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(i)

§0. Introduction
S e——

These are notes for lectures of John Milnor that were given
as a seminar on differential topology in October and November,

1963 at Princeton University.

Iet W be a compact smooth manifold having two boundary
components V and V' such that V and V' are both deform-

ation retracts of W. Then W 1is said to be a h-cobordism

between V and V' ., The h-~-cobordlism theorem states that if in

addition V end (hence) V' are simply connected and of dimen-
sion greater than 4 , then W is diffeomorphic to V X [0, 1]
and (consequently) V is diffeomorphic to V' , The proof is
due to Stephen Smale [6]. This theorem has numerous important
applications —— including the proof of the generalized Poincaré
conjecture in dimensions > 4§ —— and several of these appear

in §9. Our main task, however, is to describe in some detail a

proof of the theorem.

Here is a very rough outline of the proof. We begin by
constructing a Morse function for W (§2.1), i.e. a smooth
function £ : W —> [0, 1] with V = f'l(o) , V! = f-l(l)
such that f has finitely many critical points, all nondegen-
erate and in the interior of W. The proof is inspired by the
observation (§3.4) that W is diffeomorphic to V x [0, 1] if
(and only if) W admits a Morse function as above with no crit-
ical points, Thus in §§4-8 we show that under the hypothesis

of the theorem it is possible to simplify a given Morse function



f until finally all critical points are eliminated, In §4, £
is adjusted so that the level f£f(p) of a critical point p 1is
an increasing function of its index. In §5, geometricel condi-
tions are given under which a pair of criticel points p, q of
index A and A + 1 can be eliminated or 'cancelled'. In §6,
the geometrical conditions of §5 are replaced by more algebraic
conditions —— given a hypothesis of simple connectivity. In

§8, the result of §5 allows us to eliminate all critical points
of index O or n , sand then to replace the critical points of
index 1 and n - 1 by equal numbers of critical polnts of
index 3 and n - 3, respectively. In §7 it is shown that the
critical points of the same index A can be rearranged among
themselves for 2 < A <n - 2 (§7.6) in such a way that all
critical points can then be cancelled in pairs by repeated appli-

cation of the result of §6. This completes the proof.

Two acknowledgements are in order. In §5 our argument is
inspired by recent ideas of M. Morse [11][32] which involve
alteration of a gradient-like vector field for £ , rather than
by the original proof of Smale which involves his ‘'handlebodies?,
We in fact never explicitly mention handles or handlebodies in
these notes. In §6 we have incorporated an improvement appearing
in the thesis of Dennis Barden [33], namely the argument on our

pages 72-73 for Theorem 6.4 in the case A = 2 , and the state-

ment of Theorem 6.6 in the case r = 2.

(

(i

)



(l‘i D)

The h-cobordism theorem can be generalized in several direc-
tions. No one has succeeded in removing the restriction that V
and V' have dimension > 4, (See page 113.) If we amit the
restriction that V and (hence) V' be simply connected, the
theorem becomes false. (See Milnor [34].) But it will remain
true if we at the same time assume that the inclusion of V
(or V') into W is a simple homotopy equivalence in the sense
of J. H. C. Whitehead. This generalization, called the s-cobor-
dism theorem, is due to Mazur [35], Barden [33] and Stallings.
For this and further generalizations see especially Wall ([36].
Lastly, we remark that analogous h- and s-cobordism theorems

hold for piecewise linear manifolds.
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Section 1. The Cobordism Category \.
f———————— -

First some familiar definitions. Euclidean space will be
denoted by R = {(xl,,...,xn)lxi eR, 1=1,...,n0) where
R = the real numbers, and Euclidean half-space by

L1} n
R+ = [(xl,.'.,xn) € R IanO} .

Definition 1.1, If V 1is any subset of Rn, a map

£f: V——> Rm is smooth or differentiable of class ¢  1f £ can

be extended to a mep g: U —> Rm, where U )V 1s open in Rn,

such that the partisl derivatives of g of all orders exist and

are continuous,

Definition 1.2, A smooth n-menifold is a topological manifold

W with a countable basis together with a smoothness structure J

on M, )2 is a collection of pairs (U,h) satisfying four conditions:

(1) Bach (u,h) € J consists of an open set U(C W

(called a coordinate neighborhood) together with e homeomorphism h

which maps U onto an open subset of either Rn or R: .
(2) The coordinate neighborhoods in J cover W,

(3) 1f (Ul,hl) and (U2,h2) belong to J, then

-]l n
hihot: by (U) N U,) —> R or R,

is smooth,
(4) The collection J is maximal with respect to property

(3); i.e. if eny pair (U, h) not 1n )8 is adjoined to

Ji then property (3) fails,



The boundary of W, denoted Bd W, is the set of all points

in W which do not have neighborhoods homecmorphic to R® (see

Munkres [5, p.8]).

Definition 1.3. (W; Vo V,) is & smooth manifold triad if

W 1is a compact smooth n-manifold and BdA W i1s the disjoins union

of two open and closed submanifolds V0 and Vl .

It (W; Vo vl), (W Vi, Vé) are two smooth meanifold triads

and h: V; —> Vi is a diffeomorphism (i.e. : homeomorphism such

that h and h™T are smooth ), then we can form a third triad

1. 1
(W U, W' Vo, V2) where W U W is the space formed from W and
W' by identifying points of Vl and Vi under h, according to

the following theorem,

Theorem 1l.k. There exists a smoothness structure J _f;o_g

W U W' compatible with the given structures (i.e. so that each

inclusion map W —> W U, W, W' —>W Uy W' 1is a diffeomorphism

onto its image.)

J is unique up to a diffecmorphism leaving VO’ h(Vl) = V:'L ,

and Vé fixed,

The proof will be given in § 3 .

Definition 1.5. Given two closed smooth n-manifolds Mo end

M, (l.e. M, M, compact, Bd M, =BAM = #), a cobordism from M,

to M, is a 5-tuple, (W; RRY h,), vhere (w; Vo V) s 8

smeoth manifold triad and hi: Vi — M:l is a diffeomorphism, 1 = O, 1,
Two cobordisms (W; Vo» V5 B, hl) end (W'; Ve, Vi; b, hi) from

M0 to Ml are equivalent if there exists a diffeomorphism g: W —> W!

carrying Vo to V(') and Vl to

2



Vi such that for 1 = 0,1 the following triangle commutes: fi

gV,

Then we have a category (see Eilenberg and Steenrod,
[2,p.108]1) whose objects are closed manifolds and whose morphisms
are equivalence classes ¢ of cobordisms, This means that cobordisms
satisfy the following two conditions, They follow easily fram 1.k
and 3.5, respectively.

(1) Given cobordism equivalence classes c fram MO to
My and c¢' fram M1 to MQ, there is a well-defined class cc'!
from MO to M2 This ccmposi-tion operation is associative,

(2) For every closed manifold M there is the identity

cobordism class = the equivalence class of

M
(MxI; Mx0, M X 1; Py ), pi(x,i)=x, xeM, 1is=0,1.

That is, 1f ¢ 1s a cobordism class from Ml to Mz, then

LMlc = C =cLM2.

Notice that it 1s possible that cct! = "M , but ¢ 1is not

"M . For example



¢ 1s shaded. ¢! 1is unshaded.
Here c¢ has a right inverse c¢', but no left inverse. Note that the
manifolds in a cobordism are not assumed connected.

Consgider cobordism classes from M to itself, M fixed.
These form a monoid H‘M , 1l.e, a set with an associative camposition
with an identity, The invertible cobordisms in HM form a group
GM . We can construct some elements of G,, by taking M = M!

M
below,

Given a diffecmorphism h: M ——— M!, define c, &s the

class of (M x I; Mx 0, Mx 1; J, hy) where Jj(x,0) = x and

hl(x,l) =h(x), xeM.

Theorem 1.6. ¢ Chr = Cpm for any two diffecmorphisms

hy M—>M' and h': M! —>M" .,

Proof: let W=MxI Uh M' X I and let Jh: MXTI —>W,
,jh,: M! X I ——> W be the inclusicn maps in the definition of

chch' » Define g: M X I —> W as follows:

g(x,t) = 3, (x,2t) o<t <

-

g(x,t) = J, (n(x),2t-1) <t <1,

N+

Then g 18 well-defined and is the required equivalence,



S.

Definition 1.7. Two diffecmorphisms q), hl; M —> M

are (smoothly) isotopic if there exists amap f: M X I —> M?

such that
(L) £ 4s smooth,
(2) each f,, defined by ft(x) = £(x,t) , is a diffeomorphism,
) § =k, £, =h.

Two diffeomorphisms Q), hl: M ——> M' are paeudo-isotopic*

if there 1s a diffecmorphism g: M X I ——> M! X I such that

g(x,0) = (ho(X),O) ’ g(x:l) = (hl(x)’l) .

lemma 1,8, Isotopy and pseudo-isotopy are equivalence

relations.

Proof: Symmetry and reflexivity are clear. To show fransi-

tivity, let hO’ hl’ h2: M —> M! be diffecmorphisms and assume

we are given isotopies £, g: M X I —> M'! Dbetween qo and hl

and between hl and h2 respectively, Iet m; I ——> I be &

smooth monotonic function such that m(t) =0 for o0 <t <1/3,
and m(t) =1 for 2/3 <t <1, The required isotopy

k: M X I —> M* between ho and h is now defined by

1
k(x,t) = £(x,m(2t)) for 0 <t <1/2, and k(x,t) = g(x,m(2t-1))
for 1/2 < t <1, The proof of transitivity for pseudo-isotopies

is more difficult and follows from Lemma 6.1 of Munkres [5,p.59].

* In Munkres' terminology Q) is "I-cobordant” to h1 .

(see [5,p.62].) 1In Hirsch's terminology h0 is “"concordant™ to h,.



It is clear that if hO and hl are isotopic then they are

pseudo-isotopic, for if f: M X I ——> M' 1is the isotopy, then
~ A

f: MXI —> M x I, defined by £(x,t) = (ft(x),t), is a
diffeomorphism, as follows from the inverse function theorem, and

hence is a pseudo-isotopy between ho and h1 . (The converse

for M= Sn, n > 8 1is proved by J. Cerf [39].) It follows from

this remark and from 1.9 below that if ho and hl are isotopic,

then ¢ = C .
by by

Theorem 1.9. ey =¢ ) ho is pseudo-isotopic to h

0 1 1

Proof: Iet g MXI —> M! X I bDe a pseudo-isotopy
1l

between h. and h.. Define h_

® | ]
o 1 o X I: MM XI ——>»>MXI by

(bt

o X 1)(x,t) = (hal(x),t) « Then (hal X1l) 0 g is an

eand ¢ .
hl ho

equivalence between ¢

The converse is similapr,



Section 2, MorqE‘Functions

m—

We would like to be able to factor a given cobordism into
a camposition of simpler cobordisms, (For example the triad in
Figure 2 can be factored as in Figure 3,) We make this notiom

precise in what follows.

FIGURE 2 FIGURE 3




Definition 2.1, let W bDe a smooth manifold and

f: W ——> R a smooth function, A point p e W 18 a critical

point. of £ 1f, in some coordinate system,

of of of -
= B ,ee = O . Such a point is a non-degenerate
3% ox, x| °
1'p 2'p n'p

2
ctitical point if det(%;fai—' ) £ 0. For example, if in Figure 2
17 3'p

f 1s the height function (projection into the z-axis), then f has

four critical points Py Py p3, P)s all non-degenerate.

Lemma 2,2 (Morse). If p 1is a non-degenerate critical

point of £, then in some coordinate system aebout p,

f(xl)"')xn) = constant "xi" (XN} -’&2"']&2_’-14'-.. +X§ for

gome AN between O and n .

A 1is defined to be the index of the critical point p,

Proof: See Milnor [4, p.6] .

Definition 2.3, A Morse function on a smooth manifold triad

(W; VO, Vl) is a smooth function f; W —> [a,b] such that

(1) £Ha) = vy, ) =V, ,

(2) All the critical points of £ are interior (lie in

W - BA W) and are non-degenerate.

As a consequence of the Morse Lemma, the critical points of
a Morse function are isolated, Since W 1s compact, there are only

finitely many of them,



Definition 2,4, The Morse number u of (W; Yy Vl) is

the minimum over all Morse functions f of the number of critical

points of £,

This definition is meaningful in view of the

following existence theorem.

Theorem 2,5, Every smooth manifold triad (W; v s Vl)

possesses a Morse function.

The proof will occupy the next 8 pages.

lemma 2.6, There exists a smooth function f£: W — [0,1]

with f-l(o) =Vy f_l(l) =V, , such that f has no critical

point in a neighborhood of the boundary of W,

Proof: ILet Ul’ ceey uk be a cover of W by coordinate

neighborhoods. We may assume that no Ui meets both Vo and

Vl, and that if U, meets B4 W the coordinate map

i
hi: Ui —_— Rﬁ carries U1 onto the intersection of the open

unit ball with Ri .

On each set U:I. define a map
£,: U, —> [0,1]

as follows. If U, meets Ve [respectively Vl] let £, = Ih,

where L 1s the map

LY = X [respectively 1 - xn] .

If U; does not meet BAW , put £, = 1/2 identically .

i

Q



Choose a partition of unity [mi] subordinate to the cover {Ui} lo

(see Munkres [5,p.18]) and define a map f: W —> [0,1] by

2(p) = ¢ (p)2,(p) + «ov + g (P)E, (P)

where fi(p) is understood to have the value O outside U;. Then

f 1is clearly a well defined smooth map to [0,1] with f‘l(o) = Vg,

f‘l(l) =V, « Finally ve verify that 4af £ O on BA W. Suppose

q € Vb [respectively q ¢ Vl]. Then, for same 1, mi(q) > 0,

and q eU;. Iet b (p) = (x(p),...,x"(p)). Then

k do of of
df _ J 1
T am s g agE e )

Now fj(z) has the gmme value, O, [respectively 1] for all J

k a¢h 3 k
and T 2 — (X mJ] = 0. So, at gq, the first summand

3=l 3x" 3x° 3=l

of
is zero, The derivative ——% (a) equals 1 [respectively -1]
ox

of
and it is easily seen that the derivatives —-%-(q) all have the

ox
ofy 3t
same sign a8 —= (q) , J =1,..0,k . Thus — (a) £0. It
ox ox

follows that df #0 on Bd W, and hence df A0 in a neighbor-

hood of B4 W,

The remainder of the proof is more difficult. We will
alter f by stages in the interior of W eliminating the
degenerate critical points, To do this we need three lemmas which

apply to Euclidean space,



Lemma A (M. Morse). If f is a 02 mapping of an open L/

subset U (C R to the real line, then, for almost all linear

mappings L: ﬁn ——> R, the function f + L has only nondegenerate

critical points,

By "almost all" we mean except for a set which has measure

zero in HomR(Rn,R) TR,

Proof: Consider the menifold U X HomR(Rn,R) . Tt has
a submanifold M = ((x,L){d(£(x) + L(x)) =0} . Since
a(f(x) + L(x)) = 0 means that L = -df(x) it is clear that the
correspondence x —> (x;-df(x)) is & diffeomorphism of U onto M.
Each (x,L) € M corresponds to a critical point of f + L, and

2

this critical point is degenerate precisely when the matrix (g§§5§3)
is singular, Now we have a projection m: M ——> Hom(Rn,R)
sending (x,L) to L. Since L = -daf(x) , the projection is
nothing but x ——> -df(x) . Thus 7 is critical at (x,L) e M
precisely when the matrix dy = -(BQf/Bxibe) is singular, It
follows thet £ + L has a degenerate critical point (for some x)
if and only if L 1s the image of a critical point of
T M —-—>-HomR(Rn,R)'¥ . But, by the theorem of Sard (see
de Rham [1,p.10]):

If 1 Mp — Rn 15 any C1 map, the image of the

set of critical points g£ r bhas measure zero in Rn.

This gives the desired conclusionm,



12,

lemma B, let K P_g_ a compact subset of an open set U

_i_ri Rn. _]_Z_{ f: U ——>R is 02 and has only nondegenerate

critical points in K, then there is a number 8 > 0 such that

——  T——————— S—

if g: U—>R 1is 02 and et all points of K satisfies

Baf B g
ox iEx 3 T x iax 3

< &5, (2) < B

1, =1,.0.yn , then g 1likewise has only nondegenerate critical

points in K.

s.1/2
Pro f: I.let af| = [( af 2 X ( ) ] .
0 |ag| Bx—l' )+ 3—

2
o f
Then |af| + |aet(Gz—)| 1is strictly positive on K. Iet p >0
17%3

be its minimmm on K. Choose 8 > 0 80 small that (1) implies that
[laz| - |agl| < w/2

and (2) implies that
3¢ 3°
Hast (5 501 - 'dEt(5§5S§-)|| < w2

Then |ag| + |det(5—5&?—)| > |af] + |det( )| -uf2 -pf2>o0

at 8ll points in K. The result follows,

Lemma C. Suppose h: U —— U' 18 a diffecmorphism of

one open subset of K® onto another and carries the compact set

KCU onto K'C U'. Given a number e > 0O, there is a number

8 > 0 such that if a smooth map f: U! ——> R satisfles




13.

2
£
|2} <5, Ig;;' < & l%{j <b i, =1, «.¢, n

at all points of K' CU' , then f Oh satisfies

2
ofoh o £oh
lf0h|< E, 5-x-1—-<e, g}qu_d_<€ 1,J=l,..-,n,
at all points of K.
Proof: Eech of £ Oh ofOh aefo h is a polynomial
. ; ;
Exi ExiExJ

function of the partial derivatives of £ and of h from order
O to order 2; and this polynomial vanishes when the derivatives

of f vanish, But the derivatives of h &are bounded on the compact

set K., The result follows.

The 02 topology on the set F(M,R) of smooth real-valued

functions on a compact manifold, M, (with boundary) may be defined
as follows, Let [qa] be a finite coordinate covering with
coordinate maps b : U, —-—>-Rn, and let [Ca] be a compact
refinement of [qa} (cf. Munkres [5, p.7]). For every positive
constant & > O, define a subset N(d), of F(M,R) consisting of

all maps g: M —~——> R such that, for all o,

* le | <8 o aeg“
ga ) &I <5, é-x—j-gf‘j— <B

-1
at all points in ha(qa), vhere g = gh and 1, J =1, «os, 0,
If we take the sets N(8) as a base of neighborhoods of the zero

function in the additive group F(M,R), the resulting topology is



1k,

called the C° topology. The sets of the form £ + N(8) = N(£,5)
give a base of neighborhoods of eny map f ¢ F(M,R) , and g ¢ N(f,8)

means that, for all «,

2 2
of 4 of 38,
£, - &, <5, s> - 5o < 8 | s - l <8
o (o] Xy 3x i ’ 09X, 0X 3 ox iax 3

at all points of ha(Ca) .

