Graduate Texts in Mathematics 8 2

Editorial Board
¥. W, Gehring P. R. Halmos {Managing Editor)
. C. Moore




e

Raoul Bott
Loring W. Tu

Differential Forms in
Algebraic Topology

With 92 Illustrations

S

Springer-Verlag
New York Heidelberg Berlin




Racul Bott Loring W. Tu

Department of Mathematics Department of Mathematics
Harvard University University of Michigan
Cambridge, Massachusetts 02138 Ann Arbor, Michigan 48109
USA USA

Editorial Board

P. R. Halmos F. W. Gelring C. C. Moore

Munaging Editor Diepartment of Diepartingnt of

Department of Mathematics Mathematics
Mathematics University of Michigan University of California

Indiana Universily Aun Arbor, MI 48109 Berkeley, CA 94720

Bloomington, IN 47401 USA USA

USA

AMS Classifications; 57 Rxx, 58 Axx, 14 F40

Library of Congress Cataloging in Publication Data
Hot(, Raoul, 1924
Differential forms in algebraic topology.
(Graduatc tcxts in mathemaltics; 82)
Bibliography: p.
Includes index.
1. Differential topology. 2. Algébraic
topology. 3, Differeatial forms. 1. Fu,
Lorving W, TI. Title. IJI. Series.
QAG13.6.B67 51472 81-9172
AACR?2

© 1982 by Springer-Verlag New York Inc.

All rights reserved. No part of this book may be transtated or reproduced in any
form without writien permission from Springer-Vertag, 175 Fifth Avenue, New
York, New York 10010, U.5. A,

Printed in the Uniled States of America.

SRE7054321

1SBN 0-387-90613-4 Springer-Verlag New York Heidelberg Berlin
ISBN 3-540-90613-4  Springer-Verlag Berlin  Heidelberg New York

For
Phyliis Bott
and
Lichu and Tsuchih Tu



Preface

The guiding principle in this book is to use differential forms as an aid in
exploring some of the less digestible aspects of algebraic topology. Accord-
ingly, we move primarily in the realin of smooth manifolds and use the
de Rham theory as a prototype of all of cohomology. For applications to
homotopy theory we also discuss by way of analogy cohomology with
arbitrary cocfficients.

Although we have in mind an audience with prior exposure to algebraic
or differential topology, for the most part a good knowledge of lincar
algebra, advanced calculus, and point-sct topology should suflice. Some
acquaintance with manifelds, simplicial complexes, singular homology and
cohomology, and homotopy groups is helpful, but not really necessary.
Within the text itself we have stated with care the more advanced results
that are needed, so that a mathematically mature reader who accepts these
background materials on faith should be able to read the entire book with
the minimal prerequisites. '

There are more materials here than can be reasenahly covered in a
one-semester course. Certain sections may be omitted at first reading with-
out loss of continuity. We have indicated these in the schematic diagram
that follows.

This book is not intended to be foundational; rather, it is enly meant to
open some of the doors to the formidable edifice of modern algebraic
topology, We offer it in the hope that such an informal account of the
subject al a semi-introductory level fills a gap in the literature.

It would be impossible to mention all the friends, colleagues, and stu-
dents whose ideas have contributed to this book. But the senior anthor
author would like on this occasion to express his deep gratitude, first
of all to his primary topelogy teachers E. Specker, N. Steenrod, and

vii
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K. Reidemeister of thirty years ago, and secondly to H, Samclson, A.
Shapiro, I. Singer, I.-P, Serre, F. Hirzebruch, A. Borel, J. Milnor, M.
Atiyah, S.-s, Chern, J. Mather, P. Baum, D. Sullivan. A. Huefliger, and
Gracme Segal, who, mostly in collaboration, have continued this word of
mouth education to the present; the junior author is indebted to Allen
Itatcher for having initiated him into algebraic topology. The reader will
find their influence if not in all, then certainly in ihe more landable aspects
of this book. We alse owe thanks to the many other people who have
helped with our project: to Ron Donagi, Zbig Fiedorowicz, Dan Frecd,
Nancy Hingslon, and Deane Yang for their reading of various portions of
the manuseript and for their critical comments, (o Ruby Apuirre, Lu Ann
Custer, Barbara Moody, and Caroline Underwoond for typing services, and
to the stafl of Springer-Verlag for its patience, dedication, and skill.
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Introduction

The most intuitively evident topological invariant of a space is the number
of connected picces into which it falls. Over the past one hundred years or
so we have come to realize that this primitive notion admits in some scnse
two higher-dimensional analegues. These are the homotopy and cohomology
groups of the space in question,

The evoiulion of the higher homotopy groups from the component con-
cept is deceptively simple and essentially unique, To describe it, let nq{X)
dencie the set of path components of X and if p is a point of X, let (X, p)
denote the set ny{X) with the path component of p singled out. Also, corre-
sponding to such a point p, let ©, X denote the space of maps (continuous
functions) of the unit circle {z € C : |z| = 1} which send 1 to p, made into a
iopological space via the compact open topology. The path components of
this so-called loop space 1, X are now taken to be the elements of 7,(X, p):

(X, p= TIO(QpX; h

The composition of loops induces a group structure on n (X, p) in which
the constant map § of the circle te p plays the role of the identity; so
endowed, #,(X, p) is called the fundamenial group or the first homotopy
group of X at p. It is in general not Abelian. For instance, for a Riemann
surface of genus 3, as indicated in the figure below:
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7 (X, p) is generated by six elements {x,, Xz, X3, V1, ¥2, ¥3} subject to the
single retation

3

n [xe, pl=1,

i=1
where [x;, y;] denotes the connnutator and 1 the identity. The fundamental
group is in fact sufficient to classify the closed oriented 2-dimensional sur-
faces, but is insufficient in higher dimensions.

To return to the general casc, all the higher homotopy groups =, (X, p)

for & = 2 can now be delined through the inductive formula:

m X, p) = ﬂk(ﬂp X, p).

By the way, if p and p’ are two points in X in the same path component,
then

m(X, p) = n{X, p),

but the correspondence is not necessarily unique. For the Riemann surfaces
such as discussed above, the higher n,’s for &£ = 2 arc all trivial, and it is in
part for this rcason that =, is sufficient to classify them. The groups =, for
k = 2 turn out to be Abeclian and therefore do not scem to huve been faken
seriously until the 193(s when W. Hurewicz delined them {in the manuer
above, among others) and showed that, far from being irivial, they consti-
tuled the basic ingredicnts nceded Lo describe the homotopy-theoretic
properties of a space.

The great drawback of thesc easily defined invariants of a space is that
they are very difficult to compute. To this day not all the homotopy groups
of say the 2-sphere, ic, the space x? + ¥* 4+ z% = 1 in R?, have been com-
puted! Nonetheless, by now much is known concerning the general proper-
ties of the homotopy groups, largely due to the formidable algebraic tech-
nigues to which the “cohomological extension™ of the component concept
lends itself, and the relations between homotopy and cohomology which
have been discovered over the years.

"This cohomological extension starts with the dual point of view in which
a component is characterized by the property that on it every locally con-
stant function is globhally constant. Such a component is sometimes called a
conneclied compaonent, to distinguish it from a path component. Thus, if we
define H%X) to be the vector space of real-valued locally constant functions
on X, then dim H°(X) tells us the number of connected components of X,
Note that on reasonable spaces where path componenis and connected
components agree, we therefore have the formula

cardinality mo{X) = dim H%X),

Still the two concepts are dual io each other, the first using maps of the unit
interval into X to test for connectedness and the second using maps of X
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into I for the same purpose. One further difference is that the cohomology
group H°(X) has, by fiat, a natural R-module structure.

Now what should the proper higher-dimensional analogue of H(X) be?
Unlortunately there is no decisive answer here. Many plausible definitions
of HXX) for k > 0 have been proposed, all with slightly different properties
but all isomorphic on “reasonable spaces”. Furthermore, in the realm of
differentiable manifolds, all these theories conincide with the de Rham
theory which makes its appearance there and constitutes in some seuse the
most perfect example of a cohomalogy theory. The de Rham theory is also
unigue in that it stands at the crossroads of topolegy, analysis, and plysics,
enriching all three disciplines,

The gist of the “de Rham extension” is comprehended most easily when
M is assumed to be an open set in some BEuclidean space B”, with coordi-
nates x,, ... ,%,. Then amongst the C* functions on M the locally constant
ones are precisely those whose gradient

— &

vanishes identically. Thus here H°(M) appears as the space of solutiens of
the differential equation df = 0. This suggests that H!(M) should also
appear as the space of salutions of some natural differential equations on
the manifold M. Now consider a 1-form on A

8=3 adx,

where the s are C® functions on M, Such an expression can be integrated
along a smeoth path 9, so that we may think of 0 as a function on paths y:

yr——r.[ 8.
L7

It then suggests itseif to seck those 8 which give rise {o locally constant
functions of y, Le, for which the integral j‘y ¢ is left unaliered under small
variations of y—but keeping the endpoints fixed! (Otherwise, only the zero
1-form would be locally constant.) Stokes’ theorem feaches us that these
line integrals are characterized by the dilferential equations:

B, da

_—d_q

3% o (written d8 = 0).

On the other hand, the fundamental theorem of calculus implies that
§, df =f(Q) —f(P), where P and Q are the endpoints of y, so that the
gradients are trivally locally constant,

One is here irresistibly led to the definition of H'{M) as the vector space
of locally constant line integratls modulo the trivially constant ones. Similarly
the higher cohomology groups H¥M) arc defined by simply replacing line
integrals with their higher-dimensional analogues, the k-voltume integrals.
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The Grassmann calculus of exterior differential forms facilitates these exten-
sions quite magically. Moreover, the differential cquations characterizing
the locally constant k-integrals are seen to be C* invartants and so extond
naturally to the class of C™ manifolds.

Chapter I starts with a rapid account of this whole development, as-
suming litlle more than the standard notions of advanced calculus, linear
algebra and general topolegy. A nodding acquaintance with singular hom-
ology or cohomolopgy helps, but is not necessary. No real familiarily with
differential geometry or manifold theory is required. After all, the concept of
a manifold is really a very natural and simple extension of the calculus of
several variables, as our fathers well knew. Thus for us a manifold is essen-
tially a space constructed from open sets in R" by patching them together in
a smooth way, This point of view goes hand in hand with the “com-
putability” of the de Rham theory. Indecd, the decisive dillerence between
the x’s and the H"s in this regard is that if a manifold X is the union of
two open submanifolds U and V:

X=UwV,

then the cohomolegy groups of U, V, U m V, and X are linked by a much
sironger relation than the homotopy groups arve. The linkage is expressed
by the exactness of the following sequence of linear maps, the Mayer—
Vietoris sequence:

C_’ Ifk-i- l{X)""’ .
d

H* — HMU T s _)
(_. (X)— HY( ]% H(V) H{U 1

— B NU V)j
0— HYXy— -

starting with k& = 0 and extending up indefinitely. 1n this sequence every
arrow stands for a linear map of the vector spaces and exactness asserts
that the kernal of each map is precisely the image of the preceding one. The
horizontal arrows in our diagram are the more or lcss obvious ones induced
by restriction of functions, but the coboundary operator d* is more subtle
and uses the existence of a partition of wnity subordinate to the cover
{U, ¥} of X, that is, smooth functions py and p, such that the first has
support in I/, the second has support in ¥, and py + py =1 on X. The
simplest relation imaginable between the H¥s of U, ¥, and U v ¥V would of
course be that H* behaves additively; the Mayer—Vietoris sequence teaches
us that this is indeed the case if U and V are disjcint. Otherwise, there is a
geamelric feedback from HYU n V) described by 4%, and one of the hall-
marks of a toplologist is a sound intuition for this d*.

The exactness of the Mayer—Vietoris scquence is our first goa] once the
basics of thc de Rham theory are developed. Thereafter we establish the
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gecond essential property for the computability of the theory, namely that
for a smoothly contractible manifold M,

R for k=20,

X, —
H{M)_{o for k> 0.

This homotopy invariance of the de Rham theory can again be thought of as
having evelved from the fundamental theorem of calculus, Indeed, the for-
mula

f{x)dx =d fo{u) du

shows that every line integral {i-form) on R' is a gradient, whence
IHY(R") = 0. The homotopy invariance is thus established for the real line.
This argument also paves the way for the gencral case,

The two propertics that we have just described constitute a verification
of the Eilenberg—Steenvod axiovms for the dc Rham theory in the present
context. Combined with a little geometry, they can be used in a standard
manner to compute the cohomology of simple manifalds. Thus, for spheres
one finds

R for k=0 ar n
by
&) = {0 otherwise,
while for a Riemann surface X, with g holes,
12 for k=0 or 2
H“{Xg] = { R for k=1
0 otherwise,

A more systematic treatment in Chapler I leads to the computability
proper of the de Rham theory in the following sense. By a finite good cover
of M we mean a covering X = {U,}Y_, of M by a finitc number of open sets
such that all intersections U,, m --- m U,, are either vacuous or contract-
ible. The purcly combinatorial data that specify for each subset
{ay, ... 00 of {1, ..., N} which of these two alternatives holds are called
the incidence data of the cover, The computability of the theory is the
assertion that it can be computed purely from such incidence data. Along
lines established in a remarkable paper by André Weil [1], we show this to
be the case for the de Rham theory. Weil’s point of view constitutes an
alternate approach to the sheaf theory of Leray and was influential in
Cartan’s theorie des carapaces. The beauty of his argument is that il can be
read both ways: either to prove the computability of de Rham or to prave
the topological invariance of the combinatorial prescription.

To digress for 1 moment, it is difficult not to speculate about what kept
Poincaré from discovering this argument forty years earlier. One has the
feeling that he already knew every step along the way. After all, the homo-
topy invariance of the de Rham theory for R" is known as the Peincaré
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lemma! Nevertheless, he veered sharply from this poini of view, thinking
predominantly in terms of triangulations, and so he in facl was never able
to prove cither the computability of de Rham or the invariance of the
combinatorial definition. Quite possibly the explanation is that the whole
C™ point of view and, in pacticular, the partilions of unity were alien to him
and his contemporariss, steeped as they were in real or complex analytic
questions.

D¢ Rham was of course the first 10 prove the topological invariance of
the theory that now bears his name. He showed that it was isomorphic to
the singular colomology, which is trivially--ie., by definition—--tepologically
invariaut. On the other hand, André Weil’s approach relates the de Rham
theory to the Cech theory, which is again topologically invariant.

But to return to the plan of our book, the bulk of Chapter I is actually
devoted to explaining the fundamental symmetry in the cohomology of a
compact oriented manifold. In its most primitive form this symmetry asserts
that

dim H%(M) = dimm H"™%M).

Poincaré seems to have immediately realized this consequence of the locally
Euclidean nature of a manifold, He saw it in terms of dual subdivisions,
which turn the incidence relations upside down. In the de Rham (heory the
duality derives from the intrinsic pairing between differential forms of arbi-
trary and compact support. Indced consider the de Rham theory of R! with
compactly supported forms. Clearly the only function with compact sup-
port on R! is the zero function. As for 1-forms, not every l-form g dx is
new a gradient of a compactly supported function f; this happens if and
only if j??w g dx = 0. Thus we see that the compactly supported de Rham
theory of R' is given by

0 for k=0

k rrply
HC(R]—{R for k = 1,

and is just the de Rham theory “upside down.” This phenomenon now
extends inductively to R" and is finally propagaied via the Mayer—Vietoris
sequence to the cohomology of any compact oriented manifold.

Onc virtue of the de Rham theory is that the essential mechanism of this
duality is via the familiar operation of integration, coupled with the natural
ring structure of the theory: a p-form 8 can be muliiplied by a g-form ¢ to
produce a (p + g)-form 8 A¢. This multiplication is “commutative in the
graded sense™:

OAG = (— )" AQ.

{By the way, the commutativity of the de Rham theory is another reason
why it is more “perfect” than its other more general brethren, which
become commutative onty on the cohomology level) In particular, if ¢ has
compact supporl and is of dimension n — p, where # = dim M, then inte-
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gration over M gives rise to a pairing
@, ¢)— J OA @,
A

which descends to cohomology and induces a pairing
HA(M) @ H' (M) R.

A more sophisticated version of Poincaré duality is then simply that the
pairing above is dual; that is, it establishes the two spaces as duals of each
other.

Although we return to Poincaré duality over and over again throughout
the book, we have not attempted Lo give an exhaustive treatment, (There is,
for instance, no mention of Alcxander duality or other phenomena dealing
with relative, rather than absolute, theory.) Iustead, we chose to spend
much {ime bringing Poincaré duality to life by explicitly constructing the
Poincaré duval of a submanifold N in M. The problem is the following.
Suppose dim N =k amd dim M = n, both being compact oriented. Inte-
gration of a k-form w on M over N then defines a lincar functional from
HYM)} to R, and so, by Poincaré dualily, must be represented by a coho-
mology class in H* %(M). The gueslion is now: how is one lo construct a
representative of this Poincaré dual for N, and can such a representative be
made to have support arbitrarily close to N7

When N reduces 10 a point p in M, this question is easily answered. The
dual of p is represented by any n-form e with support in the component A,
of p and with total mass 1, that is, with

J w=1,
M,

Note also that such an @ can be found with support in an arbitrarily small
neighborhoaod of p, by simply choosing coordinates on M centercd at p, say
X1y «rey Xq, 0d setting

o = Mxydx, ... dx,

with 1 & bump function of mass 1. (In the limit, thinking of Dirac’s §-func-
tion as the Poincaré dual of p leads vs to de Rhamy’s theory of currents.)

When the point p is replaced by a more general submanifold N, it is casy
to extend this argument, provided N has a product neighborhood D{N) in M
in the sense that D(N) is diffeomorphic to the product N x D"~*, where
p"~¥ is a disk of the dimension indicated. However, this need not be the
case! Just think of the center circle in a Mobius band. {is neighborhoods
are at best smaller Mobius bands.

In the process of constructing the Poincaré dual we are thus confronted
by the preliminary question of how to measure the possible twistings of
neighborhoeds of N in M and to correct for the twist. This is a subject in its
own right nowadays, but wis initiated by H. Whitney and H. Hopf in just
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the present context during the Thirties and Forties. Its trade name is fiber

bundle theory and the cohomological measurements of the global twist in
such “local producis” as I}{N) are referred to as characteristic classes, In the
last foriy vears the theory of characteristic classes has grown to such an
extent that we cannol do it justice in our book. Still, wec hope to have
covered it sufficiently so that the reader will be able to see its ramilications
in both differential geometry and topology. We alse hope that our account
could serve as a good introduction to the connection between characteristic
classes and the global aspects of the gauge theories of modern physics.

That a connection between the equations of mathematical physics and
topology might exist is not too surprising in view of the classical theory of
electricity. Indeed, in a vacuum the electromagnetic field is represented by a
2-form in the (x, y, z, t}-space:

w=(E dx+ B, dy+E do)dt + H,dydz— H, dx dz + I, dx dy,

and the form w is locally constant in our sense, ie., dew = 0, Relative to the
Lorentz metric in 1* the star of w is defined to be

*me —(H dx+ Hydy - H, dz)dt + E, dydz — E, dx dz + E, dx dz,

and Maxwell’s equations simply assert that both w and its star are closed:
dw = 0 and d *+ w = 0. In particular, the cohomclogy class of * @ is a well
defined object and is often of physical interest.

To take the simplest example, consider the Coulomb potential of 2 point
charge ¢ at rest in the origin of our coordinate system. The field w gener-
atcd by this charge then has the description

@ = —-d(l ' dt)
2

with 7= (x> + »* + z9)1* % 0. Thus w is defined on R* — &,, where R,
denotes the f-axis. The de Rham cohomology of this set is casily computed
to be

R for k=02

HY{R* — R) = { .
( ) 0 otherwise,

The form @ is manifestly cohomologically uninteresting, since it is d of a
1-form and so is trivially “clesed ”, i.e., locally constant. On the other hand
the * of e is given by

*w__g_xdydzﬁydxdz-}-zdxdy
T an rd :

which turns out o generate H2 The cohomology class of o can thus be
interpreted as the charge of our source.

In seeking differcntial equations for more sophisticaled phenomena than
electricity, the modern physicists were led to equations {the Yang-Mills)
which fit perfectly into the framework of characteristic classes as developed
by such masters as Pontrjagin and Chern during the Forties.

i
B
l
E
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Having sung the praises of the de Rham theory, it is now time to admit
its limitations. The trouble with it, is that it only tells part of the cohomol!-
ogy story and from the point of vicw of the homotopy theorists, only the
simplest part. The de Rham theory ignores torsion phenomena. To explain
this in a little more detail, recall that the homotopy groups do not behave
well under the union operation. However, they behave very well under
Cartesian products. Indeed, as is quite easily shown,

X % Y) = n(X)D n (¥)

More generally, consider the situation of a fiber bundle (twisted product).
Here we are dealing with a space £ mapped onto a space X with the
fibers—i.e., the inverse images of points —all homeomorphic in some uni-
form sense to a fixed space Y. For fiber bundles, the additivity of . is
stretched into an infinite exact sequence of Mayer-Vietoris type, howoever
now going in the opposite dircction:

¢ o (¥ 2 B) > mfX) - m_y (Vo> oo

"This phenomenon is of coutse fundamental in studying the twist we talked
about carlicr, but it also led the homotopy theorists to the conjecture that
in their much more flexible homotopy category, where objects are con-
sidered equal if they can be deformed into each other, every space factors
jrito a twisted product of irreducible prime factors. This turns cut to be true
and is called the Posintkov decomposition of the space. Furthermore, the
“prime spaces” in this context all fiave nontrivial homotopy groups in anly
one dimension. Now in the homotopy category such a prime space, say with
nontrivial homotopy group = in dimension n, is determined uniqucly by n
and » and is denoted K{m, #). These K(n, n)-spaces of Eilenberg and Mac-
Lane therefore play an absolutely fundamental role in homotopy theory.
They behave well under the standard group operations. In particular, corre-
sponding to the usual decomposition of a finitely generated Abelian group:

1= (@R(p)) @ il
P

into p-primary parts and a free part (said to correspond to the prime at
infinity), the K(m, 1) will factor into a preduct

K(n, n) = (]__[ K(n'?, n]) - K{(Z, ny.
p

Ii follows that in homotopy theory, just as in many questions of number
theory, one can work one prime at a time. In this framework it i3 now quite
easy to explain the shortcomings of the de Rham theory: the theory is
sensitive only to the prime at infinity!

After having encountered the Cech theory in Chapter II, we make in
Chapter 111 the now hopefully easy transition to cohomology with coeffi-
cients in an arbitrary Abclian group. This theory, say with coefficients in the



10 Introduction

integers, is then sensitive to all the p-primary phenomena in homotopy
theory.

The development sketched here is discussed in greater detail in Chapter
11, where we also apply the ideas to the computation of some relatively
sinple homotopy groups. All these computations in the final analysis derive
from Serre’s brilliant idea of applying the spectral scquence of Leray to
hortotopy problems and from his coining of a sufficiently general definition
of a twisted product, so that, as the reader will see, the Postnikov decompo-
sition in the form we described it, is a relatively simple matter, It remains
therefore only to say a few words to the uninitiated about what this “spec-
tral sequence” is.

We remarked earlier that homotopy behaves additively under products,
On the otber hand, cohomology does nol. In fact, ncglecting matters of
{orsion, i.c., reverting te the de Rham theory, one has the Kimneth fornuda;

HYX x Y)= Y H¥{X) @ HYY)
ptag=k

The next question is of course how cohomology behaves for twisted prod-
ucts, It is herc that Leray discovered some a priori bounds on the extent
and manner in which the Kiinneth formula can fail due to a twist. For
instance, one of the coroliaries of his spectral scquence is that if X and Y
have vanishing cohomoelogy in posilive dimensions less than p and g re-
speetively, then however one twists X with Y, the Kiinneth formula will
hold up to dimension d < min{p, g).

Armed with this sort of information, ove can first of all compute the
early part of the cohomology of the K(r, n) inductively, and then deduce
which K(m, n) must occur in a Posinikov decomposition of X by comparing
the cohomotlogy on both sides. This procedure is of course at best ad hog,
and thereforc gives us only fragmentary results. Still, the method points in
the right direction and can be codified to prove the computability (in the
logical sense) of any particular homotopy group, of & sphere, say. This
theorem is due to E. Brown in full generality. Unfortunately, however, it is
pot directly applicable to explicit caleulations-cven with large computing
machines.

So far this introduction has been written with a lay audience in mind,
We hope that what they have read has made sense and has whetted their
appetities, For the more expert, the following summary of the plan of our
book might be helpful.

In Chapter T we bring out from scratch Peincaré duality and its various
extensions, such as the Thom isomorphism, all in the de Rham category,
Along the way all the axioms of a cohomology theory are encountered, but
at first treated only in our restricted context,

In Chapter II we iniroduce the techniques of spectral sequences as an
extension of the Mayer—Vicioris principle and so are led to A. Weil's
{ech~de Rham theory. This theory is later used as a bridge to cohomology
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in general and to integer cohomelogy in particular. We spend considerable
time patching together the Buler class of a sphere bundle and explering its
relation to Poincaré duality. We also very briefly present the sheal-theoretic
proof of this duality.

In Chapier ITI we come to grips with spectral sequences in a more
formal manner and describe some of their applications Lo homotopy theory,
for example, to the computation of 75(5%). This chapter is less self-contained
than the others and is meant essentially as an introduetion to homotopy
theory proper. In the same spirit we close with a shor{ account of Sullivan’s
rational homotopy theory,

Finally, in Chapter IV we use the Grothendieck approuch towards char-
acteristic classes to give a more or less self-contained treatment of Chern
and Pontrjagin classes, We then relate them to the cohomology of the
infinite Grassmannian.

Unforfunately there was no time left within the scope of our book to
cxplain the functorial approach to classifying spaces in general and to make
the connection with the Eilenberg—MacLane spaces. We had to rclegate this
material, which i1s most naturally explained in the framework of somi-
simplicial theory, 1o a mythical second volume. The novice should also be
warned that there are all too many other topics which we have not men-
tioned. These include generalized cohomology theories, cohomolegy oper-
ations, and the Adams and Eilenberg—Moore spectral sequences. Alas, there
is also no mention of the truly geometric achievements of modern topology,
that is, handlebody theory, surgery theory, and the struclure theory of
differentiable and piecewise linear manifolds. Still, we hope that our velume
serves as an infroduction to all this as well as to such topics in analysis as
Hodge theory and the Ativah-Singer index theorems for elliplic differenital
operators,



CHAPTER 1
de Rham Theory

§1 The de Rham Complex on R

To start things off we define in this section the de Rham cohomology and
compute a few examples, This will turn out to be the most important
diffeornorphism invariant of a manifold. So let x4, ..., x, be the linear
coordinates on R". We define £¥* to be the algebra over B generated by
dxy, ..., dx, with the relations

(dxt)z =0
dxi dxj = ’_"dxj dx;, f 5‘&_}'.
As a vector space over B, {3* has basis

1, dx;, dxydx;, dxydxgdxy, ..., dx, ... dx,.
i<j i=zj<k

The C* differential forms on B" are elements of
Q¥R = {C™ functions on B"} @ Q*.
123

Thus, if w is such a form, then @ can be uniquely written as th .
dx,1 ... dx, where the cocfficients f;, ..., are C* functions, We also write
Zf; dx, The algebra Q*(IR”)-— @:; ¢ QR" is naturally graded,
where 0°(F"} consists of the C% g-forms on R", There is a differential
opcrator
d 1 QE(R") —> Q8 (R,
defined as follows:

Niffe QUR", then df = ¥ 3ffdx; dx,
i) if o = f; dx;, then dow = Y dfy dx;.
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ExaMmpLE 1.1. If @ = x dy, then do = dx dy.

This 4, called the exterior differentiation, is the uliimate abstract exten-
sion of the usual gradient, curl, and divergence of vector calculus on R, as
the example below partiatly illustrates.

ExaMpLE 1.2. On I3, QR and Q*(R3) are each 1-dimensional and Q}(R?)
and Q3(R?) are each 3-dimensional over the €% functions, so the following
identifications are possible:

{functions} = {0-forms} = {3-forms}
—r f e fdxdydz
and
{vector fields} ~ {i-forms} o {2-forms}

X=(,i. i) fiditfidy+fidzes fy dy dz — f, dx dz -+ f3 dx dy.
On functions,

ar
dy

af

Py dz .

af
df—axdx+ dy +

On t-forms,
d{fy dx + f3 dy -+ f> dz)

afs @ fz) (6}"1 af. 3) 81, E)fl)
= =3 2 ) g R S} P (e KA Y 3
(ay Jz y dz dz  Ox dx dz ax 9y dx dy

On 2-lorms,

ofy  0fs @)‘5)
4=+ =]d .
e -+ By + A2 x dy dz

difidydz —frdxdz + fy dx dy) = (
In summary,
d(0-forms) = gradient,
dil-forms) = curl,
d(2-forms) = divergence.

The wedge product of two differential forms, written tA @ or 17 - @, is
defined as follows: ift = 3. f; dx; and w = . g; dx,, then

tha =3 figy dxydx;.
Mote that 1 A = (— [)*e# 29 A g,

T'roposition 1.3. d is an antiderivation, i.e.,

dit « Y= (d1) - @ + (— 1) ¢ - doo,
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ProOCE. T3y linearity it suffices 1o check on monomials
T fdxy, 0= gy dxy.
d(z - w) = d{frgy) dx; dxg = ([dfdgs dxy dx; + 1) doy d%; dx;
= (de) « @ + (- 1) 7 - de.

On the level of functions d{fy) = (df g + f(dg) is simply the ordinary prod-
uct rule. 0

Proposition 1.4, 42 = Q.

Proor. This is basically a consequence of the fact that the mixed partials
are equal, On functions,

20 _ A O N\ of
d3f = d(L 7x, dx,) =3 3%, 3%, dx; dx;.

! i

Here the factors 8%f/6x,;0x, are symmetric in i, j while dx; dx; are skew-
symmetric in i, j; hence d*f = 0. On forms o = f; dx;,

a2 = d¥ f; dx)) = d(d f; dx;) = 0

by the previous computation and the antiderivation property of d. O

The complex *(R" together with the differential operator 4 is called the
de Rham complex on B". The kernel of d are the closed forms and the image
of d, the exact forms. The de Rham complex may be viewed as a God-given
set of differential equations, whose solulions arc the closed forms. For
instance, finding a closed 1-form fdx + g dy on R? is tantamount to solving
the differential equation 8g/8x — 88y = 0. By Proposition 1.4 the exact
forms are automaticaily closed; these are the trivial or “uninteresting”™
solutions. A measure of the size of the space of “interesting” solutions is the
delinition of the de Rham cohomiology.

Dicfinition. The g-th de Rliam cohomology of R"is the vector space
H (W) = {closed g-forms}/{exact g - forms} .

We sometimes suppress the subscript DR and write H9(R"). If there is a need
to distinguish between a form o and its cohomology class, we denote the
latter by [a].

Note that all the definitions so far work equally well for any open subset
U of RB"; for instance,

Q* U} = {C* functions on U} 3 0¥
13

So we may also speak of the de Rham cohiomaology HEg(U) of U,
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ExamMpLES 1.5

(ayn=0
R g=0
[ —
H = {0 qg>0.
b)i=1
Since (ker d) n Q°(RY) are the constant functions,
HORY = R.

On QYRY), ker d are all the 1-forms.
If o = g{x)dx is a 1-form, then by taking

f= rg(u) du,
¢}

we find that

df = g(x) dx.
Therefore every 1-form on R! is exact and
HY(RY =0
{¢) Let U be a disjoint union of m open intervals on L.
Then
H(U) = R"
and
H (Uy==0
{d) In genecral
R in dimension 0,
AR = {{] otherwise.

This result is called the Poincaré lemma and will be proved in Section 4.

The de Rham complex is an example of a differential complex. For the
convenience of the reader we recal! here some basic definitions and resuits
on differential complexes. A direct sum of vector spaces C = @ ;zp C7? in-
dexed by the integers is calted a differential complex if there are homomeot-
phisins

d d

'Cq—l e c.q'l-l

such that d* = 0. 4 is the differential operator of the complex C. The coho-
mology of C is the direct sum of vector spaces H(C) = @ ,.z HC), where

HYC) = (ker d m CY/(im d m C9.
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A map f: A— B between two differential complexes is a chain map if it
conunutes with the differential operators of A and B @ fd = dp f.
A sequence of vector spaces

Ji-1 1
Via + W Vixa

is said to be exact if for all i the kernel of f; is equal to the image of its
predecessor f;_;. An exact sequence ol the form

0 A B » C 0

is called a short exact sequence. Given a short exact sequence of differential
complexes

0--md-tmBfac—0

in which the maps fand g are chain maps, there is a long exact sequence of
cohomology groups

C H‘H'I(A]“-- _____ SRR

C o A) — HYB) —L s HYC) )

In this sequence f* and g* are the naturally induced maps and d*[c],
¢ £ C4 is obtained as follows:

0 emows A2l LT » patt %, cotvi R

00— A7 N e LA

By the surjectivity of g there is an element b in BT such that g(b) = c.
Because g{db) = digh) = dc = 0, db = f(a) for some a in 42%!, This a is
easily checked to be closed, d*[c} is defined te be the cohomology class [a]
in H*"'(4). A simple diagram-chasing shows that this definition of d* is
independent of the choices made,

Exercise. Show that the long exact scquence of cohomolopgy groups exists
and is exact. {If you are stuck, see, for instance, MacLane [1, Ch. IT, Th. 4.1,
P 453)

Compact Supports

A slight modification of the construction of the preceding section will give
us another diffeomorphism invariant of a manifold. For now we again
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restrict our attention to R", Recall that the support of a conlinuous function
S on a lopological space X is the smallest closcd set on which £ is not zero,

we use only the C® funclions with compact support, the resulling complex
is called the de Rham complex Q¥(R") with compact supports:

QX(R") = {C* funclions on §" with compact support} & Q*
"
The cohomology of this complex is denoted by HX(R").

ExampLE 1.6,

R in dimension 0,
0 elsewhere.

(a) HXpoint) = {

(b) The compact cohomology of R'. Again the closed O-forms are the
constant functions. Since there arc no coenstant funciions on B' with com-
pact support,

HYRY) =0,

To compute HX{R'), consider the integration map

J D 0N Ry —— Rt
i

This map is clearly surjective. It vanishes on the exact L-forms df where [
has compact support, for if the support of flies in the interior of [4,b], then

j Y g = J.b -:;J—; dx = f(b) — f(a) = 0.

If g{x} dx € QLR!}is in the kernel of the integration map, then the function

£ = j a(u) du

— |

will have compact support and df = g{x) dx. Hence the kernel of [me are
preeisely the exact forms and

%ﬁ_’.}_: R,

I]‘él(Rl) = ker j.“
¢

REMARK. If g{x) dx e Q}(R") does not have total integral 0, then

fix) = .r (1) du

will not have compact supporl and g{x) dx will not be exact.

§2 The Mayer-Vietoris Sequence 19

{c) More generally,
HY®RY) = e in dimo:nsion n
0 otherwise.
This result is the Poincaré lenuma for cohomology with compact support and
will be proved in Section 4.

Exercise 1,7, Compute H%a(R? — P — @) where P and @ are {wo points in
I22. Find the closed forms that represent the cohomology classcs.

§2 The Mayer-Vietoris Sequence

In this section we extend the definition of the de Rham cohomology from
¥ to any differentiable manifold and introduce a basic technique for com-
puting the de Rham cohomology, the Mayer-Vietoris sequence. But first we
have to discuss the functorial nature of the de Rham complex.

The Functor £2*

Let x4, ..., x, and y,, ..., ¥, be the standard coordinates on B™ and R"
respectively. A smooth map f: BR" — R" induces a pullback map on C*
functions £* : Q°(R") —» Q°(R™) via

M =g-f
We would like to extend this pullback map to all forms f* : Q%(RE") --»

OQ*(R™) in such a way that it commutes with 4. The commutativity with d
defines f* uniquely:

SHE grdyy .o dy) =g o f) dfiy - dfl,

where f; = y; o f is the i-th component of the function f.

Proposition 2.1. With the above definition of the pultback wmap f* on forms, f*
commiites with d.

Proor. The proof is essentially an application of the chain rule.

dfMay dy;, - dy ) =dgr o ) dfiy ) = dlgy o Sy dfiy . A,

&
frdig; dyy . dyn)=1* (5% dy; dy;, ... dy!q)
i

gy
(o)

digr o f) df, - dfs,. o

]
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Let xg, ..., X, be the standard coordinate system and g, ... 1, 4 new
coordinate system on R ic., there is a diffeomorphism f : R" —» R" such
that u; = x; o f = f*(x;). By the chain rule, if g is a smooth function on 2",
then

og fu, ag
o9 = d
Z duy du; = Z 4 Oy 8y dx; = Z

So dg is independent of {he coordinate system,

Exercise 2.1.1. More generally show that if @ = Z gy duy, then do = z dg;
d!{; .

Thus the exterior derivative d is independent of the coordinate system on
B"

Recall that a category consists of a class of objects and for any two
objects A and B, a set Hom{A, B) of morphisms from 4 to B, salisfying the
following properties. If fis a morphism from A to B and g a morphism from
B 1o C, then the composite morphism g « f from A to C is defined; fur-
thermore, the composition operation is required to be associative and to
have an ideniity 14 in Homn(d, A) for every object A, The class of all groups
together with the group homomorphisms is an example of a category.

A covariant functor F from a category & {o a catefory & associates to
every object A in % an object F(A) in &, and every morphism f: 4 — Bin
2 a morphism F(f): F{4} -+ F(B) in & such that F preserves composition
and the identity:

Flg « ') = Flg) = F(f)
F{lA] = Iruu-

If F reverses the arrows, ie., F{f} @ F(B)— F(4), it is said to be a contra-
variant functor.

In this fancier language the discussion above may be surmmarized as
follows: QF is a contravariant functor from the category of Euclidean spaces
{R"},.z and smooth maps: W™ — R" to the category of commutative differ-
ential graded algebras and their homomaorphisms. It is the unique such functor
that is the pullback of functions on Q°(R"). Herc the commutativity of the
graded algebra refers to the fact that

e = (— 1)deEder o gy

The functor Q* may be extended to the category of differentiable mani-
folds. For the fundamentals of manifold theory we recommend de Rham
[i, Chap. I]. Recall that a differentiable structure on a manifold is given by
an atlas, i.c, an open cover {U,},. 4 of M in which each open set U, is
homeomorphic to B" via a homeomorphism ¢, - U, =5 R", and on the
overlaps U, n Uy the transition functions
U, n Up)—

gaﬁ = ff)a ° djﬂ_] ¢3{Ua M Uﬂ}

s L pu—
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arc diffcomorphisms of open subscts of B®; furthermore, the atlas is re-
quired to be maximal with respect to inclusions. All manifolds will be
assumed to be Hausdorff and te have a countable basis, The collection
{(Uys Oudeea is called a coordinate open cover of M and ¢, is the trip-
ialization of U, Let u,, ..., #, be the standard coordinates on R". We can
write ¢, == {xq, ..., X,). where x, = u; = ¢, are a coordinate system on U_. A
function f on U, is differentiable if fo ¢, ! is a differentiable function on
it If f is a differentiable funclion on U,, the partial derivative 8 f/dx; is
defined to be the i-th partial of the pullback funciion fo ¢ an [&":

3 ) W63
5 @)= o).

The tangent space to M at p, written T, M, is the vector space over R
spanned by the operators 8/dx,(p), ..., 8/8x,(p), and a smooth vector field
on U, is a linear combination X, =3 f; 8/8x, wherc the f’s are smooth
functions on U,. Relative to another coordinate system (y,, ..., »,). X, =
> g, 8/0y, where 8/8x; and 8/3y, satisfy the chaiﬁ rule:

d dy; 8
8x; 0x; 6yj

A C® vector field on M may be viewed as a collection of vector fields X, on
U, which agree on the overlaps U, m Uj.

A differential form @ on M is a collection of forms wy for U in the ailas
defining M, which are compatible in the following sense: if i and j arc the
inclusions

then *my = o in QYU n V). By the functoriality of 0%, the exterior
derivative and the wedpe product cxtend to differential forms on a8 mani-
fold. Just as for R™ a smooth map of differentiable manifolds f: M — N
induces in a natural way a pullback map on forms f* . QMN} — Q¥ M). In
this way {* becomes a contravariant functor on the category of differ-
entiable manifolds,

A partition of unity on a manifold M is a collection of non-negalive C™
functions {p,},.r such that

(a) Every point has a ncighborhood in which Zp, is a finite sum.

(B) Tp, = 1.
The basic technical tool in the theory of differentiable manifolds is the
existence of a partition of unity. This result assumes two forms:

(1) Given an open cover {U,},.; of M, there is a partition of unity {g )y«
such that the support of p, is contained in U,. We say in this casc that
{p.} is a partition of unity subordinate to the open caver {U_).
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(2) Given an open cover {U,}, ., of M, there is a partition of unity {ppls. s
with compact support, but possibly with an index set J different from f,
such that the support of gy is contained in some U,

For a proof see Warner ['1, p. 107 or de Rham [1, p. 31.

Note that in (1) the support of p, is nol assumed to be compact and the
index set of {p,} is the same us that of {U,}, while in (2) the reverse is true,
We usually cannot demand simultaneously compact support and the same
index set on a noncompact manifold M. For example, consider the open
cover of B! consisting of precisely one open set, namely R' itself. This open
cover clearly does not have a partition of unity with compact support
subordinate to it

The Mayer-Vietoris Sequence

The Mayer-Vietoris sequence allows one to compute the cohomology of the
union of two open sels. Suppose M = U U ¥ wilh U, V open. Then there is
a sequence of inclusions

o
M—Ul[vEUnV
=]

where U] [V is the disjoint union of ¥/ and ¥ and 8, and &, are the
inclusions of I m I in V and in U respectively. Applying the contravariant
functor 0¥, we get a sequence of restrictions of forms

o3
QXM) — QHU) @ (V) 3 QXU n V),
h
where by the restriction of a form to & submanifold we mean its hmage
under the pultback map induced by the inclusion. By taking the difference
of the last two maps, we obtain the Mayer-Vietoris sequence

(2.2) 0 —» QM) — QHU) @ QXV) — U V) ~»0
(e, 1) = T -~

Proposition 2.3, The Mayer-Vieioris sequence is exact.

Proor. The exaclness is clear except at the last step. We first consider the
case of functions on M = RY, Let fbe a C™ funciion on U n ¥ as shown in
Figure 2.1. We must write f as the difference of a function on U and &
function on V. Let {py, py} be a partition of unity suberdinate to the open
cover {U, ¥}. Note that p,f is a function on U—to get a function on un
open set we must multiply by the partition function of the other open set.
Since

(po SY = (—py £) =1,
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Figure 2.1
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T

we see that QYUY ® DO(V) — QYRY) — 0 is surjective. For a general mani-
fold M, if w € QU ~ V), then (—py w, pyw) in Q90U @ Q(V) maps onto
[ (|

The Maycr-Victoris scquence
0 — QM) — OU)@ OXV) - QXU A V) -+ 0

induces a long exact sequence in cohomology, also called a Mayer-Vieloris

T sequence:

HIYY M) - HOPY D) D HOYYV) — YU A ) D

(2.4) a* )
C»Hﬂ(M) & HY{OY@HYV) — HYU A V)

We recall again the definition of the coboundary operator ¢* in this explicit
instance. The short exact sequence gives rise to & diagram with exacl rows

t 7 t

00— OIYYAN — THY@OITYYY - QYU N T) o 0
dt - df ar

0— QM) - Q) B DAV) — QU N V) — 0
w W

¢ @ dowy = 0

Let w & QYU ~ V) be a closed form. By the exactness of the rows, there is
a & e QYU @ QY1) which maps to @, namely, & = (—py o, pyw). By the
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commuiativity of the diagram and the fact that dw =0, d¢ goes to 0 in
QU A V), ik, —dpym) and d(py w) agree on the overlap U ~ V. Hence
d¢ is the image of an element in (97 L(M). This clement is easily seen to be
closed and represents d*[w]. As remarked easlier, it can be shown that
d*[w] is independent of the choices in this consiruction. Explicitly we sce
that the coboundary operator is given by

[—dlpyw)] on U
[dlpper)] on V.
We define the support of a form @ on a manifold M lo be the smallest

closed set Z so that o restricted to Z is not 0. Note that in the Mayer-
Vietoris sequence d*w € H*¥(M) has supportin U7 n V.

(2.5 d*{w] = {

ExamrLE 2.6 (Fhe cohomology of the circle). Cover the circle with two
open sets U and V as shown in Figure 2.2, The Mayer-Vietoris sequence
gives

st Ullv Uunv
H? 0 0 0
3 —_—
—H —_— 0 — 0
d* —)
FI0 . ROR — . ROR

The difference map & sends (w, 1) to (1~ o, 71—®), so imd is 1-
dimensional. It follows that ker & is also i-dimensional. Therelore,

HYSY) =kerd=R
HY(SY) = coker & = R,

We now find an explicit representative for the generator of HY(S"). If
o € QU ~ V) is a closed O-form which is not the image under 8 of a closed
form in Q%U} @ Q°(V), then d*a will represent a generator of H(S'). As a
we may take the function which is | on the upper piece of U » ¥ and 0 on

Figure 2.2

JP— [ —

Laingberie s S IELE
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Figure 2.3

the lower piece (see Figure 2.3), Now « is the image of {— pp o, ppor). Since
—d{py &) and dpy e agree on U ~ ¥, they represent a global form on §!;
this form is d*e. It is a bump [-forim with supportin U ~ V.

The Functor £} and the Mayer-Vietoris Sequence for Compact
Supports

Again, before taking up the Mayer-Vietoris sequence for compactiy sup-
ported cohomology, we need to discuss the functorial properties of (8 M),
the algebra of forms with compact support on the manifold M, In general
the pullback by a smooth map of a form with compact support need not
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have compact support; for cxample, consider the pullback of functions
under the projection M x R— M. Se ¥ is not a funclor on the category of
manifolds and smooth maps. IHowever if we consider not all smooth maps,
but only an appropriate subset of smooth maps, then QF can be made into
a functor. There are two ways in which this can be done.

{(a) Q3 is a contravariant functor under proper maps. (A map is proper if the
inverse image of every compact set is compact.)
(b) C¥¥ is a covariant functor under inclusions of epen sets.

1f j: U— M is the inclusion of the open subset U in the manifeld M, then
Ju 1 ONUY— QF(M) js the map which extends a form on U by zero to a
form on M.

It is the covariant nature of Q* which we shalt exploit to prove Poincaré
duality for noncompact manifolds. So from now on we assume that (FF
refers to the covariant luncior in (b). There is also a Mayer-Vietoris se-
quence for this functor. As before, let M be covered by two open sets U and
)7, The sequence of inclusions

M«-Upestvnv

gives rise to a sequence of forms with compact support

QM) QHU) @ QX 5 QXU 0 V)

signed
inclusion

EUmL

(—j*w, j*f’)] = w

Proposition 2.7. The Mayer-Vietoris sequence of forms with campact stupport
0« QHM)— QXU) & (V) — QXU N F)—10
is exact.

Proor. This time exactness is easy to check at every step. We do it for the
lust step. Let e be a form in Q¥*(M). Then @ is the image of (py @, gy ) in
QXUYPQXV). The form pyew has compact support because Supp py@
< Supp py 0 Supp @ and by a lemma. from general topology, a closed
subset of a compact set in 1 Hausdorfl space is compact. This shows the
surjectivity of the map QXUMPQHV)— QF(M). Note that whereas in the
previous Mayer-Vietoris sequence we mulliply by py to get a form on U,
here pp w is a form on U, (|

Again the Mayer-Victoris scquence gives rise to a long éxact sequence in
cohomology:

CHI* 3(My e HI*HU) @ HIV (V) o HEVHU (A V) o

d
CH?[M) —  HYU)® HYV) — HYU A V) “

(2.8)

gt
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————
\
u W uUnvy

e
K,
Figure 2.4

ExaMPLE 2.9 (The cobomology with compact support of the circle). Of
course since §! is compact, the cohomology with compact support H*sYH
should be the same as the ordinary de Rham cohomology H*(S'). Nonethe-
less, as an illustration we will compute H*(S') from the Mayer-Vieloris
seguence for compact supporis:

st uljv UnVv
H? 0 0 —
o O ror —f— ROR
m  « T —— o

Here the map 3 sends @ = (@, @,) &€ HXU n V) to (), Up) ) €
HYUY @ HY(V), where j, and j) ate the inclusions of U » ¥V in U and in ¥
respectively. Since im 6 is 1-dimensionai,

RS =kerd =R
HY(8Y) = coker 6 = R.

§3 Orientation and Integration

Orientation and the Integral of a Differential Form

Let x4, ..., x, be the standard coordinates on R". Recall that the Riemann
integral of a differentiable function f with compact support is

.[ fldxy ... dx,| = lim Y fAx, ... Ax,.

R* Axy=e(t

We define the integral of an n-form with compact support o = fdx; ... ddx,
to be the Riemann integral IRn‘ﬂdxl ... dx,|. Note that contrary to the
usual calculus notation we put an absolute value sign in the Riemann
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integral; this is L0 emphasize the distinction between the Riemann integral
of a function and the intcgral of a differential form. While the order of
Xy, ..., X, matters in a differential form, it does not in a Riemann integral; if
7 is a permutation of {1, ..., »}, then

J.fdxn(l} e dx:c(rl) = (SSn J’I} Ifldxl e dxn';

but
-[fidxntl}"' dx!!{l’l)1 = jf|dxl dxn’-

In a sitnation where there is no possibility of confusion, we may revert to
the uswnal caleulus notation,

So defined, the integral of an n-form on R" depends on the coordinates
Xy, -5 Xp. From our point of view a change of coordinates is given by a
diffeomorphism T :[®"-+ R" with coordinates yq, ..., y, and x,, ..., x,, re-
spectively:

Xp=X o Ty, ooy 3) = TiJss oy Yn)e

We now study how the integral jo transforms under such diffcomor-
phisms.

Exercise 3.1. Show that dT,...dT, = JT)dy, ... dy,, where J(T}=
det(dx, /dy;) is the Jacebian determinant of 7',

Hence,

IHT*mzj (fe T)dTy ... dT,,=J. (f o« TWHT) dy; ... dy,

relative to the coordinate system yy, ..., y,. On the other hand, by the
change of variables formula,

J. w=j f(xls"'!xn)dxl"'dxn=f (f= T} IHT)dyy ... dy,,

f T*w = iJ. w
" R

depending on whether the Jacobian determinant is positive or negative, In
general if T is a diffcomorphism of open subsets of B* and if the Jacobian
determinant J(T) is everywhere positive, then T is said to be arientation-
preserving. The integral en R" is not invariant under the whole group of

Thus

r?\‘;.; -
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diffeomorphisms of B", but only under the subgroup of orientation-
preserving diffeormorphisms.

Let M be a differentiable manifold with atlas {U,, ¢,)}. We say that the
atlas is oriented i all the (ransition functions g =, ¢;' are
orientation-preserving, and that the manifold is erientable if it has an orien-
ted atlas,

Proposition 3.2. A manifold M of dimension it is orientable if and only if it has
a glabal nowhere vanishing n-form.

Proor. Observe that T: R" -+ R" is orientation-preserving if and only if
T* dx, ... dx, s a positive multiple of dx, ... dx, at cvery point.

(==) Suppose M has a global nowhere-vanishing n-form w. Let ¢, : U, =
1" be a coordinate map. Then ¢F dx, ... dx, = [, where f, is a nowhere-
vanishing real-valucd function on U,. Thusf, is either everywhere positive
or everywhere negative. In the latter case interchange x; and x,. Since
¢F dx, dxy dxy...dx, = —¢F dx, dx, dxs...dx, ={(--f)o, we may
assume f, to be positive for all «. Hence, any transition function ¢, ¢, ' : B
— R" will pull dx; ... dx, to a positive multiple of itself. So {(U,, ¢.)} is an
oriented atlas.

(=} Conversely, suppose M has an oriented atlas {{U,, ¢,)}. Then
(Do da V¥ (dxy ... dx) =% dx, ... dx,
for some positive funclion 4. Thus

G dxy .. dx, = (@EANGE dxy .. dx,)

Denoting ¢f dx, ... dx, by w,, we see that wg = fo, wheref=@¥l=10-
¢, is a posilive function on U, n Uy,

Let o =Y. p, m, where p, is a partition of unity subordinate to the open
cover {U,}. At each point p in M, all the forms o, , if defined, are positive
multiples of one another. Since p, = 0 and not all p, can vanish at a point,
w is nowhere vanishing. 0O

Any two global nowhere vanishing n-forms @ and ' on an orientable
manifold M of dimension n differ by a nowhere vanishing function: w = fiw'.
It M'is connected, then fis either everywhere positive or everywhere nega-
tive. We say that v and ' are equivalent if fis posilive. Thus oh a connec-
ted orientable manifold M the nowhere vanishing n-forms fall into two
equivalence classes. Either class is called an orientation on M, written [M].
For example, the standard orfentation on R is given by dx, ... dx,,.

Now choose an orientation [M] on M, Given a top form t in Q1(M), we

dcfine its integral by
=
(a1 @ JU,
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where jr»',, pot means [p. (¢s ')*(p, 1) for some oricntation-preserving triv-
ialization ¢, : U, =% I§"; as in Proposifion 2.7, p,t has compact support,
By the orientability assumption, the integral over a coordinate patch [, @
is well defined. With a fixed orientation on M understood, we will ofien

write [yt instead of [, ¢. Reversing the orientation results in the negative
of the integral.

Proposition 3.3. The definition of the integral [yt is independent of the
oriented atlas {(U,, §.)} and the partition of unity {p,}.

Proor, Let {¥,} be another oriented atlas of M, and {y;} a partition of
unity subordinate to {V,}. Sinve 3 4 x5 = 1,

) L“Pﬂ =7

w, f U,

PaXp?

Now p, xp 7 has support in U, n ¥, so

J. pﬂxﬂr =.{ PrXpt
Uy Ve

S| pt=% PuXﬂT=ZjX.ﬂT- O
U o, § JVg £ JVg

a

Therefore

A munifold M of dimension n with boundary is given by an atlas {(U,, ¢,)}
where U, is homeomorphic to either B® or the upper half space
H"= {(x), ..., x)|x, = 0}. The boundary dM of M is an (n—1)-
dimensional manifold. An oriented atlas for M induces in a natural way an
orienied atlas for M. This is a consequence of the following lemma.

Lemma 34, Let T:H — H" be a diffeomorphism of the upper half space
with everywhere positive Jacobian determinant, T induces a map T of the
boundary of W to itself, The induced map T, as a diffeomorphism of R"™ 1,
also has positive Jacobian determinant everywhere.

PProor, By the inverse function theorem an interior point of H* must be the

image of an interior point. Hence T maps the boundary to the boundary.

We will check that T has positive Jacobjan determinant for n = 2; the

general case is similar.

Let T be given by

x; = Ti{y1, ¥2)

. x; = Talyy, ¥2).

Then T is given by
x; = Ti(yy, 0).

[ —
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Figure 3.1
By assumption

: aT T,
El (Ul (7R
ay, dy;
i a7 =0,
a1 a7,
— {y, 0 —=(p, 0
. 0n0 FELO

Since 0 = T3 (y,, 0) for all y,, 83T,/8y, (¥1, 0) = 0; since T maps the upper
half plane to itself,

Therefore

Y1

Let the upper half space H" = {x, = 0} in B" be given the standard
orientation dx, ... dx,. Then the induced orientation on ils boundary
2H" = {x, = 0} is by definition the equivalence class of (—1)" dxy ... dx,_1;
this sign is needed to make Stokes' theorem sign-free. In general for M an
oriented manifold with boundary, we define the induced orientation [M]
on 8M by the following requiremeni: if ¢ is an oricntation-preserving
diffeornorphism of some open set U in M into the upper half space H”, then

¢*[H"] = [0M |ev,
where 8U = (8M) n U (see Figure 3.1).

Stokes’ Theorem
A basic result in the theory of integration is

Theorem 3.5 (Stokes’ Theorem). If @ is an (n — 1)-form with compact support
on an oriented manifold M of dimension n and if 8M is given the induced
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J Aoy =J‘ w.
ae oM

We first examine two special cases.

orientation, thew

SrEcIAL Casg 1 {®"), By the linearity of the integrand we may take o to be
Fdx,...dx,_;. Thendw = 4 8f/dx, dx, ... dx,. By Fubini's theorem,

© af
J;,dw = + J(J_w adx,,) dxy .oodx,y.

But I?m af,"raxn dxn :f[xla ey Xp—1s OO) _f{xla sy Xp— g T CO} =0 be-
cause f has compact support. Since R has no boundary, this proves Stokes’
theorem for B,

SPECIAL CASE 2 {The upper half plane). In this case (see Figure 3.2)
@ =f{x, y} dx + g(x, y) dy

_{_ ég)
dcu-( 6y+6x dx dy.

and

Note that

] @i e g
J- Eq-dxdy=J (J a—gdx)dy=J‘g(oo,y)~g(-"OO,y}dy=0,
nr 9x o - DX

since g has compact support. Therefore,

o= S o = L[5 w) e

- - f " (G @) — f(x, O dx

=Jw f[x,O]dx=J @
~m aH?

Figure 3,2
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where the last equality holds because the restriction of glx, y)dy to 887 is 0.
So Stokes’ theorem holds for the upper half plane.
The case of the upper hall space in R is entirely analogous.

Exercise 3.6. Prove Stokes’ theorem for the upper half space.

We now consider the general case of a manifold of dimension n. Let {U,}
be an oriented atlas for M and {p,} a parlition of unity subordinate to
{U,.}. Write w=z p. . Since Stokes’ theorem _[M dm = j'ﬁMa) is lincar in w,
we need to prove it only for p,w, which has the virtue that its support is
contained entirely in U, . Furthermore, p, @ has compact support because

Supp g, = Supp p, N Supp @

is a closed subset of a compact set. Sinee U, is diffeomorphic to cither R” or
the upper half space H", by the computations above Stokes’ theorem holds
for U, . Consequently

Jdpaw=j dp¢w=f paw=j Pat2,
Af 1 B0, nne

This concludes the proof of Stokes’ theorem in general.

§4 Poincare Lemmas

The Poincaré Lemma for de Rham Cohomelogy

In this section wc compuie the ordinafy cohomology and the compactly
supported cohomology of B” Let n: B" x B! — R" be the projection on
the first factor and 5 : " —» R" x R! the zero section.

B x B! O¥R" < 1BYH
" " mx, £ = x
1T ST s(x) = (x, 0)
E" (1"

We will show that these maps induce inverse isomorphisms in cohomology
and therefore F*{["* 1) ~ H*(R"). As a matter of convention all maps are
assumed to be C*® unless otherwise specified.

Since n = s = 1, we have trivially s* o #* = 1. However sv 1 1 and
correspondingly n* o s* ¥ 1 on the level of forms. For example, a* o g*
sends the function f{x, t) to f{x, (), a function which is constant along every
liber. To show that n* » §* is (he identity in cohomolegy, it is encugh to
find a map K on Q¥R" x R!) such that

1 —7* e g% = 4-{dK + Kd),
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for dK & Kd maps closed forms to exact forms and therefore induces zoro
in cohomolagy. Such a K is called a homotopy operator; if it exists, we say
that n* o 5% is chain homotopic to the identity. Note that the homotopy
operator K decreases the degroe by 1.

