(n) = n?.

The special unitary group SU(n) is defined to be the subgroup of U(n) of
matrices of determinant 1.

Some identities

There are a couple of identities, most of which are incidental and do not reflect
any deeper pattern. They are interesting nevertheless. For example:

(a) For n =1, O(1) consists of just two points: O(1) = {—1,+ 1}.
(b) For n =2, SO(2) is diffeomorphic to S*:

For, any A = (CCL Z) € SO(2) satisfies

A (@ ¢ a b\ [(a*+c ab+ced\ (1 0
“\b d)\c d)  \ab+ed V*+d*) \0 1)°

Hence A corresponds to two points (a,c) and (b,d) on St C R? whose
corresponding vectors are orthongonal to each other. Since we also know
det A = ad — bc = 1, one of these points uniquely determines the other

Ve

(bef)

(a¢)
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. cost —sint
and we can write A as (sin ¢t cost ) for some real number t. Now one

can check that the map

X ) cost —sint
St — SO(2), (cost,sint) — (sint cos t )

is a diffeomorphism and Lie group isomorphism.

(c) For n = 2, SU(2) is diffeomorphic to S3: Any A = (CCL Z) e SU(2)

satisfies
A4 — ¢\ (a b\ _ faa+cc ab+cd) _ (1 0
- \b d)\c d) \ba+dc bb+dd) \O 1)°
Together with det A = ad — bc = 1 we get four linear equations for the

complex numbers a, b, ¢, d, and their complex conjugates. Unraveling
these equations shows that we can write A as

I QI

A:(“— b> with ad -+ bb = 1.
—b a

Hence A corresponds uniquely to a pair of complex numbers (a,b) which
satisfies aa + bb = 1. Since this is exactly the defining condition for
elements of S* C C2, we see that

S8 5 SU(2), (ab) — <_C‘5 Z)

is a diffeomorphism.

Spin groups

There are other important examples of Lie groups which, in general, do
not arise as closed subgroups of GL(n,R) or GL(n,C). For example, the
nth Spin group Spin(n) is the n-dimensional Lie group which is a double
cover of SO(n). The latter means that Spin(n) is equipped with a smooth
surjective map 7: Spin(n) — SO(n) such that each point in SO(n) has an
open neighborhood U such that 771 (U) is a disjoint union of open subsets in
Spin(n) each of which is mapped diffeomorphically onto U by 7. (We have
seen covering spaces when we discussed the Stack of Records Theorem.)
The map 7 is part of a short exact sequence of groups

1 — Z/2 — Spin(n) — SO(n) — 1.

Spin groups can be constructed for example via Clifford algebras. However,
there are some exceptional isomorphisms in low dimensions which we can
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write down:

Topology of Lie groups

Just as O(n) (this was an exercise), SO(n) is compact (whereas GL(n) is not
compact as an open subset of M(n)). Similarly, U(n) and SU(n) are compact.

Moreover, note that both SO(n) and its complement are both open and closed
in O(n). They are the two connected components of O(n). In particular,
there is no continuous path in O(n) from a matrix with determinant +1 to one
with determinant —1. In fact, there is no such path in GL(n):

The general linear group is connected

Let v be a path in GL(n), i.e. a continuous map
v:[0,1] = GL(n).

Since v and det are continuous, so is their composite
det

detoy: [0,1] & GL(n) =5 R.

Hence if det(y(0)) > 0 and det(v(1)) < 0, then the Intermediate Value
Theorem from Calculus implies that there must be a real number ¢, € (0,1)
such that det(y(tp)) = 0 ¢ GL(n). Hence v would have to leave GL(n).

Thus also GL(n) has two connected components, one of which is an open
subgroup consisting to all matrices A with det A > 0. The other one is just an
open subset consisting to all matrices A with det A < 0.

The general linear group is connected

However, GL(n,C) is path-connected. ~We see the difference between
GL(n,R) and GL(n,C) most clearly for the case n = 1: GL(1,R) = R*
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is not path-connected, since we cannot cross 0; whereas GL(1,C) = C* is
path-connected, since we can just walk around 0 in the plane.
More generally, to show that GL(n,C) is path-connected, it suffices to show
that there is path from any matrix A € GL(n,C) to the identity matrix
I € GL(n,C). Therefore, we define first the function

P:C—C, z—det(A+ z(I — A)).

Then we have P(0) = detA # 0 and P(1) = det/ = 1 # 0. Since
P is a polynomial of degree m, it has only finitely many zeroes. Since
C \ {set of finitely many points} is path-connected, we can find a path
v:10,1] — C with (0) = 1, v(1) and which avoids the zeroes of P, i.e.

P(~(t)) # 0 for all .
Then the continuous map
I'=Po~:[0,1] = GL(n,C),t— A+~(t)(I - A)
is the desired path from A to I.

v
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The fact that GL(n,C) is connected while GL(n,R) is not plays a crucial role
for orientations of vector spaces, vector bundles, manifolds etc. For, every com-
plex vector space, complex vector bundle, complex manifold, etc has a natural
orientation. We will get back to this later.

Open neighborhoods of the identity.

Recall that if G is a group and S C G is a subset, the subgroup generated
by S is the smallest subgroup containing S, i.e., the intersection of all subgroups
containing S. One can check that the subgroup generated by S is equal to the
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set of all elements of G that can be expressed as finite products of elements of S
and their inverses.

Neighborhoods of the identity

Suppose G is a Lie group, and W C G is any neighborhood of the identity.
Then
(a) W generates an open subgroup of G.
(b) If G is connected, then W generates G. In particular, an open
subgroup in a connected Lie group must be equal to the whole

group.

Proof: Let W C G be any neighborhood of the identity, and let H be the
subgroup generated by W. To simplify notation, if A and B are subsets of G, we
write

AB:={ab:a€ Abe B}, and A" :={a"":ac A}

For each positive integer k, let W denote the set of all elements of G that can be
expressed as products of k or fewer elements of W U W =1, As mentioned above,
H is the union of all the sets W), as k ranges over the positive integers.

Now, W~'1 is open because it is the image of W under the inversion map,
which is a diffeomorphism. Thus, W; = W U W ! is open, and, for each k& > 1,
we have

Wi = WilWy_1 = Ugew, Lg(Wi—1).

Because each L, is a diffeomorphism, it follows by induction that each Wj is
open, and thus H is open as a union of open subsets.

(b) Assume G is connected. We just showed that H is an open subgroup of
G. Tt is an exercise to show that an open subgroup in a connected Lie group is
equal to the whole group. QED

Lie subgroups

In the previous paragraph we talked about subgroups of a Lie group. But we
did not disucss how the subgroup structure relates to the structure as a smooth
manifold. Actually, this is a subtle and interesting point that illustrates the
importance of the distinction between immersions and embeddings once again.
So here is the definition of a Lie subgroup:
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Definition of Lie subgroups

A Lie subgroup of a Lie group G is an abstract subgroup H such that if
there exists a smooth manifold X and an immersion f: X — G from X to
G such that H = Im (f) C G is the image of f, and the group operations on

H are smooth, in the sense that X x X 2L Gx G4 Gand X L G 4 G
are smooth.

Let us have a closer look at this rather complicated definition:

An “abstract subgroup simply means a subgroup in the algebraic sense. The
group operations on the subgroup H are the restrictions of the multiplication
map u and the inverse map ¢ from G to H.

If H were defined to be a submanifold of GG, then the multiplication map
H x H — H and similarly the inverse map H — H would automatically be
smooth, and the definition would be much shorter. But since a Lie subgroup
is defined to be an “immersed submanifold”, it is necessary to impose the last
condition.

If H is in fact also a submanifold, then life is easier:

Embedded Lie subgroups

If H is an abstract subgroup and a submanifold of a Lie group G, then
it is a Lie subgroup of G. In this case, the inclusion map H — G is an
embedding, and we call H an embedded subgroup.

Proof: Since H is a subgroup, multiplication and taking inverses in H are
just the restrictions of multiplication and taking inverses in G and both have
image in H. Since H is a submanifold we can take X = H in the above definiton,
the restrcitions of smooth maps to H are again smooth. QED

For example, the subgroups SL(n) and O(n) of GL(n) are both submanifolds,
and therefore embedded Lie subgroups. Another example is given as follows:
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Complex vs Real

One easily verifies that

C—)M(Q,R),z=x+z’ys—><x y)
is an embedding. More generally, this map induces an embedding

GL(n,C) = GL(2n,R)

by replacing each entry z = x + iy in A € GL(n,C) by the block (_:cy y):

x
T11 —Yn Lin —Yin
Ti1+ Wi - Tip T Win Y11 T Yin Tin
: ' =
Tnl + iynl ... Tnpn + Zynn Tpl —Yni Tnn —Ynn
Yni Tni Ynn Lnn

This way, GL(n,C) is an embedded Lie subgroup of GL(2n,R).

Now let us get back to understanding the definition of a Lie subgroup. The
subleties of immersed and embedded subgroups can be illustrated by a familiar
example:

Example of an immersed but not embedded Lie sub-
group

Recall the maps ¢g: R — S, ¢ — (cos(27t), sin(27t)), and
G:R*— S'x 5 = T2> G(.T,y) = (g(x),g(y))

The map G is a local diffeomorphism from the plane onto the torus 772,
Given a real number «, we defined the map ~, by

Ya: R = T2, (t) = (g(t),9(c - 1)).

We learned that v, is always an immersion, but its image is not a sub-
manifold of T? ifo is an irrational number. However, when « is rational,
then 7,(R) is a submanifold of 72

After checking that v,(R) is an abstract subgroup, we see that v,(R) is in
fact a Lie subgroup of T? for every real number o. (Note that, in this
example, the smooth manifold X and the smooth map f: X — G in the
definition of Lie subgroups is X = R, f = 7,, and H = 7,(R).)
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For an explanation of why a Lie subgroup is defined in such a complicated
way, we refer to a fact we will only be able to appreciate later when we learn
more about Lie theory:

Why so complicated?

A fundamental theorem in Lie group theory asserts the existence of a one-
to-one correspondence between the connected Lie subgroups of a Lie
group G and the Lie subalgebras of its Lie algebra g (tangent space at the
identity with its Lie bracket):

{connected Lie subgroups in G} & {Lie subalgebras in g}.

In the previous example, the Lie algebra of T? has R? as the underlying vec-
tor space, and the one-dimensional Lie subalgebras are all the lines through
the origin (with addtion as group operation). Such a line is determined by
its slope a. Hence every « should correspond to a Lie subgroup 7,(R)
in T2.

However, if a Lie subgroup had been defined as a subgroup that is also
a submanifold, then one would have to exclude all the lines with irrational
slopes as Lie subgroups of the torus. In this case it would not be possible to
have a one-to-one correspondence between the connected subgroups of a Lie
group and the Lie subalgebras of its Lie algebra. But this correspondence
is extremely useful in Lie theory.

The following theorem is a very useful fact which we state here without proof
(you can find it in Lee’s book, Chapter 7, Theorem 7.21):
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Closed Subgroup Theorem

Suppose G is a Lie group and H C G is a Lie subgroup. Then H is closed
in G if and only if it is an embedded Lie subgroup.






LECTURE 11

Transversality

Cut out submanifolds as zeros of functions

In order to prepare the following discussion of transversality, let us have an-
other look at the conditions of when preimages are submanifolds.

Suppose that g, ...,g; are smooth, real-valued functions on a manifold X
of dimension n > k (each g; is a smooth function X — R). Under what
conditions is the set Z of common zeros a reasonable geometric object?

In particular, when is Z a manifold?

We have seen an answer to this question. Collect the n functions to define
the map
g = (gla"'agk): X—>Rk

Then we know that Z = ¢g~!(0) is a submanifold of X if 0 is a regular value
of g.

Historically, the study of zero sets of collections of functions has been of
considerable mathematical interest. For, think of the zeroes as solutions to
equations. Solving equations is a fundamental goal in mathematics (though
not the only one!). In classical algebraic geometry, for example, one studies
sets cut out in (complex) Euclidean space as the zero sets of polynomials
(in several complex variables).

In order to make it easier to find an answer to our question, we would like
to reformulate the regularity condition for 0 directly in terms of the functions g;.
Since each g; is a smooth map of X into R, its derivative at a point z is a linear
map

d(g)z : T(X) — R.
95



96 TRANSVERSALITY

We call such a map a linear functional on the vector space T,(X). The set
T,(X)* := Homg(T,(X),R)

of all linear functionals on T, (X) is a vector space with pointwise addition and
scalar multiplication.

The derivative of g
dg.: Tp(X) — R*
equals the k-tuple of the linear functionals (d(g1)s, - - -,d(gk).). For, each (d(g;)s
is a (1 x n)-matrix which is the ith row of the matrix representing dg,.

Hence, as a linear map to a k-dimensional vector space, we see that

dg, is surjective
<= dg, has full rank
<= the row vectors d(g1)z, - - - ,d(gr). are linearly independent.

This is the same as to say that d(g;)., . ..,d(gx). are linearly independent
in the vector space T,(X)* of linear functionals on T,(X). We are going to
rephrase this condition by saying that the k functions ¢, ... ,g; are independent
at z.

This yields another way of stating the Preimage Theorem:

Preimage Theorem revisited

If the smooth, real-valued functions g, ...,gr on X are independent at
each point = where they all vanish (i.e. g1(z) = - -+ = gg(x) = 0), then the
set Z of common zeros is a submanifold of X with dimension equal to
dim X — k.

It is convenient here to define the codimension of an arbitrary submanifold
Z of X by the formula

codim Z = dim X — dim Z.

We can think of the codimension as a measure of how much bigger X is
compared to Z. In particular, note that the codimension depends not only on
Z, but also on the surrounding manifold X. Hence we should always speak of
the codimension of Z in X. However, the number of functions we use to cut
out a submanifold determines the codimension, independently of the size of X:
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Cut out manfiolds

Thus £ independent functions on X cut out a submanifold of codimen-
sion k.

Once again, a natural question arises:

Question

Can every submanifold Z of X be “cut out” by independent functions?

Answer

The answer is no, in general.

However, there are two useful partial converses:

Cut out manfiolds: Partial Converse 1

If y is a regular value of a smooth map f: X — Y, then the preimage
submanifold f~1(y) can be cut out by independent functions.

Note that the point here is that we express f~'(y) as the set of common
zeros for some function, not just as the preimage of some value in Y.

Proof: Assuming dim Y = m, we just need to choose local coordinates around
y, i.e. a diffeomorphism h: W — V with W C Y and V' C R™ open and h(y) = 0.
Then we define the new map

g=nhof: f7H(W)—R™ with g7 (0) = f~(h7(0)) = f'(y) € X.
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The origin 0 € R™ is a regular value for g, for if z € g71(0) then
dgz - dhf(ac) © df:c

is surjective, since dhy(,) is an isomorphism and df, is surjective (x being a regular
point for f). Hence every point in g~*(0) is regular, and 0 is a regular value for g.
Thus the components g1, ...,9, of g with g;: X — R are independent functions
which cut out f~'(y). QED

Simple Example

In many cases, the result does not tell us too much new. It is just convenient
to know that we can choose 0 as the regular value.
A simple example is given by defining S™ as f~'(0) of the map

g R S R af 4+ a2 -1

As we pointed out, it is not possible to write every submanifold as the zero
set of some map. But locally we can!

Cut out manfiolds: Partial Converse 2

Every submanifold Z of X is locally cut out by independent functions.
More specifically, let m be the codimension of Z in X, and let z be any point
of Z. Then there exist m independent functions ¢;....,g,, defined on some
open neighborhood W of z in X such that Z N W is the common vanishing
set of the g;. In other words, Z N W is cut out be independent functions in

w.
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Proof: This is just Exercise 5 of Exercise Set 3 applied to the immersion Z —
W. The idea is to use the Local Immersion Theorem and pick local coordinate
functions g¢i,...,9, (n = dim X) defined on W such that Z N W is the set of
common zeros of the m functions ¢, 11, ... ,9n, i.€.

ZNW = {ZE ew: gn—m+1(x) = Oa cee 7gn(m) = 0}

QED

As a consequence we see that every manifold can be cut out locally by inde-
pendent functions on Euclidean space (but not globally in general!)

Cut out manifolds by smooth conditions

Now we would like to understand what happens when we do not take the
preimage of just a single point, but of a whole submanifold (not an arbitrary
subset, since we need some control).

Given a smooth map f: X — Y between smooth manifolds. Assume that
Z C Y is a submanifold of Y. We would like to understand:

Under which conditions is the subset f~!(Z) C X an interesting geometric
object? In particular, when is f~1(Z) a manifold, and therefore a subman-

ifold of X7

Note that f~!(Z) is the set of all x € X such that f(z) € Z. In other words,
it is the colllection of all the fibers f~!(z) for all z € Z. This gives us a hint to
how we can answer the question. We look at the points z € Z each at a time.
This fits nicely into our general strategy: whether a space is a manifold or not is
determined by the neighborhoods of points.

Strategy

More precisely, in order to check that f~!(Z) is a manifold, it suffices to
check that for each point € f~!(Z) there is an open neighborhood U C X
of x in X such that f~'(Z)NU is a manifold. For then f~!(Z)NU inherits
the local coordinate functions from U (by restricting them to the subset

fH(2)n0).
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So let us pick a point z € Z and let x € X satisfy f(z) = z. We have just
learned that we can write Z in a neighborhood W C Y around z as the zero set

of independent functions g, ...,g;, where k£ denotes the codimension of Z in
Y. This means:
(5) WnZ={weW:gw)=--=g(w)=0}

and d(g1)ws, - - - ,d(gk)w are linearly independent in 7,,(Y")* for all w € W N Z.
We set U := f~}(W) which is an open neighborhood of z in X. Since taking

preimages of sets commmutes with intersecting sets, we have
[ wWnz)y=w)nfH(2)=unf(2)

Hence equation (5) implies that, near x, the preimage f~'(Z) is the zero set
of the functions g; o0 f,..., gy o f in U:

UNf i (2)={ueU:(giof)(u) == (gof)(u)=0}

Let g: W — RF denote the submersion (gi,...,gx) defined around z. Then
the Preimage Theorem applied to the composite smooth map go f: U — RF gives
us:

Unf4Z) = (go f)~*(0) is a manifold if 0 is a regular value of g o f.

X Y

Hence in order to show that f~!(Z) is a manifold we need to understand when
0 is a regular value of g o f.

So what does it mean that 0 is a regular value of the composite g o f? The
chain rule tells us

d(go f). = dg. o df,.

mk
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Thus, the linear map
d(go f)e: To(X) — RF is surjective
<= dg, maps the image of df, onto R*.

We know that dg.: T.(Y) — R¥, on the whole tangent space to Y at z, is a
surjective linear map whose kernel is the subspace T,(Z). Thus dg, induces an
isomorphism

dg.: T.(Y)/T.(Z) = R,

In particular, (dg.)m (4,) can only be surjective if Im (df,) and 7.(Z) to-
gether span all of 7,(Y).

We conclude that g o f is a submersion at x € f~!(Z) if and only if
I (df,) + T2(2) = T2(Y).

We give this condition a name:

Transversality

Let f: X — Y be a smooth map and Z C Y a submanifold. Then f is said
to be transversal to the submanifold Z, denoted f M Z, if

Im (dfx) = Tf(x)(Z) = Tf(x) (Y)
at each point x € f~1(Z) in the preimage of Z.

The above discussion then shows

Transversality Theorem

If the smooth map f: X — Y is transversal to a submanifold Z C Y, then
f~YZ) is a submanifold of X. Moreover, the codimension of f~1(Z) in
X equals the codimension of Z in Y.

The number of independent functions g1, . . . ,gx we needed to locally write Z as
a zero set in Y, is the same as the number of independent functions g;of, ... grof
we needed to locally write f~1(Z) as a zero set in X. Therefore the codimension
of f~1(Z) in X is equal the codimension of Z in Y.
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Transversality revisited

To make this explicit, note that our discussion showed that f M Z equivalent
to: for every x € X with f(x) € Z, there is an open neighborhood W
around f(z) in Y and a submersion g: W — R* with k = codim Z, such
that W N Z = ¢~1(0) and 0 is a regular value of g o f.

For some very simple examples of transversality and non-transversality, con-
sider Y = R? with the submanifold Z being the z-axis. Then

e The map f: R' — R? defined by f(t) = (0,t) is transversal to Z, with

f~1(Z) ={(0,0)}.
e The map f: R' — R? defined by f(t) = (¢,t*), however, is not transver-
sal to Z, with f~1(Z) = {(0,0)}.

V=R

LS

{u=Ge.e?)
3.{-«::3 2ex-axis

Imdfo)t Ty 2= rovis # TV=R"

e The map f: R' — R? defined by f(t) = (£,t> — 1) is transversal to Z,
with /1(2) = {(~1.0),(10)}.

e The map f: R' — R? defined by f(t) = (¢,cost — 1) is not transversal
to Z, with f~4(Z) = {(0,0)}.

iRt 1
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LECTURE 12

Transversality of submanifolds

Today, we are going to study some important special cases of transversality.

First, transversality is in fact a generalization of Regularity:

Regular vs Transversal

When Z is just a single point z, its tangent space is the zero subspace of
T,(Y). Thus f is transversal to {z} if df,(T,(X)) = T.(Y) forallz € f~1(2).
This is exactly what it means to say that z is a regular value of f. So
transversality includes the notion of regularity as a special case.

The second one tells us how we should actually think of and visualize transver-
sality. Roughly speaking, we want to know how the image of f and Z meet in
Y:

Intersection of submanifolds

The most important situation is the transversality of the inclusion map ¢ of
one submanifold X C Y with another submanifold Z C Y.

To say a point € X belongs to the preimage i~'(Z) simply means that x
belongs to the intersection X NZ. Also, the derivative di,: T,.(X) — T,(Y)
is merely the inclusion map of 7,(X) into T,,(Y). So i M Z if and only if,

for every y € X N Z,
(6) Ty(X) + Ty (Z) = Ty(Y).
Notice that this equation is symmetric in X and Z. When it holds, we shall

say that the two submanifolds X and Z are transversal, and write
XmZ.

Warning: For equation (6) to be true, it is not sufficient that dim 7, (X) +
dimT,(Z) = dim T, (Y). The two subspaces must span together all of T,.(Y).

The transversality theorem for this specialize case then says:

103
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Intersection of transversal submanifolds

The intersection of two transversal submanifolds X and Z of Y is again
a submanifold. Moreover, the codimensions in Y satisfy

codim (X N Z) = codim X + codim Z.

y=R>

> TS E TV
vt frawmal

The additivity of codimensions follows from the codimension formula of the
Transversality Theorem:

codimi~!(Z) in X = codim Z in Y
=dmX —-dimXNZ=dmY —dimZ
=dmY —dimXNZ = (dmY —dimZ) + (dimY — dim X)
= codim X N Z = codim Z + codim X.

Intersect as a little as possible

We have just seen that two manifolds intersect transversally if their tangent
spaces together span the whole ambient space. A different way to think of
transversality is: Two manifolds intersect transversally if they intersect as
little as possible at every point. And we measure the degree of inter-
section in terms of tangent spaces: If two submanifolds intersect, then
they transversally if the intersection of their tangent spaces in the ambient
space is minimal.

Note that the converse of the Transversality Theorem is not true. Weh
ave seen a simple example last time: the submanifolds X {(z,y) € R? : y = 2%}
and Z = {(z,y) € R? : y = 0} do not intersect transversally at 0 in Y = R?
but their intersection X N Z = {0} is a zero-dimensional manifold. However,
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there do, of course, exist intersections which are not transversal and where the
intersection is not a manifold. See the example below!

Empty intersections are transversal

It is useful to note that any smooth map f: X — Y whose image does
not meet a submanifold Z of Y, i.e. f~Y(Z) = (), is transversal to Z for
trivial reasons. For in this case there is no condition to be satisfied. In
particular, two submanifolds which do not intersect at all, are transversal.
Moreover, if f: X — Y is a submersion, then f is transversal to any
submanifold Z of Y, since then Im (df,) = T (Y') for every .

i
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The ambient space matters

It is important to note that the transversality of X and Z also depends
on the ambient space Y. For example, the two coordinate axes intersect
transversally in R?, but not when considered to be submanifolds of R3. In
general, if the dimensions of X and Z do not add up to at least the dimension
of Y, then they can only intersect transversally by not intersecting at all.
For example, if X and Z are curves in R®, then X M Y if and only if
XNy =0.

Let us have a look at an example:
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In Y = R?, we consider the two submanifolds

X ={(z,y,2) ER®: 2% +¢* - 22 =1}
and the sphere

Zy={(z,y,2) €ER®: 2?2 + > + 2*> = a}.

We would like to understand for which a these two submanifolds intersect
transversally in Y.

Therefore, we need to determine the tangent space of X and Z, at points
where they intersect. We observe that X = f~!(0) for the map

fR SR, (zy2) =2 +y*— 22 -1
and Z, = g~'(0) for the map
g: R =R, (2,y,2) = 2> +y* + 2% —a.

Since 0 is a regular value of f, the tangent space to X at a point p = (z,y,2)
is the kernel of the derivative of f at p (expressed as a matrix in the standard
basis)

df, = 27,2y, — 22): R* = R.
Hence the tangent space to X at p = (z,y,2) is
T,(X) = Ker (df,) = span({(2,0,2),(0,2,9)}) C R®.

Similarly, since 0 is a regular value of g, the tangent space to Z, at a point
p = (z,y,2) is the kernel of the derivative of g at p (expressed as a matrix
in the standard basis)

dg, = (22,2y,22): R* — R.
Hence the tangent space to Z, at p = (z,y,2) is
T,(Z.) = Ker (dgy) = span({(—20,2),(0, — z.y)}) C R
Now X and Z intersect in the points p = (z,y,2z) which satisfy
4y -2 —1=0=2>+y*+2°—a.
Subtracting both equations yields the condition
(7) 22> =a—1.

This gives us three cases for the intersection X N Z,:
e If o < 1, then X and Z, do not intersect, since there is no z which
can satisfy condition (7): X N Z, = 0.
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o If o =1, then X and Z; intersect in the circle with radius 1 in the
xy-plane in R? with the origin as center, i.e.

XNZ ={(zy2) €R: 2 +y*=1and z = 0}.

o If a > 1, then X and Z, intersect in two disjoint circles with
lie in the planes parallel to the zy-plane in R? with z-coordinate
z==x+/(a—1)/2:

XNZ,={(z,y,2) €R®:

1
2 +yf = ot and z = +1/(a — 1)/2}.

2

Now we need to check transversality (recall T,(R?) = R? at every p):

e If a < 1, then the intersection is empty and therefore transversal.

e If ¢ = 1, then T,(X) and T,(Z;) span the zy-plane in R® and
not all of R?, at every p € X N Z;. Thus the intersection is not
transversal.

oIf a > 1,let p = (2,y,2) € XNZ, Then T,(X) and T,(Z,)
together span all of R?, for the vector (—z,0,z) € T,(X) is not a
linear combination of (z,0,z) and (0,2,y) (2 # 0). Since T,,(Z,) is 2-
dimensional, this shows T'p(X )+ T,,(Z,) = R? at every p € X N Z,.
Thus the intersection is transversal.

> Q=|

Here is an example of an intersection which is not transversal and where the
intersection is not a manifold:



108 TRANSVERSALITY OF SUBMANIFOLDS

Non-transversal intersection which is a manifold

Let Y = R3 and let Z be the hyperplane defined by
Z={(z,y,2) eR®: 2 =1}
and let X be the hyperboloid defined by
X ={(z,y,2) ER®: 2% +9* — 22 = 1}.
The intersection of X and Z is given by the points satisfying x = 1 and
2?2 +y? — 2?2 = 1, i.e. all points such that 2 = 1 and y? = 2. This means
XNZ={(zyz) eR:x=1y==z}

We have seen in one of the first lectures that a space consisting of two lines
crossing each other is not a manifold. The intersection point, here the point
p = (1,0,0) does not have a neighborhood in X N Z which is diffeomorphic
to an open subset in Euclidean space. Thus X N Z is not a manifold.

As a reality check, let us look at the tangent spaces to X and Z at p: Since Z
is a parallel translate of a vector subspace of R*, we see that T,(Z) is the yz-
plane in R? (all points with = 0). The tangent space to X was calculated
in the previous example (and in an exercise). At p = (1,0,0), 7,(X) is the
vector subspace in R? spanned by the vectors (0,1,0) and (0,0,1). In other
words, T,(X) is the zy-plane in R®. Thus 7,(Z) and T,(X) do not span
T,(Y) = R3. (The problem here is that Z “is” the tangent plane to X at

p.)

'an= 'fl-lo

crosst “y lives

Codimension Formula revisited

Another way to rephrase the codimension formula is to say that when
X is locally cut out by k independent functions and Z is locally cut out by
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[ independent functions, then X N Z is locally cut out by k + [ independent
functions.

In fact, we can reprove the theorem by using independent functions:

Let y be a point in X N Z C Y. Around y, the submanifold X is cut out
of Y by k = codim X independent functions, i.e. there is an open neighborhood
U CY around y and k independent functions

fioo o fir U—=R
such that X NU is defined by the vanishing of the f;:
XNU={ueU: fi(u)=---= fi(u) = 0}.

The independence of the f; implies that 0 is a regular value of f = (f1,...,fx): U —
R¥. In particular,

(8) df.: T,.(Y) — R* is surjective.
By the corollary to the Preimage Theorem we know
T,(X) = Ker (df,) C Ty (Y).
Then (8) implies
dim Ker (df,) = dim7,(X) = dim 7,(Y) — k.
Similarly, around y, the submanifold Z is cut out by | = codim Z independent

functions, i.e. there is an open neighborhood V' C Y around y and [ independent
functions

g1, q10 V=R
such that Z NV is defined by the vanishing of the g;:

ZNV={veV:g{) =--=g) =0}

The independence of the g; means that 0 is a regular value of g = (g1, ...,g1): V —
R'. In particular,

9) dg,: T,(Y) — R is surjective.
The tangent space to Z at y is
T,(7) = Ker (dg,) € Ty (Y).
Then (9) implies
dim Ker (dg,) = dimT,(Z) = dimT,,(Y') — L.
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We set W := UNV which is an open neighborhood of y. Then, arond y, XNZ
is locally cut out by the combined collection of k + [ functions f1,...,fr,q1,--.,9,
ie.

(XNnZ)nw
We write h for the collection of functions f and g:
h=(f1, . fu:g1,---.q): W — RFFL

The derivative of h at y is

dhy: T,(Y): R* v dh,(v) = (df,(v),dg,(v)).

Now we want to relate the independence of the f;’s and g;’s to transversality:

As vector subspaces of T,(Y'), Ker (df,) and Ker (dg,) satisfy the dimension
formula

dim Ker (df,) + dim Ker (dg,)

= dim(Ker (df,) + Ker (dg,)) + dim(Ker (df,) N Ker (dg,)).
From (8) and (9) we get that this equation is equivalent to

dim T,(Y) — k + dim T,,(Y) — I
(10) = dim(Ker (df,) + Ker (dg,)) + dim(Ker (df,)) N Ker (dg,)).

Hence the left hand side is 2dim 7},(Y') — (k + (). For the right hand side, we
have

(11) dim(Ker (df,) + Ker (dg,)) < dimT,(Y)
and

9

dim 7,,(Y) — dim(Ker (df,) N Ker (dg,)) < k+1
—(k+1).

(12) i.e. dim(Ker (df,) NKer (dg,)) > dimT,(Y")

Hence, given (10), the two inequalities (11) and (12) imply
(13) dim(Ker (df,) + Ker (dg,)) = dim T;,(Y")
(14) <= dim(Ker (df,) N Ker (dg,)) = dimT,,(Y) — (k +1).

Now the first equation (13) means exactly that X and Z are transversal in
Y, while the second equation (14) is true if and only if d(h), is surjective, i.e. if
and only if the k£ + [ functions fi,...,fx,91,...,q are independent.
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We are going to exploit what we just observed a bit further. Let us keep the
above notation. Now we assume again that X and Z meet transversally
in Y. Then 0 is a regular value of h. This implies that the tangent space to
X N Z at y equals Ker (dh,). For v € T,(Y), we have dh,(v) = 0 if and only if
both df,(v) = 0 and dg,(v) = 0. Thus Ker (dh,) is the intersection of the kernel
of Ker (df,) and Ker (dg,) in T,,(Y):

Ker (dh,) = Ker (df,) N Ker (dg,) in T,,(Y").

Thus we have proved the following useful fact:

Tangent space of intersections

If X and Z are submanifolds which meet transversally in Y, then the tangent
space to the intersection X N Z is the intersection of the tangent spaces, i.e.

T,(X N Z)) =T,(X)NT,(Z) for all y € X N Z.

In the exercises for this week we prove a generalization of this fact to the
preimage of a submanifold Z under a smooth map f when f M Z:

Tangent space of preimages

Let f: X — Y be a map transversal to a submanifold Z in Y. Then
T.(f*(Z)) is the preimage of Tf(,;)(Z) under the linear map df,: T,,(X) —
Ty (Y):

T.(f71(2)) = (dfe) " (Ty)(2)).

A famous example of transversal intersections is given by Brieskorn Manifolds.

Exotic Spheres

Consider the following intersections in C° \ {0}:
Sp={ + 25+ 25 + 25+ 281 =0}
N |21 + |22 + |2s]® + |24)* + 252 = 1}.
In this week’s exercises, we show that this is a transversal intersection. One
can show that, for each value k = 1,...,28, S is a smooth manifold which is
homeomorphic to S7. But none of these manifolds are diffeomorphic. These

are so called exotic 7-spheres were constructed by Brieskorn and repre-
sent each of the 28 diffeomorphism classes on S7. That such exotic 7-spheres
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is a famous and groundbreaking result of Milnor. Milnor’s work started an
amazing story about the diffeomorphic structures on spheres which culmi-
nated in the solution of the Kerviare Invariant One Problem by Hill,
Hopkins and Ravenel in 2009.



LECTURE 13

Homotopy and Stability

Today we are going to introduce one of the most important concepts in topol-
ogy. Actually, the idea of studying objects up to homotopy has turned out be
extremely influential and successful in many areas in mathematics.

Homotopy

Let I denote the unit interval [0,1] in R. We say that two smooth maps
fo and f; from X to Y are homotopic, denoted fy ~ fi, if there exists a
smooth map F': X x I — Y such that

F(z,0) = fo(z) and F(z,1) = fi(x).

F is called a homotopy between f; and f1. We also write fi(z) for F(z,t).
In other words, a homotopy is a family of smooth functions f; which
smoothly interpolates between f, and f;

To require that F'is smooth is necessary because we are working with smooth
manifolds. For general topological spaces, one just requires that F'is continuous.

Some examples:

o for R - R% 2 (z,0) and f1: R — R? z + (,sinz) with homotopy
F:R x[0,1] = R? (z,t) — (z,tsinz).

A
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e Let v: ST — R? be a smooth loop (a smooth path where start and end
points agree). Then 7 is homotopic to the constant map S* — {0} C
R2. In fact, this is true when we replace R? with any R¥, since R is
contractible (see the exercises).

VARERNY. . UL 1D
-\

e In the exercises, we will show that the antipodal map on the k-sphere
Sk — Sk x +— —x (which sends a point to the point on “the other side”
of the sphere) is homotopic to the identity on S*.

o
\

N—

e An important example of two maps which are not homotopic: The
constant map f: S' — R?\ {0}, p — (1,0) and the map g: S' —
R?\ {0}, p — p are not homotopic. We will learn more about this later,
and there are much better conceptual arguments in algebraic topology
which explain this fact. Here is a first, hands-on argument:

Assume there were a smooth homotopy F': S*x[0,1] — R?\ {0} from
f to g. For every fixed point p € S', F(p,t) defines a path from p to
(1,0) in R?\ {0}. Let Z be the subspace of S* of points with negative
x-coordinate:

Z:={p=(zy) €Sz <0}

Then by the Intermediate Value Theorem, for every p € Z, there is
t such that the z-coordinate of F'(p,t) is 0. Since [0,1] is compact, there
is in fact a minimal such ¢ for each p € Z. We denote this minimum by
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to(p) and write

F(p,to(p)) = (0,90(p))-

As (0,0) is not a point of R?\ {0}, for each p, we have either y,(p) > 0
or yo(p) < 0.

Since F' is smooth in both variables, yo(p) depends smoothly on p as
well. Thus, if yo(p) > 0 for some p, then there is an open neighborhood
U C S' around p such that yo(q) > 0 for all ¢ € U. In other words, the
subset

Uso:={p=(z,y) € Z:yo(p) >0} is open in Z.
Similarly, the subset
Uco:={p=(x,9) € Z:yo(p) <0} is open in Z.

Both spaces are nonempty, since (0,1) € Usq and (0, — 1) € Uo.
Moreover, they are disjoint and mutual complements of each other in Z,
ie.

U>0 - Z\U<0 and U<0 - Z \ U>0.

Thus, Z is the disjoint union of the two nonempty and both open and
closed subsets U= and U_g. Since Z is connected (being the continuous
image of a closed interval), this would imply either Z = U or Z = Uy.
But this is impossible. Thus the smooth homotopy F' cannot exist.
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Homotopy is an equivalence relation

Given two smooth manifolds X and Y, homotopy is an equivalence relation
on smooth maps from X to Y. The equivalence class to which a mapping
belongs is its homotopy class.

Proof:
We need to check that ~ is reflexive, symmetric, and transitive:

Reflexivity is clear as every map is homotopic to itself via the homotopy f; = f
for all ¢.

For symmetry, suppose f ~ g and let F' be a homotopy. Then the map defined
by (x,t) — F(xz,1 —t) is a homotopy from g to f. Hence g ~ f as well.

For transitivity, we need to introduce a smart technique first:

Smooth bump functions

An extremely useful tool in differential topology are smooth bump functions
which allow smooth transitions. We start with the function

e~/ >0
:R—R =
[ R R, f(z) {0 .

We observe that f is smooth: We only need to think about = > 0. Since
the ith derivative has the form e='/* times a rational polynomial. Such a
product is differentiable and

lim f(z) =0,

z—0

since e~ 1/’ goes to 0 faster than any rational polynomial can go to +oc0.

Now, for any given real numbers a < b, we define a function
9(x) = f(z —a)f(b— )

As a product of two smooth functions, g is smooth, and
g(x) =0 z<a (since f(xr —a)=0)
g(x)>0 a<z<b
g(x) =0 x>b (since f(b—x)=0)
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Next we define yet another function

“ g(t)dt
h: R =R, h(z) := f?ffA
S g(t)dt
By the Fundamental Theorem of Calculus, A is smooth, nondecreasing, and
h(z) =0 r<a

O<h(z)<l a<z<b

h(z) =1 x>0b
Then h is a smooth bump function.
Finally, we can also define higher dimensional smooth bump functions by
setting

H:RF =R, H(z) :=1— h(|z|).