It should be verified that the topology T we have con-
structed does not depend on the particular choice of coordinate
covering and compact refinement. Let T' be another topology
defined by the above procedure, and let primes denote things
assoclated with this topology. It is sufficient to show that,
given any set N(s) in T, we can find a set N'(8') in T!

contained in N(8) . But this is an easy consequence of Lemma C,

We first consider a closed manifold M, il.e. a tried

(M, ¢, $) , since this case is somewhat easier.

Theorem 2,7. If M is a campact menifold without

boundary, the Morse funetlbng form an open dense subset of

F(M,R) in the ¢® topology.

Proof: Let(Ul,hl),...,(Uk,hk) be a finite covering of M
by coordinate neighborhoods. We can easily find compact sets

c; CU, such that C,, C, ..., G cover M.

2
We will say thet £ 4is "good" on aset 8 (CM if ¢

hes no degenerate critical points on S,



15.
I) The set of Morse functions is open. For if
f: M———> R 1is a Morse function, Lemma B says that, in a

neighborhood N, of f in F(M, R), every function will be good
in Cye Thus, in the neighborhood N = NN..n N, of f,

every function will be good in Cl U.ee U Ck = M.

II) The set of Morse functions is dense, Let N be a
given neighborhood f € F(M, R). We improve £ by stages. ILet
A be a smooth function M —— [0,1] such that A =1 in a
neighborhood of C1 and AN =0 1in a neighborhood of M - U

1
For almost all choices of linear map L: Rn ~—3> R the function

fl(P) = £(p) + A(p) L(hl(p)) will be good on C; C:Ul (Lemma A).
We assert that if the coefficients of the linear map L are

sufficiently small, then fl will lie in the given neighborhood

N of £,

First note that fl differs from £ only on a compact set

K = Support A C U;. Setting L(x) = L(xl,...,xn) = % 2,x, , note

i

that flhil(x) - fhil(x) = (hhil(x)) E 8%,

for sll x ¢ hl(K) . By choosing the £, sufficiently small we

i
can clearly guarantee that this difference, together with its first
and second derivatives, is less than any preassigned e throughout

the set hl(K). Now 12 ¢ 1s sufficiently small, then it follows

from Lemma C that f. belongs to the neighborhood N.

1
We have obtained a function fl in N which is good on
Cl. Applying Lemma B again, we can choose a neighborhood Nl of

£., N. C N . so that anv function in N. 1ia stil]l zood on O



16.

At the next stage, we simply repeat the whole process with

fl and Nl, to obtain a function f2 in Nl good in C

09 and a

neighborhood, N, of f2, N, C:Nl, such that any function in N

is still good on 02. The function f2 is automatically good on

2

Cl since it lies in Nl' Finally we obtain a function
fkeNkCNk-lc"'CNlcN which is good on C; U ... UCy = M.

We are now 1n a position to prove

Theorem 2,5. On any triad (W, Vo V), there exists a

Morse function.

Proof: Lemma 2.6 provides a function f£: W — [0,1]

such that (1) f‘l(o) =V

-1
o’ £ (l)ﬂv

1
(11) £ has no critical points in a neighborhood of

Bd W.

Ve want to eliminate the degenerate critical points in
W - Bd W, always preserving the properties (i) and (ii) of ¢£,
Jet U be an open neighborhood of Bd W on which ¢ pas no
eritical points. Because W 1is normal we can find an open
neighborhood V of BAW euch that Vv CU. let (U;) bea
finite cover of W by coordinate neighborhoods such that eech

set Ui lies in U or in W - V. Take a ccopact refinement [Ci}

of [Ui] and let C. be the union of all those C

o i

U. Just as Por the closed manifold of the last theorem we can use

that lie in

Iemma B to show that in a gufficiently small neighborhood N of
f, no function can have a degenerate critical point in Co. Also

£ 18 bounded away from O and 1 on the compact set W - V.
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Hence, in a neighborhood N'! of f every function, g, satisfies

the condition 0<g<1l on W-V, Let Nb =NNN' . We may

suppose that the coordinate neighborhoods in W - V are

Ul’ couy Uk . From this point we proceed exactly as in the previous

theorem, With the help of lLemma A we fnnd a function fl in No

which is good (i.e. has only nondegenerate critical points) on Cys

and a neighborhood N, of £, , N C N, 1in vhich every function

is good in Cl' Repeating this process k times we produce a

function £ e C N 1 C.ee C Ny which is good
on CyUCyU...UC =M. Since £ CN,CN' end

fk_lv = f|v, f_ satisfies both conditions (1) and (i1). Hence
£, 1is a Morse function on (v, Vo vy) .

Remark: It is not difficult to show that, in the C2

topology, the Morse functions form an open dense subset of all
smooth maps f: (W, Vo vl) — ([o,1},0,1) .
For some purposes it is convenient to have a Morse

function in which no two critical points lle at the same level.

Ilemma 2,8, lLet f: W —— [0,1] be a Morse function for

the triad (W; Vs Vl) with critical points p,, ..., P, Then

f can be approximated by a Morse function g with the same

critical points such that g(pi) £ S(PJ) for 1 £ 3.

Proof: Suppose that f(pl) = f(p2) . Construct a smoocth

function A: W —> [0,1] such that A =1 in a neighborhood
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U of Py and N = O outside a larger neighborhood N, where

NCW-BiW and N contains no p, for i # 1. Choose € >0

s0 small that fo =f + ¢

fo(pl) # fo(pi) , 1 #1. Imtroduce a Riemannian metric for W

™ has velues in [0,1] and

(see Munkres [5, p.2k]), end find ¢ and c' 8o that 0 <c < |grad £
throughout the compact set K = closure {0 < A < 1) and |grad A| < c?
on K., Iet 0<e< min(el, efe!) . Then £, =f + e\ 1s again a

Morse function, £, (p,) ;éf(pi) for 1 41, end £, has the same

ceritical points as f£. For on K,
|gred (£ + e\)| > |grad £| - |e grad \|
>c - gct
>0.

And off K, |gred \| =0, so |[gred £,| = |grad £| . Continuing
inductively, we obtain a Morse function g which separates all the

critical points. This completes the proof.

Using Morse functions we can now express any "complicated"

cobordism as a composition of "simpler" cobordisms.

Definition. Given a smooth funetion f£: W ——= R, a

critical value of f 1s the image of a critical point.

Lemma 2.9. let £: (W; Vo vl) —> ([0,1], 0, 1) be a

Morse function, and suppose that 0 < ¢ <1 where ¢ is not a

critical value of f. Then both f'l[o,c] and f'l[c,l] are smooth

manifolds with boundary.
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Hence the cobordism (W; Vo> Vyi identity, identity) from

\' to V

0 1 can be expressed as the composition of two cobordisms:

one from V, to f'l(c) and one from f_l(c) to Vv

1° Together

with 2.8 this proves:

Corollary 2.10. Any cobordism can be expressed as a

composition gz.cdbordiams with Morse number 1.

Proof of 2,9: This follows immediately from the implicit

function theorem, for if w € f'l(c) , then, in some coordinate
system X9 Xy soey X gbout w, £ looks locally like the

projection map Rn ~3 R, (xl, csey xn) — X, »



Section 3. Elementary Cobordisms

P

Definition 3.1. Iet f Dbe a Morse function for the triad

(wn; V, V') . A vector field ¢ on W' is a gradient-like vector

field £2£ f if

1) &(f) > 0 throughout the complement of the set of critical

points of f , and

2) given any criticsl point p of f there are coordinates
-y
(%, ¥) = (xl, vers Ry Ky qs vens xn) in a neighborhood U of p so
2 2
that f = £(p) - |X]° + |¥]© end ¢ has coordinates

(-Xl, ¢ ey -)&, ﬁ-‘-l, svey xn) throughout U .

Lemme 3.2. For every Morse function f on a triad (wn; v, V')

there exists a gradient-like vector field ¢ .

Proof. For simplicity we assume f has only one critical point

p , the proof in general being similar. By the Morse Lemma 2.2 ve may

-) . .
choose coordinates (X, y) = (xl, TEPIE P N OIERY xn) in a neighbor-
=2 2
hood U, of p so that f =f(p) - [¥1° + |71 throughout U,. Let U

be a neighborhood of p such that T C U,.

Each point p!' e W - U, is not a critical point of f . It

0
follows from the Implicit Function Theorem that there exist coordinates
xi, ceey XA in & neighborhood U' of p' such that f = constant + xJ

in U' .
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Using this and the fact that ¥ - Ub is compact, find neighbor-

hoods Ul’ cvey Uk such that

l) W-UO C UlU-DO UUk’

2) UnUi=¢, 1=1,...,k , and

3) Ui has coordinates x;, csey xi and f = constant + xi on

U i =l,...,k L

1’
On U0 there is the vector field whose coordinates are

(—xl, T U VT ILLY xn) , @nd on U, there is the vector field

d/dx> with coordinates (1,0 ceey0) i=1,...,k . Piece together
l t A 2 » ?

these vector flelds using a partition of unity subordinate to the cover

UO’ Ul’ cosy Uk’ obtaining a vector field ¢ on VWV ., It is easy to check

that ¢ 1is the required gradient-like vector field for f .

Remark. From now on we shall identify the triad (W; Vo Vl)

V, ———>V and

vith the cobordism (W; Vo V5 1 11) where 1i.,: Vg o

il: Vl —— Vl are the identity maps.

Definition 3.3. A triad (W; Vo Vl) is sald to be a product

cobordism if it is diffecmorphic to the triad (Vox [o,1]; Vox o, Vox 1) .

Theorem 3.4. If the Morse number p of the triad (w; V., V

1)

o)

is zero, then (W; N V,) is & product cobordism.

Proof: let #£: W —=> [0,1] ©bYe a Morse function with no critical

points. By Lemma 3.2 there exists a gradient-like vector field ¢ for f.
Then 4(f): W — R 1s strictly positive. Multiplying ¢ at each
point by the positive real number 1/¢(f) , we may assume ¢(f) =1

identically on W ,
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If p 1s any point in Bd W, then f expressed in some

coordinate system Xyy eeey X

n? *p >0, about p extends to a smooth

function g defined on an open subset U of Rn. Correspondingly, ¢
expressed in this coordinate system also extends to U . The fundamental
existence and uniqueness theorem for ordinary differentisl equations (see
e.g. Lang [3, p.55]) thus applies locally to W .

Let @ : [a, b] —> W be any integral curve for the vector

field § . Then

d
3T (£ ° @) = &(f)
is identically equal to 1 ; hence
f(p(t)) = t + constant.

¢(s -~ constant), we obtain an

Making the change of parameter, y(s)

integral curve which satisfies

f(y(s)) = 8 .

Each integral curve can be extended uniquely over a maximal
interval, which, since W 1is compact, must be [0, 1]. Thus, for each
y € W there exists a unique maximal integral curve

\lry : [0, 1] —> W

which passes through y , and satisfies f(Vy(B)) =8 , Furthermore

vy(s) is smooth as a function of both variables (cf. §5, pages 53 - 5k4).
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The required diffeomorphism
h: Vg X [0,1] — w

is now given by the formula

h(yo.o 8) = ‘l’yo(s) ’

with

bl (y) = (»vy(o), £(y)) .

Corollary 3.5. (Collar Neighborhood Theorem)

Iet W Eg a compact smooth manifold with boundary, There exists a

neighborhood of B4 W (called a collar neighborhood) diffeomorphic to

Ba W x [0,1) .

Proof. By lemma 2.6, there exists a smooth function f£: W —s R,
such that f"l(o) =« BAW and df £ 0 on a neighborhood U of BA W .
Then f is a Morse function on f-l[o, e/2) , vhere € > 0 is a lower
bound for £ on the compact set W - U . Thus Theorem 3.4 guarantees

a diffeamorphism of f'1[0, e/2) with Ba W x [0,1) .

A connected, closed submenifold M™™Y (C W - BA W' 1is said
P o o
to be two-sided if some neighborhood of on is cut into two

camponents when M1 is deleted.

Corollary 3.6. (The Bicollaring Theorem)

Suppose that every component of a smooth submanifold M of W ig_compact

and two-sided. Then there exists a "bicollar" neighborhood of M in W

diffeomorphic to M x (-1,1) 4in such a way that M corresponds to M x O .
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Proof. Since the components of M may be covered by disjoint

open sets in W , 1t suffices to consider the cese where M has a single
camponent.

Iet U be an open neighborhood of M in W -« BA W such that
U 1s compact and lies in a neighborhood of M which is cut into two
components when M 1s deleted. Then U clearly splits up as a union
of two submanifolds Ul’ U2 such that Ui n U2 = M 1s the boundary of

each. As in the proof of 2.6 ocne can use a coordinate cover and a parti-

tion of unity to construct a smooth map
¢: U ——> R

such that dp £ 0 on M, and ¢<O0 on T - Uy, =0 on M,
>0 on U ~-U,. We can choose an open neighborhood V of M , with
V C U, on wvhich ¢ bhas no critical points.

Iet 2¢" > 0 be the lub of ¢ on the compect set U; - V.

let 2¢' < 0 be the glb of ¢ on the compact set ﬁé -V.

Then ¢ lle',c"] 18 & compact n-dimensional sub-menifold of V
with boundary ¢'l(e') U ¢_l(e“) , and ¢ 1s a Morse function on
¢'1[e',e" . Applying Theorem 3.1 we find that ¢'l(e',e") is a "bicollar"

neighborhood of M in V and so alsoin W.

Remark. The collaring and bicollaring theorems remain velid

without the compactness conditions., (Munkres [5, p. 51]).

We now restate and prove a result of Section 1.
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Theorem 1l.4. ILet (W; Vo Vl) and (W' Vi, Vi) be tvo smooth

menifold triads and h: Vl — V]'_ a diffeomorphism. Then there exists

a smoothness structure J for W Uh W' compatible with the given struc-

tures on W and W', .X is unique up to a diffecmorphism leaving Vo,

and V! fixed.

h(vl) =Vv!,

Proof. Existence: By Corollary 3.5, there exist collar neighbor-

hoods U,, U] of Vys vi in W, W' and diffeomorphisms

g Vy X (0,1] —> Up 5 8y V] X (1,2) —>» U] , such that gl(x,l) = X
x €Vy, and ge(y,l)-y, yeVi. Let J: W——>Wwuy W,
J': WV —s Uh W' be the inclusion maps in the definition of VW Uh 17ATE

Define a mep g: V, X (0,2) —> W U, W' by
glx,t) = j(g(x,t)) 0<t<l
g(x,t) = J'(gg(h(x),t)) l1<t<2.

To define a smoothness structure on a manifold it suffices to define
compatible smoothness structures on open sets covering the manifold.
WUy, W' is covered by J(VW - Vi) Jr(we - V]'_) , and e;(Vl x (0,2)) ,
and the smoothness structures defined on these sets by J, j', and g

respectively, are compatible. This completes the proof of existence.

Uniqueness; We show that any smoothness structure J on
W Uh W! compatible with the given structures on ¥ and V' 1is isomorphic
to a smoothness structure constructed by pasting together collar neighbor-

hoods of Vl and Vi as above, The uniqueness up to diffecmorphism

leaving Vo, h(Vl) e~ Vi , and Vé fixed then follows essentially from

Theorem 6.3 of Munkres [5, p. 62]. By Corollary 3.6 there exists &
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bicollar neighborhood U of J(Vl) = y(vi) in Wy, W' eand a diffeo-
morphism g: V, X (-1,1) —— U with respect to the smoothness struc-
ture j, so that g(x,0) =3 (x), for x ¢ Vy. Then J'l(U n J(w))

and J"l(UnJ'(W')) are collar neighborhoods of Vv, end V! in W

1 1
and W', This completes the proof of uniqueness,

Suppose now we are given triads (W; Voo Vl) , (W Vi, V)

with Morse functioms £, £' to [0,1], [1,2], respectively. Construct
gradient-like vector fields ¢ and ¢' on W and W', respectively,

normalized so that ¢(f) =1, ¢*'(f') =1 except in a smrll neighborhood

of each critical point.

Lemme 3.7. Given a diffeomorphism h: V. ——> V! there is

1 1
unique smoothness structure on W Uh Wt , compatible with the given

|

structures on W , W', so that f and f' piece together to give a

I

smooth function on W Uy W' end ¢ and t' plece together to give

smooth vector field.

Proof. The proof is the same as that of Theorem 1.4 above,
except that the smoothness structure on the bicollar neighborhood must
be chosen by piecing together integral curves of ¢ and ¢! in collar
neighborhoods of V, and V! . This condition also proves uniqueness.

(Notice that uniqueness here is much stronger then that in Theorem 1.L4.)

This construction gives an immediate proof of the following result.

Corollary 3.8. u(w U, W' Vg, vy) < p(w; Vor V;) + p(wes Vi, V3)

where ¢ 1is the Morse number of the tried.
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Next we will study cobordisms with Morse number 1 ,

Let (W; V, V') be a triad with Morse function f: W — R
and gradient-like vector field ¢ for f ., Suppose peVW 1is a

criticel point, and V, = f'l(co) and V, = f'l(cl) are levels such

that c . < f(p) < c, and that c = f(p) 1is the only critical vslue in

o)
the interval [c, cl] .
Let OD‘: denote the open ball of radius r with center O 1in

l=-01)P.