Every form on R* x (@ is uniguely a linear combination of the following
two types of forms:

(I} (@*¢)f(x, 1),

() (=*@)f(x, o) dt,
where ¢ is a form on the base R™. We define K : QYR" x f)--
QLR x R) by

M) (=*d)f(x, ) — 0,

(I (*¢)f(x, ) dt — (n*¢) [ f.

Let’s check that K is indeed a homotopy operator. We will use the
simplified notation 8f8x dx for ¥ 8f/dx, dx;, and Jg for fa(x, £) dt. On forms
of type (1),

w = (r*g) - fix, 1), deg @ = g,
(1 — a*s*)w = (r*e) - fx, ) — =¥ - fix, G),
o

(K — Kdyn = — Kdew = -K((dn*q’)]f+ (—1¥m*h (%: dx + 2 dt))

= (1) 'n¥g .[ g—":= (=1 LS (x, ) — £ (x, 0)).
L3
Thus,
1 —a¥s* =(—12"{dK — Kd).
On forms of type (10),
w={x*d)fdt, degw=agq,

dw = (7% dp) fdt + (— 1) (n*¢) g—){dx dt.
{1 — *s*)w» = ¢ because s*(dt) = d(s*1) = d(0} = 0.

Kdo = (n* d(fi)rf +(—1¥" Yrn* ) a'xj.: ;_f ,
0 o OX

dKw = (z* dg) J s+ (—U*”(n*@[dx(f' g) v f dt].
Thus

@K — Kdw = (~ 1y~ ',
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In either cuse,
I — 7% o g* = (1} YK - Kd) on (H{R" x R).

This proves
Proposition 4.1, The maps H*(R" x R"Y) % H*(R™ are isomorphisms.

By induction, we obtain the cohomology of ®",

Corollary 4.1.1 (Poincaré Lemma).
R in dimension 0

HA(®) = H*(point) = {0 elsewhere

Consider more generally

M x R?

g

M

I {U,} is an atlas for M, then {U, x R'} is an atlas for M x R'. Again

every form on M x ®' is a linear combination of the iwo types of forms (I)
and (I1). We can define the homotopy operator K as before and the proof
carries over word for word to show that H*(M x RY) = H*(M) is an iso-
maorphism via n* and s*.

Coroltary 4.1.2 (Homotopy Axiom for de Rham Cohomology). Homotopic
maps induce the same map in cohomolagy.

Proor. Recall that a hemotopy between two maps fand g from M {0 N is a
map F: M x R! — N such that

{F{x, N=f(x) for £=1
Fi{x, 1) = g{x} for t=<0.

Equivalently if s, and s, : M — M x R are the O-section and 1-section
respectively, i.e., 5,(x) == (x, 1}, then

f=F°sl)
g:FUSOA

Thus
¥ =(F o sy =st o FY,
g* = (F o s5o)* = 5§ o F*,
Siuce st and s¥ both invert n*, they are equal. Hence,
Ir=g* a



36 I de Rham Theory

Two manifolds M and N are said to have the samc homotopy type in the
C” sense if there are C* maps f: M — N and g: N -~ M such that g o f
and fo g are C™ homotapic to the identity on M and N respectively.* A
manifold having the homotopy type of a point is said to be contractible.

Corollary 4.1.2.1. Twe manifolds with the same homotopy type have the same
de Rham cohomology.

Ifi: A = M is the inclusion and »: M — A is a map which restricts to
the identity on A, then r is called a retraction of M onto A. Equivalently,
rei:d-» 4 is the identity. If in addition i« »: M — M is homotopic to
the identity on M, then r is said to be a deformation retraction of M onto 4.
In this case A and M have the same homotopy lype.

Corollary 4.1.2.2. If A is a deformation retract of M, then A and M have the
same de Rham cohomology.

Exercise 4.2. Show that » : B% — {0} —> S! given by r(x) = x/| x | is a dcfor-
mation reteaclion.

Exercise 4.3. The cohomology of the n-sphere 8°. Cover §" by two open sets
U and V where U is slightly larger than the northern hemisphere and V

slightly larger than the southern hemisphere (Figure 4.1} Then U n V is

diffeomorphic to 877! x R' where §"7! is the equator. Using the Mayer-
Vietoris sequence, show that

HA(S") = R in dimensions O, n
~ 10 otherwise,

We saw previously that a gencrator of HY(S) is a2 bump I-form on §!
which gives the isomorphism HY(S') ~ B! under integration (see Figure

"/

v
Figure 4.1

* In fact two manifolds have the same homotopy type in the € sense if and ooly if they have
the same homotepy type in the usual (continuous) sense. This is because every continnous
map belween Lwo manifolds is continuously homotopic to a C* map (sce Proposition 7.8}
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Figure 4.2

4.2), This bump 1-form propagates by the boundary map of the Mayer-
Vietoris sequetice to 4 bump 2-form on $%, which represents a generator of
HYS%. In general a generator of H"(S™ can be taken to be a bump n-form
on 8"

Exercise 4.3.1 Volume form on a sphere, Lot 8"(r) be the sphere of radius r
T

in B"*', and let

| —

n+1
w==F (=80 "V xde; o dx e dx,eq.
=1

-

(a} Write §” for the unit sphere $"(1). Compute the integral f, o and
conclude that w is not exact.

{(b) Regarding r as a function on R"*! — 0, show that (dr) @ = dx, -~
dx, . Thus o is the Buclidean volume form on the sphere ().

From (a) we obtain an explicit formula for the generator of the top
cohomology of §” (although not as a bump form). For example, the gener-
ator of H?($?) is represented by

g = ?4‘;[;[ {xl dx;;_ dx3 - X3 dx] dx:! -+ X3 dxl dX2).

The Poincaré Lemma for Compacily Supborted Cohomology

The computation of the compactly supperted cohomology H*(R") is again
by induction; we will show that there is an isomorphism

H¥ R x RY) ~ H¥RY).

Note that here, unlike the previous case, the dimension is shifted by one.
More generally consider the projection z : M x R' — M. Since the pull-
back of a form on M to a form on M x R' necessarily has noncompact
support, the pullback map =* does not send QM) to QXM x RBY), How-
ever, there is a push-forward map =, : QXM x R — QF~4(M), called inte-
gration wlong the fiber, defined as follows. First note that a compactly
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supported form on M x R' is & linear combination of two types of forms:
I 7% - fx, 0, .
() n*¢ - f(x, 1) dt,

where ¢ is a form on the base (not necessarily with compact support), and
J(x, ¢) is a fanction with compact support. We define n, by

() 7*¢ - flx, ) — 0,

4.4) ®
(1) 7%  f(x, ) dt r> j fix o) de.

Exercise 4.5, Show that dn, = =,d; in other words, n, : QF(M x R') —
OQF - YM) is a chain map.

By this exercise n, induces a map in cohomelogy #, : H¥ — H¥*-1. To
produce a map in the reverse direction, let e = &li) dr be a compactly sup-
ported 1-form on B! with total integral I and define

e, QF(M) — QF+YM x BY)
by
P dAe

The map e, clearly commutes with 4, so it also induces a map in cohomol-
ogy. It follows direcily from the definition that n, « ¢, = 1 on Q¥R"). Al
though e, o 7, # 1 on the level of forms, we shall produce a homotopy
eperiator K between 1 and ¢, o n, ; it will then follow that e, o r, = 1 in
cohomology.

To streamline the notation, write ¢ - f for #*¢ « fix, £} and {f for
[f{x. ©) dr. The homotopy operator K : QXM x B — *=~1(AM x RY) is
defined by

M ¢-fr=0 ' r
(II) ¢ « fdi— ¢ J. Jf— Al J f where A(f) = J e,

bl - +1

Proposition 4.6, 1 — e, n, = (— 1} "YdK — Kd) on HIM » R").
Proor. On forms of type (I), assuming deg ¢ = ¢, wc have

(I —emp - f=¢-f,
(dK — Kdyp - f = —K(drf) S (=1 gfdx (=17 ¢ gd:)

at
T a . @ ’)
=(—”"“(¢f_ a‘f“*ﬁ““‘}f_ %;f)

= (—1]‘?“4{)}’_ [Here J_w §{=f(x, @) = f{x, —e0) = 0.]
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So
l—e,n,={(=~1)7"'(dK — Kd).
On forms of type (E), now assuming deg ¢ = g — 1, we have

Lral

(1 —e,m)pfdt = $fde— ¢(j f)/\e,

- o

axxesan=ap | rrep | Lo -nosa

~apaw [* - comgle [T an( T )il

(Kd)(eh [ dty = K((d(,!)] fd (=1 gj{dx dr)

~a [ r-apan | s

4 (—1ynt [qu g{ dx dt — q’:A(r}( f g) dx] .

(dK — Kd)p fdt = (—l}“_’[f.f?fdf - ¢(Jm f)e]

—aa

So

and the formula again holds, [

This concludes the proof of the following
Proposition 4.7. The maps

HYM x RY) %H;““I(M)
are isomorphisms,

Corollary 4.7.1 (Poincaré Lemma for Compaet Supports).
B in dimension n

HR) = {0

Herc the isomorphism HXR™ = R is given by iterated ., ic., by inte-
gration over R".

otherwise.

To determine a generator for HA{(R™, we starl with the constant function
1 on a point and iterate with e, . This gives e(x ) dx, e(x2) dxz ... e(x,} dx,.
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So a generator for H7(1R") is & bump n-form «(x) dx, ... dx, with

j ofx} dxy ..o dx, = L,
-
The support of & can be made as simall as we like.

Remark. This Poincaré lemma sliows that the compactly supported coho-
mology is not invariant under homotopy equivalence, although it is of
course invariant under diffcomorphbisms,

Exercise 4.8. Compute the cohomology groups H*(M)} and H¥(M) of the
open Mobius strip M, ie, the Mdbins strip without the bounding edge
(Figure 4.3), [Hint: Apply the Mayer-Vietoris sequences.]

The Degree of a Proper Map

As an application of the Poincaré lemuna for compact supports we intro-
duce here a C™ invariant of a proper map betweecn two Euclidean spaces of
the same dimension. Later, after Poincaré duality, this will be generalized to
a proper map between any lwo oriented manifolds; for compact manifolds
the properness assumption is of course redundant.

Let /" — R" be a proper map. Then the pullback f*: HI(R") —
HX®" is defined. Tt carries a generator of HXR", ic., a compactly sup-
ported closed form with total integral one, to some multiple of the gener-
alor. This multiple is defined to be the degree of /. If ¢ is a generator of
HI{R"), then

deg f= j J*e
ar

A priori the degree of a proper map is a real number; surprisingly, it {furns
out to be an integer, To see this, we need Sard’s theorem. Recail that a
critical point of a smooth map /' B — RB™ is a point p where the differ-
ential (f,), ! T,H" — T,,,R" is not surjective, and a critical value is the
image of a critical point. A point of R" which is not a critical value is called
a regutar value. According to this delinition any point of B" which is not in
the image of f'is a regular value so that the inverse image of a regular value
may be empty.

Figure 4.3
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Theorem 4.9 (Sard’s Theorem for R"), The set of critical values of a smooth
mapf : R" — R" has measure zero in B for any integers m and n.

This means that given any & > 0, the set of critical values can be covered
by cubes with total volume less than & Important special cases of this
theorem were lirst published by A. PP, Morse [1]. Sard’s proof of the general
case may be found in Sard [17.

Proposition 4,10 Let f : " — R” be a proper map. If [ is not surjective, then
it has degree 0.

Proor. Since the image of a proper map is closed (why?), if f misses a point
g, it must miss some necighborhood U of g. Choose a bump s-form « whose
support lies in U. Then f*g = 0 so that deg f= 0, ]

Exercise 4.10.1. Prove that the image of a proper map is closed,

So to show that the degree is an integer we only need to look at surjec-
tive proper maps fram R" to R". By Sard’s theorem, almost all peints in the
image of such a map are regular values. Pick one regular value, say g. By
hypothesis the inverse image of g is nonempty. Since in our case the twe
Euclidean spaces have the same dimension, the differential f, is surjective if
and only if il is an isomorphism. So by the inverse function theorem,
around any point in the pre-image of g, f is a local diffeomorphism. It
follows that £ ~'(g) is a discrete set of points. Since fis proper, £~ Yq) is in
fact a finite set of points, Choose a generator o of HY{R"} whose support is
localized near ¢. Then f*« is an n-form whose support is localized near the
points of /" Y{g) (see Figure 4.4). As noted carlier, a diffeomorphism pre-
serves an integral only up to sign, so the integral of f*x near each point of
F Ugis +1. Thus

ff*u: Y 41,
R" S~ Lig)

This proves that the degree of a proper map between two Euclidean spaces of
the same dimension is an integer, More precisely, il shows that the number of

Figure 4.4
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points, counted with multiplicicy +1, in the inverse image of any regular value
is the same for all regular values and that this number is equal to the degree of
the map.

Sard’s theorem for B", a key ingredient of this discussion, has a natural
extension to manifolds. We take this opportunity to state Sard’s theorem in
general. A subset S of a manifold M is said to have measure zero if it can be
covered by countably many coordinate open sets U; such that {5 n U
has measure zero in [B"; here ¢, is the trivialization on U;. A eritical point of
a smooth map f : M — N between two manifolds is a point p in M where
the differential (), : T,M — T,V is not surjective, and a critical value is
the image of a critical point.

Theorem 4.11 (Sard’s Theorem). The set of eritical values of a smooth map
f: M — N has measure zero,

Exercise 4.11.1. Prove Theorem 4.11 from Sard’s theorem for R

§5 The Mayer-Vietoris Argument

The Mayer-Victoris sequence relates the cohomology of a union to those of
the subseis. Together with the Five Lemma, this gives a method of proof
which procesds by induction on the cardinality of an open cover, called the
Mayer-Vietoris argument. As evidence of its power and versatility, we derive
from it the finite dimensionality of the de Rham cohomology, Poincuré
duality, the Kiinneth formula, the Leray-Hirsch theorem, and the Thom
isomorphism, all for maunifolds with finite good covers.

Existence of a Good Cover

Let M be a manifold of dimension n. An open cover W = {U,} of M is
calted n good cover if all finite intersections U,, n -+ n U, are diffco-
morphic to R". A manifold which has a (inite good cover is said to be of

Jinite type.

Theorem 5.1. Every manifold has a good cover. If the munifold is compact,
then the cover may be chosen to be finite.

To prove this theorem we will need a little differential geometry. A
Riemannian structure ont a manifold M is a smoothly varying metric { , >
on the tangent space of M at each point; it is smoothly varying in the
following scnse: if X and ¥ are two smooth vector fields on M, then
¢X,Y> is a smooth function on M. Bvery manifold can be given a
Riemannian structure by the following splicing procedure. Let {U,} be a
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coordinate open cover of M, ¢ , >, a Riemannian metric on U,, and {p,} a
partition of unity subordinate to {U,}. Then {(,> =2 p,{,>, is a
Riemannian metric on M,

Proor oF THEGREM 5.1. Endow M with a Riemannian structiure. Now we
guote the theorem in differential geometry that every point in a Riemannian
manifold has a geodesically convex neighborhood {Spivak {1, Ex, 32(f}, p.
4917). The intersection of any two such neighborhoods is again geodesically
convex. Since a geodesically convex neighborheod in a Riemannian mani-
fold of dimension r is diffeomorphic to B" an open cover consisting of
geodesically convex neighborhoods will be a good cover. H|

Given two covers UM = {U,},.; and B = {¥},.;, if every V} is contained
in some U,, we say that B is a refinement of U and writc U > B. To be
more precise we specify a refincment by a map ¢:J — I such that
V; = Ugy,- By a slight modification of the above proof we can show that
every open cover on a manifeld has a refinement which is a good cover: simply
take the geodesically convex neighborhoods around cach point Lo be inside
some open set of the given cover,

A directed set is a set I with a partial order = such that for any two
clements g and b in I, there is an clement ¢ with @ > ¢ and b > ¢. The set of
open covers on & manifold is a directed sct, since any two open covers
always have 2 common refinement. A subset J of a dirccted set [ is cofinal
in I if for every iin f there is a j in J such that i > j. It is clear that J is alse
a directed set.

Corollary 3.2, The good covers are cafinal in the set of all covers of a
manifold M.

Finite Dimensionality of de Rham Cohomology

Proposition 5,3,1. If the manifold M has a finite good cover, then its cohomol-
ogy is finite dimensional.

Proor. From the Mayer-Vietoris sequence

e HTNU V)L HYU O V) D H(OU)DH(V) > -
we get
HAU v V)= ker r@im r ~im d*Pim r.

Thus,
(«} if the gth cohiomology of U, V, and U n V are finite dimensional, then so
is the gth cohomology of U W V.

For a manifold which is diffeomorphic to i", the finite dimensionality of
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(M follows from the Poincare lemma (41.1). We now proceed by induc-
tion on the cardinality of a good cover. Suppose the cohomology of any
manifold having a good cover with at most p open sets is finite dimensional.
Consider a manifold having a good cover {U,, ..., U,} with p+ 1 open
scts. Now (Ug w ... u Up ) U, has a good cover with p open sets,
namely {Uq,, Ugyy ooy Upe 1, mt By hypothesis, the gth cohomology of
Ugu...uUp_Ujand (Ugu ... v U, U, are finite dimensional;
from Remark (%), so is the gth cohomology of UD ... w U,. This com-
pletes the induction. O

Similarly,

Proposition 5.3.2. If the manifold M has o finite good cover, then its compact
cohomology is finite dimensional.

Poincaré Duatity on an QOrientable Manifold

A pairing between lwo finite-dimensional vector spaces
< 4 > W & W R

is said 1o be nondegenerate if (v, w)> =0 for all w implies v = 0; equiva-
lenily, the map v = (v, ) should define an isomorphism V 23 W*

Because the wedge product is an antiderivation, it descends to cohomol-
ogy; by Stokes' theorem, integration also descends to cohomology. So for
an orienled manifold M there is a pairing

f C HYMY @ HY (M) — R

given by the integral of the wedge product of two forms. Qur first version of
Poincaré duality asserls that this pairing is nondegenerate whenever M is
arientable and has a finite good cover; equivalently,

(5.4) HAM) = (H? 7 M)*.

Note that by (5.3.1) and (5.3.2) both HM} and H} 9(M) arc finite-
dimensionat.
A couple of lemmas will be needed in the proof of Poincaré duwllty

Exercise 5.5, Prove the Five Lemma: given a commutative diagram of
Abelian groups

i d g L0 S p LN

I

A’ B c D E e
£ I i N
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in which the rows are exac, if thec maps «, f§, § and ¢ are isomorphisms, then
50 is the middle one y.

Lemma 5.6. The two Mayer-Vietoris sequences (2.4) and (2.8) may be puired
together to form a sign-commutative diagram

N H,Q(U y V) res[llcllon IIG(U}&)HG(V} diiference ,Hq(U ~ V}

EEARIC NVY
& ® @ ®

= U O V)

J.UUV

B R

d
H(U n Pje—— B9 NU U ¥)

J;’n}' LUV

B 3]

H U@ 79V «
o
vl ¥

Here sign-commutativity means, for instance, that

j wAd, 1= if (d*w)Ax,
v oV

for we HU n V), 1e H;"*"Y(U w V). This lemma is equivalent to
saying that the pairing induces a mup from the upper exact sequenge to the

dual of the lower exact sequence such that the following diagram is sign-
commutative:

— }i"i — Hi@ He —~ HT
I !
T PO - mY —

Proof. The ﬁrs} two squares are in fact commutative as is straightforward
to check. We will show the sign-commutativity of the third square.
Recall from (2.5) and (2.7) that d*e is a form in H?* YU U V) such that

oy = —dipy )
o, = dpyw),
and d, © is a form in II2~%¥ ~ V) such that
{—(extension by 0 of d, 1 1o U), (extension by 0 of d,zto V)
= {d(py 1), d(py1)).
Note that d(py 7) = (dpy)r because 1 is closed; similarly, d(py w) = {dp, ).

j whd, 1= J. wAldpy)t = (— 1)t j (dpy)o At
[N [N i

nV

Since d*w has supportin U ~ F,

J d*oht = —J {dpp)o At
LAV UtV
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Therefore,

-[ wAd, tv=(— Jjleret! .f d¥m At [}
UnV¥ Fu¥

By the Five Lemma if Poincaré duality holds for U, ¥, and U n V, then
it holds for I/ v V. We now proceed by induction on the cardinality of a
good cover. For M diffcomorphic (o B", Poincaré duality follows from the
two Poincaré lemmas

B in dimension 0
E NPT =
FPHR) {0 elsewhere

and

in dimension »

HXR") = {R
¢ 0 elsewhere.
Nexi suppose Poincaré duality holds for any manifold having a good cover
with at most p open sets, and consider a manifold having a good cover
{Uo,...., U} with p+ 1 open sets. Now (Ugw - v U,_;) n U, hasa
good cover with p open sets, namely {UOP, Uipy oo Up_l_P}. By hypothesis
Poincaré duality holds for Uy v ... U,_y, Uy,and(Ug v ... wU,_y)
n U,, so it holds for Uy v ... w U,_; u U, as well. This induction argu-
ment proves Poincaré duality for any orientable manifold having a finite
good cover. O

REmMARK 5.7. The finiteness assumption on the good cover is in fact not
necessary. By a closer analysis of the topology of a manifold, the Mayer-
Vietoris argument above can be cxtended to any orientable manifold
{Greub, Halperin, and Vanstone [§, p. 198 and p. 14]). The statement is as
follows: if M is an orientable manifold of dimension n, whose cohomaology is
not hecessarily finite dimensional, then

H(M) =~ (H M)* , for any integer gq.
However, the reverse implication HI(M) ~ (H"79%M))* is not always t'ruc.
The asymmetry comes from the fact that the dunal of a direct sum is a direct

product, but the dual of a direct product is not a direct sum. For example,
consider the infinite disjoint union

M= ]_[M(,
=1

where the Ms arc all manifolds of finite type of the same dimension n.

Then the de Rham cohomology is a direct product

(5.7.1) HYM) =[] HU(M),
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but the compact cohomology is a direct sum

(5.7.2) HIM) = @ HiM,).
i

Taking the dual of the compact cohomolagy H3{(AM) gives a direct product
(5.7.3) (ITHM)* = [| HYM,).

i
So by (5.7.1) and (5.7.3}, it follows from Paincaré duality for the manifolds
of finite type M, that

HYM) = (HI™(M))*.

Corollary 5.8. If M is a connected oriented manifold of dimension n, then

HiM)=~R. In particular if M is compact oriented and connected,
HYM) = R.

Let f: M — N be a map between two compact oriented manifolds of
dimension . Then there is an induced map in cohomology

% HYN) - HY{M),

The degree of fis defined to be ,; f*o, where w is the generator of HY{(N).
By the same argument as for the degree of a proper map between two
Euclidean spaces, the degree of a map befween two compact oriented mani-
folds is an intcger and is equal to the number of points, counted with
multiplicity % 1, in the inverse image of any regular peint in N,

The Kiinneth Formula and the Leray-Hirsch Theorem

The Kiinneth formula states that the cohomology of the product of two
manifolds M and F is the tensor product

(5.9) H*(M x F) = H*M) @ H*(F).
This means

H{M xF)= @ H(M)® BYF) for every n,

ptg=n

More generally we arc interested in the cchomology of a fiber bundle.

Definition. Let G be a topological group which acts effectively on a space F
on the left. A surjection n: £ — B between topolopical spaces is a fiber
bundle with fiber F and structure group G if M has an open cover {U/,} such
that there are homeomorphisms

¢y Ely, s U, % F
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and the transitions functions ate continuous functions with values in G:

Gup) = o5 faxr € G-

Sometimes the fotal space E is referred to as the fiber bundle. A fiber bundle
with structure group @ is also called a G-bundie, If x e B, the set
E. = n~Y(x)is called the fiber at x.

Since we are working with de Rham theory, the spaces E, B, and F will
be assumed to be €™ manifolds and the maps C* maps. We may also speak
of a fiber bundle without mentioning its structure group; in that case, the
group is understood to be the group of diffeomorphisms of F, denoted
Dill(F).

REMARK. The action of a group G on a spacc F is said to be effective if the
only element of & which acts trivially on F is the idenfity, ie,if g - y=y
for all y in F, then g == 1 € G. In the C™ case, this is equivalent to saying
that the kernel of the natural map G — DIfl(F} is the identity or thal G is a
subgroup of Difi{F), the group of diffeomorphisms of ¥, In the definition of
a fiber bundle the aclion of G on F is required to be effective in order that
the diffeomorphism

Ga i |oywr

of F can be identified unambiguously with an clement of G,
The {ransition functions g, : U, n Uy — G satisfy the cocycle condi-
tion :

ga.B ' gﬂy = g.xy'

Given a cocycle {g,,} with values in G we can consiruct a fiber bundle E
having {g,s} as its transition functions by setting

(5.10) E = (11 U, x F}f(x, Y)LAx, gaptx)3)
for (x, y)in Uy x F and (x, gs(x)y}in U, x F.

The following proof of the Kiinneth formuta assumes that M has a finite
acod cover. This assumption is necessary for the induction argument.
The two natural projections

MxF—2 LF

T

M
give rise to a map on forms

0@ d o wtoAprg
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which induces a map in cohomology (exercisc)
Wi H¥M)® H*F) — H*M x F).

We will show that  is an isomorphism.
If M = R, this is simply the Poincaré lemma,
1o the following we will regard M x F as a product bundie over M. Let

U and ¥ be open sets in M and »n a fixed integer. From the Mayer-Vietoris
sequence

o HAU v V) - H{U)@ HYYV)— HU V)
we get an exact sequence by tensoring with H”~#(F)
= HAU VY@ H"™MF)— HAU)® H™ X F)y @ (H(V) ® H" " #(F))
-> HYU n VY ® HF(F) - -
since tensoring with a vector space preserves cxactness. Summing over

p=10,...,n yields the exact sequence

C = D HNU O V)@ HE)

p=0

- @D(H”(U) @ H"H(F)) @ (H'(V) @ H" ™ "(F))

o @ HAU A V)@ HHE) -

p=0
The following diagram is commutative

@0(H"{Uu VY@ H"HF)— @ (HAU)@ H" AP @ (HV) @ H ~H(F)— @ HNU n V) @ H%F}
P l'r"" n=0 Ju‘; p=0 Jw

H(U UV X F)— HWU = F)'® IV x F) — —

HYU A VY x F)

The commutativity is clear except possibly for the square

@ (HI(U A V)® H™ X)) ~——— ® HFY YU U V) ® B 7(F)

M’l l:,f;

H(U A V) % F) ——"—— > H'(U U V) xF,

which we now check. Let o ® ¢ be in HXU ~ V)& H*"*F). Then
Pd*(w ® @) = M)A pred
d¥filer @ @) = dHm*w A p*o).
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Recall from (2.5) that if {p,, py} is a partition of unity subordinate to
{U, ¥} then

N —dippw) on U

PO =1 dpgw) on V.

Since the pullback functions {a*py, n*py} form a partitic[rjl Of]/l)m;t)_;? on
(U u V) % F subordinate to the cover {UxF,V xF},on{U n
A*(*w A pr¢) = d(n*puyn*wo A p* )
= (da*(py ) A p*e
= n*(d*w) A p*.
So the diagram is commutative. ) . -
By the f?ivc Lemma if the theorem is true for U, V, and U s V, lh;n it is
also true for UJ w V. The Kiinneth formula now f0110w§ by 1.ncluct1011 on
the cardinality of & good cover, as in the proof of Poincaré duality. ]

since ¢ is closed

Let w: E —» M be a fiber bundle with fiber F. Sup_pose there are Cf]}ho~
mology c.lasses e,, ..., e on E which restrict to a basis of the cohomology

of each fiber. Then we can define a map
¥ 1 H¥(M) ® Riey, ..

The same argument as the Kiinneth formula gives

., &} — H*¥E).

Theorem 5.11 (Leray-Hirsch), Let E be u fiber btmd!be ?verhM n;ith ﬁ:{z’;&i
. ini 2 ¢ global cohomology 33

M has a finite good cover, If there are g y

xjuppﬂsee on E which when restricted to each fiber freely generate thel cohamel!

o:;:y o.j; tir:e fiber, then H*(E) is a free module over H*(M) with basis {ey, ...,

e, e
H*(E) =~ H{M)QR{e,, ..., ¢} = H}M)QH*F).

Exercise 5.12 Kiinneth formula for compact cohomology. T_he KijnMnethc{o;
mula for compact cohomology states that for any manifolds an

having a finite good cover.
HXM x N) = H}{M)® HI(N).

(a) In case M and N are crientable, show that this is a conslequcnce of
Poincaré duatity and the Kiinneth formula for de Rham follol‘;mforggl.uh o

(b) Using the Mayer-Vietoris argument prove tl:ne Kunélct 1 f i
compact cohomology for any M and N having a finitc good cover.

The Poincaré Dual of a Closed QOriented Submanifold

Let M be an oriented manifold of dimension n and S a c]o]ied orlzrfn:;l
submanifold of dimension k; here by “clozscd:{’ov}vc tr)ncta;_ai:cs; 251?;10;1301 Tc;
i i i f R* — ut Fig - .
Yigure 5.1 is a closed submanifold o » ; \ 0
g\fry closed oriented submanifold i : 8§ ¢, M of dimension k, one ¢an associ
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ate 2 unique cohemology class [ns) in H" (M), called its Poincare dugl, as
follows. Let @ be a closed k-form with compact supporl on A{. Since § is

o

Figure 5.1 Figure 5.2

closed in M, Supp(wly) is closed not only in &, but also in A. Now because
Supp(els) < (Supp ) A S is a closed subset of & compact set, i*w also has
compact support on S, so the integral _f_g *w is defined. By Stokes's theorem
Integration over S induces a linear functional on HYAN). It follows by
Poincaré duality: (HYM))* ~ H" ¥ M), that integration over S corresponds
to a unique cohomology class Lis] in H" M), We will often call both the
cohomology class [5,] and a form representing it the Poincaré duai of 5. By
definition the Poincaré dual 4s is the vnique cohomology class in H*~¥M)
satisfying

(5.13) f oy = J @ Mg
s A
for any @ in FI%(A).

Now suppose § is a compact oricated submanifold of dimension & in M.
Since a compact subset of 4 Hausdorff space is closed, 5 is also a closed
oriented submanifold and hence has a Poincaré dual 5y € " ¥(Af). This s
we will call the closed Poincaré dual of 3, to distinguish it from the compact
Poincaré dual to be defined below. Because § is compact, one can in fact
integrate over S nol only k-forms with compact support on M, but any
k-form on M. In this way S defines a linear functional on HYM) and so by
Poincaré duality corresponds (o a unique cohomology class [#%] in
HEXAM), the compaci Poincaré dual of S. We must assume here that M has
a finite good cover; otherwise, the duality (HYM)* ~ HiYAL) does not
hold. The compact Poincare dual [#51 is uniquely characterized by

(5.14) f i*w = j tw Ais,
5 M

for any @ e H¥M). If (5.14) holds for any closed k-form @, then il certaiuly
holds for any closed k-form w with compact suppert. So as a form, n% is also
the closed Poincaré dual of $, ie, the natural map H!MAD — H" (M)
sends the compact Poincaré dual to the closed Poincaré dual. Therefore we
can in fact demand the closed Poincaré dual of a compact oriented sub-
manifeld to have compact support. However, as cohomology classes, [75] €
H*"%M) and [75] € H*"%M) could be quite different, as the following
examples demonstrate,
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ExamPLE 5.15 (The Poincaré duals of a point P on R"). Since AI"(R") =0,
the closed Poincaré dual g is trivial and can be represented by any closed
n-form on R, but the compact Poincaré dual is the nentrivial class in
HYR" represented by & bump form with total integral 1.

ExAMPLE-EXERCISE 5.16 (The ray and the circle in R2 — {0}). Let x, y be the
standard coordinates and r, # the polar coordinates on R* - {0].

(a) Show that the Poincaré dual of the ray {(x, 0)}|x > 0} in B® — {0} is
d6/2m in H(R2 — {0}).

(b) Show that the closed Poincaré dual of the unit circle in H{(R? — {0}
is 0, but the compact Poincaré dual is the nontrivial generator p{y)dr in
TR’ — {0}) where p(r) is a bump function with total integral 1. {By a
bump function we mean a smooth function whose support is contained in
some disc and whose graph locks like 2 “bump™.}

Thus the generator of H'(R* — {0}) is represented by the ray and the
generator of H}(R? - {0}) by the circle (sce Figure 5.3).

REMARK 5.17. The two Poincaré duals of a compact eriented submanifold
correspond to the two homology theories—closed homology and compact
homotlogy. Closed homology has now fallen into disuse, while compact
liomology is known these days as the homology of singular chains. In
Example-Exercise 5.16, the generator of H; 0.0 (R? — {0}) is the ray, while
the generator of Hy, compne (2 — {0}) is the circle. (The circle is a boundary
in closed homology since the punctured closed disk is a closed 2-chain in
R* — {0}.) In general Poincaré duality sets up an isomorphism between
ctoscd homology and de Rham cohomology, and between compact homol-
ogy and compact de Rhamn cohomology.

Let § be a compact oriented submanifold of dimension & in M. If
W < M is an open subset containing S, then the compact Poincaré dual of
Sin W, 5 w e H' W), extends by 0 to a form # in H2~*(M). y5 is clearly
the compact Poincaré duat of S in M because

.[ i*(x)=f w A w =.[ W AR5,
35 w M

Figure 5.3
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Thus, the support of the compact Poincaré dual of S in M may be shrunk inte
any open neighborhood of S. This is called the localization principle. For a
noncompact closed oriented submanifold S the localization prineiple also
holds. We will take it up in Proposition 6.25.

In this beok we will mean by the Poincaré dual the closed Poincaré dual.
However, as we have seen, if the submanifold is compact, we can demand
that its closed Poincaré dual have compact support, even as a cohomology
class in H"~(M). Of course, on a compact manifold M, there is no dis-
tinction between the closed and the compact Poincaré duals.

§6 The Thom Isomorphism

So far we have encountered two kinds of C™ invariants of & manifold, de
Rham cohomology and compactly supported cohomology. For vector bun-
dles there is another invariant, namely, cohomology with compact support
in the vertical direction. The Thom isomorphism is a statement about this
last-named cohomology. In this section we use the Mayer-Vietoris argu-
ment to prove the Them isomorphism for an orientable vector bundle. We
then explain why the Poincaré dual and the Thom class are in fact one and
the same thing. Using the interpretation of the Poincaré dual of a sub-
manifeld as the Thom class of the normal bundle, it is easy to write down
explicitly the Poincaré dual, at least when the normal bundle is trivial, Next
we give an explicit construction of the Thom class for an oriented rank 2
bundle, introducing along the way the global angular form and the Euler
class. The higher-rank analogues will be iaken up in Sections [1 and 12. We
conclude this section with a brief discussion of the relative de Rham theory,
citing the Thom class as an example of a relative class,

Vector Bundles and the Reduction of Structure Groups

Let n: E— M be a surjective map of manifolds whose fiber =~ '(x} is a
vector space for every x in M. The map = is a C® real vector bundle of rank
n if there is an open cover {U,} of M and fiber-preserving diffecmorphisms

d)a: EIU, = n_l(Ua) p Ua x R"
which are linear isomorphisms on each fiber, The maps
Geodpt (U, n U xR - (U, n Up x B
are vector-space aulomorphisms of B” in each fiber and hence give rise to
maps
g Uy n Uy — GL{1, B)
gaﬁ{x) = ¢, ‘f’pﬂ l[x}KR" .

In the terminology of Section 5 a vector bundle of rank # is a fiber bundle
with fiber RB" and structure group GL(n, B). If the fiber js € and the
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structure group is GL(n, C), the vector bundle is a complex vector bundle.
Unless otherwise. stated, by a vector bundle we mean a C* real vector
bundle.

let U/ be an open sel in M. A map s: U -+ E is a section of the vector
bundle E over U if  « s is the identity on U. The space of all sections over
U is written [(U, E). Note that every vector bundle has a well-defined
global zero section, A collection of sections s,, ..., 5, over an open set I in
M is a frame on U if for every point x in U, 5;(x}, ..., s,(x) form a basis of
the vector space E, = 1~ 1{x).

The (ransition functions {g,} of a vector bundle satisfy the cocycle
condition

Gap © Gpy = Gy ON Uy n Uy Uy,

The cocycle {g.,} depends on the choice of the trivialization.

Lemma 6.1. If the cocycle {g.s} comes from another trivialization {¢}, then
there exist maps A, + U, — GL(n, R) such that

Gap = 2allig Az ' on U, N Ug.
Proor, The two trivializations differ by a nonsingular transformation of R”
al each point:
$u=Abe + LU, > GLn, B).
Therefore,

Gop = PuPi ' = APy A5 = Aettip Ag O

Two coeycles related in this way are said 10 be eguivalent.

Given a cocycle {g,s} with values in GL(n, 1) we can construct a vector
bundle E having {g.s} as its cocycle as in (5.10). A homomorphism between
two vectior bundles, called a bundle map, is a fiber-prescrving sniooth map
S+ E— E' which is linear on corresponding fibers,

Exercise 6.2. Show that {twa vector bundles on M are isomorphic if and
only if their cocycles relative to some open cover are equivalent.

Given a vector bundle with cocycle {g,q}, if it is possible to find an
equivalent cocycle with values in a subgroup H of GL{n, R), we say that the
structure group of E may be reduced to H, A vector bundle is orientable if its
structure group may be reduced to GEY(n, B), the lincar transformations of
" with positive determinant. A trivialization {(U,, ¢)}zc; on E is said to
be oriented if for every o and § in I, the transition function g, has positive
determinant, Two oriented trivializations {(U,, @)}, {(Vs. )} are equival-
ent if for every x in U, n V3, ¢, o (u’;ﬁ]"‘[x) : R"— B has positive determi-
nant. It is easily checked that this is an equivalence rclation and that it
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partitions all the oriented trivializations of the vector bundle E into two
equivalence classes. Either equivalence class is called an orientation on the
vector bundle E.

ExAMPLE 6.3 (The tangent bundle), By attaching to each point x in a mani-
fold M, the tangent space to M at x, we obtain the tangent bundle of M

Ty= \J T M.
xe M

Let {(U,, @)} be an atlas for M, The diffeomorphism

li’ﬂ : UC[ -ﬂ—; R”

induces a map
(w«}* : }J, ,3 TR" H]

which gives a local trivialization of the tangent bundle ¥),. From this we
see that the transition functions of T, are the Jacobians of the transition
functions of M. Therefore M is orientable if and only if its tangent bundle is.
Iy = (x4, .00y %) then 8/8x;y, ..., 8/8x, is a frame for T over U,. In the
language of bundles a smooth vector field on U, is a smooth section of the
tangent bundle over U,.

We now show that the structure group of every real vector bundle E may
be reduced to the orthogonal group. First, we can endow E with a Rieman-
nian structurc--a smoothly varying positive definite symmetric bilincar
form on cuch fiber—as follows. Let {U_} be an open cover of M which
trivializes E. On each U,, choose a frame for E|,, and declare it to be
orthonormal. This defines a Riemannian structure on E|u,.- Let {, >,
denale this inner product on E|Uﬂ. Now use a partilion of unity {p,} to
splice them together, i.e., form

<’>=me<»>a'

This will be an inner product over all of M.

As trivializations of E, we take only those maps ¢, that send orthoner-
mat frames of E (relative to the global metric < , ») to orthonormal frames
of R Then the transition functions g,; will preserve orthonormal frames
and hence take values in the orthogonal group Ofn). If the determinant of
Hap 13 DPositive, g,; will actually be in the special orthogonal group SO(n).
Thus

Proposition 6.4, The structure group of a real vector bundle of rank n can
always be reduced to O{n); it can be reduced to SO(n) if and only if the vector
bundle is ovientable.
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Exercise 6.5. (a) Show that there is a direct product decomposition
GL(n, R) = O(n) » {positive definite symmetric matrices}.

(b) Use (a) to show that the structure group of any real vector bundle
may be reduced to O(x) by finding the 4,'s of Lemma 6.1,

Operations on Vector Bundles

Apart from introducing the functerial operations en veetor bundles, our
main purpose here is 1o establish the triviality of a vector bundle over a
contractible manifeld, a fact needed in the proof of the Thom isomorphism,

Functorial operations on vector spaces catry over to vector bundles. For
instance, if E and E’ are vector bundles over M of rank n and m respect-
ively, their direct sum E@ E’ is the vector bundle over M whose fiber at the
point x in M is E, €D E,. The local trivializations {¢,} and {¢.} for E and £’
induce a local trivialization for EQ E":

P @b, E@F

v, 3 U, x (R" @ R™).

Hence the transition matrices for E @ E’ are

(5 5)
0 g

Similarly we can define the tensor product E® £, the dual E* and
Homu(E, E). Note that Hom(E, E’) is isomorphic to E* ® E'. The tensor
product E @ E’ clearly has transition matrices {g,; ® g.p}, but the tran-
sition matrices for the dual E* are not so immediate, Recall that the dual
F* of a real vector space 1 is the space of all linear functionals on V), ie,
V* »~ Hom(V, R), and that a linear map f: V — W induces a map f*;
W*— V* represented by the transpose of the matrix of f. If

$a i Ely, = U, x R
js a trivialization for F, then
(¢2) 7' E*|y, = U x (BM*

is a trivialization for E*. Therefore the transition functions of E* are

(6.6) (P 0 = (Pa i )™ ={gip) ™"
Let M and N be manifolds and = : E — M a vector bundle over M. Any

map f : N -» M induces a vector bundle f “'E on N, called the pulthack of
E by f. This bundle f ~'E is defined to be the subset of N x E given by

{0, &) f(n) = n(e)}.
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It is the unique maximal subset of N x E which makes the following di-
agram cormutative

The fiber of f™'E aver a point y in N is isomorphic to E.,. Since a
product bundle pulls back to a product bundle we see that f “'F is locally
trivial, and is therefore a vector bundle, Furthermore, if we have & com-
position

MY # v MY s M,

then

(feg) 'E=g (f'E).

Let Vect, (M) be the isomorphism classes of rank % real vector bundles
over M. It is a pointed set with base point the isomorphism class of the
product bundle over M. If f ; Af - N is a map between two manifolds, let
Vect,(f) =f ! be the pullback map on bundles. In this way, for each
integer k, Veety( ) becomes a functor from the category of manifolds and
smooth maps to the category of pointed sels and base point preserving
maps,

Remark 6.7 Let {U,} be a trivializing open cover for £ and Gqp the tran-
sition functions. Then {f ~'U,} is a trivializing open cover for /" 1E over N
and (f ~'E) Lr—w, ﬁf”i(E|Ua). Therefore the transition functions far £~ 1E
are the pullback functions f*g,,, .

A basic property of the pullback is the following.

Theorem 6.8 (Homotopy Property of Vector Bundles). Assume Y to be a
compact manifold. If fo and fy are homotopic maps from Y to a manifold X
and E is a vector bundie on X, then f§'E is isomorphic to f{E, i.e., homo-
topic maps induce isomorphic bundles.

Proor. The problem of constructing an isomorphism between two vector
bundles V and W of rank k over a space B may be turned into a problem in
cross-scctioning a fiber bundle over B, as follows. Recall that
Hom(V, W) = V* ® W is a vector bundle over B whose fiber at each point
p consists of all the lincar maps from ¥, to W,,. Define Iso(V, W) to be the
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subsct of Hom({¥, W) whose fiber at cach point consists of all the isomar-
phisins from ¥, to W,. (This is like looking at the complement of the zero
seetion of a line bundle.} Iso(V, W) inherits a topology from Hom(V, W),
and is a fiber bundle with fiber GL{#, R). An isomorphism between V and
W is simply a scction of Iso{V, ).

Let f:¥ xI— X be a homotopy between f; and f;, and let
m: ¥ x I-» Y be the projection. Suppose for some ¢, in I, £ 'E is isomor-
phic te some vector bundle F on ¥. We will show that for all t near &,
f'E ~ F. By the compactness of the unit interval I it will then follow that
fiYE = Fioralltin I

Over Y x I there are two pullback bundles, f 'E and =" 'F. Since
FTi'E =~ F, Iso{f "*E, = 'F) has a scction over Y x tg, which a priori is
also a section of Hom(f ~'E, z~'F). Since Y is compact, ¥ x t; may be

covered with a finite number of trivializing open sets for Hom({f " 1E, n~1F).

{sce Figure 6.1). As the fiber of Hom(f ~'E, =~ ' F) are Buclidean spaces, the
section over ¥ x tg may be extended io a section of Hom(f "'E, n™'F)
over the union of these open sets. Now any linear map near an isomor-
phism remains an isomorphism; thus we can extend the given section of
Iso{f “'E, #~'F) to a slrip containing ¥  f,. This proves that {7 'E~ F
for ¢ near to. We now cover ¥ x I with a finitc number of such’ strips.
Hence f 'E = F o f1E m

N .. . Y.
| S A A= A

b
Figure 6.1

ReMmark. If Y is not compact, we may not be able to find a strip of constant
width over which Iso(f ~'E, n~ 'F) has a section; for example the strip may
leok like Figure 6.2,

But the same argument ¢an be refined to give the theorem for Y a paracom-
pact space. See, for instance, Husemoller { 1, Theorem 4.7, p. 29]. Recall that
Y is said to be paracompact if every open cover Y of Y has a locally finite
open refinement W, that is, every point in Y has a neighborhood which
meets only finitely many open sets in W, A compact space or 4 discrete
space arc clearly paracompact. By a theorem of A, H. Stone, so is every
metric space {Dugundji [1, p. 186]). More importtantly for us, every mani-
fold is paracompact (Spivak [1, Ch. 2, Th. 13, p. 66]). Thus the homotopy
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ty

Y
Figure 6.2

property of vector bundles (Theorem 6.8) actually holds over any manifold
Y, compact or not,
Corollary 6.9. A vector bundle over a contructible manifold is trivial.

Proor. Let E'be a vector bundle over M and let fand g be maps

i
M < point
[

such that g o fis homotopic to the identity 1,,. By the homotopy property
of vector bundles

Ex{gof) 'Exf"' g™ B).
Since g~ 'E is a veclor bundie on a point, it is trivial, hence so isf Yy LE).

0

So for a contractible manifeld M, Vect,{M) is a single point.

REMARK, Although all the results in this subsection are stated in the differ-
entiable category of manifolds and smooth maps, the corresponding state-
ments with “manifold” replaced by “space” also hold in the continuous
catcgory of topological spaces and continuous maps, the only exception
being Coroliary 6.9, in which the space should be assumed paracompact,

Exercise 6.10. Compule Vect,(S).

Compact Cohomology of a Vector Buadle

The Poincaré lemmas -
H*(M x B = H*M)
HXM x B") = H* ~(M)
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may be viewed as results on the cohomology of the trivial bundle M x R"
over M. More generally let E be a vector bundle of rank n over M. The zero
section of E, 5 : x—(x, O), embeds M diffeomorphically in E. Since M x {0}
is a deformation retract of E, it follows from the homotopy axiom for de
Rham cohomology (Coroliary 4.1.2.2) that

H*(E) ~ H*M).
For cohomology with compact support one may suspect that
{6.11) HFE) == H ™ "M).

This is in general not true; the epen Mébius sirip, considered as a vector
bundle over S*, provides a counterexample, since the compact cohomology
of the Modbius strip is identically zero (Exercise 4.8). However, if E and M
are orientable manifolds of finite type, then formula (6.11) holds. The proof
is based on Poincaré duality, as follows. Let m be the dimension of M. Then

HHE} = (H"*"~*(EN* by Poincaré duality on E
=~ (H™*7~*(A))* by the homotopy axiom for de Rham cohomology
o= H* 7Y MA) by Poincaré duality on M.

Lemma 6.12. An orientable vector bundle E over an orientable manifold M is
an grientahle manifold.

Proor. This follows from the fact that if {(U,, ¥, )} is an oriented atlas {or
M with transition functions h,, = ty, ° Y7 ! and
$a Ely, 3 Uy x BT

is a local trivialization for E with transition functions g,,, then the com-
position

Elg, 3 Ugx R” 5 R™ x R*

gives an atlas for £, The typical transition function of this atlas,

(e Doyl o Wil x 1): R" x R — R" x R"
sends (x, ¥) to (h,g(x), g5, (%)) and has Jacobian matrix

D(lip) * )

6.12.1 ( _ ,
(6121 0 gD
where D{h,,) is the Jacobian matrix of 4,,. The determinant of the matrix
{6.12.1) is clearly positive. (]
Thus,

Proposition 6.13, If n: FE — M is an orientable vector bundle and M is
orientable, then H¥(E) ~ H* "M}
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REMARK 6.13.1. Actually the orientability assumption on M is superfiuous.
See Exercise 6.20,

ReMARK 6.13.2. Let M be an oriented manifold with oriented atlas {(U,,
#)} and #n: E s M an oriented vector bundle over M with orientation
{Us, ¢.)}. Then E can be made into an oriented manifold with orientation
given by the oriented atlas

(27 NUY), (o x Do by i n~HU) = Uy x B> R™ x R,

This is called the local product orientation on E,

Compact Vertical Cohomology and Integration along the Fiber

As mentioned earlier, for vector bundles there is a third kind of cohomo-
logy. Instead of QXE), the complex of forms with compact support, we
consider Q¥ (¥), the complex of forms with compact support in the vertical
direction; in other words, a form in QX (F) necd not have compact support
in E but its restriction to each fiber has compact support. The cohomology
of this complex, denoted HX(E), is called the cohomalogy of E with compact
support in the vertical direction, or compact vertical cohomalogy.

Let E be oriented as a rank s vector bundle. The formulas in {4.4) extend
to this situalion e give integration along the fiber, n, : QX(E) — OQ* 7"(M),
as follows, First consider the case of a trivial bundle E= M x R" Let
ty, ..., t, be the coordinates on the fiber B". A form on E is a real linear
combination of two types of forms: the type (I) forms are those which do
not contain as a factor the n-form dt, ... dt, and the type {II) lorms are
those which do, The map #,, is defined by

O (@ *)flx, by it dy o dty, — 0, r<n
[11) {ﬂ*(p]f[x! ['1) ey In] dtl me dtn = Q” IR" ﬂx: f-l! LR 'En] drl d'[n)

where f has compact support for each fixed x in M and ¢ is a form on M.
Next suppose £ is an arbitrary oriented vector bundle, with oriented triv-
ialization {{U,, ¢)}.c1- )6t x4, ..., x,, and ¥y, ..., ¥, be the coordinate
functions on U, and Uy, and ¢4, ..., ¢,, tiy, ..., u, the fiber coordinates on
E|y, and Elb‘g given by ¢, and ¢, respectively. Because {{U,, ¢,)} is an
oriented trivialization for E, the two sets of fiber coordinatest,, ..., ¢, and
uy ..., u, are related by an element of GL'(n, R) at each point of U, n Uy.
Again a form « in QX(E) is locally of type {I) or (II). The map n, is defined
to be zero on type (I) forms, Te define n, on type (1I) forms, write @, for
m],,- L,y Then

@y ={n*¢))f(‘x1! cees Xy tls LERE ] t"} dt]_ i dr,,

and

g = (T 1s oy Yo Uas oo, W) dtty oo iy,
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Define
R, @, = ¢ J. Sl By dey oo dey,.
Ien

Exercise 6.14. Show that if E is an oriented vector bundle, then n_ e, =
7, Hence {n w.}, .\ plece together to give a global form mm on M.
Furthermore, this definition is independent of the choice of the oriented
trivialization for E.

Proposition 6.14.1. Integration along the fiber n, cowmutes with exterior
differcntiation d.

Proor. Let {U,, ¢,)} be a trivialization for E, {p,} a partition of unity
subordinate to {U,}, and & a form in {3%(E). Sinccw =Y p, o, and bothz,
and d are linear, it suffices to prove the proposition for g,m, that is,
7, d(p, 0) = du{p, ). Thus from the outset we may assume E to be the
product bundle M x B". If @ = {w*¢) f(x, £) dt; ... dt, is a type {II) form,

dn. o = d(d jf(x, t)dt, ... dt,)

= (d¢) If{x, gy dey oode, + (— 1% g 3 doy f% (x, 1) dty ... di,

and

8
ny dew = m{(a*dg) fdiy ... dt, + (—1)% 1% ¥ % dx dty ... dt,)
i

i)
= (dp) decl cdty F {1 By JE;TF dty ... de,.
i .
Sodn, @ = n dw for a type (I1) form. Next let w = (x*¢) f(x, 1) dt,, ... 41, ,
F < n, be a type (1) form. Then
dr, =0

and
5]
Ryt = (~ 1% 5 7 (09) L (5, 1) dt de .. di,)
! 1

=0 if dyde, ...ody # kdry o dL.

If d; diy, ... dt, = +dey ... dt,, then [ 8f/0tdx, £} dt, dey, ... di;, is again O:
because f has compact support,

at;

=) i

J.w -a—-f(x, Ode=f(..,00,..)0—f..., —co,...)=0 |

Note that integration along the fiber, =, @ Q¥(E) — Q* M) lowers the
degree of a formy by the fiber dimension,
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Proposition 6,15 (Projection Formula). (a) Let n: E — M be an oriented
rank n vecror bundle, v a form on M and w a form on E with compact Support
along the fiber. Then

"} - w) =1 m o

(b} Suppoese in addition that M is oriented of dimension m, o & 04.(E), and
T € ST M), Then with the local product orientation on E

J~ {m*1) A w =J. T, .
K M

Proor. {a) Since two forms are the same if and only if they are the same
locally, we may assume that E is the product bundle M x " If e is a form
of type (1), say @ = n*¢ - f(x, 1) dt,, ... dt, , where r < n, then

T l(n%7) - @) = m (n™(r ) - fix, D) dt,, ... d )l =0=1"n_0o

If wis a form of type (II), say w = n*¢ - f(x, t) dt; ... dt,, then

(¥t - w) =1 gé.[ flx, thdey . dt, =772, 0.

{b) Let {{U,, ¢,)}.c be an oriented trivialization for E and {p.},.; a
partition ol unity subordinate to {U,}, Writingw = 5. p, , where p, @ has
support in U, we have

J (r*)Aw =3 j {#* ) A (pg 09)
£ & v E|,

and
J 'c/\n*w=ZJ‘ tAmp, w),
M 2 JU,

Here © A {p, w) has compact support because its support is a closed subset
of the compact set Supp v; similarly, (n*1) A(p, w) also has compact sup-
port. Therefore, it is enough to prove the proposition for M = U, and E
trivial. The rest of the proof proceeds as in (a). (|

. The proof of the Poincaré lemma for compact supporis (4.7) carries over
verbatim to give

Proposition 6.16 {(Paincaré Lemma for Compact Vertical Supporis), Inte-
gration along the fiber defines an isomorphism
n, T HA(M > R™ > H* (M),
This is a special case of
Theorem 6.17 (Thom Isomorphism). If the veetor bundle m: E — M over o
manifold M of finite type is orientable, then
HE(E) = H*™"(M)
where n is the rank of E.
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Proor. Let U and V be open subscts of M. Using a partition of unity from
the base M we sce that

0= Qi (Ely L v) — QUEIW) D QLEL) — QUE |y A v) — 0

is exact, as in (2.3). So we have the diagram of Mayer-Vietoris sequences

-
s HE(E |y, ) ——HLEL ® HYER)—— HL(El ) ALHENE |y ) —

e

T (4 b4

* *

S ST MU W V)l AU @ HY = (V) ol o U V) e U P

*

The commutativity of this diagram is trivial for the first two squares; we
will check that of the third. Recalling from {2.5) the explicit formula for the
coboundary operator d*, we have by the projection formula (6.15)

i, d¥w = 1 (n* dpy) + w) = (dpy) - B, 0 = d*n, o,

So the diagram in question is commutative,

By (6.9) if U is diffeomorphic to ", then K}y is trivial, so that in this case
the Thom isomorphism reduces to the Poincaré lemma for compact vertical
supports (6.16). Hence in the diagram above, n, is an isomorphism for
coniractible open sets. By the Five Lemma if the Thom tsomorphism holds
for U, V, and U m ¥, then it halds for Y v V. The proof now proceeds by
induction on the cardinality of a good cover for the base, as in the proof of
Paoincaré duality. This gives the Thom isomorphism for any manifold M
having a finite good cover. 0

REMark 6.17.1. Although the proof above works only for a manifold of
finite type, the theorem is actually true for any basc space. We will reprove
the theorem for an arbitrary mauifold in {12.2.2).

Under the Thom isomorphism & : H¥*(M) = HXT7(E), the image of 1 in
HO(M) determines a cohomology class @ in H" (E), called the Them class of
the oriented vector bundle E. Because n, @ = 1, by the prajection formula

(6.15)
A {T*o AD) =whng, @ =
So the Thom isomorphism, which is inverse to n,, is given by
F( Y=n* IAD

Proposition 6.18. The Thom class © on a rank n oriented vector bundle E can
be uniquely characterized as the cohamology class in H] (E) which restricts to
the generator of H)F) on each fiber F.

ProoF. Since 7, & =1, ®ly,,. is a bump form on the fiber with total in-
tegral 1. Conversely if @' in H!,(F) restricits to a generator on each fiber,
then

(T AD) = wAn, D =wm
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Hence z*{ ) A ® must be the Thom isomorphism & and @' = (1) is the
Thom class. 0

Proposition 6.19. If E and F are two oriented vector bundles over a manifold
M, and m, and n, are the projections

E®F
™ L)
N
then the Thom class of E @ F is ®(E @ F) = nfQ(E) A n3D(F).

PROOF. Let m = rank E and n = rank F. Then afD(E) A n3D(F) is a class in
HM*"E @ F) whose restriction to each fiber is a generator of the compact
cochomology of the fiber, since the isomorphism

H:!"'H{Rm ® RJ‘\) o~ H:l(Rﬂ’l) @ II?(R!I]

is given by the wedge product of the generators. O

Exercise 6.20. Using a Mayer-Vietoris argument as in the proof of the
Thom isomorphism (Theorem 6.17), show that it n: B — M 15 an orient-
able rank s bundle, then

HHE) ~ H¥7"(M).
Note that this is Proposition 6.13 with the orientability assumption on M
removed.

Poincaré Duality and.the Thom Class

Let S be a closed oriented submanifeld of dimension k in an oriented
manifold M of dimension ». Recall from {5.13) that the Poincaté dual of S is.
the cohomology class of the closed (# — k)-form ns characterized by the

‘property
(6.21) J w= J. w A ns
s M

for any closed k-form with compact support on M. In this section we will
explain how the Poincaré dual of a submanifold relates to the Thom class
of a bundle (Proposition 6.24). To this end we first intraduce the notion of a
tubular neighborhood of § in M; this is by definition an open neighborhood
of § in M diffeomorphic 1o & vector bundle of rank n-k over §. Now a
sequence of vector bundles over M,

0~ E—E — E" —+0,
is said to be exact if at each point p in M, the sequence of vector spaces
0—E,—E,—E —0
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is exact, where E, is the fiber of E at p. If S is a submanifold in M, the

normal bundie N = Ngj; of 8 in M is the vecior bundle on § defined by the
exact sequence

(6.22) 0—Ts— Ty is — N —Q,

where T |5 is the restriction of the tangent bundle of M 1o 8. The tubular
neighborhood theorem states that every submanifold § in M has a tubular
neighborhood T, and that in fact T is diffeomorphic to the normal bundle
of S in M (sec Spivak [1, p. 465] or Guillemia and Pollack [1, p. 76]). For
example, if § is a curve in R?, then a tubular neighborhood of § may be
counstructed nsing the metric in R? by attaching to each point of S an open
disc of radius one perpendicular to § at the center. The union of all these
discs is & tubular neighborhood of § {Figure 6.3{a)).