Then H(x) is equal 1 on the closed ball around the origin with radius a, is 0
outside the open ball with radius b, and between 0 and 1 on the intermediate
points:

1 x € B,(0)
O0<H(z)<l a<|z|<b
H(z)=0 z € R*\ B,(0)

Back to the proof:

117
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Suppose f ~ g and g ~ h, and let F' be a homotopy from f to g and G be a
homotopy from g to h. We would like to compose F' and G to get a homotopy
from f to h. Since we require our homotopies to be smooth, we need to make
sure that the transition from F' to G is smooth.

In order to this, we need to manipulate F' and G a bit. And here we are lucky
that we have our smooth bump functions at our disposal. So let ¢: R — R be a
smooth function such that

ot) = {o r < 1/4

1 x>3/4

and define new homotopies F from f to ¢ and H from ¢ to h by
) = Flap(t) and Glrt) == Gla,p(t)).

Now we can define the map

‘ _ F(z,2t) t€10,1/2]
H: X x[01] =Y, Hzt) = {é(m,Qt —1) tel1/21].

This is map well-defined and smooth, since F(z,2t) = G(x,2t—1) for t € [3/8,5/8].
Thus H is a smooth homotopy from f to h. Hence ~ is also transitive and an
equivalence relation. QED

Homotopy is one of the most crucial notions in topology. In fact, a lot of
properties in topology are invariant under homotopy. Therefore, they can be
studied by considering maps only “up to homotopy”. This led to the construction
of the homotopy category of spaces in which morphisms are continuous maps
modulo homotopy, i.e. f ~ ¢ if and only if f and g are homotopic. To be able
to pass to the homotopy category is a very powerful method which has had great
influences in many areas of mathematics. We will not be able to fully appreciate
the homotopy category this semester.

However, we would like to start to exploit homotopy for our purposes. Despite
the above remark, there also a lot of properties of maps which are not invariant
under homotopy.

In fact, many of the properties we have studied so far are not invariant,
i.e. if fo has a property P and f; is a homotopy from fy to fi, then it is often not
true that f; has property P. For example, we could start with an embedding f
and end up with a constant map.

So let us ask a more modest question: given f, has property P, is there
always a small € > 0 such that f; has property P for all ¢t € [0,e)? For example,



HOMOTOPY AND STABILITY 119

if fy is an embedding there is always a small ¢ > 0 such that f; remains an
embedding for 0 <t < e. In other words, embeddings are a so called stable class:

Stable properties

A property P is stable provided that whenever fy: X — Y possesses the
property and f;: X — Y is a homotopy of fy then, for some € > 0, each f;
with ¢ < € also possesses the property.

We also call the maps which have a stable property, a stable class. Exam-
ples are the classes of embeddings, local diffeomorphisms, submersions,...
as we will learn soon.

Note that stability is a very natural condition to ask for. For real-world
measurements, only stable properties are interesting, since any tiny perturbation
of the data would make an unstable property appear or disappear.

In order to get a better idea of stability, let us look at the difference between
requiring that things merely intersect or that they intersect transversally:

e That a smooth map fy: R — R? passes through a fixed point in R? is
not a stable property. It disappears immediately.

{o

e That a smooth map fy: R — R? merely intersects the z-axis is not a
stable property. It disappears immediately.

fo

X-oxl

e However, that a smooth map fy: R — R? intersects the z-axis transver-
sally is a stable property. It persists after a small perturbartion.
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—\x
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e That two smooth curves (connected 1-dimensional manifolds) meet in
R3? is not a stable property. It disappears immediately.

ﬂ3

f:o

e That a smooth curve and a smooth surface (2-dimensional manifold)
intersect transversally in R? is a stable property. It persists after a small
perturbartion.

This reveals yet another very important feature of transversality. The follow-
ing theorem tells us that the properties which turned out to be useful for us so
far are all stable.

Stability Theorem

The following classes of smooth maps from a compact manifold X to a
manifold Y are stable classes:

(a) local diffeomorphisms.

(b) immersions.
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(c) submersions.

(d) maps which are transversal to any specified closed submanifold Z C
Y.

(e) embeddings.

(f) diffeomorphisms.

Proof:

(a) First we note that local diffeomorphisms are just immersions in the
special case when dim X = dimY, so (a) follows from (b).

(b) Assume fo: X — Y is an immersion and dim X = m. Letf; be a
homotopy of fy. That fy is an immersion means that d(fy), is injective for all
x € X. We need to show that there is an € > 0 such that d(f;), is injective for
all points (x,t) in X x [0,¢) C X x [.

Given a point zg € X, that d(fy)s, is injective implies that the matrix rep-
resenting d(fo)., (in local coordinates) has an m x m-submatrix A(z(,0) with
nonvanishing determinant. Since the determinant is continuous, this submatrix
will have nonvanishing determinant in an open neighborhood of (z¢,0) in
X x [0,1]. Since X is compact, finitely many such neighborhoods suffice to
cover all of X x {0}. Hence there is a small ¢ > 0 (it is the minimum for the
open intervals [0,¢;) covering {0}) such that the intersection of these finitely many
neighborhoods contains X x [0,e€). This is what we needed.

(c) If fo is a submersion, almost the same argument works. We just need
to choose an n x n-submatrix of the surjective map d(fy), with n = dimY'.

(d) Let Z C Y be a closed submanifold, and assume that fy is a map which
is transversal to Z. Then we have shown that, for every point x € X, there is a
smooth function g which sends a neighborhood of f(z) to 0 € Re4™mZ and such
that go fy is a submersion. Since Z is closed in Y, f~!(Z) is closed in X and
therefore also compact. Therefore, by (c), there is an € > 0 such that g o f; is
still a submersion for all ¢ < e. This is means that f; is still transversal to Z
for all t < e.

(e) Assume that fy is an embedding, and let f; be a homotopy of f;. Since X
is compact, fy and each f; are automaticlly proper maps. Hence we need to show
that when fj is a one-to-one immersion, then so is f; in a small neighborhood.
We just checked that being an immersion is stable. Hence it remains to show
that f; is still one-to-one if ¢ is small enough.
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Therefor we define a smooth map
G: X x1—=Y xI, Gxt):=(fi(x)t).

Then if (e) is false, i.e. if f; not one-to-one in some small neighborhood of
0, then, for every ¢ > 0, we can find a t with 0 < ¢ < € and z,y € X such that
fi(z) = fi(y). For example, for every ¢; = 1/i, we could find such a ¢;, z; and y;.
Thus there is an infinite sequence ¢; — 0, and an infinite sequence of points
x; # y; € X where f;, fails to be injective, i.e. such that

fe(@i) = Gziti) = Glyiti) = fr,(yi)-
Since X is compact, we may pass to subsequences which converges
x; — xo and y; — yo. Then
G(20,0) = lim G(z,t;) = im G (y;,t;) = G(yo,0).
But G(z0,0) = fo(zo) and G(y0,0) = fo(xo). By assumption, fy is injective,
and hence xy = 1.

Now, after choosing local coordinates, we can express the derivative of G
at (20,0) by the matrix

*
dG(xO,O) = d(f(J)l"o i}

where the 0’s in the lowest row arise from the fact that the first coordinates do
not depend on ¢, and the 1 is the derivative of the function ¢ — .

Since fy is an immersion, d( fy)., has kK = dim X independent rows. Thus the
matrix of dG,,0) has k + 1 independent rows, and hence dG',, o) is an injective
linear map. Thus, G is an immersion around (z,0) and hence G must be one-
to-one on some neighborhood of (z(,0). But, since the sequences (x;,t;) and
(yi,t;) both converge to (z,0), for large i, both (z;,t;) and (y;,t;) belong to this
neighborhood. This contradicts the injectivity of G.

(f) Assume that fy: X — Y is a diffeomorphism. Since X is compact, this
implies that Y is compact as well. Let f; be a homotopy of f;. We need to
show that there is an € > 0 such that f; is diffeomorphism for all £ < e.

Since X is compact, X has only finitely many connected components, and so
does Y. Hence we can check the statement for each of these connected components
separately. For, this gives us an ¢; for each component. Since there are finitely
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many components, we can just take the minimum of the ¢;’s as the € for all of X
and Y.

Thus we may assume that X and Y are connceted. By (a) and (e), we know
that being a local diffeomorphism and being an embedding is a stable property.
Thus there is a € > 0 such that f; is a local diffeomorphism and an embedding.
For f; being a diffeomorphism, it remains to show that f; is surjective.

We fix a t < €. Since f; is a local diffeomorphism, it is open and hence f;(X)
is open in Y. But f;(X) is also closed, since it is compact being the image of a
compact space. Since Y is connected, this implies f;(X) =Y. QED

Note that the condition that Z is closed in Y in point (d) is necessary. For
a simple example, in Y = R? we consider the subspace

Z={(ry)eR*:0<z<1ly=0} CR?

(which is just image of an interval in R?). It a subspace which is neither open nor
closed in R?. But Z is a one-dimensional submanifold of R%. Now, for X = [-1,0],
we define f to be the smooth map

fo: [-1,0] = R? 2~ (2,0).
Since f;(Z) =0, fy is transversal to Z. But, for the homotopy f;, given by
fi: [-1,00 x [0,1] = R?, (z,t) — (z +t,0),

we have f;'(Z) # 0 for every t > 0. But both Im (df,) and T} (Z) are just
R embedded as the z-axis in R* = T}, (Y). Hence f; is not transversal to Z
for any ¢ > 0. Note that this would not have happened if Z had been the closed
submanifold {(z,0) : 0 <z < 1}.

An even more important assumption we made in the theorem is that X is
compact. The next example will show that we cannot drop this assumption for
any of the properties in theorem.

Compactness matters

The Stability Theorem fails when X is not compact. For a simple example,
let p: R — R be a smooth function with p(s) = 1 for |s| < 1 and p(s) =0
for |s| > 2. Then we define

fi: R =R, fi(z) = zp(ta).
For t =0, fo(z) = x for all z, i.e. fy = Id. Hence fj is a local diffeomor-

phism, an immersion, a submersion, an embedding, a diffeomorphism and
transversal to every submanifold of R.
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But for any fixed t > 0, we have |tx| > 2 when x > 2/|t|. Hence, for this
fixed t, f;(x) =0 for all x > 2/|t|.

Thus f; is neither a local diffeomorphism, an immersion, a submersion, an
embedding, nor a diffeomorphism, and is not transversal to {0} C R.

We see what is going wrong when we replace the domain with a closed
interval, i.e. a compact subspace of R. Say X = [a,b] with b > 0. Then we
can choose € > 0 which is small enough such that 1/e¢ > max(|al,|b]), and it
would not be possible to choose = bigger than 1/[t|. Then we had fi(z) =z
for all x and all ¢t < e.
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Sard’s Theorem and Morse functions

Now we are going to shift perspectives and ask:

Given a map f which does not have a property P. Is it possible to bump f
a little bit such that it gets property P?

If this is possible for every map, P is a particularly nice property:

Generic properties

A property P of maps is called generic if, for any fy, there is a homotopy
F for fy and an € > 0 such that f; has property P for all ¢t € (0,¢).

If we look back at the images we used to illustrate stable and unstable prop-
erties, we see that non-transversal intersections are rather the exception than the
norm. Now we have a way to give this feeling a precise meaning: Transversality
is generic.

We are not going to prove this statement for the moment, but content our-
selves with looking at an important special case. Recall that transversality is a
generalization of regularity:

fMm{y} < yis a regular value of f.
An analog, though not equivalent, version of the above question is now: Given

a smooth map f: X — Y and a critical value y. Is it possible to bump y a little
bit such that it gets regular?

The answer is yes and is the content of a famous theorem:

Sard’s Theorem

If f: X — Y is any smooth map of manifolds, then almost every point in
Y is a regular value of f.
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To say that "almost every point” is a regular value of f sounds sloppy, but is a
well-defined term in measure theory. It means by definition that the complement
of regular values in Y has measure zero. Since the complement of the regular
values are the critical values, Sard’s theorem says that the set of critical values
of a smooth map of manifolds has measure zero.

Sard’s Theorem for manifolds follows from Sard’s Theorem in Calculus. We
are not going to prove either of them, since the required techniques are not so
interesting for this course.

Measure zero in a measure zero box

A rectangular solid in R™ is just a cartesian product of n intervals in R",
and its volume is the product of the lengths of the n intervals. An arbitrary
set A in R” is said to have (Lebesgue) measure zero if, for every ¢ > 0,
there exists a countable collection {S7,5s, ...} of rectangular solids in R",
such that A is contained in the union of the S;, and

Z vol (S;) < e.
i=1

Then in a manifold X, an arbitrary subset C' C X has measure zero if,
for every local parametrization ¢ of X, the preimage ¢~'(C) has measure
zero in FEuclidean space.

(Note that measure and volume depend on the ambient space.)

An example of a measure zero subset is given by the set of rational
numbers in R. Hence for measure theorists, “almost every” real number
is irrational. This example illustrates that something that happens almost
never, can still happen often enough to be noticed.

We learn from the previous box: By definition, no nonempty rectangular
solid in R™ has measure zero. Hence it cannot be contained in a set of measure
zero. Now, every nonempty open subset of R™ contains some nonempty rectan-
gular solid. Thus, no nonempty open subset of R"” has measure zero. Hence, no
nonempty open subset of a manifold Y has measure zero. In other words, no set
of measure zero in a manifold Y can contain a nonempty open subset of Y.

In view of Sard’s Theorem, this tells us that the set of critical values of a
smooth map f: X — Y cannot contain any nonempty open subset of Y. Thus,
its complement, the set of regular values, must have a nonempty intersection
with every nonempty open subset of Y. A subset of a topological space
with this property, i.e. having a nonempty intersection with every nonempty
open subset, is called dense.
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Hence we can rephrase Sard’s Theorem in more topological terms by:

Sard’s Theorem in dense form

The set of regular values of any smooth map f: X — Y is dense in Y.
More generally, if f;: X; — Y are any countable number of smooth maps,
then the points of Y that are simultaneously regular values for all of the f;,
are dense.

Morse Functions

Before we study a very interesting application of Sard’s Theorem, we recall
some terminology (we have already used these terms in the proof of the Funda-
mental Theorem of Algebra, but did not make a fuzz about it).

If f: X — Y is a smooth map, a regular value of f is a point y € Y such
that df, is surjective for every x € X with f(z) = y. We call such an = € X also
a regular point of f. Note that this is the same as to say that f is regular at z.
Hence y is a regular value of f if every x € f~1(y) is a regular point.

On the other hand, if df, is not surjective, we call x a critical point of f.
Hence y € Y is a critical value if at least one of the points z € f~!(y) is a
critical point.

We understand the local behavior of smooth maps at regular points by the
Local Submersion Theorem (up to diffeomorphism look like the canonical sub-
mersion). But what about the local behavior at critical points? In fact, it is often
at critical points that the interesting stuff happens. It is often at critical points
that the topology of a manifold can change.

For example, for a smooth map f: X — R, if X is compact, then we know
that f must have a maximum and a minimum. At a point z € X where f(z)
is either a maximal or a minimal value, f cannot change in any direction in X.
In other words, the derivative df, must vanish (recall df,(h) is a measure for the
change of f in direction h). Hence z is a critical point in our terminology.

A standard example is given by the height function on a torus:
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So let us stick to smooth functions, i.e. smooth maps to R. We want to
understand how critical points look like locally. Let us look a smooth function
f: R¥ - R. Locally around a point ¢ € X, we can describe f by

f(z) = f(c) + Z o (c) (i — ) + 222 oy o (c) - (zi — ci)(xj —¢j) + 0(|$|3)-

If ¢ is a critical point, then by definition

dfe = (0f[0x:1(c),...,0f /9x1(c)) = 0

(otherwise df. was surjective as a linear map R¥ — R). Hence the best possible
measure for the local behavior of f at c is the Hessian matrix of the second partial
derivatives. Critical points where the Hessian matrix is invertible is the best we
can hope for.

Nondegenerate critical points and Morse functions

For a smooth function f: R* — R, a point ¢ € R¥ where df. vanishes,

but the Hessian matrix H(f), = ( 35?8’; - (c)> is invertible at ¢, is called a

nondegenerate critical point.
A smooth function f: R¥ — R for which all critical points are nondegenerate
is called a Morse function.
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Nondegenerate critical points are much easier to study than arbitrary critical
points, since they are isolated from the other critical points, i.e. there is
an open neighborhood which does not contain any other critical points. Hence
Morse functions are easier to understand than arbitrary smooth functions.

To see that nondegenerate critical points are isolated, we define a map g: RF —
R* by the formula

(15) 0= (5t ).

Ox,’ T 0xy

Then df, =0 <= g(x) =0.

Moreover, the matrix representing the derivative dg, is the Hessian of f at x. So
if x is nondegenerate, then not only is g(z) = 0, but ¢ maps a neighborhood
of x diffeomorphically onto a neighborhood of 0 as well. In particular, g
is injective in that neighborhood of x. Thus ¢ can be zero at no other points in
this neighborhood, and f has no other critical point in this neighborhood.

Another reason to be interested in Morse functions is the fact that there are
a lot of them.

Morse functions on R* are generic

Let f: U — R be a smooth function defined on some open U C R* and
a € R*, define

folz) = f(x)+a-x.

Then, for almost all a € R, f, is a Morse function.

Proof: We us again the function g from (15).The derivative of f, at a point
p € U then satisfies

(dfa)p = <§Q (p), .- ’SZ (p)) — g(p) + a.

Hence the critical points of f, are the points p € U with g(p)+a = 0. Moreover,
the Hessian of f, at p is the matrix dg,, i.e.

H(fa)p = H(f), = dgp.

Hence
fa is Morse <= det(H(f,),) # 0 at all critical points p
< det(dg,) # 0 at all p with g(p) +a =0

<= —a is a regular value of g.
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By Sard’s Theorem, —a is a regular value of g for almost all a € R¥. Therefore
almost every f, is a Morse function. QED

Now we would like to transport the concept of nondegenerate critical points
to manifolds. So let X be a smooth manifold. Suppose that f: X — R has a

critical point at = and that ¢: U — X is a local parametrization with ¢(0) = x.
Then

d(f o ¢)o = dfx o dgo

and hence 0 is a critical point for the function fo¢. We call x a nondegenerate
critical point for f if 0 is a nondegenerate critical point for f o ¢.

Independence of choice

Since we made a choice of a local parametrization for this definition, we
need to make sure that the criterion is independent of the choice.

So let ¢: V' — X be another local parametrization with ¢ (0) = z. We
define § := ¢ ~to¢: U — V. Since 0 is a diffecomorphism, the critical points
of fo¢and f o1 o6 are the same.

Assuming that x is a critical point of f, i.e. df, = 0, the chain rule implies
for the two Hessian matrices at 0:

H(fo¢)o= (dbo) H(f ot)odby.

Since dfy is invertible, we see
H(f o ¢)o is invertible <= H(f o1))o is invertible.

An important result on Morse functions is that they can be described in some
sort of canonical form. It extends our understanding of the local behavior of
smooth maps.

Morse Lemma

Let X be a smooth manifold and f: X — R. Suppose that a € X is a
nondegenerate critical point of f. Then there is a local parametrization
¢: U — X with ¢(0) = a and local coordinate functions ¢~ = (zy,...,x1)
around a such that
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for all x € ¢(U) where the h;; are the entries of the Hessian of f at a:

b = (7 08l = L2 o)

(Note that the h;; depend on the chosen coordinate system.)

We are not going to discuss the proof of this classical result. However, we are
going to show that it applies to many functions.

In fact, we can generalize the fact that “almost all” functions are Morse to
the level of manifolds: Suppose X C RYM, and let z,....2x € R"™ be the
usual coordinate functions on RY. If f: X — R is a smooth function on X

and a = (ay,...,ay) is an N-tuple of numbers, we define again a new function
fa: X = R by

fo=f+ax1+-- +anzy.

Morse functions on any manifold are generic

For every smooth function f: X — R and for almost every a € RY, f, is
a Morse function on X, i.e. all its critical points are nondegenerate.

Proof: We would like to use the above result for U C R* open. Since X C RV
is in general not open (in fact, it is never open if dim X < N), the strategy
is to cover X by open subsets and then try to lift the k-dimensional result to
open sets in RY.

So let x be any point in X. First we are going to choose a suitable local
coordinate system around x. Let vy,..., v € RY be a basis of T,(X) (for k =
dim X'). Then the matrix [v; - - - v;], having the v;’s as columns, has rank k. Hence
it has k linearly independent rows, say iy, ...,ix. Let m: RV — RF be projection
defined by (z1,...,2n) — (z4,,...,x;, ) where the zy, ...,y denote the standard
coordinates on RY. Then

(dmy) iy (x): T(X) — RF is an isomorphism
by construction. Hence, by the Inverse Function Theorem,
mx: X — R* is a local diffeomorphism.

Hence we can take the k-tuple of functions (z;,,...,7;,): X — RF to define a
local coordinate system around z.



132 SARD’S THEOREM AND MORSE FUNCTIONS

Therefore we can cover X with open subsets U, C R such that on each
U, some k-tuple of the functions z1,...,zy on RY form a coordinate system.
Moreover, it is always possible to choose a countable subfamily of the U,’s.
Hence we may assume there are only countably many U,.

Let S C RY be the subset of a such that f, is not Morse. Since the countable
union of sets with measure zero has measure zero, it suffices to show that for each
U, the set S, of a’s such that f,: U, — R is not Morse, has measure zero.

So let us look at one of the U,’s. We want to show that S, has measure zero
in RV,

For simplicity, assume z1,...,r; form a coordinate system around x on U,.
We can write any a € RY as a = (b,c), where b denotes the first k coordinates
and ¢ denotes the last N — k coordinates. Around a given point z, we can thus
write

folx) = f(x)+c- (Tpa1, .. xn) + b (21, .. 28).

The function z — f(z) + ¢ (Tg11,-..,xx) is smooth. Hence we can apply
our previous result on genericity of Morse functions on open subsets in R* to this
function and get that f, is a Morse function for almost every b € R”.

Thus, for a fixed ¢, the subset of all b € R¥ where f, is not Morse, has measure
zero in R*. Hence S, N (R* x {0}) has measure zero in RY. Tt is a calssical result
in Measure Theory, called Fubini’s Theorem, which then implies that the set
Sa of all @ = (b,c) where a does not yield a Morse function has measure zero in
RY. Hence f, is a Morse function for almost every a. QED

Finally, we can also show that being a Morse function is a stable property. In
order to prove stability, we start with a little lemma:

Let f be a smooth function on an open set U C R*. For each z € U, let
H(f), be the Hessian matrix of f at x. Then f is a Morse function if and
only if

(16) (det(H(f)2))* + Z <g£ (x)) >0 forall z € U.

Proof: A point z is regular if df, = (2L (z),...,2L(z)) # 0, and z is a

oz ) Ox
nondegenerate critical point if df, = 0 and detl(H (f)z) ;ékO. Hence [ is Morse if
and only if (16) is satisfied. QED
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Suppose that f; is a homotopic family of functions on R*. If f; is a Morse
function on some oepn subset U C R* containing a compact set K C R*,
then so is every f; for t sufficiently small.

Proof: We define the map

k 2
F:Ux[0,1] = R, (x,t) = (det(H(f).))* + Z <8f (:c)) :

i=1 Oz;
Since f is smooth, F' depends smoothly on both variables. By the First Lemma
and the assumption, we know F'(z,0) > 0 for all x € U x {0}. Since K C U is
compact, F' has a minimum on K x {0}, i.e. thereis a d > 0 such that F'(z,0) > 26
for all x € K. Since F is continuous, there an open neighborhood W C U x [0,1]
containing K x {0} such that F(z,t) > ¢ for all (z,t) € W. In fact, we can cover
K x {0} by open subsets W; C U x [0,1] such that F(z,t) > ¢ for all (z,t) € W;.
Each such open subset W; has the form V; x [0,¢;) for some open V; C U and
€; > 0. Since K is compact, finitely many such open W; suffice to cover K x {0}.
Let € be the minimum of the finitely many ¢;. Then we have F(z,t) > ¢ for all
(x,t) € K x [0,6). Since F' is continuous, for any fixed ¢ € [0,¢), there is again
an open subset VIR* containing K such that F(x,t) > 0 for all (z,t) € V x {t}.
Thus f; is Morse in a neighborhood of K for all sufficiently small . QED

Finally, we are ready to prove stability of Morse functions.

Stability of Morse functions

Let X be a compact smooth manifold, let fy: X — R be a smooth function
and f; be a homotopy of fy. If fy is Morse, then there is an € > 0 such that
fi is a Morse function for all ¢ € [0,¢).

Proof: For z € X, let ¢,: U, — X be a local parametrization around =x.
Then fy o ¢, is a Morse function on U. Since {0} is a compact subset of U, the
Second Lemma above implies that there is an open subet V, C U, containing
{0} and an €(x) > 0 such that f; is Morse on V,, for all ¢ € [0,e(x)). The images
¢.(V,) are open in X and cover X. Since X is compact, finitely many suffice to
cover X, say

X = ¢I1(V;31) U---u (bxn(vx")

Then we can set € := minimum of €(xy),...,e(x,). Then f;: X — R is a Morse
function for all ¢ € [0,e). QED






LECTURE 15

Embedding Manifolds in Euclidean Space

We have two objectives today. The first one is to study how manifolds can be
embedded into Euclidean space. In particular, given a k-dimensional manifold,
what is the minimal N such that we can be sure that there is an embedding
X C R™? The second one is to give an intrinsic definition of manifolds. In the
next lecture, we are going to relate these two objectives and show that every
abstract smooth manifold can be embedded into some Euclidean space.

To address the first question we need a useful new device, the tangent bundle.
The Tangent Bundle

Let X C RY be a smooth manifold. For every x € X, the tangent space
T,(X) to X at z is a vector subspace of RY. If we let = vary, these tangent space
will in general overlap in RY. (For example, if X is a vector space, they will all
be equal.)

Hence, in order to be able to keep track of the information contained in all the
different tangent spaces, we need a smart device that keeps those spaces apart:

Tangent bundles

The tangent bundle of X, denoted T'(X), is the subset of X x RY defined
by

T(X):={(z,v) € X xRY :v € T,(X)}.

In particular, T(X) contains a natural copy X, of X, consisting of the
points (z,0). In the direction perpendicular to Xy, it contains copies of
each tangent space Tz(X) embedded as the sets

{(z,v) € T(X) : for a fixed z}.
There is a natural projection map
m: T(X) — X, (z,0) — x.

135
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Any smooth map f: X — Y induces a global derivative map

df : T(X) = T(Y), (z,v) — (f(x),dfz(v)).

Note that, since X C RY and T,(X) C R¥ for every z, T(X) is also a subset
of Euclidean space:

T(X)CcRY xRV,
Therefore, if Y C RM, then df maps a subset of R?" into R?M.

We claim that df is smooth. For since f: X — RM is smooth, it extends
by definition around any point x € X to a smooth map F: U — R, where U
is an open set of RY. Then dF: T(U) — R*™ locally extends df. But, since
U C RY is open and hence T, (U) = R" for every u € U, T(U) is all of U x R".
Since U x R¥ is an open set in R?Y, dF is a linear and hence smooth map defined
on an open subset of R?". This shows that df: T(X) — R?*™ may be locally
extended to a smooth map on an open subset of R*?V, meaning that df is smooth.

Given smooth maps f: X — Y and ¢g: Y — Z, the global derivative of the
composite is equal to the composite of global derivatives:

d(go f)=dgodf: T(X)—=T(Z).
For, the chain rule implies that, for any (x,v) € T'(X),

d(go f)(z,w) = ((go f)(x).d(go fa(v)
= ((9(f(@)), (dgs() © dfz)(v))
= dg(df (z,v))
= dg o df(z,v).

As a consequence we get:

Tangent bundles are intrinsic

If f: X — Y is a diffeomorphism, so is df : T'(X) — T'(Y). For the chain
rule implies that df ~! o df is the identity map of T'(X) and df o df ! is the
identity map of T(Y). Thus diffecomorphic manifolds have diffeomorphic

tangent bundles. As a result, 7(X) is an object intrinsically associated to
X.

Finally, we are going to show that 7'(X) is in fact itself a smooth manifold.
Let W be an open set of X. In particular, W is also a manifold, and we can
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consider its tangent bundle T(W). Since T,(W) = T,(X) for every x € W,
T (W) is by definition

TW)={(z,v) eT(X):z € W} =T(X)N (W x RY) Cc T(X).

Since W x R¥ is open in X x RN, T(W) is open in T(X).

Now suppose that W is the image of a local parametrization ¢: U — W,
where U is an open set in R*. Then the global derivative d¢: T(U) — T(W)
is a diffeomorphism. But T'(U) = U x R* is an open subset of R* so d¢ is a
parametrization of the open set T'(W) in T'(X). Since every point of T'(X) sits
in such a neighborhood, we have proved the following useful result:

Tangent bundles are manifolds

The tangent bundle of a manifold X is a smooth manifold of dimension
dim7'(X) = 2dim X.

Whitney’s Theorem

Whitney’s Theorem

Every k-dimensional manifold admits a one-to-one immersion in R+,

Proof: Let X C RY be k-dimensional manifold which is a subset in RY for
some N > 2k+1. In particular, we are given an injective immersion X — R”.
Our goal is to show that we can choose N to be 2k + 1 and still have an injective
immerison. Therefor we are going to construct a linear projection RV — R2*+!
that restricts to a one-to-one immersion X — R?***! on X.

The construction works by induction: Whenever we are given an injective
immersion f: X — RM with M > 2k + 1, then there exists a unit vector a € RM
such that the composition of f with the projection map carrying R onto the
orthogonal complement of a is still an injective immersion. The complement
H:={beRM:b 1 a}isan M — l-dimensional vector subspace of RM  hence
isomorphic to RM~1. Thus, after choosing a basis for H, we obtain an injective
immersion into RM~1,

Continuing this procedure yields a chain of linear maps
RN N RN*I ey RQkJrl

such that the composition X — RY — R?**+1 ig still an injective immersion.
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So let us assume we have an injective immersion
f: X = RM with M > 2k + 1.
We define two smooth maps

X x X xR

s

T(X)——RM
g

h: X x X xR =R, (z,y.t) — t(f(x) — f(y)).
and
g: T(X) = RM (z0) — df.(v).
By Sard’s theorem, the sets S, and ; of critical values of g and h, respec-
tively, have measrure zero in R”. Hence the union of S, and S}, still has measure

zero in RM. Thus the intersection of the sets of regular values of g and h, which
is the complement of Sy U S}, is nonempty.

Since dimT'(X) = 2k, dim X x X x R =2k + 1, but M > 2k + 1, the only
regular values of g and h are the points in R™ which are not in the image of ¢ or
h. Hence there exists a point a € RM which is neither in the image of g nor in
the image of h. Note that, since 0 belongs to both images, we must have a # 0.

Let 7 be the projection of RM onto the orthogonal complement H of a.
First claim: 7o f: X — H is injective.

For suppose that m o f(z) = 7o f(y). Then, since 7 is linear, we have

m(f(x) — f(y)) =0, ie.
f(x) — f(y) € Ker (7) = span(a) in RY
={weRY :w=t-a for some t € R}.

Thus there is a t € R with f(z) — f(y) = ta. If x # y then t # 0, since f is
injective. But then

a=1/t(f(z) — f(y)) = h(z,y,1/t)
which contradicts the choice of a.

Second claim: 7o f: X — H is an immersion.
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For suppose there was a nonzero vector v in T,(X) for which d(7 o f), = 0.
Because 7 is linear, the chain rule yields

d(mo f), = modf,.

Thus 7(df,(v)) = 0, so df,(v) = ta for some t € R. Because f is an immersion,
we must have ta # 0. But since we know a # 0, this implies ¢ # 0. Thus, since
df, is linear,

1 1

1
@ = Sdfo(v) = dfu(;0) = gla70)

which again contradicts the choice of a. QED

For compact manifolds, one-to-one immersions are the same as embeddings.
So we have just proved the embedding theorem in the compact case.

Whitney’s Embedding for compact manifolds

Every compact k-dimensional manifold admits an embedding in R?*+1,

Note that Whitney’s result does not give us the minimal N for an individual
manifold. For example, we know that S™ is embedded in R"*! for every n. The
result tells us that, in general, N = 2k + 1 will always work. In fact, Whitney
showed that N = 2k always works. But the proof is much harder, and we will
not discuss it in this course.

In order to extend Whitney’s theorem (for N = 2k + 1) to noncompact man-
ifolds, we must modify the immersion to make it proper. This is a topological,
not a differential problem.

Before we develop the necessary tools to address this problem, we are going
to contemplate a bit on a way to define manifolds without referring to a given
embedding into some RY. The key idea that should be preserved in any new
definition should be that a manifold is a space which locally looks like
Euclidean space.

Abstract smooth manifolds

Hausdorff spaces

A topological space X is called Hausdorff if, for any two distinct points
x,y € X, there are two disjoint open subsets U,V C X such that x € U
and y € V.



140 EMBEDDING MANIFOLDS IN EUCLIDEAN SPACE

In other words, in a Hausdorff space we can separate points by open neigh-
borhoods.

Every subspace of R (with the relative topology) is a Hausdorff space. How-
ever, there are spaces which are not Hausdorff.

For a typical example, consider two copies of the real line Y7 := R x {1} and
Y, := R x {2} as subspaces of R?. On Y; UY5, we define the equivalence realtion
(x,1) ~ (2,2) for all x # 0.

Let X be the set of equivalence classes. The topology on X is the quotient
topology defined as follows: a subset W C X is open in X if and only if both its
preimages in R x {1} and R x {2} are open.

éhe with fwe Qh'sc'ks

Then X looks like the real line except that the origin is replaced with two
different copies of the origin. Away from the double origin, X looks perfectly nice
like a one-dimensional manfiold. But every neighborhood of one of the origins
contains the other. Hence we cannot separate the two origins by open subsets,
and X is not Hausdorff.

For our definition of an abstract manifold, we want to avoid such pathological
spaces.

Abstract manifolds

Let X be a topological space.
A chart on X is a pair (V,¢) where V' C X is an open subset and ¢: V — U
is a homeomorphism from V to an open subset U C R¥ of R¥.
An abstract smooth k-manifold is a Hausdorff space X together with a
(countable) collection of charts (V,,p,) on X such that

(1) every point in X is in the domain of some chart, and
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(2) for every pair of overlapping charts ¢, and ¢g, i.e.
Vg = Vo NVs # 0,
the change-of-coordinates map

950 5 Pa(Vap) = ¢(Vap)

is smooth (as a map between open subsets of R¥). In fact, this
means that the change-of-coordinates maps are diffeomorphisms,
since they are mutual smooth inverses to each other.
Let X be an abstract smooth k-manifold and f: X — R" be a continuous
map. Then f is smooth if for every chart ¢,: V, — U,, the composition
fogrt: Uy, — R™ is smooth.
More generally, let X be an abstract smooth k-manifold and Y an abstract
smooth m-manifold and f: X — Y a continuous map. Then [ is smooth
at © € X if, for every chart ¢: V — U on X around x and every chart
¥: V' = U onY around f(x), the map

Po flVﬂf—l(V’) © ¢|_Uln¢(f—1(vl)) :UnN ¢(f_1(vl)) — U

is a smooth map as a map from an open subset of R* to an open subset of
R™. We call f smooth if it is smooth at every z € X.

—

////ﬂ % [%’)\/ %M/) Un eR®
du.(r of oo e E-

Note that the smooth k-dimensional manifolds X C R" we have been study-
ing so far are examples of abstract smooth k-manifolds:
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e The Hausdorff property is satisfied in RY and therefore also for every
subspace of RV (with relative topology we have been using).

e Moreover, every open cover {U,} of RV has a countable refinement.
For, we can take the collection of all open balls which are contained in
some U,, which have rational radii, and which are centered at points
having only rational coordinates.

e For an open cover {V,} of asubset X C RY we can write V, = U,NX for
some open subsets U, of R¥. Then let {U;} be a countable refinement
of {U,} in RN, and define Vi=U;nNX.

e The charts are just what we called local coordinates and the inverses
of charts are what we called local parametrizations. One difference is
that we required local parametrizations to be diffeomorphisms. For an
abstract manifold X, we need the charts to define what smoothness
means for a map on X. Hence a priori it makes only sense to talk about
the smoothness of the change of coordinate maps. A posteriori we can
then check that charts are in fact diffeomorphisms.

e Similarly for smooth maps between manifolds. We only know what
smoothness of maps between Euclidean spaces means. Hence we need to
use the charts to first translate the maps into maps between Euclidean
spaces.

e In the abstract definition, we take care of the fact that the images of
the charts/local parametrizations overlap. In fact, we use the overlap to
define the smooth structure.

e Finally, a chosen collection of charts is called an atlas on the manifold.
One can show that every manifold has a maximal atlas, i.e. the images
of the charts are as “big as possible”.

Here is an important example which we can easily be described with the new
definition of an abstract manifold, but for which it is not obvious how we can
embedd it into RY.

(Actually, it is a difficult question how to embedd these guys into RY with N
as small as possible. In fact, if n = 2™ for some m and if there is an immersion
RP™ — RY, then N must be at least 2™ — 1. You will learn about the techniques
to show this in the Algebraic Topology course.)