Since ¢ 1is a gradient-like vector field for f , there exists

R®, and set OD

a neighborhood U of p 1In W , and a ccordinate diffeomorphism

n
g: 0D2

hes coordinates (-xl, vees Ky K g5 eves x ) throughout U®, for

¢ —> U 8o that fg(¥, ¥) =c - |>?|2+|ﬂ2 and so that ¢

scme -15_7\._<_n and scme € > O . Here ?n(xl, coey JS\)ER)\ and
- n-x s 2 Ll 2
YB(xM_l, ceey X.) €R . Set v, =f° (¢ - €) and ve=fo (c +€°) .
We may assume he® < min(fe - c4l, |e - c,|), so that v__ 1lies between

V. and f"l(c) and V_ lies between f"l(c) and V The situation

0
is represented schematically in Figure 3.1.

l L ]
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denote the boundary of the closed unit ddgc D® in RP.
Definition 3.9. The characteristic embedding

-1 -
mL: SN b4 ODn » — VO is obtained as follows. First define an

embedding o 1 x o0 —» V. by (v, 6v) = g(eu cosh 9, ev sinh @)

for u e s"‘l, vV e sn"“l, and 0 <6 <1, Starting at the point o¢(u, 6v)

in Vv the integral curve of ¢ is & non-singular curve which leads

from ¢(u, 6v) back to some well-defined point q;L(u, 6v) in V_. Define

0"

the left-hand sphere 5S¢ of p in Yy to be the image ch(S)‘"l X 0).

Notice that SL is just the intersection of Vb with all-integral curves

of ¢t leading to the criticaISPOint P . The left hand disc DL is a smoot!
L»

ly imbedded disc with bounda£1/ defined to be the union of the segments

of these integral curves beginning in 8., &and ending at p .

L
ﬁk n-A-l
Similarly the characteristic embedding PRt OD" xS ————>-Vl
is obtained by embedding ot x "Mt 5 v, by

(6u, v) — g(eu sinh 6, evcosh 9) and then translating the image to

V,. The right-hand sphere S

1
¢R(° % Sn-k-l)

of p in V is defined to be

R 1
. It is the boundary of the right-hand disk DR’
as the union of segments of integral curves of ¢ beginning at p and

defined

ending in SR'

Definition 3.10. An elementary cobordism is a triad (w; V, V')

possessing a Morse function f with exactly one critical point p .

Remark. It follows from 3.15 below that an elementary cobordism

(W; V, V') is not a product cobordism, and hence by 3.4 that the Morse

number p(W; V, V') equals one. Also 3.15 implies that the index of the

elementary cobordism (W; V, V!), defined to be the index of p with res-

—=e& 2o thn Mavoa Amntian P . 18 well-defined (i.e., independent of
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Flgure 3.2 illustrates an elementary cobordism of dimension

.= 2 and index A\ =1 .

\ V'

Figure 3.2

Definition 3.11. Given a manifold V of dimension n-1 and

an embedding @: S -1 x 00" >V let X(V,p) denote the quotient

manifold obteined from the disjoint sum (V - cp(sk-l % 0)) + (o0 x Sn-x-l)
by identifying q)(u! GV) with (9\1, V) for each u ¢ S)\-l, V ¢ Sn-k-l,
0<6<1l. If V' denotes any manifold diffeomorphic to X(V, @) then

we will say that V! can be obtained from V by surgery of type (A, n-A)

Thus a surgery on an (n-1)-manifold has the effect of removing
an embedded sphere of dimension A-1 and replacing it by an embedded
sphere of dimension n-\-l . The next two results show that this corres-

ponds to passing a critical point of index A of a Mcrse function on an

n-manifold.
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Theorem 3.12. If V! = X(V,p) can be obtained from V by

surgery of type (N, n-A), then there exists an elementary cobordism

(w; v, V') and & Morse function f: W —> R with exactly one critical

point, of index A\ .

Proof. Iet I, dencte the set of points (X, ¥) in

B x B®™ = 8" uhich satisfy the inequalities -1 < -|§']2 + Ii’le <1,
and |¥||¥| < (sinh 1)(cosh 1) . Thus I, 1is a differentisble manifold
with two boundaries. The "left" boundary, -|5?|2 + l)'r’l2 =«1, is
diffeomorphic to gh-1 x OD™™ under the correspondence
(v, 6v) <> (u cosh 6, v sinh §) , 0< 8 <1 . The "right" boundary,
-I?I2 + |ﬂ2 =1, is diffecmorphic to OD™ x g% 1 under the correspon-
dence (6u, v) €—> (u sinh g, v cosh 8) .

Consider the orthogonal trajectories of the surfaces
-|ﬂ2 + h-r'lz = constant . The trajectory which passes through the
point (X, ¥) cen be parametrized in the form t —> (tX, t']'?) . If
¥ or ? is zero this trajectory is a straight line segment tending to
the origin,. For ¥ and ? different from zero it is a hyperbola which
leads from some well-defined point {u cosh 6, v sinh @) on the left
boundary of L to the corresponding point (u sinh g, v cosh @) on
the right boundary.

Construct sn n-menifold W = w(V,p) as follows. Start with the
disjoint sum (V - cp(S’“":L X 0)) % D+ L. For each ue S"'-l, v e an‘-l,
0<9<1l, and c € Dt identify the point (¢(u, 6v), ¢) in the first

sumend with the unique point (3?, ¥) e L}\ such that
2 iy 2
(1) -I}_ﬂ + 'ﬂ =C,

(2) (X, ¥) 1lies on the orthogonal trajectory which pesses through the

—_——t il fee mamnmle A w Al n)
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It is not difficult to see that this correspondence defines a
aiffeomorphism o(s*"t x (00 - 0)) x bt “—> 1, n (R - 0) x (B - o)
It follows from this that w(V,p) is a well-defined smooth manifola.

This manifold w(V,p) has two boundaries, corresponding to the
values ¢ = -Iz-c'l2 + lﬂe = -1, and +1 . The left boundary, c¢ = -1,

can be identified with V , letting 2z e V correspond to:

1

(z, -1) e (V- o(™1 x0)) x D' for z £ (st x 0).

(u cosh 6, v sinh 9) ¢ L, for z = g(u, ov) .

The right boundary can be identified with ¥X(V,p) : letting
z eV - t:p(Sh":L X 0) correspond to (z, +1) ; and letting

n-A=-1

(6u, v) € oo™ x S correspond to (u sinh 8, v cosh 8) .

A function f: w(V,p) —> R 1is defined by:

f(z,c) = ¢ _ for (z,c) e (V - cp(Sk_lxo))xD:

(DD = -1A% + IA° for (BD ey

It is easy to check that f 1is a well-defined Morse function with one

critical point, of index A\ . This completes the proof of 3.12.

Theorem 3.13. Let (V3 V, V') be an elementary cobordism with

characteristic embedding @ S"'"l X ODn—)‘ —>V . Then (W; V, V')

is diffeomorphic to the triad (w(v,_wL); v, x(v, ¢L)) .

Proof. Using the notation of 3.9 with V = Vo and V! = Vl,

-1 v, v_.) and (£ (fere”, ey 3) v, V!

we

know from 3.4 that (f‘l([co, ¢

are product cobordisms, Thus (W; V, V') is diffeomorphic to (we; VeV
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vhere W_ = f'l([c-ez, c+e2]) . Since (w(V,mL); v, X(V,¢L)) is cleearly

diffeomorphic to Qn(v_e,¢); v, x(v_€,¢)) , it suffices to show

€
(we; V_es Ve) is diffeomorphic to (m(v_€,¢); V_o X(V_e,w)) .
Define a diffeomorphism k: w(Ye, P) —> we as follows. For

each (z,t) e (v_€ - cp(s"'1 X 0)) X Dt

let k(z,t) be the unique point
of We such that k(z,t) lies on the integral curve which passes through
the point 2z and such that f(k(z,t)) = e2t +c . For each (X,7) € L,
set k(X,¥) = g(eX, &) . It follows from the definitions of ¢ and of
w(V_e, @) , and the fact that g sends orthogonal trajectories in LX

to integral curves in we, that we obtain a well-defined diffeomorphism

from w(v_e, p) to W This completes the proof of 3.13.

Theorem 3.1k, ILet (W; V, V') be an elementary cobordism

possessing & Morse function with one critical point, of index N . Let

DL be the left-hand disk associated to a fixed gradient-like vector

field. Then V U DL ig_g deformation retract 2£ W.

Corollary 3.15. H,(W,V) is isomorphic to the integers 2 in

dimension A and is zero otherwise. A generator for HK(W,V) is

representel EZ DL'

Proof 22 Corollary.

We have B (W,v) = H (VU D, V)

né

H (D, S

L’ L)

Z in dimension A\

ne

0 otherwise

where the second isomorphism i1s excision.



33,

Proof of Theorem 3.14. By 3.13 ve may assume that for the charac

A=l % ODn-k

teristic embedding P, S —> V we have

= - A=l 1
w_m(v,ch)_(v-ch(s X 0)) XD + L,
modulo identifications, where now DL is the disk
(@ Der, | Fleor,
Let
- (P 2 1
c-(@Per, | W<
be the fs cylindrical nelghborhood of DL .
We define deformation retractions r, from W to VUC and

t

r! from VUC to VUD . (Here t e [0, 1].) Composing these gives

t L

the desired retraction.

lst Retraction: Outside LK follow trajectories back to V .

In Lh follow them as far as C or V . Precisely:

For each (v, c¢) e (V - ch(S)‘"l x 0D""M)) x D" define

ry(v, ©) = (v, o - t(cr1)).

For each (X, ¥) ¢ L, define

A
- 1
LR ) - )((x, ?) for (¥ <55
7 -
(&, o) ror |9 >3

where p = p(X, ¥, t) 4s the maximum of 1/(10[¥|) and the positive real

gsolution for p of the equation

2
D L 2R - R BRIG -8 - s
P
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Since for Iﬂ > Il(_)' the equation has a unique solution > O which varies

continuously, it follows easily that Ty is a well-defined retraction

from W to VUC.

Figure 3,3. The retraction from W to VUC.

E‘nd Retraction. Outside of C define r! +to be the identity.

t
(case 1).
In C move along straight lines verticaelly to V U DL’ moving
more Slowly near VN C . Precisely:
For each (X, ¥) € C define
. (X, (1-t)¥) for |X)° <1 (Cese 2)
r‘é(x’ ﬂ = - 2 1
(X, o) for 1< |X] <1+ (Case 3)

1/2
vhere a =a(X, ¥, t) = (1-t) + t((lﬂa - l)/lﬂa) / . One verifies that

r! remains continuous as |'i’|2 — 1, |37’|2 —> 0 . Note that the two def-
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NN

CASE 2

A1 1114

CASEDd CASE}

Figure 3.4. The retraction from VU C to VU D, .

Remark. We now indicate briefly how most of the above results

cen be generalized to the case of more than one critical point.
Suppose (W; V, V') 1is a triad and f: W —— R & Morse functior
with critical points Pysy vees By all on the same level, of indices

7\.1, sesy l‘k . Choosing a gradient-like vector field for f , we obtain

disjoint characteristic embeddings q: S"’i"l xop®M vy ,

i =1,0e.,k . Construct a smooth menifold w(V; Prs soes q:k) as follows,

k

Start with the disjoint sum (V - U cpi(s“'1 x 0)) % 1):L Lo+ oee. d L’“k
1=l 1

For each u ¢ s"'-’t"]‘, v ¢ gt ML , 0<@g<1l,end ce p' identify the

point (cpi(u, gv), ¢) in the first summand with the unique point (3?,?) €

such that
2
(1) 1A%+ (A" =c, emd

(2) (¥,¥) 1lies on the orthogonal trajectory which passes through
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As in Theorem 3.13 one proves that W is diffecmorphic to
w(V; Py sees @) » It follows fram thié, as in 3,1k, that
vV U D U.,a U Dk is & deformation retract of W , where b, denotes
the left hand disk of Py 1=1.,.,k . Finally, if A= &2=...= kk- A
then H,(W,V) is isomorphic to Z ® ... ®2 (k summands) in dimension A
and is zero otherwise. Generators for HL(W,V) are represented by
Dys +ses Do These generators of Hi(w, V) are actually completely deter-
mined by the given Morse function without reference to the given gradient-

like vector field — see [4, p. 20].
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Section 4. Rearrangement of Cobordisms
b — o e T

From now on we shall use c to denote a cobordism, rather than an
equivalence class of cobordisms as in Section 1. If a composition ce!
of two elementary cobordisms is equivalent to a composition dd' of two
elementary cobordisms such that

index(c) = index(d')

and index{c') = index(d)
then wve say that the compogsition cc!' can be rearranged. VWhen is this
posslible?

Recall that on the triad (W; Vo V,) for cc' there exists a

Morse function f£: W — [0,1] with two criticel points p and p',

§< £(p*) .

Given a gredient-like vector field ¢ for £ , the trajectories from p

index(p) = index(c) , index(p') = index(c') , such that f(p) <

meet V = f-l(%) in an imbedded sphere S_, , called the right-hand sphere

R
of p , and the trajectories going to p' meet V in an imbedded sphere
Si , called the left-hand sphere for p'! . We state a theorem which guer-

antees that cc' can be rearranged if S N S£ =¢ .

Theorem 4,1. Preliminary Rearrangement Theorem. Iet (W; Vo Vl)

be a triad with Morase function f having two critical points p, P' .
Suppose that for some choice of gradient-like vector field ¢ , the com-
pact set Kb of points on trajectories going to or fram p is disjoint
from the compact set Kp, of points on trajectories going to or from p’.
1t f(w) = [0,1} amda a,a' £ (0,1) , then there exists a new Morse

function g such that
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(a) ¢ 1s a gradient-like vector field for g ,

(b) the critical points of g are still p, p* , and g(p) = a ,
g(p') = a',

(e) g agrees with f near Vo UV, &nd equals f plus a constant in

some neighborhood of p and in some neighborhood of p'® .

I

(See Figure 4.1)

Figure 4.1

Proof: Clearly trajectories through points outside K = Kp U KP'

all go from V0 to Vl. The function n: W « K — VO that assigns to

each point q in W - K the uniqgue intersection of its trajectory with

vV, 1s smooth {cf. 3.4) and vhen q 1lies near K , then ={q) 1lies near

K in Vo. It follows that if pu: VO—+ (0,1] 4is a smooth function zero

near the left-hend sphere KP n VO , and one near the sphere Kp,r_\ V0 ,

then u extends uniquely to a smooth function p: W —> [0,1] that is

*

constant on each trajectory, zerc near Kp and one near Kp,
Define & new Morse function g: W — [0,1] by &(q) = ¢(f(q),n(q))
where G(x,y) 18 eny smooth function {[0,1] x [0,X] —> [0,1] with the

properties: (see Figure 4,2)
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(1) For all x and y, gg(x,y) >0 and G(x,y) increases from 0
to 1 as x 1increases fram 0 to 1.

(i1)  6(£(p),0) =& 6(£(p*),1) = a*

(111}  6(x,y) = x for x near O or 1 and for all y ,
%%(x,o) = 1 for x in a neighborhood of f£(p) ,
gg(x,l) =l for x 1in a neighborhood of #£(p') .

2
4
x=(ix0)
A (/ (1,1)
o ¢ ‘e///”. = (}(rx‘ 1)
a }
0,0 ' ‘ x
My fey !

Pigure 4,2

The reader can easily check that g has the desired properties

(a), (b), and (c) .

4,2, Extension; If more generally the Morse function f of

4,1 is alloved two sets of criticel points p = {pl,...,pn] s

p! = {pi,...,pi} with all points of p at a single level f(p) and
all pointa of p' at a single level f£(p') , then the theorem remains

valid, In fact the proof may be repeated verbatim.
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Still using the notation of page 37 let A = index(e) ,
A' = index(e') , and n = dimy . If

dim S_ + dim 8! < dim V

R L
i.e., (n-x~1)+ (A" ~1) <n-1
or A >N
then, roughly stated, there is room enough to move SB out of the way
of Si .

Theorem k.4, If A > A' , then it 1s possible to alter the

gradient-like vector field for f on a prescribed small neighborhood of

Vv so that the corresponding new spheres §h and §£ in Vv do not

intersect. More generally if ¢ 1s a cobordism with several index X\

critical points PyseeesPy of £, and e¢!' a cobordism with several
index A' ceritical points pi,...,pi of £, then it is possible to
alter the gradient like vector field for f on a prescribed small neigh-

borhood of V 8o that the corresponding new spheres in V are pairvise

disjoint.

Definition 4.5. An open neighborhood U of a submanifold

MmC Vv , which is diffeomorphic to NP X Rv-m in such 8 way that bfn

corresponds to o X 0 , is called a product neighborhood of M in v .

lemma 4,6, Suppose M and N are twd submanifolds of dimension
m and n in a manifold V of dimension v . If M bhas & product neigh-
borhood in V , and m+n < v , then there exists & diffeomorphism h of
Vv onto itself smoothly isotopiec to the identity, such that h(M) 1is dis-

joint from N .
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Remark: The assurption that M has a product neighborhood is

not necessary, but it simplifies the proof.

Proof of b.6: let k: M x R © —> UC V be a diffeomorphism onto s

product neighborhood ¥ of M in V such that k(M x O) =M. ILet

Ny =UNN and consider the composed map g = 1(°k-l[N0 where

m

\ ' -
n: M X R —->-Rv m is the natural projection.

The manifold k(M x X)/ V will intersect N 1if and only if
0 is not empty, dim No =n < v-n ; consequently the
theorem of Sard (see de Rham [1,p,10]) shows that g(NO) has measure

feg(No) . If N

zero in R " .. Thus we may choose & point @ & R - g(NO) .
We will conatruct a diffeomorphism of V onto itself that carries
M to k(M x @) and is isotopic to the identity. One can easily construct

a smooth vector field {(¥) om R " such that {(X) =@ for [X] < |@)

end {(¥) =0 for |X] >2|d] . Since { has compact support, and R
has no boundary, the integral curves \y(t,?) are defined for all real
values of t ., (Compare Milmor [b,p.10].) Then (0,X) is the identity
on Rv-m, v(1,X) 1is a diffecmorphism carrying O to o, and ¥(t,3) ,
0<t<1l, gives a smooth isotopy from ¥(0,%) to y(1,%) .

Since this isotopy leaves all polnts fixed outside a bounded set

in R ™ we can use it to define an isotopy

h:V—V

t‘
by setting
k(q,¥(t,X)) 1if w =k(q,X) €U
ht(w) =
w if weV-U.
Then h = h, is the desired diffeomorphism V —> V .

1
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Proof of Theorem 4.l: To simplify notation we prove anly the

first statement of 4.4, The general statement is proved similarly.

Since the sphere SR hus a product neighborhood in Vv (cf. 3.9),
Lerma 4.6 provides a diffecmorphism h: V — V smoothly isotoplc to the
identity, for which h(SR) nsg, = ¢ . The isotopy 1s used as follows to
alter ¢ .