M

(a) (b)
Figure 6.3

In genecral if 4 and B are two oriented vector bundles with oriented
trivializations {(U,, ¢} and {(U,, )}, respectively, then the dircet sum
orientation on A @ B is given by the oriented trivialization {(U,, ¢, @ ¢J}.
Returning to our submanifold Sin M, we letj: T o M be the inclusion of a
tubular neighborhood T of S in M (see Figure 6.3(b)}. Since S and M are
orientable, the normal bundle Ny, being the quotient of T}, |S by Tg, is also
orientable. By convention it is oriented in such a way that

Ns®Ts= Tafls '

has the direct sum orientation. So the Thom isomorphism theorem applies
to the normal bundle T' = N over § and we have the sequence of maps

fI*(S) ?:;D I’I*‘F,'_R(T] _if___, I:I* +n—k(M}

v
where @ is the Thom class of the tube T andj, is extension by O; here j, is
defined becanse we are only concerned with forims on the tubular neighbor-
hood T which vanish ncar the boundary of 7. We claim that the Poincaré
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dual of § is the Thom class of the normal bundle of 8; more precisely
(6.23) Hs = j @A) =j, @ in H"YM).

To prove this we merely have to show that j, @ satisfies the defining prop-
erty (5.13) of the Poincaré dual ns. Let @ be any closed k-form with
compact suppotrt on M, and i: § — T the inclusien, regarded as the zero
section of the bundle #: 7" — S, Since » is a deformation retraction of T
onto S, #* and i* are inverse isomorphisms in cohomology. Therefore on
the level of forms,  and n*i*w differ by an exact form: @ = #**w -+ dt.

J wAj, D
M n

= | wAD because j, © has support in T
T

o
= | (m**w +dr)AD
T

= | (r¥i*o)A D since -I. (doyAh = J. d{zr A®) = 0 by Stokes’
ST T T
theorem
= | FowAn,® by the projection formula (6.15)
Js
= | *w because %, P = 1.
W5

This concludes the proof of the claim. Note that if S is compact, then its
Poincaré dual g = j, @ has compact support.

Conversely, suppose E is an oriented vector bundle over an oriented
manilold M. Then M is diffeomorphically cmbedded as the zerc section in
E and there is an exact scquence

0— Ty -+ {Tg)lsy — E— 0,

i.c., the normal bundle of M in E is E itself. By {6.23), the Poincaré dual of M
in E is the Thom class of E. In summary,

Proposition 6.24. (a) The Poincaré dual of a closed oriented submanifold § in
an oriented manifold M and the Thom class of the normal bundle of S can be
represented by the same forms,

{b) The Thom class of an oriented vector bundle n: E — M over an
oriented manifold M and the Poincaré dual of the zero section of E can be
represented by the same form.

Because the normal bundle of the submanifold § in M is diffu_eomorphic
to any tubular neighberhood of S, we have the following propositich.

Proposition 6.25 (Loculization Principle). The support of the Poincaré dual of
a submanifold § can be shrunk into any given tubular neighborhood of 8.
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Figuze 6.4

EXAMPLE 6.26.

(a) The Poincaré dual aof a point p in M.
A tubular neighborhood T of p is simply an open ball around p {Figure 6.4).
A generator of H?(7T) is a bump n-form with total integral 1. Sc the
Poincaré dual of a point is a bump n-form on M. The form need not have
support at p since all bump si~forms on a connected manifold are cohomol-
ogous.

(b) The Poincaré dual of M.
Herc the tubular neighborhood T is M itself, and HA(T) = H¥{M). So the
Poincaré dual of M is the constant function 1.

(c) The Poincaré dual of a circle on a torus.

Figure 6.5

The Poincaré dual is a bumyp [-form with support in a tubular neighbor-
hood of the circle and with total integral 1 on each fiber of the tubular
neighborhood (Figure 6.5). In the usual representation of the torus as a
square, if the circle is a vertical segment, then its Poincaré dual is p{x} dx
where g is a bump function with total integral 1 (Figure 6.6}

Using the explicit construction of the Poincaré dual #y =7, as the
Thom class of the normal bundle, we now prove two basic propertics of
Poincaré duality. Two submanifolds R and S in M are said to iniersect
transversafly if and only if

(627 T.R+T,S=T.M

§6 The Thom Tsontorphism 69

Figure 6.6

at all points x in the interscetion R v S (Guillemin and Pollack [1, pp.
27-32]) For such a4 transversal intersection the codimension in M is addi-
tive:

(6.28} codim R » § = codim R + codim S.
This implics that the normal bundle of B » Sin M is
(629) NRnﬂzNR®NS'

Assume M 1o be an oriented manifold, and R and § te be closed oriented
submanifolds. Denoting the Thom class of an oriented vector bundle E by
@(E), we have by (6.19) i

{6.30) O(Npns) = VN @D Ns) = B(Ng) A PNs).
Therefore, _
(6.31) Hrns = e A Rs

Le., under Poincaré duality the transversal intersection of closed oriented
submanifolds corresponds to the wedge product of forms.

If f: M' — M is an orientation-preserving map of oriented manifolds, T
is a tubular neighborhood of the closed oriented submanifold S in M, and
F(M*) is transversal to § and T, then f~'T is a tubular neighborhood of
718 in M'. From the commutative diagram

D{T} ;
H¥S) - . HEHT) .

cr

-1

H*M)

STy 4
I¥(f7IS) ——— HE™MT'T) —— ¥,

we see that if o is the cohomology class on M representing the submanifold
§in M, then f* is the cohomology class on M’ representing £~ (S), ie.,
under Poincaré duality the induced map on cohomeology corresponds to the
pre-image in geometry, ie., no-ys = f*s.
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The Global Angular Form, the Euler Class, and the Thom Class

Tn this subsection we will construct explicitly the Thom class of an oriented
rank 2 vector bundle = : E — M, using such data as a partition of unity on
M and the transition functions of E. The higher-rank case is similar but
more invelved, and will be taken up in (11.11) and (12.3). The construction
is best understood as the vector-bundle analogue of the procedure for going
from a generator of H"~1(5"~ ") = H"~'(R" — {0}) to a gencrator of H{R"),
So let us first try to understand the situation in R,

We will call a top form on an oriented manifold M positive if it is in the
orientation class of M. The standard orientation on the unit sphere $"~! in
" is by convention the following one: if ¢ is a generator of H”~Y{S"~!) and
n R~ {0} — 87! is a deformation retraction, then o is positive on §771
if and only if dr - #*g is positive on R" — {0},

Exercise 6.32. (a) Show that if ¢ is the standard angle functicn on R2,
measured in the counterclockwise direction, then 48 is positive on the circle
st

(b} Show that if ¢ and 8 are the spherical coordinates on R?* as in Figure
6.7, then d¢ A d8 is positive on the 2-sphere 52,

pER

Figure 6.7

Let ¢ be the positive generator of H*~'(§"™') and = n*¢ the corre-
sponding generator of H" 1(R* — {0});  is called the angular form on
K" — {0}. If p(r) is the function of the rading shown in Figure 6.8, then
dp = p'{r}dr is a bump form on R' with total integral 1 (Figure 6.9). There-
fore (dp) - ¥ is a compactly supported form on R” with total integral 1, ie,
{dp} - W is the generator of HYR"). Note that because f is closed, we can
write

(6.33) (dp) - ¢ = d(p - ).

§6 The Thom Isomorphism A

p(r)

Figurc 6.8

Now let E be an oriented rank n vector bundle over M, and E° the
complement of the zero section in E. Endow E with a Riemannian structure
as in (6.4) so that the radius {unction » makes sense on E. We begin our
construction of the Thom class Dy finding a global form ¢ on E® whose
restriction to each fiber is the angular form on R* — {0}.  is called the
global angular form. Once we have the angular form W, it is then easy to
check that @ = d{p - /) is the Thom class.

Now suppose the rank of E is 2, and {U,} is an open cover of M. Since
E has a Riemannian structure, over each U, we can choose an orthonormal
frame. This defines on E°|, polar coordinates r, and 8, ; if x,, ..., x, are
coordinates on U,, then =*x,, ..., ®*x,, re, 8, are coordinates on E°| U,
On the overlap U, m Uj, the radii r, and r; are equal but the angular
coordinates 8, and 0, differ by a rotation, By the orientability of E, it makes
sense to speak of the “counterclockwise direction” in each fiber. This allows

o'

Figure 6.9
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us to define unambiguously ¢,, as the angle of rotation in the counterclock-
wisc dircetion from the ¢-coordinate system to the f-coordinate system:

(6.34) Op = 0, T 0, 0 < @y < 27

Altheugh rotating from o to § and then from f to p is the same as
rotating from « to yp, it is not true that ¢ + @z, — @4, = 0; indeed all that
one can say is

(vocu‘.i + q');?-y - q’a}' e 2nZ.
AsIDE. To each triple intersection we can associate an integer
1
(635] Eapy = 5;; ((paﬁ — Py + Doy )
The collection of integers {&,p, } measures the extent to which {¢,,} fails to

be a cocyle. We will give another interpretation of {#,,, } in Section 11.

Unlike the functions {g,s}, the 1-forms {de,s} satisfy the cocycle condi-
tion.

Exercise 6.36. There exist 1-forms £, on U, such that

g = £y

b Pap = Sp a-

{Hint: Takeé, = Z? py dp,,, where {p,} is a partition of unity subordinate
to {U,}.]

It follows from Exercise 6.36 that d&, = d&; on U, n Ug. Hence the d¢,
piece together to give a global 2-form ¢ on M. This global form e is clearly
closed. Tt is not necessarily exact since the ¢, do not usually piece together
to give a global 1-form. The cohomology class of ¢ in HXM) is called the
Euler class of the otiented vector bundle E. We sometimes write e(E) instead
of e

Claim. The cohomology class of e is independent of the choice of ¢ in our
construction,

Proor or CLa, IT{€,} is a different choice of 1-forms such that

1 - -
gdfpaﬂﬂéﬁ_éu= éﬁ—éaa

then
EH_CB=Ea_¢a=é
is a global form. So d&, and d¢&, differ by an exact global form, [}

g The Thom Isoinorphism 13

By (6.34) and (6.36), on E°|y;, , o,

d6 do

ke S
(6.36.1) o " ¢, 7y &g .
These forms then piece together 1o give a global 1-form ¥ on E°, the global
angtilar form, whose resiriction to each fiber is the angular form (1/2x} 46,
ie, if 1, : R* ~ E is the orthogoenal inclusion of a fiber over p, then 4l =
(1/2r) df. The global angular form is not closed:

dé,
W= d(“z; - f) = -l =~
Therefore,

(6.37) df = — nte .

When E is a produet, ¥ could be taken to be the pullback of {I/2r) 40
under the projection E® = M x (R* — 0) » R? — 0. In this case ¥ is closed
and e is 0. The Buler class is in this sense & measure of the (wisting of the
oriented vector bundle E.

The Euler class of an eriented rank 2 vector bundle may be given in
terms of the transition functions, as follows. Let gp: U, n Uy — SO(2) be
the transition functions of E. By identifying SO{2) with the unil circle in the
complex plane via (¢ ~908) = ", g,; may be thought of as complex-
valued functions. In this context the angle from the f-coordinate system to
the a-coordinate system is (1/i)log g5 Thus

0; — 85 = w*(1/i)log gog,
and
n* dpg = —n*(1f)log g.s.
Since the projection = has maximal rank, =* is injective, so that
dpap = —~(1/)log gup.
Let {p,} be a partition of unity subordinate to {U,}. Then

i
5.-?; d{paﬁ' = {ﬂ = &a)

where
(6.37.1) rf:in,dqo =—L_Zp dlog g,,.
*o2m g v 2ri gt re
Therefore,
{(6.38) e(E) = —~ L Y dp,dlogg,) onlU,.
2mi 4
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Proposition 6.39. The Euler class is functorial, ie, if {1 N — M is a C* map
and E is ¢ rank 2 oriented vector bundle over M, then

e(f ~'E} = f* e(E) .

ProoF. Since the transition functions of f ~'E are f *g,4, the proposition is
an immediate consequence of (6.38), ]

We claim that just as in the untwisted case (6.33), the Thom class is the
cohomology class of

(6.40) ® = dip(r) - ) = dp(r) - y — plriw*e .
Although ¥ is defined only outside the zero section of E, the form @ is a
global form on E since dp = 0 near the zero section. ® has the following
properties:

() compact support in the vertica!l direction;

(b) closed: db = — dp(r) - df — dp(r)n¥e = O
{c) restriction {o each fiber has total integral 1:

w2z
mard= || dptr) L < peo) ~ p0) = 1,
L 2?1.
)] o

where 1,: E,— E is the inclusian of the fiber E into E;

(d) the cohomelegy class of @ is independent of the choice of plr). Sup-
pose plr} is another function of r which is —1 near 0 and 0 near infinity, and
which defines @. Then

® — @ = di(p(r) — p0) - ¥)

where (5() — B(r)) - @ is a global form on E because p(r) — f(r) vanishes
near the zero section.

Therefore @ indeed defines the Thom class, Furthermore, il s 1 M— E is
the zero section of E, then

s*D = Hp(0) + s*fr — p(D)s* nre=e.
This proves

Proposition 6,41, The pullback of the Thom class to M by the zero section is
the Euler class.

Let {U,} be a trivializing cover for E, {p,} a partition of unity subordi-
nate to {U,}, and g,, the transition functions for E. Since
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|I£f - daa - ﬂ*déc
in

do, 1
=5 " 5 7% ; 2, dlog g,,.

{ef (6.36.1) and (6.37.1)), we have by (6.40),

a1
(6.42) P = d(p(r} 2::) + — dlpr)n* Zy; p,dlogg.,.

2ni

This is the explicit formula for the Thom class.

Exercise 6.43. Let m : E -> M be an oriented rank 2 bundle. As we saw in
the proof of the Thom isomorphism, wedging with the Thom class is an
isomorphism AD : H*{M) = H%"*(E). Therefore every cohomology class
on E is the wedge product of ® with the pultback of 4 cohomology class on
M. Find the class 4 on M such that

@? = & Ar*uin H* (E) .

Exercise 6.44. The complex projective spuce CP" is the space of all lines
through the origin in C"**, topologized as the quotient of C**! by the
equivalence relation

z~ 2z for zeC"', Ja nonzero complex number,

Let z4, ..., z, be the complex coordinates on C"*!, These give a set of
homogeneous coordinates [z, ..., z,] on CP", determined up to multi-
plication by a nonzero complex number 2. Define U, to be the open subsct
of CP* given by z; # 0. {U,, ..., U,} is called the standard open cover of
TP

{¢) Show that CP" is a manifold.
{(t) Find the transition functions of the normal buadle Nepiep: relative
to the standard open cover of CP!.

ExaMPLE 6.44.1, (The Euler class of the normal bundle of CF! in CP®). Let
N = Ngpyge: be the normal bundle of CP' in CP?. Since CP! is u compact
orieni¢d manifold of real dimension 2, its top-dimensional cohomology is
HYCP') = R We will find the Euler class e{N) as a multiple of the gener-
ator in H*(CPY),

By Excreise 6.44 the transition function of N relative to the standard
OPEN COVer IS go, = zg/z, at the point [z, z,]. Letz = zo/z; be the coordi-
nate of U, which we identify with the complex plane C. By (6.38) the Euler
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class e{N} on U is given by

e(N)

1
— — dpy d log
Dl Po CE do

K

i
_ 2 dpy dlog z,
o 9Po 4108 2

where pg is 1 in a neighborbood of the origin, and 0 in a neighborhood of
infinity.

Fix a circle C in the complex plane with so large a radius that Supp py is
conlained inside C. Let A, be the annulus centered at the origin whose
auter circle is € and whose inner circle B, has radius r (Figure 6.10). Note
that as the boundary of 4,, the circle C is oriented counterélockwise while
B is oriented clockwisc.

Figure 6.10

Now

1
= - di s
Lme(N) i L dpo diogz

6 The Thom lsomorphism 77

and

J. d{po dz/z) = lim J. d{po dz/z)
s A

r— 0

= lim J Po dzfz -+ j po dzfz by Stokes® theorem
C B,

r—+0

]imJ dz/z
r=0 r

= — 2,

where the minus sign is due to the clockwise orientation on B,. Therefore,
1
eN)= ——(—2a))= L
cAL 2ni

Exercise 6.45. On the complex projective space CP” there is a tautological
line bundle S, called the wniversal subbundle; it is the subbundie of the
product bundleCP" x C**! given by

S={{t 2)ze )

Above each point £ in CP", the fiber of § is the line represented by £, Find
the transition functions of the universai subbundle § of CP! relative to the
standard open cover and compute its Enler ¢lass,

Exercise 6.46. Let 5" be the unit sphere inf2"*' and i the antipodal map on
s

FBr(xgy cois Xpp b= (=20, o0y —Xpi )

The real projective space RP" is the quotienl of §* by the equivalence
relation

x ~ i{x), for x e R

{a) An invariant form on 8" is a form @ such that i*w = w. The vector
space of invariant forms on §°, denoted Q*(S")', is a differential complex,
and so the invariant cohomology H*(5")' of 5" is defined. Show that
H*(RP") ~ H*5%".

(b} Show that the natural map H*(S"Y — (S} is injective. [Hint: Il w
is an invariant form and w = dr for some form t on S then @ =
d{z + i*1)/2.]

(¢) Give §" its standard crientation (p. 70). Show that the antipodal map
ir§" -+ 8" is orientation-preserving for » odd and orientation-reversing for
n e¢ven. Hence, if [¢] is a generator of H"S"), then [¢] is an invariant
cohomology class if and only if » is odd.
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(4) Show that the de Rham cohomology of RP" is

R for g =0,
forO<qg<n,
HYRP" =
R for g =n odd,
0 for g =neven,

Relative de Rham Theory

The Thom class of an oriented vecter bundle may be viewed as a relative
cohomology class, which we now define. Let f: S M be a map between

two manifolds. Define a complex Q*(f) = @430 4 f) by
QYf) = QM) @ Q7 (S),
die, 0) = (de, f*ew — db).

It is easily verified that 42 = 0. Note that a cohomology class in Q*( /) is
represented by a closed form @ on M which becomes exact when pulted

back to §.
By definition we have the exact sequence

0 —Qu71(8) > Q1(f) > QM) — O

with the obvious maps « and f§ : a(f) = (0, 8} and S(w, #) = w. Clearly ,B isa
chain map but o is not quitc a chain map; in fact it anticommutes with 4,

ad = —do. In any case there is still a long exact sequence in cohomology
(6.47) oo HYS) S BN D HIMYD HY(S)— -+

Claim 6,48, 8* =f*,
Proor oF Cram. Consider the diagram
0— O%S) — Q) — QM) 0
di dt a1
0 QN - Q) — (M) 0
w W

(o, B) w

Let w & QM) be a closed form and (w, 6} any element of £29( /) which maps
to @, Then d(w, 0) = (0, f*w — d0). So 8*[w] = [/*w — d6] = [[*»]. ]
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Combining (6.47) and (6.48} we have

Proposition 6.49. Let {1 S— M be a differentiable map between two maini-
folds. Then there is an exact sequence

o HY() 5 By B HUS) S B ()

Exercise 6.50, If f, g: §— M are homotopic maps, show that H*(f} and
H*(g) are isomorphic atgebras.

If S is a submanifold of M angd i: §— M is the inclusion map, we define
the relative de Rhomn cohiomology HYM, S) to be HYJ).

We now turn to the Thom class. Recall that if n: E— M is a rank »n
oriented vector bundle and E° is the complement of the zere section, then

there is a global angular form  on E° such that diy = —n¥e, where ¢
represents the Buler class of E (6.37). Furthermore, if s: M — E is the zero
scciion, then ¢ = s*@ (Proposition 6.41). Hence, (s « 7)*P = —dy, where

sox: E°— E. This shows that (@, —y} is closed in the complex {¥(s = n)
and so represents a class in H"(s « ). Since the map s o n : E®— E is clearly
homotopic to the inclusion i: E®-— E, by BExercise 6.50, H"s « m) = H().

~ Henee, (@, — ) represents a class in the relative cohomology H™(E, £,

§7 The Nonorientable Case

Since the integral of a differential form on RB" is not invariant under the
whole group of dilfeomorphisms of 8", but only under the subgroup of
orientation-preserving diffeomorphisms, a differential form cannot be inte-
grated over a nonorientable manifold. However, by modifying a differcntial
form we obtain something called a density, which can be integrated over
any manifald, ovientable or not. This will give us a version of Poincaré
duality for nonorientable manifolds and of the Thom isomerphisim for non-
orientable vector bundles.

The Twisted de Rham Complex

Let M be a manifold and £ a vector space. The space of differential forms on
M with values in E, denoied Q*(M, E), is by definition the vector space
spanned by w ® v, where w e P*(M), v € E, and the fensor product is over
. This space can be made naturally into a differential complex if we let the
differential be

dleo ® v) = {dw) ®

S0 the cohomotogy H*(M, E) is defincd. Tndeed, if £ is a vector space of
dimension #, then H*(M, E) is isomaorphic to n copies of Hf.(M).
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Now let E be a vecior bundle. We definc the space of E-valued g-forms,
Q%M, E), to be the global sections of the vector bundle (AT} @ E. Lo-
cally such a g-form can be written as > e, ®e¢;, wherew, are g-forms and e,
are sections of E over some open set U in M, and the tensor product is over

the C® functions on U, For these veetor-valued differential forms, no na-

{ural extension of the de Rham complex is possible, unless one is first given
a way of differentiating the scctions of .

Suppose the vector bundle £ has a trivialization {(U,, ¢} relative to
which the transition functions are locally constant. Such a vector bundle is
called a flat vector bundle and the trivialization a locally constant triv-
ialization. For a flat vector bundle £ a diffcrential operator on Q%M, E)
may be defined as follows. Let el ..., el be the sections of £ over U,
corresponding to the standard basis under the trivializatien ¢, E]Unzx
U, x ", We declare these to be the standard locally constant sections, ie,
del = 0. Over U, an E-valued g-form s in (M, E} can be written as
Y. oy ® el, where the oy, are g-forms over U,. We define the exterior deriva-
tive ds over U, hy linearity and the Leibnitz rule:

d(z (42 ® ef,) = Z (dm,] ® EL .
It is easy to show that, because the transition funclions of E relalive to
{(U,, $,)} arc locally constant, this definition of exterior differentiation is
independent of the open sets U,. More precisely, on the overlap U, m Uy,
if
s=Zw,®eL=er®ef,
and e, = Z L e;,‘, where the ¢;; are locally constant funetions, then
Tj = z CU oy
and
d(z TJ ® e.{;) = Z (dtj) ® ef;
= 2 (g dw) @ efz
=2, ([da) ®e,
= d[z ar; (B e;)
Hence ds is globally defined and is an element of *L4M, E). Because d” is
clearly zero, Q*M, E) is a differential complex and the cohomology
H*(M, E) makes sense. As defined, d very definitely depends on the triv-
ialization {{U,, ¢,)}, for it is through the trivialization that the locally

constant sections are given. Hence, d, Q*(M, E), and H*(M, E) arc more
properly denoted as dy , %M, E), and 3(M, E).

ExameLe 7.1 (Two trivializations of a vector bundle E which give rise to
distinct cohomology groups H¥{(M, E)).

L. ogy HY
: piece together to form a global section {except for the zero section).

" §7 The Nonoricutable Case g1

. Let M l.)e t.he circle ' and E the trivial line bundle 5! x R! over the
circle. ¥f E is given the usual constant trivialization ¢:
¢(x, ¥y =7 for

then the cohomology HS(S', E) = R.

However, we 1can define another locally constant trivialization  for E as
follows. Cover % with two open sets U and ¥ as indicated in Figure 7.1

xe &t and re R,

u 7

Figure 7.1

Lt p(x) be the real-valued function on V whose graph is as in Figure 7.2

* The trivialization i is given by

for x e U, r e BY,
forxe V, r e R

N L
#ix, 1) {p[x}r

The stundard locally constant sections over U and V are ey(x) =(x, 1) and

ep(x) = [xl, L/ p(x)) r_egpectively. Relative to the trivialization , the cochomol-
{$°, E) = 0, since the locally constant sections over U and ¥ do not

It is natural to ask: to what extent is the twisted cohomology H}(M, E)

independent of the trivialization ¢ for £?
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f .

v
Figure 7.2

Proposition 7.2, The twisted cohiomology is invariant under the refinement ‘of

open covers. More precisely, let {(U,, q_!'},]}“, ke a locally cons}tm;t tat:iz,j-

ialization for E. Suppose {Vi}p.sis a refinement of {U},rand the co(.nt !}

nates maps Yz on Vy < U, are the ;-es;-ricu?ns af ¢,. Then .‘.I}?e I;vo tv::s e('

complexes QF(M, E) and QF(M, E) are identical and so are their cohomology
H¥(M, E) = H} (M, E).

ProOE. Since the definition of the dilferential operator on a wisted complex
is local, and ¢ and @ agree on the open cover {Vj}, we h_ave dy =dy.
Therefore the twe complexes QE(M, E) and QF(M, E} are identical. |

Still assuming E o be u flat vec_to_r ‘bur{dlc, Suppose {U.. d),,)} alllld
{(U,., ¥} are two locally constant EF'IVI!aIIZElIlO‘I’}S which duﬁferdby; lac?]]y
constant comparisen O-cochain, ie., if e, .at?ld ‘f, are the standar ?.ca]y
constant sections over U, relative to the trivializations ¢ and  respectively,

then -
ey =3 afl
i
for some locally constant {unction
a, = (af): U, GL(n, R).
In this case there is an abvious isomorphism
F: Q3(M, E)— QYM, E)
given by o
-2 alfl.
ki
1t is easily checked that the diagram
QM. E) -~ Q} TH(M, E)
F F
Qf(M, E) —— Qx* (M, E)
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commutes. Hence F induces an isomorphism in cohomology. Next, suppose
we are given two localty constant trivizlizations {tU,, ¢} and {(Va, ¥}
for E, with possibly different open covers. By taking a common refinement,
which does not affect the twisted cohomology (Proposition 7.2}, we may
assume that the two open covers are identical. The discussion above there-
fere proves the following.

Proposition 7.3, (a) Let E be a flut vector bundle over M, and {(U,, ¢.)} and
{(Va, )} two locally constant trivializations Jor E. Suppose afier a common
refinement the two trivializations differ by a locally constant comparison 0-
cochain. Then there are isomorphisms

QFM, E) o Qi(M, E)
and
H3(M, E) = H}(M, E).

This proposition may also be stated in terms of the transilion funclions
for F.

Proposition 7.3. (b) Let E be a flat vecior bundle of rank n and {9e8) and {h.}
the transition functions for E relative to twe locally constant trivializations ¢
and 3 with the same open cover, If there exist locally constant functions

A Uy~ GL(n, [B)

such that
Hop = zaha.ﬂ ZEIa

then there ure isomorphisms as in 7.3{a).

Proposition 7.4. [/ E is a trivial rank 1 vector bundie over a manifold M, with

¢ a trivialization of E given by n globul sections, then

HY(M, E) = H*M, R") = é H*{M).

Proor. Let ¢y, ..., e, be the n global sections corresponding to the standard
busis of R", Then every element in Q*(M, E) can be written uniquely as
Z @ & ¢, where o; & (M) and the tensor product is over the € func-
ticns on M. The map

Z o; @ e wy, ..., o)

gives an isomorphism of the complexes (M, E) and Q*(M, RY). [

Now let {(U_, ¢,)} be a coordinate open cover for the manifold M, with
lransition functions g,; = ¢, © ¢; 1, Define the sign function on B! 10 be
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41 for x positive
Sgn[x) — Q0 for x =0
—1 for x ncgative.

The erientation bundle of M is the fine bundle L on M given by transitio'n
functions sgn J(g,p), where J(g,g) is the Facobian dctcrminan? 1_0f the malrl‘x
of partial derivatives of g,g. It follows directly from the definition that M is
orientable if and only if its orientation bundle is triufaf._ ) ‘

Relative Lo the allas {(U,, ¢, for M with transition functions g.s, the
orientation bundle is by definition the quotient

(Ul,_ s Rl)f{(x; U) -~ (x’ Sgn J(gcﬂ(x))u)’

where (x, 1) e U, x r! and {x, sgn J(g.(xDv) e Uy x R!. By construction
therc is a natural trivialization ¢’ on L,

¢, L]y, 3 Uy x RY

which we call the sriviglization induced from the atlas {(U., ¢)} on M.
Because sgn Jig,s) arc locally constant functions on M, the locally constant
sections of L relative to this trivialization are the cquivalence classes of
{(x, v)| x € U,} for v fixed in R

Proposition 7.5, If ¢’ and ' are two trivializations for L induced from two
atlases ¢ and § on M, then the two twisted complexes Q&(M, L) and Q3,(M,
L) are isomorphic and so are their cohamology HE(M, L) and H}LM, L),

Proor. By going to a common refinement we may assume that the two
atlases ¢ and v have the same open cover. Thus on each U, there are two
sets of coordinate functions, ¢, and y, (Figure 7.3.).

P

Figure 7.3
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The transition functions g,, and h,, for the two atlases ¢ and  respeclively
are related by

Fat(X) = ba i * |y et
= bt Wi W b7 o e
= p(xHhealx)es(x),
where g0 U, v Uz— GL{1, R} is the function

1) = P ¥ g wmne
It follows that

sgn Jg,s) = sgn J(g,) - sgn J(l,p) - sgn J(yﬂ]_‘.
Since sgn J(i,) = + 1, by Proposition 7.3(b}
QF(M, L) =2 Q3(M, L). O

We define the twisted de Rham complex Q¥(M, L) and the twisted de

. Rham cohomology HX(M, L) to be Q(M, L) and Hi(M, L) for any triy-

ialization ¢ on L which is induced from M. Similarly on¢ also has the
twisted de Rham cohomology with compact support, H¥(M, L).

© ReMARK, If a trivialization Y on L is not induced from M, then H}{(M, L)
may not be equal to the twisted de Rham cohomology H¥(M, L).

The following statement is an immediate consequence of Proposition 7.4
and the friviality of L on an orientable manifold.

Proposition 7.6. On an orientable manifold M the wwisted de Rham coliomol-
ogy H*(M, L) is the same as the ordinary de Rham colontology.

Integration of Densities, Poincaré Duality, and the
Thom Isomorphism

Let M be a manifold of dimension n with coordinate open cover {{U,, ¢}

- and transition functions g,;. A density on M is an element of Q"(M, L), or
.- equivalently, a section of the density bundle (A"T#)®L. One may think of a

density as a top-dimensional differential form twisted by the orientation

", bundle, Since the transitien function for the exterior power AT}y is 1/7(g, ).

the transition function for the density bundle is

1
- SEN J(g,g) = .
Tany B el = 0
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Let ¢, be the section of L1y, corresponding to 1 under the trivialization
of L induced from the atlas {(U,, ¢} U ¢, = {x,, ..., X,) are the coordi-
naies on U, , we define the density |dx, +++ dx, | in T{U,, (A"T$)@L)) to be

ldx, - - dx, | =e,dx, -~ dx,.

Locally we may then write a density as glx,, ..., x,){dx; - dx,] for some
smooth function g.

Let T : R" — R be a diffeomorphism of B* with coerdinates x,, ..., x,
and ¥y, ..., ¥, Tespectively. If @ = g|dy; ... dy, | is a density on R*, the
pullback of w by T is

T*w =(g o THdy o T} ... dy, » T)|
= (g DI(D)dx; ... dx, ).

The density gldy, ... dy, | is said to have compact support on B" if g has
compacl suppert, and the integral of such a density over R” is defined to be
the corresponding Riemann integral. Then

j Trm = | (g e TJD)||dx; ... dx, |
R" JAn

o

=} gldy dy,| by the change of variable formula

r-

= o,
VR

Thus the integration of a density is invariant under the group of all diffeo-
morphisms on ®”. This means we can globalize the integration of a density
to a manifeld. If {p,} is a partition of unity subordinate to the opea cover
{(U,, ¢} and @ e QNM, L}, define

j W= J. (o 'Y (p ).
M a R

It is easy to check that this definilion is independent of the choices involved.
Tust as for differential forms there is a Stokes’ theorem for densities, We
stale below only the weak version that we need.

Theorem 7.7 (Stokes™ Theorem for Densities). On any manifold M of dimen-
sion n, orientable or not, if 0 € (Y M, L), then

J. de = 0.
M

The proof is esscntially the same as (3.3).
It follows from this Stokes’ theorem that the pairings

MM, L) — R

§7 The Nonoricatable Case &7

and
QUM Q" (M, L) R
given by

wht r—»J. wAT
A

descend to cohomology.

Theorem 7.8 (Poincaré Duality). On a manifold M of dimension n with a finite
good cover, there are nondegenerate pairings

Hi(M) @ HI7%(M, L) R
R
and

(M) @ H M, L) R
=

Proor. By tensoring the Mayer-Vietoris sequences {2.2) and (2.7) with
I'(M, L) we obtain the corresponding Mayer-Vietoris sequences for (wisted
cohomology. The Mayer-Victoris argument for Poincaré duality on an
orientable manifold then carries over word for word. i

Corollary 7.8.1, Let M be a connected manijfold of dimension n having a finite
good cover. Then

R i M is compact orientable

0 otherwise.

(M) = {

Proor, By Poincaré duality, H{(M) = H2{M, L), Let {U,} be a coordinate
apen cover for M. An element of HXM, L} is given by a collection of
constanis f, on U, satisfying

S = (sgn J(g.g) /5 -

If f, = 0 for some «, then by the connectedness of M, we havef, = 0 for all
. It follows that & nonzero clement of HY(M, L) is nowhere vanishing.
Thus, HX(M, L) % 0 if and only if M is compacl and L has a nowhere-
vanishing section, i.e., M is compact orientable. In that case,

HOM, L) = HY(M) = R, 0
Exercise 7.9, Let M be a manifold of dimension n. Compute the cohomal-
ogy groups HYM), H"(M, L), and HX(M, L) for each of the following four
cases: M compact orientable, noncompact orientable, compact nonorient-

able, noncompact nonoricatable.

Finally, we state but do not prove the Thom isomorphisn theorem in all

= orientational generality. Let E be a rank » vector bundle over a manifold



L g st A b

-

RR I de¢ Rham Theory

M, and let {(U,, ¢,)} and g, be a trivialization and transition funtctions for
F. Neither E nor M is assumed to be orientable. The orien.!.a'r.ion bm:d!'_e of
£, denoted ofF), is the line bundie over M with tranmhgn _functlons
sgn J(g,;). With this terminology, the orientation bundlc of M is simply th.e
oricntation bundte of its tangent bundle T, . Tt is easy to sec that when E is
not orientable, integration along the fiber of a form in Q% (E) does not yield
a global form on M, but an element of the twisted complex Q*(M, o(E)).

‘Theorem 7.10 (Nonorientable Thom Isomorphism). Under the hypothesis
abouve, integration along the fiber gives an isomorphism

7« HA "(E) = HYM, o(E)).

Exercise 7.1 1. Compute the twisted de Rham cohomoalegy H*(RP", L).

CHAPTER 1T
The Cech—~de Rham Complex

§8 The Generalized Mayer—Vietoris Principle

Reformulation of the Mayer—~Vieloris Sequence
Let U and ¥V be open scts on a manifold, In Section 2, we saw that the
sequence of inclusions
UuV«UlJVrEUnV
gives rise to an exact sequence of differential complexes
0-0ONU V) QY@ V) - QYU n V)~ 0

called the Mayer—Vietoris sequence. The associated long exact sequence
o HYU U V)2 HY(U) @ HI(VY 2 HYU A V) S HONWU U V) = .-

allows one to compute in many cases the cohomology of the union U v ¥
from the cohomology of the open subsets U and ¥. In this section, the
Mayer-Vietoris sequence will be generalized from two open sets to count-
ably many open sets, The main idcas here are duc to Weil [1].

To make this generalization more transparent, we first reformulate the
Mayer-Vietoris sequence for two open sets as follows, Let I be the open
cover {U, V}. Consider the double cemplex C¥1, Q%)= @ K"? =
& CHU, Q) where

K% = O, Q) = QUUY @ QU(V),
K'a= CYU, Q) = QYU ~ V),
KP2=0, p=2.

89
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q

3 . .

2| U@ QW) | AU n V)
d1
0

0
QU@ QYY) | QYU ~ V)| 0
QU @O | QU ~ W] 0

2

0 1

iR

&
—

This double complex is equipped with iwo differcntial operators, the
exterior derivative 4 in the vertical direction and the difference opcrator din
+he horizontal direction. Of course, & is O after the first column, Because d
and & are independent operators, they commute, :

In general given a doubly graded complox K* * with commuling differ-
entials ¢ and &, onc can form a singly graded complex K* by summing
along the antidiagonal lines

i

"3

I

@

N
o\ LV

1 2 3 P

and defining the differential operator to be
D =D+ D" with I¥ =, D" = (—1)’d on KP2

REMARK ON THE DEFINITION OF D

s
L 8 d

If D were naively defined as D = d + &, it would not be a differential oper-

ator sinee D? = 245 # 0. However, if we alternate the sign of d from one
column to the next, then as is apparent from the diagram above,

§8 The Generalized Mayer-Vietoris Principle a1

D? == g? 4 8d —dd + 8 =0,

In the sequel we will use the same symbol CH1IL Q%) to denote the
double complex and its associated single complex. In this setup, the Mayer-
Vietoris principle assumes the following form.

Theorem 8.1, The double complex C*(U, £¥) computes the de Rham cohomol-
ogy of M:

Hp{C*(U, (%)} = HER(M).
Proor. In one direction there is the natural map
r: QM) - QXU QXV) = CHU, O*)

given by the restriction of forms. Qur first observation is that » is a chain
map, i.c., that the following diagram is commutative:

i

¥(M) — C¥U, 0%

1 o

QM) — CHU, Q%) .

This is because
Dr = (8 +{(— 1) d)r [here p=10]
= dlr
=d .
Consequently » induces a map in cochomology
* 1 Hja(M)— Hp{(C*(U, Q%)].
q

o

B
A g-cochain « in the double complex C*(U, £2*) has two components
o=ty + ty, oy € KO9, oy & Kleaml,

By the exactness of the Mayer—Victoris sequence there exists a f# such that
88 = u,. With this choice of 8, « — Df has only the (0, gl-component. Thus,
every cochain in C*(U, Q%) is D-cohomologous to a cochain with only the top
comipanent,



92 Il The Cech—de Rham Complex

We now show r* to be an isomorphism,

Step 1. r* is surjective,

By the remark above we may assume that & given cohomology class in
Hp{CHY, 0%} is represented by a cocycle ¢ with onty the top component.
In this case

D¢ =0 if and only if dip =8 =0
So ¢ is a global closed form.

Step 2. r* is injective.

Suppose r{m) = D$ for some cochain ¢ in C*(L, 0%, Again by the
remark above we may write ¢ = ¢’ + D¢", where ¢ has only the top
component, Then

o) = DY = dg', 5¢' = 0.

So w is the exterior derivalive of a global form on M.

o -

i
T
1>

L

Generalization to Countably Many Open Sets and Applications

Instead of & cover with two open sets as in the usual Mayer-Vietoris se-
quence, consider the open cover H = {U Jues of M, where the index set J is
a countable ordered set. Of course J may be finite. Denate the pairwise
intersections U, n Uy by U, triple intersections U, n Ug m U, by U,p,,
ete. There is a sequence of inclusions of open sets

8g
] — .
= &1 I_[ — .
M I,l Ucto Ay ]_[ Uauﬁl ~—— Uanouaz ::
€-— #p Ty f; X THELTaL
—

where &, is the inclusion which “ignores™ the ith open set; for example,

50:U

—r
o0 E1ED Uamz *

This sequence of inclusions of open sets induces a sequence of re-
strictions of forms

oo Sl lavw,) :t];lQ*(Umm}—» IT 0%Uspaer =5
) SaL

g TaL TR

—
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witcre &g, for instance, is induced from the inclusion

do 1_1 Ugpy — Up,y
and therefore is the restriction
8o 1 Q¥Ug,) — |1 QU

We define the difference operator 8 [ [Q¥(U,, o)) [ [Q*(Uq u 2,) 1o be the
alternating difference &, — 8, +- d,. Thus

[éé}ao ayjzz éataz - ém} az -+ ‘fn:o Iy

More generally the difference aperator is defined as follows.

Definition 8.2, If w e [JQ%U,, ) then @ has “components” w,, o, €
QU(U,,...q,) and

ptl
(8t0)ss.. aptl Z;EO( - l)[wao.mii-uaﬁ »

where on the right-hand side the restriction operation to U,
suppressed and the caret denotes omission.

has been

eEptl

Proposition 8.3. 52 = 0.

Proor. Basically this is truc because in (6%w),,,.
¢, o twice with opposite signs. To be precise,

{52('r))¢0...ap+3 = z ("_ 1)’(6&)):‘10“.&{...&9-}2
= er{_ 1)f(_' 1]}wao...&;,,.&1.<,ap+z

+ jzt{_ l){(_ 1)1_ lwan.,.ai..,&_,...np-i-z

=0

we omit two indices

“@pl

(]

Convention. Up until now the indices in w,, ., are all in increasing order
g < ... < o, More generally we will allow indices in any order, even with
repetitions, subject to the convention that when two indices are inter-
changed, the form becomes its negative:

w.,.a...ﬂ... = T g ..

In particular a form with repeated indices is 0. In the following exercise the
reader is asked to check that this convention is consistent with the defini-
tion of the diffcrence operator 6 above.

Exercise 8.4. Suppose o < . Then (dw) 5 .  may be defined either as
—{8w), .. ... or by the difference operator formula (8.2). Show that these
two definitions agree.
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Proposition 8.5, (The Generalized Maycr--Victoris Ssquence). The sequence
0— Q*(M} - lqlﬂ*{Uao] 'i’ HQ*(U«WJ] _a’ HQ*(UGUGNIZ) “5_) e

is exact: in other words, the S-cohomology of this complex vanishes ident-
fcally.

Prook. Clearly Q*(M) is the kernel of the first 8 since an clement of
[I9%U,,) is 2 glebal form on M if and only if its components agree on the
overlaps.

Now let {p,} be a partition of unity subordinate to the open cover
M = {U,}. Supposc w e [[Q*U,, ,) is a p-cocycle. Define a (p— 1)-
cochain 7 by

Tﬂ[}.-.ﬂp—l = 2 PaWazy. ap.tt
o

Then
{5T)ac...ap = 2 (-~ I}itao,.‘&(.‘.a},

= Z(_ 1]‘}0« wuaa.uﬁi...ap' i

i a
Becanse o is a cocycle,
it 1 .
[5(ﬂ)aﬁo...ap = Wy, .ap + ; (“‘ l} Wyag...dt.mp = 0.
S0

000y = 2 Pa 2 (= 1) Do 1.
= ; Pﬂ wﬂc-..ﬂp

= Wyp, ey

This shows that every cocycle is 2 coboundary. The exactness now follows
from Proposition 8.3. |

In fact, the definition of 7 in this proof gives a homotopy ¢perator on the
complex. Write K for 7:

(8.6) (K)so,..ap1 = 20 PaPa..eap-t-
Then ’
(BKgo...qp = 2 (— D (KDg..01...0,
= 2 A= 1) P Vo542
(K6, .0, = 2. Pal0®)aso...0,
= (% P)@us. vy T 2 (= DT 10,000 arap

= By ey {5Km)mc,.,ap .
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Therefore, K is an operator from [ JQ*(U,, )} to I_[Q*{Uag..,a,,_;] such that
(8.7 oK 4+ Kd=1.

As in the proof of the Poincaré lemima, the existence of a homotopy oper-
ator on a dilferential complex implies that the cohomology of the complex
vanishes.

For future reference we note here that if ¢ is a cocycle, then by (8.7),
6K ¢ == ¢b. So on cocycles K is a right inverse to &. Given ¢, the set of all
solutions & of 6 = ¢ consists of K¢¢ + S-coboundaries.

The Mayer-Victoris sequence may be arranged as an augmented double
complex

p P

0— QM) | K2 | K!?

0 — QM) - | KO | Kt

0— QM) | K& | KL

where K79 = CAU, Q%) = HQQ{UW..,.:,.) consists of the “p-cochains of the
cover M with values in the g-forms.” The horizontal maps of the double
complex are the difference operators & and the vertical ones the exterior
derivatives d. As before, the double complex may be made into a single
complex with the differential operator given by

D=D+D"=8+(—1pd
A D-¢cocyele is a string such as ¢ = a + b + ¢ with

q

da =10, 1]

t
da = +db ap,
b = +dc 5‘%
Sc =0, T ¢-b0

P
(To be precise we should write §a = —D"b, b = — D"c)) So a D-cocycle

may be pictured as a “zig-zag.”
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A D-coboundary is a string such as ¢ = a + b + ¢ in the figure below,
where a = day + D"a,, el

'y

q
]
. 1 -
i a
+
[ b
= .
3T C
+
a0
s
p

The double complex

CHIL Q%) = @ O, Q9
pg=EQ
is called the Cech—de Rham complex, and an element of the (?ech—-dc Rhamn
is called a Cech-de Rham cochain. We sometimes rcfer to a Cech-de Rham
cochain more simply as a -cochain.
‘The fact that all the rows of the augmented complex are exact is the key
ingredient in the proof of the following,

Proposition 8.8 (Generalized Mayer—Vietoris Principle}, The double com-
plex C*(UT, Q%) computes the de Rham cohomology of M ; more precisely, the
restriction map r (M) — C*U, Q%) induces an isomorphism in cohomol-

ogy:

#* s HEe(M) — Hp {CHU, Q%))
PROOF. Since Dy = {5 + d) ¥ = dr = rd, r is a chain map, and so it induces a
map r* in cohomology.

Step 1. r* is surjective.

* * —— 0

sol cthing-|—% —|— 0 0

P P

Let ¢ be a cocycle relative to D. By d-exactness the lowest component of
¢ s ¢ of something. By subtracting D(something) from ¢, we can remove
the lowest component of ¢ and stilt stay in the same cohomology class as ¢.
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After iterating this procedure enough times we can move ¢ in its cohomol-
ogy class to a cocycle ¢ with only the top component. ¢' is a closed global
form because d¢' = 0 and é¢’ = 0.

Step 2. r¥ is injective.

4 g
0— QM) 5
0— QM) — | ¢

0 — QM) 5
00— QM) — #

v I

If #{ew0) = D¢, we cdn shorten ¢ as before by subtracting bonndaries until
it consists of only the top component. Then because &6 is 0, it is actually a
global form on M. So @ is exact. O

The proof of this proposition is a very general argument from which we
may conclude: if ail the rows aof an augmented double complex are exact, then
the D-cohomology of the complex is isomorphic to the cohomology of the
initial column,

Tt is natural to augment cach column by the kerne!l of the bottom 4,
denoted C*{1[, R). The vector space CP(L, ) consists of the locally constant
functions on the (p + I)-fold intersections U, .-

g

0 2on-5 | TI0U)
0 — QUMY | []ONU,)
0 0°M) - | TIW.o) | [1Q°Wee0) | T10°Warsy )

it i7 it r
CfE R - CHUL R — CHU, B) - -

T T ¥

] 0 0

The bottom row
oo, B) 5 ot B S iy, By -

is a differential complex, and the homology of this complex, H*(1I, R), is
called the Cech coliomolagy of the cover U, This is a purely combinatorial
object, Note that the argument for the exactness of the generalized Mayer-
Vietoris sequence breaks down for the complex C*(Q2I, B), because here the
cochains are locally constant functions so that partitions of unity are not
applicable,

If the augmented columns of the complex C*(1I, {3*) are exact, then the
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same argument as in {8.8) will yield an isomorphism between the Cech
cohomology and the cohomology of the double complex

HHQL, R) = H {CH1, Q%)

and consequently an isomorphism between de Rham cohomelogy and Cech
cohomology

H¥p (MY ~ H*U, R),
Now the failure of the p™ column to be exact is measured by the colio-
mology groups

[T HY Uy o)
g=1
o e <y
So if the cover is such that all finite nonempty intersections are contractible,
e.g., 2 goad cover, then all augmented columns will be exact. We have
proven

Theorem 8.9. If 1l is a good cover of the manifold M, then the de Rham
cohomuology of M is isomorphic to the Cech colomology of the good cover

Hpp{M) =~ H(, R).

Let us recapitulate here what has transpired so far. First, the basic
sequence of inclusions

o
MeUEULEUp & -

efl =

gives rise to the diagram

differential
geometry of 0 -— Q¥(M) -5 C*U, O
forms

i

CHl, B)
T
0
combinatorics

of the cover

Along the left-hand side is the differential geometry of forms on M, aleng
the bottom is the combinatorics of the cover i = {U,}, and in the double
complex itself the two are mixed. As the complex is the generalized Mayer—
Vietoris sequence, the augmented rows are exact, for any cover. It follows
that the de Rham cohomalogy of M is always isomorphic to the cohomol-
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ogy of the double complex:
HjW(M) = Hp {C*Q1, 09}

If in addition U is a good cover, then by the Poincare lemma the
augmented columns are exact. In that case the Cech cohomology of the
cover is also isomorphic to the cohomology of the double complex:

HQL, ) ~ Hy {CH, %),

flence there is an isomorphism between de Rham and Cech. This result
provides us with a way of computing the de Rham cohomology by means
of combinatorics, since from Section 5 we know that every manifold has a
good cover. All three complexes here can be given product structures, in
which case the isomorphisms between them are actually isomorphisms of
algebras, as will be shown in (14.28).

A priori there is no reason why different covers of M should have the
same Cech cohomology. However, it follows from Theorem 4.9 that

Corollary 89.1. The Cech cohomology H*(U, W) is the same for all good
covers t af M.

If a manifold is compact, then it has a finite good cover. For such a cover
the Cech cohomology H*(U, R) is clearly finite-dimensional. Thus,

Corollary 8.9.2. The de Rham cohomology (M) of a compact manifold is

finite-dimensional.

Tn fact,

Corollary 8.9.3. Whenever M has a finite good cover, its de Rham cohomology
Higr{M) is finite-dimensional.

Both the proof here and the inducticen argument in Section 3 of the finite
dimensionality of the de Rham cohomelogy rest on the Muyer-Vietoris
sequence, bul they are otherwise independent of each other. -

§9 More Examples and Applications of the
Mayer—Vietoris Principle

In the previous section we used the Maver-Vietoris principle to show the
jsomorphism of the de Rham cohomology of a manifold and the Cech
cohomology of a good cover; from this, various corollariss follow, In this
section, after some examples in which the combinatorics of a good cover is
used to compute the de Rham cohomology, we give an explicit isomor-
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phism from Cech to de Rham: given a Cech cocyele, we construct the
corresponding global closed differential form by means of a collating for-
mula {9.5) based on the homotopy operator K of (8.6). To conclude the
scotion, we give as another application of the Mayer—Vietoris principle a
proof of the Kiinneth formula valid under the hypothesis that one of the
factors has finite-dimensional cochomelogy.

Examples: Computing the d¢ Rham Cohomology from the
Combinatorics of a Good Cover

Let ¥ = {U,} be an apen cover of a manifold M. The nerve of W is a
simplicial complex constructed as follows. To every open set U,, we associ-
ate 4 vertex a. If U, m Uy is nonempty, we connect the vertices o and
with an edge. If U, n U; n U, is nonempty, we {ill in the face of the
triangle affy. Repeating this procedure for all finite intersections gives the
nerve of 11, denoted N(U). For the basics of simplicial complexes, sec¢ Croom

[i1.

ExampLy 9.1 (The circle). Let Il = {U,, U,, U,} be the good cover of the

circle as shown in Figure 9.1. The Cech complex has two terms:
CULR=RD R D R = {{wrg, @y, w3)| &, is a constant on U},
C'AUAR =R P R D R = {1, Hoz, H12) | g is @ constant on U}

Ug

|35

3P
Figure 9.1

The coboundary 8 : C° — C' is given by (6w = 0 — @, Theref;)re,
ker 8 = {(wo, @1, w3)|@p = w, =w,} =R
and
HSY = R,
Since im 6 = B2, HY(S") = R¥/im & = R,
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ExAMPLE 9.2 (A nontrivial 1-cocycle on the circle). If a 1-cocycle i = (o1,
Hozs Hi2) is a coboundary, then 7oy — 7oz + 12 = 0. 805 =(1,00)is a
nontrivial 1-cocycle on the circle.

ExAMPLE 9.3 (The 2-sphere). Cover the lower hemisphere of Figure 9.2 with
three open sets as in Figure 9.3. Together with the upper hemisphere Uy,
this gives a good cover of the entire sphere, The nerve of the cover is the
surface of a tetrahedron as depicted in Figure 9.4. The Cech complex has

ol

Figure 9.2

2

Uy

&

3

Figure 9.3

VAN

Figure 9.4
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three terms:

U, &) o clan ey B o m
I I I

RERERER HORGEREROGRPH RPEREREER
4] 1 2

a2 o (1} 03 12 13 23 o132 013 023 1123
ker 8 = {{wo, w1, @3, W3}y =, = w; = W3} =B
So im 8, =M and HYS*) =R, If y is in ker §,, then y is completely
determined by #g4, Hoz, and #os . Therefore ker 6, — R* and
HY(S*) = ker 8,/im 8, = O.
Since im &; = C*/ker §;, = R?,
H* S = RYim 6, = R.

Explicit Isomorphisms between the Double Complex and de Rham
and Cech

We saw in Proposition 8.8 that tire Cech—de Rham complex C*{(U, £¥)
and the de Rham complex %A} have the same cohomology. Actually,
what is true is that these two complexes are chain homolopic. To be more
precise, there is & chain map

9.4) S CFQUL Q%) — O (M)
such that

(8) for=1,and
(b} r o fis chain homotopic to the identity,

We may think of f as a recipe for collating iogether the compenents of a
Cech-de Rham cochain into a global form, The not very intuitive formulas
below were obtained, after repeated tries, by a careful bookkeeping of the
inductive steps in the proof of Proposition 8.8.

Proposition 9.5 (The Collating Formula). Let K be the homotopy aperator
defined in (8.6). If @ = Y Y_¢ @; is an n-cochain and Do = B = Y124 By, then
" R 1
f@) = T(—D"K)ay — Y, K(—D"K)~1f, e COM, )

i=0 i=0

is a global form satisfying the properties above. The homotopy operator
L: C*U, Q%)= CH*U, Q%)

suchthat 1 — v o f = DL -+ LD is given by

n—1
Lo = Y (La),,
S5
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where

(La), = E K(—D"R)=t+ g e Pl =1 -8),

i=p+1
Bo
“a | Pu
oy | fiz

o2 | B3

oy )Sn+l

ReMARK, To strip away some of the mysteries in the expression for f(a), it
may be helpful 1o observe ithat the operator D"K sends an clement of
CPQLL Q%) into CPTMAU, Q1Y) so that (D"KYe; and K(D"K)Y™18; are col-
fections of n-forms on the open sets U,. The coliating formula says that a
suitable linear combination of these locul n-forms, with &+t as coefficients,
is the restriction of a global form.

The proof of Proposition 9.5 requires the following technical lemma.

Lemma 9.6.
(S(D::K]!' — (D::K)P (5 — (DnK)[— lD”.

Proor or Lemma 9.6. Since § anticommutes with D" and since
dK + Kd =1,

S(D"K)XD"K)' ™! = - D"SK{D"KY~! _
= —D'(1 — K&)(D"K)?
= (D"K)§(D"KY .
8o we can commute D”K and 8 until we reach (D"KY ~'8{(D"K). Then,
S(D"K) = (D"Ky~'8(D"K)
= —(D"K)'""iD(1 - K&)
= —(D"K)'"'D" 4- (D"K)'S. {:1
Proor oF PROPOSITION 9.5. Te show that f{«) is a glebal farm, we compute

8f (). Using the lernma above and the fact that de; + P4, = fi;4(, thisis
a steaightforward exercise which we leave to the reader.
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Exercise 9.7. Show that &f () = 0.
Next we check that fis a chain map.

nt+l

T (Do) = f(By = (Zﬂ(— DYD"KYBr.

ntl

df (@) = D°f (@) = fo + 3, (—~D(D"K)Br.

i=1

So
S (Do) = df{).

The verification of Property (a) is easy, since if & is a global form, then
o = gy and

Jorle) =) =0y = o
Property (b) follows from the fact that
1 —rof=DL+LD,

As its verification is straightforward and not very illuminating, we shall
omit it. The skeptical reader may wish to carry it out for himself. Apart
from the definitions, the only facts needed are Lemina 9.6 and the chain-
homotopy formula (8.7} 0

REMARK. Actually the existence of the chain-homotopy inverse f and the
homotopy operator L is guaranteed by a general principle in the theory of
chain complexes (See Spanier [1, Ch. 4, Sec. 2; in particular, Cor. 11,
p. 1671,

We can now give an explicit description of the various isomorphisms
that follow from the generalized Mayer-Vietoris principle. For example, by
applying the collating formula (2.5), we get

Proposition 9.8 (Explicit lsomorphism between de Rham and Cech). Ifn e
CYAL, B) is a Cech cocyele, then the global closed form corresponding to it is
given by [ (g} = (— 1)"(D"K)" .

EXAMPLE 9.9, Let U be a good cover of the circle §'. We shall construct
from a generator of the Cech cohomology H*(M, R) a differential form
representing a gencrator of the de Rham cohomology Hjx(SY).

As we saw in Example 9.2, a nontrivial 1-cocycle on S! is

1 = {fo1s oz H12) = {1, 0, O},
If {p, } is a partition of unity, then
Ky ={-~p1, po, 0.

.
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$o the generator —D"Ky of Hhg (8') is represented by —d(—p,), a bump

" form en U, n U, with total integra! 1.

Exercise 9.10. The real projective plane RP? is obtained by identifying the
boundary of a disc as shown in Figure 9.5, Find a good cover for RP? and

Figure 5.5

compute its de Rham cohomology from the combinatorics of the cover.

Onc possible good cover has the nerve depicted in Figure 9.6,

Figure 8.0

Exercise 9.11, Let Figure 9.7 be the nerve of a good cover U on the torus,
where the arrows indicaie how the vertices are ordered. Write down a
nentrivial 1-cocycle in C'(15, R).

L The Tic-Tac-Tee Preof of the Kiinneth Formula

We now apply the main theorems of the preceding section to give another

proof of the Kiinneth formula, This proof, admittedly more involved in its



106 Il The Cech-de Rham Complex

-—

r R
1\\[\F
3

‘F

Figure 8.7

construction than the Mayer—Vietoris argument of Section 5, is a prototype
for the spectral sequence argument of Chapter IIL Tt will also allow us to
replace the requirement that M has a finite good cover by the slightly
weaker hypothesis that F has finite-dimensional cohomology:

Before commencing the proof we make some general remarks about a
technique for studying maps. Let n: E — M be a map of manifolds. A
cover i on M induces a cover n7 'Y on E, and we have the inclusions

EwlinU, e lln ' Usk

s
Mellv, =lv, £

In general U, n U, # ¢ is not equivalent to n™'U, n &~ 'Up # ¢. How-
ever, if 7 is surjective, then the two statements are equivalent, so that in this
case the combinatorics of the covers ¥ and ™1l are the same. The double
complex of the inverse cover computes the cohomology of E, which can
then be related to the cohomology of M, because the inverse cover comes
from a cover on M, This idea will be systematically exploited throughout
this chapter and the next.