Real Projective Space

The real projective n-space RP” is the set of all straight lines through
the origin in R"*1. As a topological space, RP" is the quotient space

RP™ = (R™\ {0})/ ~
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where the equivalence relation is given by x ~ y if there is a nonzero real
number A such that x = Ay. This means that a subset V is open in RP”
if and only if its preimage U = {x € R*™ \ {0} : [x] € V} is open in
RnJrl \ {0}
Note that since each line through the origin intersects the unit sphere in
two (antipodal) points, RP™ can alternatively be described as
S™/ ~
where the equivalence relation is x ~ —z. As a quotient of S", we see that
RP" is compact.
We claim that RP™ is an abstract n-dimensional smooth manifold.
If = (z,...,2,) € R\ {0}, we write [z] for its equivalence class
considered as a point in RP”. One also often writes [x] = [zg : ... : zy,).
For 0 <17 <n, let
Vi :={[z] € RP" : z; # 0}.
The preimage of V; in R"*! is the open subset {x € R"*! : z; # 0}. Hence
each V; is open in RP". By varying ¢, this gives an open cover of RP™ because
every representative (xo, . ..,x,) of a point [z] € RP™ must have at least one
coordinate # 0 (otherwise it would be the origin which is excluded).
For each i, we have the maps ¢,: R" — V;
(o -+ s Tiy ey Tp) > [To v i T 2 L i Ty e Ty
and ¢;: V; = R
1 ~
[To: o iay x> — (20, Ty T)
Z;
where 7; means that x; is omitted.
Since we use a representative of an equivalence class for the definition of
¢; !, we need to check that the definition is independent of the chosen rep-

resentative. But if [zg ... 2 ...t xy] = [Axo s ... Az L Ay for
some A # 0, then
1
qﬁ;l([)\x]) = \ _()\3307 AT AT - AT,)
1
= ;(.’E(), ey X 1,L54 1, - - ,xn) — Qb];l([!ﬂ])

(3
It is easy to see that ¢ and ¢; ' are mutual inverses which are both contin-
uous.
Finally, the change-of-coordinate maps are smooth: For

ST Vi) B viny; 2 sl vin )
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is just
1

(.130, .. ,.Z/‘\i, c ,l’n> — ;(ZL‘(), C ,$i_1,1,$i+1, .. ,l/‘\j, C ,.’En)
J

which is smooth whenever z; # 0.

To have such an intrinsic definition of a manifold is important and nice. How-
ever, the definition is quite abstract indeed. And, in fact, we are going to show
that every abstract smooth manifold can be embedded into Euclidean space and
is therefore a manifold for our previous definition. Hence all the machinery we
have developed can be applied to abstract manifolds.



LECTURE 16

Embedding Abstract Manifolds in Euclidean Space

We start with some general facts and some terminology.

The closure of a subset

Let X be a topological space and A be an arbitrary subset. The closure
of A in X, denoted A, is the intersection of all closed subsets on X which
contain A.

For example, the closure of an open ball B.(0) in RY is just the closed ball

B(0) = {z e RV : |z| < €}.

We need the closure of a subset for example when we want to talk about the
support of a function:

Support of a function

Let X be a smooth manifold and f: X — R be a smooth function f: X —
R. The closed subset

supp(f) :={z € X : f(z) # 0}
is called the support of f.

We are now going to introduce a fundamental tool for studying manifolds.

Partition of unity

Let X be an abstract smooth k-manifold and let {U,} be an open cover,
i.e. a collection of open subsets in X which cover X. A sequence of smooth
functions {p;: X — R} is called a partition of unity subordinate to
the open cover {U,} if it has the following properties:

(a) 0 < pi(xz) <1 forall z € X and all 1.
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(b) Each x € X has a neighborhood on which all but finitely many
functions p; are identically zero.

(c) For each 4, supp(p;) C U, for some a.

(d) For each x € X, Y. p;(x) = 1. (Note that according to (b), this
sum is always finite.)

The most general existence result for partitions of unity (without assuming
that each p; is smooth) is that they exist on every paracompact space, i.e. spaces
on which every open cover has a locally finite refinement (every point has a
neighborhood that intersects only finitely many sets in the cover).

Before we prove that partictions of unity exist on manifolds, we need some
preparation.

Separating closed subsets

Let A and C be disjoint closed subsets in RY. Then there are disjoint open
subsets U and V such that A C U and C C V.

Proof: For each a € A, choose an ¢, > 0 such that By, (a) N C = (). This is
possible since C'is closed. Similarly, for each ¢ € C, choose an ¢, > 0 such that
Bs (¢) N A = 0. We define

U :=UgeaBc, (a) and V := Ueee B, ().

Then U and V' are open subsets with A C U and C C V. We claim that U and
V' are disjoint.

For, if x € U NV, then
z € B, (a) N B(c)
for some a € A and ¢ € C. By the triangle inequality, this implies
la — | < €+ €.
But, if €, < €., then |a — ¢| < 2¢. and a € By (c). And, if €. < ¢,, then
la — ¢| < 2¢, and ¢ € By, (a). Both cases are impossible. QED

Another important tool that we wil need are smooth bump functions. We
have met them in a previous lecture. Today we will need them in a slightly more
interesting form:
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Smooth bump functions revisited

Let U C RY be open and K C U be compact. Then there is a smooth
function p: RY — R with ¢(z) = 1 for all x € K and ¢p(x) = 0 for all
r € RV \ C for some closed subset C' with K € C C U.

Proof: Recall the smooth function

e~/ >0

R—R =
[i RS R, f(2) {0 o
For any given € > 0, we define a function

fe(x) == f(x)f(z —e).

As a product of two smooth functions, f. is smooth.

Next we define yet another function

Jy f(t)at
Je: R — Ra g&(x) = e N
Jo fe(t)dt
By the Fundamental Theorem of Calculus, g, is smooth, nondecreasing, and
ge(x) =0 <0
0<glzr)<l O<z<e
ge(x) =1 r>€

Finallly, for any fixed point a € RY and for any given r > 0, we define

A RY R, W (2) =1~ g(Jo —al — 7).

Then A] is smooth, nonincreasing, and

hl(x)=1
O<hl(zx)<l r<|z—al<r+e
hl(x) =0 |z —a|>r+e

|z —al <r
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LN

-

This gives us a smooth function ¢: RY — R which has value 1 on the compact
subset B,(a) and has value 0 outside the closed subset B, (a).

Now let U C RY be open and K C U be compact. For this general situation
we need to work a bit harder and rearrange the argument as follows:

Let v be the function

e~z <1

. N _

This is a smooth map with fRN tdx =1 (using a standard Lebesgue measure dz
on RY).

For a given ¢ > 0, define ¢.: RN — R by () := e Vi)(z/¢). This is still a
smooth function with [py edz = 1.

Since R \ U is closed and K is compact, we can choose a small ¢ > 0 such
that, for each point x € K, we have By (z) N U = ). Then the V' := Uyex B()
is an open set containing K with compact closure V' C U contained in U.

Let xv be the characteristic function on V, i.e. the function

xv(z)=1 forz eV

:RY - R
v ’ {Xv(x):O forx ¢ V.

The function yy is identically 1 on K and has compact support contained in
U. But it is of course not smooth on R¥, not even continuous. Hence we need
to modify it, to make it smooth. The function ., for the fixed e, will serve as a
tool to “smoothen” yy .
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Then the desired smooth function ¢ is the convolution . * xy of xy and 1.:

o: RN 5 Rz — N Ye(x —y)xv(y)dy.
R
Note that the integral is well-defined, since the closure of V', which is the support
of xv, is compact. QED

Finally some terminology:

The interior of a set

Let X be a topological space, and S a subset of X. Then the interior of
S, denoted int(S), is the union of all open subsets of X contained in S. By
definition, the interior of any S is an open subset of X. In fact, it is the
largest open subset of X which is contained in S.

If S C RY then int(S) is the set of all points s € S such that there is a
small open ball centered at x which is contained in S.

Obviously, if U is an open subset of X then int(U) = U. In particular, if
X C R" is open then int(X) = X. But in general int(S) is a proper subset
of X.

Existence of partitions of unity

We are going to show that partitions of unity exist on manifolds step by
step with increasing difficulty. We start with the case of compact subspaces in
RY. Then we are going to transport this result to compact abstract smooth
manifolds. Finally, we discuss arbitrary compact smooth k-manifolds. There is
no need to restrict to compact manifolds. In fact, partitions of unity exist on
every paracompact topological space (every open cover has a locally finite
refinement), a class of spaces much larger than abstract manifolds.
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First case: X C RY compact.

Let {U,} be an open cover of X. Since X is compact, {U,} has a finite
subcover {Uy,...,U,}. A partition of unity subordinate to the finite subcover is
also a partition of unity subordinate to the original cover.

Step 1: We are going to show that we can shrink the covering to an open
covering {V; ...,V,} such that V; C U; for each i.

Consider the closed subset
A=X\(Uyu---UU,)

of X. Since {Uy,...,U,} cover X, we know A C U;. Since A and X\ U, are closed
disjoint, we can choose an open subset V; containing A such that V] is disjoint to
an open subset W which contains X \ U;. Thus V} is contained in the complement
X\ W. Since X \ W is a closed subset which contains Vi, we know V; € X \ W,
since the closure of V] is the intersection of all closed subsets which contain V.
Since X \ U; C W by the choice of W, we have X \ W C X \ (X \U;) =U — 1.
Thus we have V; C U;. Since V; contains the complement of Us U --- U U, in X,
the collection {V;,Us,...,U,} covers X.

Now we proceed by induction as follows: Given open subsets V7, ... Vi1 such
that

X = {‘/la cee 7‘/;4:—17U/€7Uk+17 cee aUn}a
let A;. be the subset
Ay =X\VU--- UV ) U U1 U---UU,y).

Then Ay, is a closed subset of X which is contained in the open set Uz. Choose an
open subset V}, containing Ay such that Vi, C Ug. Then {V1,... Vi 1,Vi,Ugs1, ..., Un}
covers X. At the nth step of the induction we are done.

Step 2: Given the open covering {Uy,...,U,} of X, we use Step 1 to choose
an open covering {V;,...,V,} of X such that V; C U; for each i. Then we repeat
this process and choose an open covering {W,... , W, } of X such that W, C 'V,
for each 1.

For each i, we choose a smooth bump function

i: X — [0,1] such that ¢;(W;) = {1} and ¢;(X —V;) = {0}.

Since ¢; '(R\ {0}) C Vi, we have
supp(y;) C Vi C U
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(Here is the point where see why we need to apply Step 1 twice: If we were
working with the V;’s instead of W;’s, then we would have supp(yp) C U; instead
of supp(p) C U; as required for a partition subordinate to the cover {U;}.)

Since {W7, ..., W, } covers X, we have

o(z) = Z%@) > ( for all x € X.
i=1

Finally, for each i, we define

Second case: X C RY and X = X; UX,U X3 U--- where each X; is
compact and X; C int(X;,q).

Let {U,} be an open cover of X. For each i, we define

U(i = Ua N (Xi+1 \ lnt(XZ,Q))

Then {U!} is an open cover of Y; := X; \int(X,_;). Since int(X; ;) is an open
subset, Y; is a closed subset of X; and therefore Y; is also compact. Then, for each
i, the first case implies that there is a partition of unity ¢°, on Y; subordinate to

the cover {U!}.

For each x € X, there is an i such that z € X; and hence ¢ (x) = 0 for all
7 > 1+ 2. Hence, for each x € X, the sum

pla) =3 hx)

is a finite sum in some open set containing x.

Now for each o we define

i o ()
o) =
()
This is partition of unity subordinate to the open cover {U,}.

Third case: X C R” is open.

Define subsets
X;:={z € X : |z| < i and the distance to RN \ X > 1/;}.
Then these subsets satisfy:
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e cach X is compact, since it is the intersection XNB;(0)N(X\(Uperm\ x B1/:i(p))
and therefore closed and bounded in RY;

e for each i: X; C int(X;41);

[ ] X:X1UX2U

Hence we can apply the second case.
Fourth case: X C RY arbitrary.

Let {U,} be an open cover of X. By the definition of the topology on X, for
each a, there is a subset V,, C RY open in RY such that U, = X NV,. Let Y
be the union of all the V,, in RY. By the third case, there is a partition of unity
on Y subordinate to the open cover {V,}. This is also a partition of unity on X
subordinate to the open cover {U,}.

Last case: X is a compact abstract smooth k-manifold.

Let {V,} be an open over of X. By intersecting with the domains of charts
on X, we get a refinement of the cover. Hence we can assume that V,, are the
domains of charts on X. Since X is compact, the domains of finitely many
charts on X suffice to cover X. Let us lable them (V3,41),...,(Vy,¢n). Then each
U; = ¢;(V;) is an open subset in R*.

Now we can proceed exactly as in the case of a compact subspace in
RY for the finite cover {Uy,...,U,} of the space Y := U; U---U U, C R*. This
yields a partition of unity {p;} subordinate to the cover {Uy,...,U,}. Composi-
tion of each p; with ¢; yields a partition of unity {p; o ¢;} on X subordinate to
the cover {V4,...,V,,}. QED

Now we are ready to prove the following embedding result.

Embedding abstract manifolds into Euclidean space

Let X be a compact abstract smooth k-manifold. Then there is an embed-
ding, i.e. an injective proper map, X < R for some large .

Proof:

The collection of all V, for all charts (V,,d,) is an open cover of X. Since
X is compact, we can cover X by the images of a finite number of charts

Vi,.. .\ Va.

Let {p;} be a partition of unity subordinate to the open cover defined by the
Vi’s.
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For a chart ¢;: V; — U; C R¥, we define a new map

pi(x) - pi(x) for x €V

i X —>Rk; ) =
g 9:(2) {0 for x € X \ supp(p;).

The map g; is well-defined, since if x € V; \ supp(p;), then both definitions
agree to be 0. Moreover, g; is continuous, since its restrictions to the two open
subsets V; and X \ supp(p;) are continuous (this is why we do not use X \ V; in
the definition because that would be a closed subset).

Now we define a map

g X = R"xR™ 2 (p1(2),....00(2), 91(2), ... .gn(2)).

We observe that ¢ is continuous, since the g;’s and the p;’s are continuous.
Claim: ¢ is an injective proper map.
Since X is compact, g is a proper map.

Now we show that g is injective. For assume g(x) = ¢g(y). Then p;(x) = p;(y)
for all 7 by the definition of g. But, by the definition of a partition of unity, for
at least one 7, we must have p;(x) = p;(y) # 0.

Thus z and y must lie in the same V}, since p; is supported on V;, i.e. p;(x) # 0
implies € V;. Hence, since g;(z) = ¢;(y) and p;(x) = p;(y) # 0,we must have
¢i(z) = ¢;(y). Since ¢; is a bijection, this shows x = y. Thus g is injective.
QED

Actually, g is also an immersion, but we have not defined what that means for
an abstract manifold. Since this is just an exercise in translating the defintions,
we omit this point and rather move on.

All manifolds can be embedded in Euclidean space

In fact, every abstract k-manifold X can be embedded in Euclidean space.
One can just keep on going with the above argument in the non-compact
case and use local coordinates to map pieces of X into R¥. Though when
using only finitely many copies of R* to accomodate infinitely many neigh-
borhoods of X, we loose injectivity. The key tool that restores injectivity
are partitions of unity which even out the troubles occuring because of
overlapping neighborhoods.
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For this to work, it is crucial that the topology on X has a countable basis.
This is a technical point which we did and will not discuss because it would
divert us too far from the main story.

We just remark that it is possible to construct topological spaces without
a countable basis which are locally homeomorphic to Euclidean space, but
which cannot be embedded into Euclidean space.

Another application of the existence of partitions of unity is the following
lemma which will turn out to be key tool in the proof of Whitney’s Theorem.

Existence of proper functions on manifolds

On any manifold X, there is a proper map p: X — R.

Proof: Let {U,} be the collection of open subsets of X that have compact
closure, and let p, be a subordinate partition of unity. Then

pa) = ipila)

is a well-defined smooth function, since, in a neighborhood of every point, it is a
finite sum of smooth functions.

In order to show that p is proper, we need to show that the preimage of any
compact subset of R is again compact. Every compact subset K C R is contained
in a closed interval of the form [—7,j] for some natural number j. Hence if we can
show that p~!([—7,j]) is compact, then p~!(K) is a closed subset of a compact
set and therefore also compact.

For given j, if for any « we had pi(z) = -+ = p;(x), then
> pilr) =1
i=j+1
and therefore
plx) > (G +1) Y pila).
i=j+1

This shows

p ([=3d]) € Uinfa s pil) # 0}
Since supp(p;) C U; and U; has compact closure, this shows that p~!([—j7,7]) is a
closed subset in a compact set and therefore it is also compact. QED



EMBEDDING ABSTRACT MANIFOLDS IN EUCLIDEAN SPACE 155

Whitney’s Theorem

Every smooth k-dimensional manifold X C RY admits an embedding into
RQk—i—l.

Recall that the strongest result is that N = 2k suffices. But that is much
harder. And again, this is an upper bound which works for every k-dimensional

manifold. For a many manifolds, an even lower dimension suffices, e.g. S"™ C
R+,

Proof: The idea is to replace the injective immersion f: X — RY with the
map (f,p): X — R¥*! with a proper p: X — R. Then (f,p) is still an injective
immersion, and it is proper, since p is proper. It remains to reduce the dimension
N + 1. The details are a bit more involved:

Starting with X C RY we have seen that we can find an injective immersion
f: X — R?+1 By composing f with the injective immersion map

X

R**! 5 B(0), & — ———
1( )7:U 1+|x|27

we can assume that |f(x)| < 1 for all z € X.

Let p: X — R be a proper function which we know to exist by the revious
lemma. We define a new injective immersion

F: X = R*2 2 (f(2),p()).

Since 2k + 2 > 2k + 1, we can apply the argument from last time and find a
nonzero vector a € R?**2 such that

mol: X = H

is still an injective immersion, where 7 is the projection onto the orthogonal
complement H = {b € R%**2:p | a} of a in R***2, By rescaling we can assume
la| = 1.

Since 7 o F' is an injective immersion for almost every a € S?*1 we can
assume that a is neither the north nor the south pole on S?**!. This will
allow us tp show that 7 o F' is proper:

Claim: Given any bound ¢, there exists another number d such that

{reX:|(moF)(z)|<c} C{reX:|pl) <d}.
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As p is proper,
{r € X :|p()| < d} =p~'([~dd)
is a compact subset of X.
Thus the claim implies that the preimage under m o F' of every closed ball
in H is a compact subset of X. Sicne every compact subset K of H is a closed

subset of some closed ball in X, this shows that (7 o F)"!(K) is a closed subset
of compact subset in X and therefore also compact.

If the claim is false, then there exists a ¢ and a sequence of points {z;} in
X for which
|(m o F)(z;)| < e, but |p(z;)] — oo

(becasue there is no d bounding [p(z;)]).

By definition of the projection onto an orthogonal complement, for every
z € R?**2 7(2) is the one point in H for which z — 7(2) is a multiple of a. In
particular,

F(z;) — 7o F(z;) is a multiple of a for each 1,

and hence so is the vector

1
w; 1= o) (F(X;) — 7o F(xy)).

Let us look at what happens when ¢ — oc:
Fla) _ (f(xi),1) 5 (0,...,0,1)
p(;) p(;)
because |f(z;)| < 1 for all i and p(z;) — co. We have
e F(.TZ)
p(xi)

= Ip(z)|

Thus
7o F(x;)

— 0= w; — (0,...,0,1).
p(;) ( )

But each w; is a multiple of a. Hence the limit of thw w; must be a mutiple
of a. We conclude that a must be either the north or south pole of S*+! which
contradicts our assumption on a. This proves the claim and the theorem. QED
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Manifolds with Boundary

In order to be able to analyze a wider class of phenomena we would like to
enlarge the class of manifolds. A typical example which we would like to include
is the domain of a homotopy X x [0,1] for a smooth k-dimensional manifold X.
The points on X x {0} and X x {1} do not have an open neighborhhod which
is diffeomorphic to R*. In fact, those subsets for the boundary of X x [0,1].
Another example is the closed unit ball in R*. So far such guys do not qualify
as a manifold. From now on, We would like to allow such subsets. We will see
that most of the theorems we have proved so far are also valid for manifolds with
boundary.

The idea for what a manifold with boundary should be is the same as before:
it is a space which locally looks like some model space with boundary which we
understand well. Hence we need to choose a good model space. But that is not
hard to do.

In fact, the standard model of a Euclidean space with boundary is the half-
plane

H* = {(z1,...,21) € R* : 1, > 0}
in R¥. The boundary of H*, denoted 0HF, is given by the points

OHF = {(21,...,21) € RF : 2, = 0} = R* x {0} C R,

Now a manifold with boundary is a space which locally looks like H*:

Manifolds with boundary

A subset X of RY is a k-dimensional manifold with boundary if every
point x of X there is an open neighborhood V' C X containing x and an
open neighborhood U C H* together with a diffeomorphism ¢: U — V. As
before, any such a diffeomorphism is called a local parametrization of
X.

157
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The boundary of X, denoted 0X, consists of those points that belong
to the image of the boundary of H* under some local parametrization. Its
complement is called the interior of X, denoted Int(X) = X \ 0X.

A manifold X with X = () is just a smooth manifold in our initial termi-
nology. In order to make the distinction clear if necessary, we call them also
boundaryless manifolds or manifolds without a boundary.

fhove ave o {”:s os o’:nu Subsefs v IHk

Warning: The interior of X C R¥ as a manifold is in general different from
the interior of X as a subspace of RY. The interior of X as a manifold is the
complement of the boundary, whereas the interior of the topologocal space X is

the union of all its open subsets. But also every point in 0X lies in some open
neighborhood of X.

Let X be a manifold with boundary. We need to check that our definition of
points in the interior and on the boudnary is independent of the choice of a local
parametrization.

So let x € X be a point which is in the image of a local parametrization
¢: U — V C X such that U C H” is an open set of H* which is contained in the
interior of H*. Then R* is an open subset of R*. Now assume  is also in the image
of another local parametrization ¢': U' - V' C X. Thenz e W .=V NV' C X,
and the composition ¢’ o ¢~1: ¢~H(W) — (¢') (W) is a diffeomorphism. Hence,
after possibly shrinking U’, we see that U’ is also an open subset in R¥. Thus x
is being an interior point is well-defined.



MANIFOLDS WITH BOUNDARY 159

This shows in particular: if X is a manifold with boundary, then the interior
of X, Int(X), is a boundaryless manifold of the same dimension as X.

It remains to show that being a boundary point is also well-defined. We show
this by proving the following interest result:

Boundaries are manifolds

If X is a k-dimensional manifold with boundary, then 90X is a (k — 1)-
dimensional manifold without boundary.

Proof: Let x € X and let ¢ and i be two local parametrizations around
x. After possibly shrinking the domains and codomains, we can assume that
¢: U — V and ¢p: W — V are both diffeomorphisms from open sets U C H,
W C H* to the same open subset V C X.

We would like to show ¢(0U) = ¢(OW). For then 0V = ¢(0U) is independent
of our choice of local parametrization and therefore well-defined. Moreover, since
OU = U N OHF is an open subset of R*~! we would get that every point y € 0X
is contained in a local parametrization ¢jor: U N OH* — 0X. This will show that
0X is a manifold of dimension k — 1.

By our assumption on ¢ and ¢, it suffices to show ¥(OW) C ¢(9U). The
other inclusion will follow by symmetry. Hence we woud like to show:

Claim: ¢ '(¢(0W)) C oU.
To simplify notation, we define the map g = ¢ top: W — U.

Suppose that the claim is false and there is a point w € OW which is
mapped to an interior point u = g(w) of U by g. Since both ¢ and 1 are
diffeomorphisms, ¢ is a diffeomorphism of W onto an open subset g(W) of U.
The chain rule implies that the derivative d(g—!), of its inverse is bijective. But,
since u € Int(U), g(W) contains a neighborhood of u that is open in R*. Thus
the Inverse Function Theorem, applied to the map g~! defined on this open
subset of R*, implies that the image of ¢g~! contains a neighborhood of w that is
open in R*. This contradicts the assumption w € OW. QED

Tangent spaces and derivatives are still defined in the setting of manifolds
with boundary.
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Derivatives and tangent spaces vs boundaries

Derivatives of smooth maps can be defined as before. Since smoothness at a
point requires a functions to be defined on open neighborhhod around that
point, we need to be a bit more careful at boundary points:

Derivatives on H":

Suppose that g is a smooth map of an open set U of H* to R'. If u is an
interior point of U, then the derivative dg, is defined as before.

If w € OU is a boundary poin, the smoothness of g means that it may be
extended to a smooth map G defined in an open neighborhood of u in R¥.
We define dg, to be the derivative dG,,: R¥ — R’

We must show that this definition is independent of the choice of G. So let
G’ be another local extension of g. We need to show dG!, = dG,,.

The equality of the two derivatives is no problem at points in the interior
int(U) of U, because then we have a small open neighborhood which is still
in int(U). We are going to use this and approximate u be a sequence {u;}
of interior points u; € int(U) which converge to .

Since G and G’ agree with g on int(U), we have

dG,, = dG,, for all i.

Since the derivative of a smooth map at a point depends continuously on
the change of point, wthis implies that dG., — dG, and dG’, — dG; when
u; — u and both limits agree. This shows that dg, is also well-defined at
boundary points.

One should note that, at all points, dg, is still a linear map of all of R¥ to
R!. For we have defined dg, as the derivative dG, of an extension G to an
open subset of R*.

Tangent spaces:

Let X C R"™ be a smooth manifold with boundary, and x € X. Let
¢: U — X be a local parametrization with U C H* open. Let u € U
be the point with ¢(u) = z. (Note that we cannot assume u = 0 when z is
an interior point.)

Then we have just learned that we can form the derivative

dpy: R¥ — RN
no matter what kind of point x is. Thus, as before, we can define the
tangent space to X at x, denoted T,(X), to be the image of R* in RY
under the linear map d¢,. (One can check that 7, (X) does not depend as

a subspace of RY on the choice of ¢ just as before using the chain rule.)
Derivatives on tangent spaces:
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Now let f: X — Y be a smooth map between manifolds with boundaries
with X ¢ RY and Y ¢ R™. Given a point z € X. Then after choosing
local parametrizations ¢: U — X with ¢(u) = x and ¢: V — Y with
¥(v) = f(z), then we define

& To(X) = Ty (Y)

as the linear map which makes the following diagram commutative

T (X)) v “ f’”> T,(Y)
me qupv
Rk N Rl

dfu ’

where 6 is the map ¢~ o f o ¢ (note v = 6(u)).

However, sometimes we do have to be careful when we apply our developed
concepts to manifolds with boundaries. For example, the product of two mani-
folds with boundary may not be a manifold anymore. A simple example is the
product [0,1] x [0,1].

But if only one manifold has a boundary we are ok:

Products and Boundaries

The product of a manifold without boundary X and a manifold with bound-
ary Y is another manifold with boundary. Furthermore,

X xY)=X x0Y,
and
dim(X xY) =dim X + dim Y.

Proof: If U ¢ R¥ and V C H' are open, then
UxVCRxH =H
is open. Moreover, if ¢p: U — X and ¢: V — Y are local parametrizations, so is
pxp:UxV =X xY. QED

Regular values and transversality

One of the most important concepts we have studied is transversality of
smooth maps to submaifolds. We would like to extend this to manifolds with
boundary. This is possible, but requires some care.
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We start with the special case of regular values for functions on manifolds
without boundary. This is a well-known case, but it turns out that it actually
produces manifolds with boundary as follows:

Regular values for real-valued functions

Suppose that S is a manifold without boundary and that 7: S — R is a
smooth function with regular value 0. Then the subset {s € S : 7(s) > 0}
is a manifold with boundary, and the boundary is 7=*(0).

Proof: The set {x € S : 7(z) > 0} is open in S, since it is the continuous
preimage of the open subset (0,00) C R. It is therefore a submanifold of the
same dimension as S. Hence every point in {x € S : m(x) > 0} has an open
neighborhood which is diffeomorphic to an open subset of R*, k = dim S.

So suppose that m(s) = 0. By assumption, 0 is a regular value which means
that s is a regular point of 7. Hence 7 is locally near s equivalent to the canonical
submersion. But for the canonical submersion

7 HF = R, (z1,...,0%) — T
the lemma just states the definition of the boundary of HF:
OHF = 771(0) = {(x1, ..., ) € R¥ : 2, = 0}.
QED

An immediate consequence of this fact is:

Spheres are boundaries

Let m be the smooth function defined by
m:RF 5 R, (21,...,04) — 1 — fo

Then 0 is a regular value of 7, and the unit ball B* in R¥ can be described
as

B* = {z € R* : () > 0}.
The boundary of B* is the (k — 1)-sphere S~ = 771(0).

Recall that transversality is formulated as a criterion on tangent spaces and
derivatives. We would like to formulate a similar criterion for maps between
manifolds with boundary.
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As we learned above, the boundary 0X of a k-manifold with boundary X is
a manifold of dimension k£ — 1 without boundary. Let z € 0X be a point on the
boundary. We have dim7,(0X) = k — 1 and dim7,(X) = k. Moreover, since
0X is a submanifold of X, we know that

T.(0X) C T,(X)
is a vector subspace of codimension 1 in 7,(X).

For any smooth map f: X — Y, we introduce the notation

of = flax
for the restriction of f to X. The derivative of df at x is just the restriction of
df, to the subspace T, (0X):

d(0f)z = (df2)m0x): Te(0X) = Ti)(Y).

Now let f: X — Y be a smooth map from a smooth manifold with boundary
X to a boundaryless manifold Y, and let Z C Y be a submanifold. We would like
to know under which circumstances is f~!'(Z) a submanifold with boundary
of X (i.e. a subset of X which is itself a smooth manifold with boundary) with

(17) Of Y(2)=f(Z)nox.

It turns out that it is not enough to ask that f is transversal to Z in the
previous sense, i.e. Im (df;) + Tt2)(Z) = Ti)(Y).

A simple example

Even for the restriction of the canonical submersion
T H2 — R, (.’13'1,.’13'2) = To

this is not sufficient. For, dm, 4,): R? — R is just the projection onto the
second factor. Hence it is surjective at every point (z1,%2). In particular, 0
is a regular value fo 7. Let Z := {0}. Then

7 YZ) = {(z1,72) € R* : 15 = 0} = OH>.
Since 0 is regular value, we knew that 7' (Z) is a submanifold. The problem
is that the boundary does not satisfy condition (17). For

on~Y(Z) = (), whereas 7*(Z) N 90X = 9H? # .

In order to make sure that the boundary behaves well, we need to impose an
additional transversality condition on f.
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We start again with regular values:

Preimages of regular values in manifolds with bound-
ary

Let g be a smooth map of a k-manifold X with boundary onto a bound-
aryless n-manifold Y, and suppose that y € Y is a regular value for both
g: X = Y and dg: X — Y. Then the preimage g~'(y) is a (k — n)-
dimensional manifold with boundary

g '(y) =9 ' (y) NOX.

Proof: To show that ¢g~!(y) is a manifold with boundary is a local question,
i.e. it suffices that each point in ¢g~*(y) has an open neighborhood which is a
manifold with boundary. So let x € X be a point with g(x) = y. After choosing
local coordinates, we can assume that g is a map

g: H* = R™.

If z is an interior point in X, then ¢~'(y) is a manifold without boundary
in an open neighborhood around x by the Preimage Theorem for boundaryless
manifolds.

So let us look at what happens if x € 0X. That g is smooth at x means by
definition that there is an open subset U C R* and a smooth map

G: U — R" such that Gyrmr = gynmk-
After possibly replacing U with a smaller subset, we can assume that G has

no critical points in U. Then G~!(y) is a smooth manifold by the Preimage
Theorem for boundaryless manifolds. We need to show that

g_l(y) = G_l(y) N HX is a manifold with boundary.
In order to show this, we define a new smooth function 7 on the manifold
S=G"(y)
7S =R, (z1,...,08) — g
as the projection to the last coordinate. Then

SNH" ={se€ S :7(s) >0}

Claim: 0 is a regular value of 7.
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If we can show the claim, then our previous lemma shows that S N H* is a
manifold with boundary and the boundary is 7—1(0).

To show the claim, assume there was an s € S with both 7(s) = 0, i.e.
s € SNOHF, and dry = 0. We want to show that the assumption dm, = 0 leads
to a contradiction.

To do so, first note that 7 is a linear map, and therefore dw, = w. Thus,
drs =m: Ts(S) = R

being trivial, just means that the last coordinate of every vector in Ty(X) is 0,
ie.

dry =0 = T,(S) C T,(0OH*) = R**,

Hence we want to show T,(S) ¢ RF-L.
The tangent space to S = G~(y) at s is the kernel of dG,:
T.(S) = To(G™(y)) = Ker (dG, = dg,: R* — R")
where dg; = dG, by definition of dg;.
We know that d(dg), is the restriction of dgy: RF — R to RF~1:
d(0g)s = (dgs)s-1-

Thus, if 7,(S) = Ker (dg,) € R*"!, then
(18) Ker (dgs) = Ker (d(0g)s).
Now, finally, we apply the assumption of regularity of y. Since y is a regular

value of both ¢ and Jg, we know that both dg; and d(Jg), are surjective.
This implies

dim Ker (dgs) = k —n and dim Ker (d(0g)s) =k — 1 —n.

This contradicts assertion (18) about the kernels when Ker (dg,) C R*L.
Thus this assumption must be false, i.e.

T,(S) = Ker (dg,) € R*!
and hence drg # 0 and therefore dry is surjective.

In other words, 0 is a regular value. QED
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Preimages of manifolds with boundary

Let f be a smooth map of a manifold X with boundary onto a boundaryless
manifold Y, and suppose that both f: X — Y and df: 0X — Y are
transversal with respect to a boundaryless submanifold Z in Y. Then the
preimage f~(Z) is a manifold with boundary

o(f7(2)) = f(2)naX,

and the codimension of f~!(Z) in X equals the codimension of Z in Y.

Proof: The restriction of f to the boundaryless manifold Int(X) is transversal
to Z. Hence, by the Preimage Theorem for boundaryless manifolds, f~(Z) N
Int(X) is a boundaryless manifold of correct codimension. Thus it remains
to examine f~1(Z) in a neighborhood of a point x € f~1(Z) N 0X.

Let [ := codim Z in Y. As in the boundaryless case, we can choose a submer-
sion h: W — R! defined on an open neighborhood W of f(z) in Y to R! such
that ZNW = h=1(0). Then ho f is defined in a neighborhood V of x in X, and
fHZ)NV = (ho f)7H(0).

Now let ¢: U — X be a local parametrization around x, where U is an open
subset of H*. Then define

g:=hofo¢p: U —R.

Since ¢: V — ¢(V) is a diffeomorphism, the set

f71(Z) is a manifold with boundary in a neighhorhood of =
< (fo¢) ' (Z) =g '(0) is a manifold with boundary near u = ¢~*(z) € 9U.

But the transversality assumptions of f and 0f with respect to Z imply the
0 is a regular value of g. Hence we can apply the previous theorem and we are
done. QED

Finally, also Sard’s Theorem has a version with boundary.

Sard’s Theorem with boundary

For any smooth map f: X — Y of a manifold X with boundary to a
boundaryless manifold Y, almost every point of Y is a regular value of both

f and Of.
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Proof: For any point x € X on the boundary of X,

d(0f)s = (dfe)m(ox): To(0X) = Ty (Y).
Hence if d(0f), is surjective, then df, is surjective. Hence if Jf is regular at z,
so is f.

Thus a point y € Y fails to be a regular value of both f and 0f only when it
is a critical value if both df, fails to be surjective for all z € f~!(y) NInt(X) and
d(9f), fails to be surjective for all z € f~1(y) N 0X.

But since Int(X) and 0X are both boundaryless manifolds, both sets of critical
values have measure zero by Sard’s Theorem. Thus the complement of the set
of common regular values for f and df is the union of two sets of measure zero,
and therefore itself a set of measure zero. QED
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Brouwer Fixed Point Thereom and One-Manifolds

The following theorem gives us a complete list of smooth one-dimensional
manifolds. Note that in genera, since every manifold is the disjoint union of its
connected components, it suffices to classify connected manifold.

Classification of One-Manifolds

(a) Every compact, connected, one-dimensional smooth manifold with-
out boundary is diffeomorphic to S*.

(b) Every compact, connected, one-dimensional smooth manifold with
boundary is diffeomorphic to [0,1].

(c¢) Every noncompact, connected, one-dimensional smooth manifold
with boundary is diffeomorphic to either [0,1), (0,1] or (0,1).

The details of the proof are surprisingly complicated. We content ourselves
with a rough idea.

Some heuristics on why the theorem may be true:

(a) Let X be a nonempty, compact, connected 1-manifold. Each point has
a neighborhood diffeomorphic to (—1,1). By compactness, finitely many such
neighborhoods Uy, . ..,U, cover X. If n was equal 1, then X = (—1,1). But an
open interval is not compact. Thus, there must be at least two neighborhoods.
Since X is connected, these two charts must intersect. The union of these two
intervals has to be either an open interval (if they intersect on one side of each) or a
circle (if they intersect on both sides). But if their union is an open interval, there
has to be another chart, by the compactness of X. Since there are only finitely
many U;’s, we must eventually arrive at the situation where the neighborhoods
intersect on both sides and form a circle. Then one has to use this to construct
a diffeomorphism to S?.

(b) Let X be a compact, connected, one-dimensional smooth manifold with
boundary. Since X has at least one boundary point, there must be neighborhood
in X containing that boundary point. This neighborhood must be diffeomorphic

169
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to [a,b) for some a, b. Since this interval is not compact, there must be another
neighborhood in X. This neighborhood either intersects another boundary point
which would yield us X = |[a,c| for some ¢, or it does not contain a boundary
point. In the latter case, the union of the neighborhoods is diffeomorphic to a
half-open interval [a,d) which is not compact. Hence there has to be another
neighborhood. Since X is compact, this process will end after finitely many
steps when we eventually get that X is the union of neighborhoods which is
diffeomorphic to a closed interval.

(c) When X is not compact, we repeat the above processes. The difference
is that the process may not terminate and we end up with open or half-open
intervals.

4
,
72 X 16(3

Much more interesting than the actual theorem are its consequences which
are surprisingly rich.

Boundary of One-Manifolds

The boundary of any compact one-dimensional manifold with boundary
consists of an even number of points.

Proof: Every compact one-manifold with boundary X is the disjoint union of
finitely many connected components. Each component is diffeomorphic to
a copy of [0,1]. Hence the boundary of each component consists of two points.
The boundary of X consists of these finitely many pairs of points. QED
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Retractions

Let X be a smooth manifold and Z € X be a submanifold. Then a retrac-
tion is a smooth map f: X — Z such that f; is the identity.

There is an important restriction for the existence of such retractions for
manifolds with boundary:

No retractions onto boundaries

If X is any compact manifold with boundary, then there is no retraction
of X onto its boundary.

Proof: Suppose there is such a smooth map g: X — 90X such that dg: 0X —
0X is the identity. By Sard’s Theorem, we can choose a regular value z € 0.X of
g. Since Jg is the identity, all values in X a regular for dg. Hence z is regular
for both g and dg. By the Preimage Thoerem for manifolds with boundary, we
know that g~!(2) is a submanifold of X with boundary

g () =g () NOX.

Moreover, the codimension of g7'(2) in X equals the codimension of {z} in
0X, namely dim X —1 as {z} has dimension 0. Hence g~'(z) is one-dimensional.
Since it is a closed subset in the compact manifold X, it is also compact.

By definiton of dg as the restriction of g to X, we have
(09)7'(2) = (g0ox) ' (2) = g7 (1) NOX = (g ().