1 -1, 1 :

Ilet a < §-be so large that f [3,5] lies in the prescribed

neighborhood of V . The integral curves of ¢ = g/¢(f) determine a

diffeomorrhism

o [a,%] XV f-l[a,é]

such that f£(gp(t,q)) =t , and cp(%_’-,q) =q € V. Define e diffeamorphism
H of [ab%] X V onto iteelf by setting H(t,q) = (t,ht(q)) , where
ht(q) is a smooth isotopy [a,%] X V —> V fram the identity to h
adjusted so that h_Z 1is the identity for t neax a =and ht =h for ¢t

t
near %-. Then one readily checks that

-l A
t' = (paHep ), €

is a smooth vector field defined on f-l[a,%] which coincides with E

near f'l(a) and f'l(%) =V , and gatisfies ¢!'(f) =1 identically. Thus

W

the vector field § on W which coincides with g(f)g' on f'l[a,%] and

with ¢ elsewhere is a new smooth gradient-like vector field for f .

Figure h4.h,
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Now for each fixed q eV, @(t,ht(q)) describes an integral
- -1 -
curve of ¢ from ¢(a,q) in £ (a) to ¢(%,h(q)) =h(q) in ¢ 1(%) =V
It follows that the right-hand sphere ofa x 8;) of p in £ M(a) i
carried to h(SR) in V . Thus h(SR) 1s the new right-hand sphere §R
Of - g = . g g = ==
D Clearly S sL So S, NS§. h(SR) ns. @ as required.

This completes the proof of Theorem L.k,

In the argument above we have proved the following lemma which is

frequently needed in later sections.

Lemma L4,7. Given are a triad (U Vo Vl) with Morse function £
and gradient-like vector field ¢ , a non-critical level V = f-l(b) end a
diffeomorphism h: V —= V that is isotopic to the identity. If
f'l[a,b] sy 8 <b, contains no critical points, then it is possible to
construct & nevw gradient-like vector field & for f such that

(a) & coincides with ¢ outside f-l(a,b)

(b) ¢ =ho gywhere ¢ and ¢ are the diffecmorphisms
f'l(a)'-—4>'v determined by following the trajectories of ¢ and ¢ ,
respectively, |

Replacing T by -f one deduces a similar proposition imr which
is altered on f“l(b,c), b < c , a neighborhood to the right rather than

to the left of V .

Recall that any cobordism c¢ may be expressed as a composition of
a finite number of elementsary cobordisms (Corollary 2,11). Applying the
Preliminary Rearrangement Theorem 4.1, 4.2 in combinstion with Theorem L, L

we obtain
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Theorem 4.8. Final Rearrangement Theorem. Any cobordism c may

be expressed as a composition

C =cocl.|ocn ) n '-'-"dimc »

vhere each cobordism Cp admits a Morse function with just one critical

level and with all critical points of index k .

Alternate version of 4.8.
Without using the notion of cobordism, we have the following prop-

osition about Morse functions: Given any Morse function on a triad
(wg Voo vl) , there exists & new Morse function f , which has the same

critical points each with the seme index, and which has the properties:

1 1
(1) £(v)=-%, £(v) =n+%
(2) f(p) = index(p) , at each criticel point p of £ .

Definition 4,9. Such a Morse function will be called self-indexing

(or nice) .

Theorem 4,8 is due to Smale [8] and Wallace [9].



§5.. A Cancellation Theorem L5

In view of the Final Rearrangement Theorem another gquestion
ariges paturally. Vhen is a composition cc' of an elementary
cobordism of index A with an elementary cobordism of index
A+ 1 equivalent to a product cobordism? Figure 5.1 shows how
this may occur in dimension 2.

Figure 5.1

/

Sl

-

ILet £ YbYe a Morse function on the triad (wn; v, V.)
o 1

for cc', having critical points p, p' of index A, A + 1
such that f(p) < 1/2 < £f(p'). A gradient-like vector field

g for f determines in V = f'l(1/2) a right-band sphere
1
L
t

dim Sp +dim 8y = (- A -1)+A=n-1=dinV.

SR of p and a left-hand sphere S, of p'. Note that

Definition 5.1

Two submanifolds M', N C V' are said to have transverse

intersection (or to intersect trensversely) if at each point

qe MN N the tangent space to V at q is spanpned by the
vectors tangent to M and the vectors tangent to N. (If

m+ n< v this is impossible, so transverse intersection simply

means MN N = ¢-)



As & preliminary to the mejor Theorem 5.4 we prove:

Theorem 5.2

The gradient-like vector field ¢ mey be s0 chosen that 8

t
has transverse intersection with SL in V.

For the proof vwe use a lemma stated with the notation of

Definition 5.1:

Lema 5.3 If M has a product neighborhood in V, then there
is a diffeomoxphism h of V onto itself smoothly isotopic to

the identity such that h(M) has transverse intersection with N.

Remark: This lemma apparently includes Lemma 4.6; in fact the .
proof is virtually the same. The product neighborhcod assumed

for M is actually unnecessary.

Proof: As in Lemma 4.6 let k : MX R’ O

—> UV bea
diffeomorphism onto a product neighborhood U of M in V
such that k(M X @) = M. Let N, =UNN, and consider the
composed map g =n® k'llﬂo where x : MXR P —> R ig
the natural projection.

The manifold k(M x ¥ )l will fail to have transverse
intersection with N if and only if X& R " 1is the image
under g of some critical point q e N at which g fails '
to have maximal rank v - m., But according to the theorem of
Sard (see Milnor.' (10, p. 10] and deRham [1, p.10]) the image
g{C) of the set C( N of all eritical points of g has

measure zero in Rv-m. Hence we can choose a point e Rv-m - g(C),
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and, as in Lemma 4.6, construct an isotopy of the identity map
of V to a diffeomorphism h of V onto itself that carries

M to k(Mx®). Since k(M xd) meets N transversely, the

proof is complete,

Proof of Theorem 5.2:

The above lemma provides a diffeomorphism h ; V —> V smoothly
isotopic to the identity, such that h(SR) intersects SL
transversely. Using Lemma 4.7 we can alter the gradient field
t =0 that the new right-hand sphere is h(SR), and the left-

hand sphere is unchanged. This completes the proof.

In the remainder of §5 it will be assumed that Sp has tranms-
b 1
verse intersection with SL « Since dim SR + dim SL = dim V, the

intersection will consist of a finite number of isolated points.

For if q0 ie in SR fl SL there exist local coordinate functions

xl(q), cony xn'l(q) on a neighborhood U of q  in V such

that xi(qo) =0,1i=1, ..., n -1, and UNS, 1is the locus

R
t
xl(Q) = L., = xA(Q) =0 while UDN SL is the locus xk+l(q)
s
= 400 = xn-l(Q) = 0, Clearly the only point in SR n SL Ny is

qo. As a consequence there are just a finite number of traject-

]
ories going from p to p' , one through each point of SR n SL .

Still using the notations introduced on page 45 we now state

the major theorem of this section.



Theorem 5.4 First Cancellation Theorem

If the intersection of SR with S£ is transverse and consists
of a single point, then the cobordism is a product cobordism. In
fact it is possible to alter the gradient-like vector field ¢

on an arbitrarily small neighborhocod of the single trajectory T
from p to p' producing a nowhere zero vector field ¢' whose
trajectories all proceed from Vb to Vi. Further §¢' is a
gradient-like vector field foxr a Morse function f' without
critical points that agrees with f near Vb uv,.

1
(See Figure 5.2 below, )

Remark: The proof, due to M. Morse [11]{32], is quite formidable.
Not including the technical theorem 5.6 it occupies the following

10 pages.
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Flgure 5.2

Before Alteration

After
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First we prove the theorem making an assumption about the

behavior of ¢ near T.

Preliminary Hypothesis 5.5

There i1g a neighborhood uT of the trajectory T from p +to

p', and a coordinate chart g : U& —> R® such that:
1) p and p' correspond to the points (0,...,0) and
(l, 0,-..,0).
ol er N
2) 8* E(Q-) = TI (X) - (V (xl), - KE,..., -xk, "'xk_l_l, xh+2,.-o, xn)
where g(q) = X, and where:

3) v(xl) is a smooth function of x,, positive on (o, 1),

zeroc at O and 1, and negative elsevwhere. Also,

g%— (lel =1 near x =0, L.
1

Figure 5.3

%ﬁ (\-%=MVL\

Assertion 1)

Given an open neighborhood U of T one can alweys find in U
a emaller neighborhood U' of T so that no trajectory leads

from U' outside of U and back again into U'.

Proof: If thie were not so, there would exist a segquence of

(partial) trajectories Ty, Toreees Ty

X? through a point By outside U +to a point tk,

and both sequences [rk} and [tk] approach T. Since W - U

se++ Where Tk goes from

a peint r



pl

is campact we may assume that 8, converges to B e W - U, The
integral curve ¥(t, s) through s must come from vV, or go
to Vl or do both, else it would be a second trajectory Joining
P to p'. Buppose for definiteness that it comes from Vo.
Then using the continuous dependence of ¥(t, s') on the init-
ial value s8', we find that the trajectories through =211 points
near 8 originate at Vb. The partial treJectory TE, from

V, to any point s' near s 1s compact; hence the least dis-
tance d(s') froam T to T, (in any metric) depends continuously
on s' and will be bounded away from O for all 48' 1n some
neighborhood @€ s. Since ry € TB the peints 1r,_ cannot

X k
approach T as k —> w, 4a contradiction.

Let U bYe any open neighborhood of T such that U C UT
and let U' be a 'safe'! neighborhood, T ( U' ( U, provided

by Assertion 1).

Assertion 2)

It is possible to alter ¢ on a compact subset of U'
producing a nowhere zero vector field §!', such that every
integral curve of E! through a point in U was outside U at
some time t' < O and will again be outside U at some time

" > 0.

Replace pl¥) = (v(xl), “Xpy essy xn) by a smooth vector field

: 2
(X)) = (V'(xl, p), "Xy eeey xn) vhere p = [x:a + eee + xg 1/2
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and
(1) v'(xl, o(X’)) = v(xl) outside a compact neighborhood
of g(T) in g(U').
(1) v'(xl, 0) is everywhere negative.
(see Figure 5.4)
Figure 5.k

% W ‘r\\dv:\’l'lﬂ

. T,
({; =y '\11‘0)\

This determines a novwhere zero vector field E¢' on W, In our

local coordinates, the differential equations satisfied by

the integral curves of &' on U, are

T
dx a
_ 2 )5\+.‘L _
g = V5, p) o, FET = Xp e T T K
dt AF2? "2 4t n

Consider the integral curve x( t) = (xl(t), cesy xn(t)) with
initial value (x;., cony xg), s t increases.

o o
(a) If one of X 42 *ees Xy

Ix (t)] = Ixz e®| increases exponentially and R(t) eventually

is nonzero, say x:; # 0, then

leaves g(U) (g(U) 1s compact, therefore bounded).

(b) 1If x;+2 B oaee = X§ = 0, then p(xYt)) = c(x;)"" +oe..

(xi+l)2]1/2 e aecreases exponentially. Suppose ¥(t) remains
in g(U). 8ince v'(xl, p(X)) 4s negative on the x, ~axis,
there exists & > 0 8o small that v'(xl, p(¥")) 1s negative
on the compact set K, = (e g(T)| o(®) < b},

Then v'(xl, p(¥') ) has a negative upperbound .g < O on Ke -



Eventually p(¥ {t)) <5, and thereafter

ax (t)

at
Thus X(t) must eventually leave the bounded set g(U) after

< -a.

all.

A similer argument will show that X(t) goes outside g(U)

a8 t decreases.

Assertion 3)

Every trajectory of the vector field ¢! goes from Vo to Vl.

Proof:

If an integrsl curve of E' 1is ever in U!' 1t eventually gets
outside U, by Assertion 2), Leaving U' it follow traject-
ories of §&; 80 once out of U 1t will remain out of U!
permanently by Assertion 1), Consequently it must follow a
trajectory of § to Vl. A parallel argument shows that it

comes from Vo‘ On the other hand if an integral curve of ¢!

is never in U' it is an integral curve of ¢ +that goes from

Va to Vi.

Assertion 4} In a natural way, &' determines a diffeomorphism

g: ([0, 1) xV ;0xV,1xV)—>(W;V,V)

Proof: Let ¥(%t, q4) be the family o® integral curves for E*.
Since t' 1s nowhere tangent to BdAW, an application of the
implicit function theorem shows that the function Tl(q)
[respectively TO(q)] that essigns to each point q € W the

time at which V(t, @) reaches V) [respectively minus the



time when it reaches VS] depends smoothly on q. Then the
projection ¥ : W —> V_ given by w{q) = *(-fo(qJ, q) 1is
also smooth, Clearly the smooth vector field Tl(w(q)) £'(q)

has integral curves that go from Vo to V, in unit time. To

1l
simplify notation assume that §' had this property from the

outset. Then the required diffecmorphism ¢ maps
(t: q°) — ‘P’(t: qo)

and its inverse is the smooth map

¢ —> (r(a), m(a)).

>~

Asgertion 5) The vector field ¢! is a gradient-like vector

field for a Morse function g on W (with no critical points)

that agrees with f on & neighborhood of Vb U Vi.

Proof: In view of Assertion 4) it will suffice to exhibit a
Morse function g : [0, 1] X Vo —> [0, 1] such that g%-> 0
and g agrees with f, = fog) near O X V_ UlxvV (we
may sssume that V_ = f’l(o) and V, = f'l(l)). Clearly there
existe ® > O such that, for all g & VO’ EEL (t, a}>o0

if t<% or t>1-58. Let A : [0, 1) ~—> [0, 1] De a

smooth function zero for t & {6, 1L - 8] and one for t near

O and 1. Consider the function

of
glu, a) = [, (n(t) &—l- (t, @) + [1 - a(t)Ik(q))at

of
where k(a) = (1 - J& A(t) g (8, )at)/ [gI1 ~ A(t)]as.

Choosing & sufficiently smsll we may assume that k(gq) > O

for all q & Vb. Then g apparently has the required properties.
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Granting the Preliminary Hypothesis, this completes the
Proof of the First Cancellation Theorem 5.5. To establish

Theorem 5.5 in general it remains to prove:

1
Assertion 6) When Sg end 8. have a single, transverse

intersection it is alweys possible to choose a new gradient-
like vector field &' 80 that the Preliminary Hypothesis 5.5

is satisfied.

Remark: The proof, which occupies the last 12-'pages of this
gection, has two parts «— the reduction of the problem to a

technical lemma (Theorem 5.6), and the proof of the lemma.

Proof: Let T(¥) be a vector field on R’ that is of the
form described in the Preliminary Hypothesis, with singularities
at the origin O and the unit point e of the xl-axis. The
function

X
F@) = 2(p) + 2f * v(t)at - x5 - ... - ‘52\+1 + x§+2 f e b X0

is a Morse function on R" for which T(}) 1s a gradient-
like vector field. By a suitable choice of the function v(xl)
ve mey arrange that F(e) = £(p') , 1i.e. 2,[%, v(t)dt =

£(p') - £(p) .

Recall that according to the definition 3.1 of a grad-
ient-like vector field for £, there exists a co-ordinate
system (xl, coey xn) about each of the critical points p
and p! in which f corresponds to a function i-xf Fooeo i.xi
of suitable index, and { has coordinates (* % ,..., + x )

Then one readily checks that there exist levels bl and ba,
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- ] -
8, = f(p) < b, < b, < f(p') = a

of closed, disjoint neighborhoods Ll’ L2 of O and e onto

5s &nd diffeomorphisms g1 85

neighborhoods of p and p' respectively such that:

(a) The diffeomorphisms carry +# to &, F tb £, and points
on the segment oe +to points on T.

(b) Let p, demote TN £ (b)), 1i=1,2 The image of L,
is a neighborhood in g1 [al, bl] of the segment pp, of
T, while the image of L, is a neighborhood in gL [b,, a,]

of the segment pep' of T (see Figure 5.5).

Figure 5,

K
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Observe that the trajectories of T(#) with initial points
in a small neighborhood U, of gil(pl) in gilf-l(bl) pro-
ceed to points in gélf—l(be) that form & diffecmorphic image
U2 of Ul and in doing so sweep out a set Lo diffeomorphic
to Ui X [0, 1] euch that Ll ) Lo U L2 is a neighborhood of
oe, There is a unique extension of g, to a smooth imbedding
g of L, UL, into W determined by the condition that Y
trajectories go to £ +trajectorlies amd F levels go to f
levels.

Now let us suppose for the moment that the two lmbeddings
of U, into f_l(bz) given by Ei and g, coincide at least
on some small neighborhood of gél(pa) in U,. Then Ei and
g, together give a diffeomorphism g of a small neighborhood
V of oe onto a neighborhood of T in W that preserves
trajectories and levels. This implies that there is a smoothy
positive, real-valued function k defined on g(V) such that
for sll points in g(V)

gy W=k 2.
Choosing the neighborhood V of oe sufficiently small ve
mey assume that the function k is defined, smooth and positive
on all of W. Then &' = ki is a gradient-like vector field
satisfying the Preliminary Hypothesis 5.5. So when the above
supposition holds the proof of Assertion 6) is complete.

In the general case, the vector field § determines a
diffeomorphism h : f'l(bl) — f'l(be) and the vector field

N determines a diffecmorphism h'® : Uy —> U,. Clearly the



supposition made in the previous paragraph holda if and only
1f h coincides with h = geh'gil near p . Now, by Lemma
4,7, any diffeomorphism isotopic to h correeponds to a new
gradient-like vector field that differs from ¢ only on

f-l(bl, b Thus Assertion 6) will be established if H can

o)
be deformed to a diffeomorphism h which coincides with b
near p, and for which the new right-hand sphere E(SR(bl))
in level b2 8til)l has the single transverse intersection Py
with SL(be). (The b, or b, here indicates the level in
which the sphere lies.)

For convenlence we will specify the required deformation
of h by giving a suitable isotopy of h;lh that deforms hglh
on a very small neighborhood of Py to coincide with the
identity map on a still smaller neighborhood of pl. Observe
that, after a preliminary alteration of 8, if necessary,
h;lh- is orientation preserving at p, = h;lh(pl) and both
h;lh SR(bl) and SR(bl) have the same intersection number
(voth +1 or both -1) with SL(bl) at b,. (For a defin-
ition of intersection number see §6.) Then the Following

local theorem provides the required isotopy.

let n =8 +b. Apoint x ¢ R® may be written x = (u, v),
ue R ve R . We identify u e R* with (u, o) € R® and

ve R with (o, v) & R".