A quick example of bow the inverse cover #7'1 may be used to study
maps is the following, Note that although the inverse image of a good cover
is usually not a good cover, for a vector bundle =: E— M the “goodness”
of the caver is preserved. Since the de Rham cohomology is determincd by
the combinatorics of a good cover, this implies that

HEp(E) o HEp(M).
Of course, this also follows from the homotopy axiom for the de Rham
cohomology (Corollary 4.1.2.2).

Proposition 9.12 (Kiinneth Formula). If M and F are two manifolds and F
has finite-dimensional cohomology, then the de Rham cohomology of the prod-
wuct M x F s

H*{M x Fy= H¥*M) & H*F).
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PROOF, Lot U = {U,} be a good cover for M and z: M x F— M the pro-
jection onto the first factor. Then n~ ' = {a~'U_} is some sort of a cover
for E == M x F, though in general not a good cover, There is a natural map

C*{r~ 1L, Q%)
oA

CHU, Q%)

which pulls back differcntial forms on open sets. Choose a basis for H*{F),
say {[»,]}, and choose differential forms e, representing them. These may
be used to define a map of double complexes

C*{z™ 110, )

H*(F) @ C*1I, )
by
milod & ¢) = pru,An g
where p is the projection on the fiber

Fi

M.

Since FI*(F) is a vector space, H*(F) (% C*(l, £}*) is a number of copies of
.C*[II, *) and the differential operator D on the double complex C*(U, O*)
induces an operator on H*(F) & C*(U, £2*) whosc cohomalogy is

HXF) @ Hp{CHU, Q%)} = H¥F) @ H*M).
Since the D-cohomology of C*(n ™11, (3*) is [I*(E), if we can show that

C*n ™, Q%)
il
HYF) @ ¢, Q%)

induces an isomorphism in [D-cohemeoelogy, the Kiinneth formula will
follow.
The proof now divides into two sieps:

Step I
For a good cover W, the map nf induces an isomorphismt in Hy of these
complexes,
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Step 2.

Whenever a homomorphism f: K-~ K' of double complexes induces
H sisomorphism, it also induces H p-isomorphism. (By a homomosphism of
double complexes, we mean a vector-space homomeorphism which preserves
bidegrees and commutes with d and &)

ProoF oF STEP 1. The p™ column CP(z ™!V, Q) consists of forms on the
(p - 1)-fold intersections I~ 'U,, . and C7Q, Q%) consists of forts on
U, ... o, The d-cohomology of CHm™ 1, Q%) is

(9.12.1) [1H* U, o) = H* (@] XUy .o

the isomorphism being given by the wedge product of pullbacks. So nff
induces an isomorphism of the d-cohomology of CHr~ ', 0% and
H*(F) 2 C*L, 0*). O

Exercise 9.13. Give a proof of Step 2.

REmMARrK. This argument for the Kiinncth formula also proves the Leray-
Hirsch theorem (5.11), but again instead of assuming that M has a finite
good cover, we require the cohomology of F to be finite-dimensional. If
both M and I have infinite-dimensional cohomology, the isomorphism in
{9.12.1) may not be valid. .

The following example shows that some sort of finiteness hypothesis is
necessary for the Kiinneth formuia or the Leray-Hirsch thecrem to hold.

BxAMPLE 9.14 (Counterexample to the Kiinneth formula when both M and
F have infinjte-dimensional cohomotogy). Let M and F each be the set zt
of all positive integers. Then

H%M x F) = {square matrices of real numbers (ay), i,/ € Z*}

But HO(M) @ HO(F) consists of finite sums of matrices (a;) of rank 1. These
two vector spaces are not equal, since a finite sum of matrices of rank 1 has
finite rank, but H%M x F) contains matrices of infinite rank.

§10 Presheaves and Cech Cohomology _

Presheaves

The funclor ©*( ) which assigns to every open set U on a manifold the
differential forms on U is an example of a presheaf. By definition a preshedf
# on a topological space X is a function that assigns to every open set Uin
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X an abelian group % (U) and to every inclusion of open sets
ihV - U
a group homomaorphism, calted the restriction,
L F) FU > FO)
satisfying the following properties;
{a) F(iV) = identity map
(b) transitivity: FGY) F(ih) = F{5).

The restriction F{i}) : F(U) — F(V) is often denoied p}. A homomorphism
of _two presheaves, [ F — 4, is a collection of maps fy : F(U) — &{U)
which commule with the restrictions:

FU) = @)

oyl 1 o%

F(V) ~> %(V)
fv

Let Open[X} be the calegory whaose objects are the open sets in X and
whose mprphlsms are inclusions of open seis. In functorial language, a
presheaf is simply a coniravariant functor from the category Open(X) to the

- category of Abelian groups, and & homomorphism of two presheaves,

F1F — %, is a natural transformation from the functor & to the functor %.

The trivial presheaf with group G is the presheafl % which associates to
every connected open set the group G and to every inclusion V' <= U the
}dtfnt.lty map: F(U) — F(V). We say that a presheaf is a constant presheaf
if it is isomorphic to the trivial presheaf, and that it is a locally constant
presheaf if it is locally isomorphic to the trivial presheaf, i.e., every point has
a neighborhood U so that % | is a constant presheaf,

Examrie 101, Tet n:E — M be a fiber bundle with fiber F. Definc a
presheaf 377 on M by #(U) = HYr~'U). For U contractible, H{n " U} =
HA(F} by the Kunneth formula, and if V « U with V connected, then the
restriction pp i H4n~'U) — H%xn"'V) is the identity. Therefore 57 is a
locally constant presheaf en M,

’ Now consider the trivial bundle £ = M x F, Assume that F has finite-
dimensional cohomology. Since M#UM) = HYE) = D4,-, (H(M) @
Hi(F)) is not vsually equal to HAF), a locally coistant preshecgf on M need
not be a constant presheaf, even if M is simply connected *

* " H
However, a locally canstant sheaf on a simply connected space is constant,
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Cech Cohomology

Let 1t = {U,},.s be an open cover of the topological space X, T.he 0-
cochains on U with values in the presheaf % are functions which assign to
cach open set U, an element of #F(U), i, COU, #) = 11,.; F(U,). Sim-
ilarly the 1-cochains are clements of

cim, #) = [ #F(U, ~ Ug)
e f
and so on.
The sequence of inclusions

o —
— -
Uo: 46— Ua:ﬁ :_

gives rise to a sequence of group homomorphisms
NFu)3TFUHT -

We define & : C7(1l, £} — CPI(U, #) to be the alternating difference of the
F(8,7s; for example,

51 COU, ) — CHU, F)
is given by

+

d = F{dg) — F(0y).
In general

&1 CPU, F) — CPTIU, &)
is given by

§ = F(Bo) — F(B1) +  +{— 1P F(B,4,)
Explicitly, if @ e CP(Q1, %), then

p+1 .

(10.2) (BWss ... apss = .E{, (= D@ty apers

where on the right-hand side the restriction of @u, . s .. apey 0 Usg.. i ey is
suppressed, I follows from the transitivity of the restriction thOI}lDrphlS.n‘l
that 62 = 0 (proof as in Proposition 8.3). Thus C*(l, #) is a_clllferentml
complex with differential operator & The cohomolagy of this complex,
denoted by H; CHY, %) or FI*(11, &), is called the Cech cohomology of the
cover YW with values in .

REMARK 10.3. [[ & is a covariant functor from the category Open(X) to the
category of Abelian groups, and W is an open cover of X, one can define
analogously a chain complex C, (U, %) and its homoelogy H, (M, #). Apart
from the direction of the arrows, the only difference from the case of a
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presheaf is in the definition of the coboundary operator & (G, Fy—
C,—1(U, 5}, which is now given by

(aw)rxu g 2‘ Wiz ... dpe1”
ax

One verifies easily that this § also satisfies 8% = 0, The functor #? which
associates to every open set U on a manifold the compact cohomology
H3(U) is covariant.

Because of the antisymmetry convention on the subscripts, in this for-
mula there is ne sign in the sum. Of course, if we had written cach term
@ug ... ap, With the subseript « inserted in the i-th place, then therc would be
a Sigﬂ: Z! (_ l)i(ua:o v X LY

Returning to the discussion of the Cech cohomology of a presheal &,
rccall that the cover B = {V;},.; is a refinement of the cover ¥ = {U_}, .,
written U > 3, if there is a map ¢ :J — I such that ¥, © U, . The refine-
ment ¢ induces a map

¢®: O, F) - OB, F)

in the obvious manner:

(% eX(Vio ... 8) = (Usiaot .. o(8,).

' Lemma 10.4.1, ¢* is a chain map, i.e., it commutes with 8.

PROOR,  (8(* ) Vpy... g} = 2(— N P¥ @) V5, . 5.p0..)
= 20~ Wex(Uppy.. f..oi5,.,1)
(9" dew)(Vg, . tary) = GV gipey PITAY,
= 3~ DU yiay ... gian .. o150+ 0¥

O

Lemma 10.4.2. Given U = {U,}, ., an open cover and B = {V;}p.; a re

- finement, if ¢ and W are two refinement maps: J— I, then there is a homotopy
8.5 operator between ¢¥ and ¥,

ProoF. Define K : CH(U, ) ~» CI™ 1B, &) by
KoV, g, ) = 200Uy gipasian ... stoe-n-
Exercise 10.5. Show that

¥ — " = 8K + Ké.
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A direct system of groups is a collection of groups {G}ior indexed by g
directed set 1 such that for any pair @ > b therc is a group hamomorphism
ft:G, — G, satisfying

(1) £ = identity,
(2) fe=f20f%.

On the disjoint union 11G; we introduce an equivalence relation ~ by de-
creeing two elements g in G, and k in G, to be equivalent if there is some ¢
in I such that f2g) =f%(#) in G.. The direct limit of the direct system,
denoeted by lim, ., Gy, is the quatient of I1G; by the equivalence relation ~ ;
it other words, two elements of 1IG; represent the same element in the
direct limit if they arc “eventualiy equal™.

It follows from the two lemmas above that if ¥ > B, then there is a
well-defined map in cohomology

H*(, %) — H*B, ),

making { H*{[, #)}y into a direct system of groups. The dircct limit of this
direct system.

HMX, &) = lim H¥ M, %)
3
is the Cech cohomology of X with values in the presheaf #.

Proposition 10.6. Let R be the constant presheaf on a manifold M. Then the
Cech cohomology of M with values in R is isomorphic to the de Rham
cohomelogy.

ProoF. Since the good covers are cofinal in the set of all covers of M
{Corollary 5.2}, we can use only good covers in the direct limit

H*M, ®) = lim H*(I, R),
u

By Fheorem 89,
H*U, R) =~ Hfp{M)
for any good cover of M. Therefore, there is an isomorphism
H*(M, R) ~ Hia(M).
W

Exercise 10.7 (Cohomology with Twisted Coefficients). Lel & be the presheaf
on S' which associates to every open sct the group Z. We define the
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restriction homomorphism on the good cover = {Ug, Uy, U} (Figure
10.0) by

po1 = pos =1,

piz=pis=1,

b Pi2=—L poa=1,

where PE} is the restriction from U, to U, n U;. Compute H*({, 5},

Ug

u,

U
Figure 10.1

L §11 Sphere Bundles

Let 7 E— M be a fiber bundle with fiber the sphere S, n > 1. As the
structure group we pormally take the largest group possible, namely the
" diffsomorphism group Diff{S"), but sometimes we also consider sphere bun-
dies with structure group Ofn + 1). These two notions are not equivalent;
" there are examples of sphere bundies whose structure groups cannot be
“ reduced to the orthogonal group. Thus, every vecior bundle defines a
- gphere bundle, but not converscly. By the Leray-Hirsch theorem if thercis a
" closed global a-form on E whose restriction to each fiber generates the
cohomology of the fiber, then the cohomology of E is

H¥*(E) = H*(M) @ H*(S".

It is therefore of interest to know when such a global form exists.

© In Section & we consiructed the global angular form ¥ on a rank 2
vector bundle with structure group SO(2). This formn Jr was seen to have the

following two properties:

(1) ¥ restricts to the volume form on each fiber
(b)dyy = —=n*e

_where e is the Euler class. Bxactly the same procedure defines the angular
orm and the Buler class of a circle bundle with structure group SO(2).
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Consequently, for such a bundle also, if the Euler class vanishes, then i iz
closed and satisfics the cendition of the Leray—Hirsch theorem.

We now consider more generally a4 sphere bundle with struciure group
Difi(S") or O(n + 1). We will sce that the existence of a global form as above
entails overcoming two obstructions: orientability and the Euoler class.

QOrientability

In this section the base space of the bundle is assumed to be connected. A
sphere bundle with fiber 8", » = 1, is said to be orientable if for each fiber F,
it is possible to choose a generatar [o,] of H(F,)satisfying the local com-
patibility condition: around any point there is a neighborhood U and a
generator [ay] of FINEly) such that for any x in U, [on] resiricted to the
fiber F, is the chosen generator [¢.]; equivalently, there is an open
cover {U,} of M and generators [a,] of H(Ely,) so that [o,} = [o,] in
H'(E o, o)

Since a generator of the top cohomology of a fiber is ap n-form with
totul integral 1, there are two possible generators, depending on the orienta-
tion of the fiber. A priori all that one could say is that [o.} = t[7g] on
U, n U,. For an orientable sphere bundle either choice of a consisient
sysiem of generators is called an orientation of the sphere bundle. A bundle
with a given orientation js said to be oriented. An §%bundle over a mani-
fold M is a double cover of M: such a bundie over a connected basc space
is said to be orientable if and only if the total space has iwo connected
components,

CaveaT. The fact that the cohomology classes {[¢,]} agrec on overlaps
does not mean that they picce together to form a global cohomology class,
A global cohomology class must be representied by a global form; the
equality of cohomology classes [a,] = {g,] implics only that the forms a,
and o differ by an exact form.

Recall that in Section 7 we called a vector bundle of rank n 4 | orient-
able if and only if it can be given by transition functions with values in
SO + 1). We now study the relation between the orientability of a sphere
pundle and the orientability of a vector bundle.

Let E be a vector bundle of rank n + 1 endowed with a Riemannian
metric so that its siructure group is reduced to O(n -+ 1). Its unit sphere
bundle S(E) is the fiber bundle whose fiber at x consists of all the unit
veclors in E. and whose transition functions are the same as those of E.
S(E) is an $"-bundle with structure group Ofn + 1).

ReMARK 11.1. Fix an otientation on the sphere S If the linear trans-
formation g jis in the special orthogonal group SO{(n + 1) and [c] 15 3
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generator of H'(S" with [y, ¢ = 1, then the image g(57) is the sphere S* with
the same orientation, so that

jg*g—:j‘ gz.(‘a'.:l.
5" g{5") 5"

Thus for an orthogenal transformation g, g*e and a represent the same
coliomology class if and only if g has positive determinait.

Proposition 11.2. 4 vector bundle E is orientable if and only if its sphere
Sundie S{E) is orientable.

PrOOF. (== ) Fix a generator ¢ on $* and [ix a trivialization {U,, ¢} for E
so that the transition functions g,y assume valugs in SO(n + 1). Let
P U, x 8"— 5"

be the projection and lst m~!(x) be the fiber of the spherec bundle
7 S(E)— M at x. Define {a,] in H(S{E)|y) by

[o.] = ¢35 pilo].

To avoid cumbersome notations we will write [a,} |, and ¢, for the re-
strictions [6,] - 1y @0 @ be— 19 Tespectively. Then for every x in U,

Lo, = (Ba[0*[o].
It follows that if x € U, n Uy, then
(o], = {¢s|)* 0T
= (g l)* (e 0|
= gus(x)*[0,] |
= o]}

since g,q{x) has positive determinant. Therefore, [a,] = [6.] on U, n Uy
and the sphere bundle S(E) is orientable.

(<=) Conversely, let {U,, [6,]} be an orientation on the sphere bundle S(F)
and let (5", ¢) be an oriented sphere in R"*! where ¢ is a nontrivial top
form on S Choose the trivializations for S(E)

';60: :S{EHU, o Ua: % 8"

in such a way that ¢, preserves the metric and ¢ p¥[o]=[0,]. Then at any
point x in U, n U,, the transition function g,,(x) pulls [¢] to itself and so
Fap(*) must be in S0 + 1). (|

Remark 11,3, Since SO(1) = {1}, a linc bundle L over a connescted base
space is orientable if and only if it is trivial, In this case the sphere bundle
S(L.) consists of two connected components,
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Praposition 11.4. A vector bundie E is orientable if and only if its determinang
bundle det E is orientable.

ProoF. Let {g,p} be the transition functions of E. Then the transition func-
tions of det E are {det g,p}. An orthogonal matrix g,; assumes values in
SO{n + 1) if and only if del g, is positive, so the proposition follows.

O

Whether E is orientable or not, the O-sphere bundie S(det E) is always a
2-sheeted covering of M. Combining Corollary 11.3 and Proposition 11.4,
we see that over a connected base space a vector bundle E is orientable if
and enly if S(det E) is disconnected. Since a simply connected base space
cannot have any connected covering space of more than one sheet, we have
proven the following,

Proposition 11.5. Every vector bundle gver a simply connected base space is
orientable.

In particular, the tangent bundle of a simply connected manifold is
orientable. Since a manifold is orientable if and only if its tangent bundle is
(Bxample &.3), this gives

Corollary 11.6. Every simply connected manifold is orientable,

The Euler Class of an Oriented Sphere Bundle

We first consider the case of a circle bundle = : E -— M with structure group
Diff{5!). As stated in the introduction to this section, our problem is to find
a closed global 1-form on E which restricts to a generator of the cohomol-
ogy on each fiber. As a first approximation, in each U, of a good cover {U,}
of M we choose a generator [o,] of H'(E|y). The collection {s,} is an
element ¢®! in the double complex C*(m ™11, Q*):

A1 P -

]
e
From the isomorphism between the cohomology of E and the cohomology
of this double complex,
H3r(E) = Hp {C¥™ "1, Q)

we see that to find a global form which restricts to the d-cohomology class
of 6™ it suffices (o exiend ¢%*' to a P-cocycle. The first step of the exten-
sion requires that (8°'),, = o, — o, be exact, ie, [0,] = [a,] for all o, §.
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This is preciscly the orientability condition. Assume the bundlie E to be
criented with orientation ¢%!, so that da®! = dg'® for some ¢'® in
CHn ™', ©°), Then 6% + ¢'-% is a D-cocycle if and only if S¢° = 0. Since

d(36"°) = 8(ds™%) = (56 = 0,

da!® actually comes from an element — g of the cochain group Cizn~ 11,
). Now since the open covers U and =~ 1l have the same combinatorics,
fe, 17 Uy, ., is nonempty if and only il Uso...ap 18 CHu 7', B) = C*(U, R)
and we may regard & as an element of C*(Y, R). In fact, because de = 0, &
defines a Cech cohomology class in H*11, R). By the isomorphism between
the Cech cohomeology of a pood cover and de Rham cohomology, & corre-
sponds to a cohomology class e(E) in HXM). For a circle bundle with
structure group SO(2), this class turns out to be the Euler class of Section 6,
as will be shown later, So for an oriented circle bundle E with structure
group DIf(S') we also call e(E) the Euler class.

The discussion abave generalizes immediately to any sphere bundle with
fiber §7, n = 1. Such a sphere bundle is orientable i and only if it is possible

to find an element ¢®” in C%=n~'l, Q") which extends onc step down
toward being a D-cocycle:

5a0,n — do.l.nvl = _Drra.l,n"l

—mnte
There is no abstruction to extending o' "' one step further, since every
closed {(n - 1)-form on Ely,, , ., is exact. In gencral, exiension is possible

until we hit a nontrivial cohomology of the fiber. Thus for an oricnted

sphere bundle E we can extend all the way down to 6™ in such a manner
that if

T = O.G,n 4 O_l.n—l e e O’”'O,
then

Do = da™°,

Since d{do™ %) = 8(do™ %) = £ 5(8¢" 1) =0,

Do = 50™° = {(—¢)

for+ some in C**inY, B) =~ C"THU, R), where i is the inclusion
cn '(LI, R]ﬂ—» C U, Q°). Clearly 82 = 0, so & defines a cohomology class
e(EYy in H* (M, Ry >~ H** (M), the Euler class of the oriented §"-bundle E
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with orientation ¢® *. The Euler class of an oriented S®-bundle is defined to
be 0. Note that the Euler class depends on the orientation {[a.]} of E; the
opposite orientation would give —e(E) instead.

If E is an oriented vector bundle, the complement E? of its zero section
has the homotopy type of an oriented sphere bundle. The Euler class of £ is
defined 1o be that of E®. Equivalently, if E is endowed with a Riemannian
metrie, then the unit sphere bundle S(E) of E makes sense and we may
define the Euler class of £ to be that of its unit sphere bundte. This latter
definition is independent of the metric and in fact agrees with the definition
in terms of E°, since for any metric on E, the unit sphere bundle S(E) has
the hemotopy type of E%.

in the next two propositions we show that the Euler class is well defined.

Propesition 11.7. Far o given arientation {Ce ]} the Euler cluss is independent
of the choice of aP" 4 j =1, ..., n.

ProorF.

T —&

Let 5% * be another cochain in C%xn ™10, Q") which rcpresents the orien-
tation {[¢,]}. Then &% % — ¢® " = de"~! for some 1"~ ! in Co(= "W, Q"77).

Since d(3t"~ 1) and 4@ "~ — ¢ "~ ) are equal, 81" and 40— gt 07!
differ by dr" ™2 for some t"* in CH{zn~ "1, Q" %). Again,
ddtn %) = —d@> P — g2l

0

(61" — (5" — g2 ) = dr" R
for some "2 in €21, 03" %), Eventually we get

0 — (0 — o™ N =i, 1€ C'r U, R
Taking & of both sides, we have
E—r =41

So & and & define the same Cech cohomology cluss. .

Proposition 11.8. The Eunler class e(E) is independent of the choice of the good
cover.
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PRrOOF. Write & for the cocyele in 71" * (1, R) which defines the BEuler class
in terms of the good cover U. If 4 good cover ¥ is a refinement of 1, then

~ there is a commutative diagram

H““(II, R} ——— I"+ I(m’ R)

— ]

HpR (M)

ey and gy give the same element in Hjz (M), because if we choose the g
on = '8 to be the restriction of the o® " on =z~ 1K, the cocycle &y in C" 7 1(1B,
@) will be the restriction of the cocycle & in C" 7Y, R), so that as clements
of the Cech cohomology H** (M, R) they are equal. Given two arbitrary

- good covers W and B, we can take a common refinement B; then gy =
L gy = £qin H"T (M, R). So the Buler class is independent of the cover.

I3

If the Buler cizss vanishes, then the D-cocycle o corresponds to a global

- form which resiricts to the d-cohomolegy class of " Tn sum, then, there is

& global form that restricts to a generator on each fiber if and only if

(a) E is orientable, and
(b} the Buler class e{E} vanishes.

O.n

For E a product bundle, the extension stops at the ™" stage so that

. £=0. ln this sensc the Enler class is a measure of the twisting of an
" oriented sphere bundle. However, as we will see in the proposition below, E
" need not be a product bundle for its Euler class to vanish.

~ Proposition 11.9. If the oriented sphere bundle E has a section, then its Euler

class vanishes.

" Proor. Let 5 be 4 section of E. Tt follows from m o s =] that s*z* = 1. We

saw in the construction of the Euler class that

—na¥s = Do

" for some D-cochain o. Applying s* to both sides gives

—& = Ds¥g,

© $o ¢ is a coboundary in H*(M),

O

The converse of this praposition is not true. In general a cohomology

" class is too “coarse™ an invariant to yield information on the cxistence of

geometrical constructs. In {23.16) we will show the existence of a sphere
bundle whose Euler class vanishes, but which does not admit any section.
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We now show that for a circle bundle = : E — M with structure group
S0{2) the definitions of the Euler class in Scetion 6 and in this section agree,
We briefly recall here the earlier construction. If 0, is the anguiar coordi-
nate over U, , then [d8,/2n] is a gencrator of H Y(Ely,). Furthermore,

9, _— 40, =q* ddag = m¥¢,; — n*¢, for some 1-form g, over U,.
2n  2m 2n
The Euler class of the circle bundle E was defined to be the cohomology
class of the global form {d&_}.
In the present context these cochains fit into the double complex
C*(n~ ', Q*) of E as shown in the diagram below,

) *dh, _
Q*(E) (2_?: EE;_:)E - CH*r lu’ QF)
n*¢aﬂ — ¥
2
+
—*g
CH*m™ ",

By the explicit isornorphism between de Rham and Cech (Proposition
9.8), the differential form on M corresponding to the Cech cocycle & is
(—D"K)%. Since & — &£, = (1/27) dihyg, 68 = (1/2m) dép, so by (8.7), we may
1ake ¢ to be (1/2n) Kdb. Also note that since 6(¢/2r) = —eg,

—Ke = ¢/2n (modulo a §-coboundary).

Hence
{(—D"K)’e = —~dKdKe
= dKd({¢/2r} + d7) for some 1
= dKd(¢p/2n) + dKdét
= d¢ + dKddz.
Here

dKdét = dKddt because d commutes with &
d{l — 6K)dr by (8.7)

—ddKdr.

Since Kdr e QYM), dKdt is a global exact form, so #dKdr = 0. Hence
(—D"K)%e = d¢&, showing that the two definitions of the Euler class could be
made to agree on the level of forms.
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The Global Angular Form

In Section 6 we exhibited on an oriented circle bundle the global angular
form iff which has the following properties:

(a) its restriction to each fiber is a gencrator of the cohomology of the
fiber;
(b) dyr = — m*e, where e represents the Buler class of the circle bundle.

Using the coltating formula (.5) we will now construct such a form on any
oriented 5"-bundle.

Let If = {U_} be an open cover of M. Recall that the Euler class of E is
defined by the following diagram:

=5}
231

253

— e

where a, & €%z~ 111, Q") is the orientation of E,

oy = — D"y, i=0,....,n—1,
and
e, = — w¥e,
Hence
' Dlog + -+ + o) = —n*s.

Here o, 38 what we formerly wrote as ghnt,

If {p,} is a partition of unity subordinate to the open cover U = {U,},
then {n*p,} is a partition of unity subordinate to the inverse cover 7 M =
{#~tU,}. Using these data we can definc 2 homotopy operator K on the
double complex C*(M, (*) and also one on C*(rx™ "1, 02*) as in (8.6). We
denote both eperators by K. Both K satisfy

IK + Ké = 1.
Since
(K?T*O))an_ cpo1 Z(R*Pa)(ﬂ*W)MO et

— ¥
=r zpawuau o Bl

(T*Ka),,

s bipat ¥

K commutes with «*,
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Exercise 11,40, Il 5 + M-+ E is a section, show that Ks* = s*K.
By the collating formula (9.3),
(11.11) Y= S (—D{D'K e -+ (= 1)rHK(DK)(—m*e)
i=0

is a global form on E. Furlhermore,
dy = (— 1T K (K —n*e)
= —p¥(— 1T ID"K)" e since 7* commutes with D'K
(11.12)

In formula (11.11) since the restriction of w*{{—1)"* 'K(D"K)'s) to a fiber is
0, the restriction of the global form i to each fiber is d-cohomologous to
g lrwer, henice is a generator of the cohomology of the fiber. The gobal
n-form i on the sphere bundle E satisfics the properties () and (b) stated
earlier. We call it the global angular form on the sphere bundle.

- w*e by Proposition 9.8

1

Exercise I{.13. Use the existence of the global angular form ¥ to prove
Proposition 11.9.

FEuler Number and the Isolated Singularities of a Section

Let n : £ — M be an orienled {k — 1)-sphere bundle over a compact orien-
ted manifold of dimension k. Since H¥(M) =~ R, the Euler class of £ may be
identified with the number _[Me(E), which is by definition the Euler number
of E. The Buler number of the manifold M is defined to be that of its unit
tangent bundle S(T;) relative to some Riemannian structure on M. W!li]e
the Euler number of an orientable sphere bundle is defined only up to sign,
depending on the orientations of both E and M, the Euler number of the
orientable manifold M is unambiguous, since reversing the orientation of M
also reverses that of the tangent bundle.

In general {he sphere bundle E will not have a global section; however,
there may be a section s over the complement of a finite number of points
Xy, ... %, in M. In fact, as we will show in Propositiqn 11‘14,_if the sphere
bundle has structure group Ok}, then such a “partial” section s always
exists. In this section we will explain how onc may compute the Eulor class
of E in terms of the behavior of the section s mear the singularities
Kpavers Xg-

Proposition 11.14, Let = : E-» M be a {(k — 1)-sphere bundle over a compact
manifold of dimension k. Suppose the structure group of E can be reduced to
O(k). Then E has a section over M — {xy, ..., x,} for some finite nmunber of
paints in M.
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ProQF. Since the structure group of E is O(k), we can form 4 Riemuannian
veclor bundle E' of rank k whose unit spherc bundle is E. A section s of E
over M gives rise to a partial section s of E 1 s(x) = & (x| 8'() ||, wheve || |
denotes the length of a vector in E', Let Z be the zero locus of s'; sis only a
partial section in the sense that it is not defined over Z, Thus (o prove the
proposition, we only have to show that the vector bundle E' has a section
thal vanishes over a finite number of points,

This is an casy consequence of the transversality theorem which states
that given a submanifold Z in a manifold Y, every map f: X — ¥ becomes
transversal to Z under a slight perturbation (Guillemin and Pollack [1, p.
68]). Furthermore, we may assume that a small perturbation of a section of
E is again a scction, as follows. Suppose [ is a perlurbation of 5 and f is
transversal to the zero section. Then g = = o f is a perturbation of 7 = s,
which is the identity. Thus, for a sufficiently small perturbation, g will be
closc to the identity and so must be a diffeomorphism. For such an f, define
§(%) =F(g7'(x)). Then n o 8" = 1 and s is transversal to the zero seclion s,,
ie, 5 = s'(M)intersects Sy = so(M} transversally, Since

dim § + dim Sy = dim E,

S~ Sg consists of a discrete sel of points, By the compactness of S, it must
be a finite set of points. M|

ReEMARK 11.15. It follows from the rudiments of obstruction theory that this
proposition is true even if the structure group of the sphere bundle cannot
be reduced to an orthogonal group. For a beautiful account of ocbstruction
theory, sce Steenrod [ 1, Part II].

Suppose 5 is 4 scction over & punctured neighborhood of a point x in M.
Choose this neighborhood sufficiently small so that it is diffeomorphic to a
punctured disc in B* and E is trivial over it. Let D, be the open neighbor-
hood of x corresponding to the ball of radius r in & under the diftcomor-
phism above. As an open subsct of the oriented manifold M, D, is also
oriented. Choose the orientation on the sphere 84! in such a way thal the
isomorphism E|p =~ D, x §*7! is oricntation-prescrving, where D, x $* 1
is given the product crientation. (If 4 and B are two orienled manifoids
with crientation forms w4 and wg, then the product orieniation on 4 x Bis
given by {pfw,) A (p} wyg), where p; and p, are the projections of A x B
onto A and B respectively.) The focal degree of the section s at x is defined
1o be the degree of the composite map

an, o E|D,=}5, x §k1 5 gkt

where g is the projection and B, is the closure of D,.
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This theorem can also be phrased in terms of vector bundles. Iet
z+E —» M be an oriented rank k vector bundle over a manifold of dimen-
sion k and s a section of £ with a finite number of zeros, The multiplicity of
& zero x of s is defined to be the local degree of x as a singularity of the
section s/ s || of the unit sphere bundle of E relative to some Riemannian
struciure on E. (This definition of the index is independent of (he Rieman-
nian structure because the local degree is a homotopy invariant) Since the

Theotem 11.16, Let it :E-» M be an oriented (k — 1)-sphere bundle over
a compact oriented manifold of dimension k. If E has a section over M — {x,,
eens X,}s then the Euler number of E is the sum of the local degrees of 5 at

Xy oeey Xgo

Proor. Let M, be M minus the balls of radius » around the points xy, ...,

x,. {By the radius, we mean the radius in R under some fixed diffeomor-
phisms of the neighborhoods of the singular points x;, ..., X, as above) Fuler ¢lass e(E) of E is a k-form on M, it is Poincaré dual to wP, where
The Buler number of E is H= f welE) and P is a point on M. Thus we have the following.
(11.16.1} J:.,;e = ,h-l:no M,e = r]l_i.l’:a IM,S*R*E since § is a global section Theorem 11.17, Let m: E— M be an oviented rank k vector bundle over «
over M, compact oriented manifold of dimension k. Let s be a section of E with a finite
number of zeros. The Euler class of E is Poincaré dual to the zeros of s,
= — lim -[ st because m*e = —di counted with the appropriate multiplicities.
r—+ 0 JA,
. _ ) _ FxamPLE 11,18 (The Euler class of the unit tangent bundle to 5%, Let 8(Ty)
= — rh—]»l:) J;M st by Stokes’ theorem. be the unit tangent bundle to 82, It is a circle bundle over $:

For cach i, choose an apen ball D, around the singularity x; as before,
(To keep the notation simple, we write D, rather than D, ;.} Let o the
generator of S¥71. Then p*o restricts to the generator on each fiber of Efp, .
So p*s and the angular form i define the same cohomology class in

H*(E|p,) ic,

St = $(T5)

S2
W — plo =dt

for some (k — 2)-form 1 on E|p,. By shrinking r slightly, we may assume
that 1 is defined over a neighborhood of the closed ball . Then

st — s¥p¥e = s¥dr

Fix a unit tangent vector v at the north pole. We can define a smooth
vector fteld on 82-{south pole} by parallel translating v along the great
circles from the north pole to the south pole (see Fipure 11.1). (Parallel
" translation aleng a great circle on §* is prescribed by the following two

i | and conditions:
Bl | .[ sty — j s*pro = J ds*z =0 by Stokes' theorem. {a) the tangent field to the great circle is parallel;
1 s, o5, 3B, (b) the angles are preserved under parallel translation.)
I Therefore,
i i J s*ify = local degree of the section s at x;.
31} il ¢

Since 80, has the opposite orientation as M,

e

— lim s = lim Y, s*ip =Y (local degree of 5 at x;).
r -+ 0 JaM, o 0 xp Jab, ]

Together with (11.16.1), this gives

e

j e =y (local degree of 5 at x;).
M i Figure 11,1
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Figure 11.2

This gives a section s of S{1}.) over S>-{south pole}. On a small circle
around the south pole, the vecior field looks like Figure 11.2, ie., as we go
around the circle 90°, the vectors rolale throngh §80°; therefore, the local
degree of 5 al the south pole is 2. By Theorem 11.16, the Euler class of the
unil tangent bundle to 8% is 2.

Exercise 11.19. Show that the Buler class of an oriented spherc bundle with
even-dimensional fibers is zero, at least when the sphere bundle comes from
a vector bundle.

Since the Buler class is the obstruction to finding a closed global angular
form on an oriented sphere bundle, by t(he Leray-Hirsch theorem we have
the following corollary of Exercisc 11.14,

Proposition 11.20. If = : E— M is an orientable S bundle, then

H*(E) = H*(M) &> H*(S*").

Exercise 11.21. Compute the Euler class of the unit tangent bundle of the
sphere % by finding a vector field on S* and computing its local degrees.

Euler Characteristi¢c and the Hopf Index Theorem

In this section we show that the Euler number [y e(Ty,) is the same as the
Euler characteristic y(M) = % (—1)%dim H%A) and deduce as a corollary
the Hopf index theorem. The manifold Af is assumed to be compact and
oriented.

Let {ew;} be a basis of the vector space H™(M), {1;} be the dual basis
under Poincaré duality, i.e., _[M an A T, =&, and let = and g be the two
projections of M x M to M:

M x M
;‘I/ Y
M M.
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By the Kiinneth formula, H¥M x M} = H*(M) @ HYM) with {n*o; A
prr;p as an additive basis. So the Poincaré dual y, of the diagonal A in
M X M is some linear combination 1y = ) ¢y w*w; Ap¥ty.

Lemma 1122, 5, = 3.(— 1P %r*a; A p*r,.

PRrROOE. We compute [, ¥t Ap*wy in two ways. On the one hand, we can
pull this integral back to M via the diagonalmap 1 : M — A< M x M:

atr, A pto = J Rty A ¥ pray = J
M

1 A @y = (_ ]]ldcs i) (dew on) 5k! ;
M

Ja
On the other hand, by the definition of the Poincaré dual of a closed
orienied submanifold (5.13),

A pfay = J a¥F g A proy A

A Mo M
= Zcu.f ¥, A pFoy At A p¥yg
i, % M
= Y gy (- 1)lden et des onldeg ) f o A tdpwiAy)
F A M
= (_ 1)(d=g 1+ deg wdeg wk Cu
Thereforc

_-fo i ko 1
GEU—E e k=L

!

Lemma 11.23. The normal bundie N, of the diagonal & in M x M is isomor-
phic to the tangent bundle Ty,

Proov. Since the diagonal map 1 : M x M sends M diffecinorphically onto
A, *T, = Ty It follows from the commutative diagram
(v,v) += (0 0)
0= Th— 'E\erla — Ny— 0
1t 12
0= Ty— Tu®@Ty— T 0
v {0, 0)

lhatNAx TJ"I{"—"T:A'
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Recall that the Poincaré dual of a closed oriented submanifold S ig
represented by the same fortn as the Thom class of a tubuniar neighborheod
of § (see (6.23)). Thus

J. a = j O(N,) where ®(N,) is the Thom class of the normal
A A bundle N, regarded as a tubular neighberhood
of Ain M x M

o= [ e(N ) since the Thom class restricted to the zero
vA section of the bundle is the Buler class

== J e(Ty)
A

= J;f G(TM} .

So the selfiintersection number of the diagonal A in M x M is the Euler
number of M. (By Poincaré duality, [, Ha = JuxprtlaAna i the self-
intersection number of Ain M x M)

Now the right-hand side of Lemma 11.22 evaluated on the diagonal A is

"

j Ha = 2 (— 1) 9 | mron A pryy
A i

JA

= Y(—1)r e | ey Ar*p¥r,
1 oA

]

= Z('— 1)(1:3 i wiAT;

A

- E { — 1}dcg ey
!

= 3.(— 1) dim H¥(M)
q
= (M)
Therefore,

Proposition 11.24. The Evler munber of a compact oriented manifold T (T
is equal to its Euler characteristic y(M) = Y (—1)* dim HA,

It is now a simple matter to derive the Hopf index theorem, Let ¥ be 2
vector field with isolated zeros on M. The index of V at a zero u is deflined
to be the local degree at u of ¥/ || ¥ || as a section of the unit tangent bundie
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of M relative to some Riemannian melric on M. By Theorem 11.16 the sum
of the indices of ¥ is the Luler number of M. The equality of the Euler
number and 1he Euler characteristic then yields the following,

Theorem 11.25 (Hopf Index Theorem). The sum of the indices of a vecior
field on a compact oriented manifold M is the Euler characteristic af M.

Exercise 11.26 (Lefschetz fixed-point formula). Let [ M — M be a smooth
map of a compact oriented manifold into itsclf. Denote by H?(f) the in-
duced map on the cohomology HM). The Lefschetz number of f is defined
to be

L)y =Y (= 1)7 trace HY(f).

q

Let I be the graph of /in M = M.

(a) Show that
J;*ir = L(/).

{b) Show that if f has no fixed points, ther L{f) is zero.
{(c) At a fixed point P of f the derivative (2f)p is an endomoerphism of the
tangenl space Tp M. We define the mdtiplicity of the fixed point P to be

op = sgn det{(Df ), — I).
Show that if the graph.F is trangversal to the diagonal A in M x M, then

L(f) = ; Cp,

where F ranges over the fixed points of f {For an ecxplanation of the
meaning of the multiplicity o, see Guillemii and Pollack [1, p. 1217.)

§12 Thom Isomorphism and Poincaré Duality
Revisited

In this section we study the Thom isomorphism and Poincaré duality from
the tic-tac-toe point of view. The resulis obtained here are more general
than those of Sections 5 and 6 in two ways:

(a) M need not have a finite good cover,
and

(b) the orientability assumption on the vector bundle E has been
dropped.
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The Thom Isomorphism

Let n: E —» M be a rank » veclor bundle. £ is not assumed to be orient-
able. We are interested in the cohomology of E with compact support in the
vertical direction, H*{E) = H*{Q* (E)}. Recall that

() HX®R" = {i]% in dimension n

0 otherwise,
(b) (Poincaré lemma) HX (M x R") = H*7"(M).

Let Il be a good cover of the base manifold M. We augment the double

;omplcx CH*(z~ 11, %) by adding a column consisting of the kernels of the
rst d:

0— ‘Q'clv(E) no*
90— ni‘]l:(E] -

Using a partition of unity from the base, it can be shown that all the rows
of this agumented double complex are exact. The proof is identical to that
of the gencralized Mayer-Victoris sequence in (8.5) and will not be repeated
here. From the exactness of the rows of the augmented complex, it follows
as in (8.8) that the cohomology of the initial column is the total cchemol-
ogy of the double complex, i.c.,

HX(E) = Hp {C*(n™ 11, QX))

2

On the other hand,
HEH{CHr "0, Q) = HE([n "'V, 0,)
= [T H&(n U0
= CF, 5%,
where #°%, is the presheaf given by
H4(U) = Hi(n™'U).
By the Peincaré lemma for compacily supported cohomology, if U is con-
tractible, then
R ifg=n
0 otherwise.

H L) = {

Therefore H,; and also H{ 7H, == HF{C*(Y, 2¢%)} = HY(YU, 5°7,) have entries
only in the nth row,

Proposition 12.1, Given any double complex K, if H; I {(K) has entries only in
one row, then Hz H, is isomorphic to Hp,.
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This proposition will be substantially generalized in Scetien 14, for it is
gmply an example of a degenerate spectral sequence. Its proof is a technical

exercise which we defer to the end of this scotion. Combined with the
.. preceding discussion, it gives

H(Ey=Hf= & HL #L)=H*""U, #7,)
pta=®
This is the Thom isomorphism for a not necessarily orientable vector
bundle.

Theorem 12.2 (Thom Isomorphism). For n:E--» M any vector bundle of
vank n over M and W a good cover of M,

HA(E) =~ H* W, A7),
where #°" is the presheaf #7,(U) = H2(n™ ' U).

We now deduce the orientable version of the Thom isomorphism from
this. So suppose © : E — M is an orfentable vector bundle of rank » over M,
This means therc cxist forms ¢, on the sphere bundles S(E) |y, which restrict
to a generator on each fiber and such that on averlaps U, n Uy their
cohomology classes agree: [¢,] = [0;]. Now choose a Riemannian metric
on E so that the “radius™ r is well-defined on each fiber and any function of
the radius r is a globul function on E. Let p(¥) be the function shown in
Figurc 12.1, Then (dp)o, is a form on E[Ua, where we regard o, as a form on
the complement of the zero section. Furtherimore, [dp)a,] Hﬂu(E]UR) res-
tricls to a generator of the compactly supported cchomology of the fiber
and [(dp)o ] = [(dp)ag] on U, ~ Upy. Since the fiber has no cohomology in
dimensions less than n, ¢%" = {s,} can be extended to a D-cocycle. This
D-cocycle cortesponds to a global closed form @ on E, the Thom class of E,
which testricls to a generator on cach fiber, Now #7,(U) is generated by
(I>|U and for V < U the restiriction map fram s#7,(U) to #°5,(V) sends CD]U

I !

p(r}

Figure 12.1
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io (1)|,,. Hence, via the map which sends @ |, for every open sot U, to the
generator 1 of the trivial presheaf R, the presheal #7, is isomorphic to R,

[}

‘The Thom isomorphism theorem then assumes the form

(12.2.1) HA(E) ~ H* "0, 5%} = H* "L, B) = H* (M),

[or an orieniable rank n vector bundle E. Tlis agrees with Proposition 6,17,
It haolds in particular when M is simply connected, since by (11.5), every
veetar bundle over 4 simply connected manifold is orientable.

From the explicit formula (11.11) for the global angular form on an
priented sphere bundle, we can derive a formula for the Thom class of un
oriented vector bundte, Let f : E® —» 5(E) be a deforihation retraction of the
complement of the zero seclion in E onte the unit sphere bundle, If g is the
global angular form on S(E), then f = f*ifig e H*~Y{E®) is the global angu-
lar form on E® It has the property that

difp = —n*e,

where e represents the Euler class of the bundle E.

Proposition 12,3. T'he cohomology class of
D = d{p(r} - ) € QL(E)
is the Thom class of the oriented vector bundie E.

Proor. Note that

(12.3.1) @ = dp(r)  f — plrinte.

For the same reasons as in the discussion following (6.40), @ is a closed
global form on E with compact support in the vertical direction, Its re-

striction to the fiber at p is dp(r) = 1}, wherc 1, E,-» E is the inclusion
and ¥ gives a generator of H"™' (R" — {0}) = H"~(S"™'). Since

L"dp(r) = L, dp(r) I"—‘ =1,

by (6.18), @ is the Thom class of E, ]
If s is the zero section of E, then s¥dp = 0 and s¥*p = — 1. By (12.3.1),
§*D = —(s*plstnte = e .
Thus,

Proposition 12.4. The pullback of the Thom class of an oriented rank n vector
bundie via the zero section te the base manifold is the Euler class.
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RiEMARK 12.4.1. From the formula for the Thom class (12.3), it is clear that
by making the support of p(r) sufficiently close to 0, the Thom class @ can
be made to have support arbitrarily close to the zero section of the vector
bundle.

" REMARK 12.4.2. In fact, in Proposition 12.4 any scetion will pull the Thom

class back to the Euler class, Let s be a section of the oriented vector bundle
E and 5* 1 H%(E)— H*(M) the induced map in cohomology. Note that &*
can be written as the composition of the natural maps i: H(E)— H*(E)
and §% : H¥(E)~» H¥(M). As a map {rom M into E, the section s is homo-
topic to the zero scction s,. By the homotopy axiom lor de Rham cohomol-
ogy (Cor, 4.1.2), §* = §F . Hence, s* = s .

Using the description of the Buler class as the puliback of the Thom
class, it is easy to prove the Whitney product formula.

Theorem 12.5 (Whitney Product Formula for the Euler Class). If E and F
are two oriented vector bundles, then e(E @ F) = e(E)e(F),

ProOOE. By Proposition 6.19, the Thom class of E & F is
G(E @ F) = n*QE) A n3@(F)

where n, and s, are the projections of X @@ F onto E and F respectively,
Let s be the zero section of E @ F. Then n, = s and =z o 5 are the zero
sections of £ and F. By Proposition 12.4,

e(E (P F) = s*D(E @ F)=s*at (E} A s*nE®(F} = e(E)e(F).
O

Exercise 12.6. Let n ' E— M be an oriented vector bundle.

{a) Show that mn*e = ® as cohomology c¢lasses in H*(E), but not in
HE(E).

(b) Prove that PA® = @ An*ein HA(E)

Euler Class and the Zero Locus of a Section

Let 7 : E — M be a vector bundle and 5, the image of the zerc section in E.
A section s of E is transversal il ils image 8§ = s{M) inlersects S, trans-
versally. The purpose of this section is to derive an interpretation of the
Fuler class of an oriented vector bundle as the Poincaré dual! of the zero
locus of a transversal section. This is an analogue of Theorem 11.17,
which is more special in that rank E = dim M, but more general in that the
section is not assumed to be fransversal.

Proposition 12.7. Let « : E— M be any vector bundle and 7 the zere locus af
a transversal section, Then Z is a submanifold of M and its normal bundle in
M is Ny = E[3. :
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e .

Figure 12.2

Proor. Write 8§ = s(M) for the image of the seclion s (see. Figure 122),
Because S intersecis S transversally, S - Sy is a submanifold of § by the
transversality theorem (Guillemin and Pollack [1, p. 28]). Under the
diffcomorphism s: M — 8, Z is mapped homeomoerphicatly to § n Sp. Seo
Z can be made into a submanifold of M.

To compute the normal bundle of Z, we first note that because E is
locally trivial, its tangent bundle on S, has the following canonical de-
composition

T‘E]Soinso@ TSQ'
By the transversality of § n 5.
TS - TSO = TE_ = E (‘B T:SD on 8§ m So_.

Hen_cc the projection Tz— E over § n Sy is surjective with kernel Ty n 15,
Again by the transversality of § n Sg, To m T, = Ts o5, So we have an
exact sequence over Z ~ S n S,

0— Tz > Tylz~» Elz~ 0.
Hence Nz, = E ]z . ]
In the proposition above, if E and M arc both oriented, then the zero

locus Z of a transversal section is naturally an eriented mmanifold, oriented
in such a way thal

El, ® Ty = Tyl
has the direct surn orientation.

Proposition 12,8, Let 1 : E— M be an oriented vector bundle over an oriznted
manifold M. Then the Euler class e(E) is Poincaré dual to the zero locus of a
transversal section.
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E

Supp @

Figure 12.3

Proor. We will identify M with the image S, of the zero section. If S is the
image in E of the transversal section s : M — F, then the zero locus of 5 is
Z=8mnS,. Zis a closed oriented submanifold of M and by Proposition
12.7, its normal bundle in M is Nz, = E |3 Since § is diffeomorphic to M,
the normal bundle Nz of Z in § is also Elz- The normal bundles Nz, and
Nzis will be identified with the tubular neighborhoods of Z in M and in §
respectively, as in Figure 12.3.

Choose the Thom class ® of E to have support so close to the zero
section (Remark 12.4.1) that & restricted to the tubular neighborhood Ny
in § has compact support in the vertical dircction, In Figmre 12.3 the
support of @ is in the shaded region, We will now show that s*® is the
Thom class of the tubular neighborhood Ny, in M.

Let E_, S,, and M, be the fibers of £ 2 Ny o N, 1espectively above
the poini z in Z. Because @ has compacl support in 5, s*® has compact
supporl in M. Furthermore,

j s#D = j @ by the invariance of the integral under the
M ok orientation-preserving diffeomorphism s : M, — §,

It

J & because E, is homotopic to §; medulo the region
s in E where @ is zero

| by the definition of the Thom class.

So s*® is the Thom class of Ng,,. By Proposition 12.4, s*® = e(E). Since
by {6.24) the Thom class of N s is Poincaré dual to Z in M, the Euler class
e(E) is Poincaré dunal to Z in M. -

A Tic-Tae-Toe Lemima

1n this section we will prove the technical lemma (Proposition 12.1) that if
H,H, of a double complex K has entries in only ane row, then H, H; is
isomorphic to the total cohomology Hp(K). With this lic-tac-toe lemma we
will re-cxamine the Mayer—Victoris principle of Section 8.
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Proor OF PROPOSITION 12.1.

e

We first define a map h: HyH,— Hy,. Recall that D=D"+D"=§--(—17)d,
An element [¢1 in H5?H, may be represented by a D-cochain ¢ of degres
(p, 9) such that

D" =0
b = — D', for some ¢y

This is summarized by the diagram

G
D1
¢ 6+ Dgy =0
1D
s

Since HE*2971H, =0, 8¢, = —D"¢, for some ¢,. Continuing in this
manner, we se¢ that ¢ can be extended downward to a D-cocycle ¢ +
¢, + -+ ¢,. The map k is defined by sending [¢] to [¢+ ¢+ + b,

Next we define the inverse map g : Hp — HyH,;. Lel « be a cocycle in
Hj. As the image of @ we cannot simply take the component of o in the
nonzero row because d of it niay notl be zero. Suppose w =a-+b+c+ -
as shown.

b

b
A

We will move @ in jts D-cohomology class so that it has nothing above the
nenzero row. Since da = § and da = — D"h, a represents a cocycle in Hy Hy.
But Hyii; = 0 at the position of @, so @ is 0 in HyH,; this implies that
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a = D"a, for some a,. Then & — Da, has no components in the first col-
amn. Thus we may assume w=b - ¢ + ---. Again b is 0 in H; H,, so that
b= db, + D"b,, where Dby =0. Then w — Diby + by)=(c~ b))+~
starts ut the nonzero row.

0
1
b= b
T
b — ¢

Thus given [es] € Hp, we may pick @ to have no components above the
nonzero row of Hy H, sayw = ¢ + -+, Thende = 0 and the mapg: Hp—
H; H,is defined by sending [»] to [c].

Provided they are well-defined, I and g are clearly inverse to each other.

Exercise 12.9. Show that k and g are well-defined.
O

Using Proposition 12.1 we can give more succinct proofs of the main
results of Section 8. Let U = {U,} be an open cover of the manifold M and
CHU, 09) = IIOAU,,..«, - By the exactness of the Mayer-Vietoris sequence,
H, of the Cech—de Rham complex C*{3, (%) is

QM)
Q' (M)
QM)

Q 1 2 r
so that H, H; is

¢ |

HYM)
HY(M)
HO(M)

0 1 2 P
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Since I, H, has only one nonzero column, we conclude from Proposition
12,1 that

HH{CHU, Q%)} =~ HEx(M)

for any cover Y. This is the generalized Mayer—Vietoris principle (Prop-
osition 8.8),

Now if W is a good cover, H, of the Cech—de Rham complex is

q

co, By | cran B | CPALL

and Hy H, is

HO(U, Ry | BA(U, R) | HQL R

Again because H, H, has only one nonzero row,

HECHQL, Q%) =~ I, I).

This gives the isomorphism between de Rham cohomology and the Cech
cohomology of 2 good cover with coefficients in the constant presheaf R,

Exercise 12.16. Let CP" have homogeneous coordinates zg, .-., z,. 1Jefine
U, = {z; # 0}, Then M = {{/,, ..., U,} is an open cover of €P", although
not a good cover. Compute H*(CP" from the double complex C*(H, Q¥).
Find elements in C*(4, *) which represent the generators of H*(CFP?),

Exercise 12.11. Apply the Thom isomorphism (12.2) to compute the coho-
mology with compact support of the open Mébius strip {c¢f. Exercise 4.8).
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.i Poincaré Duality

* In the same spirit as above, we now give a version of Poincaré duality, in
" terms of the Cech—de Rham complex, for a not necessarily orientable mani-
¢ fold. Let M be a manifold of dimension r and i = {U,} any open cover of
M. Dcfine the coboundary operator

3: @B MUy o)~ @ HWUay )

._\ by the formula

{60))11[) s Bp— ) - Z maao A Bp—1
x

where on the right-hand side we mean the extension by zero of a5, 4, tO

a form on U, ., To cnsure that each component of dw has compact

: i_:- support, the groups here are direct sums rather than direct produets, so that
Cwe @ QU .., ) by definition has only a finite number of nonzero com-

Proposition 12,12 (Generalized Mayer—Vietoris Sequence for Compact Sup-
poris). The sequence

suUm

0— QM)+ P QIUy)— D WU}

e @O U a)
is exact.

PROOE. We first show 82 = (. Let w be in @ GXU,, ..y ) Then
{5250)@ tp—2 Z(aw)aao e lpm2 Z % Dran ... op—2

=0, since w,g = —wy .

New suppose dw = 0. We will show thal w is a 8-coboundary. Let {p,} bea
partition of unity subordinate to the cover 1, Define

p+1
g prs = EEO[— 1)!.(’“(-(030 I TR e
Note that ©

E(.e@pa

[6T)ao e Z Taap ... p

has compact support. Then

= z (pa wﬂo P + Z( - I]H— lpm f{)mo [P S ap)
== g . tp “+ Z { - 1}1 " Iprxf(aw)na v i tp
]

= Way . ap
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Exercise 12.12.1. Show that the definition of 1 in the proof above provides 5
homotopy operator for the compact Mayer—Victoris sequence (12.12). More
precisely, if « is in @QHU,, .} and

pti
i
(Kcu)dﬂ..-ﬁpé-] ="21 ( - 1} Pai Dan.. i ope1?

then

dK + Kb = 1.

Consider the double complex CHU, QF):
q
2
1
0} ® QU,) 4@ RUs.,)

0 1 2

|

In this double complex the S-aperator goes in the wrong direction, so we
define a new complex

K77 = CPQ, Q).

q

i @ ‘QE(Uaumu) s (_B QE(Uanm) -+ @D QE(UEO)

—2 —1 0 p

By the exactness of the rows, Hy(K) is

Q2(M)
Q7 (M)
QM)

) ~1 0 p
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Since H,H, has only one nonzero column, it follows from Proposition
12.1 that

S {12.13) Hp(K) = HyHy(K) = H, (M)
On the other hand, if 1 is a good cover, then H,(K) is
4
— e B4 - + PR+ OR
ap=..Sep ag<el an
—1 0 3]

Hy #4K) = CH(U, 57)

where 39 is the covariant functor which asscciates to every open set U the
- compact cohomology HI(U) and to every inclusion i, the extension by zero,

{5 MOTEOVEr,
Hi»%K)=0 for g#n
Again by Proposition 12.1,
(12.14) S(K) = 3 ™ H, = H,_, (1, #7).
Here H,_ (U, 57} is the (n — +)-th Cech homology of the cover 1l with

coefficients in the covariant functor 7 (cf. Remark 10.3). Comparing
(12.13) and (12.14) gives

Theorem 12.15 (Poincaré Duality). Let M be a manifold of dimension n and U
any good cover of M. Here M is not assumed to be orientable. Then

HYM) = H,_ (U, 27),
where 37 is the covariant functar 2 NU) = HNU).

Exercise 12.16. By applying Poincaré duality (12.15), compute the compact
cohomoelogy of the open Mdobius strip (cf. Exercise 4.8).

§13 Monodromy

When Is a Locally Constant Presheaf Constant?

In the preceding seclion we saw that the compact vertical cohomology
HX(E) of a vector bundle E may be computed as the cohomoltogy of the
base with coefficients in a locally constant presheaf. When this locally con-
stant presheaf is the constant presheaf R”, % (F) is expressible in terms of
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the de Rham cohomology of the base manifold {(Propesition 10.6). In this
case the problem of compuiing F%(E) is greatly simplified. It is thereforg
important to determine the conditions under which a locally constant pre.
sheaf is constant.

First we need to revicw some basic definitions from the theory of sim-
plicial complexes {se¢, for instance, Croom [1]). Recall that if an n-simplex
in an Buclidean spacc has vertices vg, ..., ©,, then its barycenter is the point
(g A+ + v, ){n + 1). Far example, the barycenter of an edge is its mid-
point and the barycenter of a triangle (a 2-simplex) is its center. The first
barycentric subdivision of a simplex # is the simplicial complex having all
the barycenters of ¢ as vertices. By applying the barycentric subdivision to
cach simplex of a simplical complex K, we obtain a new simplicial complex
K’, cailed the first barycentric subdivision of K, The support of K, denoted
| K|, is the underiying topological space of K, and the k-skeleton ol K is the
subcomuplex consisting of all the simplices of dimensian less than or equal ta
k. The complex K and its barycentric subdivision K’ have the samc support.
The star of a vertex v in K, denoted st(v), is the union of all the closed
simplices in K having v as a verlex.

Next we introduce the notion of a presheaf on an open cover. Let X be a
topological space and W = {U/,} an open cover of X, The presheaf & on Il
is defined to be a functlor .# on the subcategory of OQpen(X) consisting of all
finite intersections U,, , of open sets in . Equivalently, if N(I) is the
nerve of 1, the presheaf % on U is the assignment of an appropriate group
to the barycenter of each simplex in N(U); for example, the group attached
to the barycenier of the 2-simplex represeniing Un VAW is
F(U ~ V r W) Each inclusion, suy U n V— U, becomes an arrow in the
picture, F{U)— F(U n V), and the transitivity of the arrows says that
Figure 13.1 is a commutative diagram.