But, since dg = Idyy,
{2} = (99)'(2) = (g7 (2)).

This contradicts the previous result that the boundary d(g~'(z)) of the compact
one-dimensional manifold g~!(z) consists of an even number of points. QED

This theorem has a famous consequence:

Brouwer Fixed-Point Theorem for smooth maps

Let f: B — B™ be a smooth map of the closed unit ball B" = {z € R" :
|z] < 1} C R™ into itself. Then f must have a fixed point, i.e. there is an
x € B" with f(z) = x.
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Before we prove the theorem, let us have a look at dimension one, where the
result is very familiar:

Brouwer FPT is familiar in dimension one

Note that we have seen this theorem for n = 1 in Calculus 1. Let f: [0,1] —
[0,1] be a continuous map. Then it must have a fixed point. For, if not, then
g(x) = f(z) — x is a continuous map defined on [0,1]. We have g(0) > 0
and ¢g(1) <0, since f(0) > 0 and f(1) < 1. If g(0) =0 or g(1) = 1, we are
done. But if g(0) > 0 and ¢(1) < 1, then the Intermediate Value Theorem
implies that there is an xy € (0,1) with g(z) = 0, i.e. f(zo) = 0.

g of
auy cad. fd.
& [01’3_"‘[9,']

sanst owss 1y

Proof of Brouwer FPT: Suppose that there exists an f without fixed points.
We will show that such an f would allow us to construct a retraction g: B" —
0B". But, since B™ is compact, we have just proved that such a retraction
cannot exist.

So suppose f(z) # x for all € B". Then, for every z € B", the two
points x and f(x) determine a line. Let g(x) be the point where the line segment
starting at f(x) and passing through z hits the boundary 0B™. This defines a
map ¢g: B" — 0B".
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9%

If x € OB™, then g(z) = x by construction of g. Hence g: B" — 0B" is the
identity on 0B". Thus, in order to show that g is a retraction, it remains to show
that g is smooth.

To show this, we describe g(z) explicitly. As a point on the line from f(x) to
x, g(x) can be written in the form

z — f(z)
|z — f(=)]
for some real number ¢. Note that, since we assume x # f(x), the vector v is

always defined. In fact, it is the unit vector pointing from f(x) to . Moreover,
since f is smooth, v depends smoothly on x.

g(x) =z + tv, where v :=

We need to calculate ¢ and show that ¢ depends smoothly on z. Since g(x)
is a point on boundary of B"™, we know |g(z)| = 1, and ¢ is determined by the
equation

1= |9($)|2: (.’E+tv)-(x+tv) =g-x+2r-v+t2-0v
or, equivalently,

(19) 0= (- -v)t*+ v -v)t+x -1

By definition of v, we know v - v = |v|*> = 1. Since v points from f(x) to =,

we know that ¢t must be positive. Now we just need to find the positive solution
of the quadratc equation (19) for ¢ and get

t_—2x'v+\/4(:v-v)2—4(:v-x—l)
B 2
=—z-v+/(z-v)2—x-2+1
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where (z -v)? — x -z + 1 is positive, since z -z = |z[* <1 and (z - v)? > 0. Since

the scalar products and square roots involved depend smoothly on z, we see that
t depends smoothly on x. Hence g is smooth. QED

Note that, for n = 1, in the above proof we would construct a map g: [0,1] —
{0,1} which would send 0 to 0 and 1 to 1. Such a map cannot be smooth, not
even continuous by the Intermediate Value Theorem.

Brouwer Fixed-Point Theorem for continuous maps

Any continuous map F': B" — B™ must have a fixed point.

Proof: The idea is to reduce this theorem to the statement on smooth maps
by approximating F' by a smooth mapping. This is possible by Weierstrass’
Approximation Theorem, an important result from Calculus, which applies
as B" is compact and says:

Given € > 0, there is a polynomial function ): B" — R" with

|Q(z) — F(x)| < e for all x € B".

(Recall that a polynomial function is a function that arises by finitely many
additions and multiplications of the coordinate functions. Such functions are
obviously smooth.)

However, it is possible that () sends points in B" to points outside of B™. In
order to remedy this defect, we replace () with

P(z) := ?_(:Ci

Since |F(z)| < 1, this new polynomial P satisfies:
(1+|P(2)] = Q)] < |Q(x) — F(z)] + [F(x)] <e+1

where we appy the trianlge inequality. Hence |P(z)] < 1 and P is a map
B"™ — B™. Moreover,

(1+e)|P(z) = F(z)] = [Q(z) — (1 + e)F(x)| = |Q(z) — F(x) + eF(z)|
< [Q(x) — F(x)| + e[ F(z)] < 2¢

where we use that |F(z)| < 1. Since 1 4 € > 1, this shows

(20) |P(z) — F(x)] < 2e.
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Now suppose that F(z) # z for all x € B". Then the continuous function

B" — B", x — |F(z) — x|

must have a minimum g, since B™ is compact. Since F(z) # z for all z, we
must have p > 0.

Now,for € = /2, we choose polynomials () and then P as above. Since
|F(z) — x| > p for all x € B™, the triangle inequality yields

p < |F(x) — x| = |F(x) = P(z) + P(z) — x|
< [F(z) = P(x)] + |P(x) — =,

But by (20), we know
|F(z) — P(x)| < p for all z € B™.

Thus |P(xz) — z| > 0, and therefore P(z) # x for all x € B™.

Hence P: B" — B" is a smooth map from B" to itself without a fixed

point. This contradicts the statement on smooth maps and completes the proof.
QED

The theorem is not true for the open ball:

Counterexamples on open balls

Let Bf(0) = {x € R*: |x| < 1} be the open ball in R¥. We define the map
@: B¥0) - R* x> ’

viearo
This is a smooth map with smooth inverse

go’lsz—)Bf(O),yl—) 4

V1t yl?
Thus ¢ is a diffeomorphism Bf(0) — R*.
The translation T': R¥ — R*, 2 +— x4 1 does not have a fixed point. Hence
the composite map

(p_l oT op: Bf(()) — Bf(O)
does not have a fixed point. For if it had a fixed point z, then
¢ (T(p(@) =z = T(p(z)) = p(z)
and T had a fixed point, which is not the case.
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Brouwer’s Fixed-Point Theorem has many important consequences. Here is
one of them:

Brouwer Invariance of Domain

Let U be an open subset of R", and let f: U — R" be a continuous
injective map. Then f(U) is also open.

Instead of studying the proof of this theorem, let us note a consequence of
this result:

Topological Invariance of Dimension

If n > m, and U is a nonempty open subset of R", then there is no
continuous injective map from U to R™. In particular, R” and R™ are
not homeomorphic whenever n # m.

Even though it sounds like an obvious fact, this is a rather deep theorem.
Note that there exist weird things like a continuous surjection from R™ to R" for
n > m due to variants of the Peano curve construction. Hence often we have to
be careful with our topological intuition.

Proof of Topological Invariance of Dimension: If there was such a con-
tinuous injective map from U to R™, then we could compose it with the embedding
R™ — (R™ x {0}) C R™. Hence the composite would yield a continuous injec-
tive map from U into R™. By the theorem, the image would be both open in R"
and lie in the subspace R™ x {0}. But no open subset of R" can be contained
in R™ x {0}, since we must be able to fit at least a tiny open ball of R™ into
that subset and there is no room for such a ball in the direction of the remaining
n — m coordinates.

Finally, a homeomorphism from R" to R™ would be such a continuous injective
map. QED

Note that invariance of domain and dimension for smooth injective maps is
just a consequence of the Inverse Function Theorem. But for maps which are just
continuous and injective, it is much harder to achieve.
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Transversality is generic

Today we are going to review what we have learned about transversality and
show that it is actually a generic property. We start with the following extension
of Sard’s Theorem:

Transversality Theorem

Suppose that F': X xS — Y is a smooth map of manifolds, where only X
has a boundary, and let Z be any boundaryless submanifold of Y. If both
F and OF are transversal to Z, then for almost every s € S, both f, and
Jfs are transversal to Z (where fs denotes the map z — fs(z) = F(z,s),
and similarly 0f;(z) = 0F(x,s)).

Note that, roughly speaking, the difference between requiring that F' is transver-
sal to Z versus f; is transversal to Z is that for F the image of T{, 5)(X x.S) under
dF{;s) has to be big enough, whereas for f, we look at the potentially smaller
image of T, (X x S) under d(f;),. Similarly for 0F and 0fs.

Proof: By the Preimage Theorem, the preimage W := F~!(Z) is a subman-
ifold of X x S with boundary OW =W NJ(X x S). Let m: X x S — S be the
natural projection map.

We will show that whenever s € S is a regular value for the restriction
m: W — S then f, M Z, and whenever s is a regular value for dr: OW — S, then
JOfs M Z. By Sard’s theorem (which also holds for manifolds with boundary),
almost every s € S is a regular value for both maps, so the theorem follows.

In order to show that fs M Z, suppose that fs(z) = z € Z. Because F(x,s) = z
and F' M Z, we know that

dF(%s)(T(w’s)(X X S)) + TZ(Z) = TZ(Y).

Hence, given any vector a € T.(Y'), there exists a vector b € T(, 4 (X x 5) such
that

dF(%s)(b) —a < TZ(Z).

177
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What we need is to find a vector v € T, (X) such that

dfs(v) — a € T.(2),
as that would show that dfs(T,(X)) +T.(Z) = T.(Y).
Since
Tz (X x S) = T,(X) x T5(S5),
we can write b as a pair (w,e) for vectors w € T,(X) and e € T,(S5).

If e was zero, we would be done, for since the restriction of F' to X x {s} is
fs, it follows that

dF(LS) (’LU,O) = dfs(w).

Although e need not be zero, we may use the projection m to kill it off.
It is easy to check that
dT('(x’S): Tx(X) X TS(S) — TS(S)

is just projection onto the second factor (this holds for every projection map from
a product of manifolds).

Now we use the assumption that s is a regular value of m. For this implies
that

dﬂ'(x’5)2 T(wys)(W) — TS(S)

is surjective. In particular, the fiber over e € T,(S) is nonempty, and there is
some vector of the form (u,e) in Ti, o (W).

But F': W — Z, so dF(; 4 (u,e) is an element in 7.(Z). Consequently, the
vector v :=w — u € T,(X) is our solution. For

dfs(v) —a= dF(m,S)((wae) - (U'?e)) —a= (dF(:r,s) (w7e) - CL) - dFs(u,e),
and both of the latter vectors belong to T(Z).

Precisely the same argument shows that 0fs M Z when s is a regular value of
or. QED

Transversality is generic - first case

Transversality for smooth maps X — R is generic in the following sense:
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Let f: X — RM be any smooth map. Let S be an open ball in R™, and
define

F: X xS —RY F(z,5) = f(z) + s.
The derivative of F' at (z,s) is
dF (s = (dfy, Idgar): Tu(X) x RM — RM,

Thus dF, s is obviously surjective at any (z,s). Hence F'is a submersion.
This implies that F is transversal to every submanifold Z Cc RY.
Now we can apply the Transversality Theorem we have just proven:
Since F' and OF are transversal to Z, for almost every s € S, the map
fs(z) = f(x) + s is transversal to Z. Thus, for any submanifold Z C R,
there is an s, with arbitrarily small norm in R, such that f may be
deformed into a map f, transversal to Z by the translation by s.

This shows us that transversality is generic for maps X — R™. We would like
to generalize this result to an arbitrary boundaryless smooth manifold Y ¢ RM
and smooth map f: X — Y.

Given a submanifold Z C Y, we have just learned how to vary f: X — Y C
RM as a family of maps X — R™ such that f, M Z for arbitrarily small s, where
we consider Z as a submanifold in RV,

It remains to understand how we can project these maps down onto Y such
that a small perturbation f,; of f remains transversal to the given submanifold
Z C Y. To do so, we must understand a little of the geometry of Y with
respect to its environment. As usual, the compact case is clearest.

e-Neighborhood Theorem

For a compact boundaryless manifold Y in R™ and a positive number e,
let Y€ be the open set of points in RM with distance less than € from Y.
If € is sufficiently small, then each point w € Y possesses a unique closest
point in Y, denoted 7(w). Moreover, the map w: Y — Y is a submersion.
When Y is not compact, there still exists a submersion 7: Y — Y that
is the identity on Y, but now ¢ must be allowed to be a positive smooth
function ¢: Y — R>% on Y, and Y is defined as

Y= {wecRM:|w—y| <e(y) for some y € Y} c RM.
The manifold Y€ is called a tubular neighborhhood of Y in R,



180 TRANSVERSALITY IS GENERIC

Note that the important point of the theorem is not so much the existence of
the Y¢, but rather that they come equipped with the submersion 7. As we will
see in a bit, this is related to a key tool, the normal bundle.

Before we prove this theorem, we study a first consequence:

Creating families of submersions

Let f: X — Y be a smooth map where Y is a boundaryless manifold. Let
S be the open ball in RM. Then there is a smooth map F: X x S — Y
such that F(z,0) = f(z), and for any fixed x € X, the map

S =Y, s— F(z,s) is a submersion.

In particular, both F' and OF are submersions.

Proof: Let Y € RM and S be the unit ball in R™. We define
(21) F: X xS=Y, F(x,s) =7n(f(x) + e(f(x))s).

Since 7: Y — Y restricts to the identity on Y, we have
F(z,0) = 7(f(x) +0) = f(2).
For fixed x, the map
0: S—=Y s f(x)+e(f(x))s

is the translation of a linear map. Thus dyy is just given by multiplying a vector in
T,(S) = RM by the real number e(f(z)) > 0 (to get a vector in T (Y) C RM).
This derivative is just e(f(x)) times the identity of R, and therefore surjective.
Thus ¢ is a submersion.

As the composition of two submersions is a submersion, we get that
S —Y, s~ F(z,s) is a submersion.

Hence the restriction Figyxs: {#} x S = Y of F to the submanifold {z} x S
is submersion for every x € X. Since every point of X x S lies in one of these
submanifolds, ' must be a submersion as well, since its derivative dF|, ) is
already surjective onto Tr(, ) when restricted to T, ) ({z} x S) C T(55(X x S).

The same argument applied to OF and 90X, shows that JF is a submersion.
QED

Now we can prove that transversality is generic:
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Transversality Homotopy Theorem

For any smooth map f: X — Y and any boundaryless submanifold Z of the
boundaryless manifold Y, there exists a smooth map g: X — Y homotopic
to f such that g M Z and dg M Z.

Proof: For the family of mappings F' of the previous conesequence of the
e-Neighborhood Theorem, the Transversality Theorem implies that f, M Z and
Jfs M Z for almost all s € S. But each f, is homotopic to f, the homotopy being

X xXI =Y, (x,t)— F(x,ts).
QED

Now we are going to prove the e-Neighborhood Theorem. To do this we
introduce an important geometric tool similar to the tangent bundle.

The Normal Bundle

For each y € Y, define N,(Y), the normal space of Y at y, to be the
orthogonal complement of T, (Y) in RM. The normal bundle N(Y) is then
defined to be the set

N(Y)={(yw) €Y xRM™ :v € N, (Y)}.

Note that unlike 7'(Y"), N(Y) is not intrinsic to the manifold Y but depends
on the specific relationship between Y and the surrounding RM. There is a
natural projection map o: N(Y) — Y defined by o(y,v) = y.

The normal bundle N(Y') is actually a manifold itself. In order to show this,
we must recall an elementary fact from linear algebra:

Suppose that A: RM — R* is a linear map. Its transpose is a linear map
At: R¥F — RM characterized by the dot product equation

Av-w=v-Alw for all v € RM w € R*.

Claim: If A is surjective, then A® maps R¥ isomorphically onto the orthogonal
complement of the kernel of A.

First we note that A’ is injective. For if Aw = 0, then Av-w = v - A'w = 0,
so that w L A(RM). Since A is surjective, w must be zero.

Now, if v € Ker(A), i.e. Av = 0, then 0 = Av-w = v - A'w. Thus
AYRF) L Ker (A). Hence A® maps R” injectively into the orthogonal complement
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of Ker (A). As Ker (A) has dimension M — k, its complement has dimension k,
so At is surjective, too.

Normal bundles are manifolds

If Y ¢ RY, then N(Y) is a manifold of dimension M and the projection
o: N(Y) — Y is a submersion.

Proof: We need to find loal parametrizations for N(Y).

Therefor, we use that we have learned that we can write every manifold locally
as the zeros of a smooth function. Hence around every point in Y, there is an
open neighborhood U C Y and an open subset U ¢ RM with U = Y N U such
that we can write U as the zeros of a submersion

0: U= RF (k=codimY) with U =Y NU = ¢ (0).
The set N(U) equals N(Y) N (U x RM), thus is open in N(Y).

For each y € U, dp,: RM — R is surjective and has kernel T, (Y") by the
Preimage Theorem.

Therefore its transpose maps R* isomorphically onto the orthogonal com-
plement of Ker (dy,) = T,(Y") which is N,(Y) by definition:

o

(d‘Py)t: R" = (Ty(Y))L = Ny(Y).
Hence the map
¥: U X RF = N(U), (y,0) = (y,dg,(v))

is bijective. It is also an embedding of U x R¥ into U x R™ | since it is the identity
on the first factor and an injective linear map on the second factor. Hence 9 is a
diffeomorphism, and N(U) is a manifold with local parametrization 1.

The dimenion of N(U) is
dimN(U) =dimU + k =dimY + codimY = M.
Since every point of N(Y') has such a neighborhood, N(Y') is a manifold.

Note that oot): U xR* — U is just the projection onto the first factor, which
is a submersion. Thus d(o 0 ), is surjective at every point (u,w). Hence do,
is surjective at every u, and o is a submersion. QED

Before the get to proof the actual theorem, we start with a lemma that will
give us the existence of the e-neighborhood Y.
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e-Neighborhood Lemma

Let Y C RM be a boundaryless manifold. Then any neighborhood UofY
in RM ie. any open subset U of RM with Y C U, contains

Y ={weR”: |w—y| < e(y) for some y € Y}

where €: Y — R>? is a suitable smooth function. Moreover, if Y is com-
pact, € can be chosen constant.

Proof: For each point a € Y, we can find a small radius €, such that the
open ball By (o) C U is contained in U. We set

Uy : =Y NB.,(a).

Claim:
U™ = {weRM: jw—y| < e(a) for some y' € Uy} C U.
For, w € US™ means there is an ¢’ € U, with |w—1/| < €,. But ¢’ € U, means
|y — a| < €,. Thus the triangle inequality implies
lw—a| <|w—9|+y —a| < 2e,.
Thus w € By, (a) C U by the choice of .

The collection of all U, forms an open cover {U,} of Y C RM™. By the
Theorem in the Existence of Partitions of Unity for subsets in R, we can choose
a partition of unity {p;} subordinate to the cover {U,}.

Now we define the function
&Y - Ry Zpi(y)ei

Note that € is a smooth function, since all the p;’s are smooth.
Claim: Y¢ C U.

Let w € Y¢. Then there is a y € Y such that |w — y| < €(y). For this y,
only finitely many of the numbers p;(y) are nonzero, say p;, (v),...,p:, (y). This
impliesy e U;, N---NU,,.

Let €;,, be the maximum of the finitely many numbers ¢;,, ... ,¢,,. Then, since
Y. pi(y) =1, we have e(y) <¢;,. Hence

lw—y| < e(y) <€, implies w € U™ C U.
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Thus Y€ C U.

If Y is compact, we can reduce {U,} to a finite cover U,,,...,U,, and let €
be equal the maximum of the ¢,,. QED

Now we are equipped for the proof of the e-Neighborhood Theorem.
Proof of the e-Neighborhood Theorem:

The idea of the proof is to use a version of the Inverse Function Theorem
to show that the e-neighborhood Y€ of Y =Y x {0} in RM x RM is diffeomor-
phic to an open subspace in the normal bundle. Then we use the natu-
ral submersion o: N(Y) — Y from the normal bundle to get the submersion
T Y —=Y:

ye T N(Y)

Nk

Y

To make this precise, we define the map

h: NY) = RM, (yw) =y + .

We claim that h is regular at every point of Y x {0} in N(Y).
For, since h is just the restriction of the linear map
H:RM x RM = RM (w,2)) = w + 2,
the derivative of h at (y,v) is just
dhiywy = H: RM x RM — RM.

Hence at any point (y,v) we have

dhy.v)(w,0) = w and dh,.)(0,2) = z.

The tangent space to N(Y') at (y,0) is just
Ty (N(Y)) = T,(Y) x {0} @ {0} x Ny(Y),
since T,,(Y) and N,(Y') are orthogonal complements in R? and dim N(Y) = M.
At the point (y,0), dh(,,0) maps
Tiy0) (Y x {0}) onto T,(Y) in RY,
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and it maps
Tiy0)({y} x Ny(Y)) = {0} x N,(Y) onto N, (V) in RM,
where we use that N,(Y') is a vector space and hence its own tangent space.

Hence, in total, we get

dhy,0)(Ty,0) (N (Y))) = Tiy0) (Y x {0}) + Tiy0)({y} x Ny(Y))
=T,(Y)+ N,(Y) = RM.

Thus dh,, is surjective and h is regular at (y,0).

Since h maps Y x {0} diffeomorphically onto Y and is regular at each (y,0),
a generalization of the Inverse Function Theorem which we prove in the ap-
pendix implies that A must map a neighborhood of Y x {0} in N(Y) diffeo-
morphically onto a neighborhood of Y in R,

Now any neighborhood of Y contains some Y by the e-Neighborhood
Lemma. Thus h™': Y — N(Y) is defined, and

T=coh Y >Y
is the desired submersion.

It is an exercise to check that we can describe 7 for compact manifolds as
given in the theorem. QED

As a consquence of the proof of the theorem we note the following useful
result:

Tubular Neighborhoods and Normal Bundles

Let Y € RM be a boundaryless smooth manifold. Then there is a diffeo-

morphism of an open neighborhood Y€ of Y in R to an open neighborhood
Ne(Y) of Y x {0} in N(Y).

Proof: In the proof of the e-Neighborhood Theorem, we constructed the
smooth map h which restricts to a diffeomorphism of open neighborhoods as
claimed. QED

In the final part of today’s lecture, we look at another application of the
e-Nieghborhoood Theorem. In fact, there is a stronger form of the Transver-
sality Homotopy Theorem. In order to be able to formulate it, we need some
terminology.



186

TRANSVERSALITY IS GENERIC

Transversality on subsets

Let f: X — Y be a smooth map, Z C Y a submanifold, and C' C X be
a subset. We will say f is transversal to Z on (| if the transversality
condition

(22) Im (dfz) + Ty()(2) = Ty@)(Y)

forallz e CN f~1(2).

Note that, even if C' is a submanifold, this is different than requiring fio M Z,
since (22) involves Im (df;) = dfy(T»(X)), not Im (d(fic).) = df+(T:(C)),
which is smaller in general.

Now we can formulate the next important technical result.

Extension Theorem

Let f: X — Y be a smooth map, Y boundaryless, and Z a closed sub-
manifold of Y without boundary. Let C be a closed subset of X. Assume
that f M Z on C and Of M Z on C' N OX. Then there exists a smooth
map ¢g: X — Y homotopic to f, such that g M Z and dg M Z, and on a
neighborhood of C we have g = f.

Since 0X is always closed in X, we obtain the important special case:

Extension of maps on boundaries

Assume f: X — Y is a smooth map such that the boundary map df: 0X —
Y is transversal to Z. Then there exists a map ¢g: X — Y homotopic to
f such that dg = 0f and g M Z.

In particular, suppose there is a smooth map h: X — Y transversal to Z.
Then, if h extends to any map on the whole manifold X — Y, it extends
to a map that is transversal to Z on all of X.

For the proof of the Extension Theorem we need lemma first:

Lemma

If U is an open subset which contains the closed set C'in X, then there exists
a smooth function y: X — [0,1] that is identically equal to one outside U
but that is zero on a neighborhood of C'.
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Proof: Let C’ be any closed set contained in U that contains C'in its interior,
and let {p; } be a partition of unity subordinate to the open cover {U, X\C'}. Here
it comes handy that we proved the existence of partition of unity for arbitrary
subsets of R™. Then just take v to be the sum of those p; that vanish outside of
X\C'. QED

Proof of the Extension Theorem:

First we show that f M Z on a neighborhood of C' i.e. an open subset
containing C. If z € C but x ¢ f~(Z), then since Z is closed, X \ f~}(Z) is a
neighborhood of z on which f M Z automatically.

If x € f~1(Z), then there is a neighborhood W of f(z) in Y and a submersion
©: W — R* such that f M Z at a point 2’ € f~1(Z NW) precisely when @ o f is
regular at ’. But if p o f is regular at x, so it is regular in a neighborhood of z.
Thus f M Z on a neighborhood of every point z € C', and so

f M Z on a neighborhood U of C' in X.
Second, let 7 be the function in the above lemma for the closed subset C'
and the open neighborhood U of C'in X. We set 7 := 2. Since
dr, = 2y(x)d~,, hence v(z) =0 = 7(x) = dr, = 0.
Now we modify the map F': X x S — Y which we defined in (21) in proving
the Homotopy Theorem, where S is the unit ball in R, and set
G: X xS—=Y, Gx,s) = F(z,7(x)s).

Claim: G M Z.

For suppose that (z,s) € G™1(Z), and let us assume first 7(x) # 0. Then the
map

S =Y, r— Gz,r),
is a submersion, since it is the composition of the
diffeomorphism 7 +— 7(x)r with the submersion r — F(x,r).

Hence G is regular at (z,s), so certainly G M Z at (x,s).

To show the claim when 7(z) = 0, we need to check that the image of the
derivative dG ;) is big enough. To do this, we introuce the map

m: X xS — X x85,(z,s) — (x,7(x)s).
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We would like to calculate the derivative of m. Therefor, we apply the product
rule to the second coordinate and remember that 7: X — [0,1], i.e. 7(x) and
dr,(v) are both in R for any v € T,,(X). Then we get

dmz.s) (vyw) = (v,7(x) - w + dr(v) - 8)
where w and s are vectors in RM .

We observe that G = F' o m. Hence in order to calculate the derivative of G,
we can apply the chain rule. Since we are interested in the case where 7(z) = 0
and dr, = 0 we get

dG(Ls) (v,w) = dF(LS) (’U,O).

Moreover, since F'(z,0) = f(x) for all & by construction of F', we know Fjx (o} =
f. This implies

dF(m,s) (U,O) = dF(:E,O) (U7O) = dfx('l})

Hence we get
4G 0 (v.10) = df (0)
and therefore
(23) 0 (4G e.9) = Im (dfo(0)) © Ty (V).
Now 7(z) = 0, implies © € U by definition of v and 7. But by the choice of
U above, this implies f M Z at x. Hence (23) implies G M Z at (z,s).
The same argument shows 0G M Z.

Now we can apply the Transversality Theorem to G: X x S — Y and get
that we can pick and fix an s (almost every s works) for which the map

g(x) := G(x,s) satisfies g M Z and dg M Z.
The map G is then a homotopy
f= F|X><{0} = G\Xx{o} ~ G\Xx{s} =g

Finally, if x belongs to the neighborhood of C' on which 7 = 0, then we even
have g(z) = G(z,s) = F(z,0) = f(x). QED

Let us summarize what we have done today:



TRANSVERSALITY IS GENERIC 189

This lecture in a nutshell

We have proven three key results about transversality which can be roughly
summarized as follows:

(a) The Transversality Theorem says that when a homotopy F' is
transversal to Z, then, in this homotopy family, almost every
fs = F(—,s) is transversal to Z.

(b) The Transversality Homotopy Theorem says that given a map
f and a submanifold Z, then there exists a map g transversal
to Z and g is homotopic to f.

(c) The Extension Theorem says that, given a map f which is
transversal to Z on a subset C', then we can always replace f
with a homotopic map g which is transversal to Z everywhere
(not only on C') and f = g on an open set containing C'.

(a) is a generalization of Sard’s Theorem. For (b) and (c), the key for the
proof is the e-Neighborhood Theorem.

Appendix 1: The Inverse Function Theorem revisited

In the course of this lecture, we used a generalization of the Inverse Func-
tion Theorem that we are now going to prove. It will also allow us to show an
interesting result on normal bundles and tubular neighborhoods.

As always We start with the compact case:

Generalization of the IFT - compact case

Let f: X — Y be a smooth map that is one-to-one on a compact subman-
ifold Z of X. Suppose that for all x € Z,

dfz: Tm(X) — Tf(x) (Y)

is an isomorphism. Then f maps an open neighborhood of Z in X diffeo-
morphically onto an open neighborhood of f(Z) in Y. If Z is a single point,
this is just the usual IF'T.

Proof: We know that f maps Z diffeomorphically onto its image f(7),
since f: Z — f(Z) is a bijective local diffecomorphism and therefore a diffeomor-
phism. We would like to show that we can extend this to an open neighborhood
around Z.
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Since df, is an isomorphism for all x € Z, for each x € Z, there exists an
open neighborhood U, in X around z on which fjy, is a diffeomorphism. The
collection {U,} is an open cover of Z. Since Z is compact, we can choose a
finite subcover {Uy,...,U,}. We set U := U;U;. Restricted to the open subset
U, fiv is a local diffeomorphism.

Hence, by a previous exercise, it suffices to show that there is some open
subset V' in X which contains Z such that f is injective. Then fyny is
an injective local diffeomorphism and therefore a diffeomorphism onto its image.
Since Z C U and Z C V, we also have Z C U NV and the assertion is proven.

We are going to show that V' exists by assuming the contrary.

That means that there exists at least one point z € Z such that in any small
open neighborhood W; of z there are points a; and b; with

a; # b, but f(a;) = f(b:).

For otherwise, every point in Z had an open neighborhood on which f was injec-
tive, and we were done.

By choosing the W; smaller and smaller around zy and by choosing subse-
quences a; and b;, we can assume that both the a; and b; converge to z. Since
f(a;) = f(b;) for all 7 and f is continuous, we have f(a;) — f(2) and f(b;) — f(2).
But since df, is an isomorphism, the usual Inverse Function Theorem implies that
there is a small open neighborhood W, in X around z such that fj, is a diffeo-
morphism. Since a; — z and b; — 2z, for N large enough, we have a;,b; € W,
and hence f(a;) = f(b;) € f(W.) for all i > N. But since fjy, is injective, this
implies a; = b; for all > N. This contradicts the choice of the a; and b;. QED

As it is often the case, it is the existence of partitions of unity that allows us
to move from the compact to the general case. We use the technique to show the
following lemma:

Local finiteness lemma

An open cover {V,} of a manifold X is called locally finite if each point
of X possesses a neighborhood that intersects only finitely many of the sets
V,. Any open cover {U,} admits a locally finite refinement {V}.

Now we are equipped to generalize the Inverse Function Theorem.
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Generalization of the IFT - general case

Let f: X — Y be a smooth map that is one-to-one on a submanifold Z of
X. Suppose that for all z € Z,

is an isomorphism. Assume that f maps Z diffeomorphically onto f(Z).
Then f maps an open neighborhood of Z in X diffeomorphically onto an
open neighborhood of f(Z) in Y.

Proof: Since df, is an isomorphism for all x € Z, for each x € Z, there exists
an open neighborhood V, in X around z on which fy, is a diffeomorphism. Let
U, = f(V,) be the open image in Y. The collection of all U, is an open cover of
f(Z), since each f(z) € f(Z) lies in some U, = f(V,). By the lemma above, we
can choose a locally finite subcover {U;} of f(Z) in Y. For each U;, there is a
local inverse g;: U; — X of f.

We define
W= {y € Ui : gi(y) = g;(y) whenever y € U; N U;}.
On the subset W, we can define an inverse
9: W — X, g(y) = gi(y) for any 1.

This is well-defined by construction of W, since ¢(y) = gi(y) = g;(y) whenever
y € U; NU;. Since the g;’s are local inverses of f, we have f(Z) C W.

It remains to show that W contains an open subset which still contains f(Z).
Let xz € Z, and hence f(z) € f(Z). Then f(x) lies at least one Uy. We fix one
such Uy with f(x) € Uy. After shrinking U; if necessary, we can assume yy the
local finiteness of the cover {U;}, that there are only finitely many of the U;’s
which intersect Uy, say Uy, ..., U,. It U C W, we are done, since then every point
in f(Z) has an open neighborhood which is contained in .

If U is not contained in W, then, for i =1, ... ,n, we set Cj; be the closure of
the set {y € U; N Uy : gi(y) # gx(y)}. Since the union of a finite union of closed
subsets is closed, C), := Ci; U --- U C,,;, is closed. Hence

U .= Uk \ Ck
is open in Y.

By definition of W and the C}, we know U C W. It remains to make sure
that we f(z) is still in U, i.e. that it does not beling to one of the closures Cy.
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Note that f(z) satisfies ¢;(f(z)) = x = gx(f(x)) for all ¢ = 1,...,n. Since
df, is an isomorphism, the usual Inverse Function Theorem implies that there is
a small open neighborhood V. C U around x such that fy, is a diffeomorphism.
Hence, for each i = 1,...,n, we have

gi(f(2") = 2" = gp(f(2)) for all 2’ € V. N g;(U;) N gr.(Ug).

Hence the finite intersection f(V.))NU, NU; N---NU, is an open which is not
contained in any of the sets {y € U; N Uy : g:(y) # gx(y)}. Thus f(x) is not
contained in C. Therefore, U C W is an open neighorhood of f(z). QED

Appendix 2: The Tubular Neighborhood Theorem

We are going to show a generalization of the Tubular neighborhood theorem
for submanifolds. First a definition:

Normal Bundles revisited

Let Y € RM be a boundaryless manifold, and let Z be a submanifold of Y.
We define the normal bundle to Z in Y to be the set

N(Z)Y) ={(zv) : 2€ Z,ve T,(Y)and v L T,(Z)}.

Normal bundles are actually manifolds themselves:

Normal bundles are manifolds

One can show that N(Z;Y) is itself a smooth manifold of dimension equal
to dim Y. Moroever, the canonical map

o: N(Z)Y)— Z, o(zv) = 2,

is a submersion.

Proof: We showed previously that every manifold can be defined locally by
independent functions. So let U C RM be an open neighborhood of z and
J1, - --,g9n be independent functions U — R such that

U=2Z0U={uecR: g (u)= = g,(u) =0}
and Y NU ={uecRY : gppi(u) = - = gu(u) = 0}
where n is the codimension of Z in RM and & is the codimension of Z in Y.
Let g = (g1,--.,9n): U — R™. We observed above that the map
Y: U xR = Ny(Z;RM) := (U x RN N(Z; RM), (u,0) = (u,dgl(v))



TRANSVERSALITY IS GENERIC 193
is a local parametrization of N(Z;RM) = N(Z).

By restricting v to elements in U x R¥ C U x R", we get a smooth map ¢
defined as the composite

U x RF — Ny(Z; RM)

ey [

Nu(Z;Y)

where Ny(Z;Y) := (U x RY) N N(Z;Y) and p is the map induced by the or-
thogonal projection p,: RM — T,(Y) at each 2. Note for a vector w € RM
which satisfies w L T.(Z), we have p(w) € T.(Y) and p(w) L T.(Z). Let
G = (Gkt1,---9n): U — R™*. We observe that, by our choice of ¢ and §, we
know

T.(Z) = (Kerdg.) C Ker (dg.) = T.(Y)
and the orthogonal projection p, varies smoothly with z.

At each z € U, the dimension of the kernel of the composite

R” Y5 NL(Z:RM) 25 NL(Z;Y)
is
dim Ker (p,) = dim N,(Z;RM) — dim N,(Z;Y),
since dg! is an isomorphism. We can calculate this dimension by
dim N.(Z;R™) —dim N,(Z;Y) =M —dim Z — (dimY —dim Z) =n — k.

Thus, ¢ is a diffeomorphism being the identity on the factor and a linear iso-
morphism on the second factor at each point which varies smoothly with that
point.

Hence ¢: U x R¥ — Ny(Z;Y) is a local parametrization of N(Z;Y). Since
Ny(Z;Y)isopenin N(Z;Y) and every point in N(Z;Y) lies in such an Ny (Z;Y),
we conclude that N(Z;Y) is a smooth manifold. Its dimension is

dim N(Z;Y) = dimU + dimR* = dim Z + dimY — dim Z = dim Y.

We note again that co¢: U x R — U is just the projection onto the first
factor, which is a submersion. Thus d(0 © @), is surjective at every point
(u,v). Hence do, is surjective at every u, and ¢ is a submersion. QED

Note that for any z € Z, the preimage o~ '(2) =: N,(Z;Y) is the space of
normal vectors to Z at z in T,(Y") that we have met before.



194 TRANSVERSALITY IS GENERIC

Tubular Neighborhoods and Normal Bundles

Let Y C RM be a boundaryless manifold, and let Z be a submanifold of Y.
Then there is a diffeomorphism of an open neighborhood Z¢ of Z in Y to
an open neighborhood N¢(Z;Y) of Z x {0} in N(Z;Y).

Proof:

Recall from the e-Neighborhood Theorem the map
m: Y =Y.

We consider again the map
h: N(Z;Y) = RM (20) = 2z +v.

By the same argument as before, we can show that dh. . is an isomorphism
at every point of Z x {0} in N(Z;Y).

Hence the inverse image
W :=h"'(Y) C N(Z;Y)
is an open neighborhood of Z x {0} in N(Z;Y).

Since h(z,0) = z for all z € Z, the composition

Wy Sy
is the identity when we restrict it to Zx{0}. Hence, since dr, is the identity for all
z € Z C Y*, the assumptions of the generalized Inverse Function Theorem,
are satisfied. Thus we can conclude that there is an open neighborhood of
Z x {0} in N(Z;Y) which is mapped diffeomorphically onto a neighborhood
of Z in Y by moh. QED

Crucial Point

Note that the fact that we can find an open neighborhood of Z x {0}
in N(Z;Y) which is diffecomorphic to an open neighborhood of Z in Y is
crucial. For it is clear that Z is diffeomorphic to Z x {0}.

To point out the difference between a submanifold Z which is not oepn in
Y and an open neighborhood Z¢ of Z in Y, we remark the difference of
dimensions:

dim Z¢ = dim Y, whereas dim Z < dimY.
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Moreover, an open neighborhood of Z x {0} is actually diffeomorphic to
N(Z;Y) as a whole, since we can extend each fiber linearly. This will turn
out to be extremely useful for the Pontryagin-Thom construction later.

Let us look at an example for a normal bundle of an embedded submanifold:

An example of a normal bundle

Consider S*~! as a submanifold of S* via the usual embedding mapping
(1, ... @) = (21, .. ,28,0).