Theorem 5.6

Suppose that h 1s an orientation-preserving imbedding
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of R® into R" such that

1) n(0) = 0 (where O denotes the origin in R°)

2) h(R?) meets R’ only at the origin. The intersection is
transverse and the intersection number is +1 (vwhere we
agree that R® meets Rb with intersection number +1).

Then given any neighvorhood N of the origin, there exdists

a smooth isotopy b, : B° —>R%, 0<t <1, with b =h
such that

(I) By(x) =h(x) for x =0 and for xe R - N, 0 <t <1,

| | .
(11) hl(x) =x for x in same small neighborhood N,

of O.

(III) h;(Ra) n R = o.

R" 4

h{R%) f‘ h{R®)

Figure 5.6 ‘/) > Qe
/\ h(N)
Lemma 5.7

Let h : R® —> R® be the map in the hypothesis of Theorem

5.6. There exists a smooth isotopy h, : RE —> Rn, 0<t<],

t
such that

(1) b =h and h 1is the identity map of R°.

(11) for each t e {0, 1], ht(Ra) ng® = 0, and the inter-

gection is transverse,
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Proof of Lemma 5.7:

since h(0) = 0, h(x) may be expressed in the form
1 n
B(x) = xh (x) + oo + x B (x) , x = (X, 20y X ), where

hi(x) is a smooth vector function of x and (consequently)
i ch '

h (O) = a?c; (0) 2 i = l, seuy Nn. (Bee Milnor [l'", Po6])o If

ve define h_ by

cr

by (x) = %-h(tx) = xlhl(tx) + oo xnhn(tx), 0<t<1,
then ht(x) is clearly a smooth isotopy of h to the linear
map

by (x) = u7(0) + ... + x B(0)
Since h(R*) and ht(Ra) have precisely the same orienting
vasis h'(0), ..., h?(0) of tangent vectors at O e R°, it
follows that for all %, 0< t <1, ht(Ra) has transverse
positive intersection with B° at 0. Clearly b, (R*) N R = 0.
Thus if hl is the identity linear map we are through.
If not, consider the family A ( GL{n, R) consisting of

all orientation-preserving non-singular linear transformations
L of R® such that L(R®) has transverse positive inter-
section with ﬁp, i.e. el1 transformations with matrices of
the form L = (%{;)

where A 18 an a X a matrix and

det L >0 , det A > 0.

Agsertion: For any L € A there is a smooth isotopy Lt’

0<t<1l, deforming L dinto the identity, such that L, e A

for all t; or, equivalently, there is a smooth path in A

from L to the identity.



ol

Proof: Addition of e scalar multiple of one of the first a
rows [columns] +to one of the last b rows [respectively,
columns] clearly may be realized by a smooth deformation
(= path) in A. A finite number of such operations will reduce
the matrix L to the form

1 = (§19)
where B is &2 b X b matrix and (necessarily) det B> 0. As
is well known a finite number of elementary operations on the
matrix A, each realizable by a deformation in GL(a, R},
serve to reduce A to the identity matrix. A similer stete-
ment holds for B. Thus there are smooth deformations At’ Bt’
0<t<l, of A and B to identity matrices with det 4 > O
and det Bt > 0. ‘They provide a deformation in 4 of L' to
the identity. This completes the proof of the assertion and

also the proof of Lemma 5.7.

Proof of Theorem 5.6: Let h,, 0<t < 1, be the isotopy of 5.7.

Let E( N be an open ball about O and let d be the distance

from O to R° - b(E). Since ht(o) = 0 and the time interval
0<t<1l 1is compact, there exists a small open ball El
about 0 with EE.C:E so that Iht(x)| <d forall xE€ ﬁi.
Now define

ht(x) = ht(x) for x g E

h(x) for x e ) Sl
- E) As an
initial step we willl extend it to an isotopy of h +that satis-

As it stands, this is an isotopy of h'ia U (Rn

fies at least the conditions (I) and (II) of Theorem 5.6,
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Flrst observe that to any isotopy h ., 0<t<1l, of h

t
there corresponds a smooth level-preserving imbedding
E : (0, 1] x R® —> [0, 1] x R®
and conversely. The relation is simply
H(t, x) = (%, by(x)).
The imbedding H determines on its lmage a vector field
d aht X

™ty ¥) = Bty x), 5 = (1, —579)
vhere (t, y) = H(t, x) , 1.e. ¥ = ht(x). This vector field,
together with the imbedding ho’ completely determines h, and

t
hence H., In fact

¥(t, v) = (%, hth;l(y)) is the unique family
of integral curves with initial values {0, y) € O X ho(Rn).
These observationas suggest a device due to R. Thom. We

will extend the isotopy b, to all of [0, 1] X R®, by first

extending the vector field

s _ aht -1
T (t, y) = (1, 5t (ht (y))

to a vector field on [0, 1] X R® of the form (1, U’ (t, ¥)).

Figure 5.8

The Vector Feld 7 (t, y)

T = N\ |

WR)

t
v
— > T i

1=0 4o
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Clearly E% admits an extension to a small open neighbarhood
of its closed domain [0, 1] x (E U (R® - E)}. This glves
an extension of ¢(t, y) +to a neighborhood U of its closed
domain. Multiplication by a smooth function identically one
on the original closed domain and zero outside U produces an
extension to {0, 1] X R™, Finelly, setting the first co-ord-
inate eqqal to 1 we get a smooth extension
(s, ¥) = (1, s, ¥)).
Notice that a family of integral curves w¥(t, y) is defined
for y € R° and for all t e [0, 1]. For y e R - h(E)
this is trivial. For y &€ h(E) 1t follows from the fact that
the integral curve must remain in the compact set [0, L]} X h(E).
The family ¥ givee a smooth level preserving imbedding
v : [0, 1] x R® —> [0, 1] x R"

Then the equation

¥(t, ¥) = (t, B (y))
serves to define the reqnired extension of h

t
isotopy of h that satisfies at least conditions (I) and (II)

to a smooth

of 'Theorem 5.6,
Using a similar argument one can prove the following
theorem of R. Thom which we will use in Section 8. (For a full

proof see Milnor [12, p.5] or Thom ({13]).

Theorem 5.8 Isotopy Extension Theorem.

Let M be a smooth compact submanifold of the smcoth manifold

N without boundary. If ht,ols’t <1, is a smooth isotopy of

1 : MC N, then ht is the restriction of a smooth isotopy



o¢

]
ht,O <t <1, of the identity map N ——> N such that ht

fixes points outeide a compact subset of N.

Returning to the proof of Theorem 5.6, let ﬁé denote

the extended isotopy. The last condition (III) of Theorem

5,6 will be violated if h, introduces new intersections of

the imege of R® with R° as indicated in Figure 5.9.

R\’ A

|

~ hRY

-— Y
h\RY~ .~ >

C )
2[ E l:hlEl)

Bence we can use h, only for small values of t, say t<t',

Y

Figure 5.9 Y .

) — 5 R

where no new intersection can occur. We will apply the above
process to conmstruct a further deformation of E;, which
alters E;, only et points in E,, where ﬁ;, coincides with

h After a finite number of steps we will obtain the isotopy

£
required. The details follow. |

Note that we can write the isotopy ht of Lemma 5.7 in
the form
(*) ht(x) = xlhl(t, X) + cue + xnhn(t, x)
where hi(t, x) 1s a smooth function of t and x,
i=1, ..., u, eand (consequently) hi(t, 0) = E;E (0).(The
proof given in Milnor {4, p.6] 1is unaffected by the para-

meter t.)
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lemme 5.Q
There exipt positive constants X, K  such that for all x

in a neighborhood of the origin in R® and a11 t & [0, 1)
aht x)

1) —5E < kx|

e) Ixa ht(x)l > k]xl for x ¢ Rg, where LU R —> R*

is the natural projection.

Proof: The first inequality comes from differentiating (*).
The second follows fram the fact that ht(Ra) is transverse

to Rb for all t in the compact interval [0, 1].

We now complete the proof of Theorem 5.6 with an inductive
step as follows, Suppose we have somehow obtained an imbedding

h : R* —> R® isotopic to h such that
1) For same to, 0< to <1, h(x) coincides with

by (x) for all x near O and with h(x) for all
o

x outside N,
2) B(R*) n R =o.
We perform the construction for ﬁ; glven on pages 61 to 63
teking h 1in place of h and [to, 1] in place of [0, 1]
and making the following two special choices (a) and (b).
(a) Choose the ball E( N 80 smell that, for all points

x e E, h(x) = b, (x) and the inequalities of Lemma 5.9
o

hold.

Note that on the set [to,l] X [Ei v (Rp - E)} where h, 1is

initially defined we have
oh
($) I—%él‘ll < Kr , r = radius of E.



Now ?E%%El is the R°-component of 2(t, y). So it is clear

from the construction on page (62) that we can

(b) choose the extended R--component T(t, y) of %(t, y)
to have modulus everywhere less than klr.

Then Et will esatisfy (§) everyvhere in [to, 1] X r%.
We assert that E; will introduce no new intersection

of the image of R® with R° for t,<t<t +E . In

fact if x e R° n (E - El), the distance of E£ (x) from
o
B is

l“a E;o(x)l = |x_ hto(x)l >k

Thus (§) shows that for t, Sttt + % we have

Iuaﬁt(x)l >kr-(t- to)Kr > 0.

Finally, to make possible composition with similar
isotopies, we may adjust the parameter t so that the isotopy

- ' k
b, t <t<t, =min (1, t,+ F ), satisfies

)
—

ht(x) = | h(x) for t near t

|
E;,(x) for t npear t
| "o
Since the constant k/K depends only on b, the required

smooth isotopy is a composition of a finite number of isotopies
constructed in the above manner. So Theorem 5.6 is complete.
This means that Assertion 6) (page 55) is established, and

hence the First Cancellation Theorem is proved in general.

66
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§6 A Stronger Cancellation Theorem

Throughout these notes singular homology with integer
coefficients will be used unleas otherwise specified.

let M and M' be smooth submanifolds of dimensions r
and 8 in a smooth manifold V of dimension r + s that inter-
gsect in points Pys veesPy transversely. Suppose that M 1s
oriented and that the normal bundle v{(M!) of M' in V 1iB
oriented, At Py choose a positively oriented r-frame
gl, ...,gr of linearly independent vectors spanning the tangent

space T&P of M at P, - Since the intersection at Py is
i

transverse, the vectors El’ ...,gr represent a basis for the

fiber at p, of the normal bundle v(M?!).

Definition 6.1 The intersection number of M and M' at p,

is defined to be +1 or -1 according as the vectors gl, ...,gr
represent a positively or negatively oriented basis for the

fiber at p, of v(M'). The intersection number M!'*M of

M and M' 1s the sum of the intersection numbers at the points

Pi'

Remark 1) In an expression M'-M we agree to write the mani-

fold with oriented normel bundle first.

Remark 2) If V is oriented, any submanifold N is orientable
if and only if its normal bundle is orientable. In fact given

an orientation for N there is a natural way to give an orien-
tation to yv(N) and conversely. Namely we require that at any

point in N a positively oriented frame tangent to N followed
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by a frame positively oriented in v(N) 1is a frame positively

oriented in V,

Hence if V is oriented there is a natural way to orient

v(M) and M'!'., The reader can check that with these orientations.
MM = (-1)T° Mr.u,

If the orientation and orientation of normal bundle are not

relsted by the above convention we clearly still have

M:M! = + M'.M provided V 1is orientable.

Now assume that M, M' and V are compact connected
menifolds without boundary. We prove a lemms which implies that
the intersection number M.M! does not change under deformations
of M or ambient isotopy of M! and which provides a definition
of the intersection number of two closed connected submanifolds
of V of complementaery dimensions, but not necessarily inter-
secting transversely. The lemma is based on the following
corollary of the Thom Isomorphism Theorem (see the appendix

of Milnor [19]}) and the Tubular Neighborhood Theorem (see

Munkree [5, p.46] and Lang ([3, p.73) or Milmor [12, p.19]).

Lemma 6.2 (without proof)
With M' and V us above, there is a natural isomcrphism

v E (M) —>H (V, V- M),

Jet «a be the canonical generator of HO(M') =2, and
let [M) e Er(M) be the orientation generstor. The announced

lemna 1s:



Lemma 6.3 In the sequence

B (M) -B=> B_(v) —51>.Hr(v, V. MY),
vhere g and g' are induced by inclusion, we have g'eg([M])
= M**M ¥(a).

69 .

Proof: Choose disjoint open r-cells Ui, ...,Uk in M con-

taining pl, ...,pk respectively. 'The naturality of the Thom
isomorphism implies that the inclusion induced map
mt— - t
Hr(Ui, Uy -p) —>H(V, V-M)
is an isomorphism given by 7y —> € ¥(a) where 7, 18 the

orientation generator of Hr(Ui, v, - pi) and €, is the inter-

i
Bection number of M and M' at py- The following commitative

diagram, in which the indicated isomorphism comes from excision
and the other homomorphisms are induced by inclusion, completes
the proof.

B (M) > H_(v) -E> 5 (V, V - M)

t-‘ﬂﬂﬂ_-___'___,_———*?”

Hr(M M-MQOM) >}:H(U -pi)
i=)

We cen now reinforce the First Cancellation Theorem S5.k.
Let us return to the situation of Theorem 5.4t as set out on

page 45. Memely (W%; Vv, Vl) ig a triad with Morse function

0
£ having a gradient-like vector field ¢, and p, p' with
£(p) < 1/2 < £(p') are the two critical points of £, of index
As; N+ 1 respectively. Suppose that an orientation has been
given to the left-hand aphere S'

L
to the normal bundle in V of the right-hand sphere SR'

in V = £3(1/2) end also

Theorem 6.4 Second Cancellation Theorem

Suppose W, Vb and Vi. are simply connected, and A > 2,
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1
N+1<n-3. If S+ 8 =41, then W is diffeomorphic to
]
v, X (0, 1], 1In fact if SR * 8, =#, then £ can be altered
near V so0 that the right- and left-hand spheres in V inter-

sect in a single point, transversely; and the conclusions of

Theorem 5.4 then apply.

Remark 1) Observe that V = f'l(l/E) is also simply connected.
In fact, applying Van Kampen's theorem (Crowell and Fox [17, p.63])
twice we find ul(V) = nl(Dg'k(p) Uvu Dﬁ+l(q))- (This uses

A22,n-Ax23). Butby 3.h the inclusion Dp(p) UV U D (q) CW

is a homotopy equivelence. Combining these two statements we cee

that nl(V) =1,

Remark 2) Notice that conclusion of the theorem is obviously

true vhenever X\ =0 or A =no - 1., Also the reader can verify

with the help of 6.6 below that the theorem holds even with the

single dimension restriction n > 6! (The cases we will not
check are A =) and A = n - 2.) The one extension of use

to us comes from turning the triad around:

Corollary 6.5 Theorem 6.4 i3 also valid if the dimension

conditions are A\ > 3, (N +1) S_ﬁ'-'2.

Proof of Corollary: Orient SR and the normal bundle vSL

]
of SL in V. Now W is simply connected hence orientable.

So V is orienteble and it follows from Remark 2) page 67 that

. ]
8 - 8p = +8p* 8 = .

If we now apply Theorem 6.4 to the triad (Wn; Vys Va) with
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Morse function ~f and gradient-like vector field ~¢ we clearly

get Corollary 6.5.
The proof of 6.4 will be based on the following delicate

theorem which is essentially due to Whitney [7].

Theorem 6.6

Let M and M' be smooth closed, transversely intersecting
submanifolds of dimensions r and s in the smooth (r + s)-men-
1fold V (without boundary). Suppose that M 1is oriented and
that the normal bundle of M!' in V 48 oriented. Further suppose
that r +8 > 5,8 >3, end, incese r =1 or r =2, suppose
that the inclusion induced map ul(V - M) —> ul(V) is 1-1 into.

Iet p, ae MN M' be points with opposite intersection num-
bers such that there exists a loop L contractible in V that
consists of a smoothly imbedded arc from p to q in M followed
by a smoothly imbedded arc from @ to p in M' where both arcs
miss M N M' - {p, al.

With these assumptions there exists an isotopy ht,o <t<1l,
of the identity {41 : V —> V such that

(1) The isotopy fixes 1 near M M' - {p, q)

(i) hl(M) nNM =MnM - (p, q)

Figure 6.1
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Remark: If M and M' are connected, r >2 and V is simply

connected no explicit assumption about a loop L need be made. For
applying the Hopf-Rinow theorem (see Milnor [4, p.62]), with com-
plete Riemannian metrics on M - S and M' - S, where

S=MnM' - (p, q}, ve can find a smoothly imbedded axc p to gq
in M and similarly q to p in M' giving a loop L that misses

S. The loop L 1s certainly contractible if V is simply connected.

Proof of Theorem 6.4

According to 5.2 vwe can make & preliminary adjustment of &

| ] s
near V so that SR and S intersect transversely. If S, N S

L R L
]
is not a single point, then SR . SI = + 1 implies that there
L
exists a pair of points Py» ql in SR N SL with opposite inter-

section numbers. If we can show that Theorem 6.6 applies to this

situation, then after we adjust ¢ near V, using Lemma 4.7, Sp

1§
and SL will have two fewer intersection points. Thus if we repeat
t
this process finitely many times SR and SL will intersect

transversely in a single point and the proof will be complete.

Since V 1s simply connected (Remark 1 pdge 70) it is clear
that in case A > 3 all the conditions of Theorem 6.6 are satis-
fied. If A =2, it remains to show that nl(V - SR) —_— nl(V) =1
is 1-1, i.e. that “1(V - sR) = 1, Now the tra)ectories of ¢
determine a diffeomorphism of V0 - SL onto V - Sp, where SL
denotes the left-hand l-sphere of p 1n VO. let N be a pro-

duct neighborhood of S. 1in Vo. Since n-A-1=n-32>3,

L
we have nl(N -‘SL) Z 7, and the diagram of fundamental groups

corresponding to
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¢ v°\) flw\
T
v - 5; N is n,(V -8 \\‘Z
o) 1Yo L
D C V\ //g-
(vo-sL)nN z -
=N-8

L

Van Kampen's theorem how implies that 1tl(‘ui'0 - SL)== 1, 'This

completes the proof of Theorem 6.4 modulo proving Theorem 6.6.