F(LI)

(U NY)

F(V)

F (W)

Figure 13.1
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Two presheaves & and ¥ are isomorphic relative to an open cover W =
{Uif forcach W = U, .1, there is an isomorphism

h}y IF(W] —F {g(W)

. compatible with all wrrows. In other words, there is a natural equivalence of
- functors % — ¥ where & and % are regarded as functors on the subcate-

gory of Open(X) consisting of all finite intersections U, x, Of open sets in

M. The trivial presheaf and the constant presheaf on an open cover U are

defined as in Section 10, However, the definition of a locally constant

- presheaf on Y requites some care, since the notion of “local” does not make
. senIse on a cover. We say that a presheaf & is locally constant on 10 if all the
groups F(U,, ) are isomorphic and all the arrows are isomorphisms,

Note that a locally constant presheal on a space X is locally constant on

~ some open cover, and conversely,

Of course, if two presheaves & and % are isomorphic on 4n open cover

. 11, then the cohomology groups H*(U, #) and H*(M, ¥) are isomorphic.

Uy

Uy

u,
Figure 13.2

ExaMPLE 13.1 (A locally constant presheal on M which is nat constant). Let

[ ={Us, Uy, U,} be a good cover of the circle §' (see Figure 13.2). Define

4 a presheaf & by

F(UYy = Z for all open sets U,
Po1 = Po1 = piza = pla =L

péz=—1,p8s =L

3 F s locally constant but not constant on H because pd; is not the identity.

Let % be a locally constant presheal with group & on an open cover

~ U = {U,}). Fix isomorphisms

$. FUY S G
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If U, and U intersect, then from the diagram

FUY S (|?
Pan l }
FUAUY |
|

£
paﬂ[ f;‘"ﬂ l
FUH 5 G

we obtain an automorphism of G, namely ¢, (0% 0%, 1. Write pg:
F(U )~ F(U,) for the isomorphism {pfg)~* o pZ,. Choose some vertex U,
as the base point of the nerve N(UI). For Uy, U, ... U, U, a loop based at U,
we get an auwtomorphism of G by following along the edges

do
F(Uey > f
l |
-
FU) 5 IG
i |
_ i
[ogt
‘QF{UO} -F'"i’ G.

This gives a map from {loops at Uy} to Aut G. We claim that if a loop
bounds a 2-chain, then the associated avtomorphism of G is the identity.
Consider the example of the 2-simplex as shown in Figure 13.3.

U,

U,
b
ﬂtln U,
Figure 13,3

u,
0l Y ' (e ) " phlapty

(e

Figore 134
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U, u,
U, U,
u; Uy
nping pEod{pb ) pllanh
) ®)
U, U,
Ug UD
u, U,
pEleta) (pli) Rl nd, pHeR ) 0Blae:
{c) {d}
U, U,
Uy Uy

(PR ) pRl2p8 =

H

The associated automorphism of the loop U, U U, is ¢olpdpipllda ! so it

is a matter of showing that pdpip? is the identity. This is clear from the

sequence of pictures in Figure 13.4, where we use heavy solid lines to

inzdicatc maps which, by the commutativity of the arrows, are all equal to
1._0

Popapi.



146 11 The Ceeh—de Rham Complgy

More generally, the same procedure shows that the map p...ef aroung
any hounding loop is the identity. Hence there is a homomorphism

{loops}
G
{bounding loops} —AULG,

p Ry (NQU)) =

calted the monedromy representation of the presheaf 7. Heve m {N(H)) de.
notes the edge path group of the nerve N(1[) as a simplicial complex.

Theorem 13.2. Let U be an open cover on a connected topological space X
and NQ) its nerve, If n (NQU)) = O, then every locally constant presheaf on 11
is constant,

ProoF. Suppose m (N () =0, ie, every loop bounds some 2-chain, For
cach open set U,, choose a path from Ugto U, say Uy U LU UL, and
define i, = ¢o (p ... pBp2) 7 1 F (U — G

@o
F(Ug~ G
{
F{U)

i, is well-defined independent of the chosen path, because as we have seen,
around a baunding loop the map p§ ... pf§ is the identity.

Now carry out the baryceniric subdivision of the nerve N(U) to get a
new simplicial complex K so that every open sct U, ,, corresponds io a
vertex of K. Clearly =, (N(H)) = n;{(K). By the samc procedure as in the
preceding paragraph we can define isomaorphisins

u’jao s :'%“(Uum ..,ap} = G
for all nonempty U,, ... The maps ¥, ., give an isomorphism of the

presheaf # to the constant presheaf G on the cover U, 0

Remark 13.2.1, If the group G of a locally consiant presheaf has no auto-
morphisms except the identity, then there is no monoedromy. In particular,
every locally constant presheaf with group Z, is constant.

ReMaARK 13.3, Recall that a simplicial mop between two simplicial complexes
K and L is a map f from the vertices of K to the vertices of L such that if
Ugs «e-s Uy SPAR A snnplcx in K, then f{vg), ..., f(v,) span a simplex in L. A
simpllmal map ffrom K to L induces a m'lpf | K|+ | L] by linearity:

FE vy =2 4 filv).

By abuse of language wc refer to either of these maps as a simplicial map.
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For the proof of the next theerem we assemble here some standard facts
from the theory of simplicial complexes.

(2) The edge path group of a simplicial complex is the same as that of its
2-skeleton (Seifert and Threlfall [1, §44, p. 167]).

(b) The edge path group of a simplicial complex is the same as the
topological fundamental group of its support (Seifert and Threlfall [1, §44,
p. 1653).

(c) (The Simplicial Approximation Theorem). Let K and L be two sim-
plicial complexes. Then every map f:|K|-- |L| is homotopic to a sim-
plicial map g:| K®}— |L| for some integer k, where K™ is the k-th bary-
centric subdivision of K{Creom [1, p. 497}

Because of (b) we alse refer to the edge path group of a4 simplicial complex
as its fundamental group.

None of these facts are difficult to prove. They all depend on the fellow-
ing very inluitive principle from obstruciion theory.

The Extension Principle, 4 map from the union of all the faces of a cube into a
contractible space can be extended to the entive cube.

Asipe. With a little homotopy theory the extension principle can be refined
as follows. Let X be a topological space and I* the unit k-dimensional cube,
If a,(X) =0 for all ¢ < k — 1, then any maps from the boundary of I* into
X can be extended to the entire cube 1%

In section 5 we defined a good cover on a manifoid to be an open cover
{U,} for which all finite intersections U,, » =+ M U,, are diffeomorphic to
a Euclidean space. By a good cover on a mpofo_;tcm' space we shall mean an
open cover for which all finite intersections are contractible.

. . ReMaARK. Thos, on a manifold there arc two notions of & good cover, We do

not know if they are equivalent in all dimensions. It appears to be a difficult
question whether every contractible manifold of dimensicn » is diffeomor-
phic to ®", for an affirmative answer would imply the generalized Poincaré
conjecture (which states that a compact manifold of dimension » having the
homotopy type of the n-sphere 87 is homeomorphic to $%). The generalized
Poincaré conjecture is still open for # = 3 and n = 4, the case where n > 4
having been proved by Smale [1]. For a good cover on a manifold, we will
always stick to the more restrictive hypothesis that the finite intersections
are diffeomorphic to B". This is because in order to prove Poincaré duality,
whether by the Maycr—-Vietoris argument of Section 5 or by the tic-tac-toe
game of Section 12, we need the compact Poincaré lemma (Corollary 4.7),
which is not always true for an cpen set with merely the homotopy type of
R,
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Theorem 13.4. Suppose the topological space X has a good cover U, Then the
fundamental group of X Is isomorphic to the fundamental group n;,(NQL) of
the nerve of the good cover.

Proor, Write N, (1) for the 2-skeleton of the nerve N{M). Let Ui, Uy, and
U be the barycenters of the vertices, edges, and face_s of N; (1) and let
N4 be its barycentric subdivision. As the first step in the proof of the
theorem we will define a map f from | N3(1T)| to X. We will then show that
this map induces an isomorphism of fundamental groups.

To this end choose a point p; in each open set U, in U, a point py; in each
nonempty pairwise interscction Uy, and a point py in each nonempty
triple intersection Uy, . Also, fix a contraction ¢ of U/, to p; and a contrac-
tion ¢;; of Uy, to py. These contractions exist because Ul is a good cover. By
decrec the map fsends Uy, Uy, and Uy, to-py, py, and pyy respectively.

A

Figure 13.5

Next we define fon the edges of | N3(i[)|. The contraction ¢; takes pj; to
p; and gives a well-defined path between p; and py;. Similarly, the contrac-
tion ¢, gives a well-defined path between p; and py (sce Figure 13.5)
Furthermore, for each point pyy, the six contractions ¢;, ¢, &, €y Cix, and
¢y produce six paths in X joining pyy to py, Pja Pes Puy» Pix» and py, respect-
ively (sce Figurc 13.6).

Figure 13.0
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The map f shall send the edges of [ NL(U)| to the paths just defined; for
example, the edge U, Uy, i3 sent to the path joining p; and py;,.

Finally we define f on the faces of | N5(1)]. Since each “triangle” p, pi; prn
lies entirely inside the open set U, (such a triangte may be degenerate; ie., it

- may only be a point or a segment), the triangle may be “filled in” in a

well-defined manner: to fill in the triangle p; py, py;e, use the contraction ¢; to

. contract the edge py; pyyi to py (see Figure 13.6). This “filled-in" triangle will

be the image of the triangle U, U, U, under £ In summary, with the choice

of the points p,, pyy, pip and the contractions ¢, ¢ fixed, we have defined a

map [ | Ny(H) |- X. We will now show that the induced map of funda-

R mental groups, f,: (| N3(U)|)— #,(X) is an isomorphism.

Step 1 (Surjectivity of f,). Take py in Uy to be the base point of X, Let
y: 8'— X be a loop in X based at p,. We would like to deform y to a map
of the form f(7), where 7: $'— | N, (1}| is a Joop in | N, (1)} based at U,.

Regard 8! as the unit interval [ with its endpoints identified. To define 7,
we first subdivide the unit interval into equal pieces, so that it becomes a
simplicial complex K with vertices gq, ..., g, (Figure 13.7).

90 A N 912 Y2 qy
Figure 13.7

By making the picces sufficiently small, we can ensure that the star of g; in

the barycentric subdivision K’ of K iz mapped cntirely into an open set
Uat®

p(st(gd) = Uy

To simplify the notation, write j instead of i + 1, so that q;q; is a 1-
simplex in K. Let g,; be the midpoint of g,q,. Define 7! §*-» | N, {2)| by

{ sending the segment g;q; to the segment U,y U,y it follows that Wg) =

Uy 80d L00@) = Paiiy-
Next define a map F on the sides of the square I by {see Figure 13.8)

F

hottom slde = F(x, 0) = y(x),
Flwopsige = F(x, I) =f*ﬂx),

; and

r lvertica!sides = F[O, t) = F{Ia 5]' = Po-

I The problem now is to extend F: 817 —» X to the entire square. Subdivide
% the square by joining with vertical segments the vertices (q,, D), (4, 0) on
1. the bottom edge to the corresponding vertices on the top edge. Since
. Flgg, 0)=y(g) and F(g;, 1) =/,7(q) = puy, they both lie in U,y,. Since

U, is contractible, by the extension principle F can be extended to the
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fﬂ:T

Po P

it
Figure 13.8

vertical segment {g;} x I. Similarly, F can be extended to the vertical seg-
ment {g;;} x I. Thus in Figure 13.8, F is defined on the boundary of each
rectangle and maps that boundary entirely into a coniractible open set U,
By the extension principle again, F can be extended over each rectangle. In
this way F is extended to the entire square J2.

SteP 2 (Injectivity of £,). Suppose y: I— | N, ()] is a loop such that £ (y} is
null-hometopic in X. This means there is a map H from the squarc I® to X
as in Figure 13.9.

P H Py

By
Figure 13.9

By ihe simplicial approximation theorem we may assume that y is a
simplicial map from some subdivision L of the top edge of the square to
| N, (0| Now subdivide the square I? repeatedly to get a triangulation K
with the property that if 4; is a vertex of K and st(g,} is the star of g, in the
barycentric subdivision K', then

Hstlg)) = Uy

for some open set U, in W Tn the process of the subdivision new vertices
are introduced on the top edge only by repeated bisection of the edge;
furthermore, the function « on the vertices of the top edge may be chosen as
follows, Consider for example the l-simplex g,q,. ¥ g, is a new vertex
1o the left of the midpoint g,,, choose g{k} = «(1); otherwise, choose
g(k) = o(2).
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Define
H: I* = |K'{— | Ny
to be the simplicial map with
H(g) = Upy-

The restriction § of H to the top edge of the square agrees with 3 on the
vertices of L, Furthermore, by construction ff is homotopic to y in | N, (1),
and H is a null-homotopy for f. Therefore, f,.: m,(} N2 () |)— 7(X) is in-
jective. Since the nerve N(I and its 2-skeleton N, (1T} have the same funda-
mental group (Remark 13.3 (1)), the theorem is proved. 0

ixamples of Monodromy

ExaMpLi £3.5. Let §* be the unit circle in the complex planc with good
cover W = {U,, U,, U,} as in Figure 13.10. The map = :z — z? defines a
fiber bundle #z : §' — 8’ each of whosc fibers consists of two distinct points.
Let F ={A4, B} be the fiber above the point 1. The cohomology FI*(F)
consists of all functions an {4, B}, ie, H¥F) = {{a, b) e R*}.

Fix an isomorphism H¥{(n~'1/,) & H*(F). We have the diagram

H¥n Uy =5 HH%F)
| |

H*(n 'Uygy)
Il

HHn~U,)
1

H*n " 'U;,)
T

H¥n tu,)
l

H*(n_iU{,z) t

.
H¥m *Ug) =5 H*F).

If we start with a generator, say (1, 0), of H*(F) and follow it around the
diagram, we do not end up with the same gencrator; in fact, we get (0, 1). In
general (a, b) goes to (b, a). Therefore the presheal #*(U) = H¥n~'U) is
not a constant presheaf.
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U,
- . A
L -+ [}
U, l”
4'” l.JP\ ! Uo
0 T LY ]

Figure 13.10

Exercise I13.6. Since H, of the double complex C¥r~ U, %) jn Example
13,5 has only one nonzero row, we see by the generalized Mayer-Victotis
principle and Proposition 12,1 that

H(SY = HE{CHa U, Q") = H; Hy = I, %),
Compute the Cech cohomology H(1L, #°%) directly.

Bxampre 13.7. The universat covering n: R — §* given by n(x) = e ¥ is g
fiber bundle with fiber a countable set of points. The action of the loop
downstairs on the homology H{fiber) is translation by 1: x+—>x + 1, In
cchomology a loop downstairs sends the function on the fiber with support
at x to the function with support at x + 1, (See Figure 13.11.)

%1

SRV

Figure 13.11

Exercise 13.8. As in Bxample 13,5, with I being the usual good cover of §,
HYRY) = HE{C*n W, Q4)} = I, H, = H*U, #°),
Compute F*(U, #°) directly.
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ExaMPLE 13.9. In the previous two examples, the fundamental group of the
base acts on H, of the fiber. We now give an example in which it acts on
H;.

The wedge S™ V 8" of two sphercs §” and 8" is the unjon of 8" and §°
with one point identified. Let X be S' v S? as shown in Figure 13.12 and
let X be the universal covering of X. Note that although H*(X) is finite,
H*(X) is infinite. We define a fiber bundle over the circle S* with fiber X by
selting.

E=Xx Ir‘l{x’ 0 N{S(x), 1)

where s is the deck transformation of the universal cover ¥ which shifts
gverything one unit up, The projection « : £ — §' is given by #(¥, 1) =t.
The fundamental group of the base n,(S') acts on H,(fiber) by shifting each
sphere one up.

Exercise 13.10. Find the homotopy type of the space E.

Figure 13.12




CHAPTER III

Spectral Sequences and Applications

This chapter begins with the abstract propertics of spectral sequences and
their relation to the double complexes encountered earlier. Then in Section
15 comes the crucial transition to inleger coefficients. Many, but not all, of
the constructions for the do Rham theory carry over to the singular theory,
We point out the similarities and the differences whenever appropriate. In
particular, there is a very brief discussion of the Kiinneth formula and the
universal coefficlent theorems in this ncw seiting. Thereafter we apply the
spectral sequences to the path Gbration of Serre and compule the cohomol-
ogy of the loop space of a sphere. The short review of homatopy theory
that follows includes a digression into Morse theory, where we sketch a
proof that compact manifolds are CW complexes. In ¢onnection with the
computation of 7, (S%), we also discuss the Hopf invariant and the linking
number and explore the rather subtle aspects of Poincaré duality concerned
with the boundary of a submanifold. Returning to the spectral sequences,
we compute the cohomology of certain Eilenberg-MacLane spuces. The
Eilenberg-MacLane spaces may be pieced together into a twisted product
that approximates a given spuace. They are in this sense the basic building
blocks of homotopy theory. As an application, we show that 75 (8%) = Z,.
We conclude with a very brief introduction to the rational homotopy
theory of Dennis Sullivan. A more detailed overview of this chapter may be
obtained by reading lhe introductions to the various sections. One word
about the notation: for simplicity we often omit the coeflicients from the
cohiomology groups. This should not cause any confusion, as H*(X) always
denotes the de Rham cohomology except in Scctions 15 through 18, where
it the context of the singular theory it stands for the singntar cohomology.
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§14 The Spectral Sequence of a Filtered Complex

By considering the double complex CQU, Q%) of differential forms on an
open cover, we generalized in Chapter II the key theorems of Chapter L
This double complex is a very degenecrate case of an algebraic construction
called the spectral sequence, a powerful tool in the computation of homol-
ogy, cohomology and even homotopy groups. In this chapler we consiruct
the spectral sequence of a filtered complex and apply it to a variely of
sitnations, generalizing and reproving many previous results. Among the
various appreaches to the construction of a spectral sequence, perhaps the
simplest is thraugh cxact couples, due to Massey [1].

Exact Couples
An exact couple is an cxact sequence of Abelian groups of the form

A enten 4?
::\ /
B

where {, j, and k are group homomorphisms. Define d : B — Bbyd =j-= k.
Then d* = jtkj)k = 0, so the homology group H(B) = (ker d}/(im d) is de-
fined. Here 4 and B are assumed 10 be Abelian so that the quotient H(B) is
a group.

Out of a given exact couple we can construct a new cxact couple, called
the derived couple,

A — 4

(14.1) ' :\B-,/ |

by making the following definilions,
{(a} A" = i(A); B' = H(B).
(b) i’ is induced from {; to be precise,
i'(fa} = iia).

(c) If &’ = iais in 4’, with a in 4, then j'a’ = [ ja], where [ ] denotes the
homology class in H(B). To show that J' is well-defined we have to check
two things:

(i) ja is a cycle. This follows from d{ja) = j(kf)a = Q.
{iiy The homelogy class [ ja] is independent of the choice of a.
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Suppose « = ia for some other § in A. Then because 0 = i(a — a), we lave

a - d = kb for some b in B. Thus
joo — ji = jkb = db,

Lja] = [ja].
(d) & is induced from k Let [#] be & homelogy class in H{B). Then
Jkb = 0 s0 that kb = ia for some a in A. Define

K'[b] = kb € i(A).

It is straightforward to check that with these definitions, (14.1) is an
exact couple. We wiil check the cxactness at B’ and leave the other steps to
the reader.

() imj < ker &
K@) = Kf(ia) = k'f(a} = kjfa) = O.
(i) ker &' < im J:
Since &'(b) = k(b) = 0, it follows that b = j(a) = j'(ia) € im J'.

The Spectral Sequence of a Filtered Complex

Let K be a differential complex with differential operator D; ie., K is an
Abelian group and D: K — K is a group homomorphism such that p? = 0,
Usually K comes with a grading K = @, ., C* and D: C*— C**! increases
the degree by 1, but the grading is not absolutely indispensable. A subcom-
plex K' of K is a graded subgroup such that DK’ <= K', A sequence of
subcomplexes

K=K03K13K23K3:"'

is called a filtration on K. This makes K into a filtered complex, with
assaciated graded complex

GK = @ Kp/Kp+ 1-
p=0

For notational reasons we usually extend the filtration te negative indices
by defining K, = Kferp < (.

ExamMpLr 142, If K = @ K*? is a double complex with horizontal oper-
ator & and vertical operator 4, we can form a single complex out of it in the
usual way, by letting K = @ C*, where C* = @1, K79, and defining
the differential operator D: C*— C**t to be D = 8 + (—1)" d. Then the
sequence of subcomplexes indicated below is a filtration on K:

K,= @ @ K"

izp q=0
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Returning to the general filtered complex K, let 4 be the group
A=@ K,.

peZ

A is again a differential complex with operator D. Define i: A— A to be the
inclusion K, 4, & K and define B to be the quotient

(14.3) 0 A->A5B0.

Then B is the associated graded complex GK of K. In the short exact
sequence {14.3) each group is a complex with operator induced from D.
From this shorl exact sequence we get a leng exact sequence of cohomol-

ogy groups

e HYAYS BN D BB E B YAy -,

which we may write as

iy i
H{A) - H(A) Ay Aq
[ 1 -

e K

H(B) H(B) ,

where the map i is no longer an inclusion. We suppress the subscript of iy to
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aveid cumbersome notalion later, Since this is an exact couple, it gives rise
as in {14.1) to u sequence of exact couples:

A —— A,
B, ,
each being the derived couple of its predecessor,

For the sake of the exposition consider now the case where the filtered
complex terminates after K

=K ;=Ko K;oK; o K;o00
Then 4, is the direct sum of all the terms in the following scquence
& IK) & H(K) < H(K) & H(K,) < H(K;) < 0.

This is of course not an exact sequence. Next, A, by definition is the image
of Ay under i in 4, and so is the direct sum of the groups in the sequence

& H(K) & H(K) > iH(K,) « iH{(K,) « ill(K3) « .

Note that here the map iH(K,) < H(K) is an inclusion. Similarly 4, is the
sum of

= H(K) & H(K)2iH(K,) 2 iH(K,) « iiHK;) « 0
and A, is the sum of
H(K) & H(K) o iH(K,) 2 iiH(K,) = iiiH{K3) 2 0.

Since all the maps become inclusions in 4., all the A’s arc stationary after
the fourth derived couple:
A4=A5=A6="'=A

o1t

Furthermorge, since

A4—>A4

N/

isexact and i: A, — A, is the lnc]uslon, the map k, : B, — A, must be the
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zere map. Therefore, after the fourth stage all the differentials of the exact
couples are zerc and the B's also become slationary,

B4:B_5=B5"—"""':Bm

In the exact couple

inclusion lm

e A

N

4, is the direct sum of the groups
(14.4) v = H(K) = H{K) = iH(K ) o HH{K,) > lliH(K3) 2 0

and the inclusion i, is as in (14.4). Since B,, is the quotient of i, it is the
direct sum of the successive quotients jn i ,. If we let (14.4) be the filtration
on H(K), then B is the associated graded complex of the filiercd complex
H(K).
We now return o the general case. The sequence of subcomplexes
- =K=KoK, oK, oK;>

induces a sequence in cohomology
- = HK) & H(K) & H( 1) - H(K )4— H(Kj3) < -,

where the maps { are of course no longer inclusions, Let F, be the image of
H{K ) n H(K). Then there is a sequence of inclusions

(14.5) HKy=Fy=>F, o5F,>Fyo -,

making H(K) into a filtered complex; this fltration is called the induced
Siltration on H{K}.

A filtration K, on the filtered complex K is said to have length ¢ if
K,=0forp>¢ By the same argument as the special case above, we see
that whenever the filtration on K has finite length, then A, and B, are
eventually stationary and the stationary value B, is the assoclated gradcd
complex @F,/F, ., of the filtered complex H(K) with filtration given by
{14.5).

It is customary to write E, for B,. Hence,

E, = H(B) with differential d; = j, o k;,
E, = H(E|) with differential d,,
E, = H(E,), etc.

A sequence of dilferential groups {E,, 4,} in which cach E, is the homology
of its predccessor E,_, is catled a spectral sequence. If E, eventually be-




160 111 Spectral Sequences and Applicationg

comes stationary, we denote the stationary value by E,, and if E_, is equal
to the associated graded group of some fiitered group H, then we say that
the spectral sequence converges to H,

Now suppose the filtered complex K comes with a grading: K =
@ 1z K" To distinguish the grading degree n from the filtration degree p,
we will often call # the dimension. The filtration {K_} on X induces a
filtration in each dimension: if K} = K n K, then {K}} is a filtration on
K"

Far the applications we have in mind, the filtration on K need not have
finite length. However, we can prove the following.

Theorem 14.6. Let K = P, ., K" be a graded filtered complex with filtration
{K,} and let H}K) be the cahomology of K with filtration given by (14.5),
Suppose for each dimension n the filtration {K3} has finite length. Then the
short exact sequence

0— @K1~ DK, BK/Kys1— 0
induces a spectral sequence which converges to H¥K).
ProoF. By treating the convergence question one dimension at a time, this

proof reduces to the ungraded situation. To be absolutely sure, we will write
out the details, As before,

A= @ FTUHK,);
red
ifrzp+ § then i"H(K,) = F, and
i i"H(K 1)~ ITH(K,)

is an inclusion, With a grading on each derived couple, { and j preserve the
dimension, but k increases the dimension by 1. Given n, lct £() be the
length of {K7} ,czand let ¥ = £(n + 1) + 1, Then for any integer p,

TH" YK, () = Pyt
and
i THY K ) TH YK
is an in¢lusion. It follows that
i Au-{-l_) An+1
is an inclusion and
k.. Bt Art!

is the zero map. Therefore, as r — oo, the group 8" becomes stationary and
we can define BY, to be this stationary value. Note that -

Ao =@ F
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and that i, sends F},, , into F}, for every n, Becausei,: @ F,. — @F,, is
an inclusion, B, is the associated graded complex GF /F, ., of HYK). [

The Spectral Sequence of a Double Complex

Now let K = (3K 2 be a double complex with the filtration of Example
14.2, We will obtain a refinement of Theorem 14.6 for this special case by
taking into account not only the particular filtralion in guestion but also
the bigrading and the presence of the two differential operators 6 and 4,
The direct sum 4 = @K, is also a double complex. Here, as always, we
form a single complex A = @A4* out of this double complex by summing
the bidegrees: 4" consists of all elements in A4 whose total degree is k. There
is an inclusion i : 4*-» A* given by

it A" Koy - 4" 0 K,

The single complex A inherits the differential operator D = & -+ (— 1)¥d
from K,

Similarly, B = (@ K /K, can be made into a single complex with oper-
ator D. Note that the differential operator 1 on B is{— 1)°d; therefore,

{14.7} E; = H,(B)Y= H,(K).

Recall that the coboundary operator k, : H(B) — H(A) is the coboun-
dary operator of the short exact sequence (14.3) and hence is defined by the
following diagram:

I I I

3} -
O— A Ky = A K s BT A KKy — 0

(14.8) ] D @ I ] D

O A" " K,y — A*nEK, — BAnKJK,, —0
[#8]

T T T

Let b in 4* n K, represent a cocycle [5] in B* m K. /K,.1. This corre-
sponds to Step {1) in the diagram. To get k,{[b]), we

{2} compute Db and
(3) take its inverse under {.

Since b represents an element of E, = Hy(B)= H,(K), db=0 and .
Db = 8b 4 (—1)Pdb = 6b. Thus k,[b] = [6b]; so the differential d, = j, k,



162 H1  Spectra) Sequences and Applcationy

on E; is given by & (in fact by I, but D = § on E,). Consequently
(14.9) Ey = H3 H,(K).

We now compute the differential 4, on E,. As noted in the proof of
Proposition 12.1, an clement of I, == H,; F;(K) is represented by an element
b in K such that

T

dh =0 ]

&b = —D"¢ for some ¢ in K,

where D" = (~ 1)°d. We will denote the class of b in E,, if it is delined, by
[£],. From the definition of the derived couple {14.1),

dy[b)s = J2ky [b]; = ja ky[B]).
To compute j, k,[b],, we must find an a such that k,[b]; = i[a];. Then
J2ka[b]a = [j14], . Since kybisin A** ~ K 4y, aisin A**' 1 K45, To
find & we use not b but b + ¢ in A* N K, to represent [b], in Step (1); this
is possible since b and & + ¢ have the same image under the projection
KI’ — KPI."IKp-pl- Then

kb + c)= Db+ c) = e

S0
(14.10) ds (b1, = [8c]s.

Thus the diflerential d, is given by the & of the tail of the zig-zag which
exiends b, If is easy to show that d¢ represents an element of H; H,;(K) and
thai the definition of d, [b], is independent of the choice of ¢.

oD

—
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Lxercise 14.11. Show that if d; [b], = 0, then there exist ¢; and ¢, so that b
cal be extended to a zig-zag as shown:

0
- 1
b
Db =0 !
Cl——r
dbh = —D"¢, L. 1;
Ca
oy = — D",

‘We say that un element b in K lives to E, if it represents a cohomology
class in E.; equivalently, b is a cocycle in E, ¥;, ..., E,..,. From the
discussion above we see that b lives to E, if it can be extended te a zig-zag
of length 2, the length of a zig-zag being the number of terms in it,

db

I
=
s 3

b= - De I

and d, [bl, = [6¢],; it lives to E, if it can be extended to a zig-zag of
length 3:

0]
db=0 l__,
éb = —D"cqy jl RN
doc, = —D"ey. sz
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Te compute da[b]s, we use b+ ¢, + ¢, in A" v K, to represent [h] g
B* n (K,/K,_,) in Step (1) of (14.8), so that ks [y is given by D(b +
¢y 1 ;) = e, and dy [b]; = [8c,]5. In genceral, parallel to the discussion
above, an element b in K™ 9 lives to E, if it can be extended to a zig-zag of
length r:

o

Cr—2 14—

and the differential d, on E, is given by § of the tail of the zig-zag:
(14.12) d, [(b], = [bc, (],

Thus the bidegrees (p, g) of the double complex K = DK™ 7 persist in the
spectral scquence

E, = @ EPY,

g
and d, shifts the bidegrees by (v, —r + 1):
do: EP9 s [ptriacrdl
The filtration on H(K) = B H(K):
HK)=Fyo>F,oF,> -

induces a filiration 6n each component H'(K), the successive quotients of
the filtration being ES ", EL =1 . Em9.

(14.13) HYK) = (ForH") » (Fy "l D (FanH) 5 ... o (F,nH") 50
R e L U (SO

EU,n El,n—l En,ﬂ

L] a o1

This is best scen pictorially
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FO.n

Fl, r—1
&~

En°

I F,
I_________ Fy ——e—

In summary, we have proved the following refinement of Theorem 14.6.

Theorem 14.14. Given a double complex K = @, ., K" ¥ there is a spectral
sequence {E,, d.} converging to the total cohomology Hp(K) such that each E,
hias a bigrading with

d,: Ep-a s Epna-ril

and
Ef 1= Hy9K),

Ef* = HE "Hy(K);
furthermore, the associated graded complex of the total cohomology is
given by
GH)(K)= @ ER(K).

pg=n

REMARK 14.15, Of course, instead of the filtration in Example 14.2, we conld
just as well have given K the following filtration.

q
4
K;

3
K,

2
|

0
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This gives a sccond spectral sequence {E., d.} converging to the tota]
cohomology Hp(K), but with

E} = Hy(K),

E5 = HyHy(K),
and

d E!P»Q s E-’p-—r+l,q+r
r - Lop r .

ExamprLE 14.16 (The Mayer-Victoris principle and the isomorphism be-
tween de Rham and Cech}). Let M be a manifold and I a good cover on M.
Consider the double complex K = @@ K#4,

Krt=CrU, Q)= || QU,, . .)

ap < Sgp

Since the rows of K are the Mayer-Vietoris sequences, the E, term of the
second speciral sequence is

Q| o
QZ
Y = Hjs = (M) 0
(M) 0
QM 0
Therefore the E, term is
Hpp(M}

Ey=H,H;=
Hpa(M)

0

0
Hy(M)| ©
Him)[ 0

In greneral a spectral sequence is said to degenerare at the E, term if d, =
d,yy =---==0 For such a spectral sequence E, = E_,, == E_. The
degeneralion of the second spectral sequence of the double complex
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CH(U, 0% at the E, term proves once again the Mayer—Vieforis principle
{Proposition B.8):
(14.16.1) Hhp(M) = D HE{CHU, Q%)
ptg=k
Now consider the first spectral sequence of C*(, Q*), lts K, term is
{0 ifg>0

e 4, —
Eﬁ’ ?= 1‘-[ H (U«Dm ap} C‘"(II, R} if g= 0.

#o <o Smp

E, =H,=
0 0 0
CHU, Ry O R CHUL R)

So the E, term is

E.’Z = H‘j}ld -

O, By | HYQU, R) | H°(4, B)

The degeneration of this spectral scquernce gives
HU, B = @ Efe= @ E&RT= Hp{CHU, Q%)
ptg=k pta=k
Together with (14.16.1) we get
HAp(M) = HYU, B) for all integers k = Q.

This is the spectral sequence proof of the fsomorphism between de Rham
and Cech (Theorem 8.9).

ReEMARK 14.17. The extension problem. Because the dimension is the only
jnvariant of a vector space, the associated graded vector space GV of a
filtered vector space V is isomorphic to V itself. In particular, if the double
complex K is a vector space, then

HHK)~ GHE(K)~ P EL*

pra=a
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However, in the realm of Abelian groups a knowledge of the associateg
graded group does not determine the group itself. For example, the two
groups Z, @ Z, and Z, fillered by

ZycZ, D Z,
and
Zic 2y

have isomorphic associated graded groups, but Z, €p %, is not isomorphic
to 74 . Put another way, in a short exact scquence of Abelian groups

0—-A4A—-B->C—0,

A and C do not determine B uniquely. The ambiguity is called the extension
problem and lies at the heart of the subject known as homological algebra.
For our purposc it suffices to be familiar with the following elementary facts
[rom extension theory.

Proposition 14.17.1. I'n a short exact sequence of Abelian groups
0—Ad - BS coo,

if A and C are free, then there exists a homomorphism s: C— B such that
g o 813 the identity on C.

Proor. Define s appropriately on the generators of C and extend linearly, [

Corollary 14.17.2, Under the hypothesis of the proposition,
(a) the map {f, s): A @ C— Bis an isomorphism;
(b) for any Abelian group G the induced sequence
0-» Hom(C, G)— Hom(B, G)— Hom{d, G)--+0

is exact;
(c) for any Abelian group G the sequence

04 GCG-BRG-CE®GE-0

is exact.
The proof is left to the reader.
Exercise 14.17.3. Show that if
0 Ay — Ay —> Ag—s o+

is an exact sequence of free Abelian groups and if G is any Abelian group,
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then the two sequences
0« Hom(4,, G)« Hom(A,;, Gy+ Hom(d;, G)« -
and
04, REoAL,RGA R G-
arc both exacl.

Exercise 14.17.4. Show that if
0 A-B->C—10

is a short exact sequence of Abelian groups (which are not nccessarily free)
and G is any Abelian group, then the two sequences

0-— ITom{C, G}— Hom(B, G)— Hom{A, G)
and
ARGB®R G-C® G0

are both exact.

The Speetral Sequence of a Fiber Bundie

Let 7 : E-— M be a fiber bundle with fiber F over a manifold M. Applying
Theorem 14.14 here gives a general method for computing the cohomology
of E from that of F and M. Indeed, given 4 good cover W of M,z 1] is a
cover on E and we can form the double complex

Kr o= Cfn 0,00 = ] Q% ~'U, . .)
0 S,

whose E; {erm is

Ef9=Hpv= H Hi{(n™ 1Uao ap) = CAU, 2#),

4n <. Sap

" where #? is (he presheaf 5#°%(U) = Hzn~ 'U) on M, For emphasis we some-

times write the presheaf 3#9 as #°%F). Since ¥ is a1 good cover, .#9 is a
locally constant presheaf on 1l with group HYF) (Example 10.1). Since
d, = & on E;, the E, term is

E%7 = HJU, #9).

By Theorcmn 14.14 the spectral sequence of K converges to H(K), which by
the Mayer-Vietoris principle is equal to H*(E}, because n~ *U is a cover on

I case the base M is simply connected and H*(F) is finite-dimensional,
Theorems 13.2 and 13.4 imply that .#? is the constant presheal R@ -+
@ R on M, consisting of K(F) copies of B where W9(F) = dim H{F). So the
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E% 9 term is isomorphic as a veetor space to the tensor product (M) &
HA(F}, since

ERe=HIU, R P @ R)=HQ R @ HIF)
= II%(M) @ II%(F),

where the last equality follows from Theorem 8.9,
We have proven the following.

Theorem 14.18 (Leray’s Theorem for de Rham Cohomology). Given 4 fiber
bundle 7 : E - M with fiber F over a manifold M and a good cover W of M,
there is a spectral sequence {E,} converging to the cohomolegy of the total
space E*(E) with E, term

B3 = HAQU, #79),

where 37 is the locally constant presheaf #%U) = H¥n~'U} on W If M is
simply connected and HY(F) is finite-dimensional, then

Epe = HM) & HY{F).

Some Applications

ExAMPLE 14.19 (The Kiinncth formula and the Leray-Hirsch theorem). We
now give a speciral sequence proof of the Kiinneth formula (5.9). Let M and
F be two manifelds and M a good cover of M, Suppose F has finite-
dimensional cohomology. By Leray’s theorem (14.18}, the spectral sequence
of the trivial bundie

Fo MxF
1
M

has F, term
EB 9 = (W, #YF)}.

Because M X F is a trivial bundle over M, the presheaf #°9(F) is constant,
so that

E4 = HFW, R) @ HYF) = H*M) @ H(F).

By {14.12} the differential 4, measures the extent to which an clement of
CHm~ 1M, O*) that lives to E, fails to be extended one slep further to a
D-cocycle. Since every clement of the E, terin is already a global form on

E,=E; = Hy I, = ¥, #°%8") = ‘L
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MxF, dy=dy= =0, 8o E,=E_, which by Theorem 14.18 is
H*(M x F). Therefore we have the Kiinneth formula

H¥{M x F)= H*¥M)} & H*(F)
The proof of the Leray-Hirsch theorem is analogous.
REMARK 14.20 (Orientability and the Buler class of a spherc bundle). Let

7. E — M be an §"-bundle over a manifold M and let ¥ be a good cover of
M. The speetral sequence of this fiber bundle has

A

ER T = HE 4 = CHU, H#YS")} =

v 74
o VAN NN

o 1 2 n

Let ¢ be the element of E?" = C%QL, 2#"(SM) corresponding o the local
angular forms cn the sphere bundle E. From the description of the differ-
ential d, as the § of the tail of 4 zig-zag, we see that E is orientable if and
only if 4,0 = 0 {compare with pp. 116-118). For an otientable S*-bundie
then, such a o lives to E,:

TN

Ll | |
0 e / Z /LL,Z A -

0 1 2 n o+l

Up to a sign d,o in H" I, #°%8") = H" (M) is the Euler class of the
sphere bundle. It measures the extent to which o fails to be exlended to a
D-cocycle, i.¢., a global closed n-form on the sphere bundle.

ExampLE 14.21 (Orientability of a simply connected manifold), Let M be a
simply connccted manifold of dimension # and S(Tj) its unit tangent
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bundle. The spectral sequence of the fiber bundle
5771 o S(Thg)
!

has E, term

This shows that there is an clement in C%r ™", 2"~ ") which can he
extended one step down toward being a D-cocycle, Therefore S(T,,) and also
M are orientable. This gives an alternative proof of the orientability of a
simply connected manifeld (Corollary 11.6).

ExAMPLE 14,22 (The cohomology of the complex projective space). Consider
the sphere
S.‘Zn+l = {(ZOs ey Zﬂ]

inC**1 Let §' act on S by

\z[* & oor 4 ]2, [ = 1}

(29, .- 2y) B {Az20, .., A2),

where A in §* is a complex number of absolute value 1. The quotient of
§?"*+1 py this action is the complex projective space CP". This gives §%°*!
the structure of a circle bundle over CP"

Sl — SZPI-I—I

i
CcpPn.
As we will see from the homotopy exact sequence (17.4) to be discussed
later, CP" is simply connected, Thus
EL 9 = HACPY) @ HYS.
So E, has only two nongzero rows, g = 0, 1, and the two rows are identical,

both being H¥{CP").
Tetn =2 Then

=
Q
o
fat

Ea

i
= &
N
==t
[
bl

=
—
[
[+
.
thn
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where the bottom row is the cohomology of the base, H¥(CP?), and the 0-th
column is the cohomology of the fiber. HH(CP? = 0 for p = 5 because CP?
has dimension 4. Since d; moves down two steps, d3 = 0. Similarly,

dy=ds = =0,

_ 8o the spectral sequence degenerates at the Ey term and By = E, =+ =

E. = H¥&"). Therefore

Es={0|0|olo|m]|o
R|0|0[0}0]0

0 1 2 3 45
This means
dy:R— B, B> D,
60— A, A—C, C—0

must all be issmorphisms. It follows that

E,= |R|OJRIOQO|R|O
RIOIRIO|R|O

0 1 2 3 4 35
Therefare,

IR in dimensions 0, 2, 4
0 otherwise.

HHCP?) = {

© Exercise 14.22.1. Show that

R in dimensions 0, 2, 4, ..., 2n

H*CP") ==
€ {0 otherwise,

Exercise 14.23 (Algebraic Kiinneth Formula). Let E and F be graded differ-

. ential algebras over R with differential operators ¢ and d respectively,

Define a differential operator D on the tensor product E & F by
Die @ f)=(0e) @ f+ (1) e Q df.

Prove by a spectral sequence argument that

Hp(E @ I} = H;(E} @ Ha{F).
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Product Structures

In this section we define product structures on the Cech-de Rham compley
C#(U, Q%), the de Rham cohomology, and the Cech cohomology, and shoyw
that the isomorphism between de Rham and Cech is an isomorphism of
graded algebras. We also discuss the product structures on a spectral se.
quence.

Let Z be the closed forms and B the exact forms on a manifold M. From
the antiderivation property of the exterior derivative

dio - ) = (dw) - 5 4+ (— D% w - dy,

it follows that Z is a subring of *(M) and B is an ideu] in Z. Hence the
wedge product makes the de Rham cohomology Hjg{(M) = Z/B into a
graded algebra,

On the double complex C*(1L, {¥¥), where M is any open cover of M, a
natural product

w o CPL 09 @ CTL %) CP (U, Q4F9)
can be defined as follows. If e is in CPI, €34) and p is in C7(10, €FF), then

(1 424} (w uJ ’-‘](U«o n:,,+,.) = {_ ]-)qr(D[Uao n:p} ) ”[chp ap.f,}’

where on the right-hand side both forms are understoed to be restricted to
Uao e Eptr "

REMARK 14.25. The sign (— 1) is nceded to make the differential operator
D into an antiderivation relative to the product structure. Jt makes sense
that this should be the sign, for in defining the praduct, p and r are brought
together, and so ure ¢ and s, so the order of ¢ and r in CHU, %) ® CY,
) are interchanged. Tt is a useful principle that whenever two symbols of
degrees m and n are interchanged in a graded algebra, there should be the
sign (— L™,

Exercise 14.26. Let w € K% and # € K™ *. Show that

1) d(e U ) = (8m) U n+(— D" o U oy
DD v =) vyt (D0 U DY
N Dl Uy =(Po) v+ (=1 w o DY,
where deg @ = p + 4.

We will often writc @ ' n or even wy for @ v 1.

The inclusion of the Cech complex C*2I, R) in the Cech-de Rham
complex induces a product structure on CHE, R): if @ is a p-cochain and
an r-cochain, then

(14.27) (@ Moy ape, = Oag ooy Hap g
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By Excreisc 14.26, § is an antiderivation relative to this product. So just as
in the case of de Rham cohomology this makes the Cech cohomology
U, B) into a graded algebra. If B is a refinement of Y, then the res-
triction map H*(U, B) — H*B, B) is a homomorphism of algebras. Hence
the direct limit H*(M, R) is also a graded algebra. Note that (14.27) also
makes sense for the Cech complex C*(U, K) on a topological space X ; this
gives a preduct structure on the Cech cohomology H*(X, R®) of any topo-
logical space X,

With the produet structures just defined, both inclusions

r: (M) — O, O%)
and
i O R — CFQAL, )

are algebra homomorphisms. Since as we saw in Proposition 8.8, for a good

~ caver these homomorphisms induce bijective maps in cohemology

Hjg(M)~ H, {C*(H, Q*]}
HYU, B) ~ Hy [C*1L, O%),

the isomorphism between HEz(M) and H*, R) is an algebra isomoerphism.,
Because H*(M, |) = H*(1[, R) for a good cover U, we have the following.

Theorem 14.28, The isomorphism between de Rham and Cech
HEW(M) = H¥M, ®)

is an isomorphism of graded algebras.

If a double complex K has a product structure relative to which its

. differential I is an antiderivation, the same is irue of all the groups E, and

their operators d,, since E, is the homology of E,_, und d, is induced from
D. With product structures, Theorem 14.14 becomes

- Theorem 14.29 Let K be a double complex with a product structure relative

to which D is an antiderivation. T'here exists a spectral sequence
{E,, d  Ept— Eprartly
converging to H (K} with the following properties:

1) The E&'9 term is Hf TH(K).
2 Each E,, being the homology of its predecessor E,_,, inherits a product
structure from E, . . Relative to this product, d, is an antiderivation.

WARNING. Aithough both E ., and H,{K) inherit their ring structures from

K, they are generally not isomorphic as rings.
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Exercise 14.30 The product structure on the tensor product 4 ® B of twe
graded rings A and B is given by

(a ® bllc ® d)=(—1)9est59 g0 @ bd), a, ced, b, deb.

Show that if x; E — M is a fiber bundle with fiber F over a simply connec-
ted manifold M, then the isomorphism of the E, ferm of
the spectral sequence with H*(M) & H*(F) iz an isomorphism of graded
algebras.

REMARK 14.31, Thus in Leray’s theorem (Theorem 14.18) each group E, is
an algebra relative to which d, is an antiderivation; furthermore, if M is
simply connected, E, is isomorphic to H*(M) & H*(F) as a graded
algebra.

Exanpir 14.32 (The ring structure of H*(CPY), Assume for now that n = 2.
In example 14.22, by applying the spectral sequence of the fiber bundle

st §F
i
cP?

we compnied the additive structure of the praded algebra H*(CP?). We
found that the E,term is

q
1] R Ry 4 | R
2
0| R R R
0 1 2 3 4 5

The two d,’s shown arc isomorphisms. Let g be a generator of

E$ '~ HY(CPY ® H'(S") =~ HY(SY.

Then d, ¢ = x is a generator of
E%Z° ~ HYCP') ® HYSY) ~ HYCPY
and x - a is a generator of

E3l = HYCPY @ HYSY).
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q
1| & X d
0 x
o 1 2 3 4 5 p

.7 Because dy: E3'! - EDC is an isomorphism, a generator of E} 0 =
; 2 p
- HYCPY s

dy(x - ay=x d,a=x

So as a ring,
H¥CP?) = R[xJ/x?).
In general, the same argument yields the ring siructure of CP" as
HHCP") = Rx}/(x"*Y),

where x is an element in dimension 2,

The Gysin Sequence

The spectral sequence of a fiber bundle is essentially a way of describing the
complicated algebraic relations among the cohomology of the base space,
the fiber, and the total space of the bundle, In certain special situations the
speciral sequence simplifies to a long exact sequence. One such special case
is the cohomology of a sphere bundle. The resulting sequence is called the

. Gysin sequence, which we now derive.

Let a: E -+ M be an oriented sphere bundle with fiber §*, By the orien-

tability assumption, for any good cover 1 on M, the locally constant pre-
- sheaf 2#°¢ has no monodromy and is the constant presheaf R. Therefore the

E, term of the spectral sequence is

N ¥ 4
dy,

0 IS IS AN,

Let n be any nonnegative integer. Since nothing in £37%* can get killed

BT = HY(M) & HY(S).

" {that is, nothing there lies in the image of d, for r = 2), E""%* is the sub-
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group of E3~%* consisting of those elements with d;3 = d4 = --~= 0. Henge
there is an inclusion

FH—k, k o=k, k
0—> bu‘J bt d ‘EZ .

This can be extended to an exactl sequence

dy
- + n+
(*} 04— E:o LI N EZ k'kmrE'g‘ L,e_, Efﬂ Lo, e,

i i
}IJI—R(M} Hot I(M}

where the last map, called an edge homomorphism, exists and is surjective
because every element of £5 ¢ survives to E, .

Because of the shape of the E, term, the filtration (14.13) on H(E)
becomes

HYE) 2 En° >0

O
E;:O—k, k
in other words, there is an exact sequence
(**) 0— En° s HYE)-— E' 5,

The two sequeonces (*) and (**) may be combined into a single long exacl
sequence

L HYE) S HYHM) S E (M) S BB -

This is the Gysin sequence of the sphere bundle.
It remains to identify the maps in the Gysin sequence. Let U be a good
cover on M. The map « is the composition of

projection

T SRR o ByTRE = HY R L 9
= H" M) @ HYSY) = HP M),

H(E)-

In this sequence of maps the first three are the identity on the level of forms
and the last one sends a generator of FF*(§") 10 1 by integration. Therefore «
is integration along the fiber.

Next consider d,. Representing an element of

By = BN M) @ HA(SY

by (m*w) - {—), where o is a closed form on M and  is the angular form
on E, we see that

dy (r*o)f — ) = ddm*o)l(—¥) = (— 1"~ r*w) d(— 1)

= {(— 1Y K{m*w)(m*e).
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Heuce, up to a sign di 1 H"~5M)— H" (M} is multiplication by the Buler
class e.
Finally the map # is the composition

¥
H*"Y(M) = H YU, s%F)) > B Hm W, srO(F)

prajectinn

-_=Epi+l.0 Ergr:l"] - Hﬂ+1(E),

Se f: H*YY{(M) — H"*1(E)is the natural pullback map z*.
We summarize this discussion as follows.

Proposition 14.33, Let m: E — M be an oriented sphere bundle with fiber S*.
Then there is a long exact sequence

. Y- N*
o HB) S B on S an S B o

in which the maps m,, Ae, and n* are integration along the fiber, multi-
plication by the Euler class, and the natural pullback, respectiugzl y.

Exercise 14.33.1. Show that if the sphere bundle comes from a vector
bundle z : ¥ — M, then the long exact sequence in the proposition may be
identified with the relative exact sequence of the inclusion {:V® — V,
where V0 is the complement of the zero section in V. (Compare with
Proposition 6.49.)

Leray’s Construction

We consider now more generally not a fiber bundle but any map
m: X — Y from one manifold to another, and study how the cohomelogy
groups of X relate to those of Y. Let U be any cover for Y, not necessarily a
good cover. Then ='W is a cover for X. By the Mayer—Vietoris principle
(Proposition 8.8 or 14.16)

H*(X) = Hp {C*x 111, Q).

By Theorem 14.14, if K is the double complex C*(z~ 11[, Q*) on X, then the
spectral sequence of K has

E, = Hp {C¥*x 110, O%}
and

Eg e = HP1H {CHa ™ 1, Q%))
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K= l—l Qq+1{ﬁ_lUrxomo:p)
[T QU ..)
®0 <. Sap
H;(K) = [THA Uy ) | T HI(m Wy a0 )
Here

HE E(K) = l—l Ifq{ﬂ_ ! Ua:o rxp] = Cp(us ‘%ﬂq}

L1 ap

where 21 is the presheaf on ¥ defined by #°%(U) = H%a~'U). In summary,
there is a spectral scquence converging to H*(X) with E; term

Eg = HYQ, #9.

The main difference between this situation and that of a fiber bundle
{(Theorem 14.18) is that the presheaf 5#7 is no longer locally constani on i
indeed the groups Hin~'U) will in general be different for different con-
tractible open sets U.

ExAMPLE 14.34. Consider the vertical projection of a circle §' onto a seg-
ment I. Cover T with three open sels Uy, Uy, U, as shown in Figure 14.1.

Uy l U,

¢ o=k )
( 2

U,
Figure 14.1
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The presheal #°° attaches a group to cach vertex and each edge of the
nerve N{1[} in the way indicated below

I R R R R

H; of the double complex C*(z~ ', *) is

= C*(U, #°)

&

RPR PR |» R* P R

Uy Uy Uz Unp Uyps
with & given by (b, (cq, ¢3), d}— ((¢; — b, ¢x — b), (d — ¢,, d — ¢3)). Thus

ker & = {(b, (b, b), b)} and HY°H,=R. Since im & is 3-dimensional,
H}°H, =R So HyH,is

IR R

In this case, then, E, = E_, and we gel the cohomology of §*

Let us find a nontrivial 1-cochain in CHU, #°°) that represents a gener-
ator of H'(S"). A 1-cochain in C'(M, #°%) is given by a 4-tuple ((r, 5), {&, w)).
Such a 4-tuple is exact if and only if r — 5 = u — . Therefore as a generator
of HY{SY) we may take ({1, 0), {0, 0)), ie., the l-cochain 7 (sec Figure 14.2)

ey

gy Uy,
Figure 14.2
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such that
(Up) = (1, O
{U;5) = (0, 0).

Exercise 14.35. Project the sphere $? to a disc D (Fi
. igure 14.3) and co
H*(5% by Leray’s method. ’ ] bute

N

Figure 14.3

Exercise 14.36. Lel Y be a manifold and I a good cover of ¥, Denote by f
the number of nonempty (p + 1)-fold intersections Ui ...ap- Show lhapt

2w(Y) =3 (~1)°8,.

3xelrcise {4.37. Let m: X — Y be any map and U a good cover of ¥, Show
1a

WXy=3 3 (1P dim Hi(n 'U,,..,).

P o= <ay

Deduce that if # : ¥ — Y is a fiber bundle with fiber F, then
XX} = x(F) x(Y).

§15 Cohomology with Integer Coefficients

.An element in a Z-module is said to be rorsion if some intogral multiple of it
is zero.’Since the de Rham theory is a cohomology theory with real coeffi-
crents, it necessarily overlooks the torsion phenomena. For applications to
homotopy theory, hawever, it is essential to investigate the torsion. The
g_oal of this section is to replace the differential form functor Q* with the
singular cochain functor $*, define the singular cohomology, and show that
t}‘le Dreceding results on spectral sequences carry over to integer coeffi-
cients, The key as before is the Mayer-Vietoris sequence for countably
many open se¢ts, The natural setiing for the singular theory is the category
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of topclogical spaces and continuous maps, rather than the more restrictive
category of differentiable manifolds and €* maps of de Rham theory.
Unless otherwise indicated, from here till the end of Section 18 we will
work in the continuous category. We begin with a review of the basic
definitions of singular homology.

Singuwiar Homology

Via the map
{xb LA ] xn} s (xb vees X 0}

cach Euclidean space R” is naturally included in R"**. Viewing each R" as a
subspace of B"*! in this way we consider the union
R= =) R
HED
Denote by P, the i-th standard basis vector in R™; it is the vector whose
j-th component is 1 and whose other components are all 0. Let Py be the
arigin. We define the standard g-simplex A, to be the set

q g
Aq::{z tjPJ Z tj=1}-
1=0 i=0

If X is a topological space, & singular g-simplex in X is a continuous map
s: A,— X and a singular g-chain in X is a finite linear combination with
integer coefficients of singular g-simplices. Collectively thesc g-chains form
an Abelian group S,(X). We define the i-th face map of the standard g-
simplex to be the function

at:

q

Agi1— Ay
given by (see Figure 15.1)

g~1 i—1 4
6;(2 L_,PJ)= Y P+ 3 4P
j=0 J=0 =1

j=i+1

I*:

Po hH
IPigure 15.1
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The graded group of singular chains,
54(X) = @ 5,(X)
g=0
¢an be made into a differential complex with boundary operator

d: §,(X)— S, (X)
)

Os= 3 (~1¥sod.
=0

Tt is easily checked that 8?2 = 0. The homology of this complex is the
singular  homology with integer coefficients of X, denoted H (X) or
H X, 7} By taking the linear combination of simplices to be with coeflj-
cients in an Abelian group G, we obtain similarly singular homolegy with
coefficients in G, H (X ; G).

The degree of a 0-chain 3. »; P, is by definition ¥ #,. Suppose X is path
connected. If —P and @ are in a 0-chain on X, then any path from P to @
is a 1-simplex with boundary ¢ — P. Hence a 0-chain on a palh-connected
space is the boundary of a 1-chain if and only if it has degree 0. ‘This gives
rise to a short exact sequence

0— 8 Sy(X)— So(X) F 70,

from which it follows that if X i« path connected, H,(X) = Z. In general,

dim IT{X") = the number of path components of X.

The Cone Construction

The goal of this section is to compute the singular homelogy of R". If s in
5,(d7) is a4 g-simplex in R", we define the cone over 5 to be the {g + 1)-
simplex Ksin §,,,(R") given by

q+11. q t

i=o j=o0 - te+1
This is the cone in R" with vertex the origin and base the simplex s To
make sense of the formuls, we view the last coordinate L;+1 a5 “time”; as
time goes from 0 to 1, the cone Ks moves from s to the origin. For the

singular simplex s pictured in Figure 15.2, the cone Ks is the “tetrahedron™
and

dKs = Oth face — Ist face + 2nd face — &
Kds = 0th face — st face -+ 2nd face.
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g(Pq} 8(P3)

Py = Origin

Figure 15,2

In general we have the following.

Proposition 15.1. Let K 8, (R")— S, . 1(R"} be the cone construction. Then
K — K = (—1p*!
on S (R") forg = 1.

Proor. The geometrical idea is clear from Figure 15.2. The proof itself is a
routine matter of unravelling the definitions. We leave it to the reader. [

In other words, the cone construction K is a homotopy operator botween
the identity map and the zero map on S, {i”), ¢ = 1. Consequently,

0 g=1

M0 = {z g=0.

The Maycr-Vietoris Sequence for Singular Chains

Let M = {U,},.; be an open cover of the topological space X, Just as for
dilferential forms on a manifold, the sequence of inclusions

Xe<[lu, Il £U,, £...

N
-9 g =ity

induces a Mayer-Vieloris sequence. However, for technical reasons which
will become apparent in the proof of Proposition 13.2 {to show the surjec-
tivity at one end of the Mayer-Vietoris sequence), we must consider here the
group SHX) of U-small chains in X ; these are chains made up of simplices
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each of which lies in some open set of the cover 1. The inclusion
i1 SHX)— 5.(X)

is clearly a chain map, ie, it commuies with the boundary operator ¢,

Indeed, it is a chain equivalence. The proof of this fact is tedious and we

will omit it (Vick [1, Appendix 1, p. 207]), but the idea behind it is quite

intuitive: to get an inverse chain map, subdivide each chain in X until it

becomes U-small. In any case the upshot is that to compute the singular

cohomotlogy of X it suffices to use W-small chains: H(S (X)) = H(S};(X])‘
Define the Cech boundary operator

& (‘B Sq(Uaa ---a,,] —* @ Sq (Uao '“rxp—]]
< sa,

B a Gy A

by the “alternating sum formula”
{5‘3}«0 g Zcmza e Ep—1

Herc, as always, we adopt the convention that interchanging two indices in
Cap ..o x, Itroduces a minus sign. The fact that 3° = 0 is proved as in Prop-
osition 12.12. The boundary aperator § on @ S,(U,,) — S,(X} is simply
the sum; we denote this by «.