The tangent space T,(S*!) is embedded in 7},(S*) as the subspace consist-
ing of vectors with last coordinate being 0.

Hence the orthogonal complement of T,,(S*7!) in 7,,(S*) is spanned by the
vector with coordinates vy := (0,...,0,1) (in 7,(S*)). Hence we can define
a map

SFEX R = N(S¥1.5%), (p,A) = (p M)

This map is a diffecomorphism with inverse (p,Avg) — (p,\).

Note that a n-dimensional vector bundle which is diffeomorphic to the product
of the base space with R is called trivial. Hence we just showed that N(S¥~1; S%)
is a trivial one-dimensional bundle.

We get a similar result when we consider S¥~! € R* for £ > 2. Then, at any
p € S*71 the unit vector p/|p| spans the normal complement to 7,(S*7!) in R*.
Hence there is a diffeomorphism

S X R = N(SFLRY), (p.A) = (0.20/Ip])-

Hence N(S*~1;R*) is a trivial one-dimensional bundle over S*~!.

However, there are a lot of nontrivial vector bundles as well. Important
examples are the tangent bundle T'(S?) over S? and the universal line bundle
over RP".
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Intersection Numerbs and Degree modulo 2

A classical geometric approach to classifying maps is to study their fibres.
This appraoch is directly related to other fundamental problems in mathematics.
For example, if f: X — Y is a map defined by an equation and given a value
y €Y, the set {xr € X : f(r) = y} is the set of solutions of the equation. In
geometric terms, we could rephrase the question which x solve equation f by
asking how f meets or intersects the subspace {y} in Y.

Building on the methods we have developed so far, we are going to exploit
this geometric approach to derive interesting and powerful invariants. We will
start with intersection numbers modulo 2. In order to define a Z-valued invariant
we will have to introduce orientations later.

Before we get to work, here is a brief summary of the previous long lecture
the results of which will play a key role today:

The previous lecture in a nutshell

We proved three key results about transversality which can be roughly sum-
marized as follows:

(a) The Transversality Theorem says that when a homotopy F' is
transversal to Z, then, in this homotopy family, almost every
fs = F(—,s) is transversal to Z.

(b) The Transversality Homotopy Theorem says that given a map
f and a submanifold Z, then there exists a map g transversal
to Z and g is homotopic to f.

(c) The Extension Theorem says that, given a map f which is
transversal to Z on a subset C', then we can always replace f
with a homotopic map g which is transversal to Z everywhere
(not only on C') and f = g on an open set containing C'.

(a) is a generalization of Sard’s Theorem. For (b) and (c), the key for the
proof was the e-Neighborhood Theorem.

197



198 INTERSECTION NUMERBS AND DEGREE MODULO 2

We are going to apply these results today. First let us start with a natural
situation.

Intersecting manifolds

Two submanifolds X and Z inside Y have complementary dimension if
dim X +dim Z = dim Y. (We assume all manfifolds are boundaryless for the
moment.) If X M Z, the Preimage Theorem tells us that their intersection
X N Z is manifold with codim (X N Z) in X being equal to codim Z in Y.
Since codim Z = dim X, X N Z is a zero-dimensional manifold.

If we further assume that both X and Z are closed and that at least one of
them, say X, is compact, then X N Z must be a finite set of points. We
are going to think of this number of points in X N Z as the intersection
number of X and Z, denoted by #(X N Z).

We would like to generalize the notion of intersection numbers. A first obstacle
is that if X and Z do not intersect transversally, then it makes in general no
sense to count the points in X N Z. Hence, once again, transversality is key.

#a)=1

Luckily, we have learned how to move or deform manifolds to make in-
tersections transversal: we can alter them in homotopic families. And since
embeddings form a stable class of maps, i.e. for any homotopy i, of an em-
bedding ig, there is an € > 0 such that i; is still an embedding for all ¢ < €, any
small homotopy of 7 gives us another embedding X < Y and thus produces an
image manifold that is a diffeomorphic copy of X adjacent to the original.

But we still have to be careful. For the intersection number may depend on
how we move or deform the manifold.

For example, take two circles in R?. Assume they intersect nontransversally,
i.e. they touch each other in a point such that both tangent spaces agree and
together just span a line. Then we can move the cricles by a simple translations
x +— x + ta in direction a such that they either in two points or in no points. In
both cases, the intersection is transversal, but the intersection numbers do not
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agree. But we observe that parity of the intersection numbers is preserved. i.e.
up to a multiple of 2 the intersection numbers after moving into a transversal
intersection agree.

©=0 T

This observation is the starting point for the following generalization.

Mod 2 Intersection numbers

Let X be a compact manifold, and let f: X — Y be a smooth map
transversal to the closed manifold Z in Y. Assume dim X + dim Z =
dimY. Then f~!(Z) is a closed submanifold of X of codimension equal to
dim X. Hence f~(Z) is of dimension zero, and therefore a finite set.
We define the mod 2 intersection number of the map f with Z, denoted
I)(f,Z), to be the number of points in f~!(Z) modulo 2:

L(f,Z):=#f(Z) mod 2.
For an arbitrary smooth map g: X — Y, we can chooseamap f: X - Y
that is homotopic to g and transversal to Z by the Transversality
Homotopy Theorem. Then we define I5(g,7) := I1(f,2).

Of course, we need to check that the intersection number does not depend on
the choice of homotopic map. The key technical result that allows us to show
independence is the Extension Theorem. We did not have time to discuss the
theorem and its quite technical proof in the lecture. So here is the thereom and
one of its applications that will be crucial for us.

The Extension Theorem says the following: Let f: X — Y be a smooth
map, Y boundaryless, and Z a closed submanifold of Y without boundary. Let
C be a closed subset of X. Assume that f M Z on C' and 0f M Z on C' N 0X.
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Then there exists a smooth map g: X — Y homotopic to f, such that g M Z
and dg M Z, and on a neighborhood of C' we have g = f.

We apply this result in the situation we were discussing for intersection num-
bers, i.e. X, Y and Z C Y are boundaryless manifolds. The product X x [0,1] is
then a manifold with boundary. We let C' be the boundary of X x [0,1], i.e. C'is
the closed subset

C:=d(X x [0,1]) = X x {0} UX x {1}.

Now we apply the theorem to the case of a smooth homotopy
F: X x[01] =Y.
Then OF, i.e. F restricted to the boundary of X x [0,1], is given by the two maps
fo=F(=0): X =Y and fy =F(-,1): X =Y.
The two conditions F'h Z on C' and OF M C on C'NOX are thus equivalent, and
mean fo M Z and f; M Z.

Hence, assuming fo M Z and f; M Z, the Extension Theorem says that there
is a smooth map

G: X x[0,1]] - Y with G M Z and 9G M Z,
and G = F' on a neighborhood of C'. The latter means that
G is still a homotopy from fo = G(—,0) to f; = G(—,1).

Mod 2 Intersection Numbers are well-defined

If fo: X - Y and fi;: X — Y are homotopic and both transversal to Z,
then Iz(fo,Z) = Ig(fl,Z).

Proof: Let F': X x I — Y be a homotopy of fy and f;. By the above dis-
cussion, we may assume that F' M Z. By the Preimage Theorem with boundary,
this implies F~*(Z) is a submanifold of X X [0,1] such that

codim F~1(Z) in X x [0,1] = codim Z in Y.

Hence
dim F(Z) = dim(X x [0,1]) + dim Z — dim Y’
=dimX+1+dimZ —dimY
=1

since we assume that dim X +dimZ =dimY.



INTERSECTION NUMERBS AND DEGREE MODULO 2 201
Moreover, the boundary of F~1(Z7) is
OFY(Z) = F(Z)Na(X x [0,1]) = f5(Z) x {0} U i (Z) x {1}.

Since X is compact, F~!(Z) is compact. Hence the classification of compact
one-manifolds implies that 9F~!(Z) must have an even number of points. Thus

L(fo,2) = #151(Z2) = #[71(Z) = I(f1,Z)  mod 2.
QED

We can generalize this a bit further.

All homotopic maps have equal Intersection Numbers

If go: X — Y and ¢g;: X — Y are arbitrary homotopic maps, then
I5(90,7) = 12(91,2).

Proof: As before, we can choose maps fo M Z and f; M Z such that gy ~ fo,
I5(90,Z) = I(fo.Z), and g1 ~ fi, I2(g1,.Z) = I>(f1,Z). Since homotopy is a
transitive relation (we showed that it is, in fact, an equivalence relation), we
have

Jo ~ go ~ g1~ fi, and hence fo ~ fi.

By the previous theorem, this implies
Iy(g90,2) = Ix(fo0,2) = L(f1,7) = LI2(g1,7).
QED

Now that we have a solid notion of intersection numbers modulo 2 for maps
and submanifolds, let us return to situation we started with.

mod 2 Intersction Numbers of submanifolds

Assume X is a compact submanifold of Y and Z a closed submanifold of
Y. Assume the dimensions are complementary, i.e. dim X + dim Z =
dimY. Then we can define the mod 2 intersection number of X with
Z, denoted by I1(X,Z), by

Ig(X,Z) o= IQ(Z,Z)

where 7: X < Y is the inclusion.
Note that when X f Z, then I,(X,Z) = #(X N Z). In general, we have to
move or deform X into a transversal position.

Some particular situations:
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o If [5(X,Z) # 0, then no matter how X is moved or deformed, it cannot
be pulled entirely away from Z.
For example, on the torus Y = S! x S1, the two circles S x {1} and
{1} x S* have complimentary dimensions and nonzero mod 2 intersection
number.
e If dim X = 2dimY, for then we may consider I5(X,X) as the mod 2
self-intersection number of X.
An illustrative example is the central curve on the open Mobius band
(see Exercise Set 9). Check that Io(X,X) = 1.

%m Mobius band

X L(Xx)=1.

~N_
buist e}t dye oxce s Him gl orift ege

e If X happens to be the boundary of some W in Y, then I,(X,Z) =0.
For if Z M X, then, roughly speaking, Z must “pass out” of W as often
as it “enters”. Hence #(X N Z) is even.

The latter case can be made rigorous as follows:

Boundary Theorem

Suppose that X is the boundary of some compact manifold W and
g: X — Y is a smooth map. If g can be extended to all of W, then
I,(g,Z) = 0 for any closed submanifold Z in Y of complementary di-
mension, i.e. dim X +dimZ =dimY.

Proof: Let G: W — Y be an extension of g, i.e. 0G = g. From the
Transversality Homotopy Theorem, we obtain a map F': W — Y homo-
topic to G with F* M Z and OF M Z. We write f := OF. Then f ~ g and
hence

I(9.2) = L(f,Z)=#f""(Z) mod 2.
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Now F~!(Z) is a compact submanifold whose codimension in W is the same
as the codimension of Z in Y. Here we use again that X is the boundary of W,
for this implies dim W = dim 0W + 1 = dim X + 1, and hence

dim F(Z) =dim X + 1 —dimY + dim Z = 1.

Hence F~1(Z) is a compact one-dimensional manifold with boundary,
SO

#O(F~1(Z)) = #(0F) " (Z) = #f'(Z) is even.

QED

Intersection theory gives us an interesting homotopy invariant attached to
maps between manifolds of the same dimension. The definition depends on the
following fact.

The Degree mod 2

If f: X — Y is a smooth map of a compact manifold X into a connected
manifold Y and dim X = dim Y, then I(f,{y}) is the same for all points
y € Y. This common value is called the mod 2 degree of f, denoted

degy(f).

Note: The degree mod 2 is defined only when the range manifold Y is con-
nected, the domain X is compact, and dim X = dimY. Whenever we write
deg,, we assume that these assumptions are satisfied.

Proof: Given any y € Y, we can assume that f is transversal to {y}.
For otherwise we can replace it with a homotopic map which is transversal by
the Transversality Homotopy Theorem. Now by the Stack of Records
Theorem, we can find a neighborhood U of y such that the preimage f~*(U) is
a disjoint union V3 U --- U V,,, where each V; is an open set in X mapped by f
diffeomorphically onto U:
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Hence, for all points z € U, we have
L(f{z}) =#f"({z}) =n mod 2.
Consequently, the function

Y = Z/2, y— L(f{y})

is locally constant. Since Y is connected, it must be globally constant.

QED

Since deg, is defined as an intersection number, we immediately obtain the
following theorems.

deg, is a homotopy invariant

Homotopic maps have the same mod 2 degree, i.e.

fo~ fi = degy(fo) = degy(f1)-

Proof: If fy ~ fi, then for every y € Y:
degy(fo) = L(fo{y}) = L(f1,{y}) = degs(f1).
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QED

Extensions of maps on boundaries have deg, equal zero

If X = OW for some compact manifold W, and if f: X — Y can be
extended to all of W, then deg,(f) = 0.

Note that when W is compact, then the closed subset X = 0W is also com-
pact. Hence deg,(f) is defined.

Proof: This is the Boundary Theorem applied to the zero-dimensional sub-
manifold {y} for any y € Y. QED

This has an interesting immediate consequence:

Obstruction for extending maps

Let W be a compact manifold, and f: OW — Y a smooth map. If
deg,(f) # 0, then f cannot be extended to a smooth map W — Y
on all of W.

Now that we have the invariant deg,, there are upsides and downsides equipped
to deg,:

The good news is that deg,(f) is easy to calculate: just pick any regular
value y for f and count preimage points

deg,(f) = #f"(y) mod 2.

The bad news is that its power is limited. For example, the map
C—C, z— 2",

which wraps the circle S! smoothly around S* n times, has mod 2 degree zero if
n is even, and one if n is odd. Hence deg, cannot distinguish between many
different maps, for example deg, of the constant map S' — S! is equal to deg,
of the map S* — St sending z +— 2%

We will remedy this defect soon, when we define intersection numbers and
degree functions which have values in Z. This will lead us to the notion of orien-
tation. the idea is that, for example in the case of intersection with a boundary,
we need to distinguish between points where a map “goes in” and points where
it “goes out”.
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Nevertheless, there are some nice and powerful applications of deg,.
Application: Existence of zeros for complex valued functions.

Suppose that p: C — C is a smooth (as a map R? — R?), complex function
and W C C is a smooth compact region in the plane, i.e. a two-dimensional
compact manifold with boundary.

Question: Is there a z € W with p(z) = 07

Assume that p has no zeros on the boundary 0W. Then

p

2 oW — St
|p|

is defined and smooth as a map of compact one-manifolds.

Now if p has no zeros inside W, then I%I is defined on all of W, i.e.

ﬁ: OW — C can be extended to a smooth map W — C. If this is the case, we

just learned that we must have deg2(|%|) = 0. In other words:

Existence of zeros via deg,

If the mod 2 degree of ﬁ': OW — S! is nonzero, then the function p has
a zero inside W.

Note that calculating deg2(|%|) simply consists of picking a point z € S, we
could think of it as a direction, and just counting the number of times we find a
w € OW with p(w) = z, i.e. how often p(w) points in the chosen direction. The
theorem tells us that this simple procedure can tell us whether p has a
zero inside W. (If you have learned about Complex Analysis, then this should
remind you of the Residue Theorem and Cauchy’s formula.)



INTERSECTION NUMERBS AND DEGREE MODULO 2 207

4 C 4 C
TZP[ g'

/\QKN# )=p(:)
:K )
(@) -

v

Application: Fundamental Theorem of Algebra in odd degrees.

The condition on the degree arises from the defect of deg, that it cannot
distinguish different even numbers. Since we have already seen Milnor’s proof of
the Fundamental Theorem of Algebra, this is in principle an old story for us. But
since we have already done the hard work, so let us have a look at it anyway.

Let
p(z) =2"+a 2"+t an,
be a monic complex polynomial. We can define a homotopy from pg(z) = 2™ to
p1(z) = p(2) by
pe(2) =tp(2) + (1 —1)2™ = 2™ +t(ar12™ '+ + ap).

For large z, consider

As z — oo, the term %+ +--- + 22 — 0. Hence, if I is a closed ball around the
origin in C with sufficiently large radius, none of the p, has a zero on OW.

Thus the homotopy

D ow — st
||

is defined for all ¢ € [0,1]. Thus

D D
dos (1) = desa (1)
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Since po(z) = 2™ and #{z € OW : 2™ = 1} for closed ball W C C around 0,

we have
deg, (ﬁ) =m mod 2.

Hence if m is odd, then deg, (%) # 0, and there must be w € W with
p(w) = 0 by the previous result.

More examples: Intersections in projective space

Remember real projective n-space RP™ which consists of the set of equivalence
classes [xg : ... : x| of n+ 1-tuples of real numbers whith the equivalence relation

(o, . yxn) ~ (Axg, ... ,Az,) for A € R\ {0}.

Recall that we showed that RP? is a two-dimensional smooth manifold.
Consider the two embeddings of the unit circle into RP?:
112 ST — RP?, (cos(27t), sin(27t)) +— [cos(2nt) : sin(27t)) : O]
and

Lo ST — RP? (cos(27t),sin(27t)) ~— [0 : sin(2nt)) : cos(2mt)].

As an exercise, check that ¢; and ¢y actually are embeddings.
The images of ¢; and 5 meet in the point
[0 c1: O} S Ll(Sl) N LQ(SI).

Note that in RP?, there is exactly one intersection point. For (0,1,0) and
(0, — 1,0) represent the same point in RP2.

Moreover, we can check that the intersection in [0 : 1 : 0] is transversal. Thus
the mod 2 intersection number satisfies

L(t1(S),2(Sh)) = 1.

This implies that it is impossible to move ¢;(S!) and ¢5(S') within RP? such
that they do not meet.

However, in the Euclidean plane R? it is very well possible to move two circles
such that they do not meet. The mod 2 intersection number of two circles in R?
is 0 for a transversal intersection either consists of exactly two points or is empty.
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This is an example of a phenomenon which motivates the introduction of
projective spaces:

A plane V in R?® can be described as the orthogonal complement of given
vector v # 0 in R3:

V = {(w0,21,72) € R® : mgvg + 2101 + 2905 = 0}.

Since multiplying the equation zgvy + x1v; + x2v9 = 0 with a nonzero real
number does not change the set of solutions, we can consider the equivalence
classes RP? of the points of V. This gives us a line L in RP?:

L=A[xyg:z1:25] € RP? : zqvg + 2101 + Tovy = 0}.

In fact, every line in RP2 is represented by a plane through the origin in R3
and is hence determined by a nonzero vector vin R3.

Now given two distinct lines L; and L, in RP? determined by two distinct
vectors v,w # 0 in R3?, i.e.,

Ly = {[zo : 21 : 29] € RP? : 2gvg + 2101 + 2905 = 0}

Ly = {[zo : 21 : 23] € RP? : 2wy + 21wy + 20wy = 0}.

The orthogonal complements of v and w, respectively, are two planes through
the origin. Hence they meet in a line through the origin in R? which is the set
of solutions of the two linear equations defining L1 and L, above. This is a one-
dimensional vector subspace of R? (the kernel of a 2 X 3-matrix). By definition
of RP?, this line corresponds to a point in RP2. This is the intersection point of
L1 and L2 in RP2

If this line happens to be the z-axis, i.e., when L; and L are represented by
the planes given by the xz-plane and the yz-plane, then the intersection point is
[0:0:1] € RP?. We can think of it as the point at infinity in RP?.

However, in the Euclidean plane R? it may very well happen that two lines
are parallel and hence do not intersect. The idea for RP? is to add a point at
infinity which is the intersection point for all parallel lines.
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Winding Numbers and the Borsuk-Ulam Theorem

Today we are going to exploit intersection numbers and degree modulo 2 a
bit further and prove a famous theorem. As a starter, we introduce a useful new
invariant.

Let X be a compact, connected smooth manifold, and let
f: X—>R"

be a smooth map. We assume dim X =n — 1.

Let z be a point of R” not lying in the image f(X). We would like to
understand how f(z) winds around z. To do this, we look at the unit vector

flx) ==
() — 2|

It points in the direction from z to f(x) and has length one.

u(z) =

With z fixed and x varying, we can consider u as a map

u: X — S* L

We would like to know how often this vector points in a given direction, i.e.
how often u(z) has a given value. We learned from the previous lecture, that
the degree of u is an invariant that encodes this information. For, we know that,
modulo 2, #u~!(y) is constant for regular values y of u, i.e. where y — 2 hits
f(X) transversally, and is equal deg,(u) by definition of the latter. (We will see
in the proof of our main theorem today, that y being a regular value of u means
that the line through z and y must be tranversal to f(X).)

We give this number a name and call it the winding number of f around
z. We denote it by

Wa(f,z) := degy(u).
211
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The goal for today is to prove the following famous result:

Borsuk-Ulam Theorem

Let f: S¥ — R*1\ {0} be a smooth map, and suppose that f is odd, i.e.
satisfies the symmetry condition

(24) f(=z) = —f(z) for all z € S*.

Then Wy(f,0) = 1.
In other words, any map that is odd, i.e. symmetric around the origin, must
wind around the origin an odd number of times.

A we will see below, there is a nice interpretation of this result for the meteo-
rologists among us: At any given time, there are two antipodal points on the
Earth that have the same temperature and pressure. (Assuming tempera-
ture and pressure vary smoothly on the Earth.)

Before we approach the proof, we observe:

Equivalent formulation of BUT

The Borsuk-Ulam theorem is equivalent to the following assertion:
If f: S¥ — S* is a map which sends antipodal points to antipodal points,

ie. f(—z) = —f(x), then deg,(f) = 1.
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Proof: Assume BUT is true: given a smooth map f: S* — S* with f(—z) =
—f(z), we can consider it as a map f: S*¥ — S* C R*!. Then we have 1 =

Wa(f,0) = degy(f/1f]) = deg,y(f).

Assume the assertion is true: given a smooth map f: S* — R*1\ {0} with
f(—x) = —f(x), then f/|f| is a well-defined smooth map f/|f|: S* — S*. Hence
1 =degy(f/|f]) = Wa(f,0) by definition of winding number. QED

As a slogan, we can remember the Borsuk-Ulam Theorem for a smooth map
f: S* — S* as follows:

BUT in a nutshell

If f is odd, its degree is odd.

In order to prove the theorem, we first need to investigate the relationship of
winding numbers and boundaries:

Winding numbers and boundaries

Suppose that X is the boundary 9D of a compact manifold D of dimension
n with boundary, and let F': D — R" be a smooth map extending f: X —
R", i.e. OF = f. Suppose that z is a regular value of F' that does not
belong to the image of f.

Then F~!(z) is a finite set, and

Wa(f,2) = #F'(2) mod 2.

In other words, f winds X around z as often as F' hits z, at least modulo
2.

Proof:
First case: F1(z) =0, ie. #F1(z) =0.

In this case, the map

u: X =0D — S" ! Jw) = 2
|f(z) = 2|
can be extended to a map
F(z)—=z

D— Sz
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since F'(z) — z is never 0. Hence by the Boundary Theorem,

Wa(f,z) = degy(u) =0 mod 2.

Second case: F~!(z) # 0.

Since D is compact and of dimension n, F~!(2) is a zero-dimensional closed
submanifold of D, and hence compact and hence a finite set. Suppose

FH(2) ={y1, - ym}-

Then we can choose local parametrizations around each y; in D and let B; be the
image of a closed ball in R™ around y;. Since z is a regular value, the Stack
of Records Theorem shows that F~!(z) is discrete and disjoint to X = 9D.
Thus we can choose the radii of these balls small enough such that

BiNBj=0and B;NX =0 foralli##j andi=1,...,m.

We define
fi = LoB; - 6’Bl — R".
to be the restriction of F' to 0B;.

Now we observe that the subset
D := D\ (Uilnt(B;))
is a closed submanifold of D with boundary
0D =0D U 9B -+ UOB,
the disjoint union of the boundaries of D and the B;’s.
By the choice of the By’s, we have F~'(z) N D = (). Hence
F ' (2)ND = (Fp) ' (z) =0.

Hence the winding number of (9F|D at z is zero.
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Since degrees and hence winding numbers are additive with respect to
connected components this yields

0 =Wa(0F p,2) = Wa(f,2) + W(f1,2) + -+ Wa(fi,2) mod 2.
Since we are working modulo 2, this implies

Wo(f,z2) =W (f1,2)+ -+ Wa(fim,2) mod 2.

Now it remains to show Wy(f;,z) = 1 for each i = 1,... ,m. For then

HF 1 2)=m = ZWg(fi,z) =W(f,z) mod 2.

Since z is a regular value, dF), is an isomorphism (remember dim D = n).
Thus, by the Inverse Function Theorem, we can choose the radius of B; small
enough such that F|p, is a diffeomorphism onto its image (which contains z).
By continuity, this implies also that f; = dFjp, is one-to-one onto the boundary

By possibly rescaling and translating, we are reduced to showing:

Let B be the closed unit ball in R” and F': B — B be a diffeomorphism. Let
f=0F:S"! - S""! Then

#F7H0)=W(f,0)=1 mod 2.

But this is obvious, since W (f,0) = deg,(f) = #f ' (v) = 1 for any v € S"~1.
QED

Now we are ready to attack the proof of BUT.
Proof of the Borsuk-Ulam Theorem: The proof is by induction.
The case k = 1:

By the previous remark, to show that theorem is equivalent to showing that
amap f: S — St with f(—z) = —f(x) has deg,(f) = 1.

The idea is that, given any smooth map f: S' — S!, we can lift f locally
using the Stack of Records Theorem and then patch the pieces together to
get a smooth map

g: R — R such that p(g(t)) = f(p(t))

where p is the (covering) map

2mit

pR—= S t—e
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To make g compatible with f in the above sense, we must have

plg(t+1)) = fp(t + 1)) = f(p(t)) = p(9(t)) = p(g(t + 1) — g(t) = L.

Since p(t) = 1 if and only if ¢ € Z, we must have g(t + 1) — g(t) € Z. Since
the function ¢ — g(t + 1) — g(t) takes only values in the discrete space Z, it is
locally constant. Since R is connected, it must be constant. Hence ¢ is a
fixed integer depending only on f. In other words, for all t € R, we have

g(t+ 1) = g(t) + g for some fixed ¢ € Z.

Then we have deg,(f) = ¢, since ¢ tells us how often f hits the same point
when ¢ moves from 0 to 1, or vary ¢ around S! once.

When f is odd, then

plg(t+1/2)) = f(p(t +1/2)) = f(=p(t)) = —f(p(1))
= —p(g(t)) = p(g(t) + q/2) for some fixed odd ¢ € Z.

(For p(s1) = —p(sg) <= €™ = —e?™s2 = 2Ms260™ for some odd ¢ € Z, and
hence p(s1) = —p(s2) <= $1 = s9 + ¢/2 for this odd q.)

Hence deg,(f) =¢g=1 mod 2.

stf gy, g okl

R R

8! 8"
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Aside: There is a deeper general reason why this works. For R is a (universal)
covering space of S!, and continuous paths can always be lifted to a cavering
space. You will learn more about this phenomenon later.

Induction step: Assume the theorem is true for k — 1 and k& > 2. Let

f: 5% — RF1A {0} satisfy the symmetry condition (24). We consider *~! to be
the equator of S*, embedded by

(1, ...,x) = (21, ... ,2x,0).

The idea is to compute Wy (f,0) by counting how often f intersects a
line L in R¥*!. By choosing L disjoint from the image of the equator, we can
use the inductive hypothesis to show that the equator winds around L an odd
number of times. Finally, it is easy to calculate the intersection of f with L once
we know the behavior of f on the equator.

Let g: S¥=1 — R* 1\ {0} be the restriction of f to the equator. By Sard’s
Theorem, we can choose a value y € S* which is regular for both smooth maps

9 gh1 gk and L. gty gk
|9 | f]

The symmetry condition implies that y is regular for both these maps
if and only if —y is regular for both maps , since the derivatives at preimages
of y and —y just differ by multpying with (—1).

Since dim S*~! < dim S*, the only way y can be a regular value of ﬁ is

when y is not in the image. Hence neither y nor —y are in the image of ﬁ.

Thus, for the line L := R -y = span(y), we have

y is a regular value of ¢ <= Im(g)NL = 0.

That y is regular for ﬁ means by definition

(7))

The tangent space to S* at y is the orthogonal complement of the line pointing
in direction of y. The map x % is the composite of f and z — z/|z| (which

is smooth in dimensions k > 2).

The derivative of the latter map satisfies

Im (d(z/|z|),) = (span(z))*t € RF ie. Ker (d(z/|z]).) = Span(z).
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For f/|f]|, this means

Ker (d (%)) — span(f(z)) 1 Tm (df,)

(o)) -0 = e o()) -1

<= span(f(z)) NIm (df;) = {0}
< span(f(z)) Z Im (df;)

< L+ Im(df,) = R

<~ fML.

Thus

Summarzing the argument, we have obtained

(25) y is a regular value of % <~ fML.

Now we are going to exploit these two observations for calculating Ws(f,0).
By definition, we have

Wa0) = deg, (=) = ey (1) = # (%) (v) mod 2.

By symmetry, we have

# (%) R (y) =# (|—§|> R (—y).

From (25) we know
L) ={zeS": f(z) € L}

f@)
@) -

- (ﬁ) wo (&) =)

+(2) w=prw

={res*:

Thus

Hence we need to calculate the number 1#f'(L), at least modulo 2.
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By symmetry, we can do this on the upper hemisphere S* of S*, i.e. the
points on S* with x;,; > 0. Let f; be the restriction of f to S_’ﬁ. By the choice of
y, L does not meet the equator, and hence no point on the equator is in f~1(L).
This implies

SHINL) = #72(D).

The upper hemisphere is a manifold with boundary

St ={x = (z1,..., Tp1) : Zw? =1and 24y, =0} = S

i
being the equator.

Now we would like to apply the previous theorem to the f, and g = df, and
use the induction hypothesis. But the target of f, has dimension k + 1, whereas
for both the theorem and the induction hypothesis we need as target a Euclidean
space of dimension k. So we need to fix this.

The key is that the orthogonal complement of L in R¥*!, denoted by V, is
a vector space of dimension k. By choosing a basis of V', we can identify it with
RE,

To complete the argument, let 7: R¥*? — V be the orthogonal projection
onto V. Since g is symmetric and 7 is linear,

mog: S¥1 = V is symmetric : 7(g(—x)) = 7(—g(z)) = —7(g(x)).

Moreover, we have
m(g(x)) =0 <= g(x) € L, hence 7(g(x)) # 0 for all z € S**
by the definition of 7 and the choice of L.
Thus, after choosing a basis for V', we can consider 7 o g as a map

Tog: SFt 5 RF\ {0}.

Now we apply the induction hypothesis to 7o g and get W(mw 0 g,0) = 1.
To finish, recall f, M L and hence for
mofi: S¥ =V, (mo fy)m{0}.

In other words, 0 is a regular value of 7o f,.
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Hence we can apply the previous theorem to 7o f, and its boundary map
d(mo fi)=mog to get

Wa(m o g,0) = #(m o f1)7'(0).

But, by the choice of L, we have
7(f+(2)) =0 < fi(z) € L, and hence (7o f)7'(0) = f7'(L).

Thus
WQ(fao) = #f—;l(L) = WQ(W © g,O) =1
QED

Remark: Going back to the definition of W5(f,z) and the picture at the
beginning, we learn from the proof, in particular, that lines tangential to f(X)
are not allowed for calculating Ws(f,z).

Let us look at some of the consequences of this theorem.

Corollary 1 of BUT

If f: S¥ — R¥1\ {0} is symmetric about the origin, i.e. f(—z)= —f(z),
then f intersects every line through 0 at least once.

Proof: Let L be a line in R¥*! through the origin. If f never hits L, then
#f7Y(L) = 0 and f M L. By repeating the above proof using this f and L for
calculating Ws(f,0), we would get the contradiction

Wa(f,0) = #f7(L) = 0.

QED
Corollary 2 of BUT
Any k smooth odd real-valued functions fi,...,fr on S¥ must have a com-
mon zero.

Proof: If they did not have a common zero, then we can form the smooth
odd map

fo=(f1, . fu,0): S* = R\ {0}
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Then we can apply Corollary 1 of BUT to f and L being the z;;-axis. Hence f
intersects L at least once. But x with f(x) € L is a common zero of the fi, ..., fx.
Contradiction. QED

Corollary 3 of BUT

For any k smooth real-valued functions g, . ..,g, on S*, there exists a point
p € S* such that

91(p) = g1(=p); - - - ,9x(P) = ge(—p).

Proof: We define functions fi,...,fs on S* by
fi(z) == gi(x) — gi( ).

Then each f; is smooth and odd. Hence there is a common zero which is the
desired point p € S*. QED

In order to get the meteorologic interpretation, take g; measuring temperature
and g, measuring pressure.
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Orientations

Our next goal is to improve our definition of intersection numbers and remedy
the defect that they only distinguish between even and odd numbers. One of
the reasons for this limitation was that a homotopy can turn a nontransversal
intersection into either a empty intersection or an intersection in two points. The
idea for dealing this phenomenon is to take into account in which “direction”
the intersection happens. The solution to implement this idea is to introduce
orientations. We will see that, unfortunately, not all manifolds are orientable. But
for those manifolds that orientable, we will introduce an improved intersection
theory in the next lecture.

Orientations on vector spaces

An orientation for a finite dimensional real vector space V' is an equivalence
class of ordered bases where the relation is defined as follows: the ordered basis
(v1,...,v,) has the same orientation as the basis (v{,...,v) if the matrix A
with

v; = Av; for all i has det(A) > 0.
It has the opposite orientation if det(A) < 0.

The fact, that this an equivalence relation follows from the multiplicativity of
the determinant function.

Thus each finite dimensional vector space has precisely two orientations,
corresponding to the two equivalence classes of ordered bases.

So an orientation of V' is a choice of an equivalence class of ordered bases. To
make it easier to talk about the choice of orientation, we attach to the chosen
orientation a positive sign and a negative sign to the other orientation. We say
then that an ordered basis is positively oriented (respectively negatively oriented)
if its equivalence class belongs to the orientation +1 (respectively —1). We often
confuse an orientations with their corresponding signs +1 or —1.

The vector space R" has a standard orientation corresponding to the or-
dered basis (ey,...,e,). We always assign +1 to the standard orientation of R".

223
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Warning: The ordering of the basis elements is essential. Interchanging
the positions of two basis vectors changes the sign of the orientation! Check this
by calculating the determinant of the corresponding permutation matrix.

In the case of the zero dimensional vector space it is convenient to define an
"orientation” as the symbol +1 or —1.

If p: V — W is an isomorphism of vector spaces, then ¢ either preserves
or reverses the orientation. For, given two ordered bases § and ' of V' belonging
to the the same equivalence class, the ordered bases ¢(3) and (') either still
belong to the same equivalence class of ordered bases of W or not. Whether ¢
preserves or reverses the orientation is determined by its determinant. If det(y) is
positive, then ¢ preserves orientations, and if det(y) is negative, then ¢ reserves
orientations.

Orientations on manifolds

Orienting manifolds

An orientation of a smooth manifold X is a smooth choice of orien-
tations for all the tangent spaces 7, (X). That means: around each point
x € X there must exist a local parametrization ¢: U — X such that the
isomorphism d¢,: R* — Ty, (X) preserves orientations at each point
wof U C H*. The orientation on RF is alsways assumed to be the standard
one.

For zero-dimensional manifolds, orientations are very simple. To each point
x € X we simply assign an orientation number +1 or —1.

A manifold X is called orientable if such a smooth choice of orientations
of tangent spaces exists.

Warning: Not all manifolds possess orientations, the most famous example
being the Mobius strip.

Consequence: Orientability helps classifying manifolds: there is the
class of orientable manifolds, and the class of non-orientable manifolds.

A manifold is called oriented if it is orientable and a choice of orientation
has been made. Hence an oriented manifold really is a pair consisting of
a manifold together with a chosen orientation.

A smooth map f: X — Y between oriented manifolds is called orientation
preserving if its derivative preserves orientations at every point.
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We just learned that a manifold may or may not be orientable. To assign +1
or —1 to the orientation of T, (X) for every point is a locally constant function.
If X is orientable this assignment is continuous. If X is in addition connected,
then this assignment must be constant. Hence on every connected component of
an orientable manifold, the orientation is constant +1 or —1.

Here is a rigorous proof of this fact:

Orientable manifolds have exactly two orientations

A connected, orientable manifold with boundary admits exactly two orien-
tations.

Proof: Assume we are given two orientations on X. (There are at least two,
since given one, we can reverse signs everywhere and get another orientation.)

We show that the set of points at which two orientations agree and the
set where they disagree are both open. Consequently, two orientations of a
connected manifold are either identical or opposite.

Since X is orientable, we can choose local parametrizations ¢: U — X and
¢: U — X around x € X with ¢(0) = = = ¢/(0) such that d¢, preserves
the first orientation and d¢!, preserves the second, for all v € U and «' € U’.
After possibly shrinking we can assume ¢(U) = ¢'(U’) (replace U and U’ with

¢~ (@(U) N ¢'(U")) and ¢/~ (6(U) N ¢/ (U")), respectively).
If the two orientations of T, (X) agree, then the map

d(¢p™ o ¢')o: RF = RF

is an orientation preserving isomorphism. Thus the determinant of d(¢~! o ¢')g
is positive. Hence the function

0: U =R, v+ det(d(¢p 0 ¢)w)
satisfies p(0) > 0.

Since the derivative depends continuously on ' and the determinant function
is continuous, ¢ is continuous. Hence, since ¢(0) > 0, there is an open neighbor-
hood V" around 0 in U’ on which ¢ > 0. But this implies that the orientations of
T.(X) induced by ¢ and ¢, respectively, agree for all z in the open subset ¢’ (V).
Since every point on X has such an open neighborhood, the set of points where
the orientations agree is open.
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If the orientations on T,(X) indced by ¢ and ¢/, respectively, disagree, the
same argument shows that the set of points where the orientations disagree is
open. QED

Reversed orientation

Hence if X is an oriented manifold X, then we can talk about the manifold
with the reversed orientation. This is again an oriented manifold which
we denote by —X.

It is now a long and techincal endeavour to check how orientations behave
under the main constructions and relate to the concepts we have developed so
far. We will go through them one by one:

Products:

If X and Y are oriented and one of them is boundaryless, then X x Y is a
manifold with boundary and inherits an orientation in the following way:

At a point (z,y) € X XY, let a = (vy,...,v) be an ordered basis of T,(X),
and = (wy, . .. ,wy,) be an ordered basis of T;,(Y"). We denote by (ax0,0x ) the
ordered basis ((v1,0), . ..,(vk,0),(0,w1), ..., (0,w,)) of Top(X) x Ty (Y) = T (X X
Y).