Proof of 6.6

Suppose that the intersection numbers at p and q are
+l and -) respectively. let C and C! be the smoothly
imbedded axrcs in M and M' from p to q extended a little
way at both emds. Let Co and C; be open arcs in the plane
intersecting transversely in points e and b, and enclosing a
disk D (with two corners) as in Flgure 6.2 below. Choose an
embedding ¢, : C U c; —> M U M'" go that q;l(co) and
¢l(c;) are the axcse C and C', with & and b corresponding
to p and q. The theorem will follow gquickly from the next

lemma, which embeds a standard model.

Lemma 6.7 For some neighborhocd U of D we can extend

? - -
¢1|U n (C° U CO) to an embedding ¢ : U X R? 1 X RF 1 —_— V

R;-l

x O and

such that o (M) = (U n C)x

- 1 -
q:»l(M')=(UnCO)x0xRB l.

Figure 6,2 The Standard Mcdel
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Assuming Lemma 6,7 for the moment, we will conmstruct an
isotopy Ft ¢t V——=> YV such that Fo is the identity,
Fl(M) nNM =MnM - (p, q), and F, 1is the identity outside
the image of ¢, 0 <t < 1.

1l

Let W denote o(U x R~ x Rg'l) and define Ft to be

the identity on V - W, Define Fk on W as follows,
Choose an isotopy Gt ¢t U~> U of our plane model such

that

1.) G, is the identity map,

2.) Gt is the identity in a neighborhood of the boundary
U-U of U 0<t<1l, and

3.) 6,(Unc)nc =g. (See Figure 6.3.)

r-l s-1 Co
Iet p: R X R —> [0, 1] be a smooth function

such that with x e R°° Y, y e R° 1

( ) 1 for |x‘2 + |y|2 <1
P\X, ¥Y) = '
’ 0 for |x|2 + |y|2 > 2.

r-l 8-1

. -1
Define en isotopy B, : UX R~ x B*™0 —> Ux R’ 1 g®

R
by

Ht(u’ X, y) = (G (u), Xy, ¥) ,ue U

tp(x, Y)

It is easy fo see that Ft(w) =g@oH ° @‘l(w), W € W, defines

the required isotopy on W. This flasshes the proof ¢f Theorem

6.6, modulo proving 6.7,

Lemma 6.8 There exists a Riemannian metric on V such that
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1.) 1in the associated connection (see Milnor (4, p.Lhk]) M and
M' are totally geodesic submanifolds of V (i.e. if a
geodesic in V 1s tangent to M or to M! at any point
then it lies entirely in M or M', respectively.)

2.) there exist coordinate neighborhoods Np and Nq about
P and q in which the metric is the euclidean metric and
so that Np nc, N nc', N nC, and Nq N C!' are straight

b q
line segments.

Proof (due to E. Feldman): We know that M intersects M!
transversely in points pl, ce Py with p = Py and q = Poe

Cover M U M! by coordinate neighborhoods W ...,Wm in V

ll

:w -—»Rﬁs,izl, o..,m,

with coordinate diffeomorphisms hi i

such that

a.) there are disjoint coordinate neighborhoods Nyjy ooesN

with pieNiCﬁiCWi and Nian=¢ for 1 =1, ...,k

and J k+l, ...’m.
b.) by (WinM)CRer
hy (winM')Cost 1 =1, .o, k.

c.) h, (W, N C) and h (W, N C') are straight line segments

in R°'%, 1 =1,2.

Construct a Riemann metric < ¥V, W > on the open set
wo = Wl U... U Wm by plecing together the metrics on the wi
induced by the hi’ i=1, ...,m , using a partition of unity.
Note that because of a.) this metric is eucliaean in tae

N

i’ 1 =l, I..,k.
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With this metric construct open tubular neighborhoods T

and T' of M and M! in W using the exponential map (see
Lang [3, p. 73). By choosing them thin enough we may assume
]
that TNT CN U...UDN and that
. AT 8 r 8 _ T+5
hi(TnT ﬂNi)—ODexODE,CR X R =R ’
i=1, oo,k , for some €, €' > 0 depending on 1. The situ-

ation i1s represented schematically in Figure 6.h.

Y | i

Figure 6.4 1;

/ ; - N,
¢
M W;
Iet A ;: T~> T be the smooth involution (A2 = A o A =

identity) which is the antipodal map on each fiber of T. Define

a new Riemann metric < G’, ﬁ*>A on T by <V, ﬁ’>A =
1l Y -3
§(<i'r",w>+<A*v,A*x?>). .

Assertion: With respect to this new metric, M 1is a totally
geodesic submanifold of T. To see this, let w be a geodesic
in T tangent to M at some point 2z € M. It is easy to see
that A is an isometry of T in the new metric and hence sends
geodesics to geodesics, Since M- is the fixed point set of A,
it follows that A(w) and ® are geodesics with the same tan-
gent vector at A(Z) = Z. By unliqueness of geodesics, A is
the identity on w. Therefore w ( M, vhich proves the
assertion.

Similerly define a new metric < ¥, ¥>,, oﬁ T'. It

A
follows from property b.) and the form of T N T' that these
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two new metrics agree with the o0ld metricon TN T and hence
together define a metric on T U T'. Extending to all of V the
restriction of this metric to an open set O, with M U M'

OCOCTUT', completes the construction of a metric on V

satisfying conditions 1l.) and 2.).

Proof of Lemma 6.7 (The proof eccupies the rest of Section 6)

Choose a Riemannian metric on V prcvided by Lemma 6.8.
Let <(p), t(a), T'(p), t'(q) be the unit vectors tangent to
the arcs C and C' (oriented from p to q) at p and q.
Since C 1is a contractible space, the bundle over it of vectors
orthogonal to M 1is trivial. Using this fact construct a field
of unit vectors along C orthogonal to M and equal to the
parallel translates of t'(p) and of -t'(q) along Np nc
and Nﬁ N C respectively.

Construct some corresponding vector field in the model.

(See Figure 6.5)

Figure 6.5
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Using the exponential map, we see that there exists a neighbor-

hood of C, in the plane and an extension of @ilco to an
imbedding of this neighborhood into V. Actually, the expunnential
map gives an imbedding locally, and then one uses the following
lemma, whose elementary proof may be found in Munkres (5, p.49

Lemma 5.7 (wbich is incorrectly stated))

Lemma 6.9 Let A° be a closed subset of a compact metric space
A. Let £ :A—>B be a local homeomorphism such that f£[A_
is 1-1. Then there is a neighborhood of W of Ao such that
flw is 1-1. |

Similarly extend ¢1|0; to en imbedding of a neighborhocd
of C; using a field of unit vectors along C! orthogonal to
M!' which along Np N C' and Nﬁ N C' consists of the parallel
translates of T(p) and -t(q) respectively. When r =1
this is possible only because the intersection numbers at p

and q are opposite.

Using property 2) of the metric on V (see 6.8) we see
t
that the imbeddings agree in a neighborhood of Co U Co and

hence define an imbedding

of & closed annular neighborhood N of BdAD such that
-1 1., '
Py (M) = NN C, and g, (M') = NN C. Let 8 denote the
inner boundary of N and let Db C D Ve the disc bounded by
S in the plane. (See Figure 6.5)
Since the given loop L 1is homotopic to the loop @2(3),

the latter is ccatractible in V. Actually ¢b(s) is contractible
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in V- (MUM') as the following lemma will show.

Lemna 6.10

If V], n>5, i a emooth manifold, M & smooth submanifold of
codimension at least 3, then a loop in Vi - M1 that is con-

tractible in Vl is alsy contractible in Vl - Ml'

Before proving 6.10 we recall two theorems of Whilthey.

Lemma 6.11 (See Milnor {15, p.62 end p.63]) Let f : M1 —> M,
be a continuous map of smooth manifolds which is smooth on a
closed subset A of Ml‘ Then there exists a smooth map

g : M —>M, such that g = ¢ (g 1s homotopic to f£) and

gIA = f|Ao

Lemma 6.12 (See Whitney [16) and Milnor (15, p.63])

Iet £ : Ml — M2 be a smooth map of smooth manifolds which
is an imbedding on the closed subset A of Ml' Assume that
dim M2 > 2 dim M1 + 1., Then there exists an imbedding

g : M, —> M, approximating f such that g = f and gla = £]a.

Proof of 6.10:

2 1
Iet g : (D7, 57) —> (Vl, v, - Ml) give a contraction

in V; of aloopin V, - M. Because dim (Vl -Ml) >5

the above lemmas give a smooth imbedding

2

1
h : (D, 87) —> (v, vy - M )

such that g|81 is homotopic to h|Sl in Vl - Ml'
The normal bundle of h(De) i3 trivial since h(D2) is

contractible, Hence there exists an imbedding H of D> X g2
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into V; such that H(u, o) = h(u) for ue D°. Take €>0

n-2

so small that [%]<e, e R, implies H(s* x ¥) CV, - M.

Since codimension M, >3, there exists (cf. L.6) X, € RA-2

2
]§g| < €, such that H(D2 X i;) nM = @#. Now in v, - M we

have g|81 < hlsl = Hlsl % 0 = H|Sl % i; = constant. This com-

pletes the proof of Lemma 6.10.

Now we can show that ¢(S) 1is contractible in V - M U M'.
For it is contractible in V - M'* by 6.10 if r > 3, and if
r = 2 by the hypothesis that nl(V - M) —> nl(V) is 1-1.
Then, since s > 3, qKS) is also contractible in (V - M') - M =
V-(MUM') by Lemma 6.10.

We now choose a continuous extension of P to U=NU Do

¢; : U —>V

that maps Int D into V - (MU M'). Applying Lémmas 6.11
and 6.12 to ¢;|Int D we can obtain a smooth imbedding
¢3 ¢t U—>V coinciding with ¢, ona neighborhood of
U - Int D, and such that ¢3(u) g MUM' for ug C U c;.

r-1 1

It remains now to extend @i to UXR X R°™" as

desired.
We let U' denote ¢3(U), and for convenience in nota-
1
tion we shall write ¢, C', C,s and Co in place of U' N C,

1
utncey, un Co, and UnN Co’ respectively.

Lemma 6.13 There exist smooth vector fields Bys wees £l ys
Mys eeeafgy along U' which satisfy condition 1.) below
and such that E,, ..., §. , satisfy 2.) and Mys =ves Mgy

satisfy 3.)
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1l.) are orthonormal and are orthogonal to U!

2.) along C are tangent M

3.) along C' are tangent to M'.

Proof: The idea is to construct €10 ooy gr-l in steps, first
along C by parallel translation, then extending to C U C' by
a bundle argument, and then to U' by another bundle argument.
The details follow,

et vt and 1! be the normalized velocity vectors along
C and C', and let V' be the field of unit vectors along C'
wvhich are tangent to U! and are inward orthogonal to C!'. Then
v'(p) = t(p) and v'(a) = -t(q) (see Figure 6.6)

Figure 6.6

C¢
(1
o \)’lp) =T(P\ C, \‘ V;t(cv

Choose r - 1 veétors gl(p), ...,gr_l(p) which are
tangent to M at p, are othogonal to U', and are such that
the r-frame <(p), gl(p), ...,Er_l(p) is positively oriented
in Tﬂp. Parallel translating these r - 1 vectors along C
gives r - 1 smooth vector filelds gl, sy gr_l along C.
These vectors fields satisfy 1l.) because parallel translation
preserves inner products (see Milnor [4, p.u8]). They satisfy

2.) because parallel translation along a curve in a totally
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geodesic submanifold M sends tangent vectors to M 1into tangent

vectors to M (see Helgason, Differential Geometry and Symmetric

Spaces, p. 80). Actually, given the construction of the Rieman-
nian metric in 6.8, condition 2.) easily follows from the exist-
ence of the "antipodal isometry" A on a tubular neighborhood
of M (compare the argument on p.76). Finally, by continuity
the r-frame T, §l, veey gr-l is positively oriented in TM
(= tangent bundle of M) at every point of C.

Now perallel translate gl(p), ...,Er_l(P) along Nb n ct
and §l(q), ...,§r_l(q) along Nq n C'.. By hypothesis the
intersection numbers of M and M' at p and gq are +1 and
-1. This means that t(p), & (p), ...,¢ _;(P) is positively
oriented in V(M') at p while t(a), & (), ...,E. ,(a) is
negatively oriented in Vv(M*) at q. Since v'(p) = 7(p) and
v'(q) = -1(q), we can conclude that at all points of both
Np N C' and Né N ct, the frames v!, €15 o058, , ere posi-
tively oriented in v(M').

The bundle over C' of (r - 1)-frames gl, ceoy gr_l
orthogonal to M' and to U', and such that v', gl, ...,gr_l
is positively oriented in v(M') is triviel with fibder SO(r - 1),
which is connected. Hence we may extend gl, ...,gr_l to a
smooth field of (r - 1)-frames on C U C' that satisfy condi-
tions 1) and 2).

The bundle over U' of orthonormal (r-1)-frames orthogonal
to U' is a trivial bundle with fiber o(r +8 - 2)/0(s - 1)
= v__ (F*?), the Stiefel manifold of orthomormal (r - 1)-

frames 1in Rr+8'2. So far we have constructed a smooth cross-
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section §1’ ""gr-l of this bundle over C U C'. Composing
gl, ""gr-l with the projection into the fiber, we get a
smooth map of C U C' into O(r + s - 2)/0(s - 1) which 1s
simply connected since 8 > 3. (see Steenrod (18, p.103]).
Hence there is a continucus extension to U' and by Lemma 6.11
there exists a smooth extension. Thus we can define §l, ""gr-l
over all of U' to satisfy 1.) and 2.).

To define the remaing desired vector fields, observe that
the bundle over U' of orthonormal frames Mys eoesfyq in
TV such that each ny is orthogonal to U' and to gl, ...,gr_l
is a trivial bundle because U' 1is contractible. Let the
desired field of frames Mys eoesfg_q OB U' be a smooth
- cross-section of this bundle. Then gl, ”"gr-l’ Nys soeallgy
satisfy 1.). Furthermore, since gl, ...,gr_l are ortho-
gonal to M' along C', it follows that Mys sevafgy sat-

isfy 3.). This finishes the proof of Lemma 6.13.

Completion of Proof of Lemme 6.7

Define a map UX R F x B®1 —> v vy

r-l s8-1

(WyXyseeesX _1s¥qseees¥y y) — eXP[iElxi§i(q>3(u)) +J§lydnj(q>3(u))].

It follows from Lemma 6.9 and the fact that this map is & local

diffeomorphism that there exists an open e-neighborhood N;

r+s8-2 -1

about the origin in R = Rr-l X RB such that if

P, U X Ne ——> V denotes this msp restricted to U X Ne then
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P, is an embedding. (U may have to be replaced by a slightly

smaller neighborhood, which we still denote by U.)

Define an embedding ¢ : U X Elxrt —svy by

o(u, z) = q)h(u’ —E2 ). Then q:(Co X Rr-l X 0)CM and
1+|z|2

¢(C; X 0 X Rs-l) (C M* because M and M' are totally geodesic
submanifolds of V. Moreover, since ¢(U x 0) = U' intersects
M and M' precisely in C and C!', transversely, it follows
that,for € > 0 sufficlently small, Image(p) intersects M
and M' precisely in the above product neighborhoods of C and

C'. 'This means qfl(M) = C_ X Flxo and w_l(M') =

' -
C_ X O0xR 1. Thue ¢ 1s the required embedding. This ends

the proof of Lemma 6.7.
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§7 Cancellation of Critical Points

in the Middle Dimensions

Definition 7.1 Suppose W 1is a compact oriented smooth

n-dimensional manifold, and set X = BdW. It is easy to check
that X is given a well -defined orientation, called the induced

orimentation, by saying that an (n - 1)-frame =< of

17 %0
vectors tangent to X at some point x ¢ X 1is positively orien-

ted if the n-frame v, = is positively oriented in

l, .'.’Tn_l

wa, where Vv 1is any vector at x tangent to W but not to

X and pointing out of W (i.e. v 1is outward normal to X).

Alternatively, one specifies [X] ¢ Hn_l(X) as the induced

orientation gemerator for X, where [X] is the imege of the

orientation generator [W] e Hn(w, X) for W under the bound-
ary homomorphism En(w, X) —> Hn_l(x) of the exact sequence

for the pair (W, X).

Remark: The reader can easily give a natural correspondence
between an orientation of a compact manifold M® specified by

an orientation of the tangent bundle (in terms of ordered frames)
and an orientation M specified by & generator [M] of HD(M; Z)
(ef .Milnor [19, p.21]). It is not difficult to see that the two
ways given above to orient BAW are equivalent under this nat-
ural. correspondence., Since we will always use the second way to

orient BdW, the proof is omitted.

Suppose now that we are given n-dimensional triads

(W; v, vt), (W*; v', v"), and (W UW'; V, V"). Suppose also
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that f is a Morse function on W U W! with critical points

Qs es05q, € W eand qi, ...,q; € W' such that 9 ...,qz

are all on one level and are of index ), while qi, ...,q;

are on another level and are of index A+ 1, and V' is a
non-critical level between them. Choose a gradient-like vector
field for f and orient the left-hand disks DL(ql), coey DL(qz)
in W and ni(qi), ...,n;(q;) in W',

Orientation for the normal bundle vDR(qi) of a right-hand
disk in W 1s then determined by the condition that DL(qi) have
intersection number +1 with DR(qi) at the point q- The
normal bundle VSR(qi) of SR(qi) in V! is naturally isomor-
phic to the restriction of VDR(qi) to SR(qi)' Hence the orien-
tation of VDRGQI) determines an orientation for VSR(qi).

Combining Definition 7.1 and the above paragraph we conclude
that once orientations have been chosen for th left-hand disks
in W and W', there is a natural way to orient the left-hand
spheres in V' and the normal bundles of the right-hand spheres
in V'. Consequently the intersection number SR(qi) . S£(q;)
of left-hand spheres with right-hand spheres in V' are well

defined.

From Section 3 we know that HK(W, V) and HX#l(w UwW', W)

=R

X&l(w" V') are free asbelian with generators

D (g )]s ++rs [0 (a,)] and [D(a))], ---, (B (qy)], respect-

ively, represented by the oriented left-hand disks.