Proposition 15,2 (The Mayer-Vietoris Sequence for Singular Chains), The
SJollowing sequence Is exact

E 3 5
0« SHX) < @ S,(U,,) « @ 8,U,,) < -

LIS B

Although this sequence bears a formal resemblance to the generalized
Mayer-Vietoris sequence for compact supports {Proposition 12.12), because
we do nol have partitions of unity at our disposal now, the secend half of
the proof of (12.12) does not apply.

Lemma 15.3. Let
0—-A4->B8B-C—0
be a short exact sequence of differential complexes. If two out of the three
complexes have zero homology, so does the third.
Proor. Consider the long exact sequence in homology
C o Hy(A) = H,(B)— H,(C) > Hy_y(d) > u

Proor oF PROPOSITION 15.2. For two open scts the Mayer-Vietoris sequence
is

Sun

0« SLI[UD U Uyp) e Sq[Uo) & Sq(Ul] - S.—,-(Um) «~ 0

{ci100 €01} +—— oy
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The exactness of this seaquence follows directly from the definition. For
ihree open scts the sequence is

Q- S:{UU w ) w Uy S U @ SU ) @ S UL —5 Uyl @ SAUR DI (U )+ SiUana) — 0
(6,0 + €200 Car + F20 Cg2 T ¢ g +—————Hlcnis Cozs €a2)
{2010 Clozs Coya) —tnz

The Mayet-Vietoris sequence for two open sets injects inte the one for three
open sets, giving rise to the following commutative diagram with exact
columns

0 ¢] 9]
1 i i
0 SYUy U U,) SV )@ ST Stlgy) T
i ! 4
0 SN, o Uy U ——SU) B SU D S{L ) —— SiUg,) B S(Tg3) @ S{U ) ‘_S(Utin) -0
3 1 !
b SWewiw U 2 oy S(Uo} @ 5(U ) S(Ugi2) « 0
SNUg v Uy)
4 i i i)
o] 0 ] a

The U in SU, v U,) is the open cover {Uy, U,}, while the Il in SIS, U
U, v U,)is the open cover {Uq, U}, U,}. So the group

Su(Ug v Ul Wi Uz}eru{Ug S Ul)

is gencrated by the simplices in U, which do not lie entirely in Uy or Uy
(sec Figure 15.3).
U,

fi of this is not 0.

Uy

U

f of thisis 0.

Figure 15.3
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We now prove the exactness of the rows of the commutative diagram,
The bottom row is almost the Mayer-Victoris sequence for the open cover
{Uqz, Uya); it is exact except possibly at S(U;). Clearly 85 5 = 0. Now if ¢
is in S{U,) and file) = 0, then ¢ is a chain in U, whose simplices lie either in
Uy or in Uy, e, ¢ is in the image of S(Ug,) @ S(U,,). Therefore the
bottom row is exact. Note that each row of the commulalive diagram is g
differential complex and the commutative diagram may be regarded as g
short exact sequence of differential complexes. Since the top and bottom
complexes have zero cohomology, by Lemma 15.3 so does the middle one;
in other words, the middle row is exact. This proves the exactness of the
Mayer-Vietoris sequence for a cover consisting of three open scts. In gen-
eral the Maycr-Vietoris sequence for r open sets injects inte the one for
r + 1 open sets, By the above technique and induction, one proves the
Mayer-Vietoris sequence for any finite cover.

Now consider a countable cover 1 = {U,}. By the definition of the direct
sum, an clement ¢ of  S(U,, .} has only finitely many nonzero com-
ponents. These components can involve only finitely many open sets. There-
fore if ¢ = 0, by the Mayer-Vietoris sequence for a finite cover, we know
that ¢ = b for some b in @ S(U,, , .,). This proves the cxactness of the
Mayer-Vietoris sequence for countably many open sets. O

RreMARK 15.4. If the coefficients are in an arbitrary Abelian group G, the
same proof holds weord for word,

Now suppose the apen cover Il consists of two open sets U7 and V. By
Proposition 15.2, there is a short exact sequence of singular chains

(15.5) 00— S, (U N V)= S, (L) B 8,(V)— SHx) — 0.

The associated long exact sequence in homology is the usual homology
Mayer-Vietoris scquence.

Corollary 15.6 {I'he Homology Mayer-Vietoris Sequence for Two Open

Sets). Let X = U v V be the union of two open sets. Then there is a long
exdact sequence in homology

o HU A VD B @ H (V) S Hy (X0 = Hy (U A 7)o o

Here fis the map induced by the signed inclusion ar-{—a, 4) and g is the sum
{a, By~ a + b

Singular Cohomology

A singular g-cochain on a topological space X is a linear functional on the

Z-module S, (X) of singular g-chains. Thus the group of singular g-cochains
is 8%X}= Hom (5,(X), £). With the coboundary operator d defined by
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(deo)(c) = wifc), the graded group of singular cochains S*(X) = @& S%X)
becomes a differential complex; the homology of this complex is the singu-
tar cohomology of X with integer coefficients. Replacing 7 with an Abelian
group G we obtain the singular cohomology with coefficients in G, denote
H*X ; G). FFor the rest of this chapter we will reserve AI*(X) for the singular
cohomology with integer coelfictents and write H§a(X) for the de Rham
cohomology.

A function @ on X is a O-cocycle if and only if w(@¢) = 0 for all paths c in
X. It follows that such an e is constant on each path component of X.
Therefore, HY(X) = S%X)=Z B Z P -+ B 7 where there are as many
copies of Z as there are path components of X.

Resmanrk. The singular cohomology dees not always agree with the Cech
cohomology. For instance,

dim H§,(X) = # path components of X,
hut

dim H

fea(X) = # connected components of X

We now compute the singular cohomology of R*. Define the operator
L: S{R") -+ 877 Y’ to be the adjoint of the cone construction K :if o &
S5 and ¢ e S,_ (R,

{(Lo)c) = a(Ke).
Then for ¢ € §%R") and ¢ e §,(R"),
({(dL — Ld)o)e = (d{Lo))c — {L{do))(c)
(Lo} dc) ~ (do)(Kc)
= a{Kdc) — a{dKc)
a{(Kd — 8K)e)
= ((~1)*"*a)c by Proposition 15.1.

I

Hence
=(—1¥*HdL. — Ld) on S¥R", g=1,
i.e, L is a homotopy operator between the identity map and the zero map
ot the g-cochains, 4 > 1. It follows that
Z, g=20
AR =
() {0, q = 0.

Applying the funclor Homf , Z) to the Mayer-Victoris sequence Jor
singular chains we obtain the Mayer-Vietoris sequence for singular cochains
(15.7) 0> SEHX) S P SHUL) S @ SHU,. 05 ...

dy <y

A3y
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Since the functor Hom( , Z) preserves the cxactness of a sequence of fiee
Z-modules (sec Exercise 14.17.3), the Mayer-Vietoris sequence for singulay_
cochains is exact,

Exercise 15.7.1. Show that &* is the res{riclion map and &* is the alternating
difference

p+1
(6*&‘}%...&,.. = !ZD(_]'}I w%...nﬂ.,.a,n

Once we have the Mayer-Victoris sequence we can set up the double
complex C*¥(U, §*). Just as in the de Rham theory the double comyplex
C*(1, $*) computes the singular cohomology of X. This is because by the
exactaess of the Mayer~Victoris sequence, H; of this complex has a single
zero column

1

S%X)| 0
T

H,= | S'x)| ©
T

sy | o

0 1

5o that the spectral sequence degenerates al the K, term and
H{C*U, §%)} = Hy H; = H*(X).

To complete the analogy we will need the existence of a good cover on
the topological space X. This presents no problem if X admils a triangu-
lation, ie.,, a homeomorphism with the support of a simplicial complex,
since the open slar of the iriangulation is a good cover, By taking barycen-
tric subdivisions of the triangulation we can refine its star ad infinitum.
Hence jusl as in the case of manifolds, the good covers on a triangularizable
space X are cofinal in the set of all covers of X. We note in passing that this
gives an alternative proof of the existence of a good cover on a manifold
since it is known that every manifold admiis a triangulation (due to Cairns
and Whitney, sce Whitney [2, pp. 124-135]). :
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1f M is a good cover of a topological space X, then H, of the double
complex C*{L, §%)is

) 0 0
coQL, 2) | €', 2) | Y, 2)

and H;H, = H¥Q, Z) = H{C*U, $%)}. So there is an isomorphism between
the singular cohomelogy and the Cech coliomology of a good cover with
cocfficients in the constant presheafl Z:

H*(X) ~ H*, Z).

Suppose X triangularizable. Since the good covers are cofinal in the sel of
all covers of X,

H*(X, Z) = H*QI, 7)

where H*X, Z) is the Cech cobomology of X with coefficients in the
constant presheaf Z. Thercfore,

Theorem 15.8. The singular cohomology of a triangularizable space X s

isomorphic to its Cech cohomology with coefficients in the constant presheaf

Z. If Wis a good cover of X, then
H¥X) ~ H¥X, Z)~ H*, #).

let w: E— X be a fiber bundle with fiber F over a triangularizable .

topological space X. Just as in Theorem 14,18, from the double complex
C(z~'l, §%) on E we obtain a spectral sequence converging to the singular
cohiomology H*(E) whose ¥, term is

EB e = HPM, 3#UF)),

where #°9(F) is the locally constani presheaf S#9(U) = HYm~'U). M 2°9(F)
happens to be the constant presheaf Z @ -+ @ Z on U, then

B2 = HPQL Z) @ -+ @ HPQL Z)= HY(X) @ - @ HX)
it ——, —
P = HY(X) ® HYF).

The singular cochomolegy group H*(X; Z) can be given a product struc-
ture as follows. If (A, ... 4,) Is a g-simplex in X, we say that(4, ... 4,) is its
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Jront r-face and {A4,.., ... A) ts back r-face. Let w be a p-cochain and % a
g-cochain; by definition their cup preduct is given by

(159 (wwide .. A =owlde ... A)n(4,... 4

o)

Exercise 15.10. Show that the coboundary operator d is an antidetivaiion
relative to the cup product:

dlex U ) ={dw) vy 4 (— 1) » o dy,

By arguments analogous to (15.2) and (15.7) there is also a Mayer-
Vietoris sequence for singular cochains with coefficients in a commutative
ring A. Using the cup product (15.9) in place of the wedge product, the
spectral sequence of the Cech-singular complex C*(, §*) can be given a
product structure just as in (14.24). The arguments in Section 14 carry over
mutatis mutandis. Hence the results on spectral sequences remain teue for
singular cohomology with coefficients in 4. Note however in (14.18) and
(14.30) the E; term of a fiber bundle = : E --» M with fiber F over a simply
connected base space M is the tensor product H¥(AM; 4) @ H*(F; A4) only
if the cohomology of F is a free A-module. In summary we have the follow-
ing.

Theorem 1531 (Leray’s Theorem for Singular Cohomology with Coeffi-
cients in a Commutative Ring 4). Let n: E — X be a fiber bundle with fiber
F over a topological space X and W an open cover of X. Then there is a
spectrol sequence converging to H*(E; A) with E, term

Eg 9 = FPQL, #9(F; A).

Each E, In the spectral sequence can be given a product structure relative to
which the differential d, is an antiderivation. If X is simply eonnected and has
a good cover, then

E%9 = HY(X, FIE; A)),
If in addition H*(F; A) is a finitely generated free A-module, then
E, =H*X; A) & HXF; A)
algebras over A.
Exercise 15.12 (Kiinneth Formuia for Singular Cohomology). If X is a space
having a good cover, ¢.g., a triangularizable space, and Y is any topological

space, prove using the spectral sequence of the fiber bundle z: X x ¥ — X
that

H'{X x Y)= @ HAX, H(Y)).

ptg=n
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We examine briefly here how some of the thedrems in de Rham theory
carry over to the singular theory. Both the Mayer-Victoris argument of
Section 5 and the tic-tac-lce proof of Section 9 for the Leray-Hirsch the-
orem go through for integer coeflicients, with the singular complex C¥(1(,
5*) in place of C*(, Q%). However, since therc may be torsion in H*(¥), the
Kiinneth formula in the form H*(M x F) = H¥M) & H*(F} is not true
with integer coeflicients; the Mayer-Vietoris argument fails because ten-
soring with H*(F) need not preserve exactness, and the tic-tac-toe proof
fails because H¥F) & C*M, $*) may not be simply a finite number of
copics of C*(H, §%). These difficulties do not arise in the case of the Leray-
Hirsch theorem, since in its hypothesis the cohomology of the fiber H¥*(F) is
assumed 1o be a free Z-module.

REMARK 15.13. Given any Abelian group A, let F be the free Abelian group
generated by a set of generators for 4 and et R be the kernel of the natural
map p: F— A, Then

(15.13.1) 0rR 5 F B A0

is 2 short exact sequence of Abelian groups. As a subgroup of a frec group,
R is also free (Jacobson [1, §3.6]). An exact sequence such as (15.13.1), in
which F and R are free, is called a free resolution of A, Let G be an Abelian
group. By Exercisc 14.17.4, the two sequences

(15.13.2) 0 — Hom(4, G)— Hom(F, G)-> Hom(R, G)
and

(15133) R®G—2aF®G A® G .0
are cxact,

Definition.

Exl(A, &) = coker i* = Hom{R, G)fim i*.
Tot(A, G) =ker i @ L
Thus Ext and Tor measure the failure of the two exact sequences
(15.13.2) and (15.13.3) to be shorl exact. It is not hard to show that the
definition of Ext and Tor is independent of the choice of the free resofution,

For the elementary propertics of thess two functors see, for instance,
Switzer [1, Chap. 13].

Exercise 15134, If m and » are positive integers, we denote their greatest
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common divisor by (i, n). Verify the tables

Bxt Z z, Tor z
z 0 0 z 0 0
Zm Zm E‘Z(m’ n} . Zm 0 Z{m, ")

For example,
Ext(Z,,, Z) = Z,,.
In terms of these completely algebraic functors, one finds the following

dcscr_iption of the dependence of the singular theory an its coefficient group
For a proof see Spanier [1, pp. 222 and 243]. ‘

Theorem 15.14 (Universal Coefficient Theorems). For
. aH
Abelian group G, ) y space X and

(4) the homology of X with coefficients in G has a splitting:
H,(X; G) = H(X)® G ® Tor(H,_(X), G);
{b) the cohomology of X with coefficients in G alse has a splitting.:
HY(X; G) = Hom{H (X), G) ® Ext(H,..(X), G).
Applying 1_3art (b) with G‘= Z yields the following formula for the integer
cohomology in terms of the integer homology,

Corollary 15.14.1. For any space X for which H (X) and H._ (X) ar ]
generated Z-modules, : o ) e fniely

Hi(X)=F, B T,
where F is the free part of H (X) and Ty~ Is the torsion part of H,_,(X).
ReMARK. The splittings given by the universal coefficient theorems cannot

be arranged to be compatible with the induced homomorphisms of maps.
They are therefore often said to be unnatural splittings,

rEXAMPI‘.E 15.15 (The cohomology of the unit tangent bundie of a sphere).
Fhe unit tangent bundle §{Ts,) to the 2-sphere in RB? is a {iber bundle with
fiber §';
ST — S(Ty)
i

82,
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By (15.11) the E, term of the spectral sequence is
E2 9= HP(S?) @ HYS")

q
1 Pl Zz
d
olz] 7
0 1 p
For dimensional reasons dy = d, = -+ = 0, 50 E3 = E,. By Remark 14,20

" the differential d, in the diagram defines the Euler class of the cirele bundle

5(Ty2). Since the Euler class of S{T,) is twice the generator of H*(5* (Exam-
ple 11.18), this 4, is multiplication by 2. Thus

# in dimensions 0 and 3
H*S(Ty) = § £, in dimension 2

0 otherwise.

Lxercise 15.15.1. Compute the cohomology of the uvnit tangent bundle
S(Tsih

A point in S(Tg:) is specified by a unit vector in R? and another unit
vector orthogonal to it. This can be completed to a unique orthonormal
basis with positive determinant. Therefore S(Ts2) = SO(3) and we have com-
puted above the cohomology of SO(3).

REMARK 15.15.2, The special orthogenal group SO(3) comes in a different
guise as RP?, as follows. We can think of S0(3) as the group of all rotations
about the origin in [8%. Each such rotation is determined by its axis and an
angle —n < 0 < n. In this way SO(3) is paramelrized by the solid 3-ball D}
of radius 7 in I%: a point in this 3-ball determincs a unique axis and a
unique angle of rotation, the axis being the line through the point and the
origin, and the angle being the distance of the point from the origin. Since
ratating through the angle —= has the same effect as through =, any pair of
antipodal poinis on the boundary of D?® parametrize the same rotation. So
S0(3) is homeomorphic to RP3.

Exercise 15.16 {The Coliomology of SO(4)). The special orthogonal group
SO(n) acts transitively on the unit sphere $~! in R" with stabilizer
80(n — 1). Therefore SOH)/S0n - 1) = 5§ "1, A group with a dillerentiable
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structure relative to which the group operations, namely multiplication ang
inverse, are smooth is called a Lie group. GL(1n, R) and SO(n) are examples
of Lie groups (see Spivak [1, Iix. 33, p. 83]). 1t is a fact from the theory of
Lie groups that if H is a closed subgroup of a Lie group G, ie, I is a Lie
subgroup and a closed subset of G, then n: G— G/H is a fiber bundle with

fiber I7 (Warner [1, Th. 3.58, p. 1207). Apply the spectral sequence of the
fiber bundle

SO3)-» 5G{4)
1
SJ
to compute the cohomoelogy of SO(4).
Exercise 15.17 (The Cohanology of the Unitary Group). The unitary group

Uln) uets transitively on the unit sphere §2"7' in ©” with stabilizer

U{n ~ 1). Hence Um)/U(n — 1) = §2*~ 1. Apply the spectral sequence of the
fiber bundle

Uln — 1)— U{n)
Il
SZn— 1

Lo compute the cohomology of Ufx).

The Homelogy Spectral Sequence

Although in this book we are primarily congerned with cohomology, for

applications to homotopy theory it is frequently advantagecous to use the
homology spectral scquence of a fibering. Since the construction of such a
spectral sequence js analogous to that for cohoniology, the discussion will
be brief,

Using the singular chain functor S, in place of the differential form
functor Q* we get a double complex C, (U, §,) with diffcrential operators 8
and 4. Define D to be § - (— 1)#8,

g
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As in Secction 14 this double complex gives risc to a spcctral sequence {E7)
which converges to the total homology Hp{C, (1, S,)}. Because of the di-
rections of the arrows & and §, the diflerential 4" goes in the opposite
direction as the differential of a cohomoelogy spectral sequence; more pre-
cisely,

" ¥
& - By gheet

By the exactness of the Mayer-Vietoris sequence (15.2) the spectral sequence
is degeneraie at the E? term and

E* = HyH, = H (X).
Hence we have the following.

Proposition 15,18. For any cover U of X the double complex C, (U, §,)
computes the singular homology of X :

Hp{C L S0 = H(X).

To avoid confusion with the cohomology spectral sequence, we write r as
a superscript and p and ¢ as subscripts in the homology speciral sequence:
Ey

Now suppose U is a good cover of X. Interchanging the roles of & and §
gives anolther speciral sequence which also converges o Hu{C, (1, S,)}.
This time
(15.19) E® = E? = H,Hy = H (I, Z)

where Z is thc constant presheal with gronp Z. Comparing (15.18) with
(15.19) gives the isomorphism of the singular homelogy to the Cech homol-
ogy H U, Z) of a good cover. Along the line of Theorem 14.18, if
n: E— X is a fiber bundle with fiber F, and X is a simply connected space
with a good cover, then there is a spectral sequence converging to the
singular homology H . (E) with E2 | = H (X, H {F)). 1l in addition J7 (F) is a
frec Z-module, the E? term is isomorphic to the tensor product
H{X)® H{F) as Z-modules. Unlike the cohomelogy speetral sequence,
there is in general no product structure in homology.

§16 The Path Fibration

Recall again that through §18 we work in the category of topological spaces
and continuous maps, Unless otherwise noted all cohomology groups will
be assumed to have integer coefficients. Let n: E— X be a fiber bundle
with fiber F over a topological space & that has a good cover 1. We have
shown that there is a spectral sequence converging te the cohomology
H*(E) of the total space, with F, term

E$ " = HAU, #°9F)),
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where #74(F) is the presheaf that associates to every open set U in I the
group Hizn™'U) =~ HYF). Now suppose n: E— X is simply a map, not
necessarily locally trivial. One can still obtain a spectral sequence by,cmb
sidering the double complex of singular cochains K = C*xn~ 'Y, 8%) on £
Aslong as the map n ; E— X has the property that '

(16.1)  H%zn™'U) =~ HYF) for some fixed space F and for any contractible
open set U,

then E; = H; H{K) will be the same as for a fiber bundle. Since the spectrg]
sequence is a purely algebraic way of going from H;H, to Hy, which is
13011_10rphic to H*(E), the spectral sequence of this double complex wit]
again converge to F*(E). An example of such a map is the path fibration. As
will be scen in the next few sections, Serre’s application of the spectral
sequence in this unexpected setting has far-reaching consequences in homo-
topy theory.

The Path Fibration

L:_at Xbea toPological space with a base point x aand [0, 1] the unit interval
Wlth'b‘fise point 0. The path space of X is defined to be the space P(X)
consisting of all the paths in X with initizl point *:

P(X) = {maps g: [0, 17> X | u(0) = =},

We give this space the compact open topology; i.e., a basic open set in P(X)
consists of all base-peint preserving maps p: [0, 13— X such that
#(K) = U for a fixed compact set K in [0, 1] and a fixed open sct U in X.
There is a natural projection % : P{X)— X given by the endpcint of a path:
i) = p(1}. The fiber at p of this projection consists of all the path from * to
v (see Figure 16.1}.

Figure i6.1

We now show that the map =: P(X)— X has the property (16.1). Let U

be a contractible open set containing p. There is a natural inclusion

it Y p)—r YD),

816 The Path Fibration 199

Figure 16.2

(See Figure 16.2.) Using a contraction of U to p, we can get a map
¢ (U)—n (p)

1t is readily checked that ¢ and i are homotopy inverses. Furthermore, if p
and ¢ are two paints in the same path component of M, then a fixed path
from p to g induces a homotopy equivalence n}{p) =~ o~ Yg). Thus all
fibers have the hamotopy type of 77 1(+), which is the loop space QX of X:

QX = {p:[0, 1]+ X { (0} = p(t) = +}.

S the map n: P(X)— X has the praperty H*(n~'U) =~ H¥QX) for any
contractible U in X,

A more general class of maps satisfying (16.1) arc the fiberings or fibra-
tions, A map n: E— X is called a fibering or a fibration if it satisfics the
covering homotopy property :

{16.2) given a map f: ¥ > E from any topological space Y into E and a
homotopy f; of f =z » fin X, there is a homotopy f; of fin E which
covers J,; thatis, w « f, = f,.

The covering homotopy property may be expressed in terms of the diagram
!
Y E

24 E
o
Fio .
o
-
-
-

(3,0 Y xI oLy,

Such a fbering is sometimes calted a fibering in the sense of Hurewicz, as
opposed to a lbering in the sense af Serre which requires only that the
covering homotopy property be satistied for finite polyhedra Y. IfXisa
pointed space with base point %, we call @™ (%) the fiber of the fibering, and
for any x in X, we call F, = =~ 1(x) the fiber aver x. As a convention we will
assume the base space X of a fibering to be connccted. It is clear that ihe
map = : PX — X is a fibering with fiker X, for a homotopy in X naturally
induces a covering homotopy in PX, This fibering, called the path fibration

~of X, is fundamental in the computation of the cchomology of the loop

spaces. Its lotal space FX can be contracted to the constant path:
[0, 1]— =.
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We prove below two basic properties of a fibering, from which it wiy
foltow that (16.1) helds for a fibering.

Propositivn 16.3.(a) Any two fibers of a fibering over an arcwise-connecteg
space have the same homotopy type.

(b) Far every contractible open set U, the inverse image n~'U has the
homotapy type of the fiber F_, where a is any poini in U.

PROOF. (a) A path y(f) from « t¢ b in X may be regarded as a homotopy of
the point a. Let g F, x I— X be given by (y, ) +— y(t), where [ is the unit
interval [0, 1]. So we have the situation depicted in Figure 16.3. By the

¥ Fnc“_‘—‘__")‘B
&
E.// T
// rﬁ
-~
-~
(Y:D) Faxl-——-—-———_—-——-—)-.){

Gt (1) ¥(0) 71

Tigure 16,3

covering homotopy property, there is 2 map g which covers §. The re-
striction g; = g|F_,,<m is then a map from F, to F,. Thus a path from a to b
induces a map from the fiber F, to the fiber F,,.

We will show that hemotopic patls from & to b in X induce homotopic
maps from F_ to F,. Let p be a path from a to b which is homotopic to ¥,
h a covering homotopy of g, and , the induced map from F. to Fy,. Deline
7 by {see Figure 16.4}

Z=F,xIx{0}uF, xIx]

andj : Z— F by

7
f
J

Faxixioi¥ 5, ) =¥

F‘,x{O}x!(yy 0! 'E} = Q(st t}

Faxqy i L0 = Ry, t),

We regard the homotopy between y and p in X as a homotopy G of m o f.
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e

— s [, Fy
/]
,/
/d
rd
-~

kig

Z
K
-

Figure 16.4

By the covering homotcpy property there is a covering map G from
F, »x I x I, which is homotopic to Z x I, into E. The restriction of G to
F, x I x {1} has image in Fy,. Since Glp,.qyx1; = g1 and G
Iy G g, w141y 1S @ homotopy in F, between g, and It,.

Given two points g and b in X and a path p from q to b, letu: F,-= F,
be a map induced by y and v: F,-» F, a map induced by ¢!, Then v o u:
F,--+ Fy is a map induced by y~'y. Since y~ 'y is homotopic to the constant
map to g, the composition v » ¥ is homotopic to the identity on IF,. There-

Fgx{thx() =

~ fore, F, and Fy have the same homotopy type.

(by Yet y: U » F— U be a deformation retraction of U 1o the point g. By
the covering homaotopy property, there is « map g ixn™'U x I-» 2~ 'U such
that the following diagram is commulative.

identity

1 —1i
A ) TS U
—
f -
-*'f o
-"/
//
—
iU x I - Uxi - U

We will show that ¢ gives a deformation retraction of #~'U onto the fiber
F,. Let g, be the restriction of g to 71U x {t}. By identifying n~' U with
271U x {t}, we may regard g as a family of maps g, :n”~ U — x~ U vary-
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ing with ¢ in the unit interval I. At ¢t = 0,
go:n U x {0} =~ tU
is the identity and at ¢ = 1,
g WU x {1} —n"1U
has image in the fiber F,. Hence, g, may be factored as g, = i « ¢:

i

&
U x {1} - F, & a~'U

So via g the composition i » ¢ is homotopic to the identity. To show that
¢ o i: F,— F_is homotopic to the identity, consider the following diagram

i identby

Fe—— g™y =, n U
—
e
— »
e -4

- -

Fox IS 17 WU X fomoes U X [ UL
i

Nate that ¢ei=goflp .y is induced from the constant path
I'— {a} € X, since y o w s j{y, £) = a for all t. (The deformation retraction y
fixes a at all times.) By the proof of (a), ¢ © i is homotopic to the identity. [

Remark 16.4. If we replace F, with any space ¥, the argument in {(a) proves
that in the covering homotopy property (16.2), homotopic maps in X
induce homotopic covering maps in E,

Generalizing the fact that a simply connected space cannot have a con-
nected covering space of more than one sheets, we have the following.

Proposition 16.5, Let n: E—» X be a fibering. If X is simply connected and E

is path connected, then the fibers are path connected.

PROOF, Trivially the E3:° term of the fibering survives to E . Hence
E$° = E3° = HY(E) = Z,
since E is path connected. On the other hand,
E° — HY%X, HO(F)) = HO(F),
Therefore H(F) = Z. [
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The Cohomology of the Loop Space of a Sphere

As an application of the speetral sequence of the path fibration, we compute

. here the integer cohomelogy groups of the loop space Q8% n = 2.

| EXAMPLE 16.6 (The 2-sphere). Since §? is simply connected, the spectral

sequence of the path fibration
Q5% — ps?
1
§?
has £, term
g9 = HY(S?, HAQS™),
S0 the zeroth colunm E39 = H%S?, HYQS82)) = HYQS?) is the cohomology

_ of the fiber. By Proposition 16.5, H%(QS?) = Z, so the bottom row Hg° =

HP(S?, HO(QSY) = HPS?, Z) is the cohomology of the base.

* By the universal coefficient theorem (15.14), all columns in E, except p = 0

and p =2 are zero. Hence all the differentials d;, d,, ...
Ef" = Ef? Because the path space PS? is contractible,

P {z (v, 4) = (0, 0}
- 0 otherwise.

are zero and

Thus 4, : EY'' — E2' must be an isomorphism. It follows that HY{QS?) = Z.

But then

Ey ' = HYS), H'QSY) = HY(S%, 2) = Z.

-~ Since dy 1 E32-» E3 1 s an isomorphism, H*QS?) = Z. Working our way

up, we find H%(Q5%) = Z in every dimension q.
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ExamrLe 16,7 (The 3-sphere). In the E, term of the fibering

4

g
87— PS§?

1 Z
g3

/

z [~ 7
\&
yid Zz _
1 2 3 p

the nonzero columns are p = 0 and p = 3. For dimension reasons d, = (
and d, = d; = -- - = (. Because the total spacc is coniractible, d, is an
isomorphism except at ES °, Therefore,

Z in even dimensions

*()93)
A5 {0 otherwisec.

Similarly we find that in general

Qs = {Z in dime?nsions On—1,20—10,...
0 atherwisc,

Nex! we examine the ring structure of H*(QS"). We start with Q8§2, Let
u be a generator of £3'° = H*(5% and let x be the generator of HY{QSY)
which is mapped to u by 4,. For simplicily we occasionally write d for d,.
By Example 16.6, the differential , is an isomorphism. Note that x com-
mutcs with » because F; is the tensor product H¥QS?) ® H*(S?). (x is
actually x ® 1 and uis 1 ® 1)

e
417
3| ex exu
2| e au
1| x \“ xu
ol 1 \““‘ Y
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since da(x®y=(dyx}+ x—-x - dyx =ux — xu=90, we have x* =0. Thus
the generator e in H2(Q25?) which maps to xu is algebraically independent of
x. Since d(ex) = en, the product ex is a generator in dimension 3. Similarly,
d(e®) = 2exu so that e*/2 is a generator in dimension 4; d{(e?/2)x) = (e?/2)u
so that (e?/2) - x is a generator in dimension 5. By induction we shall prove

k
e s .
7 osa genterator in dimension 2k
and
ek
X is a generator in dimension 2k - 1.
!
PrOOF. Suppose the claim is true for & — 1, Since
K k-1 Ko 1
e e e
d—= de = xu
kI (k= D! (k— 13177

which is a generaior of EZ:2+-!

IF?HQ8?). Similarly, since

ek ek'—l ek ek
d(}:!x)=(—-—--—-k_ o xu -x+mu=au,

which is a generator of Eg'ik, the element {¢*/kl)x is a generator of
_HEk+I(Qs?.)‘ |

, the element &*/k! is a generator of

By definition the exterior algebra E(x) is the ring Z[x]/(x?) and the
divided polynomial algebra Z.(e} with generator e is the Z-algebra with
additive basis {1, e, e*/21, ¢*/3], ... }. Hence

H*Q8%) = E(x) @ Zfe),

where dim x = 1 and dim e = 2,

Now consider H*{5") for n odd. Let u be a generator of H(S") and e
the generator of H"~ Q18" which maps to u# under the isomorphism 4,.
Since d,(e*) = 2eu, ¢*/2 is a generator in dimension 2(n — 1). In general if
€*/k! is a generator in dimension k(n — 1), then d (e*" '/ + 1)1) = (*/k!)u
so that ¢ 1j(k + 1)}! is a generator in dimension (k + 1)(n — 1).

ST
i

|
N

™ eu

/
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This shows that for n odd,

H*(Q8") == Z (e}, dime=n—1

By a computation similar to that of H*QS?), we see that for n even,

H*(QS8") = E(x) ® Z (e}, dimx=n—1, dim e = 2{n — 1}.

§17 Review of Homotopy Theory

To pave the way for later applications of the spectral sequence, we give in
this section a brief account of homotopy theory. Following the definitions
and basic properties of the homotopy groups, we compute some low-
dimensional homotopy groups of the spheres. The geometrical ideas in this
computation lead to the homotopy propertics of attaching cells. A space
built up from a collection of points by attaching cells is called a CW
complex. To show that every manifold has the homotopy type of a CW
complex, we make a digression into Morse theory. Returning to the main
topic, we next discuss the relation between homolopy and homology, and
indicate a proof of the Hurewicz isomorphism theorem using the homology
spectral sequence. The homotopy groups of the sphere, 7 (5", ¢ < 5, are
immediate corollaries, Finally, venturing into the next nontrivial homotopy
group, n5(S?), we discuss the Hopf invariant in terms of differential forms.
Some of the general references for homotopy theory arc Hul 1], Steenrod
[17, and Whitehead [17].

Homotopy Groups

Let X be a iopological space with a base point . For ¢ = 1 the gth
homotepy group #=,(X) of X is defined to be the homotopy classes of maps
from the g-cube M to X which send the faces /2 to / to the base point of &.
Equivalently (X} may be regarded as the homotopy classes of basc-point
preserving maps from the g-sphere 7 to X. The group operation on n,(X)
is defined as follows (see Figure 17.1). If « and f are maps from I to X,
representing [o} and [f] in 7 (X), then the product [«][ 4] is the homotopy
cluss of the mup

{2y oy ey L) for 0< <%

2y

}’("""‘fg)z{ﬂ(zsl — 11y, .., 0) for Y<e <

We recall here some basic properties of the homotopy groups.
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Figure 17.1

Proposition 17.1. (a) n(X < ¥) = =,(X) x n (Y}
(8) n(X) is Abelian for g = \.

PrOOF. (a) is clear since cvery map from [? into X x Y is of the form
(f1, f2) where f, is a map into X and f; is a map into ¥. Furthermore, since
(f1. g1, 82) = (f181, f2 £2), the bijection in (a) is actually a group iso-
moerphism. To prove (b), let [#] and [f] be two elements of m{X). We
represent «ff by

G20, fay iy ty) for 0<¢ <1
ﬁ(211"‘1, !2,...,{2) for %Sfjil.

P I

«f} is homotopic to the map d§ from f to X given by

q(2rl$ 2!2 - 1! fas ey Iq))

1
o X 0=t <% 1<,
5[’1; [CRE | Iq)= .8(2“ - i; ng, LR rg})
* A T=t <1, 0<i; <3,

otherwise.
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4 is in turn homotopic to

%
,IG )
* o
1'8 * 2
and finally to
B o
[}

Proposition 17.2. n,_ (QX) = n,(X), g = 2,

SKurcd ofF PROOT. Elements of n,(X) are given by maps of the square 12 -

into X which send the boundary 72 to the base point #. Such a map may be
viewed as a pencil of loops in X, ie, & map from the unit interval into QX,
Therefore, (X} = n,(QX). The gencral case is similar; we view a map
from P to X as a map from I~ to X, O

It is often useful to introduce my( X}, which is defined to be the set of all
path components of X. It has a distinguished element, namely the path
component containing the base point of X. This component is the base
point of n,(X). For a manifold the path components are the same as the
connected components {Dugundji [ 1, Theorem 1V.5.5, p. 116]).

Recall that a Lie group is a manifold endowed with a group structure

such that the group operations—multiplication angd the inversc operation—

are smooth functions. Although n,(X) is in general nof a group, if G is
a Lie group, then ny(G) is a group, This follows from the following
proposition.

Proposition 17.3. The identity component H of a Lie group G is a normal
subgroup of G. Therefore, n(G) = G/H is a group.

Proor, Let a, b be in H, Since the contlinuous image of a connected sel is
connected, bH is a connected sct having a nonempty intersection with .
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Hence bH = H. 1t follows that abH < aH < H, so ab is in H. Similarly
@~ 'IT is a connected set having a nonemply intersection with H, since 1 is
in a ' s0 a 'H <o H and ¢”! is also in H. This shows that H js a
subgroup of G.

Let g be an element of G. Since gHg ™' is a connected set containing 1,
by the same reasoning as above, gHg~! < H. Thus H is normal,

Because mulliplication by g is a homeomorphism, the coset gH is
connected. Since distinct cosets are disjoint, G/H consists of precisely the
connecled components of G, Therefore, ny{G) = G/H. O

Let n: E-—+ B be a (base-point preserving) fibering with fiber F. Then
there is an exact sequence of homotopy groups, called the homotopy se-

quence of the fibering (Steenrod [1, p. 217):

(74) o (F) g (B) I m(B) o my y(F) — -
o o{E) — m(BY — 0.

In this cxact sequence the last threc maps are not group homomor-
phisms, but only set maps, The kernel of a set map between pointed sets is
by definition the inverse image of the base point. Exactness in this context is
given by the same condition as before: “the image eguals the kernel.” The
maps {, and 7, are the maps induced by the inclusion {: F—~ E and the
projeclion m: E— B respeclively, Here we regard F as the fiber over the
base point of B. To describe & we use the covering homotopy property of a
fibering. For simplicity consider first ¢ = 1. A lecop & : I' — B from the unit

* - interval to B, representing an clement of n;(B), may be lifted to a path & in

E with dg(0) being the base point of F. Then 8] is given by &(1) in my(F).
More generally let 197! = I9 be the inclusion

(t_\) Ty Ii:q—l)"'-"{i{'.ls LERE l.:ga---]_s 0]'

A map a: [T+ B representing an element of n(B) may be regarded as a

: ?:-.:_ homotopy of e|m-1 in B, Let the constant map * : /7”1 — E from 197! to

the base point of ¥ be the map that covers o|p-1: {8y, ..., f,_y1, 0}— B. By
the covering homolopy property, there is a homotopy upstairs &: J7— [

_ which covers « and such that & I;a—‘ = =, Then #[¢] is the homotopy class of

the map & : (13, ..., t,_1, 1)— F. By Remark 16.4, 8[«] is well-defined,

" BXAMPLE 17.5. A covering space n ¢ E— B is a fibering with discrete fibers.
" By the homotepy scquence of the fibering,

7 (E) = . (B) for g=2

- and

71(E) & m,(B).
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WarniNG 17,6 (Dependence on buase points). Consider the homotopy
groups =, (X, x) and #, (X, y} of a path-connected space &, computed rela.
tive to two different points x and y. A path y from x to p induces by
conjugation & map from the loop space €}, X to the loop space £}, X;

1

A ply” for any Ain X,
This in turn induces a map of homotopy groups
Pui g1 (X, )= 7, (Q, X, ),
I I
7 (X, x) 7 (X, )

where % and ¥ are the constant maps to x and y. The map y,, is cleurly an
isomorphism, with inverse given by (y~ 1]* .

We can describe y,, explicitly as follows. Let [¢] be an element of
7 (X, x). Define a map F to be & on the battom face of the cube I7%* and y
on the vertical faces (Figure 17.2 (a)); more precisely, if (u, e I# x 1=
I"t! then

Fiu, 0) = alu) for all y in I¥
and
Fiu, t) = () for all u in 819,

¥

Figure 17.2(a)

By the box principle from obstruction theory (which states that a map from
the union of all but one face of 4 eube inte any space can be extended to
the whole cube), the map F can bc extended to the entire I+ Its re-
striction to the top face represents v, [«].

One checks casily that y, is independent of the homotopy class of 7
amongst the paths from x to y, so that when we take x = y, the assignmen_t
y—7, may be thought of as an action of =;(X, x} on 7, (X, x). Only if this
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action is trivial, can one speak unambiguousiy of m,(X) without reference to
a basc point. In that case one can also identify the free homotopy classes of
maps [8% X7 with n (X); here by a free homotopy we mean a homotopy
that does not necessarily preserve the base points. In general, however,
[$% X is not a group and its relation to w,(X) is given by the following,

Propesition 17.6.1, Let X be a path-connecied space. The inclusion of base-
point preserving maps into the set of all maps induces a bifection

ﬂq(X) x]fﬂl(X’ X) = [qu 'X:]’

where the notation on the left indicates the equivalence relation [a] ~ y,[«]
Jor By] in (X, x).

ProoF. Let ki n (X, x)— {89 X] be induced by the inclusion of base
point preserving maps into the set of all maps. If {&] ¢ 7 (X, x) and
[¥] € =, (X, x), it is laborious but net difficult Lo write down an explicit free
homotopy between o and y o (see Figure 17.2 (b) for the cases ¢ = I and
g = 2). Hence h factors through the action of (X, x) on 7 (X, x) and

o
YA X X F W
> > %
it o Y

Figure 17.2{h)
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defings a map
H:m (X, x)/m (X, x)— [59 X].

Figure 17.2{c)

Since X is path connected, any map in 8% X] can be deformed 1o a
basc-point preserving map. So H is surjective, To show injectivity, suppose
[o] in 7 (X, x} is nuli-homeotopic in [§9 X]. This means there is a map
F: "' X such that

F]lopfalx. =,

F ]bollnm face = s

and F is constant on the boundary of each horizontal slice (Figure 17.2 {c)), .

Let y be the restriction of F to a vertical segment. Then « = y {x). There-
fore, H is injective. O

The Relative Homotopy Sequence

Let X be a space with base point x, and A a subset of X (See Figure 17.3}.
Denote by Qf the space of all paths from * to A. The endpoint map _

2: (%> A gives a fibering

QX —

1
A

The homotopy sequence of this fibering is
s (A} L (X} s () — 7, (A -

s gf2) > TofA) — .
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Figure 17.3

We define the refative homotopy group n(X, 4) to be nq_l[ﬂﬁ). Then the
sequence above becomes the relative homotopy sequence of A in X

(1?'?J T """)T[q(A] - ﬂq(X)_'nq{Xs A)—>7Iq._1(‘4)—""‘
c =X, A) — na{d) — 0.

Observe that 7 (X, A) is an Abelian group for g = 3, n,{X, A) is a group
but in general not Abelian, while 7,(X, A) is only a set.

Some Homotopy Groups of the Spheres

In this section we will compute n,(S7) for g < n. Although these homotopy
groups are immediate from the Hurewicz isomorphism theorem (17.21), the
geometric proof presented here is important in being the pattern for later
discussions of the homolopy properties of attaching cells (17.11).

Proposition 17.8 Every continuous map f : M -» N between two manifolds is
continuously homotapic to a differentiable map.

Proor. We first note that if f: M — R iz a continuous function and ¢ a
positive number, then there is a differentiable real-valued function h on M
with | f — k| < & This is more or less clear from the fact that via its graph, f
may be regarded as a continuous section of the trivial bundle M x R over
M;in any e-neighborhood of f there is a diflerentiable seclion h and because
the g-neighborhood of f may be continuously delormed onto f, 4 is con-
tinuously homotopic to f (sec Figure 17.4). Indeed, to be more explicit, this
differentiable section h can be given by successively averaging the values of f
over small disks.

Next consider a4 continuous map f : M — N of manifolds. By the Whit-
ney cmbedding theorem (see, for instance, de Rham [1, p. 12])}, there is a
differentiable embedding g : N --» R". If

gel:M— g(N)c R
is homotopic to a differentiable map, then so is
f=g"lelgaf): M N
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i M X R

M
Figure 17.4

S0 we may assume at the outset that N is a submanifold of an Euclidean
space R". Then the map fis given by continuous real-valued functions (f,,
.o [ As noled above, each coordinate function f; can be approximated by
a differentiable function k; to within &, and f; is continuously homotopic to
k. Thus we get a differentiable map h: M -— R" whose image is in some
tubular neighborhcod T of N. But every tubular neighborhood of N can be
deformed to N via a differentiable map k: T — N (Figure 17.5). This gives

a differentiable map k - h: M — N which is homotopic to f. |
N
N
Figure 17.5

Corollary 17.8.1. Let M be a manifold. Then the homotopy groups of M in the
C* sense are the saime as the homotopy groups of M in the continuous sense.

Proposition 17.9. #,(5") = 0, for ¢ < n.

Proor, Let f be a continuous map from I? to §%, representing an element of
1, (5"). By the lemma above, we may assume f differentiable. Hence Sard's
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theorem applics. Because ¢ is strictly loss than n, the image of f are all
critical values. By Sard’s theorem jf cannot be surjective, Choose a point P
not in the image of £ and let ¢ be a contraction of " — {P} to the antipodal
point Q of P (Figure 17.6}:

¢ 8" —{P} = 5"—{P}te[0, 1]

identity

Co

constant map Q.

Ir

€1

Then ¢, o f is a homotopy between f and the constant map Q. Therefore,
n{S8") = 0 for g < n. LI

Tigure 17.6
Proposition 17.10. 2, {5") = Z,

We will indicate here the main ideas in the geometrical proof of this
statement, omitting some technical details.

Recall that to every map from 8" to $" one can associate an integer
called its degree. Since the degree is a homotopy invariant, it gives a map
deg : =,(3") — Z. There are two key lemmas.

Lemma 17.10.1. The map deg: n,{S") — Z is a group homomorphism; that is,
deg[fg] = deg[f] + deglgl

Lemma 17.10.2 Two maps from 8" to 8" of the same degree can be deformed
into each other.

The surjectivity of deg follows immediately from Lemma 17.10.1, since if
[ is the identity map, then deg (/%) = k for any integer k; the injectivity
follows from {17.10,2),

To prove these lemmas we will deform any map f: 8" — 5" intc a
normal form as follows. By the inverse function theorem f'is a local diffeo-
morphism around a regular point. By Sard’s theorem regular values exist,
Let 7 be an open set around a regular value so that f (U} consists of
finitely many disjoint apen sets, U, ..., U,, each of which f maps diffeo-
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U
U, — U
gl
U, =1

e e

n=2
Figure 17.7

morphically onto U (Figure 17.7). Choose the base point = of §” to be not in
U. We deform the map f by deforming U in such a way that the com-
plement of U goes into » The deformed f then maps the complement of
[Jf.1 Ui to x. Bach U; comes with a multiplicity of +1 depending on
whether f is orientation preserving or reversing on U,. The degree of fis the
sum of these multiplicities. Given two maps f and g from §" to §°, we
deform each as above, choosing U to be a neighborhood of a regular value
of both fand g. By summing the multiplicities of the inverse images of U,
we see that deg(fy)=degf+ deg g (Figure 17.8). This proves Lemma
17.10.1,

To bring a map f:8"— § into what we consider its normal form
requires one more step. If U; and U; have multiplicities +1 and —1 re-
spectively, we join U; to U; with a path. It is plausible that f can be
deformed further so that it maps U; w U, to the base peint +, since f wraps
U, arpund the sphere one way and U the reverse way. For §' this is clear.

@ f

Figure 17.8
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The general case js where we wave our hands, The details are quite involved
and can be found in Whitney [1]. In this way pairs of open scts with
opposite multiplicities are cancelled out. In the normal form, if f has degree
+k, then there are exactly k open sets, U;, ..., Uy, with all +1 multi-
plicities or all —1 muitiplicities. Hence two maps from S to §" of the same
degree can be deformed into each other.

Attaching Cells

Let ¢" be the closed n-disk and §7~* its boundary. Given a space X and a
map f: 87! — X, the space ¥ obtained from X by attaching the n-cell &
vig fis by definition (see Figure 17.9)

Y=Xu;e"=XUe"/f(u)~u forue s L

Figure 17,9

For example, the 2-sphere is obtained from a point by attaching a 2-cel
(Figure 17.10):

52 =p el

Figure 17.10

Ii is easy to show (hat if f and g are homotopic maps from $"! to X,
then X w,e® and X U, " have the same homotopy type (see Rott and
Mather [1, Prop. 1, p. 466] for an cxplicit homotopy), The most fundamen-
tal homotopy property of attaching an #-cell is the following,

Proposition 17,11, Attaching an n-cell to a space X does not alter the homo-
topy in dimensions strictly less than n — 1, but may kill elements in n,_,(X);
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more precisely, the inclusion X ¢ X o e" induces isomorphisms
nfX) % (X v e") forg<n-—1
and a surjection

7t (X) = m,_ X U e,

Proor. Assume ¢ <#n— 1 and let £: 87— X v " be & continuous base.
point preserving map, We would like first of all te show that f is hometopie
to some map whoese image does not contain ali of ¢ If f is differentiable
and X U, " is a manifold, this follows immediately from Sard’s theorem. In
fact, as long as f is differentiable on some submanifold of 84 that maps into
e", the same conclusion holds, As in the prool of Proposition 17.8 this can
always be arranged by moving the given fin its homotopy class. So we may
assuinc that f docs not surject onto e". Choose a point p not in the hnage
and fix a retraction ¢, of (" — {p}) to the boundary of ¢". This gives a
retraction ¢, of X w (¢" — {p}) to x. Via ¢, « f, the map f is homotepic in
X u e"to a map from §7 to X (Figure 17.11). Hence 7 (X)— (X « % is
surjectiveforg < n — 1.

a g

Figure 17.11

Now assume g < n — 2. To show injectivity let / and g be two maps
representing elements of £ {X) which have the same image in n (X U e".
Let F: 8 x I — X v " be a homotopy in X w ¢" between f and g. Since
the dimension of 87 x I is less than #, again we can deform F so that its

The homaotapy F

The homotopy ¢; « F
Figure 17.12
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image docs not contain all of e”. Reasoning as before, we find maps
e FiS8Tx - Xwue

such that ¢, » F:87 x {1}-— X is a homotopy between fand g which lies in
X (Figure 17.12). Therefore [ f] = [g] as clements of n,(X). [

As for homology we have the following:

Proposition 17,12, Attaching an n-cell te a space X via a map f does not alter
the hemology except possibly in dimensions n — 1 and n. Writing X, for
X g e, there is an exact sequence

0 IL(X)— H (X )= Z-0H, (X)— H, (X} — 0

where f, 0 H,_ (8" '} H,_{X) is the induced map. So the inclusion X o
Xy induces a surjection in dimension n — 1 und an injection in dimension n.

Prook, Let U be X, — {p} where p is the origin of ¢”, and let ¥ be{x € |
[x|l < 4}. Then & is homotopic te X, ¥ is contractible, and {U, ¥} is an
open cover of X, By the Mayer-Vietoris sequence (15.6), the following is
cxact

o HAS" NS HX)@H(V) 5 H(X )~ Hy_ 8" >
Scforg # n—1lorn H(X;) = HJX). For g = n, we have

0 HX)—> H(X ) H,_4(8" ) L0 H, ()= H,_ (X )~ 0. O

A CW complex is a spacc ¥ built up from a collection of points by the
successive atlaching of cells; the topology of ¥ is required to be the so-
called weak topology: a set in ¥ is closed if and only if its intersection with
every cell is closed. (By a cell we mean a closed cell.) The cells of dimension
at most » in a CW complex Y together comprise the n-skeleton of Y.
Clearly every triangularizable space is a CW complex. Bvery manifold is
also & CW complex; this is mosi readily seen in the framework of Morse
theary, as we will shaw in the next subsection.

For us the importance of the CW complexes comes from the following
proposition.

Proposition 1713, Every CW complex is homotopy eguivalent to o space with
ti good cover.

Hence the entire machinery of the spectral sequence that we have developed
applics to CW complexes. This proposition follows from the nontrivial fact
that every CW complex has the homotopy type of a simplicial complex (Gray
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[1, Cor. 16.44, p. 149 aind Cor, 21.15, p. 206] or Lundell and Weingram I1,
Cor. 4.7, p. 131]), for the open star of the simplicial complex is a good
cover.

Digression on Morse Theory

Using Morse theory, it can be shown that cvery differentiable manifold has
the homotopy type of & CW complex {see Milnor [2, p. 36]). The goal of
this section is to prove this for the simpler case of a compaet dilferentiable
manifold,

Let f be a smooth real-valued functien on a manifold M. A critical point
of fis a point p where df = 0; in terms of local coordinates x,, ..., x,
centered at p, the condition df {p) == E (8f/8x)(p) dx; = 0 is equivalent to the
vanishing of all the partial derivatives (df/0x,){p). The image f(p) of a critical
point is called a critical value, Note that the definition of a critical point
given here is a special case of the more general definition preceding Theo-
rem 4.11 for a map between manifolds, A critical point is nondegenerate if
for some coordinate system x4, ..., x, centered at p, the matrix of second
partials, {(8%ffx, &x)(p)), is nonsingular; this matrix is called the Hessian of
frelative to the cootdinate system x,, ..., x, al p. The notion of a nondege-
nerate critical point is independent of the cheice of coordinate systems, for
if y1, ..., ¥y is another coordinate system centered at p, then

I s o oy
ay( 7 dXJ 3}),;
and

Ff 5 0 xiox; O xy
oy, 8y, i; 0% Ox; By, By, 7 53{: Oy Oy
Al p, 3ffdx; = 0, so that
% _y O omoy
vy Oy, 78 dx; By, Oy, '

In matrix notation
H(y) = J'H(x)J

where H(x) is the Hessian of f relative to the coordinate system x,, ..., x,,
and J is the Jacobian (8x/8y,). Since the Jacobian is nonsingular,
det{(@*/8y,. 8y,) + 0 if and only if det{dffdx, dx;) # 0. The index of a nonde-
generate critical point is the number of negative eigenvalues in the Hessian
of /. By Sylvester’s theorem from linear algebra, the index is independent of
the coordinate systems. It may be interpreted as the number of indcpendent
directions along which fis decreasing,

§17  Review of Homotopy Theory 221

ExamprLE 17.14. Consider a torus in 3-space sitting on a planc as shown in
Figure 17.13. Let f{p} be the height of the point p above the plane. ‘Then as
a function on the torus f has four critical points 4, B, C, and D, of indices 0,
1, t, and 2 respectively.

Figure 17.13

We outline below the proofs of the two main theorems of Morse theary,
For details the reader is referred to Milnor [2, §3] or Botit and Mather [1,
pp. 468—472],

Theorem 17.15. Let f be a differentiable function on the manifold M, and M,
the set f N[ —oo, a]). If f~Yia, b]) is compact and contains no critical
points, then M, has the same homotopy type as M,.

OUTLINE oF Proor. Choose & Riemannian structure ¢ , > on M. Then
away from the critical points of A, the gradient Vh of a differentiable func-
tien fis defined: it is the unique vector field on M such that for alt vector
fields Y on M,

{Vh,, Y0 = dh(T,).
Lot X be the unit vector field — V//{l Vf|l. Because f has no critical points on

- My

' Niu

Figure 17.14
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I Y[a, b1), X is defined on f~*[a, b]). As in vector calenlus on B" the
gradient of a function points in the dircction of the fasiest increase, so X
peints in the direction of the fastest decrease. Extend X to a vector field an
M. The flow lines of X give a deformation retraction of M, onto M, (Figurc
17.14).

0

Theorem 17.16. Suppose f ™ *{[a, b]) is compact and contains precisely one
eritical point in its interior, which is nondegenerate and of index k. Then M,
has the homotopy type of M, w €.

Ta prove this theorem we need the following.

Morse lemmma. If p is a nondegenerate critical point of £ of index k, then there
is a coordinate system x,, ..., X, near p such that

J=fP) —xf - —xf+xfp + 4+ X7

The Morse lemma may be proved by the method used to diagonalize
quadratic forms (see Milnor [2, p. 6]).

OUTLINE OF A PROOF OF THEORBM 17,16, Let ¢ = f{p) be the critical value
and ¢ a small positive number. By Theorem 17.15, M, has the homotopy
type of M, ,, and M, that of M{__,, so it suffices to show that M., has the
homotopy type of M, U &*.

Figure 17.15
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On a neighborhood U of p where the Marse lemma holds,
Mo, nUs={~x}—  —x} 4 xp4y+ " + 32 <}

Mc—l; i Uﬂ{_xi_""‘"x;‘:'l‘xk*.l +'+x35 _E}
These regions are illustrated in Figure 17,15 for k =1 and n = 2. The set
M.y, is the shaded portion. (We choose ¢ small enough so that U7 meets the
level sets £ e + s) and £~ (e — £))

Let C be the subset of U defined by

C={f<c+ex}+---+xf=<d)

where & is a small positive number, say smaller than %, Note that C is
homotopically equivatent to the cell &% Set B = M_,, — C. B is the shaded
region in the picture in Figure 17.16. From the picture it is plausible that B
can be contracted onto M., by moving along the vector field — Vf. Since
M, ., is obtained from B by attaching €, up to homotopy

—~ k
Moy =M., ue.

Figure 17,16 ]

A smooth real-valued function on a ianifold all of whose critical points
are nondegenerate is called a Morse function. It follows from the two pre-
ceding theorems that therc is a very close relation between the topology of
a manifold and the critical points of a Morse function. We next show that

-there are many Morse functions on any manifold. Our proof is taken from
Guillemin and Pollack [1, pp. 43--45].

‘Lemma 17.17. Let U be an open subset of B" and f any smooth real-valued

Sfunction on U, Then for almost all a = (a,, ..., a,) in B, the function f(x} =
Fx)+ ayx, + - + a, x, is a Morse function.

Proor. Recall that we dencte the Jacablan matrix of a function k by D(h).
Define gix} = {(8f/dx,, ..., 8f/éx,). Note that the Hessian of fis precisely the
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Tacobian of ¢, and x is 4 nondegenerate critical point of £ if and only if
g(x) = 0 and D{g)(x) is nonsingular, Let g.(x) = (8f,/8x,, .... 8f/8x,). Then
94x) = g(x} + a and D(g,) = D(g). In this setup x is a critical point of f, it
and only if g(x) = —a; it is nondegencrate if and only if in addition D(g)(x)
is nongingular, ie, a is a regular value of g. By Sard’s theorem almost all 4
in R" are regular values of g. For any such a, the function £, will be a Morse
function an U, [}

Propoesition 17.18. Let M be a manifold of dimension n in B', For almost al
a=(ay, ..., q)in W, the function f(x) = a,x; 4 - + a,x,i5s a Morse func-
tion on M.

Proor. Let x), ..., x, be the coordinate functions on B". Bvery point x in M
has a neighborhood U in M on which some n of x,, ..., x, form a coordi-
nate system. {Proof: Since T, M ~+ T, B is injective, T¥R' — T*M is strjec-
tive, 80 dx;, ..., dx, restrict to a spanning set in the cotangent space T*M,
¥dx;, ..., dx, is o basis for T¥M, then x;,, ..., x;, is a set of local coordi-
nates around x.) Because a manifeld is by definition sccond countable, A
can be covered by a countable number of such open sets, M = { 2., U,.
Suppose x4, ..., X, form 4 local coordinate system on U,. Fix (8,44, ... a,)
and define f(x) = 4,1 1%,01 4+ +a.x, on U;. By Lemma 17.17, for
almost all (a,, ..., a,), the function f(x} 4+ a;x, + -+ + a,x, is 2 Morse
function on U;. 1t follows that for almost ail g = (g, ..., a,) in B, the
function fi(x) = a;x, + **+ + g, x,is a Morse function on U,. Lel

A; = {a e R"| f,(x) is not a Morse function on U,}.

Ifae R —~ [ J©2, 4, then f,(x) is a Morse function on M. Since Ur, 4
has measure zero, the proposition is proved. O

Theorem 17.19. Every compact manifold M has the homotopy type of a finite
CW complex.