Now it comes handy that we related orientations of ordered bases to signs.
For we can define the orientation of T;,(X) x T,,(Y") simply by determining a sign
by setting

sign(a x 0,0 x 8) = sign(«) - sign(B).

Induced orientation on the boundary

Let X be an oriented smooth manifold with boudary. Then 0X inherits an
orientation as follows:

At every point € 90X, T,(0X) is a subspace of codimension one in 7, (X).
Its orthogonal complement in 7, (X), is a line which contains exactly two unit
vectors: one is pointing inward into 7, (X), the other one is pointing outward
away from T, (X).
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This can be made precise by choosing a local parametrization ¢: U — X
around x with U C H* open and ¢(0) = . The derivative dgy: R* — T,(X) is
by definition of 7,(X) an isomorphism.

In R*, there are two unit vectors: e = (0,...,0,1) one pointing into H*, and
—ex = (0,...,0, — 1) pointing out of H* Usng the Gram-Schmidt process we
can orthonormalize the image of e, under d¢y with respect to T,(0X) and get
the inward pointing unit normal vector. The orthonormalization with respect to
T, (0X) of dpo(—ex) is the outward pointing unit normal vector. (Note that the
inner product on T,(X) is induced by the standard inner product on RY, where
X C RY and hence T,(X) Cc RY))

We denote the outward pointing unit normal vector by n,. We checked
on Exercise Set 9 that the construction of n, does not depend on the choice of ¢
and that the assigment x — n, is a smooth map on 0X.

Now we are ready to orient 7, (0.X) by declaring the sign of any ordered basis
(v1,...,ux_1) to be the sign of the ordered basis (n,,vq,...,v;_1) for T,(X):

sign(vy, . .. ,Up_1) = sign(ng,vy, ... ,Vk_1).

Since both the assignment = +— n, and the choice of sign for ordered bases on
T.(X) are smooth, this defines an orientation of 9X which is called the boundary
orientation.
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wy +1

Orientations of One-manifolds

Let us apply what we just learned to the case of a one-manifold with bound-
ary. The boundary 0X is zero dimensional. The orientation of the zero-
dimensional vector space T,(0X) is equal to the sign of the basis of T, (X)
consisting of the outward-pointing unit vector n,.

As an example, let us look at the compact interval X = [0,1] with its
standard orientation inherited from being a subset in R. Note that local
parametrizations of [0,1] are given by

¢:10,1) = [0,1],2 — x
around 0 € [0,1] and
Y:[0,1) » [0,z —1—2x

around 1 € [0,1].

Hence, at x = 1, the outward-pointing normal vectoris 1 € R = 7,(X). The
basis consisting of this vector is positively oriented. At x = 0 the outward-
pointing normal vector is the negatively oriented —1 € R = T(X). Thus
the orientation of 77(0X) is +1, and the orientation of Tp(0X) is —1.

Reversing the orientation on [0,1] simply reverses the orientations at each
boundary point. Thus the sum of both orientation numbers at the boundary
points of [0,1] is always zero.

Since any compact one-manifold with boundary is diffeomorphic is the disjoint
union of copies of [0,1], we conlcude:
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Boundary orientations of one-manifolds

The sum of the orientation numbers at the boundary points of any
compact oriented one-dimensional manifold with boundary is zero.

In particular, the boundary points of a smooth path v on an oriented
manifold X, i.e. a smooth map 7: [0,1] — X, must have opposite orien-
tation signs.

This will turn out to be the crucial point which will allow us to define
homotopy invariant intersection numbers with values in Z in the next
lecture.

Oriented Homotopies

As an application of product and boundary orientations, we would like to
orient the product [0,1] x X for a boundaryless smooth oriented manifold X
which is the domain of all homotopies on X. This will be crucial for the homotopy
invariance of intersection numbers in the next section.

We just learned that a products and boundaries inherit orientations. For each
t € [0,1], the slice X; := {t} x X is diffeomorphic to X, and the orientation on
X should be such that the diffeomorphism

X — X;, z — (t,z) preserves orientations.
For the future applications, we are particularly interested in the orientation
of the boundary

0([0,1] x X) ={0} x X U {1} x X.

So let us try to understand the induced orientation on the boundary.

We start with X;: We see from the local parametrization 1) above that along
X the outward-pointing normal vector is

nae) = (1,0) = (1,0,...,0) € T1([0,1]) x T,(X),
If 8 = (v1,...,v;) is an ordered basis of T,.(X), then 0x 5 = ((0,v1), ...,(0,0%))

is an ordered basis of T,(X;). By definition of the boundary orientation, 7 g,(0x
B) is positively oriented if and only if /3 is positively oriented, in terms of signs:

sign(n(1,0),(0 x B)) = sign(3).
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If we calculate the orientation induced from the product structure, then we
get

sign((1,0),(0 x ) = sign(1)sign(f8) = sign(p).

We learn from these two equations, that the boundary orientation of X;
is just the orientation of X as a copy in the product [0,1] x X.

This sounds obvious, but pay attention:

We see from the local parametrization ¢ that along X, the outward-pointing
normal vector is

N0 = (—1,0) = (=1,0,....0) € Ty([0,1]) x To(X).

Hence the orientation on 7y([0,1]) is opposite to the standard orientation of R.
Hence the formula for product orientations yields

sign((—1,0),0 x B)) = sign(—1)sign(f) = —sign(J).

Thus the boundary orientation on X is the reverse of its orientation as a
copy of X in the product [0,1] x X.

Thus the orientation on the boundary is

We will also express this fact by using the notation

a([0,1] x X) = X, — Xo.

[0:'3 X x

Orientations on direct sums of vector spaces

Our next goal is to orient preimages. In order to do so, we will have to look
at direct sums (not just products) of vector spaces, and we need to orient those

guys.
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So suppose that V' = V@V, is a direct sum of vector spaces. Then orientations
on any two of these vector spaces automatically induces a direct sum orientation
on the third, as follows. Note that this not only means, orientations on V; and V5
determine an orientation on V', but also orientations on V' and, say, V5, determine
an orientation on V.

Choose ordered bases 31 of V; and 35 of V4. Let § = (f1,52) be the combined
ordered basis of V' (in this order!). For orientations or signs to be compatible
with the structure as a direct sum, we require the formula

sign(B) = sign(8y) - sign(8y).

It follows immediately from the way matrices on direct sums are put together
that this formula determines an orientation on the third space if two orientations
are given. But note again that the order of the summands V; and V5 is crucial.

Orientations of transversal preimages

Let f: X — Y be a smooth map with f M Z and 0f M Z, where X, Y, and
Z are all oriented and Y and Z are boundaryless. We would like to define a
preimage orientation on the manifold with boundary S = f~1(Z7).

If f(z) =z € Z, then
T.(S) = (df,) " "(T.(2)) C T,(X).
Let N,(S;X) be the orthogonal complement to 7,.(S) in 7,.(X). By defi-
nition, we have a direct sum decomposition
No(8; X) & To(S) = To(X).
Hence, by our observation on orientations on direct sums, we need only

choose an orientation on N,(S;X) to obtain a direct sum orientation
on T,(9).

Since f M Z, we have
T.(Y) = dfo(To(X)) + T.(2)

= df:(No(5; X) ® To(5)) + T2(2)
= dfe(N:(5; X)) @ T.(Z) since dfo(T(S)) = T.(Z).

Thus the orientations on Z and Y induce a direct image orientation on
df(N.(S;X)). It remains to show that this also induces an orientation on
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N,(S; X). But

{0} C T.(Z) = Ker (df.) C (dfz) " (T2(2)) = Tu(S),

and hence the restriction of df, to N,(S; X) is in fact an isomorphism onto its
image. Therefore the induced orientation on df, (N, (S; X)) defines an orientation
on N,(S;X) via the isomorphism df;.

Since the orientations on X, Y and Z vary smoothly and df, also depends
smoothly on z, the induced orientation on 7,(S) varies smoothly with z.

Note that we did not really use that N,(S; X) is orthogonal to T,(S). All
we needed was a direct sum decomposition H & T,.(S) = T,(X) with a space H
with an orientation induced by the orientation of X. We will exploit this fact in
the proof below.

Orientations on boundaries of preimages

Let f: X — Y be a smooth map with f M Z and 0f M Z, where X, Y, and
Z are all otientid and Y and Z are boundaryless.

Then the manifold 9f~(Z) acquires two orientations:

e one as the boundary of the manifold f~(Z), and
e one as the preimage of Z under the map df: 0X — Y,

It turns out that there is a formlua that relates these two orientations:

Orientations on boundaries of preimages

A(f7(2)) = (=)= (0f)"1(2).
This means the orientations of f~!(Z), induced by being a boundary or by

being a preimage, are the same if codim Z is even, and opposite if codim Z
is odd.

Proof:
Denote f~!(Z) again by S.
Let H be a subspace of T,,(0X) complementary to 7;,(9S5), i.e.

H & T,(0S) = T,(0X).
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Note that H is also complementary to 7,.(S) in T,(X), i.e.

HoT,(S) = T,(X).
For we have
HNT,(S) = {0} and T,(S) N TL(dX) = T,(3S),
and

dim H = dim7,(0X) — dim T;,(0S) = dim T,(X) — dim T, (.5).

Hence we may use H to define the direct sum orientation of both S and 95
at x.

Since H C T,(0X) C T,(X), the maps df, and d(0f), agree on H, i.e.
df.(H) = d(9f).(H).
As in the case of N,(S; X), since
{0} C T2(2) = Ker (df,) € [ (T2(2)) = T(S),

the intersection Ker (df,) N H is {0}. Hence the restrictions of df, and d(0f), to
H are isomorphisms onto their common image.

Thus f M Z and 0f M Z imply that we have two direct sum decompositions
df,(H)eT.(Z)=T.(Y) =d(0f).(H)®T.(Z), and the two orients of H via these
direct sums agree.

To conclude, we obtained that H has a well-defined orientation. Hence we
can use this unique orientation on H to orient

Svia H®T,(S) =T,(X) and 0S via H & T,(05) = T,.(0X).

It remains to check how this orientation of 7,(095) relates to the orientation
of the boundary induced from the orientation of T,(5).

Let n, be the outward unit vector to 95 in T,(S), and let R -n, represent the
one-dimensional subspace spanned by n,. We orient this space by assigning the
sign +1 to the basis (n,).

Even though n, need not be perpendicular to all of T,(0X), it suffices to
know that n, lies in the halfspace pointing away from T,(X) to know that the
orientations of R - n,, T,,(0X) and T,(X) are related by the direct sum

T,(X) =R - n, & T,(9X).
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Now we use that H is complementary to both T,,(S) in 7,(X) and T,(0S) in
T,(0X) and plugg this into the above direct sum to get

HoT,(S)=R-n,® H®T,(5).

This equation is already almost what we need, since we would like to com-
pare the orientations 7, (S) and R - n, @ T,(9S). For doing so, we need to move
R - n, passed H. If dim H = m, H has m basis vectors (wy,...,w,). Remem-
bering the rule for orienting direct sums, this means we have to apply exactly m
transpositions to the ordered set

(Ng w1, . .. W) to get to (wy, ... Wpy,Ny).
This results in m shifts of signs. Hence we get
HoT,(S) = (-2 o R - n, @ T,(0S).

Since H appears on both sides as the first summand, we get disregard it for the
computation and get that if 0S5 is oriented as a preimage under Jdf, then its
orientation relates to the one of T,(S) by

T,(S) = (1)t R . n, @ T,(0S).

Now, if 05 is oriented as a boundary, then we have
T.(S) =R -n, ®T,(09).
Thus

codim Z

sign(0S) as a boundary = (—1) -sign(0S) as a preimage.

QED

The following theorem shows that an important class of manifolds is ori-
entable. Recall that a manifold X is called simply-connected if it is conneced
and every smooth map S* — X is homotopic to a constant map.

Simply-connected implies orientable

Every simply-connected manifold is orientable.

Proof:

We start by picking any point © € X, and choose an orientation for the
tangent space T,(X). Since T,(X) is a vector space, this is always possible.

Now let y € X be any other point in X. Since X is simply-connected, it is in
particular also connected. By a previous exercise, since X is a smooth manifold,
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X is therefore even path-connected. Hence there is a smooth map v: [0,1] = X
with v(0) = z and v(1) = y. For every point in z € ¥([0,1]) we choose a local
parametrization ¢,: V, — U, around z. By shrinking V, if necessary, we can
assume that each V, is an open ball in R*.

The sets U, N7([0,1]) is open in 7([0,1]), and the collection of {U, N~([0,1])}
for all z € ¥([0,1]) is an open covering of v([0,1]). Since [0,1] is compact and =
continuous, the image v([0,1]) is compact. Hence finitely many of the U, suffice
to cover v([0,1]). We label these open sets Uy, . ..,U,, and order them such that
UiﬂUi+17£®aHdZC€U1,y€ Um

For Uy, we choose the orientation which is compatible with the chosen orienta-
tion of 7,.(X). That means: let ¢;: Uy — X be the associated local parametriza-
tion with ¢,(0) = x. If d(¢1)o: R¥ — T,(X) is orientation preserving, we orient
the vector space T, (U) such that d(¢1) -1, : R* — T,(X) is orientation preserv-
ing for all a € Uj.

If d(¢)o — R* — T,(X) reverses orientation, we first replace ¢ with b1: Vi —
X, v+ ¢1(—v). This new map ¢1 is also a local parametrization of X with do-
main V, since V; is an open ball in R* and ¢, is therefore symmetric with respect
to the origin.

Hence after replacing ¢; with ¢;, we can assume that d(¢1)o is orientation
preserving, and we orient all T,(U;) as above. Note that switching from ¢;(v) to
¢1(—v) corresponds to switching the orientation on RE.

For U,, we choose the orientation which is compatible with the orientation of
the T5(X) for all poins @ € Uy N Uz. That means: if d(¢2),-1, is orientation
preserving on T,(X) for a € UiNUz, we orient T, (X) such that d(¢2) -1, RF —
T.(X) is orientation preserving for all a € Us. If it is not orientation preserving,
then we replace ¢9(v) by ¢o(—v).

Continuing this way, we obtain an orientation for U,, and therefore T, (X)
after finitely many steps.

It remains to show that the induced orientation on 7;,(X) does not de-
pend on the choice of v and the U;’s.

So let w: [0,1] — X be another smooth path with w(0) =z and w(1) = y. As
for v, we choose open sets Wi, ..., W, covering all points in w([0,1]) with x € W
and y € W, and W; N W,y # 0. Then we orient T,(X) following the same
procedure using the W;’s.
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Arriving at y, we do not know a prioir whether the orientation of T} (X)
induced by v and the orientation of 7, (X) induced by w agree. But now we can
use that X is simply-connected.

For, walking first along ~ and then back on w defines, after readjusting the
speed and smoothing things out, a loop a: [0,1] = X with a(0) =z = a(1), i.c.
a smooth map a: ST — X. Walking along «, we obtain an isomorphism

T(a): To(X) = Tug)(X) = Taq)(X) = To(X)

by composing

(¢2)o

-1 -1
s RF L0 () A0, g A0y A i A )

where the subscript e stands for the varying points at which we take derivatives.
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Another way to picture how we get from T, (X) to T,,(X) via v and w, respec-
tively, is the following diagram:

Ty (X)

TN

X) d(wm a"L 1 )

N
e
o

Tbl X)

S

The isomorphism 7T'(«) is either orientation preserving or reversing. If it pre-
serves the orientation, then its determinant is positive, and if it reverses the
orientation, then its determinant is negative. And 7'(«) is orientation pre-
serving if and only if the two orientations on 7,(X) induced by 7 and w,
respectively, agree.

T.(X)

Since X is simply-connected, « is homotopic to the constant map ¢, : S* —
{z}.

Let F': S' x [0,1] = X be a homotopy from « to ¢,. Since S x [0,1] is
compact, its image in X is compact and we can add finitely many open subsets
to the collection Uy, . .., Uy, Wi, ..., W; to cover F(S! x[0,1]) with the codomains
of local parametrizations.

For each t € [0,1], F'(—,t) defines a smooth loop from z to z. Using the above
procedure for orienting tangent spaces along a path, we obtain an isomorphism

T(F(=t)): To(X) = Tpo,(X) =N Tray(X) = T,(X) for each t € [0,1].
Taking the determinant of T'(F(—,t)) defines a map
[0,1] = R, t+— det(T(F(—.t)))

which is continuous, since each point of X is contained an open neighborhood on
which the orientation is determined by the derivatives of local parametrizations,
and these derivatives vary smoothly with the basepoints.
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Since each T'(F(—,t)) is an isomorphism, its determinant is either strictly posi-
tive > 0 or strictly negative < 0. Since [0,1] is connected and t — det(T(F(—,t)))
is continuous, we have

either det(T'(F(—,t))) > 0 or det(T(F(—,t))) < 0 for all ¢t € [0,1].

But we know that, for t =1, F(—,1) = ¢, is the constant loop at x. Thsus
det(T'(F(—,1))) = det(Id,(x)) > 0.

Hence we must have det(T'(F(—,t))) > 0 for all ¢ € [0,1]. In other words,
T(F(—,t)) must be orientation preserving for all ¢, and in particular, T'(a) is
orientation preserving.

This shows that the orientation of T}, (X) does not depend on the choice of 7.
QED

Let us summarize the key points we shoud remember from this technical
lecture.

Key points we need to take from this lecture

e An orientation of a vector space is a choice of a sign, +1 or —1, for an
equivalence of orderings of a bases. We can think of it as choosing a positive
and negative direction.
e An orientation on a manifold is a smooth choice of orientations of the
tangent spaces for each point. Such a choice may or may not exist. Hence
manifolds can be orientable or not.
e Orientability helps us classifying manifolds: there is a box with orientable
and a box with non-orientable manifolds.

e The boundary of a cylinder has opposite orientations:

9([0,1] x X) = X, — X,.

e As a conseuqnce: For any compact oriented one-dimensional manifold with
boundary, the sum of the orientation numbers at the boundary points is zero.
This is the key point for defining homotopy invariant intersection numbers
soon.

e There is a formula for the boundary of preimages:

sign(0f1(Z)) as a boundary = (—1)°¥%™Z . sign(0f~'(Z)) as a preimage.

e Simply-connected manifolds are orientable.
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Intersection Theory

The assumptions for our intersection theory to work will be always:

Assumptions for intersection theory

e We consider a smooth map f: X — Y, where X, Y are boundaryless
smooth manifolds, Z C Y is a boundaryless submanifold.

e The dimensions are complementary, i.e. dim X + dim Z = dimY.

e X will always be assumed to be compact.

e All manifolds are oriented, i.e. they are orientable and we have chosen an
orientation.

The idea for the new intersection number is now very simple:

If f: X — Y is transversal to Z, then f~!(Z) consists of a finite number of
points (since f~!(7) is zero-dimensional and compact becasue of the assumptions
on X, Z and the dimensions; the assumptions are all important). Each point in
f7YZ) has an orientation number +1 provided by the preimage orientation.

If € f71(Z) is a point in the preimage, the orientation number at z is
determined as follows. If f(z) = z € Z, then transversality implies df,(T,(X)) +
T.(Z) =T,(Y). But since the dimensions are complementary, this sum must be
direct, i.e.,

(26) dfe(T2(X)) NT.(Z) = {0}, and dfe(To(X)) @ T=(Z) = T.(Y).

This direct sum decompostion implies that
dim 7T,(X) = dim df (T, (X)),

since dim 7,(X) = dim7,(Y') — dim 7,(Z). Thus df, must be an isomorphism
onto its image. In particular, the orientation of T,(X) provides an orientation
of df,.(T,(X)).

Then the orientation number at x is +1 if the orientation of 7,(Y") as the
direct sum in (26) induced by the orientations on df,(7.(X)) and 7,(Z) agrees

239
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with the given orientation of 7,(Y). And it is —1 if the induced orientation
disagrees.

Intersection numbers as sums of orientation numbers

If f M Z, we define the intersection number I(f,Z) to be the sum of
the orientation numbers at the finitely many points x € f~1(Z2).

We claimed that introducing orientations would yield homotopy invariant
intersection numbers in Z. Now we we have to demonstrate that this claim
holds. This will then allow us to define intersection numbers for nontransversal
intersections.

Suppose that X = 0W is the boundary of a compact W and that f extends
to a smooth map F': W — Y, ie. f=0F = Faw.

By the Extension Theorem, we may assume F' M Z. Thus, by the Preim-
age Theorem for manifolds with boundary, F'~1(Z) is a compact oriented man-
ifold with boundary 0F~1(Z) = f~!(Z). Since codimdW = 1 in W, we have
codim F71(Z) =1 in Y, and hence

dim W — dim F~(Z) = codim F~*(Z) in W
=codimZ inY =dimY — dim Z = dim X.

But dim W = dim X +1, and thus dim F~!(Z) = 1. Hence F~'(Z) is a compact
oriented one-manifold with boundary. As we learned in the previous lecture,
the sum of the orientation numbers at points in the boundary f~'(Z) must be
Zero.

As a consequence we get:

Intersection numbers for maps on boundaries

If fM Zand X = 0W is the boundary of a compact W and that f extends
to a smooth map F': W — Y, then the sum of orientation numbers of points
in f~1(Z) is zero, i.e. I(f,Z)=0.

This enables us to prove the key fact:



INTERSECTION THEORY 241

Homotopy invariance for transversal maps

Let fo and f; be two homotopic maps X — Y which are both transversal
to Z. Then I(fo,Z) = I1(f1,2).

Proof: Let F': X x [0,1] — Y be a homotopy between them. Then we just
learned that I(OF,Z) = 0. The boundary map OF is just fp on the copy X at
0 and f; on the copy X; at 1. Now recall that the orientations of X, and X; as
the boundary of X x [0,1] are given by

A(X % [0,1]) = X, — X,.

Hence as oriented manifolds we get
OF~(2) = 7(2) - 5 (2).
By our definition of intersction numbers as sums of orientation numbers,
this implies
0=10F2)=1(/,Z) — I(fo,2).
QED

As in the mod 2-theory, the previous theorem allows us to define intersection
numbers for arbitrary maps.

Intersection numbers for arbitrary maps

Let g: X — Y be any smooth map. By the Transversality Homotopy
Theorem, we can choose a smooth map f: X — Y which is homotopic to
g and transversal to Z. Then we define 1(g,Z) to be I(f,z), i.e.

1(g,2) = I(f,2).

We just shows that the definition does not depend on the choice of f. More-
over, all homotopic maps have equal intersection numbers:

All homotopic maps have equal Intersection Numbers

If go: X — Y and ¢g;: X — Y are arbitrary homotopic maps, then
1(g0,2) = 1(91,2).

Proof: The proof is the same is in the mod 2-case. We can choose maps
fom Z and f; M Z such that gy ~ fo, 1(90,2) = I(fo,Z), and g1 ~ f1, [(g1,2) =
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I(f1,Z). Since homotopy is a transitive relation, we have

fo~ go ~ g1 ~ fi1, and hence fy ~ fi.

By the previous theorem, this implies

I(g90,2) = I(fo0,2) = I(f1,Z) = 1(91,Z).

QED
The Brouwer degree

Let us look again at the special case when dim X = dim Y

The Brouwer degree

Let f: X — Y be a smooth map with dim X = dimY, X compact, and
Y connected. We define the degree of f, denoted by deg(f), to be the
intersection number I(f,{y}) at any regular value y € Y of f. In particular,
we claim that the integer I(f,{y}) does not depend on the choice of the
regular value y.

The degree is homotopy invariant, i.e. fy ~ f; implies deg(fo) = deg(f1).

Proof of the claim of independence: Actually, the proof in the mod 2-
case gave us this result already. But only observed the weaker consequence for
mod 2-intersction numbers. To be sure, let us go through it again.

Given any y € Y, we can assume that f is transversal to {y}. For otherwise
we can replace it with a homotopic map which is transversal by the Transver-
sality Homotopy Theorem. Now by the Stack of Records Theorem, we
can find a neighborhood U of y such that the preimage f~*(U) is a disjoint union
ViU---UV,, where each V; is an open set in X mapped by f diffeomorphically
onto U:
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Hence, for all points z € U, we have #f~!({z}) = n. But this is not enough for
knowing that the intersection numbers agree. For we we have to take orientations
into account.

Since fjy;: Vi — U is a diffeomorphism, we know that
df; To,(X) = Ty(Y)

is an isommorphism. Now both T, (X) and T;(Y") are oriented, and hence df;, is
either orientation preserving or reversing. But by our definition of orientations
on manifolds, we have either

o det(df,,) > 0 and hence, for all z € U, det(df,,) > 0, where w; is
the unique point in V; with f(w;) = z; in other words, df,, preserves
orientations for all points w; € Vj;

e or det(df,;) < 0 and hence, for all z € U, det(df,,) < 0, where w; is
the unique point in V; with f(w;) = z; in other words, df,, reverses
orientations for all points w; € V;.

Thus the orientation number is the same for all points in V;. Hence the sum
of orientation numbers of the points in f~*(z) is the same for all points z € U.

Consequently, the function

Y = Z,y— I(f{y})
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is locally constant. Since Y is connected, it must be globally constant.
QED

Here is a simple example of how to calculate a degree:

Degree of a diffeomorphism

A special case of the situation dim X = dim Y is that of a diffeomorphism
f: X = Y. It follows immedtiately from the definition that f has degree
+1 or —1 according to if f preserves or reverses orientation. In particular,
we get:

An orientation reversing diffeomorphism of a compact boundaryless
manifold is not smoothly homotopic to the identity.

An example of such an orientation reversing diffeomorphism is provided by
the reflection r;: S™ — S™ which we have seen in the Exercises before:

Ti(l‘l, 000 ,$n+1) = (51}1, coog = dbfgooo 7xn+1)-

As in the mod 2-case, the boundary result for intersection numbers imply the
following fact on extensions of maps.



INTERSECTION THEORY 245

Extendable maps on boundaries have degree zero

Suppose that f: X — Y is a smooth map of compact oriented manifolds
having the same dimension and that X = 0W is the boundary of a compact
manifold W. If f can be extended to all of W, then deg(f) = 0.

Example: Degree of self-maps of S!

Recall that the restriction of complex multiplication z — 2™ defines a smooth
map fn,: St — St for every m € Z. For m # 0, let us calculate the derivative
d(fim)=: TZ(Sl) - Tfm(z)(Sl)-

We use the parametrization ¢t — (cost,sint). We have the commutative
diagram

Jm

St » St

‘| E

R R.
t—mt

Taking derivatives yields, where we note that t — mt is a linear map and therefore
equal to its derivative:

t—mt

In order to determine d(f,)., recall
do,: R — R? s+ (—sint,cost) - s
and, hence at z = ¢(t) (we have done this a long time ago):
T.(S') = (—sint, cost) - R,

Putting these information together we obtain we get
d(fm)s: To(S) = Tom(SY),

(—sint, cost) - s — m(—sin(mt), cos(mt)) - s.

Hence, when m > 0, f,, wraps the circle uniformly around itself m times
preserving orientation. The map is everywhere regular and orientation preserving,
so its degree is the number of preimages of any point, that is m.
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Similarly, when m < 0 the map is everywhere regular but orientation revers-
ing. As each point has |m| preimages, the degree is —|m| = m.

Finally,when m = 0 the map is constant, so its degree is zero.

One homotopy class S' — S! for every integer

One immediate consequence of this calculation (which could not have been
proven with mod 2 theory) is the interesting fact that the circle admits an
infinite number of homotopically distinct mappings. For since deg(z") =
m, none of these maps can be homotopic to another one.

Application: The Fundamental Theorm of Algebra - again

Now we can finish the proof of the Fundamental Theorem of Algebra using
degrees. Remember that mod 2-degrees were only good enough for polynomials
of odd order. Now we can deal with all of them.

So let
p(z) ="+ a2+ tan,

be a monic complex polynomial. For the argument in the case m odd, we used
the homotopy from py(z) = 2™ to pi(z) = p(z) defined by

pi(2) =tp(2) + (1 — 1)z = 2" + t(a1 2™ 4+ ap).

We observed that, if W is a closed ball around the origin in C with sufficiently
large radius, none of the p; has a zero on OW.

Thus the homotopy

Poow gt
|pt|

is defined for all ¢ € [0,1]. Thus
deg (ﬁ) = deg <&> .
| |pol
Since po(z) = 2™, the degree of py/|po| is the same as deg(z™) = m, and hence

deg Q%) =m

Thus, if m > 0, p/|p| does not extend to all of W, since otherwise its degree
had to be zero. Hence p must have a zero inside W.
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Hopf Degree Theorem in dimension one

We return our attention to self-maps of S*. We learned that there is a homo-
topy class of maps S — S! for every integer m. Actually, the following theorem,
the one-dimensional case of a famous theorem of Hopf, shows that the degree is
a bijective map

deg: [S1,5'] = Z, [+ deg(f),

where [S1,5'] = Hom(S',S')/ ~ denotes the set of equivalence classes of maps
from S* to S* modulo the homotopy relation.

The same is true for every n > 1: For every m € Z, there is exactly one
homotopy class of maps S™ — S™. We will get back to this important result
later. Today we show:

Hopf Degree Theorem in dimension one

Two maps fo,f1: S* — S* are homotopic if and only if they have the same
degree.

Proof: We already know that if fy and f; are homotopic, then deg(fy) =
deg(f1)-

So assume deg(fy) = deg(f1), and we want to show fo ~ fi.

Remember that earlier we used the map p defined by

p: R — Sl, t— 62”“,

and remarked that every smooth map f: S' — S! can be lifted (lift piecewise
and then patch together) to a map ¢g: R — R with

g(t+1) = g(t) + q for some ¢ € Z such that f(p(t)) = p(g(t)).
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If we can show ¢ = deg(f), then we get a homotopy fy ~ f; as follows:

Let go and gy be smooth maps R — R with go(t +1) = go(t) + ¢, g1 (t + 1) =
91(t) + q and fo(p(t)) = p(go(t)), fi(p(t)) = p(¢1(t)). Then the map g,(t) :=
sg1 + (1 — 8)go also satifsies g,(t + 1) = g4(t) + ¢. Note g4(t) defines a homotopy
G from go to g1 by G(t,s) = gs(t).

But any homotopy
G: R x [0,1] — R with G(t + 1,s) = G(t,s) + g for all t,s
induces a well-defined homotopy

F: S' % [0,1] = S*, (2,5) — p(G(t,s)) for any t € p~*(2).

Hence the above g,(t) induces a homotopy from

fo=pogotopog = fi.

It remains to show:
Claim: ¢ = deg(f).

First, note that if f is not surjective, then we can pick a point y ¢ f(S').
This y is automatically a regular value. Since #f'(p) = 0, we must have
deg(f) = 0. In this case, we need to have ¢ = 0, i.e. g(t + 1) = g(t). For
otherwise p o g was surjective and hence f would be surjective.
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Note that, since the stereographic projection map S\ {y} — R is a diffeo-
morphism and R is contractible, this shows directly that S\ {y} is contractible.
Hence f is a map to a contractible space and therefore homotopic to a constant
map.

Now we assume that f is surjective. Let y € S* be a regular value of f, and
let 2 € f~1(y). Since p is surjective, there is a t € R with p(t) = 2. Since y is a
regular value, f is a local diffeomorphism around z. Its derivative is related to
the one of g by the chain rule

df. o dpy = dpy(t) © dg;.

The derivative of p: R — St at any ¢ is

dpe: R = Ty (SY), w — 21 (—sin(27t), cos(27t)) - w.

Hence the determinant of dp, at any t is positive (in fact equal +27). Thus the
sign of the determinant of df, equals the sign of dg; € R.

As above, let y € St be a regular value of f and z € f~'(y). Let us fix a
to € R with p(tg) = z. When we walk from ¢y to to + 1 we need to count how
many preimages of y we collect along the way, with their orientation (!).

We start with the case ¢ = 0, i.e. g(t+1) = g(¢). It will actually teach us all
we need to remember from this proof.

We need to count how often g(s) = g(ty) with dgs = ¢’(s) > 0 and how often
g(s) = g(to) with dgs = ¢'(s) > 0. Note that since y is regular, dg; is always
# 0 at such those s.

Since g is a smooth function R — R, this is now just an exercise from Calculus.
Using the periodicity of g, i.e., that ¢’(¢y) must have the same sign as ¢'(to+1), we
see that there are exactly as many points s with g(s) = g(t) and dgs = ¢'(s) >
0 as there are points with g(s) = g(to) and dgs = ¢'(s) > 0. Thus deg(f) = 0.
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Now assume ¢ > 0, and g(t + 1) = g(t) + q.

Again, we walk from ¢y to ty + 1 and sum up the orientation numbers of all
the preimages of y that we collect along the way. This corresponds to counting
how often we have g(s) = g(to) + ¢ for some i = 0,1,...,g — 1 and s € [to,to + 1].

Let us look at one interval [g(ty) +,9(t9) + i+ 1] at a time. We would like to
know how many s € [to,tp + 1] are sent to either g(to) + or g(to) + i+ 1 together
with the sign of the derivative.

Therefore we look at the preimage

9 ' ([g(to) +i.g(te) + i+ 1]).

This set is a disjoint union of closed intervals. For each of these intervals the
start and endpoints are sent to either g(to) + 4 or g(to) + ¢ + 1.

Let us think of the graph of g passing g(to) + iwith a positive sign of the
derivative as going in with +1 and passing g(to) + ¢ + 1 with a positive sign of
the derivative as going out +1, and the other two alternatives as the ones with
—1. Then we see that the graph has to go in with 41 for a first time, and has
to go out with +1 for a last time (since the graph starts at g(to) < g(to) + ¢ and
ends at g(to) +¢ > g(to) +i+1). In between those two points, the graph is going
out with —1 as often as it goes in +1 and goes in with —1 as often as it goes out
with +1.
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Thus in total the orientation numbers for g~ ([g(to) + 7,9(to) + 4 + 1]) add up
to +2. Repeating this for all i = 0,1, ...,¢— 1 gives a sum of orientation numbers
equal to ¢, since we have to account for that we counted the inner points twice.

Since the sum of orientation numbers of f equals the one of g, this shows

deg(f) = ¢

If ¢ < 0, the same argument works with signs and directions reversed. QED

L4






LECTURE 24

Intersection Numbers and Euler Characteristics

Let us return to one of the initial motivations for the intersetion numbers and
see what happens if both X and Z are submanifolds.

Intersection of submanifolds

Let X and Z be submanifolds of Y, with X compact and complementary
dimensions dim X 4+ dim Z = dim Y, and all are oriented. Then we define
the intersection number of X and Z in Y to be

1(X,2) == 1(i,2)

where 7: X — Y is the inclusion map.

Recall that calculating I(X,Z) requires to bring X in transversal position
to Z and then take the sum of the orientation numbers at the finitely many
intersection points in X N Z.

A point y € X N Z has sign +1 if the orientation of T,(Y) induced by the
direct sum decomposition

T,(X) @ T,(2) = T,(Y)

is the given orientation on 73(Y'), and the sign is —1 if it is the opposite orienta-
tion.

Since the order of the summands in a direct sum matters for the orientation,
it is clear that when both X and Z are compact we cannot expect I(X,Z) to be
equal I(Z,X) in general.

All we should expect is [(X,Z) = £1(Z,X). An example is given by inter-
secting the two circles on the torus. There we get [(X,2) = —1(Z,X).

Our next goal is to show that I(X,Z) is homotopy invariant in both variables,
and to determine the sign when we flip the factors.

Homotopy Invariance of intersection numbers revisited
253
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Recall that a deformation of X in Y is a smooth homotopy from the em-

bedding ig: X — Y of X in Y to an embedding i;: X — Y such that each i, is
an embedding.

We know that I(X,7) is invariant under deformations of X, since we
calculate it point by point in X N Z and a deformation of X is a homotopy of the
inclusion. We need to prove that /(X,7) is invariant under deformations of
7 as well. In order to show this we generalize our approach.

Let f: X =Y and g: Z — Y be two smooth maps with X and Z compact, all
manifolds ae boundaryless and the dimensions satisfy dim X + dim Z = dimY’.
In particular, that the images of f and ¢ are closed in Y and for g being the
inclusion of Z into Y, we are back at the familiar situation.

As always we start with the case of transversal maps and then extend our
defintion via homotopy.

In order to do so, we need to say what it means for two maps to be transver-

sal:
Transversal maps

We say that f: X — Y and g: Z — Y are transversal, denoted f M g, if
dfo(Tx(X)) + dg.(T(2)) = T,,(Y) whenever f(z) =y = g(z).

In our situation, the assumption on dimensions implies that if f M ¢ then the
above sum is direct, i.e.

df(T(X)) ® dg.(T.(Z)) = T,(Y) whenever f(x) =y = g(z).

Moreover, the derivatives df, and dg, are both injective. Thus these derivatives
map 7,(X) and T,(Z) isomorphically onto their images. In particular, the
image spaces inherit an orientation from X and Z, respectively.

Intersection numbers for maps

We define the local intersection number at (z,z) to be +1 if the direct
sum orientation of df,(7,(X)) & dg.(T.(Z)) equals the given orientation of
T,(Y), and —1 otherwise.

Then I(f,g) is defined as the sum of the local intersection numbers of
all pairs (z,z) at which f(z) = g(z).
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When ¢g: Z < Y is the inclusion map of a submanifold then f M g if and only
if fMZ, and if so I(f,g) = I(f,Z). So everything remained consistent so far.

In the definition, we quietly assumed that the sum is finite. We should better
check this! To do so, we are going to look at intersections from yet another angle.
It will seem artificial at first glance, but it is actually a very useful perspective.
For it can be generalized to many other situations, e.g. in Algebraic Geometry.

Let A denote the diagonal of Y x Y, i.e. the set of points (y,y), and let
fxg: X xZ =Y xY, (v,2) = (f(2),9(2))
be the product map. Then we have

fl@) =g(z) <= (z.2) € (f x 9)7 (D).

The dimension of dim(X x Z) is dim X +dim Z = dim Y, and the dimension
of Alis dimY. Thus dim(X x Z) = codim (A) in Y x Y. Hence if f x g M A,
then (f x g)7*(A) is a compact zero-dimensional manifold. Hence it is a
finite set.

Transversality, f x g M A, will follow from the following lemma from linear
algebra:

Help from Linear Algebra

Let V' be a finite dimensionsal vector space, and U and W be vector sub-
spaces of V. Let A be the diagonal in V' x V. Then

UoW=V <— UxWpA=V xV.

Assume now that U @ W = V| and in addition that U and W are oriented,
and give V the direct sum orientation. We assign A the orientation carried
from V' by the natural isomorphism V' — A which sends v — (v,v). Then
the product orientation on V' x V agrees with the direct sum orien-
tation induced from U x W @ A if and only if W is even dimensional.