Lemma 7.2 ILet M be an oriented closed smooth manifold of

dimension )\ embedded in V' with ([M] e QK(M) the orientation
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generator, and let h : HX(M) —_— Hx(w, V) be the map induced
by inclusion. Then h([M]) = SR(ql)°Ld [DL(qL)] + oo + Sn(qz)
M [DL(qE)] where SR(qi) « M denotes the intersection number

|
of SR(qi) and M in V',

Corollary 7.3 With respect to the baseg represented by the

oriented left-hand disks, the boundary map O : Hx+l(w Uwer, W)
—_— qk(w, V) for the triple W UW® D)W D)V 1s given by the

| | ]
matrix (aij) of intersection numbers 8,y = SR(qi) . SL(qj) in

V', naturally determined by the orientations assigned to the

left-hand disks.

Proof of Corollayy: Consider one of the basis elements

t e
[DL(qj)] € Hx+1(w UW', W). We can factor the map O into the

composition
t [ ]
B (S(ay))
i*
B, (0 UW, W) ———> K (W, V) > B (V')

boundary
M

\\\\£$f§;:7“‘-~*“*‘”*ka)

\) Hx(wl, v)

Here e 1s the inverse of the excision isomorphism, and 1,
is induced by inclusion.

] ]
By definition of the orimntation for SL(qj)’ we have

boundary ° e([Dg(qs)]) = i*([SL(q;)]).

t ]
The result follows by setting M = SL(qj) in Lemma 7.2.
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Proof of 7.2: We assume £ =1, the proof in the general case

b . = = =
eing similer. Set q =q,, D= D (q,), Dy = Dp(q,), and

Sp = SR(ql)' We must show that h([M]) = Sp M- [DL].

Consider the following diagram:

T L

i :
H, (V') ° \>>Hx(v', vt - sp)
| I

H)\‘W)\_ E(VUD, VU (D -q))

Ba

H)\(V U D, V)

3

S SE W, V)

The deformation retraction r : W -——D\Y U DL constructed

in Theorem 3.14 maps V' - Sp to VU (DL - q), so the

homomorpbism h, induced by r|V! is well-defined. The ob-

1
vious deformation retraction of V U (DL - q) to V induces
the isomorphism h2. All the other homomorphisms are induced by
inclusion.

The diagrem commutes because i, = (r|V'), (since the maps
i, r|V* : V* —> W are homotopic) and the corresponding dia-
gram of topological spaces and continuous maps commutes pointwise,
with r|V' in place of 1.

From‘Lemma 6.3 ve know that ho([M]) = S M ¥(a) where
ae Eb(SR) i1s the canonical generator and V : HO(SR) —_

HX(V', \ A SR) is the Thom isomorphism. Hence in order to prove
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that h({M]) = SR'hI [DLJ, by commutativity of the diagram it
suffices to show that
(*) By e By © by (¥(a) = [og).

The class VY(a) 1s represented by any oriented disk p*
which intersects SR: in one point x, transversely, with inter-
section number SR . DK = 41, Referring to the standard form for

an elementary cobordism given in Theorem 3.13, and the conventions

by which D(SR) 1s oriented, one can see that the image r(DK)

of Dh under the retraction r represents
A I S
DR D" = SR D +1
times the orientation generator h;lhgl([DL]) for HA(V u DL’

VU (DL - q)). It follows that
-1, -1
h,¥(a) = b, hy (Ip 1)
or h3h2tﬁ V(o) = [DL]

as required. Thus the proof of 7.2 1is complete.

Given any cobordism ¢ represented by the tiiad (W; Vv, V'),

according to 4.8 we can factor ¢ = e Cq ++» © 80 that e,

admits a Morse function all of whose critical points are on the
same level and have index A. Let cocl coe CK be represented
by the manifold WA.C:W, A=0,1, ..., n, end set W, =V, s0

that

-1 C o C 1 C..-C n
= w
Define C, = H (W , W

A A-1 ) N
be the boundary homomorphism for the exact sequence of the triple

wx-a C w;\-l C w’\ *

: —> C
(W, W, ;) endlet 9:C

A1
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Theorem 7.4 C, = {CA’ 0} 1is a chain complex (i.e. 62 = 0)

and H)\(C*) = Hk(w, V) for all A.

Proof: (Note that we do not use the fact that Ck is free abe-
lian, but only that H*(WA’ wh-l) 1s concentrated in degree Al
That 82 = 0 1is clear from the definition. To prove the

isomorphism, consider the following diagram.

0
Hx+l( a ¥ )'——4> H (w \? wk 5) —> E (Wx+1’ wx-a) —> 0
\
c)\+l H (w - 1
A-1’ x-z =G

The horizontal i1s the exact sequence of the triple (wx+1’ W, 5

\‘- w
wk—2) and the vertical is the exact sequence of (WK, A-1?

wh_z). One checks easily that the diagram commutes. Then clearly

H (c ) £ H, But nk(w W)= HK(W, V). Leav-

(whﬁl’ wx-2)' AL A2
ing the reader to verify this last statement (see Milmor [19, p.9]),

we have the desired isomorphism HX(C*) = Hl(w, V).

Theorem 7.5 (Poincare Duality. )

If (W; V, V') 4is a smooth manifold triad of dimension n end
W 1is oriented, then Hx(w, V) 1is isomorphic to Hn-K(w, vt)

for all A.

Proof: Let c =c¢; ... c  and C, = (C, 3} be defined with

respect to a Morse function f as above, and fix a gradient-like
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vector field & for f. Given fixed orientations, the left-hand

disk f T b =
ske of c, form a basis for C, HK(WA, wx-l)'

know that with respect to this basis the boundary map J : C,

—_— Cx-l is given by the matrix of intersection numbers of

From 7.3 we

oriented left-hand spheres of N with right-hand spheres of
C el having oriented normal bundles.

ees C Tor

t
Similarly let wu'(jw represent c, . C 41 n

1
un=0,1, ..., n and set W_l

and o' : c& —_— Cﬁ-l as before. For any right-hand disk D

the given orientation of v(DR)'(from the oriented left-hand

= V', Define C' =H (W', W' _)
M u( ' Tp-l

R’

disk) together with the orientation of W give a naturally de-

fined orientation for D_.. Then J : C; —> C' . is given

R T
by a matrix of intersection number of oriented right-hand spheres
with left-hand spheres having oriented pormal bundles.

Iet C'" = (c'", 8') be the cochain complex dual to the
chain complex C} = [C&, d'} (Thus c™ = HOm(C;, Z)). Choose
as basis for C'M the basis dual to the basis of ¢! which is

determined by the oriented right<hend disks of <, u

An isomorphism CK —_— C'n-x is induced by assigning to
each oriented left-hand disk, the dual of the oriented right-
hand disk of the same critical point. Now, as we have stated,

| ] | ]
o : CK —>C, 4 is given by a matrix (aij) = (SR(pi) . SL(pJ))‘

A n-A+1

It is easy to see that O!' : cBA 5 1s given by the

? ?
- . ted
matrix (bij) (SL(pJ) SR(pi))' But since W 1is oriented,

b,, =+

1] —-aij’ the sign depending only on A. (ef. 6.1 Remark 2.

The sign turns out to be (-1)h-l.) Thus O corresponds to + 8',
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and it follows that the isomorphism of chain groups induces an
- *

isomorphism HX(C*) = g h(C' Yo

Now 7.1 implies H}\(C*) = H}\(w,' V) and Hu(c;) = Hu(w, V)
for each N\ and p. Moreover, the latter isomorphism implies

TP

that HY(C' ) = B*(W, V') for each pu. TFor if two
chain complexes have isomorphic homology then the dual cochain

complexes have isomorphic cohomology, This follows from the Uni-

versal Coefficient Theorem.

Combining the last two paragraphs we obtain the desired

isomorphism H (W, V) 2 M, v,

Theorem 7.6 Basis Theorem

Suppose (W; V, V') is a triad of dimension n possessing

a Morse function f with all critical points of index A and

on the same level; and let ¢ be a gradient-like vector field
for f. Assume that 2 <A <n -2 and that W is connected.
Then given any basis for HX(W, V), there exist a Morse function
f' and a gradient-like vector field ¢' for f£' which agree
with f and ¢ in a neighborhood of V U V' and are such that
f' has the same critical points as f, all on the same level,
and the left-hand disks for ¢', when suitably oriented,

determine the given basis.

Proof: Let Pys sees Py be the critical points of £ and let
by, ..., b be the basis of Hk(w, V)22® ... 82 (k-summands)
represented by the left-hand disks DL(pl)’ cesy DL(pk) with
any fixed orientations. Let the normal bundles of the right-

hand disks DR(pl)’ ceey DR(pk) be oriented so that the matrix
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(DR(pi) . DL(PJ)) of intersection numbers is the identity k X k

matrix.

Consider first any oriented A-disk D smoothly imbedded in

W with BAD C V. D represents an element

aibl + vee + o'kbk € Hk(w’ V)
for some integers Oi, ey Ok ; that is, D 1is homolgous to
aiDL(Pl) + ee. + O%DL(pk)' It follows from an easily proved

relative version of Lemma 6.3 that, for each j =1, ..., k
Dg(py) + D = Dplp,) + [ogDy(p,) + ... + 4D (p, )]
Ol_lDR(pJ%DL () + o0n orkDR(pJ)'DL (p, )

= aJ.

Thus D represents the element

Dp(py) D by + ... + Dp(p,)-D b
We shall construct f' and E¢' so that the new oriented
L
left-hand disks are DL(pl), DL(pz), coey DL(pk) with
- D = ¢« D = a p.(p,)* D (p,) =0

Dg(py) - Dplpy) = pplp,) ¢ Dy(py) = +1 and Dple,) * Dy (py
for j =3, 4, ..., k. It follows from the previous paragraph
that the new basis is then b, + b

1 27
cause & basis element to be replaced by its negative simply by

b2, ceey bk' One can also

reversing the orientation of the corresponding left-hand disk.
Since a composition of such elementary operations yields any
desired basis, this will complete the proof.

The steps involved are roughly as follows: increase f in
a neighborhood of Py alter the vector field so that the left-
hand disk of Py "aweeps across"” P, with positive sign, and

then readjust the function so that there is only one critical value.
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More precisely, using 4.1 find a Morse function £, which

agrees with f outside a small neighborhood of Py such thet

fl(pl) > f(pl) and f, has the same critical points and gradient-
like vector field as f. Choose t_ so that fl(pl) >t > f(p)

s |
and set v o= fl (to).

The left-hand (A - 1)-sphere 5, of p; in V_ and the right-

hand (n - )\ - 1)-spheres SR(pi) of the p,, 2<1<k, lying

in V_  ere disjoint. Choose points & S, and b e SR(PE)'

Since W, and hence Vo, 1s connected, there is an embedding
P (0, 3) —> Vv, such. that ¢i(0’ 3) 1intersects each of
5, end SR(pE) once, transversely, in gl(l) = a end ¢2(2) = b,

and such that ¢i(°’ 3) A (SR(p3) U...U SR(pk)) = ¢-

Lemma 7.7 There exists an embedding ¢ : (0, 3) X g gAML

_— Vb such that
1.) o(s, 0, 0) = ¢l(s) for s e (0, 3), o
2.) ¢'l(sL) -1x X0, ¢-l(SR(p2)) -2x0oxRM ang

3.) the image of ¢ misses the other spheres. Moreover, ¢ can

A-1

be chosen so that it maps 1 X R X 0O into S with

L
b x

positive orientation and so that ¢({0, 3) X R*™" x 0)

intersects Sp(p,) at o(2, 0, 0) = b with intersection
number +1,

Proof:
Choose a Riemann metric for V_ 8o that the arc A = ¢1(0, 3)

is orthogonal to S. and to SR(PE) and so that these spheres

L
are totally geodccic submanifolds of V) (cf, Lemma 6.7).

Let u(a) and p(b) be orthonormal (A - 1)-frames at

a and b such that p(a) 4is tangent to S, at a with
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positive orientation and pu(b) 1is orthogonal to SR(pE) at b
with intersection number +1. The bundle over A of orthonormal
(K- 1)-frames of vectors orthogonal to A 1s a trivial bundle
with fiber the Stiefel manifold v}\_l(Rn'Q), which is connected
since A\ -1 <n -2, Hence we may extend to a smooth cross-
section p along all of A,

The bundle over A of orthonormal (n - A - 1)-frames of
vectors orthogonal to A and to p 1s a trivial bundle with
n-x-l)

fiber V

n—x-l(R . Let 7 Dbe a smooth cross-section.

Now use the exponential map associated to the metric to
define the desired embedding ¢ with the help of tke (n - 2)-
frames pn. The details are similar to those in the completion
of the proof of Lemma 6.7, page 83 . This finishes the proof

of Lemma 7.7.

Completion of Proof of the Basis Theorem 7.6

Using ¢ we construct an isotopy of VO which sweeps SL
across SR(pE)’ as follows. (See Figure 7.2)

Fix a number & > 0 &and let a : R —> [1, 2%] be a smooth
function such that au) =1 for u> 26 and afu) >2 for

u < 8.

Fegure 7.1
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As in the last paragraph in the proof of Theorem 6.6, page
74, construct an isotopy B, of (0, 3)x 1w gAML e
that

1.) Ht is the identity outside some compact set, 0<t <1,

2.) H(1, X, 0)=(t a ([?12) +(1 -¢), ¥ 0) for e RL.

szq

1*?%““\()

\ \\\QRL )
10,3) o A ﬁfﬂ J 3
Rv\-—k-l //————_—_—_‘\

FulS)

&~ Sn
‘\——~“-\~‘\\‘\‘“~\~_____b
"f E;L::FTQ(E;L‘ - b
Figure 7.2

t
for v e Image (@) and Ft(v) = v otherwise. From property

Define an isotopy F, of V_ by F.v) =g e H o o (v)

1.) of H, we see that F_ 1is well-defined.

Now using Lemma 3.5 find a product neighborhood V_ X [0, 1]
embedded in W on the right side of V6 such that 1t contains no
critical points and Vb X 0 = V6 . Using the isotopy F%, alter
the vector field ¢ on this neighborhood as in Lemma 4.7, obtain-

ing a new vector field &' on W.

Since § and &' sagree to the left of V_ (that is, on

fil(- oo, to]), it follows that the right-hand spheres in Vb
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associated to ¢' are still SR(pg), +eey Sp(p, ). The left-hand

sphere of p, associated to &' 1is 8; = FB(SL)' From property

L
by 4.2 we can find a Morse function £ agreeing in a neighbor-

t
2.) of B we know that S  misses SR(P3)’ cee, SR(pk)' Hence

hood of BdAW with fl (and so with f), having t' as asso-

ciated gradient-like vector field, and having only one critical
value.
This completes the construction of f' and &', It remains
to show that the new left-hand disks represent the desired basis.
The left-hand disks of Pos ceey Py associated to ¢! are
still DL(pz), con, DL(pk) since ' = ¢ to the left of the
neighborhood V_ X [0, 1], that is, on fil(-m, to]. Since
€' = & also to the right of V_ X [0, 1], the new left-hand
disk DL(Pl) intersects DR(Pl) at P, = Di(pl) n DR(pl) with
intersection number DR(pl) . DL(pl) = +1. It follows from
property 2.) of H, that DL(pl) intersects DR(p2) in a single
point, transversely, with intersection number DR(P2) . Di(pl) = +1.
Finally, property 3.) of ¢ implies that DL(pl) is disjoint
from Dh(PB)’ ey DR(pk) and hence that DR(pi) . DL(Pl) =0
for 1 =3, ..., k. Thus the basis for HK(W, V) represented
by the left-hand disks associated to E' 1is indeed b, + Db

1 2’ b2’

«++s by, vhich completes the proof of T.6.

Theorem 7.8 Suppose (W; V, V') is a triad of dimension n > 6

possessing a Morse function with no critical points of indices
O, 1 or n -1, n. Futhermore, assume that W, V ani V' are
all simply connected (hence orientable) and thet Hy(W, V) = O.

Then (W; V, V') is a product cobordism.
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Let c¢ denote the cobordism (W; V, V'). It follows from
Theorem 4,8 that we can factor c¢ = CaC3 «re € o 8O that ¢
admits a Morse function f whose restriction to each N is a
Morse function all of whose critical points are on the same level

and have index ). With the notation as in Theorem 7.4 we have

the sequence of free abelian groups C —§4> C —§€> cee —§4>

n-2 n~3
c —-§—> C -§-> .o __B__> C For each )\ choose a basis
AtL A ' e’ ’
zk+l, ceey M for the kernel of o : C —> C.. Since
1 kk&l AHL A

H*(w, V) = 0 it follows from Theorem 7.4 that the above sequence

is exact and hence that we may choose bx+1, csey b’“’+l e C
1 kh A+l
+
such thet b; 1 -§L> zt for 1 =1, ..., kk' Then zi+l, ceey
zx+1 b>\+l b>\+l
, , ..',
kk+l 1 kk is a basis for Cx+l'

Since 2 <A< A+ 1<n -2, using Theorem 7.6 we can find

-~

a Morse function f' and gradient-like vector field ¢' on ¢

so that the left-hand disks of cx and cA&l represent the
chosen bases for Ch and CK+1°

Let p and q be the critical points in cK and '::)\+1
corresponding to zk and bh+l By increesing f' in a neigh-

1l 1 -
borhood of p and decreasing f' 1in a neighborhood of q (see

h.1, 4.2) ve obtain ¢ clc c c! where 5 has exactly

AL T S\%pC%eCaar?
one critical point p and cq has exactly one critical point q.

Let Vo be the level manifold between cp and cq.
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It is easy to verify that cpcq and its two end manifolds are
all simply connected (compare Remark 1, page 70). Since

Atl A
o bl zy the spheres SR(p) and SL(Q) in Vb have inter-

section number +1. Hence the Second Cancellation Theorem 6.4

or Corollary 6.5 implies that °LCq is a product cobordism and
that f' and its gradient-like vector field can be altered on the
interior of cpcq so that f' has no critical points there.
Repeating this process as often as possible we clearly eliminate
81l critical points. Then, in view of Theorem 3.4, the proof of

Theorem 7.8 is complete.
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§8 FElimination of Critical Points of Index O and 1.