Proor. By Whitney's embedding theorem (see de Rham [1, p. 12]), we may
assume that M is a submanifold of some Buclidean space. Let f be a Morse
function on M (the cxistence of f is guaranteed by Proposition 17.18). By
the Morse lemma, the critical points of /' are isolated. Since M is compact, f
can have only finitely many critical points on M. Furthermore, for any real
number a, the set M, = f Y[ — ov, a]) is compact, as it is a closed subsct of
a compact set. Let p,, ..., p, be the critical points of index 0. By the two
main theorems of Morsc theory (Theorems 17.15 and 17.16), up to homo-
topy M is constructed from py, ..., p, by attaching cells, a cell of dimension
k for each critical point of index & > 0. Hence M has the homotopy type of
a finitc CW complex.
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The Relation between Homotopy and Homology

The relation between the homotopy and the homology functors is a very
subtle one. There is of course a natural homomorphism

i n(X)— H(X),

defined as follows: fix a generator u for H (5% and send [f] in w(X) tp
fAu). In general i is neither injsctive nor surjective. We hax:e seen that H, is
relafively computable. On the other hand, n, is not; there is no analogue of
the Mayer-Vietoris principle for =, . For this reason, the following theorems
aré a cornerstone of homotopy theory.

Theorem 17.20. Let X be a path-connected space. Then H,(X) is the
Abelianization of n,(X), Le., if [n(X), 2,(X)] is the commutator subgroup af
(X)), then Hy(X) = my(X)/[7,(X), m(X}].

We will assume this theorem as known. Its proof may be fouind in, for
instance, Greenberg [1, p. 48]. The higher-dimensional analogue is

Theorem 17.21 (Hurewicz Isomorphism Theorem). Let X be a simply con-
necied path-connected CW complex. Then the first noutrivial homotopy and
homology occur in the same dimension and are equal, i.e., given a positive
integer n 2 2, if n(X) =0 for 1 < q<n, then H{X)=0 for 1 s g <n and
LX) = m(X).

Proor. To start the induction, consider the case n = 2. The E? term of the
homology spectral sequence of the path fibration

QX PX
l
X
is
q
i H(QX)
0 z 0 H,(X)
0 1 2
Thus

Ha(X) = H(QX) beecause PX has no homology
= m;{Q2X) because 7,(Q2X) = m,(X) is Abclian
= ﬂz(X)
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Now let » be any positive integer greater than 2. By the induction
hypothesis applied to QX,

HQX)=0 forg<n-—1
and
QX)) = 7,0 (2X) = »,(X).

The E, term of the homology spectral sequence of the path fibration is

1

n—11]H,_ QX

\
; T
za\ \

[~ "~ H (X)

Since PX has trivial homalogy,
H{X)=H, (QX)=0 forl=<g<n
and
H(X) = H, (QX) = n(X)
O

REmMARK 17.21.1. A careful reader should have noticed that there is a sleight
of hand in this deceptively simple proof: because we developed the Leray
spectral sequence for spaces with a good cover (Theorem 15.11 and its
homology analogue), to be strictly correct, we must show thai both X and
QX have good covers. By (17.13), the CW complex X has a good cover.
Next we quote the theorem of Milnor that the loop space of a4 CW complex
is again a CW complex (Milnor [1, Cor, 3, p. 276]). So, at least up to
homotopy, X also kas a good cover.

Actually the Hurewicz theorem is true for any path-connected topologi-
cal space. This is a consequence of the CW-approximation theorem which,
in the form that we need, states that given any topological space X there is a
CW complex K, unigue up to homotopy, such that X and K have the same
homotopy and homology groups (Whitehead [1, Ch. ¥V, Section 3, p. 2i9]). In
its more peneral form, the CW-approximation theorem implies that in
homolopy theory every space may be assumed to be a CW complex. In any

case, in the Hurewicz isomorphism theorem, we may drop the requirement

that X be a CW complex.
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The spectral sequence proof of the Hurewicz isomorphism theorem is

A7 due to Serre [2, pp. 271-274]. Actually, Serre's approach is slightly differ-
i+ ent; by developing a speciral sequence which is valid in much greater

generality than ours, Serre could bypass the question of the existence of a
good cover on a topological space, Of course, a price has to be paid for this
greater generality; one has to work much harder to establish Serre’s spec-

- tral sequence.

As a first and very important example, consider S" again. It follows from
the Hurewicz theorem and the homology of 5” that the homotopy groups of

¥4 8% in low dimensions are

n (S =0 forg<un

" and

T (8") = Z.

75(S?) and the Hopf Invariant

Now that we have computed nS") for g <, the first nontrivial com-
putation of the homotopy of a sphere is m,{5%). This can be done using the
homotopy exact sequence of the Hopf fibration, as follows.

Let 8% be the unit sphere {(zg, z1)| |20 |* + [z, |2 = 1} in C2 Define an
equivalence relation on §* by

(20, 21) ~ (wo, wy) ifand oanly if (z5, 21) = (Awg, Aw,)

for some complex number 1 of absolute vaiue 1. The quotient 83/~ is the
complex projective space CP! and the fibering

St 83

}
5t=cpr!

is the Hopf fibration. From the exacl homotopy sequence
c o SN (8N m (8% 11 (ST -

and the fact that n,{S%) =0 for g > 2, we get 145%) = n(S*) for g = 3. In
particular m{8%) = Z.

This homotopy group n{S?) was first computed by . Hopf in 1931
using a linking number argument which associates to each homaotopy class
of maps from 8% to §% an integer now called the Hopf invariant. We give
here an account of the Hopf invariant first in the dual language of difler-
ential forms and then in terms of the linking number. Thus the setting for
this section is the differentiable category.

Let f: 5% 5% be a differentiable map and let « be a generator of
HE,(8%). Since H2g(5%) =0, there cxists a I-form @ on S such that
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[*a = deo. As will be shown below, the cxpression
H(fY = j o Adw
53
is independent of the choice of m. We define H(S) to be the Hopf invarian;
of f.
More generally the same procedure defines the Hopf invariant for any

differentiable map f:8* "' 8" If a is a generator of Hju(S™), then
f*e = dew for some (n — 1)-form w on $2*~* and the Hopf invariant of fis

S2n-1

H(f)mj o A dow.

Propusition 17.22. (a) The definition of the Hopf invdriant is independent of
the choice of @.

() For odd n the Hopf invariant is 0.
(c) Homotopic maps have the same Hopf invariant.

PRrOOF. (a) Let @' be another (n — 1)-form on §*"=! such that f*a = dw',
Then 0 = d{ew — '), Henee

J m/\dcﬂ—f m'/\da)'=Jl {w— w)Adw
§2n—1 Sin—1 52m—1

= .Lz ]d((w — o) Aw)
= 0‘ r’by Stokes’ theorem.
(b} Since w is even-dimensional,
o Ado = d(w A o).

By Stokes™ theorem, [gz.-. @ Adw = 0,
{c) By {(b) we may assume n even. Let F; §2"~! x J— §* be a homotopy

between the two maps f, and f; from §*~! to §", where I = [0, 1]. If iy is
the inclusion

5t 82" ' 585, =8 x {0} = 8§ ! x I

and simitarly for i;, then

Foig=1,

Foig=f.
Let « be a generator of Hpa(S™. Then F*a = dw for some (n —~ 1)-form @ on
§2"=1 % I. Define i¥w = w, and i¥w = w,. Then

fhee = deog and Jte = dwm,.
Note that
wy Adwg = i¥{w A dw),
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Hence,

L]

g Adw, — j o A dng
BIn— KZn—

Il

H(f) — H(fy)

= e Ade) — j it Adm)
Jein-1 §2n—1

= cu/\dm——fw/\dw
81 So

= w M dow
MB{SIn-1% )

o

= dm Ade by Stokes’ theorem
Jeza—1wn
= F¥o M)

MAFE R B

=0 because o Ao & 28",

O

Since homotopy groups can be computed using only smooth maps
(Proposition 17.8.1), it follows from Proposition 17.22{c) that the Hopf
invariant gives a map

H: Tan— 1[sn] - R,

We leave it as an exercise to the reader to prove that H is in fact a
homomorphism.

Actually the Hopf invariant is always an intcger and is geometrically
given by the linking number of the pre-images A =1 '(p) and B = f " '(g) of
any two distinct regular values of f. In the classical case where n = 2, these
two submanifolds are two “circles” embedded in 53, To fix the ideas we will
lirst explain the linking concept for this casc.

The linking number of two disjoint oriented circles 4 and B in $* can be
defined in several quite different but equivalent ways.

The Intersection-Theory Definition.

Choose a smooth surface D in §7 with boundary 4 such that I intersects B
trunsversally (Figure 17.17), Set the linking number to be

link(4, B) = Y + L.
B

Here the sum is extended over the points in the intersection of D with B and
the sign is given by the usual convention: at a point x in D ~ B, the sign is
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Figure 17.17

+1 or —1 according to whether the tungent space T,S* has or does not
bave the direct sum orientation of T,D @ T, B (Guillemin and Pollack
[1, p. 1087).

It of course has to be shown that the linking number as defined is

independent of the choice of D. This is a consequence of the discussion to
follow.

The Differential-Form Definition.

Choose disjoint open neighbarhoods W, and W, of 4 and B and choose
representatives 4, and n; of the compact Poincaré duals of 4 and B in
HXW,) and H2(W;). Because H2,(S%) = 0, the extensions of #. and 55 by
zero to all of §°, also denoted 4, and n,, are exact. Thus there are 1-forms
w, and wy on §* such that

dwy =1, and dwg= .

In terms of these forms one would expect, naively, that the dual to the
intersection-theory definition is the expression

53

for if 4 =8D and 4, = dw,, then in some sense D should correspond to

wy. So let this integral be the differential-form definition of the linking
number of 4 and B. We have to check that it is independent of all the
choices involved. Let ', be some other form with de'y = y,. Then e’y — ey
ts closed. So

LJ (w)y —w)Ang = + J;a di{w) — w ) Awg]
=0,
On the other hand, if 4} is another representative of [4;], then
s — Hp = dp

for some p in QX(W). Hence,

f w4 Mg —np) = —j d[fUA/\‘H)+J‘ Hap
53 53 53
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Both terms on the right vanish: the first by Stokes’ theorem, and the second
because the supports of 5, and g are disjoint!

The differential-form definition is quite close to the Hopf invariant. ‘Te
bring oneg into the other, we first choose disjoint neighborhoods U, and U,
of the regular values p and g of f and set W, =/~ !(U,) and Wy =1 ~1(U).
We next choose forms a, and «; in Qf(Up} and Qf(Uq) represenging the
Poincar¢ duals of p and g and set 4, = f*«, and g5 = f*«,. According to
the differential-form definition the linking number of /~'(p) =4 and

fYq) = Bis then given by
f w4 MKy,
y3

wherc @, is a form on §* with dw, = 5,. On-the other hand, as «, gener-
ates HAp(8*), the Hopf invariant is given by

H(f) =f OFRAY PP
52

Because o, and o, arc both representatives for the generator of HEL(8%,
there is a form f in Q*(5?) such that

Hence,
@ A —ng) = w A S*df
= —dlwg A f*B) + (do JAS*E.
The last term on the right equals
naNf*B = f*a, AP}
But o, A f8 € 2°(5%) and hence vanishes! By Stokes’ theorem it follaws that

J CUA/\’IB=J. wahn = H(),
53 53

as was to be shown.

Finally we prove the compatibility of the two definitions of the linking
number. This will then also explain why the Hopf invariant is always an
integer.

To start off one needs certain plausible constructions of differential top-
ology. The first of those is that a surface such as D, which has boundary 4,
can always be extended by a small ribbon diffeomorphic to A4 x [0, 1].
More precisely, there exists an embedding

S AX[—1,1]0 8

such that ¢ maps A x [—1, 0] diffeomorphically onto a closed neighbor-
hood of A = 6D in D, with 4 x {0} going io 4, and such that

Dy =D v {d =« [0, 1)
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is still a smoothiy embedded manifold with boundary. If we set
Do, =D— ¢4 x(—1,0],

this construction exhibits D in a nested sequence of submanifolds with
boundary

DioD=D_,

with the interior of Dy — D_; being diffcomorphicto 4 x (—1, 1). A map ¢
of this type is often called a collar about &0, and the restriction of ¢ to
A »x (=1, 1) an open collar about 8D.

Using this parametrization we can clearly construct a smooth function
¥4 on Dy such that

(1) ya= 0 near oDy, and
(2} x4 =1 on aneighborhood of D_, in D;,

It follows that dy, is & [-form with compact support on the open collar
DY — D_y, where D{ is the interior of Dy. Furthermore, dy, represeuts the
compact Peinecaré dual of A in 2H{D] — D_,).

Next we choose a neighborhood of D, in 83, say W, small enough to
admit a retraction -

riWes Dy

(For & small enough an e-neighborheod of 2, relative to some Riemannian
structure on §* wili do.} Let T be a tubular neighborhood of D, — 8D, in
W — @D, diffeomorphic to the unit disk bundle in the normal bundle of

Dy — 0Dy in W — D, and let @} represent the Thom class of T in Q2(T).
See Figure 17.18.

collar

an -
L.

Figure 17.18
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Now consider the 1-form
wq = (M r0my-
1t has many virtues. First of all it has compact support in W and so can be

extended by zero to all of $* This comes about because w4 has compact

support normal to D§ and r*y, vanishes identically near #D,. Sccondly, we
sce that if we set

WA = r_l{DD — le)s

then dw, € QX(W,) and represents the compact Poincaré dual of 4 there.

We wilt use this @, in the integral [5: @4 Ay to complete the argument
that

f waAtp= 3. 1,
53

DR

First choose a small enough neighborhood W, of B, a small enough colldr
for D, and a small encugh tubular neighborhood T for D so that (see
Figure 17.19)

We o T r (D)),

Figure 17.19

Once this is done w, will equal @5 in the support of 55 since onr~(D_))

the function r*y 4 is identically 1. Therefore, our integral can be rewritten in
the form

™ J. @4 Ang.
53—




234 It Spectral Sequences and Applications

But now w$ represents the Poincaré dual of P} in 2Y(S* — 4D,) and #, the
compact Poinearé dual of B in QXS? — 8D,). In Section 6 we discussed the
relation between the Thom isomorphism , Poincaré duality, and the trans.
versal interscctions of closed oriented submanifolds. Although (6.24) and
{6.31) were stated for the closed Poincaré duals, the same discussion applies
to the compact Poincaré duals, provided the relevant submanifolds are
compact, Hence the integral (*) just counts the transversal intersection
number of D, with B. Thus

J‘ wahyp= 3 E£l= 3 +1,
53

Dyn B DnB

the last being valid because the extension D, intersects B ne more often
than D did, 1

Remark, The arguments of this section of course extend to the higher-
dimensional examples. In particular the twe definitions of the linking
number make sense and are squivalent whenever A and B are compact
oriented submanifolds of an oriented manifold M satisfying the following
condilions:

(1) A and B are disjoint;

(2) dim A -+ dim B=dim M — 1;

(3) both 4 and B arc bounding in the sense that their fundamental classcs
are homologous to zero in H (M)

Linking is therefore not a purely homological concept.
We cannot resist mentioning at this point that there is yet a third defini-
tion of the linking number of two disjoint oriented circles 4 and B in 8.

The Degree Definition.

Remove a point p from 5* not on A or B and identify §2 — {p} with B>, Let
L:dx B— §2

be the map to the unit sphere in R* given by

A=Y
L X, =T 1
b=
where || || denotes the Buclidean length in R3. Give 4 x B the product

orientation and 57 the standard orientation. Then
link(4, B) = deg L.

We close this section with two explicit computations of the Hopf in-
variant in the classical case, one using the differential-geometric and the
other the intersection point of view. Just to be sure, if you will.
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ExamMpLE 17.23 (The Hopf invariant of the Hoepf fibration). Let §% be the
unit sphere in C* and £: §° — CP* the natural map

Silzo, 20— (20, 2,7,

where we write [24, z,] for the homogeneous coordinates on TP IfCP! is
identified with the unit sphere 52 in R, say via the stereographic projection,
then the map f: §°-— §2 is the Hopf fibration, To compute its Hopf in-
variant, we proceed in five steps:

(a) Find a volume form & on the 2-sphere.

(b) Write down a diffeomorphism g: CP' = §2.

{¢} Pull the generator o of H*(S?) via g back to a generator « of H¥(CPY).
(d) Pull « back to S? via fand find a [-form  such that /' *o = daw on S°.
(e} Compute [g: @ Adw.

(a) A Volume Form on the 2-Sphere.

Let uy, u;, and uy be the standard coordinates of B3 By Exercise 4.3.1 a
generator of HA(S?) is

1
g = e (1, duy dusy — uy duy duy + ua duy duy).

Since {dr) ' ¢ = (r/f4m) du, duy duy, which is the standard orientation on
R3, the form ¢ represents the positive generator on 5% (see the discussion
preceding Exercise 6.32),

Over the open set in §% where 15 # 0, the form ¢ has a simpler ex-
pression, For if

ui o tul=1,
then
ty duy + oty duy + s duy =0,
80 that we can gliminate du, from o to get

1 duy du,

(17.23.1) o=
4 3

(b) Sterengraphic Projection of 8 onto CP’.

In the homogenceus coordinates [zq, 2,] on CPL, the single point [z,, 0] is
called the point at infinity. On the open set z, # 0, we may use z = z,/z, as
the coordinale and identify the point z = x -+ iy in CP' — {[1, 0]} with the
point (x, y, 0) of the (i, u,)-plane in B>, Then the stereographic projection
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from the north pole (0, 0, 1) maps § onto CP?, sending the north pole to
the point at infinity {(Figure 17.20). To find the inverse map g! CP 82
note that the line through (0, 0, 1) and {x, y, 0) has parametric equation
{0, 0, 1) + t{x, y, — 1), which intersects the unit sphere when

2+ (-0 =1,

that is,
0 2
= or —.
‘ 1+ x2+)?
Hence the inverse map g: CP!' - §% B3 ig given by
. 2x 2y —1 + x* - yz)
A And VL prae: Jrpvc L g i
0.0,1)
Rﬂ

(u] ,“z;ua)

——=

oy, 0)

Figore 17.20

(¢} The Generator of HHCPY).

By puiling the generator ¢ jn H?*S8?% back te CP' we obtain a generator .t.}*a
in HYCPY. Tt follows from (17.23.1) and (17.23.2) that in the appropriate
coordinate patch,

v L oduy du,
770 =4 u,
where
2x . SN2 K X 5 & it
MRy Tl 4y Pl x 4yt
In terms of z = x + iy, the form g*o can be written as
" 1 dx dy _ __l" dz dZ
9= T2+ %2+ ) 201+ (27
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By convention the standard orientation on CP* s given locally by dx dy.
Therefore the positive generator in H3(CP!) is

i dz d

e — ¥ = %,
AL A M R e E 3

Since z = zy/z;, in terms of the homogeneous coordinates,

i {Z]_ (IZU — Zp dzl)(fl dz_g — ‘fﬂ dz-l]
17.23.3 = —
(17:23.3) “=m (2ol + 12, )7

RemMaRK. If S* and CP' are given their respective standard orientations,
then the slerecgraphic projection from S* to CP! is orientation-reversing,

(d) Finding an w such that {*o = dw en §°.

Letl zp = xy + ix; and z, = x; + ix, be the coordinates on C2, Then the
unit 3-sphere $? is defined by

lzo P+ lz P =x} + 23+ x2 +x3=1.

Hence 3 -, x; dx; = 0 on 5% By a straightforward computation, replacing

zg and g4 in (17.23.3) by the x;'s, we find

1
fHa = - (dx; dxy + dxs dxy) =

E R

d{xl dxz + X3 dX4}.

Therefore, we may lake @ to be

1
W = - (xy dxy + x5 dx,).

- (&) Computing the Integral,

The Hopfinvariant of the Hopf fibration is

H[f)=j w A dw
5

3

=— j xy dx; dxy dxg + x5 dxy dx, dx,
53

=— _[ x; ddxy dxy dx; by symmetry.
53
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Using spherical coordinates,
%, = sin & sin ¢ cos 6,
X, = sin & sin ¢ sin 4,
X%y = sin & cos ¢,
X4 = C08 &,

where0 = £ <7, 0 £ ¢ < 7, and 0 < & < 2x, the integral becomes

n "= 2
J X, dxy dxy dxy = j J J. sin* & sin® ¢ cos? 0 d0 d¢p d&
53 0 JO JO

=n%/2.

Therefore, the Hopf invariant of fis 1.

This Hopf invariant may also be found geometrically, for by identifying
5% — {nerth pole} with 12 via the stereographic prajection, it is possible to
visualize the fibers of the Hopf fibration

5t 50

i)
8§ =CP?

and to compule the linking number of two fibers. We let z, = X + ix,,
z, = X3 + ix,. Then the stereographic projection

p: 58— {{(0,0,0, )} » R = {x; =0}
is given by

X1 X2 X3
Xij, X3, X3, Xg)—>
i»

1—x4’ 1—‘X4’1—x4

This we sec as follows. The line {hrough the north pole (G, 0, G, 1) and the
point {x;, Xz, X3, X4} has parametric equation (0, 0, 0, 1) + t(x;, xz, xs3,
x4 — 1. It intersects B? = {x, = 0} at t = 1/{1 — x4), so the intersection

point is
( X Xz X3 )
, , 0.
l—x; 1 —x4 x— x4

Note that the fiber §_, of the Hopf fibration over [1,0] e CP! is {(z¢,
) e C?||zo| = 1} and the fiber Sy over [0, 1] is {(0, 0, cos 0, sin ) € RS,
0 < § < 2n}, both orieated counterclockwise in their planes. So via the
siereographic projection S, corresponds to the unit circle in the {x,
x;)-plane while §, corresponds to {(0, 0, cos €/1 —sin 0), 0 < 8 < 2n},
which is the x,-axis with its usual orientation, Therefore the linking number

See Figure 17.21.
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[+

(_JEL__ _Xp Xz )
T—=x" Tx" T—xy’

Figure 17.21

of §,, and 3, is 1. By the geometric interpretation of the Hopf invariant as &
linking number, the Hopf invariant of the Hopf fibration is 1.

Exercise 17.24. (a) Given an integer g, show that for n = ¢ + 2, the natural
inclusion O(n) & O(n + 1) induces an isomorphism n (OM)) = 1 (O(n + 1)).
For n sufficiently large, the homotopy group #(O(n)) is therefore indepen-
dent of n and we can write #,{0). This is the g-th stable homatopy group of
the orthogonal group.

(b) Given integers k and ¢, show that forn =k + g + 2,
A0/ Om — k) = 0.
(¢) Similarty, use the fiber bundle of §2**! = U{n + 1)/U(n) to show that
for 2n = g + 1, the inclusion U{K) <o U{n + 1) induces an isomorphism
 (Um) = m(Ufn + 1))
Deduce that for n = (2k + ¢ + 1)/2,
7 (Uln)/Uin — k) = 0.

§18 Applications to Homotopy Theory

The Leray spectral scquence is basicalty a tool far computing the homology
or cohomolegy of a fibration, However, since by the Hurewicz isomorphism
theorem, the first nontrivial homology of the Eilenberg-Maclane space
K{m(X), n) is m(X), if one can fit the Eilenberg-MacLane spaces K{n (X}, )
into a [ibering, it may be possible to apply the spectral sequence {o compute
the homotopy groups. Such fiberings are provided by the Postnikov ap-
proximation and the Whitehead tower, two twisted products of Filenberg-
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MaclLane spaces which in some way approximate a given space in
homotopy. As examples of how this works, we compute in this section
{8} and n(5?).

Eilenberg-MacLane Spaces

Lect 4 be a group. A path-connected space Y is an Eilenberg-MacLane space
K(A, n}yif

A in dimension n
n(Y) = ,
0  otherwise.

{We do not consider m, unless otherwisc indicated.) For any group A and
any integer n > 1 (with the obvious restriction that 4 be Abelian if n > 1), it
can be shown thal in the category of CW complexes such a space exists and
is unique up to homotopy equivalence (Spanier [1, Chap. 8, Sec. 1, Cor. 5,
p. 426] and Mosher and Tangora [1, Cor. 2, p. 3]). S0 provided we consider
anly CW complexes, the symbol K(4, 1) is unambiguous,

ExampLE 18.1. {a) Since n : B' — §' given by

?‘[(x) — EZﬁx

is a covering space, n,(S') = n(R") =0 for g > 2 by (17.5). Therefore the
circte is a K(Z, 1).

(b) If F is a free group, then K(F, 1} is a bouquet of circles, one for each
generalor (Figure 18.1}

Figure 18.1

(c) The fundamental group of a Riemann surface S of genus gz 1
(Figure 18.2) is a group n with generators ay, by, ..., a,, b, and a single
relation

b a_ibg_] = 1.

abyay byt v aybga,
By the uniformization theorem of complex function theory the universal
cover of a Riemann swface of geous g = 1 is contractible. Hence the Rie-

mann surface § is the Cilenberg-MacLane space K(z, 1).
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Figure 18.2

(d) By Proposition 17.2, we see that QK(A, n) = K(4, » — 1).
{e) The Eilenberg-Macl.ane space K{Z, n) may be constructed from the

i sphere 8" by killing all (87} for q > n. The procedure for killing homotopy
4. groups is discussed in the section on Postnikov approximation.

() By (17.1.a}if 4 and B are two groups, then
K{A, n) x K(B, n) = K(A x B, n).

1 The Telescoping Construction

In this section we give a technique for constructing certain Eilenberg-
4: MacLane spaces, called the telescoping eonstruction. It is best illustrated
2: with examples.

i Examperr 18,2 (The infinite real projective space). The real projective space
: RP" js defined as the quotient of the sphere §" under the equivalence
4. relation which identifies the antipodal points of 8" There is a natural
1+ sequence of inclusions '

{point} &, --- & RP" & 7 S N

{. We define the infinite real projective space RP™ by gluing together via the
4+ natural inclusions all the finite real projective spaces

RP® =] RP" x I /(x, 1) ~ (i(x), 0).

Pictorially RP* looks like an infinite telescope (Figure 18.3),
Since §"-+ RP" is a double cover, by (17.5) n{RP") = n{S") =0 for

g l<g<n We now show that RP™ has no higher homotopy, ie,
4 1 (RP*) =0 for g > 1. Take nys{RP™) for example. Suppose f : §*%  RP=

tepresents an element of n,(RP*). Since the image f(S'%) is compact, it
must lie in a finite unien of the RP" x I's above. We can slide f(S') into a
high RP" x I. If n> 15, then f(S*®) will be contractible. Therefore
115(RP*) = 0. Thus by sliding the image of a sphere into a high enough
projective space, we see that this telescope kills all higher homotopy groups.
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124 =Lg]

RPI\
. :1 \. £S5

o I

0 1
Figure 18.3

Applying the telescoping construction to the sequence of spheres
{point} o, r+- & 87 8 g, -

we obtain the infinite sphere
$= =]1 8" x I /(x, 1) ~ (i(x), 0).

It is a double cover of RP®. By the same reasoning as above, §% has no
homotopy in any dimension. Therefore 5 (RP™) = Z,. This proves thal
RP=isa K(Z,, 1).

ExamreLE 18.3, (The infinite complex projective space). Applying the tele-
scoping construction fo the sequences
___Cszn+l cs2n+3 =

st !
= CP" < CP*lc-,
we obtain the fibering
§l_., g
(18.3.1) il
CP™

where CP® is gotten by gluing together the CP™’s as in the previous exam-
ple. Since S hus no homotopy in any dimension, it follows from the
homotopy sequence of the fibering that

2 (CP*) = {Z’. when k = 2

0 otherwise.
Therefore CP* is a K{(Z, 2).

Exercise 18.4. By the Hurewicz isomorphism theorem H{S) = 0 except in .

dimension 0. Apply the spectral sequence of the fibering (18.3.1) to show
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that the cohomology ring of CP* js a polynomial algebra with a generator
in dimension 2;

HYCP®) = Z[x], dimx=2.

ExaMpPLE 18.5 (Lens spaces). Let $2"*! be the unit sphere in C**1, Sinee $*

agter{reely on $*"*1 50 does any subgroup of ', For example, Z; acls on
52n by

2aifs

25 (2g, o, 2 (€, L, @2 ),

The quotient space of §2"*! hy the action of Z; is the Lens space L(n, 5).
Applying the telescoping construction

Slo-- o g2t - g2nt3 PR
Zs) { 1
L, S Lin, SieLin+ 1,5 =--,
we obtain a five-sheeted covering
Zs— 5%
l
L{aa, 5).
Hence

7, ifk=1
m(L{0, 3) = {0 TN

So the infinite Lens space L(co, 5) is a K(Z5, ). In exactly the same manner
we can construct I{co, q) = K(Z,, 1) for any positive integer 4.

REMARK 18.5.1, The Lens space L(n, 2) is the real projective space RP*"+!,
and the infinite Lens spuce L(co, 2) is RP®.

Next we shall compute the cchomology of a Lens space, say L(n, 5).
Since the Lens space L{n, 5) is not simply connected, the defining fibration
Zs~» 8"y L{n, 5) is of little use in the computation of the cohomotogy.
Instead, note that the free action of $! on 5%"**! descends to an action on
Lin, 5):

(Zo, .--» 2= (dzg, ..., A2}, Ae St CH,

with quotignt P", so that there is a fiber bundle

St L{n, 5)

)

CP~
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The E; term of this fiber bundle is
(18.5.2)

1] a ax ax?
G Z}'x}'xz "

x

o1 2 3 4 - 2n

To decide what the differential d, is, we compare with the spectral ge-
quence of the fiber bundle $'— §?"**%, CP", The bundle map p:
S+l fin, 5) over CP” induces a chain map on the double complexes

o 1 C*oj "M, Q%) — C*{xg 111, QF),

where 1 is a good cover of CP", Let a; and ag be the generators of 3! for
these two complexes, and x a generator of H*¥(CP"). Because g is a map of
degree 5, p*a; = 5a5. Hence,

p*{d?’ QL) = dz p*aL = dzsﬂs = 5x.

So dya; = 5x in (18.5.2). The cohomology of the Lens space L(m, 5) is
therefore

Z  in dimension 0

Zs in dimensions 2, 4, ..., 2n
H¥Lin, 5)) = : .
Z in dimension 2n 4+ 1

0  otherwise,

REMARE 18.5.3. Another way of determining the differential in (18.5.2) is to
compute H¥*L{n, 5)) first by the universal coefficient theorem (15.14). Since
ny(L{n, 3)) = Zs, H(L(n, 5)) = Zs and H? = Z @ free part. Therefore d,a
must be 5x and H? = Z..

In cxactly the same way we see that the cohomology of the Lens space
L(n, g)is

Z in dimension O

Z. it dimensions 2, 4, ..., 2n

18.6 H*L(n, @) =<{
( ) (L. 4 Z in dimension 2n <= 1

0  otherwise.

Exercise 18.7. Prove that the Lens space L(n, g) is an orientable manifold.
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Exercise 18.8. Let g be a positive integer greater than one,
(a) Show that the integer cohomology of K(Z_, 1) is

Z in dimension
H¥K(Z,, 1); Z) =< Z, in every positive even dimension
0 otherwise.
(b) Using the fibering §' — K{Z,, 1)— CP™, compute H¥K(Z
where pis a prime.

1 Z,)

g

Exercise 18.9, Let n and g be positive integers. Show that

€@ in dimension O

HYK(Zy, m); Q) = {0 otherwise

Therefore, by the structure theorem for finitely generated Abelian groups,

the rational cohomology of K(A, n) is trivial for a finitely generated torsion
Abelian group.

Exercise 18.10. Determine the product structures of H*(L{n, q)), H "K(Z,,
1)), and H¥(K{Z,,, 1}; Z,). In particular, show that

HYRP™) = Z[al/(2a, 247, 24%,..)), dima =2,
and

H*RP>; ;)= Z;[x], dimx=1.

The Cohomology of K(Z, 3)

Since n,(8%) = 0 for ¢ < 3 and n,(S?) = Z, one may wonder if the sphere §°
is a K(Z, 3). One way of deciding this is to compute the cohomelogy of
K(Z, 3). We first observe that

QK(Z, 3} = K(Z, 2) = CP™,

whose cohonlology we know to be Z[x] from Exercise 18.4. Since by
Remark 17.13, every CW complex has a good cover, we can apply the
spectral sequence of the paih fibration

K(Z, 2)— PK(Z, 3)
!
K(Z, 3)

to compute the cohomology of K(Z, 3),

By Leray's theorem with integer coefficients (15.11), the E, term of the
spectral sequence is

Ef = HYK(Z, 3) ® HICP®)
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and its product structure is that of the tensor product of H*(K(Z, 3)) and
HHCP=).

6 | all
5 R
4 | &2 \'azs\
3 { Xud
E,=E;= 2 | a Fas.. \- as?
1 -
0|10 |0 s |0 ] 0™y [~ ¢

0 1 2 3 4 5 6 7 ]

Since the total space PK(Z, 3} is contractible, the E_, term is 0 except for
E%9 The plan now is to “create” elements in the bottem row of the E,
picture which would soouner or later “kill off” all the nonzero elements of
the spectral sequence. There can be no nonzero elements in the bottom row
of columns 1 and 2, for any such element woutd survive to £, . However
there must be an element s in column 3 to kill off 4. Thus

da@ =5
and
da{a?) = 2ad,a = 2as.

There must be an etement y in column 6 to kill off as for otherwise as would
survive to E.. Therefore H®(K(Z, 3)} < 0. This proves that 8% is not a
K(Z, 3). Equivalently, it shows the existence of nontrivial higher homotopy
groups for 83, Later in this section we will compute 7, and 7, of §°.

As for the cohomology ring of K(Z, 3), we can be more precise, First,
note that y = d{as) = (da) - s = 2. From the picture of E,, it is ¢lear that
HYK(Z, 3) = Z,. Therefore, 25* = 0, Now a nonzero element in £} =
HYE(Z, 3) can be killed only by ¢* under d,. Since ds(a®) = 3a2%s £ 0, o
does not even live to E,. So H(K(Z, 3) = 0. Since da{a’s) = 2as® = 0, ¢®s
would live to E_, untess ds(a’s) = ¢ # 0. In E, = E,, a*s generates the cyclic
group Z. Since t is the element that kills a*s in E, ¢ is of order 3. In
summary the first fow cohomology groups of K(Z, 3) arc

a o1 {2]3fa]s]e]7]s
(18.11) e z{lolo|z|o| olz,]| 0|z
_generators | 1 5 s? t
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Exercise 18.12. Show that H*(K(Z, n); Q) is an exterior algebra on one
generator of dimension s if » is odd and a polynomial algebra on one
generator of dimension » if » is even. In eilher case we say that the coko-
mology of K(Z, n) is free on one generator {see Section 19 for the definition
of a free algebra).

The Transgression

Let m:E-—+ X be a fibration with connected fiber F over 4 spacc with a
good cover M. In computing the differentials of the spectral sequence of E
using what we have developed so far, one often encounters ambiguities
which cannot be resolved without further clues. One such clee is knowledge
of the transgressive elements. An element w in
HA(F) & E2 = HOQL, #°9(F))
is called transgressive if it lives to £, ; that is,
dbo=do==dw=10

An alternative characterization of a transgressive element is given in the
following proposition, which we plirase in the language of differential forms.
Of course by replacing forms with singular cochains, the proposition is
equally true in the singular setting with arbitrary coeflicients.

Proposition 18,13, Let n: E-~ M be a fibration with fiber F in the differ-
entiable category. An element w in H%(F) is transgressive if it is the restriction
of a global form § on E such that df = a*t for seme form © on the base M.

ReMark 18.13.1. Because n* is injective and
’ n¥dt = ddfy = (),
we actually have
dt =0,

so the form 7 defines a cohemology class on M.
Proor oF erorosiTioN 18.13. Let U be a good cover of M. If @ is trans-
gressive, then by (14.12) it can be extended to a cochaine = ag + -+ + o,

in the double complex C¥x 'Y, %) such that Da = n*f8 for some Cech
cocycle f on M.

%o

4y |n*B




]
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By the collating formuta (9.5),
4q
() W= 2 (—DD"K)oy + (=17 K(D"K)'n*f3
i=o

is a global form on E corrcsponding to «. From (*) we see that
dif = (=1 DK I = ot
where © = {(—D"K)¥*' 1 is by (9.8) & closed global form on M.

Conversely suppose ¢ is a global form on E with dy = n*z. Then by
restriction | defines a cechain in C°(n~ 1, %) such that Dy = n*r,

It is a simple exercise (analogous te Prop. 88) to show that ¥ is D.
cohomologous to a cochain o in C*(n~ M1, Q%) such that Do = z*f for
some Cech cocycle fin C*10, %),
Exercise 18.13.2. Prove this assertion,

Let  be the global form corresponding to « given by the collating
formula (x). Then if | = | € HY(F) is transgressive. ]

We will now apply the singular analogue of Proposition 18.13 to obtain
one of the most useful vanishing criteria for the differentials of a spectral
sequence.

Proposition 18.14. Irn mod 2 cohonology, if « is a transgressive, se is o,

Proor. Let W be the singular cochain on E given by Prop. 18.13. Since
restricts to « on a fiber, 32 restricts to «®. With Z, cocificients,

dy*) =2y dij = 0.

Thercfore, by Prop. 18.13 again, «? is transgressive. (I}

Exercise 18.15. Compute H¥K(Z,, 2); Z,) and H*K(Z,, 2); Z) up to di-
mension 6.

Exercise 18.16. Compute H*K(Z,, 3); Z,) and HYK(Z,, 3); Z) up to
dimension 4.

Exercise 18.16.1. Compute the homology H,(K(Z,, 4); Z) up to dimen-
sion 6. '
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Basic Tricks of the Trade

In homotopy theory every map f: A— B from a space 4 to a path-
connected space B may be viewed as either an inclusion or a fibering. We
can see this as follows.

{(18.17) Inclusion
Applying the telescoping idea just once, we construct the mapping cylin-
der of f (see Figure 18.4):

Me=(AxDHwuB/(al)~f(a)

Figure 18.4

It is clear that the mapping eyiinder M ; has the same homotopy type as B
and that 4 is included in M,. Indeed the following diagram is com-
mutative:

A—t o

T homotopy equivalcnce

P ——

(18.18) Fibering _

Let f: A— B be any map, with B path connected. By (18.7) we may
assume that fis an inclusion, i.e., 4 is a subspace of B (Figure 18.5). Define
L te be the space of all paths in B with initial point in A. By shrinking every

Tigure 18.5 BBRLFL 0.

LADDRATER
Bl Fﬂ.-tsmﬂ{

PIELIBTFC S
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path to its initial point, we get 8 homotopy equivalence
Lo~ A

On the other hand by projecting every path to its endpoint, we get 5
fibering

Q:—er A

|
B

whose fiber is ©1, the space of all paths from a point * in B to 4. 8o up to
homotopy equivalence, f : A-- B is a fibering.

Postnikov Approximation

Let X be a CW complex with homotopy groups r (X) = a,. Although X
has the same homotopy groups as the product space H K(rm,, g), in general
it will not have the same homotopy type as H K{n,, g). However, up to
homotopy every CW complex can be thought of as a “twisted praduct” of
Eilenberg-MacLane spaces in the following sense.

Proposition 18.19 (Postnikoy Approximation). Every connected CW complex
can be approximated by a twisted product of Eilenberg-MuacLane spaces;
more precisely, for each n, there is a sequence gf fibrations Y,— ¥,_, with the
K(n,, q)s as fibers and commuting maps X — ¥,

Kirz, 2}

Ykl e Yy e ¥,

i
K{m,, 1)

X

such that the map X — Y, induces an isomorphism of homotopy groups in
dimensions < g — L

Such a sequence of fibrations is called a Postnikov tower of X. In view of
(18.18) that every map in homotopy theory is a fibration, this proposition is
perhaps not so surprising,

We first explain a procedure for killing the homotopy groups of X above
a given dimension. For example, to construct K(r,, 1) we kill off the homo-
topy groups of X in dimensions = 2 as follows. If  ; §2 — X represents a
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nontrivial element in 7,{X), we attach a 3-cell to X via «:
Xuet=X][]ex~ax, X Ee;.

This procedure does not change the fundamental group of the space—by
Proposition 17.11 attaching an n-cell to X could kill an element of 7, _,(X)
but does not affect the homotopy of X in dimensions < n — 2. For sach
generator of n(X) we attach a 3-cell to & as above. In this way we creatc a
new space X', with the same fundamental group as X but with no z,.
Iterating this procedure we can kill all higlier homotopy groups. This
gives Y.

PROOE OF PROPOSITION 18.19, To construct ¥, we kill off all homotlopy of X
in dimensions > n + 1 by attaching cells of dimensions =n + 2. Then

0, kzn+1
M., k=1,2,..., 1

Having constructed ¥,, the space ¥,_, is obtained from ¥, by killing the
hemotopy of ¥, in dimension » and above. By (18.18), the inclusions

XeYcl ol

ny(¥,) = {

may be cenverted to fiberings. From the exact homotopy sequence of a
fibering we see that the fiber of ¥,--» Y,_, is the Eilenberg-MacLane space
K(n,, g). [

Computation of r4(5?%)

This computation of ny = m,(S?) is based on the fact that the homotopy
group w, appears as the first nontrivial homology group of the Eilenberg-
MacLane space K(ny, 4). If this Eilenberg-MacLane space can be fitted inte
some fibering, its homology may be found from the spectral sequence. Such
a fibering is provided by the Postnikov approximation.

Let Yy be a space whose homotopy agrees with §% up to and including
dimension 4 and vanishes in higher dimensions, To get such a space we kill
off all homotopy groups of S* in dimensions =35 by attaching cells of
dimensions = 6. So

Yy,=8uetu...

By Proposition 17.12, H(Y;) = H(Y,;) = 0. The Postnikov approximation
theorem gives us a fibering

K(my, 4= Y,

!
K(Z, 3).




:
L
8
L
;.
¥
"
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The E* term of the homology spectral sequence of this fibering is

n

s

K(my, 4)

(=B BV L PSR

z| Tz,
0 1 2 3 4 5 6

P

Kz, 3

where the homelegy of K(Z, 3) is obtained from (18.11) and the universal
coefficient theorem (15.14). Since Ha{¥y) = Hs(¥;) = 0, the arrow shown
must be an isomorphism. Hence n,(8%) = Z,.

More generally since ¥, = 8% w e?"? L ..., by (17.12),

H{Y) = Hyy (%) = 0,

Hence from the homelogy E? term of the fibration

Kiny, @)= X, 9 Tae

|

Yot

H, .1 (Y-1)
g+ 1

we get
(18.20) 7(8%) = Hyy (V1)
The Whitehead Tower

The Whilehead tower is a sequence of fibrations, dual to the Postnikov
approximation in a certain sense, which generalizes the universal covering
of a space. Unlike the Postnikov construction, where we kill successively
the homotopy groups above a given dimension, here the idea is to kill at
each stage all the homoatopy groups below a given dimension. _
Up to homotopy the universal covering of 4 space X may be constructed
as follows, Write n, = = (X). By attaching cells to X we can kill all =, for
g=2asin{18.19. Let ¥ =X u e® v - be the space so obtained; Y is a
K{n,, 1) containing X as a subspace. Consider the space 02f of all paths in
Y from a base point * to X (Figure 18.6). The endpoint map: Q¥ — X is a
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Figure 18.6

fibration with fiber QY = QK(x,, 1) = K(r,, 0). From the homotopy exact
sequence of the fibering

K(ﬂ:l, 0)—> ﬂi
1
X

we see that nl(Qi) = 0. Hence X, = Y is the universal covering of X up to
homotapy.

We will now generalize this procedure to obtain a sequence of fibrations

i
Km,,n—1) —X,
!
X

n=-1

such that

{a) X, is n-connected, i.e, n(X,) = O for all g < n;

{(b) above dimension » the homotopy groups of X, and X agree:

{(c) the fiber of X, — X, _, is K(m,,, n — 1).
This is the Whitehead tower of X, To construct X, from X, _,, we first kill
all m{X, ,), ¢ = n -+ I, by attaching cells to X, ;. This gives a

Ko, m=X,_.,uve™2u. ...
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Next let X, = Q}»~* be the space of all paths in K(n,, n) from a base point
*to X, ;. The endpoint map: X, — X, _, has fiber QK(xn,, n) = K(=,, n- 1),
From the homotopy exaci sequence of the fibering

Kim,, n — 1} X

|
Xn—l
it is readily checked that m (X)) = = (X, ) for gz n -+ 1; and n{X,) =0
for g = n — 2, furthermore,

(1821) 0> m (X} 71X, 1) 7y QK (7, W) > 7, (X )= O

is exact. Here (X, _,) == &, by the induction hypothesis, and the problem
is to show that &: n(X,.. ) — 7, (QK(n,, n)} is an isomorphism, Now the
inclusion X,_; <« K(m,, ) = X,_, v e""? w --- induces by (17.11) an iso-
motphism
?T,,(X”.. l) = ﬂn(K{nn ] ﬂ'})'
Morcover, the definition of the boundary map
d: (X, - 1)~ 7,1 (QK(n,, 1)

(see (17.4)} is precisely how n (K(n,, n)) was identified with =, _ ,{{2K(%,, n))
in Proposition 17.2. Therefore & is an isomorphism and 7, (X )=n,. (X,)=
0 in {18.21). This completes the construction of the Whitehead tower.

As a first application of the Whitehead tower we will prove Serre’s
theorem on the homotopy groups of the spheres. We call a sphere §” odd or
even according to whether n is odd or cven.

Theorem 18.22 (Serre). The homotopy groups of an odd sphere 8" are torsion
except in dimension n; those of an even sphere S” are torsion except in
dimensions nand 2n — 1,

ProoF. The essential facts to be used in this proof arc the following:
(a) in the Whitehead tower of any space X, 7, ,(X) = H,, ;{X,); hence,
ﬂ?g+1(X] @O = Hq+1{Xq§ @);

(b) the rational cohomology ring of K(r, ») is trivial for a torsion finitely
generated Abelian group x and is free on one generator of dimension n for
n = £ (Exercises 18.9 and 18.12).

Since 8" is (n — 1)-connected and 7, {(S") = Z, the Whitehead tower begins
with

K(Z,n— 1)—> X,
(18.22.1) 1

5"
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For the rest of this proof we write x, for 7,(S"). First consider the case
where 7 is odd. We will assume r = 3. Then the rational cohomology of
E{Z, n — 1) is a polynomial algebra on one generator of dimension n — 1
and the cohomology spectral sequence of the fibration (18.22.1) has E; term

2Qh—1 |0 @
n—1 |0 LD
@ N

H

(Here we are using the cohomology spectral sequence to lake advantage of
the product structure) The bottom arrow is an isomorphism because
H, .. ((X,; @) = 0; the other arrows arc isomorphisms by the product struc-
ture. From the speciral sequence we see that X, has trivial rational coho-
mology, hence trivial rational homology. By Remark (a) above, 7,4, i8
torsion. Now consider the next step of the Whitehead tower:

K(?T,,+1 3 n}_) Xn+l

i)
X,.

Since both X, and K(n,4,, #} have trivial rational hemology, so does X+ ;.
By Remark (a) again, n,., = H,(X,+,) is torsion. By induction for alt
g = n -+ 1, X_has trivial rational homology and =, is torsion.

Now suppose h is even, Then the rational cohomology of K(Z, n — 1) is
an exterior algebra and the E, term of the rational homology sequence of
the fibration (18.22.1) has only four nonzero boxes:

n—1|0 [N
0|0 A
0 H ,

The arrow shown is an isomorphism because X, is n-connected. So

¢ in dimensions ¢, 2n — 1
0 otherwise.

H*(Xn; Q} = {

Suppose 1> 2, Then n + 1 < 2n — 1, By Remark (a), n,4, = H,+(X,) is
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torsion, Since H (K(n, ., n); Q) is trivial, from the fibration

K{nn-l-ll ﬂ}—" Xn+1

1

X,
we conclude that X, , has the same rational homology as X,. This sets the
induction going again, showing that n, is torsion, until we hit m,, , =
Hjy,_1(X;,_2), which is not torsion. In fact, m,,_; has one infinite eyclic

generator and possibly some torsion generators. At this point we may
assume »# > 2. By Remark (b), the rational cohomology ring

HY(K(r2,—1, 2n — 2); )

is a polynomial algebra on one generator, so the cohomotogy E; term of
the fibration

Kftan_1, 20 — 2) X5,

l
XZn-S
is
dn -4 Q L]
n—2| 4 )]
LA G
n -1

Since H,, . (X,,-5) =0, the arrows shown must all be isomorphisms. It

follows that the rational cohomology groups of X, are trivial for ail

g > 2n — 1 and the homotopy groups n,(S") are torsion for all g > 2n — 1.
O

Exercise 18.23. Givc a proof of Theorem 18.22 bascd on the Postnikov
approximation,

Computation of #s(S3)

If we try to compule n5(S?) using the Postnikov approximation, we very
quickly run up against an ambiguity in the spectral sequence. For by
(18.20), n5(5%) = H4(Y,), but to compute H(Y,) from the homolegy spectral
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sequence of the fibering

6|7,
5 \\
: 4|z, 7.
K(Z,, H— 1, 3
1 _
3
K(Z, 3)
0 7 z 2,10

O t 2 3 4 5

we will have to decide whether the arfow shown is the zero map or an
isomorphism, With the tools at our disposal, this cannot be done, (For the
homaology of K(Z,, 4) and K(Z, 3) see {18.16.1) and {18.11).)

In this case the Whitehead tower is more vseful. Since S$? is 2-connected,
the Whitchead tower up to X, is

K(nd_ N 3)—} X4
i
K(Z, 2)— X5
l
53,
From the construction of the Whitehead tower and the Hurewicz isomor-
phism, 715(8%) = n5(X,) = H«(X,). So we can get @; by computing the hom-
clogy of X,. This method also gives m,{S>), which is H (X ,}.

The cohomolagy of X1 may be computed from the speciral sequence of
the fibration K{Z, 2) » X ;— 5%, whose E, term is

4 |x
3| T~
2| x \‘ xi
DY i ™~
1 \.
\
0|1 u
o0 1 2 3
S3
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Since d, is clearly zero, E, = E;. Next dy: E3**— EJ° is an isomorphism
becanse X, is 3-connected. By the antiderivation property of the differentia]
dy, which we will write as d here,

dlx™y = nx" ! dx = nx" "t

Hence the integral cohomology and homology of X ; are

¢ |0 1234 5 6 7 8 5 10 11
H{X,)|Z 0 0 0 0 Z, 0 2, 0 Z, 0 Z,
H{X3)|Z 0 0 0 Z, 0 2, 0 Z. 0 Z, O

where the homology is cbtained from the cohomology by the universal
coefficient theorem (15.14.1),

The homology spectral sequence of the fibration K(x,, 3)— X, — X,
has E, term

™~
g \ de

N
\\\\

olz{ojo|o[z,]|o0]z
0t 2 3 45 6

MW B oa

which shows that m; = Z,, since X is 4-connected.

By Bxercise 18.16, Hy(K(Z4, 3)) = 0 and H (K(Z,, ) = Z,. Since the
only homomorphism from Z; to Z, is the zero map, d; in the diagram
above is zero. Hence Hy(X,4) = Z, and n5(8%) = ng(X ) = H;(X,) = Z,.

Exercise 18.24. Given a prime p, find the least g such that the homotopy
graup (5% has p-torsion.

§19 Rational Homotopy Theory

By some divine justice the homotopy groups of a finite potyhedron or a
manifold seem as difficult to compute as they are easy to define. For a
simple space like 8%, already, the homotopy groups appear to be completely
irregular. The computation of n,(8%) and n4(S?) in the preceding section
should have given the reader some idea of the complexity that is involved.
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However, if onc is willing to forego the torsion information, by considering,
for instance, the rational homotopy groups 7, (X) ® @3, then some general
theorems are possible. One such resnlt is Serre’s thecrem on the homotopy
groups of the spheres (Th. 18.22). In the late sixties Dennis Sullivan shed
new light on the computation of rational homatopy by the use of difler-

- ential forms. This section is a brief introduction to Sullivan’s work. Al-

though Sullivan’s theory, with an appropriate definition of the rationa?
differential forims, is applicable to CW complexes, we will consider only
differentiable manifolds. As applications we derive again Serre’s theorem
arzld aiso compute some low-dimensional homotopy groups of the wedge
SEV S-S

Minimal Models

Let 4= Pino A" be a differential graded commutative algebra over R;
here the differential is an antiderivation of degree 1:

dia - b} = (de)) - b - {(— D)™ ag « db;
and the commutativity is in the graded sense:
a-bh= {__l]dima-dimbb - a

In this section we will consider only finitely generated differential graded
commutative algebras. Such an algebra is free if it satisfies no relations
other than these of associativity and graded commutativity. We write A(x,,
v.vy Xy) for the free algebra genmerated by x;, ..., x;; this algebra is the
tensor product of the polynomial algebra on its even-dimensional gener-
ators and the exterior algebra on its odd-dimensional generators. An el-
ement in A is said to be decomposable if it is a sum ef products of positive
glementsin 4, i.e.,as AT + 47, where A* = @0,..o A" A differential graded
algebra .# is called a minimal model for A if:

(a) A7 is free;

(b) there is a chain map f : 4 -— A which induces an isomorphism in
cohomology;

(c) the differential of a generator is ¢ither zero or decomposable {a differ-
ential praded algebra satisfying this condition is said to be minimal).

A minimal mode! of a manifold M is by definition a8 minimal model of its
algebra of forms Q*(M).
Examples of Minimal Models

ExampLe 19.1. The de Rham cohomology of the odd sphere §2"7! is an
exterior aigebra on one generator. Hence a minimal model for 8§21 45 Alx),
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dim x = 2n — 1, with

/x> volume form on §%+1,
ExaMpPiE 19.2. The de Rham cohomology of the even sphere §2n o
R{al/(a®), dim @ = 2n. To construct a minimal mode!, we need a generatoy
x in dimension 2¢ te map onto a and a generator y in dimension 4n — 11to

kill off x* Since dim y is odd, y* =0. So the complex A(x, y), dx =g
dy = x? can be visualized as the array

4n — 1 | y~_ xp x*p_ %%y x%y
l\xx\x\oc‘
0

2 4dn 6n

which shows that the cohonmiology of A(x, y) is R[x]/(x?). The minimal
model of $2" is A{x, 3), and the map f 1 A(x, y}— ¥*(8* is given by

f i x—volume form @ on S2°
yr=0.

ExampLE 19,3, Since the de Rham cohemology of the complex projective
space CP” is R[x]/(x"*"), dim x = 2, by rcasoning similar to the preceding
example, a minimal model is A(x, y), dim y = 2n + 1, dx = 0, dy = x"*1,

A differential graded aigebra A is said to be l-comnected if HY(A4) = B
and HY{4) = 0.

Proposition 19.4. If the differential graded algebra A is 1-connected and has
Sfinite-dimensional cohomology, then it has a minimal model,

Proor. Let ay, ..., a, be the 2-dimensional cycles in 4 which represent a
basis of the sccond cohomology H*(4). Define Ay = Aay, ..., a)
where dim ¢; = 2 and da; = 0, and set

fia— 4
ai—=d;.

At this stage f induces an isomorphism in cohomology in dimensions less
than 3 and an injection in dimension 3, because Afay, ..., @) has nothing in
dimensicn 3. We will prove inductively that for any » there is a minimal free
algebra .#, together with a chain map f : .#,— A such that

(a) the algebra .#, has no clements in dimension 1 and no generators in
dimensions greater than »n;

{b) the map finduces an isomorphism in cohomology in dimensions less
than # 4+ 1 and an injection in dimension n + 1.
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8o suppose this is true for # = ¢ — 1. By hypothesis there are exact se-
quences

0--+ H% A, _)— HY (A} coker HY(f)— O
and
0— ker HITN(f)— HIY I, ) — HI* Y(A).

Let {[b/1}ic1 be a basis of coker HY(f} and {[x,]} a basis of ker H?*(f),
with b; in 4% and x; in #3¥], where .#%} denotes the elements of degree
g+ 1in.#,_,. The x;s are decomposable because the generators of .4/,
are all of dimension < g — 1. The idea is to introduce new elements in
A -1 to kill both coker H¥f) and ker H?*(f), Define

A=A RAB, L),
A, is again a free minimal algebra, with differential
dm@ D =dm®l,
d(1@b) =0,
dl@&=x61
Weextendf: A, ;> Atof: M, ,— Aby
Sim @ 1} = f(m),
fA®b) =8,
J1® fj) = Gy,

where «; is an ¢lement of A such that f(x) = do;. It is easy to check that
this new fis again a chain map.
We now show that H9(f): H(.# )— HYA) is an isomorphism. Suppose

z=F nin@ )+ Y AU®b) + 3, il ®E)
is a cocycle in .. Then
Yovedng 4+ yx,; =0,

Since the classes [x;] are linearly independent, all g, = 0. If in addition
z € ker HYf), then

dim b; = dim &; = g.

by v S lm) + 2 A b =0,

Singe the [b;] form a basis of the cokernel of HY(f): H(A 1)~ HI(A), all
A = Q. Therefore, ail the cocycles in ¢ that map to zero come from a1
By the induction hypothesis these cocycles are exact. This proves the injec-
tivity. The surjectivity follows directly from the definition of the ;.

Finally, because .#,_, has nothing in dimension {, the clements of di-
mension g+ 1 in #,_, @AM, &) al come from Aoy e,
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M = 31 ® L. Hence ker ' !(f) is spanned by x; ® 1. Since a1 of
these elements are exact in .#, (they arc the differentials of 1 ® &}, He* l{f)
is injective. 0

The Main Theorem and Applications

We will not prove the main theorem stated below, For a discussion of the
proof, see Sullivan [1] and [2} and Deligne, Griffiths, Morgan and Sullivay,
[i1.

Theorem 19,5, Let M be a simply connected manifold and 4 its minimgl
model, Then the dimension of the vector space n (M) ®@Q is the number of
generators of the minimal model A4 in dimension 4.

To make this theorem plausible, we will say a few words about the
computation of the rational cohomology of M, The idea is to compute it
from the Postnikov towers of M, whose fibers are the Eilenberg-MacLane
spaces K(z,, q). Now there are two things to remember about the rational
cohomelogy of K(x,, g):

() a free summand Z in =, contributes a generator of dimension g to the
rational eohomology H*(K(n,, 4); ();
(b) & finite summand in xn, contributes nothing.

In other words, the rational cohomology of K(r,, q) is a free algebra with
as many generators as the rank of n, (see 189 and 18.12), As far as the
rational cohomology is concerned, then, the finite homotopy groups in the
Postnikov towers have no effect. If the minimal model of M is to be built
step by step out of its Postnikov towers, it makes sense that a generaior
appears in the model precisely when a rational homotopy element is in-
volved, Hence it is not unreasonable that the dimension of the rational
homotopy group z,{M)® @ is equal to the number of generators of the
minimal model in dimension g. However, to make these arguments precise,
considerable technical details remain to be resolved. In fact, at this writing
there is no truly satisfactory exposition of rational homotopy theory avail-
able.

From this theorem and Examples 19.1 and 19.2 we have again Serrcs
result (18.22) that the homotopy groups of an odd sphere S* are torsion except
in dimension n, where it is infinite cyelic; for an even sphere §", the excep-
tional dimensions are n and 2n - 1.