We skip the proof of the lemma which can be found in [GP], page 113+114.
Instead we are ging to exploit its implications.
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Transversality and diagonals

The maps f and ¢ are transversal if and only if f x g is transversal to A,
i.e.

fihg = (fxg MmA.
If f g, then
I(f,9) = (=1)"ZI(f x g,A).

Proof: We apply the lemma to U = df,(T,(X)), W = dg.(T.(Z)), and V =
T,(Y). Then the first part of the lemma yields the equivalence of transversality.
The second part implies the formula on the signs, keeping in mind that we know
XNZ=(fxg)(A). QED

The main point of the previous effort is that considering intersections as preim-
ages of the diagonal allows us to extend our definition:

Intersection numbers via diagonals

For maps f and g as above which are not necessarily transversal, we define
I(f.g) to be

I(f.9) = ()" 7I(f x g,A).

Moreover, the desired properties of I(f,g) follow right away:

Homotopy Invariance

If fo and gy are homotopic to f; and gy, respectively, i.e. fo ~ f; and
go ~ g1, then

I(f()’gO) - I(flagl)‘

Proof: If F'is a homotopy from fy to f; and G is a homotopy from gq to g1,
then F' x GG is a homotopy from fy X gy to f1 X g;. Then the homotopy invariance
of I(f x g,A) which we proved before implies the invariance of I(f,g). QED
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Recovering the previous definition

If Z is a submanifold of Y and i: 7 — Y is its inclusion map, then
I(f,i) = I(f,Z) for any map f: X — Y (with the usual assumption that X
is compact and complementary dimensions).

Proof: This follows just from the definition of f M Z. If f is arbitrary, then
we use the homotopy invariance of both I(f,:) and I(f,Z). QED

When we applied I(f,Z) to the case dim X = dim Y and Z = {y}, we obtained
the degree of f. Let us check that this definition still works in the new setup.

Degrees are still well defined

If dim X = dimY and Y is connected, then I(f,{y}) is the same for every
y € Y. Thus deg(f) = I(f,{y}) is well defined.

Proof: Since Y is connected and a smooth manifold, it is path-connected.
Hence the inclusion maps 7y and i; for any two points yg,y; € Y are homotopic.
Therefore

I(f{yo}) = I(fsio) = I(fsir) = I(f{m})-
QED

How signs switch when we flip maps

When we flip the order of the maps, we get
I(f,9) = (=1)4mDEmD (g, ).

Proof: We must compare the direct sum orientations of
T,(Y) = dfe(T(X)) @ dg-(T(2)) and T,(Y') = dg.(T:(2)) ® dfe(T2(X)).

As we remarked in a previous lecture, switching the order of the summands
reuqires to apply dim X)) - (dim Z) many transpositions of the basis vectors. This
gives the sign in the assertion. QED

Applying this result to the inclusions of two submanifolds yields the follwoing
formula for signs when we switch the order of factors in intersection numbers:
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How signs switch when we flip submanifolds

If X and Z are both compact submanifolds, then
I(X,Z) _ (_1)(d1mX)(d1mZ)I(Z7X)

Self-intersections and Euler Characteristic

As a special case, we can look at at the self-intersection number 7(X,X)
when dimY = 2dim X.

But the above sign formula implies that if dim X is odd, then
I(X,X) = (—=1)4mX’ (X X) = —I(X,X) and hence I(X,X) = 0.
As a consequence we also get Ir(X,X) = I(X,X) mod 2 =0.

This observation yields an insight into the nonorientability of some manifolds.

Obstruction for orientability

Let Y be any smooth manifold of even dimension. Then we can calculate
the mod 2-self-intersection number I5(X,X) for any compact submanifold
X C Y of dimension dim X = %dimY as in the previous lecture without
assuming orientability of Y.

If one of these self-intersection numbers fails to vanish, then Y is not
orientable.

For example, the central circle in the Mobius strip has nonzero mod 2 self-
intersection number, so the Mobius strip is nonorientable.

Self-intersection numbers can be used to define a very powerful and famous
invariant. You will see different constructions for this invariant later in your
mathematical life. Here is the first:

Euler Characterstics

Let Y be a compact, oriented manifold. Its Euler characteristic, denoted
X(Y), is defined to be the self-intersection number of the diagonal A in
Y xY:

X(Y) = I(AA).
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Note: Our methods and contruction here makes it look like a differential
invaiant. But note that the Euler characteristic is a topological invariant in
the sense that it only depends on the topology of Y and not the differentiable
structure.

As a first calculation of an Euler number, we deduce from the previous obser-
vations:

Euler characteristic in odd dimensions vanishes

The Euler characteristic of an odd-dimensional, compact, oriented manifold
is zero.

Proof: If dimY is odd, then dim A = dimY is odd. Hence

must be zero. QED
Lefschetz Fixed-Point Theorem

For a (smooth) map f — X — X it is often desirable to know if the equation
f(z) = x has a solution, i.e., if f has a fixed point. In particular, we could ask how
many fixed point does f have. On a compact oriented manifold X, intersection
theory can help us answering that question.

Again it turns out to formulate the question first using diagonals. A point
x € X is a fixed point of f if and only if (z,f(z)) is a point in the intersection of
the graph I'(f) of f with the diagonal A of X in X x X:

f(@) =2 < (2,f(z)) € ANT(f).

Both A and I'(f) are submanifolds of X and their dimensions satisfy
dim A +dimI'(f) = dim X + dim X = dim(X x X).

Moreover, both receive an orientation from X via the natural diffeomorphism
X — Aand X — I'(f).

Thus we may use intersection theory to count their common points (if it is a
finite number):
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Global Lefschetz numbers

The global Lefschetz number of f, denoted by L(f), is defined to be
the intersection number

L(f) == I(AL(f))

Note: Again, our methods and contruction here makes it look like a differential
invaiant. But the Lefschetz number is a topological invariant in the sense
that it only depends on the topology of X and not the differentiable structure

Of course, f may have an infinite number of fixed points, as the identity
map demonstrates. Thus the sense in which L(f) measures the fixed-point set
is somewhat subtle. However, we shall see that when the fixed points of f do
happen to be finite, then L(f) may be calculated directly in terms of the local
behavior of f around its fixed points.

The significance of Lefschetz numbers may be illustrated by the following
immediate consequences of the intersection theory approach. The following fa-
mous theorem in its many variations plays a crucial role in many branches in
mathematics:

Smooth Lefschetz Fixed-Point Theorem

Let f: X — X be a smooth map on a compact orientable manifold. If
L(f) # 0, then f has a fixed point.

Proof: If f has no fixed points, then A and I'(f) are disjoint, and hence
trivially transversal. Consequently,

L(f) = I(AL(f)) = 0.
QED

Since L(f) is an intersection number, we immediately get:

Lefschetz numbers are homotopy invariant

If f() ~ f17 then L(f()) = L(fl)

The graph of the identity map is just the diagonal itself. thus L(Id) = y(X)
is just the Euler characteristic of X:
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Lefschetz numbers and Euler characteristics

If f is homotopic to the identity, then L(f) equals the Euler characteristic
of X. In particular, if X admits any smooth map f: X — X that is
homotopic to the identity and has no fixed points, then y(X) = 0.

Trnasversality is crucial for intersection theory. So let us call a smooth map
f: X — X a Lefschetz map if I'(f) M A.

Note that a Lefschetz map has only finitely many fixed points, since there are
only finitely many points in the coplementary intersection I'(f) N A. Also not
that the converse is false. Since Lefschetz maps are defined by a transversality
condition, it should be plausible that most maps are Lefschetz.

Most maps are Lefschetz

Every smooth map f: X — X is homotopic to a Lefschetz map.

Proof: In the lecture on transversality we proved the following fact: Given
X cRY and f: X — X, we can find an open ball S in R and a smooth map
F: X xS — X such that F(z,0) = f(x) and s — F(z,s) is a submersion for
each x € X.

Given this F', the map
G: X xS—>XxX, (x,5)— (x,F(z,))

is also a submersion. For suppose that G(z,s) = (z,y). Since G acts like the
identity on the first X factor, the image of dG, ) contains a vector of the form
(u,w) for every u € T,(X). Since G restricted to {z} x S is a submersion to
{z} x X, the image also contains a vector of the form (0,w) for every w € T,(X).
Therefore G is a submersion.

In particular, G M A. By the Transversality Theorem, for almost every s the

map
X =X xX, v G(z,s)

is transversal to A.

Now we observe that the image of this map is just the graph of the map
x +— F(z,s). Hence, for any s, the map

X = X,z F(x,s)

is Lefschetz and homotopic to f. QED
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Let us try to understand Lefschetz maps better. Suppose that z is a fixed
point of f. As we showed in the exercises, the tangent space of I'(f) in
T.(X x X) is the graph of the derivative df,: T,(X) — T,(X). Moreover, the
tangent space of the diagonal A is the diagonal A, in T, (X) x T,(X).

This implies
C(f)MAin (z,2) < T(f)+ A, = To(X) x T (X).

As I'(df,;) and A, are vector subspaces of T,.(X) x T,,(X) with complemen-
tary dimension, we have

D(f) + A, = To(X) x To(X) < T(f) N A, = {0}.

But T'(f) N A, = {0} just means that df, does not have a fixed point.
In the language of linear algebra, this means that df, has no eigenvector of
eigenvalue +1.

Lefschetz fixed points

We call a fixed point x a Lefschetz fixed point of f if df, has no nonzero
fixed point, i.e., if the eigenvalues of df, are all unequal to +1.

This shows that f is a Lefschetz map if and only if all its fixed points
are Lefschetz.

Notice that the Lefschetz condition on z is simply the infinitesimal analog of
the demand that z be an isolated fixed point of f. We have met Lefschetz
fixed points on Exercise Set 6.

Local Lefschetz fixed points

If  is a Lefschetz fixed point, we denote the orientation number 41 of
(x,z) in the intersection AT'(f) by L.(f). It is called the local Lelschetz
number of f at z.

For Lefschetz maps, we have

L(f)= ) L.(f)
flz)==
where the sum is taken over the finite number of fixed points of f.

Hence in order to calculate the global Lefschetz number L(f), it suffices to
calculate all the local Lefschetz numbers L, (f).
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So let us have a closer look at the L, (f). First we observe that the condition

for x to be a Lefschtz fixed point means that, for the identity map [ on T, (X),

df, — I is still an isomorphism on T, (X), since the kernel of df, — I is the space

of fixed points of df,. (We used that also to solve the exercise on Lefschetz fixed
points and Lefschetz maps.) Now we observe:

Local Lefschetz numbers and orientations

Let = be a Lefschetz fixed point of f. Then L,(f) is +1 if the isomorphism
df, — I preserves orientations on 7T,(X), and it is —1 if df, — I reverses
orientations.

In other words,

L.(f) = sign(det(df, — I)).

Again, we skip the proof of this exercise in linear algebra ([GP] pages 121+122)
and rther look at an important example.

The Euler characteristic of the two-sphere

As an example, we consider X = S? C R3. Let g: R® — R3 be the rotation
by 7/2 about the z-axis. The matrix representing ¢ in the standard basis is

0 -1 0
1 0 0
0 0 1

In particular, ¢ is a linear map and its own derivative dg, at any point is just g.

Now let f: S? — S? be the restriction of g to S?. Then f has exactly two
fixed points, the north pole N = (0,0, + 1) and the south pole S = (0,0, — 1).
0 —1
1 0
Hence det(df, — I) = 2. In particular, f is a Lefschetz map, and the sign of the
determininant is +1 at both poles. Thus L(f) = Ly(f) + Ls(f) = 2.

At both poles, df,: T,(5%) — T,(S?) can be represented by the matrix

Any rotation with positive determinant is homotopic to the identity map
of S%. For a concrete homotopy from ¢ to the identity map we can take

t t—1 0
F(=t)=|1-t t 0
0 0 1

By our previous discussion, this implies L(f) = x(S?). Hence we have proved
the folowing important fact:
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Euler characterstic of the two-sphere

The Euler characteristic of S? is 2: x(S?) = 2.

As a consequence we get:

Self-maps on the two-sphere

Every map S? — S? that is homotopic to the identity must possess a fixed
point. In particular, the antipodal map z — —x is not homotopic to the

identity.
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Euler characteristic and surfaces
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| |
| |
U R

|
s

|
|
.

whew cm":mHv\S P# P as obove. Hevu.e, A (P P): 7“P)+7({P)+O—L}+(L{—Z)=X(P)+X(P)—2 = 2.

Theorewa : X,\( surboces. Then ’X.(\(*V) =XI+XY)=2.
—T‘I\Ub ’X'(ZS) = 2“"9)) EUA-J. hence i.l: 'Fo“aws —H\p.‘l' Z,_mm! i, o< mot hpmeomorPWIc. oS ’X(Iz)= '2“—2-):-1 * ’X(Z,)': 2(1—3)=_q.

== ¢+ C=="=>
L I,

T heevewnn ( Clossificetion crp- wpa.z..e.s)’ Two r_ovw\.e,c.lSLJ: ==M~|=Mb surfoces ore \Aa\ueovv.arpb\i:_ P | °W(A'3 H3 -H,\g,j have the sarne

Euler charackeristic and the same wwmber of boundouy ncvm.ravu_m\:s, amel bolh owe oriewboble or both cue von-ovientable.
BIJ o ch.e.P Hieoremn i Oum'-re.ml—'\ul. '!:bpol-osﬂ Sy PaJn" of If\nmecw\nrpl\i; sw..eal-‘l\- surfoces oTre A.'rq?eewvf"l\io- (Ho\ds Ffor oliun £ 34)
The Hiret e‘ho.mu_rl.l_ of hamwwmrﬁ/\in bt neb oumeov\wp"\;w wes gvew \:‘5 Milnor where he consbrucked o ewiooth 7 -wiouifold homeomu‘rpln'u_

but wok o(a'#’c.marpwc o the stamolard S7.

A proof of U cassification of surfaces (a5 staked akeve) 1a guew by Hirsch (GITM 33, Springerlinle).  Anothur proof (aud
etatemank ) is o by Lowson (OUP, GTw M Q).

How oo we relate the ‘dossical’ omd the ¢imkersecbion nuwber’ definibion of +he Fuler choraberistic  (when -H/u.\j both, wialee

se.v\.sa) ?

The "’Pe'\v\.c,n,ré— Hap‘c 'l:\f\ze\-v_m

The ?:ﬁu.wu’e’.—anf Lheorena P‘V‘U\I]KLLS o way of cam.p.d.—‘\wa the Euder chosackeriskic bld relo&‘nvusx Wt to Hae indices of vecksr fields.
A smooth manifold M is  parallelzable i b Lomgenk buundle TM (Lecture 15) e bAvial: TME MxRY, Tort — [p]xR™,

Usiwj the Poimcert - Hopt theorems we cen~ comepuke Ll Fuler chicrackenstic for every perallelizatdle weani fold M X(M)= 0.
Thus , X(M)=0 for alk Lie groups M, an all Lie groups due pzuuﬂa(izalal_v_



(w0

Consider +the 'l:ol.low'lvlﬁ thiee (smoobh) veebor Fieds wa R?:

) Rixy) = (-x,-y) 2) FOuyw) = (x,y) 3) Rog) = (-x,y)
Y Y y
N N[ / \K\
/ A / L) X
t t *x t —t > X T . %

sinle souxce saddle

The wndex of Fi at (0,0) coumbs the nwmdoer of tiwres Fi votates cmrlul-el,:] wiule -l-_ro.umi.vxs Lhe (swall) cirele cewbered ot (0,0)

with robation of Fi covumkercloclimntse gives +1 omd rotabion of Fi clockwise gives —1.
Hence, wdo Fy =+ 1, indo Fa=+1 oud wdo Fy = -1
A veckor fidd om o wanifold M i R" is a0 swmeobh map Fi: M—> R such bhot F(x) € TeM for every xe M.
F veetor field wn R ikh aw iscloked zero ak O. We define the wmdex of F of O ao
inde (F) = dag (W) , w: Sg—> s
% — Fx)IEGI.

Note that F, ;.,mafowdé 1o thee m—l—ipod.al wap ow S‘, hence wnd (F ) = ALS(F‘)= (-\)1 =1. F, corrupdvdb L Hw
io{zw(—t'l-\tj wmap , hence 'wlo‘o(Fz) = d-'.g(F-,_)=1- T:ivm.(hj , T coruspomd.s Lt Ha waop

(5) — a () =Ca0))=(7%) , adla)=
with ndo(Fy) = deg(F) = —1.

To dufine the index ol veckor fields ok isolaked zeros on a.rb'\l:rwnj Meuna P—ald,s, wse [ocal PM&WIehi%n.Hom or charks. The wndex
does ok A.LF\W\A o the choice of local Para-mlrﬁ.'&abiﬂw or chark.

@ UM local paramdrizablon , p(0)=x, 06 UC R, The pullbade veckor field @*F an U is debined by
@*Flw) = doy Flg(w) , well.  (dgu: TeuM S RS)
¥ F has an iscloked zero of % , @*F hos am iolated sero of O. Hence,
ind  (F) = 1nd, (@*F).
Theorene (Powmeard — Hopf ) 1E F is o smoobh veckor field on o compack oriented mamifld M with only fnibely many zeros. Thew
Zindx(F) = A (M),

A proof wsing (local) LePschekz nwmbers is prevemked wn Grillewiw and Pollack , pp. 134 — 137,



(€3

As o cewseguence ; we hove Hag -ﬁellow‘w&s:

T heorem: For o sweothh oriented connpost 2—memifold , the ‘elassical’ and  the inkerscckion vu.«wv’a&r‘) Aefivition of Hhe
Euler charackenstic aqgree.

"Prao-c (Sl«,a‘l‘d/\.)'- Trio-mauwl&-l-r. ‘HA.C. WMCQH (<e-\_ aiwtujs be o\-avu_; see Cairns (1435))_ Da-ﬁ?m & Ve_r_l:of- hg,ld F ow M

with o source ow each face , o saddle on cach edge amd o sl of esch verbex:

For eoch source kthaure is a zero of F of wvdax 1_, anel s‘uwuila.rla
each saddle has o zero of mdax =1 and each sinke her o zere

of wdex 1.

By Poincart —Hopf | T wdy (F)= X(M)= T(8,8) [A : diagonal i MxM].
But this sumn 1s Pr-e.::lseltj Go— 0, +0q with a4 =#vertices, o, = # edges amed ap = # faces . O
The theorent alsa holds or Wigher diwamrions .

The Euler chesackerishic com be defimed in wany ways. One woy that wses homology is as follows: For o spaee X the ikl Bebki
nuomber  of X, bi(X), is the ranlk of H’,.(X) (rnm.h- of our sbelion growp is somewheat Ul the diwwnion of o vedor
.sPou_e,).

b, (X)) 4 e nuwber of Po.Jcln. r_O\NuFoVuAA/"l'S v X, bi(X) measwre o fornn of Mahu‘—d&mumiﬂnd oovune.cl?'lvil:lj of Y.
T he Buler chorackenstic of X s FHhew given bg

AX) = T NEbix),






LECTURE 26

Two dimensional Quantum Field Theories
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2-kiwe TAFTs
TAFTs ore richh geowe‘l:ﬁt. ga.dgrks, c.hc.nd;..v-\s many Ffundamentol warifold inverieunts. ?ov.a‘lqltd spen.la.'\.he, -Hw.\i wffl;wv. the idea ofF r_u.H'_hAﬂ o
wanifold inlo pieces ( cobordiswms DR Q.H:a.clr\.'l\nﬁ invoranks 1o these pieces, amnd then sluﬁmﬂ these Wwarcmts together to obtoiwn aw Wvesiomt

of the aﬁg‘mo_[ mowifold.
A TRFT is o sywumetric wonoidal funckor  Z: nCob —> an-{-a ( lineor ca(-eﬂm-\d). When n =2 +these are eguxvn.[;.wl: to  Frobenius olgelwm:
Theorew : 'ZTQFT( = cFA c

Categoviee preluvivardes
A cotegory € cowsisks of
objects: A,B,C,... (Aet)
* morphisms (‘arrows’): A 2B (£e€(pB))
subject Yo
1) Givew AB B, B35 C e cam compae: A2 C
2) Composition is associotive i ho (gof) = (hoglef AL.r2 C = D

2) For every A€ € there is a (u..v»’igue) LALw\-N:'j W\O’rPlI\A'b'WL 1A (idk)‘ ‘F°'|A == 13 of.

Exomeples: Veeke : veckor spaces over €, limear wmops

Top l:nPo(og'\wL spoces ) continuows Maps

A funtor F i € — D commsks ob

* mop From the dbjedks of © to thr abjecks of D

* map Fa,g: CCA,B)—> D(FA),F(B))
quu']u).- Lo:

1) Given AToBR35C wn € Fa,c (gof) = Fg (g) e Faglt) (F covamamt)

?.) FA,A(qA) = 1]:(/\.) -ﬁor a.L( AecC.

F,6: € —D functors. A notural trowsformakion n: F=6 assigns ko eadh A €T & wierphism vLLA): F(ARY — G(A) . D

such thet for each Ai>'B i €

Fa,ulf) "
F(A) allau FiB) is natural Tsom,ov-plvu:ém it ] (A) , 7{13 ) are 7SDMETP“M§: X ::Y Rea = 41 , M”[S=l\{ , X=Y.
1(4)1 0 J/’I“;) ¢
g (E)
GA) —=— &IR). We wnle F =6

€ omd D are egulvai.w-k P there exisks Fumckors F: € —D , 6:D—> € such that 1¢ = GeF , ip=EFet.

A skrick monoided cakegony (2,8, L) is a categony € with o funckor ®: €xt — € which is associakive amd wibh o objeck T€€
which s o lefk amd right Lk For ®. (€, 8, 1) is symmebric i for coch poir of dojecks AR in € There 1s oo fwisk (broud) wop
Tap: ABE — BOA subjed to:

* o every pear A AT, BB e “ dor every Lnple A, B,CE€ * Tyac Tas = fnes

for every Pn}.r A-,BEC.

T
A® B 225 gea AeB® ¢ - geceA  someC 2B coapB
P
foq J/ o l':l@‘r' TA'SMQ\I o /;@rA,[_ 1A°TB,:\, ° /TA,c@ﬁ;
A'® R’ > BON BOA®C A®CO®B

TA: B’
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C obordiswas
(See exercise set 11, Pv-elo\A_W\. 5) We wiill au\L‘j consider 2-dine coberdiswrs. (Momibolds o e.\wm.ls assoamed 1o be :,nvv\..lﬂb.ot

swaokl, )
let 2Cob be the cs.ke.sm-nj with
. QL‘]ed:s ¢ closed orienked 1-wamibolds
* morphisms: M, N € 2Cob , oo morphisma frome M 1o N s o cobordisne W from M to N, ie. W 15 am onenbed 2-wmanmiFold eeru.ipful

with ean m—'\f,m)aw‘ﬁﬂu—l:reserv‘ms dimnwrr'lrﬁm PAY i) MU N.

W, W' define the sowre wiorpisme i 200k iff there is aw oniembakion- preserving diffeomorphism W ESw (extendang oW EM N Z IW'). For
ouny M €20Cok, 1w s rv.Prr.qued by +he cobordisma W= M~xT,

M,,M,, M3 € Wob, cobordiswis W:M, —M, , WM, = M3 . The cmpaailn‘ow W'e W i M, — Mz 5 debined to be +he wmorphism representecl

M1 HIMZ N HI x MB
Wi, w'

M,

by W Ly W'

Note : To give WJJ-M-._ w! o swoaoth s‘Evu.!.l:th.) We comm moke o choice of & smooth collar oround My inside of W sund W,. 'D-I#Im-eu\-’b
clhoices off collecrs (cn-) kad 1o Anq'svwd? smootlh skyusbures one W _”.M_LW’, but  Lhe r:au.u:ihj cobordiswms ore di#ﬂomm-'a\nih (bt

there is o canonicol d-]m_umnrp‘/v\sml See Milnor's Leckures on the |- cobordism theorewn For fwll details.
(2Cob, 1, ®) is o wmenoidal cokegory.

0
The cobordiswe induced by the Luwisk dhilfeomorphisme M I M' —> M' I M i lhe Luwist cobordiswm : ?\.

(2Cob, I, 92, T s oa a\jwwmd:ﬁr- wenoidal c_a.{:egorh.
2Cob comn be dureriboed explicitly in terms of gewerobors amd relations , where we wse the cassificekion of surfoces.

A generoking sek for a wonoidel cateqory is o set S of morplisms such Haak all worpias w dhe cateqory can be obtained frown elewunmbs wn

S by :.emrcsilriavu omd &.

A sleeleton of 2Cob ( £ull swocakegony compising exackly one object Frown eadn Isowrorphiswe :(n.ss) 1s the full subeokegony fo,1 s 1,...} with

no= U8 Let 2Cob damete dis clslebon..

T heorenn : 2Cob s aew.m_l-ei by the six coordzsws: @, , & , Q , ©®, %

(We will wse the clasificokion of surfaces for Hus -l:h:arv.wn.)

The normel Form of o conmmected surface with m - boundaries , b ouk- boundories , genus g s o decomposition of the surface into o

number of basic cobordiswas.
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The refodions we need are as follows:

1. |dew1—il'tj: CG:D=EO etc. 5. Frobeniws:

3 Associativity and coassoc‘nu’c’:vil-gi

Commukakivity omd cocommm{-onlﬁwl-g
@ D These reabions ore suflicient but net minimel.

2-diwe TAFTs  amd commutulive Frobewins a..lge‘ur-&é

A 2-dima TOFT is o s\jvwnnd:rit. wonoidal fumcbor 2: 2Cob — Veck ¢ .

Let E(Sl)= 1) = A, Then ?:(ﬁ)= AR Fu.r-l:hermm,

2 (5): aen=n
Q\
it i §52-59 o>

Mhl'f.wlr ?

(Q)

%A
SRR
()= AX,
(_l
™ r
@ > ABA = A = € i3 nonclegencrake: : - (:O (wse the Frobemwius relotion. ).

A is o commutabive Frobewius algel;m (t.e. commukative € -a.lse_lom 'l:oaz’Hll'-l' with o Llinear mop br: A— € such thet (a,b) — trlab)

is havvoluje.vue rake .

Example: (1) A= Ma(e), & ((ay)) = Lay -
(2) A=CLE)/(4"-1) , W)=, dr (k)= 0 for i=1,2,...,n-1.

Theorew = 2TQFT = cFAg¢.

For o Prou-@ see J. Kocl’s book (CUP, No. 589 of LMSST, 2003)-



TAFTs Pradu.te. %ofolos'lc.c..\ wnveromnts every closed surfoce con be considered as oo cobordiswe Lroma @ to ¢, so its 'le.ge

under o TAFT is a linear mop € — € (ie. o constamt) which is a %apolggiuf wvoriant of the surface.

TAFT s omed physics

TAFTs posses certain feakures thok we expecd frown quantuwt 3row'vlrg.

The closed warifolds reprasemk space . T he cobordisms rv_Prue,m.L-s spoce - bime The BM)'s are the stake spoces. An ol;r,m;l:or

associated to o space—time is the time-evelution operotor (Fegnmom poth imbegral ).

Topological wmeoms +hat +these do not Ag_Pem.d on any addibioned structure on spoce — time (e.g. Riemoumian wmetric ) curvabure )
but only on the «Eopo‘ot_:,\j.

See  Basrelt (J. Mabh, Phys. Vel.3b, 1998 ) or Freed (Bullekin AMS, 2013).

Also, Milwor’s poper (Bulletin , AMS, 2015) is dafinstely worth reading. (Ne P»\\Js'\t.t)

@






LECTURE 27

The Hopf Degree Theorem

Today we are going to generalize an important result on the homotopy classes
of maps to spheres. We proved previously that there is exactly one homotopy class
of maps St — S for every integer n € Z. By our classification of one-manifolds,
we can read this also as follows:

For every compact, connected, boundaryless one-manifold X, there is exactly
one homotopy class of maps X — S! for every integer n € Z.

Today we are going to prove a generalization of this result to higher dimen-
sions. It is a famous theorem of Hopf:

The Hopf Degree Theorem

Two maps X — S* of a compact, connected, oriented, boundaryless k-
manifold X to S* are homotopic if and only if they have the same degree.

Recall that the degree of a map f: X — S* as in the theorem is defined as

deg(f) = Y sign(df.)

zef~y)

where y is a regular value of f and sign(df,) is +1 if df, preserves orientations
and —1 if df, reverses orientations. We will refer to this sign rule as our usual
orientation convention.

277
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Some Remarks on Hopf’s Theorem

e We can think of the degree as a map
Hom(X,S%),. =: [X,5%] — Z.

Hopf’s Theorem tells us that this map is injective, where ~ denotes the
homotopy relation. One can show that it is also surjective, i.e., there is
exactly one homotopy class of maps X — S* for every integer n € Z.

e For X = S* one usually rephrases this result by saying that the kth
homotopy group of S* is Z, i.e.,

m(S*) =: [S*,S"] ;= Hom(X,S"),. = Z.
e Note that the situation is different for nonorientable manifolds: Two maps

of a compact, connected, nonorientable, boundaryless k-manifold X to S*
are homotopic if and only if they have the same degree modulo 2.

\.

Now we start our march towards a proof Hopf’s theorem. We will follow the
guideline of Guillemin-Pollack as usual. But it is worth noting that there are
many different ways to prove this theorem. In particular, there is Pontryagin’s
proof as presented in Milnor’s book which introduces an extremely important
and interesting concept, called cobordism. We recommend to have a look at that
proof as well.
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Strategy for the proof of Hopf’s Theorem

Assume given two maps f; and f; from X to S*.

o Set W := X x [0,1], define f: OW — S*¥ by f:= foon X x {0} and f := f,
on X x {1}. Then deg(f) = deg(f1) — deg(fo) = 0. Moreover, a homotopy
between f; and f; is a global extension of f to V.

e Show the Extension Theorem: f: 9W — S* has a global extension
W — S*if and only if deg(f) = 0, for any compact, connected, oriented k+1-
manifold W. (We knew already: existence of global extensions = deg(f) =
0.)

e To show the Extension Theorem, use the Isotopy Lemma to move W
inside some ball B C R*"! with Int(W) C B. This reduces to checking an
extension statement on balls and spheres.

e Use winding numbers to show that a map which is homotopic to a con-
stant map on the boundary of a ball B extends to all of B.

e Show the Special Case: For f: S* — S,

deg(f) = 0= f ~ constant map.

This follows by induction on the dimension k of S*. We have shown
previously that f,g: S' — S! are homotopic if and only if deg(f) = deg(g).
The induction step is actually a zigzag argument using winding numbers.
The Isotopy Lemma is frequently used to move points into appropriate open
neighborhoods and balls.

In order to make this strategy work, we need to prove a series of technical
results. This will occupy the rest of the lecture. Two main technical ingredients
are isotopies which allow to move points, and winding numbers which help us
calculating degrees.

Isotopies and the Isotopy Lemma

We will need an important special type of homotopy which preserves more
information than homotopies in general:

An isotopy is a homotopy h; in which each map h; is a diffeomorphism,
and two diffeomorphisms are isotopic if they can be joined by an isotopy.
An isotopy is compactly supported if the maps h; are all equal to the
identity map outside some fixed compact set.
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A particular case of isotopies are linear isotopies.

Linear Isotopy Lemma

Suppose that F is a linear isomorphism of R* that preserves orientations.
Then there exists a homotopy FE; consisting of linear isomorphisms, such
that Fyp = E and F; is the identity. If F reverses orientation, then there
exists such a homotopy with E; equal to the reflection map

’/‘1(1}1, Ce ,CL'k) = (—1’1,%’2, P ,J)k).

Proof: First we remark that it suffices to deal with the case that E preserves
orientations. For if E is orientation reversing, then r; o E preserves orientations.
Then if there is a homotopy F' between r; o E and Id, then, after composing all
maps with r1, r; o F' is a homotopy between F = r; or; o F and ry.

So let E be a linear isomorphism of R* that preserves orientations. The proof
is by induction on the dimension k. We need to check two initial cases.

First, let kK = 1. Then E: RtoR is given by multiplication by a real number
A > 0. Then E; =t-1+ (1 —1t)- A is a homotopy between E = X and Id = 1.
Note that each E; is nonzero and therefore a linear isomorphsm.

Now let £ = 2 and assume that E has only complex eigenvalues. Then
E, =tE + (1 —t)Id is a linear homotopy between Id and E. Moreover, each E;
is a linear isomorphism. To show this we show that det(E;) # 0 for all ¢ € [0,1].

a b
IfE—<C d),thenweget

det(E,) = (t(a — 1)+ 1)(t(d — 1) + 1) — t?bc
=t’(a—1)(d—-1)+tla+d—2)+1—t*c
=t*(ad—bc—a—d+1)+tla+d—2)+1.

The discriminant of this quadratic equation in ¢ is
(a+d—2)*—4(ad —bc—a—d+1)
=(a+d)? —4(a+d)+4—4(ad — bc) + 4(a + d) — 4
=(a + d)? — 4(ad — bc).
But this is exactly the discriminant of the equation

t* +t(a+d) — (ad —bc) =0
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which is the characteristic polynomial (in t) of £. By assumption, this polynomial
has only complex roots, i.e. its discriminant is negative. Hence there is no real ¢
such that det(E};) = 0.

Now we show the induction step. So assume k > 2 and the assertion to be
true in all dimensions < k. Then E has either at least one real eigenvalue or
at least one complex eigenvalue. Let V' C R* be the corresponding eigenspace,
which is either one- or two-dimensional. Then F maps V into itself. Hence R¥
splits into a direct sum R*¥ = V @ W. By choosing a basis of R* consisting of a
basis of V' and one for W, we can represent £ as a matrix of the form

A B
)
(Here A is either a 1 x 1- or a 2 X 2-matrix given by the eigenvalue.)

Then we can define a linear homotopy E; by
A tB
E = (0 C) |

Since F is a linear isomorphism and the determinant is multiplicative, we
have

0 # det(F) = det(A) det(C) = det(Ey).
Thus F; is also a linear isomorphism for every t.

For t = 0, we see that Ey maps V to V by A and W to W by C. Since dim W
is strictly less than k, we can apply the induction hypothesis to C' and W and the
initial cases to A and V/, respectively. Hence we have a homotopyC; consisting of
linear isomorphisms between C' and the identity and a homotopy A; between A

and the identity. Then
A, tB
0 G

is a homotopy consisting of linear homotopies between F and the identity of R¥.

QED

The following theorem will allow us to move points on connected manifolds
via a family of diffeomorphisms. The fact that every map in the homotopy family
is a diffeomorphism makes it much easier to keep track of the orientation numbers
at preimages.
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The Isotopy Lemma

Given any two points y and z in the connected manifold Y, there exists
a diffeomorphism h: Y — Y such that h(y) = z and h is isotopic to the
identity. Moreover, the isotopy may be taken to be compactly supported.

Today we are lazy and skip the proof of this reuslt (it is in [GP] on pages 142,
143). Instead we look at a consequence which we will actually use later.

Corollary to the Isotopy Lemma

Suppose that Y is a connected manifold of dimension greater than 1, and
let {y1,...,yn} and {z1,...,2,} be two sets of distinct points in Y. Then
there exists a diffeomorphism h: Y — Y which is isotopic to the identity
with

h(yl) = Z1--- 7h(yn) = Zn-
Moreover, the isotopy may be taken to be compactly supported.

Proof of the Corollary: The proof works by induction. The Isotopy Lemma
is the case n = 1. Now we assume the corollary being true for n — 1. Then we
have a compactly supported isotopy h;: Y \ {yn,2n} — Y \ {yn,2n} such that
Ry (y;) = z; for all ¢ < n and h{ = Id.

Since dimY" > 1, the punctured manifold Y\ {y,,2,} is connected. Since the
isotopy h; has compact support, there are open neighborhoods around y,, and z,
in Y on which the A} are all equal to the identity. Hence we can extend the family
h; to a family of diffeomorphisms of Y that fix those two points.

Now we apply the induction hypothesis again to the punctured manifold
Y \{v1, -, ¥n—1,21,- - ,2n_1} and the points y,,z,.

Then we get a compectly supported isotopy h) with h{(y,) = 2, and hy = Id.
By the same argument as for h}, we can extend A} to an isotopy on all of Y such
that all h} satisfy h}(y;) = z; for all i < n. Then

he :==h} o b}
is the desired isotopy. QED

Winding numbers revisited
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As for many results on maps between spheres, the winding number is useful
concept. We used it before with values modulo 2. Today, we need an integral
version:

Integer winding numbers

Let X be a compact oriented k-dimensional smooth manifold, and let
f: X — R¥! be a smooth map. The winding number of f, denoted
W (f,2), around any point z € R¥1!\ f(X) is defined as the degree of the
map

flz) ==
|f(z) — 2|

u: X - Sk x—

As a formula:

W(f.2) = deg(u).

The winding number will be the main tool in the proof of Hopf’s theorem. In
order to exploit it effectively, we investigate some of its properties:

Step 1

Let f: U — R* be a smooth map defined on an open subset U of R¥, and
let « be a regular point, with f(x) = z. Let B be a sufficiently small closed
ball centered at =, and define Of: 9B — R* to be the restriction of f to
the boundary of B. Then we have

W(afvz) = {

+1 if f preserves orientation at z,
—1if f reerses orientation at x.

Proof: After possibly translating things, we can assume x = 0 = 2, which
keeps the notation simpler. We set A = dfy. We are going to show that W (A,0)
can be used to calculate W (0f,0). This will follow if we show that we can choose
B small enough such that there is a homotopy F;: B x [0,1] — S*~! between
Az /|Az| and Of(x)/|0f(z)|. For then

W (9f,0) = deg ( 0f(x) ) — deg <%) — W (A0).



284 THE HOPF DEGREE THEOREM

Now we are going to construct the homotopy F;. By Taylor theory, we can
write
(27) f(z) = Az + e(z), where €(z)/|x| — 0 when z — 0.
We define
fi(x) = Ax + te(x) for t € [0,1].
Then, f; is a homotopy from fy(z) = Az to fi(x) = f(x).

Since x = 0 is a regularit point, we know that A is an isomorphism. Hence
the image of the unit ball in R¥ under A strictly contains a closed ball of some
radius 7 > 0. Since every linear isomorphism is a diffeomorphism, we also know
that A maps boundaries to boundaries, i.e., S¥~! to the boundary of the closed
ball of radius r. Hence

|Az| > r for all z € S¥71.