Consider a smooth triad (W"; V, V'). We will always
assume that it carries a 'self indexing' Morse function f (see

4.9) and an associated gradient-like vector field ¢&. Let

-1, 1 1 -1 1
[- §,k+§], k=01, ..., n, and V,  =fo (k+-2-).

Wk =T

Theorem 8.1

Index 0) If Ho(w, V) = 0, the critical points of index O can
be cancelled against an equal number of critical points of index 1.
Index 1) Suppose W and V are simply connected and n > 5.

If there are no critical points of index O one can insert for
each index 1 critical point a pair of auxiliary index 2

and index 3 critical points and cancel the index 1 critical
points against the auxiliary index 2 critical points, (Thus

one 'trades' the critical points of index 1 for an equal

~
~

number of critical points of index 3.)

Remark: The method we used to cancel critical points of index
2<A<n -2 in Theorem 7.8 fails at index 1 for the follow-
ing reason. The Second Cancellation Theorem 6.4 holds for X =1,
n > 6. (see page 70) , bdut we-would want to apply 1t where the
simple connectivity assumption of 6.4 is spoiled by the presence

of several index 1 critical points.

Proof for Index O3

1 and Sg intersecting

in a single point, then the proof will follow from 4.2, 5.k (The

' n-
If in V6+ we can always find SR

First Cancellation Theorem) and a finite induction (cf. proof for
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index 1 Dbelow). Consider homology with coefficients in
z, = 7/2Z. Since B (W, V; Z,) = 0, by Theorem 7.k,
Bl(wl, W zz) -§-> H(wo, V; z2) is onto. But O 1is clearly
given by the matrix of intersection numbers modulo 2 of the right-

hand (n - 1)-spheres and left-hand O-spheres in V ,- Hence

for any S;-l there is at least one Si with Sg'l . S% # 0
mod 2. This says Sm-l n s® consists of an odd number of points

R L
which can only be 1. This completes the proof for index 1.

To construct auxiliavy critical points we will need

Lemma 8.2

Given O < A <n, there exists a smooth map £ : R —> R
so that f(x, ..., x ) = x; outside of a compact set; and so
that f has just two critical points Py Py non-degenerate,

of indices A, A + 1 respectively with f(pl) < f(pz).

Proof: We identify R° with R X R x Rn-h-l; and denote a

general point by (x, y, z). Let y2 be the square of the
length of y e RK.
Choose a function s(x) with compact support so that

x + s(x) has two non-degenerate critical points, say x_, X;.

Figure 8.1 X+ S(x). 4§
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First consider the function x + s(x) - y2 + z2 on Rn. This

has two non-degenerate critical points (xo, 0, 0) and (xl, 0, 0)

with the correct indices.
Now "taper" this function off as follows. Choose three

smooth functione @, B, 7 : R —> R, with compact support so
that

1) a(t) =1 for |[tf <1

2) la'(t)| < 1/Max |s(x)| for a1l t (Primes denote derivatives.)
3) p(t) »
b) 7(x)
5) lr'(x)| < l/Mix (tp (t))

1 wvhenever a(t) # O.

1 whenever s'(x) # 0.

]

| [ CY‘GP\NG g___/csvc\?\-\x
3raphc( i

cy\a‘:\-\ Sl
NN

Y

Figure 8.2

Now let

£=x+8(x)aly® +2%) + 7(x)(° + 2°) BGZ + 20D,
Note that

(a) f - x has compact support

(b) wWithin the interior of the region where « =1 (hence
B =1) and y =1 this is our old function, with the old crit-
ical points.

(c) g§ =1+ 8'(x) a(y2 + z2) + 7'(x)(-y2 + z2) B(yg + 22)
The third term has absolute value <1 by (5). Hence if
s'(x) = 0 or a(y2 + z2) = 0 wve have %% # 0. Thus ve must

only look at the region where s'(x) # O (hence 7 = 1) and
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a(y2 + 22) # 0 (hence P =1) +to look for critical points.

(d) within the region 7y =1, p =1 we have grad (f) =
(1 +8'(x) aly® + 2°), 2y(s(x) @' (5% + 2B) - 1), 22(s(x) a'(s®
+ z2) +1)). But s(x) a'(y2 + 22) +1 #0 by (2). Hence the
gradient can vanish only when y = 0, z = 0, and therefore

a = 1. But this case has already been described in (b),

Proof 8.1 for Index 1l:

The given situation may be represented schematically

\ Vl+ V2+ etc.

index 1 = 2 3
The first step of the proof is to construct, for any right-hand
(n - 2)-sphere in V,, of & eritical point p, a suitable
l-sphere to be the left-hand sphere of the index 2 critical

point that will cencel p.

Lemma 8,3

If Sg-a is a right-hand sphere in Vl+, there exists a l-sphere
-2

imbedded in Vl+ that has one transverse intersection with S;

and meets no other right-hand sphere.

Proof:

Certainly there exists @ smell imbedded 1-disc D(C Vy, ,

-2
which, et its midpoint q_, trensversely intersects s; , and

which has no other intersection with right-hand spheres. Trens-

lete the end points of D left along the trajectories of § to
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a pair of points in V. Since V 1is connected, and of dimension
n-12>2, these points may be joined by a smooth path in V
which avoids the left hand O-spheres in V. This path may be
translated back to a smooth path that Joins the end points of D
in vl+ and avoids all right-hand spheres. Now one can easily
construct a smooth map g : Sl _— Vi+ such that

(a) g-l(qo) is a point a € g* and g smoothly imbeds & closed
neighborhood A of a onto a neighborhood of qo in D.

(b) g(Sl - 8) meets no right-hand (n - 2)-sphere.

Since dim V =n - 1 > 3, Whitney's theorem 6.12 provides a
smooth imbedding with these properties. This completes the proof
of 8.3,

We will need the following corollery of Theorems 6.11, 6.12.

Theorem 8.4

If two smooth imbeddings of a smooth manifold ~Jfl into a smooth
manifold N are homotopic, then they are smoothly isotopic

provided n > 2m + 3.
Remark: Actually 8.4 holds with n > 2m + 2 (see Whitney [16]))

Proof of Theorem 8.1 for Index 1 continued:

Notice thet V2+ is always simply connected, In fact the
inclusion V, (W factors into a sequence of inclusions that
are alternately inclusions associated with cell attachments and
inclusions that are homotopy equivalences. (see 3.14). The cells

attached are of dimension n - 2 and n - 1 going to the left

and of dimensiom 3, 4, ... going to the right. Thus V, 1is



Lol g
connected since W is, and nl(V2+) = ul(w) =1 (cf. Remark 1
page TO). Given any critical point p of index 1, we con-
struct an 'ideal' l-sphere S in Vi+ as in Lemma 8.3. After
adjusting ¢ if necessary to the right of V2+ ve may assume
that S meets no left hand 1l-svheres in Vi, (see 4.6, 4.7).

Then vwe can translate S right to a 1l-sphere Sl in V2+.

In a collar neighborhood extending to the right of V2+,
we can choose co-ordinate functions Xps evey X embedding an
open set U into Rp. so that f|U = x,  (cf. proof of 2.9).

Use Lemma 8.2 to alter f on a compact subset of U inserting
a pair q, r, with f(q) < f(r), of 'auxiliary' critical points

of index 2 and 3. (see Figure 8.3).

Figure 8.3

Let 82 be the left-hand 1l-sphere of q 1in V2+ . Since

V,, is simply connected, 8.4 and 5.8 imply that thzre is an

isotopy of the identity V2+ —_— V2+ that carries 52 to Sl .

Thus after an adjustment of & +to the right of V,, (see 4.7),

the left-hand sphere of q irn V + will be S Then the

2 l1°
left-hand sphere of q in Vl+ is S, which, by construction

intersects the right-hand sphere of p 1in a single point,
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transversely,

Without changing &, alter f (by 4.2) on the interiors
1.1 -
of £7(3, 1 3] andof £ 3, k], k = (£(a) + £(x))/2,
increasing the level of p end lowering the level of q so

that for some % > O

1
2
Now use the First Cancellation Theorem to alter f and ¢ on

1+585<f(p)<lz=<Tf(gq)<2-5%
f-l[l + 58, 2 -5] eliminating the two critical points p and
q. Finally move the critical level of r right to 3 (using
L.2).

We have now 'traded' p for r, and the process may be
repeated until no critical points of index 1 remain. This

completes the proof of Theorem 8.1.
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§9. The h-Cobordism Theorem and Some Applications.

Here is the theorem we have been striving to prove.

Theorem 9.1 The h-Cobordism Theorem

Suppose the triad (w“, V, V') has the properties
1) W, V and V' are simply connected.

2) H*(W, V) =0

3) dim W =n 26

Then W 1is diffeomorphic to V x [0, 1]

Remark: The condition 2) 1s equivalent to 2)° Hy(W, V') = O.
*
For H,(W, V) =0 dimplies H (W, V') = 0 by Poincaré duality.
*
But H (W, V') = O implies Hy(W, V') = 0. Similarly 2)'

implies 2),

Proof: Choose a self-indexing Morse function £ for (W; V, V'),

Theorem 8.1 provides for the elimination of critical points of
index O and 1. If we replace the Morse function f by -f
the triad is 'turned about' and critical points of index A
become critical points of index n - A. Thus critical points

of (original) index n and n - 1 may also be eliminated. Now

Theorem 7.8 gives the desired conclusion.

Definition 9.2 A triad (W; V, V') = 0 is an h-cobordism and

V 1is said to be h-cobordant to V' 4if both V and V' are

deformation retracts of W.

Remark: It is an interesting fact (wvhich we will not use) that
an equivalent version of Theorem 9.1 is obtained if we substitute

for 2) the apparently stronger condition that (W3 V, V') be
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an h-cobordism. Actually 1) and 2) together imply that

(Ww; V, V') is an h-cobordism. In fact

(1) nl(v) =0, nl(w, v)=0, H, (W, V) =0 togéther imply

(i1) ni(w, V) =0 i=0,1, 2, ...

by the (relative) Hurewicz isomorphism theorem (Hu, [20, p.166];
Hilton [21, p.103])). In view of the fact that (W, V) is a
triangulable pair (Munkres [ 5, p.101])) (ii) implies that a
strong deformation retraction W —=> V can be constructed.

(See Hilton [21, p.98 Thm 1.7]):) Since 2) implies H,(w, V') = 0,

V' 1is, by the same argument, a (strong) deformetion retract of

W.

An important corollary of Theorem 9.1 is

Theorem 9.2

Two simply connected closed smooth manifolds of dimension

> 5 that are h-cobordant are diffeomorphic.

A Few Applications (see also Smale [22] [6])

Proposition A) Characterizations of the smooth n-disc Dn, n > 6.
Suppose W is a compact simply connected smooth n-manifold,

n > 6, with a simply connected boundary. Then the following

four assertions are equivalent.

1). W2 is diffeomorphic to D".

2) w® is homeomorphic to p°.
3) W' is contractible..

4). W* has the (integral) homology of & point.
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Proof: Clearly 1) =>2) =>3) =>k4), So we prove L) => 1).

If D  1is & smooth n-disc imbedded in Int W, then (W - Int D_;

BdD_, V) satisfies the conditions of the h-Cobordism Theorem.

In particular, (by excision) H,(W - Int D, BdDo) 2 H(W, Do) = 0,
Consequently the cobordism (wn; @, V) 1is a composition of

(Do; ¢, BdDo) with a product cobordism (W - Int D_; BAD_, V).

It follows from 1.4 that W is diffeomorphic to Do.

Proposition B) The Generalized Poincare Conjecture in dimensions

> 5. (See Smale [21]).)

If Mn, n>5, is a closed simply-connected smooth mani-
fold with the (integral) homology of the n-sphere Sn, then
M is homeomorphic to S°. If n=5 or 6, M} is diffeo-

morphic to s,

Corollary If a closed smooth manifold Mn, n > 5, is a homo-
topy n-sphere (i.e. is of the homotopy type of s") then M 1is

homeomorphic to s”,

Remark: There exist smooth 7-manifolds M7 that are homeo-
morphic to S! but are not diffeomorphic to S'. (See Milnor

[24].)

Proof of B Suppose first that n > 6. If D (M is a smooth
n-disc, M - Int Do satisfies the conditions of A).

In particular

Hi(M - Int Do) Hp-i(M - int D_, BDO) (Poincare duality T7.5)

Hp_i(M, Do) (excision)

0 if 1 >0
(exact sequence)

ne

Z if 1 =20
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ConseqQuently M = (M - Int Do) UD_ 1is diffeomorphic to a union
of two copies DE ’ Dg of the n-disc with the boundaries identi-

fied under a diffeomorphism h : BdD; — BdDg.

Remark: Such a manifold is called a twisted sphere. Clearly every

twisted sphere is a closed manifold with Morse number 2, and

conversely.

The proof is completed by showing that any twisted sphere

M= D; Uh Dg is homeomorphic to s®. Let & Di —> 8% ve
an imbedding onto the southern hemisphere of Sn'(:Rn+l i.e.
the set (X' | [*] =1, x_,, <0). Each point of D, may be
written tv, 0 <t <1, ve BAD,. Define g : M—> 8" by
(1) gu) =g (u) if uen
1
nt -1 nt
(11) g(tv) = sin 5 gl(h (v)) + cos 5 € vhere e ..
=(0, «.., 0, 1) € gL , for all points tv in Dg.

Then g 1s a well defined 1-1 continuous map onto st , and
hence is a homeomorphism. ‘This completes the proof for n > 6.
If n=5 we use:

Theorem 9.1 (Kervaire and Milnor [25], Wail [26])

Suppose M is a closed, simply connected, smooth manifold with
the homology of the n-sphere S". Then if n =14, 5, or 6, M®
bounds a smooth, compact, contractible manifold.

Then A) implies that for n =5 or 6 M® is actually diffeo-

morphic to 8".

Proposition C Characterization of the 5-disc

Suppose w5 is a compact simply connected smooth manifold thet has

the (integral) homology of a point. Let V = BdW.

1) If V is diffeomorphic to Sh then W is diffeomorphic to D°.
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2) If V is homeomorphic to Sh then W is homeomorphic to
D?

Proof of 1) Form a smooth 5-manifold M =W U D5 where h
is a diffeomorphism V ——-->-BdD5 = Sh. Then M 1s a simply con-
nected manifold with the homology of & sphere. In B) we proved

that M is actually diffeomorphic to 55. Now we use

Theorem 9.6 (Palais [27], Cerf [28], Milnor [12, p.1l1])

Any two smooth or;entation-preserving imbeddings of an n-disc

into a connected oriented n-manifold are embient isotopic.
Thus there is a diffeomorphism g : M —> M that maps

D’ C M onto a daisc D) such that D) = M - Int D7 1s also a

disc. Then g maps W ( M diffeomorphically onto Dg.

Proof of 2) Consider the double D(W) of W (i.e. two copies

of W with the boundaries identified — see Munkres [5, p.54%]).
The submanifold V ( D(W) has a bicollar neighborhood in D(W),
and D(W) is homeomorphic to 85 by B). Brown [23] has

proved:

Theorem 9.7 If an (n - 1)-sphere I, topologilcally imbedded

in Sn, has a bicollar neighborhood, then there exists a home-

n- n
omorphism h : s? —> s” that maps I onto S 1 ( 5. Thus
Sn - £ has two components and the closure of each is an n-disc

with boundary L.

It follows that W is homeomorphic to D5. This completes the

proof of C).



Proposition D) The Differentiable Schoenfliess Theorem in

Dimensions > _5_.

Suppose Y is & smoothly imbedded (n ~ 1)-sphere in S= . If
n > 5, there is a smooth ambient isotopy that carries X onto

the equator go-t C s".

Proof': s® . ¥ has two components (by Alexander duality) and
hence 3.6 shows that 5 is bicollared in S°. The closure in
s® of a component of s" - £ is & smooth simply connected
menifold D with boundary £ and with the (integral) homo-
logy of a point. For n 2> 5 Do is actually diffeomorphic
to D':l by A) and C). Then the theorem of Palais and Cerf
(9.6) provides an ambient isotopy that carries D, to the

lower hemisphere and hence BdDo = L to the equator.
n-1 n
Remark: This shows that if f : S —> 8 is a smooth

imbedding, then f 1is smoothly isotopic to & map onto "7t

C Sn; but it is not in general true that f 1s smoothly

n-1 —3 3%, It is false if

f=419°g, where g : Sn-l —_— Sn'l is a diffeomorphism

isotopic to the inclusion 1 : S

which does not extend to a diffeomorphism Dn —> p%. (The

reader can easily show that g extends to p° if em only if

the twisted sphere Dy U, D, is diffeomorphic to s%.) 1In

fact 1if f 1is smoothly isotopic to 1, by the Isotopy Exten-

n n
sion Theorem 5.8, there exists a diffeomorphism d : & —> 8
such that d o 4 = f =1 o g. This gives two extensions of g

to a diffeomorphism ) QN p°,
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Concluding Remarks :

It is an open question whether the h-Cobordism Theorem
is true for dimensions n < 6., Let (wn; V, V') be an h-
cobordism where W' 1is simply connected and n < 6,

n =0, 1, 2: Te theorem is trivial (or vacuous).

n =3: V and V' must be 2-spheres. Then the theorem is

easily deduced from the classical Poincaré Conjecture: Every

compact smooth 3-manifold which is homotopy equivalent to S3

is diffeomorphic to s3. since every twisted 3-sphere (see

page 110) is diffeomorphic to 83 (see Smale [30], Munkres [31])
the theorem is actually equivalent to this conjecture,

n =4: 1If the classical Poincaré Conjecture is true V and V'

must be 3-spheres. Then the theorem is readily seen to be

equivalent to the 'L-Disk Conjecture': Every compact contract-

ible smooth U-manifold with boundary s3 1g diffeomorphic to

Dh. Now a difficult theorem of Cerf [29] says that every twisted

h-sphere is diffeomorphic to Sh. It follows that this con-

Jecture is equivalent to: Every compact smooth U-manifold which

L
is homotopy equivalent to Sh' is diffeomorphic to S .

n = 5: Proposition C) implies that the theorem does hold when

V and V' are diffeomorphic to Sh. However there exist many
types of closed simply connected 4-manifolds. Barden (unpublished)
shoved that if there exists a diffeomorphism f : V! —> V
homotopic to r|v, where r : W —> V 1is a deformation
retraction, then W 1is diffeomorphic to V X {o, 1]. (See

Wall [38], also [371.)
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