As a consequence,
T

|Aﬂ| > c and thus |Az| > |rz| for all z € R*\ {0}.
T

Now we use (27). Since €(z)/|z| — 0 as © — 0, we can choose a ball B small
enough such that

e(z)/|z] < g for all z € 0B.

Then we have

r r
|fe(@)| = [Az| = tle(@)] > rlz] — Flz] = 5lal,

2
i.e.,|fi(x)| > 0 for all x € 0B.

Hence we can define the desired homotopy F; by

fi()

F,: 0B x [0,1] — S*, z — .
v 0B (0.1] (@)

Now we compute W (A,0). Therefor we apply the Linear Isotopy Lemma and
get that A is homotopic to the identity if it preserves orientions, and homotopic
to the reflection map (zy,...,xx) — (—z1,22,...,x)) if it reverses orientations.
In the former case, we have W(A,0) = +1, and in the latter case W (A,0) = —1.
QED

This result determines how local diffeomorphisms can wind. Now we are going
to use this information to count preimages.



THE HOPF DEGREE THEOREM 285

Step 2

Let f: B — R* be a smooth map defined on some closed ball B in RF.
Suppose that z is a regular value of f that has no preimages on the boundary
sphere 0B, and let df: OB — R be its restriction to the boundary. Then
the number of preimages of z, counted with our usual orientation convention,
equals the winding number W (0f,z).

Proof: By the Stack of Records Theorem, we know that f!(z) is a finite set
{x1,...,2,}, and we can choose disjoint balls B; around each z;. Since f!(z) is
disjoint from 9B by assumption, we can shrink these balls such that B;N9B = ()
and so that each B; is sufficiently small so that Step 1 can be applied.

Let Of; = flop,- Then Step 1 implies that the number of preimage points,
counted with our usual orientation convention, equals Y ", W(df;,z2).
Let B’ := B\ U;B; and consider the map
flz) —=
[f(z) = 2]
Since f(z) # z on B’, this map extends to all of B’. This implies

W (fiom:2) = deg(u) = 0.

w: OB — SF g LT

The orientations of the boundaries are related by
OB' = 0B U, (—0B;).
This implies

W(f|8B’>Z) af: ZW a.fm

Hence in total we get W(df,2) = > 7", W((?fi,z). QED

Step 3

Let B be a closed ball in R¥, and let f: R*\ Int(B) — Y be a smooth map
defined outside the open ball Int(B). Let df: 9B — Y be the restriction
to the boundary. Assume that df is homotopic to a constant map. Then f
extends to a smooth map defined on all of R* into Y.

Proof: For simplicity, we assume that B is centered at 0. Then we can write
every non-zero point x € B uniquely as x = ty for some y € dB and some
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t € [0,1]. By assumption, there is a homotopy ¢;: 0B — Y with ¢; = df and g¢q
being a constant map.

Now we define the map F: R¥ — Y by setting

Fle) = f(z) if z € R*\ Int(B)
| g(z) if x € Bandz =ty for some y € 9B and t € [0,1].

Note that F is well-defined on R* \ Int(B), since f and g; agree on OB =
BN (R¥\Int(B)) where we have f = 0f = g;. Note also that F'(0) is well-defined
as the constant value of gg.

Now it remains to use smooth bump function to turn £’ into a smooth homo-
topy (it is already smooth except, possibly, on 0B). QED

The Special Case

Any smooth map f: S¥ — S* having degree zero is homotopic to a con-
stant map.

The special case implies:

Any smooth map f: S¥ — RF1\ {0} having winding number zero with
respect to the origin is homotopic to a constant map.

Proof of the Corollary: By assumption, the degree of the map ﬁ is zero.

By the special case, this implies that L is homotopic to a constant map. But £

|f] I£]
and f are homotopic via the homotopy

F: 8% x[0,1] — RN\ {0}, (z,t) — tf(z) + (1 — t)i

/]

Since homotopy is a transitive relation, f is also homotopic to a constant map.
QED

Proof of the special case:
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The proof is by induction on the dimension k. We have established the case
k =1 in a previous lecture. So we assume the special case being true for k£ — 1
and want to deduce it for k.

We need to prove a lemma first:

Let f: R¥ — R* be a smooth map with 0 as a regular value. Suppose that
f71(0) is finite and that the number of preimage points in f~1(0) is zero
when counted with the usual orientation convention. Assuming the special
case in dimension k — 1. Then there exists a map g: R¥ — R\ {0} such
that ¢ = f outside a compact set.

In particular, the homotopy tf + (1t)g from g to f is constant outside this
compact set.

Proof: Since f71(0) is a finite, we can choose a ball B centered at the origin
with f71(0) C Int(B). By assumption, the number of preimages is zero when
counted with the usual orientation convention. By Step 2, the map 0f: 0B —
R*\ {0} has winding number zero. Since 9B is diffeomorphic to S*~1 so df is a
map from ¥~ to R*\ {0}.

Since we are assuming the special case being true in dimension k£ — 1, we can
apply its corollary in that dimension. Thus, df is homotopic to a constant map.
Hence

frevmes) s R\ Int(B) — R*\ {0}
is a map to which we can apply Step 3. This implies that f extends to a smooth
map g: R¥ — R*\ {0} with f = g outside the compact space B. QED

Now we get back to the proof of the special case, and we are given a smooth
map f: S* — S* with deg(f) = 0.

The idea of the proof is to show that f is homotopic to a map h: S*¥ —
S*\ {b}, where b is some point in S*. But S*\ {b} is diffeomorphic to R* via
stereographic projection (from b). Since R¥ is contractible, this implies h is
homotopic to a constant map. Then f is also homotopic to a constant map.

So we need to show:

Claim: f is homotopic to a smooth map g: S¥ — S\ {b}.
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By Sards Theorem, we can choose distinct regular values a and b of f. By the
Stack of Records Theorem, the preimage sets are finite, say f~'(a) = {a1,...,a,}

and f71(b) = {by,...,bm}-

Moreover, we can find an open neighborhood U of a; such that U is diffeo-
morphic to R* via a diffeomorphism a: R¥ — U and such that b; ¢ U for all
1=1,...,m.

Since k > 1, we can apply the corollary of the Isotopy Lemma to the points
{ag,...,a,} in Y := S*\ {b} to get a diffeomorphism which is isotopic to the
identity, compactly supported, and moves the points a; into U.

Since homotopy is a transitive relation, we can therefore assume that U is an
open neighborhood of f~!(a) with b ¢ f(U).

Now let 3: S¥\ {b} — R be a diffeomorphism with 3(a) = 0. Then
Bofoa:RF S UL g\ (b} 5 R

is a smooth map from R* to R¥. Since a is a regular value of f, 0 is a regular
value of 8o foa. Moreover, since f~1(a) is finite, (8o foa)~1(0) is finite as well.

Now we use the assumption deg(f) = 0. For this means that the number
of preimages of ¢ under f is zero when counted with our usual orientation
convention. Hence the number of preimages of 0 under fSo f o« is zero when
counted with the usual orientation convention.

Thus, we can apply the lemma to S o f o a: R¥ — RF and get a map
g: R¥ — R¥\ {0} such that ¢ = 8o f o a outside a compact set B and g is
homotopic to 8o f o a on R¥.

Since o and 3 are diffeomorphisms, this implies that f is homotopic to
B~togoa~t as amap from U to S*\ {b}.

Since g = o f o« outside B, we have

Blogoat=fonU\a(B).

Thus, the map
h: S% — SF\ {b}
defined by setting

- f on S¥\ a~(B)
|8 togoat ona'(B)
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is smooth, and h is the desired map homotopic to f. This proves the special case.
QED

Towards proof of Hopf’s theorem

Now we are almost ready to prove Hopf’s result.

Extending maps to Euclidean spaces

Let W be a compact smooth manifold with boundary, and let f: OW — RF
be a smooth map. Then f can be extended to a globally defined map
F: W — R

Proof: As always we assume that W is a subset of some RY. Since W
is compact, it is a closed subset of RY, and so is OW. Since f is a smooth
map defined on a closed subset of RY, it may be locally extended to a smooth
map on open sets. Since W is compact and boundaryless, we can apply the
e-Neighborhood Theorem to extend f to a map F' defined on a neighborhood
U of OW in RV.

Now we choose a smooth bump function p that is constant 1 on W and 0
outside some compact subset of U.

Then we can extend f to all of W by letting it be
p - F on U, and 0 outside of U.

This is a smooth function defined on all of RY with values in R* and being
f=1-FonodW. QED

Now we apply this lemma to maps with values in spheres:

Extension Theorem

Let W be a compact, connected, oriented k+1-dimensional smooth manifold
with boundary, and let f: W — S* be a smooth map. Then f extends to
a globally defined map F': W — S* with OF = f if and only if deg(f) = 0.

Proof: We already know that if f can be extended to all of W, then deg(f) =
0. It remains to show the opposite direction.

So let f be as in the thereom, and assume deg(f) = 0. By the previous
lemma, we can extend f to a smooth map F': W — RFT!. By the Transversality
Extension Theorem, we can assume that 0 is a regular value of F. Since W
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is compact of dimension k + 1, we know that F~1(0) is a finite set. Hence we
can apply the corollary to the Isotopy Lemma to this finite set, and move F~1(0)
inside Int(B) where B is a closed ball contained Int(W).

In particular, since F~1(0) C Int(B), the map % extends to W’ := W\Int(B).

Hence
F F
W (_,o) _ deg (_) o
| F| | F|

On the other hand, we know by our assumtpion that
W (Flow,0) = W(f,0) = deg(f) =0,
where we use f = f/|f|, since f has values in S*.
Now let
OF = Fyp: 0B — R*\ {0}

be the restriction to the boundary. By the definition of W’ and boundary orien-
tations, we have

W' = (OW) U (-0B).

Hence we get
W (Fow,0) = W (Flaw ,0) — W (Flap,0)
and therefore W (Fjpp,0) by our previous observations.

Now the corollary to the special case implies that OF' is homotopic to a con-
stant map. By Step 3, this implies that OF extends to a map G: W — R¥1\ {0}.
Then the map ‘—g|: W — S* is the global extension of f. QED

And, finally, the last step:

Proof the Hopf Degree Theorem: Let f; and f; be two maps X — S*
and let W := X x [0,1]. We define a map f: OW — S* by setting

f= fo on X x {0}
- fl ODXX{].}.

By the Extension Theorem, f extends to a map on all of W if and only if
deg(f) = 0. By definition, such an extension would be a homotopy between f
and f;. Thus we have

Jo~ fi <= deg(f)=0.
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It remains to relate deg(f) to deg(fy) and deg(f1). But, since OW = (X X
{1}) U (X x {0}) with the opposite orientation on X x {0}, it follows that

deg(f) = deg(f1) — deg(fo).
Thus

fo~ fi = deg(f1) = deg(fo).
QED






Bibliography

[1] Victor Guillemin and Alan Pollack, Differential topology, AMS Chelsea Publishing, Provi-
dence, RI, 2010. Reprint of the 1974 original. MR2680546

[2] William Fulton, Algebraic topology, Graduate Texts in Mathematics, vol. 153, Springer-
Verlag, New York, 1995. A first course. MR1343250

[3] John M. Lee, Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics,
vol. 218, Springer, New York, 2013. MR2954043

[4] John W. Milnor, Topology from the differentiable viewpoint, Princeton Landmarks in Math-
ematics, Princeton University Press, Princeton, NJ, 1997. Based on notes by David W.
Weaver; Revised reprint of the 1965 original. MR1487640

[5] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press,
Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies,
No. 76. MR0440554

[6] James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second
edition of [ MR0464128]. MR3728284

[7] Loring W. Tu, An introduction to manifolds, 2nd ed., Universitext, Springer, New York,
2011. MR2723362

293






APPENDIX A

Exercises

1. Exercises after Lecture 3

Show that every k-dimensional vector subspace V of RY is a manifold
diffeomorphic to R* and that any linear map V — R™ is smooth.
(Remember that choosing a basis for V' corresponds to choosing a linear
isomorphism ¢: R¥ — V. Expressing a vector in V' in terms of this basis,
means to attach coordinates to this vector. Since ¢ is linear, we refer to
the corresponding coordinates as linear coordinates.)

a) Prove that the subspace of R?, defined by 2% + y* — 22 = q, is a
manifold if a > 0.
b) Explain why z? + y? — 22 = 0 does not define a manifold.

=
X—V
a,

t q
l I wg :"431'-2!& 1 e -\"‘I‘: -E't=¢

mifi'( > wst amu‘}{{
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The torus T'(a,b) is the set of points in R? at distance b from the circle
of radius a in the zy-plane, where 0 < b < a. Prove that each T'(a,b) is
diffeomorphic to S' x S* ¢ R*. What happens when b = a?

Let N = (0,...,0,1) € S*¥ be the “north pole” on the k-dimensional
sphere. The stereographic projection ¢! from S*\ {N} onto R* is the
map which sends a point p to the point at which the line through N and
p intersects the subspace in R**! defined by x4 = 0. (See the picture

for k = 2.)
a) Show that ¢ is given by the formula
1
(1]1, R ,l‘k+1) — m(xl, R ,ZL’k>.

b) Find a formula for the inverse ¢y of ¢]’V1, and check that both maps
are smooth.

c) Let S = (0,...,0,— 1) € S*¥ be the “south pole”. Describe the
parametrization using the stereographic prjoction starting in S in-
stead of N, and conclude that S* is a k-dimensional manifold.
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2. Exercises after Lecture 4

Let V be a vector subspace of RY. Show that T,(V) =V for z € V.

Determine the tangent space to the torus S* x S* C R* at an arbitrary
point p. Recall the description of the torus T'(a,b) C R? from the previous

exercise set. Can you describe the tangent space at a point in 7'(a,b) C
R3?

Determine the tangent space to the subspace of R? defined by 22 4 y? —
2? = a at (1/a,0,0) for a > 0.

The graph of a map f: X — Y is the subset of X x Y defined by
I'(f)=A(z,f(x)) e X xY :2 € X}

Define F': X — I'(f) by F(z) = (z,f(x)). We assume that X and Y are
smooth manifolds and f is a smooth map.
a) Show F' is a diffeomorphism, and conclude that I'(f) is a smooth
manifold.
b) We also write F' for the composite map F': X — X XY, z —
(x,f(z)). Show that dF,(v) = (v,df,(v)). (You can use T(, (X x
Y) = T,(X) x T,(Y).)
c) Show that the tangent space to I'(f) at the point (x,f(x)) is the
graph of dfy: Top(X) = Ty (Y).

A curve in a manifold X is a smooth map ¢ — ¢(t) of an open interval
of R into X. The velocity vector of the curve ¢ at time ¢ in zq = ¢(to)
-denoted simply de/dt(ty) - is defined to be the vector de, (1) € Ty, (X),
where dey,: RY — T, (X).

a) For X = R¥ and c(t) = (c1(t), ..., ck(t)), show that

de
dt
b) For an arbitrary k-dimensional smooth manifold, use the above ob-
servation and local parametrizations to prove that every vector in

T, (X) is the velocity vector of some curve in X.
Aside: This shows that there is a unique correspondence between
tangent vectors at o € X and velocity vectors at ¢y of curves ¢: [ — X
with ¢(ty) = x9. Note that two curves ¢;: I — X and ¢: J — X,

(to) = dey, (1) = (dy(to), . . . ,ci(to)) € Ty, R
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with I and J open in R, have the same velocity vector in ¢;(t;) = xy =
ca(te) if d(c1)e, (1) = d(ca)i,(1) € Ty (X). One can show that having
the same velocity vector in a point of X is an equivalence relation the
set of curves through zy in X. Using this relation, we have shown that
there is a unique correspondence between tangent vectors at X in x and
equivalence classes of smooth curves through z in X.
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3. Exercises after Lecture 6

Let A: R — R” be a linear map, and b € R". Show that the mapping
fiR*" > R" z+— Ax+0b

is a diffeomorphism of R" if and only if A is invertible.

Show that the map
f:R* = R3 (s,t) = ((2 + cos(2ms)) cos(27t), (2 + cos(27s)) sin(2nt), sin(27s))

is an immersion. Is it an embedding?

Let 7, be the curve on the torus defined by
Vo R — Sl % Sl, t (627rit7627riat)

where we consider S! as a subset of C = R?. Show that ~, factors
through an embedding S — S* x S when « is rational, i.e. find a map
ga: St — S x S! which is an embedding such that ~, is the composite
of the map R — S, t — ¥ followed by g,.

Consider the map f: (0,37/4) — R?, t > sin(2t)(cost, sint).

a) Show that f is an immersion.

b) Let Im (f) = f((0,37/4)) C R? be the image of f (considered as a
subspace in R?). Show that f: (0,37/4) — Im (f) is not a homeo-
morphism. (Draw a picture of the image of f.)

c) To test your understanding answer the following questions (and give
reasons for your answer):

e What is the difference between Im (f) and the graph I'(f)?

e Is the map F: (0,37/4) — (0,37/4) x R*, t — (¢,f(t)), an
embedding?

e Would f be an embedding if it was defined on the closed in-
terval [0,37/4]?

e Is the map g: (0,37/4) — R3 ¢ + sin(2t)(cost,sint,t) an
embedding?

e Is the map h: [0,37/4] — R3¢ — (sin(2t) cost, sin(2t) sin t,2t)
an embedding?

Let X be an n-dimensional smooth manifold, Z be a k-dimensional
smooth submanifold of X, and let z € Z. Show that there exists a
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local coordinate system (z1, ...,z,) defined in a neighborhood U of z in
X such that Z N U is defined by the equations xx1 =0,...,2, =0, i.e.
Z N U is the subset of points in U for which the functions xg.q,...,z,
all vanish.



4. EXERCISES AFTER LECTURE 8 301

4. Exercises after Lecture 8

Let f: X — Y be a submersion and U an open subset of X. Show that
f(U) is open in Y. (In other words, submersions are open maps.)

a) If X is compact and Y connected, show that every (nontrivial) sub-
mersion f: X — Y is surjective. (Recall that a space Y is called
connected if Y cannot be written as the union of two nonempty dis-
joint open subsets; or equivalently, if Y and () are the only subsets
which are both open and closed in Y).

b) Show that there exist no submersions of compact manifolds into R”
for any n.

Show that the orthogonal group O(n) is compact. (Hint: Show that if
A = (ay;) lies in O(n), then for each i, >~ a7, = 1.)

Show that the tangent space to O(n) at the identity matrix I is the
vector space of skew symmetric n X n-matrices, i.e. matrices B satisfying
Bt = —B.

Prove that the set R; of all 2 x 2-matrices of rank 1 is a three-dimensional
submanifold of R* = M (2). (Hint: Show that the determinant function
is a submersion on the manifold of nonzero 2 x 2-matrices M(2) \ {0}.)
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5. Exercises after Lecture 10

a) Show that a local diffeomorphism f: X — Y which is bijective is a

diffeomorphism.

b) Show that a local diffeomorphism f: X — Y which is one-to-one is
a diffeomorphism of X onto an open subset of Y.

c) Show that a bijective smooth map f: X — Y of constant rank is a
diffeomorphism.
(Comment: You can assume that f is a submersion to simplify
things. If you want to challenge yourself, you could only assume
that X is compact. Showing that f also is a submersion in general
requires the use of Baire’s category theorem.)

d) Show that a bijective Lie group homomorphism is a Lie group iso-
morphism.

Show that an open subgroup H, i.e. a subgroup which is also an open
subset, of a connected Lie group G is equal to G.

Let G be a Lie group and let e € G be the identity element.

a) Let u: G x G — G denote the multiplication map, and let g,h € G.
Recall that we denote by L, the left translation in G by g, and by R},
the right translation by h. Using the identification T, ) (G x G) =
T,(G) x T(G), show that the differential of u at (g,h)

dﬂ(g,h): Tg(G) X Th(G) — Tgh(G)
is given by
dpien) (X,Y) = dpi(gn)(X,0) + dpi(gn)(0.Y) = d(Rp)g(X) + d(Lg)n(Y).

(Hint: Calculate dji(g ) (X,0) and dpi(gp)(0,Y) separately.)

b) Let ¢: G — G denote the inversion map. Show that di.: T.(G) —
T.(G) is given by di.(X) = - X.

c) Use the previous point to show that, for any g € G, the derivative
of ¢ at ¢ is given by

dig: Ty(G) = Ty-1, Y = —d(Ry-1)e(d(Ly-1)4(Y)) for all Y € Ty (G).

Show that for any Lie group G, the multiplication map u: GX — G is a
submersion.
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Show that the differential of the determinant map det: GL(n,R) — R at
A e GL(n,R) is given by

d(det)4(B) = (det A) - (tr A™'B) for all B € M(n).
In particular, d(det)4(AB) = (det A) - (tr AB) for all B € M(n).
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6. Exercises after Lecture 12

As a first test of our understanding of transversality, answer the following
questions:
a) Let z = (ab) € S' C R? and let N, = {(a,y) : y € R} be the
vertical line intersecting the circle at z. When is S* C R? transverse
to N, C R??
b) Which of the following linear spaces intersect transversally?
e The plane spanned by {(1,0,0), (2,1,1)} and the y-axis in R3.
e R¥ x {0} and {0} x R" in R". (The answer depends on k, [,
and n.)
e IV x {0} and the diagonal in V' x V| for a real vector space V.
e The spaces of symmetric (A" = A) and skew symmetric (A" =
—A) matrices in M(n).
c) Do SL(n) and O(n) meet transversally in M (n)?

a) Let f: X — Y be amap transversal to a submanifold Z in Y. Then
we know that W = f~1(Z) is a submanifold of X. Prove that T, (W)
is the preimage of Tj;)(Z) under the linear map df,: T,(X) —
Ty (V).

b) Let X and Z be transversal submanifolds of Y. Deduce from the
previous point that, for every y € X N Z,

T, (X NZ)=T,(X)NT,(Z).

Let V be a vector space, and let A be the diagonal of V' x V. For a linear
map A: V — V| consider the graph I'(A) = {(v, Av) : v € V}. Show
that I'(A) M A if and only if 41 is not an eigenvalue of A.

Let f: X — X be a map, and let = be a fixed point of f, i.e. f(z) = z.
If +1 is not an eigenvalue of df,: T,(X) — T,(X), then z is called a
Lefschetz fized point of f. The map f is called a Lefschetz map if all its
fixed points are Lefschetz. Prove that if X is compact and f is Lefschetz,
then f has only finitely many fixed points.

(Hint: Show that the intersection of the graph of f and the diagonal
of X is a 0-dimensional submanifold of X x X.)
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Consider the following intersections in C° \ {0}:
Si={+am+a+ 4+ =00 {[al’ + ol + [ + 2 + |2 = 1},

Show S} is a 7-dimensional submanifold by showing that the inter-
section is transversal in C°\ {0}.

(Hint: At some point you may want to show that, at a point z =
(21,...,25), the vector w := (%F21,% 22,% 23,% 24, g5 %5), With m :=2-3-
(6k — 1), lies in one of the tangent spaces but not in the other.)



306

EXERCISES

7. Exercises after Lecture 13

A manifold X is contractible if its identity map is homotopic to some
constant map X — {x} where z is any point of X.
a) Show that if X is contractible, then all maps of an arbitrary manifold
Y into X are homotopic.
b) Conversely, show that if all maps of an arbitrary manifold Y into X
are homotopic, then X is contractible.
c) Show that R is contractible.

A manifold X is simply connected if it is connected and if every smooth
map from the circle St into X is homotopic to a constant map. Show that

all contractible spaces are simply connected. (Note that the converse is
false.)

Show that the antipodal map S* — S*, x — —=z, is homotopic to the
identity if k£ is odd. (We will see later that this is not true if n is even.)
(Hint: Start off with k& = 1 by using the linear maps defined by

0,1] = M(2), t - <cos(7rt) —sin(mﬁ)) )

sin(wt)  cos(mt)

Show that every connected manifold X is path-connected, i.e. given any
two points xg,z1 € X, there exists a smooth curve f: [0,1] — X with
£(0) = 2o and f(1) = ;.

(Hint: Use the fact that homotopy is an equivalence relation to show
that the relation “xy and x; can be joined by a smooth curve” is an
equivalence relation on X. Then show that the equivalence classes are
both open and closed subsets of X.)
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8. Exercises after Lecture 15

Recall that a manifold X is simply connected if it is connected and if
every smooth map of the circle S into X is homotopic to a constant
map. Prove that the sphere S* is simply connected if k¥ > 1. (Hint: If
f: St — S*¥and k > 1, Sard’s Theorem gives us a point p ¢ f(S!). Now
use stereographic projection.)

Show that the determinant function on M (n) is a Morse function if n = 2,
but not if n > 2. (Hint: To find the partial derivatives of det, one can
use Laplace’s formula for the determinant: for any fixed 7,

n

det(A) =) “(—1)"ay; - det(Aj;)

=1

where A;; is the submatrix of A with ith row and jth column removed.
Check if the zero matrix is nondegenerate.)

Show that the “height function” h: S* — R, (z1,...,2k41) > Tpyp1 ON
the k-sphere S* is a Morse function with two critical points, one of which
is a maximum and the other a minimum.

A vector field on X is a smooth section of 7: T'(X) — X, i.e. a smooth
map o: X — T(X) such that oo = Idy. An equivalent way to describe
such a section is to give a map s: X — RY such that s(x) € T,(X) for
all z (with correspinding o(x) = (z,s(x))). A point z € X is a zero of
the vector field o if o(x) = (2,0) or equivalently s(z) = 0.

a) Show that if k is odd, there exists a vector field on S* having no
Z€TOS.
(Hint: For k =1, use (x1,22) — (—x2,21).)

b) Prove that if S* has a vector field which has no zeros, then its
antipodal map x — —z is homotopic to the identity.

(Hint: Show that you may assume |s(x)| = 1 everywhere. Now
contemplate about (cos(wt))x + (sin(nt))s(x) when t varies from 0
to 1.)

c) Show that if k is even, then the antipodal map on S* is homotopic
to the reflection map

r. Sk — Ska (xh R ,I‘k+1) = (_.731,1}'2, s Jxk+1>‘
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(Hint: Consider also the reflections 7;(xy,... . xx41) = (T1,..., —
Tiy ..., Tks1). Show that r; o 7,11 is homotopic to the identity on
Sk

Let X be the set of all straight lines in R? (not just lines through the
origin).
a) Show that X is an abstract smooth 2-manifold by showing that we
can identify X with an open subset of the real projective plane RP2.
(Here we use that open subsets of abstract smooth k-manifolds are
again abstract smooth k-manifolds.)
b) Show that there is a bijection bewtween X and the set of equivalence
classes

(S* x R)/ ~
where ~ is the equivalence relation defined by

(s,x) ~ (y,t) <= t=+sand y = z.
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9. Exercises after Lecture 17

If U ¢ R¥ and V C HF are open neighborhoods of 0, prove that there
exists no diffeomorphism of V' with U. (Hint: Inverse Function Theo-
rem.)

Prove that if f: X — Y is a diffeomorphism of manifolds with boundary,
then df maps 0X diffeomorphically onto dY. (Hint: Inverse Function
Theorem.)

We define the smooth maps

F:Rx[-1/2,1/2] — R?, (t,s) —(cost,sint,s), and
G: R x [-1/2,1/2] = R? (t,5) = ((1+ scos(t/2)) cost,(1 + scos(t/2)) sint,ssin(t/2)).

We define X to be the image of F'in R?, and Y to be the image of G in
R3.

a) Show that X is a 2-dimensional manifold with boundary whose
boundary is diffeomorphic to the disjoint union of two copies of
the unit circle. (Convince yourself that X is a cylinder obtained by
starting with a rectangular surface and then glueing two opposite
edges together.)

b) Show that Y is a 2-dimensional manifold with boundary whose
boundary is diffeomorphic to just one copy of the unit circle. (Con-
vince yourself that Y is a Mobius band obtained by starting with a
rectangular surface and then glueing two opposite edges after twist-
ing one edge once. If you do not get through all the formulae, make
sure you understand the answer visually at least.)

Suppose that X is a manifold with boundary and x € 0X. Let ¢: U — X
be a local parametrization with ¢(0) = =z, where U is an open subset
of HE. Then dgy: R¥ — T,(X) is an isomorphism. Define the upper
halfspace H,(X) in T,(X) to be the image of H* under dgy, H,(X) :=
ey ().

a) Prove that H,(X) does not depend on the choice of local parametriza
tion.

b) Show that there are precisely two unit vectors in 7,(X) that are
perpendicular to 7, (0X) and that one lies inside H,(X), the other
outside. The one in H,(X) is called the inward unit normal vector
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to the boundary, and the other is the outward unit normal vector
to the boundary. Denote the outward unit normal vector by n(x).

c) If X C RY, we consider n(z) as an element in R and get a map
n: 90X — RY. Show that n is smooth.

LetX:{(:)s,y)E]R2::172—1},Y:]Rand
fi1 X =Y, (zy) = 2* + 2

a) What is the boundary of X7 Show that 1 is a regular value of f. Is
1 a regular value of 0f7

b) Determine f~1(1), d(f~*(1)) and f~1(1)NOX. Why does the answer
not contradict the assertion of the Preimage Theorem for manifolds
with boundary?
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10. Exercises after Lecture 19

Prove the Theorem of Perron-Frobenius: An n x n-matrix A with only
nonnegative entries, must have a real nonnegative eigenvalue.

(Hint: Tt suffices to assume A nonsingular, otherwise O is an eigen-

value. Let A also denote the associated linear map of R™, and consider

the
the

map v — Av/|Av| restricted to S"~' — S"~1. Show that this maps
first quadrant

Q = {('Tla s ,an) S Snil : all Z; Z 0}

into itself. Now use the fact that there is a homeomorphism B"~! — (),
to get a continuous map B"~! — B"7 1))

Let

the

3] a)

b)

Let

X and Y be submanifolds of RYY. Show that for almost every a € RY
translate X + a intersects Y transversally.

Let Y be a compact submanifold of RM, and w € RM. Show that
there exists a (not necessarily unique) point y € Y closest to w,
and prove that w —y € N,(Y). (Hint: If ¢(¢) is a curve on Y with
¢(0) = y, then the smooth function |w — ¢(¢)|* has a minimum at
0. Now use that we have shown on Exercise Set 2 that there is a
unique correspondence between tangent vectors at y and velocity
vectors at 0 of curves ¢: (—a,a) — Y with ¢(0) = y.)

Use the previous point to show: Let Y be a compact submanifold of
RM and w € RM. Let h: N(Y) — RM, h(y,v) = y + v, be the map
used in the proof of the e-Neighborhood Theorem in the lecture. We
know that A maps a neighborhood of Y in N(Y") diffeomorphically
onto Y C RM_ where € > 0 is constant. Prove that if w € Y, then
7(w) is the unique point of Y closest to w, where 7 = o o h™1.

X be a submanifold of RY. Show that “almost every” vector space

V of any fixed dimension k in RY intersects X transversally, i.e.

V + T, (X)=R" for every z € X.
(Hint: Use the fact that the set S C (RN )k consisting of all linearly

independent k-tuples of vectors in RV is open in RV*. Show that the
map R* x S — RY defined by

s a

((tl, .. ,tk),Ul, . ,Uk) — tﬂ]l + .. —|—tk’l}k

submersion, and apply the results of the lecture. )
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This is a harder problem, but it is an interesting application of the
Transversality Theorem and e-neighborhoods. So try it!
a) Suppose that f: R” — R™ is a smooth map with n > 1, and let

b)

K C R"™ be compact and ¢ > 0. Show that there exists a map
g: R" — R™ such that dg, is never 0, and |f(z) — g(x)| < € for all
reK.

(Hint: Let M(n) be the space of n x n-matrices. Show that the
map F': R" x M(n) — M(n), defined by F(z,A) = df, + A, is a
submersion. Pick A so that Fy M {0} for Fu: z — (x,A) as in
the lecture. Now use this knowledge to construct g. At some point
along this way you will have used n > 1. Make sure you see where
and how it has been used.)

Show that this result is false for n = 1 (i.e., find f, ¢, K C R such
that we cannot find such a g).

(Hint: You could contemplate on the Mean Value Theory.)
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11. Exercises after Lecture 21

Show that there exists a complex number z such that

2"+ cos(|z[*) (1 +932*) = 0.

a) Assume dim X > 1: Show hat if f: X — Y is homotopic to a
constant map, then I1(f,Z) = 0 for all complementary dimensional
closed submanifolds Z in Y.

(Hint: Show that if dim Z < dim Y, then f is homotopic to a con-
stant X — {y}, where y ¢ Z.

b) For dim X = 0, show that this assertion is wrong. (If X is one point,
for which Z will I,(f,Z) # 07)

c) Show that S! is not simply-connected. (Recall that we call a man-
ifold X simply-connected if it is connected and if every map of the
circle S* into X is homotopic to a constant map.)

(Hint: Consider the identity map.)

a) Show that intersection theory is trivial in contractible boundary-
less manifolds: if Y is boundaryless and contractible (i.e. its iden-
tity map is homotopic to a constant map) and dimY > 0, then
L(f,Z) =0forevery f: X — Y, X compact and Z closed, dim X +
dim Z = dimY. In particular, intersection theory is trivial in Eu-
clidean space.

b) Prove that no compact boundaryless manifold - other than the one-
point space - is contractible.

(Hint: Apply the previous point to the identity map.)

a) Let f: X — S* be a smooth map with X compact and 0 < dim X <
k. Show that, for all closed submanifolds Z C S* of dimension
complementary to X, Ir(f,Z) = 0.

(Hint: Use Sard’s Theorem to show that there existsap ¢ f(X)NZ.
Now use stereographic projection and the previous exercises.)
b) Show that S? and the torus T'= S' x S! are not diffeomorphic.

a) Two compact manifolds X and Z of the same dimension in Y are
called cobordant in Y if there exists a compact manifold with
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boundary W C Y x [0,1] such that

oW =X x{0}uZ x{1}.

The manifold W is also called a cobordism between X and Z.
Show that if we can deform X into Z, i.e. if there is a smooth ho-
motopy from the embedding ig: X — Y of X in Y to an embedding
i1: X — Y with 7;(X) = Z such that each 7; is an embedding, then
X and Z are cobordant.

Note that the standard image of a cobordism, a pair of pants, il-
lustrates that the converse is false: X and Z are cobordant, but
we cannot deform X into Z, since X has one connected component
whereas Z has two.

X

Wewa cdodi
MMXM )

"‘/ buf we ceccwet efouss,
X ik

Show that if X and Z are cobordant in Y, then for every compact
submanifold €' in Y with dimension complementary to X and Z, i.e.
dim X +dimC = dimZ + dimC = dimY (where dim X = dim Z
because they are cobordant), we have

L(C.X) = L(C,Z).

(Hint: Let f be the restriction to W of the projection map Y X
[0,1] — Y, and use the Boundary Theorem.)

@ Let p1,...,p, be real polynomials in n + 1 variables. Assume each p;
is homogeneous of odd order, i.e. there is an odd number m; such that
pi(Az) = A"ip;(x) for all A € R. We consider each p; also as a smooth
function R"** — R by sending z to p;(x).
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Show that there is a line through the origin in R"*! on which all the
p;’s simultaneously vanish.
(Hint: Read Lecture 21 carefully.)

Let St = {(z,y) € R? : 22 + y*> = 1} be the unit circle and S? =
{(z,y,2) € R®: 2% + y* + z* = 1} be the two-dimensional sphere.
Show that there is no continuous map f: S* — S with f(—p) =
—f(p) for all p € 52
Hint: Assume such a map f existed. Then we could define the con-
tinuous map

g: B ={(zy) eR*:2” + > <1} = S', g(zy) := f(zy,\/1— 22 — y?).

Show that g satisfies g(—q) = —g(q) for all ¢ € S* = 9B% What is the
degree modulo 2 of g7 Conclude that f cannot exist.
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12. Exercises after Lecture 22

Let 8 = (v1,...,u) be an ordered basis of a vector space V.

a) Show that replacing one v; by a multiple cv; yields an equivalently
oriented ordered basis if ¢ > 0, and an oppositely oriented one if
c<0.

b) Show that transposing two elements, i.e., interchanging the places
of v; and v; for i # j, yields an oppositely oriented ordered basis.

c) Show that subtracting from one v; a linear combination of the others
yields an equivalently oriented ordered basis.

d) Suppose that V' is the direct sum of V; and V,. Show that the direct
sum orientation of V from V; @ V4 equals (—1)@mVi(dimV2) timpeg
the orientation from V5 @ V.

The upper half space HF is oriented by the standard orientation of R¥.
Thus OH* acquires a boundary orientation. But OH* may be identified
with R¥~1. Show that the boundary orientation agrees with the standard
orientation of R*~! if and only if k is even.

a) Write down the orientation of S? as the boundary of the closed unit
ball B3 in R?, by specifying a positively oriented ordered basis for
the tangent space at each (a,b,c) € S2.

b) Show that the boundary orientation of S* equals the orientation of
S* = g71(1) as the preimage under the map

g: R S R 2 |z)?

Suppose that f: X — Y is a diffeomorphism of connected oriented man-
ifolds with boundary. Show that if dfy,: T,(X) — Ty (Y) preserves
orientation at one point x, then f preserves orientation globally.

Let X and Z be transversal submanifolds in ¥ and assume X, Z and Y
are oriented. Let ¢: X — Y be the inclusion of X into Y, j: Z — Y
be the inclusion of Z into Y. We orient the intersection X N Z as the
preimage i~'(Z), and the intersection Z N X as the preimage j~(X).
Show that the orientations of X N Z and Z N X are related by

XNZ= (_1>(CodimX)(codimZ)Z N X.
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(Hint: Show that the orientation of S = X N Z at any y is induced by
the direct sum

(Ny<S>X) ® Ny(SvZ)) ©® Ty(S) = Ty<Y>-
What happens when you consider Z N X instead?)

@ a) Let V be a vector space. Show that both orientations on V' define
the same product orientation on V' x V.

b) Let X be an orientable manifold. Show that the product orientation
on X X X is the same for all choices of orientation on X.

c) Suppose that X is not orientable. Show that X x Y is never ori-
entable, no matter what manifold Y may be. In particular, X x X
is not orientable.

(Hint: First show that X x R™ is not orientable, and then use that
every Y has an open subset diffeomorphic to R™.)

d) Prove that there exists a natural orientation on some neighborhood
of the diagonal A in X x X, whether or not X can be oriented.
But note that A itself is orientable if and only if X x X is orientable.
Why?

(Hint: Cover a neighborhood of A by local parametrizations ¢ X
¢: UxU — X x X, where ¢: U — X is a local parametrization of
X, then apply the previous observations.)
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