ExaMPLRE 19.6. The wedge of the spheres §” and 8§ is the union of 7 and 8
with one point in common, written 8*V 8. As an application of Sullivan’s
theory we will compute the ranks of the first few homotopy groups of
§%v 82, Since S?V 5% has the same homotopy type as R* — P — 0, where P

§19  Rational Homotopy Theory 263

and @ are two distinct points of &®, it suffices to construct a minimal model
A for QF(R® — P — Q).

Al this stage we exploil the geomelry of the situation to construct two
closed 2-forms x and 7 on R® — P — Q that generate the cohomology
Hip(lR* — P — 0) and that satisfy

P =xy=7 =0.
For this purpose choose small spheres Sp and S, about P and ¢ respec-
tively. Lel wp be a bump form of mass 1 concentrated near the north pole of

Sp and let wy be a similar form about the south pele of §;. The projeciion
from P decfines a natural map

np:RP—P—Q—Su;
similarly the projection from @ defines a map
ng: R — P —0—S,.
Then
X=gafwp and ¥V=mnfw,

are casily seen to have the desired properties.

The minkmal model is now constructed in a completely algebraic way as
follows. First of all, the minimal model .# must have two generators x and
y in dimension 2 mapping to % and 7. To kill x, xy, and y?, wc need three
generators a, b, ¢ in dimension 3 with (see Figure 19.1)

da = x*
db = xy
de = y*.

The map f : . — Q¥F* — P — O} up to this point is given by x> X, yr— 7,
a, b, e 0,

The differentials of the elementis in dimension 3 are

dlax) = x*
day) = x*y
dibx) = x*y
d(by) = xy*
dlcx) = xy?
dey) = y°.

Hence diay — bx) =0 and d(by — cx) = 0. To kill these two closed forms,
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F 3
7
ab
Gf be
ac
51 par
ex, ey
4| e EX,gy
ax,ay ax?,axy,ay?
3l abe bx,by bx?bxy,by?
oX,CY ex?,exy, cv?
2
|
0 x3,xy,y? ¥ xtyayty? x4 Py xyE ryyt
01 2 3 4 5 6 7 8 .

Figure 19.1

there must be two ¢lements e and g in dimension 4 such that
de == ay — bx

dg = by — ¢x.

To find the gencrators in dimension 5 we need to know the closed forms
in dimension 6. By looking at the differentials of all the elements in dimen-
sion &6:

diex) = axy — bx?
Hey) = ay® — bxy
digx) = bxy — cx?
dlgy) = by* — exy
diab) = bx* — axy
d(be) = exy — by?
2

dlac) = cx? — ay?,

it is readily determined that ex + ab, gy -+ be, and ey + gx + ac are closed.
Since the existing elements of dimension 5 do not map to these, we need
three gencrators p, q, r in dimension 3 with

dp = ex + ab
dg =gy + bc
dr = ey + gx + ac.
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The reader is invited to continue this process one step further and show
that in dimension 6 there arc six gencrators.
In swnmary the generatois in dimensions <6 are

dim 2 3 4 5 6

generators | x, ¥y a, b, c e g p,gr sLu v w2z

By Sullivan’s theorem the rank of = (S*V §°) is

g 1 23 45 6
dim n(S?VS)® Q|0 2 3 2 3 6

This agrees with Hilton’s result on the homotopy groups of a wedge of
spheres (Hilton [17), since by Hilton’s theorem

STV 8%) = m(S?) + m(S?) + my(S?) + myS*) + m (Y
+ XY wmSH+ ¥ n,(S% + n, of spheres of dimension =7.

3 coples & copies




CHAPTER IV,
Characteristic Classes

After the excursion into homotopy theory in the previous chapter, we
return now to the differentiable category. Thus in this chapter, in the ab-
sence of explicit qualifications, all spaces are smooth manifelds, sl maps
are smootlh maps, and H*(X) denotcs the de Rham cohomology.

In Section 6 we first encountered the Euler class of & C™ oriented rank 2
vector bundle. It is but one of the many characteristic classes—that is,
cochomology classes intrisically associated to a vector bundle. In its modern
form the theory of characteristic ciasses originated with Hopf, Stiefel, Whit-
ney, Chern, and Pontrjagin. It has since found many applications to topol-
ogy, differential geometry, and algebraic geometry.

In its most rudimentary form the point of view {owards the Chern classes
really goes back to the old Italian algebraic geometers, but in Scction 20 we
recast it along the ideas of Grothendieck. We introduce in Section 21 the
computational and proof technique known as the splitting principle, This is
followed by the Pontriagin classes, which may be considered the real ana-
logue of the Chern classes. We also include an application to the embedding
of manifolds.

In the final section the Chern classes are shown to be the only complex
characteristic classes in the following sense: any natural transformation
from the complex vector bundles to the cohomology ring is 8 polynecmial in
the Chern classes. An added dividend is a classification theorem for com-
plex vector bundles. With its aid we fulfill an earlier promise (see -the
remark following Prop. 11.9) to show that the vanishing of the Euler class
of an oriented sphere bundle does not imply the existence of a section. ‘

For the Buler class of a rank 2 bundle we had in (6.38) an cxplicit
formmla in terms of the patching data on the base manifold M. Elegant as
the Grothendieck approach to the Chern classes is, it is not directly linked
to the geometry of M, for it gives no such patching formulas. In the con-
cluding remarks to this chapter we describe without proof a recipe for

260
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constructing the Chern classes of a complex vector bundle z: E— M out of
the transition functions of E and a partition of unity on A relative to some
trivializing good cover for E.

§20 Chern Classes of a Complex Vector Bundie

In this section we will study the characteristic classes of a complex vector
bundle, Fo begin with we define the first Chern class of a3 complex line
bundle as the Euler class of its underlying real bundle. Applying the Leray-
Hirsch theorem, we then compute the cohomalogy ring of the projectiviza-
tion P(E) of a complex vector bundle E angd define the Chern classes of £ in
terms of the ring structure of H*(P(E)). We conclude with a list of the main
properties of the Chern classes,

The First Chern Class of a Complex Line Bundle

Recall that a complex vector bundle of rank # is a fiber bundle with fiber
C* and structure greup GL{(n, C). A complex vector bundle of rank t is also
called a complex line bundle. Just as the structure group of a real vector
bundle can be reduced to the orthogonal group O{n), so by the Hermitian
analogue of (6.4}, the structure group of a rank » complex vector bundle can
be reduced to the unitary group U(n). Bvery complex vector bundle E of
rank »n has an underlying real vector bundle Eg of rank 2a, obtained by
discarding the complex structure on each fiber. By the isomorphism of U(1)
with SO(2), this sets up a one-to-one correspondence between the complex
line bundles and the oriented rank 2 real bundles. We define the first Chern
elass of a complex line bundle L over a manifold M to be the Buler ciass of
its underlying real bundle Lg: ¢,{L) = e(Lg) € H*(M).

{ Ig L and I are complex line bundles with transition functions {g,,} and
g:z,ﬁ 3

Gaps Gup + Ug 0 Upg— C*,

then their tensor product L @ E is the complex line bundle with transition
functions {g,; * g.s}. By the formula (6.38) which gives the Buler class in
terms of the transition functions, we have

(20.1) el ® L) = ey(L} + ¢y(L).

Let I¥ be the dual of L. Since the line bundle L & I* = Hom{L, L) has a
nowhere vanishing section given by the identity map, L ® I* is a trivial
bundle, By (20.1), ¢, (L) + c1{L¥) = (L @ 1¥) = O, Therefore,

(202 eq(I) = —ey{L).
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ExamrLe 20.3 (Tautological bundles on a projective space). Let 7 pe a
complex vector space of dimension r and P(V) its projectivization

P(V) = {1-dimensiona! subspaces of F}.

On P(P) there are several God-given vector bundles: the product bundls
P = P(V) x ¥, the wniversal subbundle S, which is the subbundle of P de-
fined by

S={(£,8)e P(V) x V|ve

and the universal guotient bundle ¢, defined by the exacl sequence
(20.4) 0—-8->V-s0g— 0

The fiber of § above each point ¢ in P{V} consists of all the points in £
where ¢ is viewed as a linc in the veclor space V. The sequence (204} is
called the tautological exact sequence over P(V), and S§* the hyperplane
bundle.

Consider the composition

S PV)x V-V

of the inclusion followed by the projection. The inverse image of any point ¢
is

a1 g) = {{£, v)[v e ¢}

I v+ 0, 67 '(v) consists of precisely one point (¢, v} where # is the line
through the origin and »; if v = 0, then ¢~ '(0) is isomerphic to P{¥). Thus §
may be obtained from V by scparating all the lines through the origin in ¥,
This map o: §— ¥V is called the blow-up or the quadratic transformation of
of ¥ at the origin. Over the real numbers the blow-up of a plane may be
pictured as the portion of a helicoid in Figure 20.1 with its top and bottom
edges identified. Indeed, we may view the (x, y)-plane as being traced out by
a horizontal line rotating about the origin. In order to separate these lines
at the origin, we let the generating line move with constani velocity along
the z-axis while it is rotating horizontally. The resulting surface in R is a
helicoid.

We now compute the cohomology of P(V). Endow V with a Hermitian
metric and let E be the unit sphere bundle of the nniversal subbundle §:

E={{f, ved o] =1}

Note that ¢~ '(0) is the zero section of the universal subbundle S. Since
S — 0 7(0) is diffeomorphic to V — {0}, we see that E is diffeomorphic to
the sphere §2"~* in ¥ and that the map = : £ — P(V) gives a fibering

Sl—’ S2n-l

l
P(v).
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Figure 20.1

By a computation similar to (14.32), the cohomology ring H*{(P(V)} is seen
to be generated by the Euler class of the circle bundle E, ie., the first Chern
class of the umiversal subbundle $. It is customary to take x = ¢,(S*) =
—c;{5) to be the generator and wtite

(20.5) H*(P(V)) = R[x)/(x"),  where n = dim¢ V,

We define the Poincaré series of a manifold M to be

o
P M) =Y dim HYM) £\
1=0
By (20.5) the Poincaré series of the projective space P(V) is

I_th
1—¢

PPV =141+ 42008 o

The Projectivization of a Vector Bundle

Let p:E— M be a complex vector bundle with transition functions g, :
U, n Up— GL(n, C). We write E,, for the fiber over p and PGL(n, C) for the
projective general lincar group GL(#, C)/{scalar matrices}, The projeetiviza-
tion of E, m:P{E)> M, is by definition the fiber bundle whose fiber at a
point p in M is the projective space P(E,) and whose transition functions
Gap 1 U, 0 Up— PGL(n, C) are induced from g,;. Thus a point of P(E} is a
line £, in the fiber E,.

As on the projectivization of a vector space, on P(E) therc are several
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tautological bundles: the pullback ™ 'E, the universal subbundle S, and the
universal quotient bundle Q.

0—»S—rn'E—-Q—-0
i E

P(E)\ ‘ ’
M

The pullback bundle = 'E is the vector bundle over P(E) whose fiber at 2,
is K,. When restricted to the fiber 2~ !{p) it becomes the trivial bundle,

?T—lE |pu‘:]p = P(E}p X EP’

since p : E,~ {p} is a trivial bundle. The universal subbundle § over P(E) is
definted by
S={£,.v)en ‘Elvel}

Its fiber at ¢, consists of all the points in £,. The universal quotient bundle
@ is determined by the tautological exact sequence

0-rS—a E—>Q—0

Set x = ¢,(S*). Then x is a cohomology class in H(P(E)). Since the
restriction of the universal subbundle § on P(E) to a fiber P(E}) is the
universal subbundle § of the projective space P(E,), by the naturality pro-
perty of the first Chern class (6.39), it follows that ¢1(8) is the restriction of x
to P{E,). Hence the cohomology classes 1, x, ..., x"~! are global classcs on
P(E) whose restrictions to cach fiber P(E,) freely generate the cohomology
of the fiber. By the Leray-Hirsch theorem (5.11} the cohomology H*(P(E)) is
a free module over H*(M) with basis {1, x, ..., x*'}. So x" can be written
uniquely as a linear combination of 1, x, ..., x"* with coefficients in
H*(M); these coefficients are by definition the Chern classes of the complex
vector bundle E:

(20.6) X" 4 ey (EX T A b e (E) =0, ¢ (E) e H¥(M).

In this equation by ¢; (E) we really mean n*e, (E). We call ¢; (E} the ith Chern
eluss of E and

AE) =1+ ¢y(E) + - + ¢ (E) € H¥M)
its total Chern class. With this definition of the Chern classes, we see that
the ring structure of the cohomology of P(E) is given by

(20.7) H¥(P(E) = H¥M)[x]/(x" + ey(E)" "1+ -+ + ¢ (E))
where x = ¢,(5%) and » is the rank of E. Since additively

H*(P(E)) = H*(M) @ H*(P"" 1),
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the Poincaré series of P(E) is

. 1 — £2,n
PAPE) = PAM) 7 .

20.8)

We now have two definitions of the first Chern class of a line bundle L:
as the Buler class of Ly, and as a ceefficient in (20.6). To check that these
wo definitions agree we will temporarily reserve the notation ¢,{ ) for the
econd definition. What must be shown is that e(Lg) = ¢,(L).

20.9) n L

L

o \ I
M

i For a line bundle L, P{L) = M, 2~ 'L = L and the universa) subbundle § on
P(L) is L itself. Therefore, x = ¢(S§} = —e(Sp) = —e(Lz). So the relation
20.6) is x + e{Lp) = 0, which proves that ¢,(L) = e(Lg).

If E is the trivial bundle M x V over M, then P(E)= M x P(V), so
" = 0. Hence all the Chern classes of a trivial bundle are zero. In this sense
he Chern classes measure the twisting of a complex vector bundle.

- Main Properties of the Chern Classes

n this section we collect together some basic properties of the Chern
lasses.

20.10.1} (Naturality) If f is a map from Y to X and E is a complex vector
undle over X, then o(f ~'E) = f*c(E).
7T

Y—-—-f X

¥

ROOF. Basically this property follows from the functoriality of all the con-
. structions in the definition of the Chern class. To be precise, by (6.39) the
tst Chern class of a line bundie is functorial. Write Sz for the universal
ubbundle over PE. Now f !PE = P(f "'E) and f 'S} = §%_ .z, so if
g = ¢1(SF), then

Xp-1g = €o{SF-1p) = ¢o(f TISE) = ¥ xg.
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Applying f* to
xp+ e (EXE N4 e B) =0,
we get
Xj-1g + [re(E)xfole 4+ oo A4 f*e (E) = 0.
Hence

er(f T'E) = f*e (E). ' Qa

It foltows from the naturality of the Chern class that if E and F are
isomorphic vector bundles over X, then o(E) = c(F).

(20.10.2} Let V be a complex vector space. If S* is the hyperplane bundle over
P(V), then c,(S*) generates the algebra H*(F(V})),

This was proved earlier (20.5).

(20.10.3) (Whitney Product Formula) ¢(E' @ E"} = ¢(Ee(E").
The proof wiil be given in the next section.
In fact, these three properties uniquely characterize the Chern class

(Hirzebruch {f, pp. 58-60]). For future reference we list below three more
useful properties.

(20.10.4) If E has rank n as a complex vector bundle, then c;(E) = 0 for i > n.

This is really a definition,

(20.10.5) If E has a nonvanishing section, then the top Chern class ¢ (E) is
Zero.

ProOF. Such a section s induces & section § of P(E) as follows. At a point p
in X, the value of §is the line in E, through the origin and s{p).

P(E)

.ﬁuﬁ

Then §715; is a line bundle over X whose fiber at p is the line _in E_,,
spanned by s(p} Since every line bundle with a nonvanishing section 18
isomorphic o the trivial bundle, we have the tautology

§*Sg o the trivial line bundle.
It follows from the naturality of the Chern class that
§*ci(Sg) =0,
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which implies that
Applying §* to

we get
§e, =0,

By our abuse of notation this really means f*a*c, = 0. Thereforg ¢, = 0.

0

(20.10.6) The top Chern class of a complex vector bundle E is the Euler class
of its realization :

c(E) = e(Eg), where n = rank E.

This proposition will be proved in the next section after we have es-
tablished the splitting principle.

§21 The Splitting Principle and Flag Manifolds

In this section we prove the Whitney product formula and compute a few
Chern classes. The proof and the computations are based on the splitting
principle, which, roughly speaking, states that if a polynomial identity in the

"Chern classes holds for direct sums of fine bundles, then it holds for general

vector bundles. In the course of establishing the splitting principle we intro-
duce the flag manifolds. We conclude by computing the cohomology ring of
a flag manifold.

The Splitting Principle

Let 7: £— M be a C™ complex vector bundle of rank n over a manifold M.
Our goal js to construct a space F(E) and & map ¢ : F(E)— M such that:

(1) the pullback of E to F(E) splits into a direct sum of line bundles:
0_1E=L1®”'@Ln;
{2) o* embeds H*(M) in H*(F(E)).

Such a space F(E), which is in fact a manifold by construction, is called a
split manifold of E.

If E has rank 1, there is nothing to prove.
If E has rank 2, we can take as a split manifold I{E) the projective
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bundle P{E), for on P(E) there is the cxact sequence

0— 8y— o 1E-» Qg 0}
by the exercise betow, ¢ 'E = Sz ® Qg, which is a direct sum of line bun.
dles.

Exercise 21.1. Let 0-—» A-» B— C— 0 be a short exact sequence of C=
complex vector bundles. Then B is isomorphic to 4 @ C as C* a bundle,

Now suppose E has rank 3. Over P(E) the line bundle Sz splits off ag

before. The guotient bundle Qf over P(F) has rank 2 and so can be split
into a direct sum of line bundles when pulled back to P(Qg).

.ﬁ_lSF. @ SQE @ QQE

l
P(Qg)
Se® 0y s
1
E P(E)

Thus we may take P((g) to be a split manifold F(E). Let Xy = B*es(SE) and
X, = ¢,(S},). By the result on the cohomology of a projective bundle (20.7),

H*F(E) = H*(M)[x,, x2)/(x] + ¢1(E)X] + c3(E)x; + c3(E),
x3 4+ e {@e)x2 + ¢:(0x)

The pattern is now clear; we split off one subbundle at a time by pulling
back to the projectivization of a quotient bundle.

(21.2) S, ® - BS,_BS_ 1P
S, @5, @0, ;’ FE)
P(Qn-z =
Sl @Ql i /
! P(Q,)
E
| P{E)
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So for a bundle E of any rank », a split manifold F{E) exists and is given
explicitly by (21.2). Its cohomology H*{(F(E)) is a free H*(M)-module having
as a basis all monomials of the form
(21.3) XPxPoxiclaigsn—Laygn—2, ..., 4,., <1,

ai, ..., @, nonnegative,
where x; = ¢,(S¥) in the notation of the diagram.

More gensrally, by iterating the construction above we sec that piven
any number of vector bundles E,, ..., E, over M, there is a manifold N and
a map o : N— M such that the pullbacks of E,, ..., E, to N are all direct
sums of line bundles and that H*(M) injects into H*(N) under o*. The
manifold N is a split manifold for E,, ..., E,.

Because of the cxistence of the split manifolds we can formulate the
following general principle,

The Splitting Principle. To preve a polynomial identity in the Chern classes of
complex vector bundles, it suffices to prove it under the assumption that the
vector bundles are direct sums of line bundles.

For example, suppose we want to prove a certain polynomial relation
Ple(E), ¢(F), «(E ® F)) = 0 for vector bundles E and F over a manifold M.
Let 6 : N— M be a split manifold for the pair E, F. By the naturality of the
Chern classes :

o P(e(E), o(F), o(E @ F)) = Plcfo ™ *E), c(a™'F), e(c™ ' E}Y® (o7 'F),

where ¢7'E and ¢7'F are direct sums of line bundles. So if the identity
holds for direct sums of line bundles, then

*P(e(E), ¢(F), c(E® F)) = 0.
By the injectivity of o* : H*(M)— H*(N),
P{c(E), o(F), dE®@ F)) = 0.

In the next two subsections we give some illustrations of this principle.

Proof of the Whitney Product Formula and the Equality of the Top
Chern Class and the Euler Class

We consider first the case of a direct sum of line bundles:
E=Ll @"'@L".
By abusc of notation we write n ™ 'E = L, @ --- ® L, for the puilback of E
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to the projectivization P(E). Over P(E), the universal subbundle 5 splits ofr
from ™ 1E.

Scn'E
i)
E P(E)
i "
M

Let s; be the projection of § onto L;. Then s; is a section of Hom(S, L) =
8* @ L;. Since at every point y of P(E), the fiber §, is a 1-dimensional
subspace of (w~'E),, the projections sy, ..., s, cannot be simultaneously
zero. It follows that the open sets

U; = {y € P(E}|5;(3) # O}

form an open cover of P{E). Over cach U, the bundle (S* (ii}L,)h,}l has a
nowhere-vanishing section, namely s;; so (5* @ Ly, is trivial, Let £; be a
closed global 2-form on P(E) representing ¢,(S* & L), Then &y, = doy for
some 1-form @; on U;. The crux of the proof is to find a global form on
P(E) that represents ¢,(S* ® L,) and that vanishes on U; because «; is not
a global form on P(E), £, — dw, won't do. However, by shrinking the open
cover {U;} slightly we can extend &, — dw; 10 a global form. To be precise
we will need the following lemmas.

Exercise 21.4 {The Shrinking Lemma). Let X be a normal topological space
and {U;};.; a finite open cover of X. Then thiere is an open cover {¥};. ;.
with

VU,
Exercise 21.5. Let M be a manifold, U an open subset, and A a closed

subset contaited in U. Then there is a C™ function f which is identically }
ont A and is { outside U.

It follows from these two lemmas that on P(E) there exits an open cover
{1} and C= functions p, satisfying

(@) h=U
(b) p,is 1 on 1} and is 0 outside U,.

Now p,m, is a global form which agrees with e; on V; so that
& — dip )

is a global form representing ¢,(§* ® L;) and vanishing on V. In summary,
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there is an open cover {Vi} of P(E) such that ¢ (S* ® L) may be represented

by a global form which vanishes on V;.

Since {¥} covers P(E), []icy cs(S* ® L) = 0. Writing x = ¢((5%), this
gives by (20.1}

H
ITe 4+ el = x"+ x4 +0,=0
=1
where o, is the ith elementary symmetric polynomial of ¢,(Ly), ..., e,(L,).
But this equation is preciscly the defining equation of ¢(E). Thus
a; = ¢;(E)
and

AE) =TT+ ey(L) =[] e{L.

So the Whitney product formula holds for a direct sum of line bundles. By
the splitting principle it holds for any complex vector bundle, As an illustra-
tion of the splitting principle we will go throngh the argument in detail Let
E and E’ be two complex vector bundles of rank » and m respectively and
let m: F(E}— M and ' : F{(n"'E)— F(E) be the splitting constructions.
Both bundles split completely when pulled back to F{z~1E") as indicated in

the diagram below,
Li®@®LOL®  -®L),
L@ ®Lor'E |
EDFE 1 w F(n~LE)

n /
nld/ F(E)

Let o =o' « 5, Then

CAEQE)=cle  HE@ED=¢(L,® @®L,®L, @@L
=[] elle(Ly)
= o*c(F)a™(E') = o*c(B)c(E"),
Since o* is injective, ofE @ E) = c(E)e(E’). This concludes the proof of the
Whitney product formula.
REMARK 21.6. By Exercise (21.1) and the Whitney product formula, when-
ever we have an exact sequence of C* complex vector bundles
04— B> C-0,
then ¢(B) = ¢(A)c(C).
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As an application of the existence of the split manifold and the Whitney
preduct formula, we will prove now the relation (20.10.6) between the top
Chern class and the Euler class. Let E be a rank n complex vector bundle
and ¢ : F(E)— E its split manifold. Write ¢ ™'E = L, @ - -~ @ L,, where the
L/s are line bundles on the split manifold F(E).

c¥c {E) = c {6 'E)
Cl[Li} B l(Ln)

by the naturality of ¢,

by the Whitney product formula

(20.10.3)

e{(Ly)g) - e({L)m) by the delinition of the first Chern
class of a complex line bundle

el @ @ (L)} by the Whitney product formula for

the Euler class (12.5)

I

B

= e({a” 'E)y)
= g¥e(Ey)

By the injectivity of ¢* on cohomeology, ¢,{E) = e(Eg).

Computation of Some Chern Classes

Given a rank » complex vector bundle £ we may write formally

n
C(E) = 111(] + xi}’

where the x;'s may be thought of as the first Chern class of the line bundles
into which E splits when pulled back to the splitting manifold F(E). Since
the Chern classes ¢,(E), ..., c,(E) are the clementary symmetric functions of
X[, .++s %ns by the symmetric function theorem {van der Waerden [1, p. 997}
any symmetric polynomial in x,, ..., %, is a polynomial in ¢((E), ..., ¢,(E};
a similar result holds for power series.

ExameLe 21.7 (Exterior powers, symmetric powers, and tensor products).
Recall that if ¥ is a vector space with basis {sy, ..., v,}, then the exterior

power AP V is the vector space with basis {p, A *** A 0} < <siyga- 50
if E is the direct sum of line bundles E= L, ¢ -+ @ L,, then
APE = ® (L,® - ®Ly)

1< < Sa
Hence

cAPE) =11 +eilli, ® - ® L) by the Whitney praduct formula
=10+ x 4+ %) by (20.1), with x, = ¢,{L;),

where the product is over all multi-indices 1 < i, < -+ < i, < n. Since t}lc
right-hand side is symmetric in x4, ..., X,, it is expressible as a polynomial
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Q in CI(E]: vy Cn(E}’ 50
AATE) = Q(cy(E), ..., ¢,(E)).

By the splitting principle this formula holds for every rank n vector bundle,
whether it is a direct sum or not. It should be pointed out that the poly-
nomial @ depends only on # and p, not on E; for example, the Chern class
of A%E, where rank E = 3, is given by

(AZE) = Qley, ez, ca) = (1 + ¢ — %){1 + ¢ — x2)1 + €1 — x3)
=1+ —cl + e+ egll + 1) —c5.

Similarly, if V and W are vecior spaces with bases {v,, ..., v,} and {w,, ...,
w,.} respectively, then the pth symmetric power SV of ¥ is the vector
space with basis {v, ® -+ @ uip}l,a,,s...g,-pg,, and the tensor product
V@ W is the vector space with basis {5, ® w,}; <j<n 125 BY the same
discussion as above, if E is a rank » vector bundle with oE) = HL 1 (1 + %)
and I is a rank m vector bundle with e(F) = [[7=, (1 + y)), then

(21.8) c(STE) = 11 (L4 g, + 4 %)

1Siy % S8n
and

(21.9) CE®@F) = [T (+x+y)

isn
jsm

o

1
1
In particular if L is a complex line bundle witk first Chera class y, then

(21.10) E@L)= :l——ll(l + ¥4 x) = jioc, EXL + yy ',

wherg by convention we set cg(E) = 1.

Examere 21.11 (The L-class and the Todd class). In the notation of the
preceding example the power series

SV

N
1131 tanh /%,
is symmetric in x4, ..., X,, hence is some power series L in ¢;(E), ..., ¢ (E).
This power series L(E) = L{¢,(E), ..., ¢,{E)) is called the L-class of E. By the
splitting principle the L-class automatically satisfies the product formula

L(E ® F) = L(E)L(F).
Similarly,

Xi

-

5 = Td(ei(E), ..., ¢{E)) = Td(E)

1 1—e

i

defines the Todd class of E. By the splitting principle the Todd class also
automatically satisfies the product formula. The L-class and the Todd
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ctass turn out to be of fundamental importance in the Hirzebruch signature
formula (see Remark 22,9 and the Riemann~Roch thecrem (see Flirzebryel
1D,
Examprr 21.12 (The dual bundle). Let L be a complex line bundle. By (20.2),
(L) = —ey(L)
Nex1 consider a direct sum of line bundles
E=L, & ®L,.
By the Whitney product formula
e(E) = c(Ly) - re(Ly) = (L -+ e5(Ly)) -+ (L4 ey(L).
On the other hand
E*=L1¥® - ®L}
and

e(E¥) = (1 —ey(Ly)) - {1 = ¢y (L))
Therefore
cAE*) = {— 1) (E).
By the splitting principle this result holds for all complex vector bundles E,

ExampLE 21.13 (The Chern classes of the complex projeclive space). By
analogy with the definition of a differentiable manifold, we say that a
second countable, HausdorT space M is a complex manifold of dimension n
if every point has a neighberhood U, homeomorphic to some open ball in
C,, ¢, U,— C" such that the transition functions
C!‘I
&
gmﬂ = ¢'rx e ¢'ﬂ_] : qbﬁ(Uo: m Uﬂ)_) €"

are holomorphic. 8mooth maps and smooth veclor bundles have obvious
analogues in the heolomorphic category. If u,, ..., u, are the coordinate
functions on C", then z; =, » b,, § = 1, ..., 1, are the coordinate functions
on U,. At each point p in U, the vectors 8/dz,, ..., d/8z, span over C the
holomorphic tangent bundle of M. It is a complex vector bundle of rank a.
The Chern class of a complex manifold is defined to be the Chern class of
its holomorphic tangent bundle.

The complex projective space CP” is an example of a complex manifold,
since, as in Bxercise 6.44, the transition functions g, relative to the standard
open cover are given by multiplication by z,/z;, which are holomorphic
functions from ¢ (U, n Up to ¢,(U, » Uj). Recall that there is a tauto-
logical exact sequence on €P"

0§ C" 500,

where C""! denotes the trivial bundle of rank n + 1 over CP". A tangent
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fl E
-

Figure 21.1

vector to CP" at a line ¢ in C""' may be regarded as an infinitesimal
motion of the line ¢ (Figure 21.1). Such a motion corresponds to a linear
map from £ to the quotient space C** /£, which may be represented by the
complementary subspacc of £ in C"*! {relative to some metric), Thus, de-
noting the holemorphic tangent bundle by T, we have

T =~ Hom(S, Q) = 0 ® 5*.
We will compute the Chern class of T in two ways.
{1) Tensoring the tautological sequence with 5%, we get
0+ CoS*RCT' S S* @00,
By the Whitney product formula
AN =cS* @Y =cS*RC" N =c(S* D @5 =(1 + 0",

where x = ¢,(§%),
(2) From the tautological exact sequence and the Whitney product formula

since x**1 = 0 in H¥(CP”), By (21.10)

"

ACP) = (@ ® 8%) = 3 c Q)1 + %) = ix'(l +x)!
i=0

(=0
[ x i
=+ XJ":=ZU (1 + x)

ool (- () Y-
=+ x)““[l - (1 j—x)]

=(1 +xn+1 ____xn‘{-l

- (l + x)n-i-l_
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Exercise 21.14. Chern classes aof a hypersurface in a complex projective spaee,
Let H be the hyperplane bundle over the projective space CP” (see (20.3)),
and H®* the tensor product of k copies of H. The line bundle H is in fagt
more than a C* complex line bundle; because its transition funclions are
holomeorphig, it is a kolomorphic line bundle. The total space of a holoniesp.
hic bundle over a complex manifold is again a complex manifold, so that
the notion of a holamorphic section makes sense. The zero locus of a holo-
morphic seclion of H®* is called a hypersurface of degree k in CP". If the
seclion is transversal to the zero scetion, then the hypersurface is a smooth
complex manifold. Compute the Chern classes of a smooth hypersurface of
degree k in CP". {Hint: apply Prop. 12.7 to get the normal bundle of the
hiypersurface.)

Flag Manifolds

Given a complex vector space V of dimension n, a flag in V is a sequence of
subspaces 4, « A, < - c A, =V, dimg 4 = i. Let Fi(V) be the collection
of all flags in V. Clearly any flag can be carried into any other flag in V by
an element of the general linear group GL{n, C), and the stabilizer at a flag
is the group H of the upper triangular matrices, So as a set FXV) is isomor-
phic to the coset spuce GL(n, C)/H. Since the quotient of 2 Lie proup by a
closed subgroup is a manifold (Warner (1, p. 120]), F{(V) can be made into
a manifold. ¥t is called the flag manifold of V.

Given a vector bundle E, just as one can form its projectivization B{E),
so one can form its associated flag bundle FIE). The bundle FIE) is ob-
tained from E by replacing each fiber E, by thc flag manifold FI(E,); the
local (trivialization ¢,:Ely, = U, x C" induces a natural trivialization
FEE)|y, = U, x FHC™. Since GL(n, C) acts on FNC"), we may take the
transition functions of FIE) to be those of E, but note that FIE) is not a
vector bundle.

Proposition 21.15. The associated flag bundle FIE) of a vector bundle is the
split manifold F(E) constructed earlier.

Proor. We first show this for E = V a vector space of dimensien 3, viewed
as a rank 3 vector bundle over a paint.

SV & SQVC_BQQV
Sy ® O

|
1[ l /P(QV} ~ F(V)

P(V)

point /
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In what follows all lines and planes go through the origin. A point
in P(V)is aline Lin ¥, A point of P{Q,} is a line L in V and a line £ in
V/L. L may be regarded as a 2-plane in V containing L. Thus Fi{¥) =
PQy) = {4, < 4, c V,dim A, =i} = F(¥).

Now let E be a vector bundle of rank n over M. The split manifeld F{E)
is obtained by a sequence of n — 1 projectivizations as in (21,2), A point of
P(E) is a pair {p, ¢), where p is in M and ¢ is a line in ,. By introducing a
Hermitian metric on E, we may regavd all the quotient bundles @, ...,
Q.- 1n (21.2) as subbundles of E, Then a point of F(Q,} over(p, ¢,)} in P(E)
is a triple (p, ¢y, #;) where ¢; is a line in the orthogonal complement of £,
in E,. A point of P(Q,) over (p, £y, £2) in P(Q,) is a 4-tuple {p, £,, £, £3)
where #; is a line in the orthogonal complement of ¢, and £, in E,_. Thus,

more generally, a point in the split manifold F(E} = P(Q, . ;) may be ident-
ified with the flag

bty c{lnbay c{ty, L2, 83} = = E).

This proves the equality of the split manifold F{E) and the flag bundle FI(E).
From now on the notations F(E) and FXE) will be used interchangeably,
The formula (21.3) gives one description of the vector space structure of

the cohomology of a flag bundle. To compute its ring structure we first

recall from (20.7} that if E is a rank » complex vector bundie over M, then
the cohomology ring of its projectivization is

HY(P(E) = M)A + (B + -+ + ¢,(E)), where x = ¢,(S%)
Notation. If 4 is a polynomial ring, and a, b, ¢, f € A, then (a, b, ¢) denotes

the ideal geuerated by a, b, and ¢, while {f = 0) the ideal generated by the
homogeueous components of f.

There is an alternate description of the ring structure which is sometimes
very useful. We write H¥M}[c(S), e(Q)] for H¥M[c,(8), ¢5(Q), ..., ¢, - (O],
where § and @ are the universal subbundle and quotient bundie on P(E).

Do S rg*E— Q00
E
PE) J
M
Propaosition 21.16. A*(P(E)) = H*(M)[c(S), c(Q))/(c(F)c(Q) = n*c(E)).
Proor. The idea is to eliminate the generators ¢((Q), ..., ¢,_ (Q) by using
the relation o(S)c(Q) = n*c(E). Let x = £,(8%), »; = c{Q@), and ¢; = n*c{E).

Equating the terms of equal degrees in

=X +y - +y)=14¢ 4 +¢,,
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L
we gel By (20.8) each time we projectivive a rank & vector bundle, the Poincaré i
I

polynomial is multiplied by (1 — £*)/(1 - t*). So the Poincaré polynomial

Y1 %= Cn of the flag manifold FI(V) js

Vo — XM = Ca,

Y3 — XYa2 = €3,

1"£2n 1_£2n—2 1—~E2

PV =7 R

This discussion may be summarized in the following proposition,
Yot = X¥y—2 = Cp—1»

= XPn—1 = Cye

E-:
rRCHTL I Tt

Proposition 21.17. Let V be a complex vector space of dimension n. The '

- } cohomolegy ring af the flag manifold FNV) is
By the first # — 1 equations, ¥y, ..., ¥, can be expressed in teris of x yring Jiag

and elements of H¥*(M), and so can be climinated as gencrators of
IH(M)e(S), e{@)]/(e(S)e(Q) = n*e(E)). The last equation --xy,_, = ¢, trans-

G

lates into
(=) X" e X" e, =0

Hence H*(M)[c{S), c(Q)]/(c{S)e(Q) = n*e(E)) is isomorphic to the poly-
nomial ring over H*(M) with the single generator x and the single relation

(=) O

By (21.2) and (21.15) the fiag bundle FI(E) is obtained from a scquence of
1 — 1 projectivizations. Applying Proposition 21.16 to (21.2), we have
H*(P(Q4)}
H*PENC(S 1), (@) 1Ae(S2)e(Qa} = <(Q1))
H*(M){e(S 1), e(Q1), o(S5), e(@2)1/c(S1)e(Qy) = e E), c(S2)e(@5) = (@)

= H¥M)[c(S1), o{S2), A{Q201/cAS )e(S2)e(Q3) = c(E)).
By induction

H*(P(Q,-2))
= H¥(M)[e81), ...y (S, 1)y @, - )IACSy) " oS, - )e{Qr—1) = c(E)).

Writing x; = e (Sph i= 1, ..., n — I, and x, = (@, _ ), the cohomology ring

of the flag bundle FI(E) is

HH(FIEY) = H{M)[x,, ..., xn]/( ]ﬂl(l + x) = C(E))-

i=1

Specializing this theorem to a complex vector space V, considered as the
trivial bundle over a point, we obtain the cohomology ring of the flag
manifold

HY(FI(V)) = R[xy, ..., Xn]/( Iﬁl(l +x) = 1)-

i=1

As for the Poincaré pelynomial of the flag manifold we note again that
the flag manifold is obtained by a sequence of n — 1 projectivizations {21.2).

H*(Fi(VY) = R[xy, ..., x,,]/( ﬁ{[ + x) = 1).
i=1

It has Poincaré polynomial

=21 =1 (1 — 29

PR = T =

REMARK 21.18. Similarly, if E is a rank n complex vector bundle over a
manifold M, then the cohemoloegy ring of the flag bundle FKE) s

HYFUE) = HYM)[xy, ..., x,.]/( il:]l(l + X = C(E)),

and the Poincaré series is

(A —5H1 -t (1 =%

PAFUE) = PAM) G

REMARK 21.19. Since projectivization does. not introduce any torsion el-
ement in integer cohomology, the integer cohomology ring of the flag mani-
fold Fi(V) is torsion-free and is given by the same formula as (2L.17) with Z
in place of R. The integer cohomology ring of a fiag bundle iz given by the
same formula as (21.18), In fact, with a little care, the entire discussion can
be translated into the Cech theory.

§22 Pontrjagin Classes

Although the Chern classes are invariants of a complex bundle, they can be
used to define invariants of a real vector bundle, called the Pontriagin
elasses. In this section we define the Pontrjagin classes, compute a few

examples, and as an application abtain an embedding criterion for differ-
entiable manifolds.

fESEERE S s S s
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Conjugate Bundles

Let ¥ be a complex vector spuce. If z € € and v e V, the formula
Z % U =2Z0

defines an action of € on V. The underlying additive group of ¥ with this
action as scalar multiplicalion is called the conjugate vector space of V,
denoted ¥. The conjugate space ¥ may be thought of as V' with the op-
posite complex structure; 4s a vector space, ¥ is anti-isomerphic to V. A
linear map f: ¥ — W of two complex vector spaces V and W is also a linear
map of the conjugate vector spaces 2 ¥ — W, we denete both by f as they
are represented by the same matrix.
Given a complex vector bundle E with trivialization

¢u: Elu, 3 U, x C",

we canstruct the conjugate vector bundle E by replacing each fiber of E by
its conjugaile, The trivialization of £ is given by

K‘E“: Elyﬂ:b Ua X Cn,
which is the composition

_ iz =n conlugation

U, x C".

In terms of transition functions, if the cocycle {g,,) defines E, then its
conjugate {g,,} defines E.

As in (6.4), by endowing a complex vector bundle on a manifold with a
Hermitian metric, we can reduce its structure group ta the unitary group.
Since unitary matrices g,; satisfy §,5 = {gtp) "', we see that the conjugate
bundle E and the dual bundle E* have the same transition functions and
hence are isomorphic. So by Example 21.12, if ¢(E) = [] (1 + x), then
elB) =TT (1 — x.

Realization and Complexification

By simply forgetting the complex structure, we can regard a linear map of
complex vector spaces L : C"—» C" with coordinates z,,..., 2, as a linear
map of the underlying real vector spaces L ! R2"  R*" with coordinates
Xy evry Xz, WheTe 2, = Xp, 1 + ixz,. Conversely, via the natural embedding
of B* in C", a linear map of real vector spaces L : B"— R" gives rise to a
map L® C: C"— C". The first operation is called realizgtion and the
second, complexification. The complexification of a real matrix is the mairix
itself, but with the entrics viewed as complex numbers, The realization of a
complex matrix is described in Examples 22.2 and 22.3 below. In terms of

A
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matrices these two operations give a sequence of embeddings

Ume 0O@2n) o U2n)
I o) )
(22.1) GL{n, C) & GL(2n, R) ¢, GL{(2n, )
A Ay —A® C.

ExAMPLE 22.2. Let L: C— € be given by multiplication by the coemplex
aumber 1 = « + if. Since

(o0 + ifx; + ix0) = (ax, ~— Bx,) + i(fx,; + ax,),
as a linear map from B2 to R, L, is given by

(-G )

(& —B
(Oi+lﬂ)n—(ﬁ a)-

ExXAMPLE 22.3 Let L: C?— C? be given by the complex maltrix (3} )
where A, = oy, + if,. A little computation shows that Ly : R*— R* is given
by

Thus

X1 o —f wy —p X1
*2 s i ay B, oAz Xz
X3 oy ~fy w —fa X3
Xa B, a3 Pa 228 X4

Thus
(11 lz) - ((ll)ua (lz)ua)
"7"3 j-4— 34 (AS)R (‘14]03
It is clear from these two examples what the realization of an n by n
complex matrix should be,

Lemima 22.4. Let A be an n by n complex matrix. There is a 2n by 2n matrix
B, independent of A, such that Ag & C is similar to {§ %) via B.

Proor. In the | by 1 case, this is 4 matier of diagonalizing

(@ + if)g ® C = (; _i)
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Corresponding to the eigenvalues « - iff and o — iff are the eigenvectors
(1) and {}). Therefore, B = (1 |).
Now consider the 2 by 2 case:

A= (Al iz), Ay = o -+ iffy

4,y Az) (“ic “ﬂk)
A C= where A, = .
n® (Aa Ag ¥ Br By
MNote that
1 Ay 1 0 *+ = Ay
A A, ~i ) =il \_ (1 0 = = A3
As Ay o) Aa 0 1 & % 0
Q —ids 0 —i x = 0
1 01 0 1 c 1 0 Ay Ag
Ay A, —f 0 i o0l {f -1 0 i O A Ay
Ay Ay 0 10 17 0 1 0 1 Ay Aa
0 —i 0 i 0 —i 0 i s A
S0
1 Ot o
—i 0 i 0
B=1 9 1 01
¢ —i 0 i
For the n by n case, we can take B to be
1 1
—i i
1 1
- i i
1 1
—1 i
1

If E is a complex vector bundle of rank » with transition functions {g,s},
then Hy ® C is the complex vector bundle of rank 2n with transition func-
tions {(g.5)n ® C}. By Lemma 22.4,

(22.5) Ee®C~E®E
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This resuit may be seen alternatively as fellows., On the complex vector
space Hg ® C, muitiplication by i is a linear transformation J satisfying
JE = — 1. Therefore, the eigenvalues of J are i and Ey @ € accordingly
decomposes into a direct sum

Er @ € = (i-cigenspace} @ ((-~1)-eigenspace),
On the i-eigenspace, J acts as multiplication by i, hence

(i-eigenspace) = E.
Similarly,
((— i)-eigenspace) = K.

It follows by reasons of dimension that
Eg®@C=EQE

The Pontrjagin Classes of a Real Vector Bundle

By their naturality property the Chern classes of a £ complex vector
bundle are €= invariants of the bundle. For a real vector bundle E similar
invariants may be obtained by considering the Chern classes of its com-
plexification E (g C; these are the Pontrjagin classes of E, More precisely,
if E is a rank # real vector bundle over M, then its tetal Pontrjagin eloss is

PE) =1+ py(E) + -~ + p.{E)
=1+ c{E®C) + + ¢,(E®C) & HHM).

It follows from the correspondirig properties of the total Chern c¢lass that
the Pontrjagin class is functorial and satisfics the Whitney product formula

pE @ E') = p(E})p(E).

The Pontrjagin class of & manifold is defined to be that of its tangent
bundle.

REMARK 22.6. Let E be a real vector bundle. Because the transition fanc.
tions of E®C are the same as those of E, they arc real-valued, and
therefore E® C is isomorphic to its conjugate E@ C. It follows that
GE®C) = o {EQT)=(~1)'e,(E®RCT). For an odd j, then, 2¢,(E®T)=0.
Thus the odd Pontrjagin classes, as we have defined them, are zero in the
de Rham cchemology, and torsion of order 2 in the integral cohomology.
The usuval definition of the Pontrjagin classes in the literature (see, for
instance, Milnor and Stasheff [1, p. 174]) ignores these odd Chern classes
and defines p,(E) to be

(- 1]‘621(}3 ® C).
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ExamreLe 22,7, (The Pontrjagin class of the sphere). Since the sphere 5" is
crientable, its normal bundle N in B"*? is trivial. From the exact sequence

0 I;*.,—’ Tw-i-l Isn—" N— 0:
we see by the Whitncy product formula that

PIS")IPNY = p(Tgass

A
Thercfore,
p(s") = 1.

ExampLE 22.8 {The Pontrjagin class of a complex manifold). The Pontrjagin
class of a complex manifold M is defined to be that of the underlying real
manifeld Mp. Let T be the holomorphic tangeni bundle to M. Then the
tangent bundle to Mg is the realization of T and

pM) = p(Tp) = (T @ C} = (T @ T) = o(T)e(T).

So if the total Chern class of the complex rnanifolcl MiseMy= ]+ x),
then the Pontrjagin class is p(M) = || (1 — x{).

REmark 22.8.1, If we had followed the usnal sign convention for the Pontr-
jagin classes (see Remark 22.6), the Pontrjagin class of a complex manifald
would be p(M)} =[] (I + xf), where the x,'s are defined as above. To have
only positive terms in this formula is one of the reasons for the sign in
(—1)'e3;:(E 8 €) in the usual definition of the Pontriagin class.

REMARK 22.9, Let M be a compact oriented manifold of dimension 4n. By
Poincaré duality the wedge product A : H*"(M) ® H*(M)— R is a nonde-
gonerafe symmelric bilinear form and hence has a signature; this is called
the signature of M. Recall that the signature of a symmetric matrix is the
number of positive eigenvalues minus the number of negative eigenvalues,
Hirzebruch proved that the sighature is expressible in terms of the Pontria-
gin classes.

Hirzebruch signature formula :

signature of M = J L{pi (M), ..., pan{M)},
A
where L is the polynomial defined in Example 21.11. ¥For a proof of the
signature formula, see Milnor and StashefT [1, p. 2241,
Application to the Embedding of a Manifold

in & Euclidean Space

Using the Pontrjagin class one can sometimes decide if a conjectured em-
bedding is possible. We illustrate this with the following example.
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ExaMpLE 22,10, Decide if CP* can be differentiably embedded in R°.
By (22.8) and (21.13) the Pontrjagin class of CP*is

P(CP%) = o Tepa)o{ Teps) = (1 + xP°(1 — x)° = (1~ x%.
If CP* can be differentiably embedded in R, then there is an exact se-
quence
0— (Topadn— Tusleps— N— 0,

where (Ti:pa)g is the realization of the holomorphic tangent bundle Tep. and
N is the normal bundle of CP* in R®, By the Whitney product formula

(22.11) P(Tso leps) = P((TepdupN).

Since the restriction Tys leps is the pullback of Tie to ©P* under the em-
bedding i : CP*— R®, by the functoriality of the Pontrjagin class

P(Tis |ppa) = 1*p(The) = 1.
Therefore, by {22.11)

1 1 2 4
(22.12) PN) = S = T 1 + 5x* 4 15x%,
Since N is z real line bundle, the top component of p(N) should be in
H*CP*Y. This contradicts the fact that 5x* and 15x* are nonzero classes in
HYCPY and HYCPY. Thus CP* cannot be embedded in R®.

From (22.12), if CP* can be embedded in B”, then the normal bundle has
rank at least 4, since the tap-degree term of the Pontrjagin class of a rank &
real bundle is in dimension 2k. It follows that CP* cannot be embedded in a
Euclidean space of dimension i1 or less.

§23 The Search for the Universal Bundle

Let f :M — N be a complex map between two manifolds and E a comiplex
bundie over N. The pullback f ~'E is a bundle over M. If the Chern classes
of E vanish, by the naturality property (20.10.1), so do those of f7LE.
Taking the Chern classes {0 be a measure of the twisting of a bundle, we
may assert that pulling back “dilutes™ a bundle, i.e., makes it less twisted.
One extreme example is when f is constant; in this case f~'E is trivial,
Another example js the flag construction of Section 21; pulling E back to
the split manifold F(E) splits E into a direct sum of line bundles. One may
wonder if there exists a bundle which is so twisted thal every bundle is a
puilback of this universal bundle. Such a bundle indeed exists, at least for
manifolds of finite type; it is the universal quotient bundle on the Grass-
mannian G, (C for n sufficiently large. We will prove this result and con-
ctude from it that every natural transformation from the complex vector
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bundles fo the cohomology classes is expressible in terms of the Cherp
classes, all for manifolds of finite type. We alse indicate how the theoremg
generalize to an arbitrary manifold.

The Grassmannian

Let V be a complex vecter space of dimension n. The complex Grassman-
nian G(V) is the set of all subspaces of complex codimension k in V., We
sometimes call such a subspace an {(n — k)-plane in ¥. Given a Hermitian
metric on V, the unitary group Uln) is the group of all metric- -preserving
cndomorphisms of V. Clearly U(n) acts transitively on the cotlection of al}
{n — k}-planes in V. Since a unitary matrix which sends an (n — k)-plane to
itself must also fix the complementary orthogonal k-plane, the stabilizer of
an {(n — k)-plare in V ig U — k) % U(k). Thus the Grassmannian can be
represented as a homogeneous space

; Ufr)
GiV) = UR) < Uln - k) _
As the coset space of a Lie group by a closed subgroup, Gk(V) is a d]ﬁ"er-
entiable manifold (Warner [1, p. 120]). Note that G,_ (V) is the prcl]ectwe
space P(1),

Just as in the case of the projective space, over the Grassmannian G,{V}
there are three tautologlcal bundles: the universal subbundle S, whose fiber
at each peint A of G,(¥} is the (n — k)-plane A itself; the product bundie
P = G{V) x V; and the universal quotient bundle Q defined by

08—+ Po0-0.

This exact sequence is called the tautological sequence on G(F). Over G(V)
the universal subbundle S has rank n — k and the universal quotient bundle
has rank k.

Similarly, if V is a real vector space, one can défine the real Grassman-
nian G,(V} of codimension k real subspaces of ¥V, and the analogous real
universal bundles, The real Grassmannian can also be represented as a
homogeneous space

T £ )
G = Ofk) x O(n — k)

Proposition 23.1. The cohomology of the complex Grasstannian GyV) has
Poincaré polynomial

(L—¢%) - (112
2) - (1~ (1 — %) o (1 — g2k

PLGUV) = 7=
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Proor. The flag manifold F{F) may be obtained from the Grassmannian
G (V) by a series of flag constructions as follows. Let J be the puliback of Q@
to the flag bundle F(S).

g
seQ l /F(QJ

G{V)

A point of F(8) is a pair (A, Ly = --- < A) consisting of an {n — k)-plane A
in ¥ together with a flag in A. Therefore a point in F(Q) consists of a point
in F(S), (A, L; = +++ & A), together with a flag in V/A, i.e, a paint in F(Q) is
given by (A, Ly - L, cAcl, 4y c---=V). So F(Q} is the
flag manifold F(V), and F(¥) is obtained from the Grassmannian G,(V) by
two flag constructions. By (21.18), the Poincaré polynomials of F(V) and
Gy (V') satisfy the relation

Q=3 (=2 —) e (1 — )
(L= (A=) - %) (=t

P{F(V)) = P(G(V))

From (21.17) it follows that
(1 -3 (1 -t
R L ) { I R ¢ LU

As for the ring structure of the cohomelogy of the Grassmannian Gi(V),
we have the following.

PG = 0

Proposition 23.2. Let V be a complex vector space of dimension n.
{a) As a ring

RLe(S), ... cn-ulS) 1(Q) ..., el O]
{c(S)e(@) = 1)

o Q) of the quotient bundle generate the

HYG(V) =

(b) The Chern classes ¢,((), .
cohomology ring H*(G (V).

(c) For a fixed k and a fixed i there are no polynomial relations of degree i
among ¢4(0Q), ..., ¢Q) if the dimension of V is large enough.

Proor. In the proof of Proposition 23.1, we saw that the flag manifold F(V)
is obtained from the Grassmannian by two flag constructions

A

g
S®Q F(Q) = F(V)
l FiS)/

G(V)

3
.
ol
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By {21.18) the cohomelogy ring of the flag manifold is

HYGUVIX1, 2o os Xnoys Y1soms Vi
H¥F(V) = .
D= TG+ 59 = o, T1 0 + 99 = (@)
On the other hand, we've computed the cohomology of F(V) in {21.17) to be

{*) H*(F{V)} = R[xh ERIE ] xn—k: yl; R ] yk]/’(l—[ (1 -+ xl’) H (l + y}) = 1)

Thus in H*¥(G(1) the Chern classes of § and Q can satisfy no relation other
thau ¢(8){Q) = 1, for any relation among themn would appear as a relation
among the x;'s and ;s in {x). It follows that there is an injeclion of algebras

RLc(S), Q)]
@321) @940 = )

From the digression following this proof, the Poincaré series of

R{ci(S), ..., cp-il8), €1(Q), ... cl@IALS)e(Q) = 1) is

P(R[c(S), dQJ]) _ (A=) (= ™)
@A = 1)) = =) = 2 — ) (=)

But this is also the Poincaré series of H¥Gy(V)). Thus the injection (23.2.1)
is an isomorphism, This proves (a).

Writing (S} = 1/¢{Q), we see from the description of the ring structure in
(a) that ¢,{(Q}, ..., e,{Q) generate the cohomology ring of G(V).

The equation ¢(S) = 1/c(Q) not only allows one to climinate ¢,(5), ...,
Cy—i{8) in terms of ¢4(@), ..., ¢ {@), but also gives polynomial relations of
degrees 2(n — k + 1), ..., 2n among ¢,{Q), ..., ¢(@). Thus for a given degree
i, if the dimension n of the vector space ¥ is so large that 2{n — k + 1} > |,
then there are no polynomial relations of degree i among the Chern classes
of 0. 0O

& HHG(V)).

Digression on the Poincaré Series
of a Graded Algebra

Let k be a field and A = @2 ; A, a graded aigebra over k. The Peincaré
series of A is defined to be

o0

P(4) = 3 {dim; A

i=0
If 4 is 2 graded Z-module, its Poincaré series is defined to be that of the
{@-algebra 4 &, Q.

ExampiE. Let 4 be the polynomial ring R[x], where x is an clement of
degree n. Then
1

=1__t1’l'

P(A)=1+t"+t*"+---
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ExampLE, Let 4 and B be two graded algebras. Suppose a basis for 4 as a
vector space is {x;};.; and a basis for B is {y;};,s. Then a vecior spacc
basis for A ® Bis {x,® y;}i. 1. jos. Therefore

P{A ® B) = P{A)P(B).
Examrie Let A = R[x, v], with deg x =m and deg y =n. Then since
R{x, y] = R[x] ® Ry},

1“_ 1
L—m 1=

P(d) = P(R[x])P(R[y]) =

We next investigate the effect of a relation on the Poincaré series of a
graded algebra.

Proposition 23.3, Let 4 = (D% 4, be a graded algebra over a field k, and x a
homegeneous element of degree nin A. If x is not a zero-divisor, then
P(dfxA) = P{AY1 1)

ProOF. Because x is not a zero-divisor, multiplication by x is an injection.
Hence for each integer i there is an exact sequence of vector spaces

0— Ar'f* A= (Alx Ay — 0.

By the additivity of the dimension,
dln'l A;+" = dlm A[ + dim(A/'xA)H,,.

Summing over all §,

o @ o
S (dim 4, )0 = Y (dim A Y dim(A/xA)rat
i= ~n i=—n = -=n

where we set 4, = {0} if  is negative. Hence
PfAY = PAX" + P(A/xA) |
Examere. If x, y, and z are elements of degree 1, then the Poincaré series of
A= R[x, y, Z1/(x%y + y222 + xp*z) is
P(4) = P{R[x, y, Z])(1 — 9
= (1 — (1 - &%)

To generalize Proposition 23.3, we will necd the nolion of a regular
sequence.

Definition. Let 4 be a ring. A sequence of elements a),...,a, in 4 is a
regular sequence if a, is not a zero-divisor in 4 and for each i = 2, the image
of a;in Aj(a,, ..., a;_,) is not a zero-divisor.

i
i,
H
|‘ :
il
[
|
i
i
IE
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Proposition 23.4. Let A be a graded algebra over a field k and a4, ..., a, q
regular sequeiice of homogencous elements of degrees ny, ..., n,. Then

PAfar, ..., a)) = PLAYNL — £™) - (1 — ™)

Proof. This is an immediate consequence of Proposition 23.3 and induction

onr. O
Let I be the ideal in R{x5, .-., %;, V1, ---, Ju] generated by the homogen-
eous terms of (1 + x; + -+ - + 20(1 - yy 4 <+« 4 ») — 1. We will now com-

pute the Poincaré series of R[xy, ..y x5, Y1y 00y Wid/dL

Lemma 23.5. Let A be a graded algebra over a field k. If ay, ..., a, is a
regular sequence of homageneous elements of positive degrees in A, so is any
permutation of a;, ..., a,.

Proor, Since any permutation is a product of transpositions of adjacent
elements, it suffices to show that @, ..., &1, dy+1, 4, <.+, @, 18 a regular
sequence. For this it is enough to show that in the ring Af(a,, ..., 4, ), the
images of a,..;, @, form a regular sequence. In this way the lemma is reduced
to the case of two elements: if g, b is a regular sequence of clements of
positive degrees in the graded algebra A, so is b, a.

If x is an element of A, we write X for the image of x in whatover
quotient ring of 4 being discussed. Assume that g, b is a regular sequence in
A,

{1) Supposc bx = 0in A. Then b% = 0 in A/(a}. Since b is not a zero-divisor
in Af(a), x = ax, for some x,; in A, Therefore, abx, = 0 in A. Since a is
not a zero divisor, bx; = 0. Repeating the argument, we get x; = ax,,

X, = axs, and so on. Thus x = ax, = a°x, = a*x; = ., showing that
x is divisible by all the powers of a. Since @ has positive degree, this is
possible only if x = 0. Therefare b is not a zero-divisor in 4.

{2) Next we show that @ is not a zero-divisor in 4/(b). Suppose ax =0 in
A/(b). Then ax = by for some y in A. It follows that 6% = 0 in Afx).
Since b is not a zero-divisor in A/a), y = az for some z Therefore,
ax = abz, Since a is not a zero-divisor in A4, x = bz; hence, £ =0 in

Af(b). 0

Lemma 23.6. If ay, ..., a,, b and a4, ..., a,, ¢ are regular sequences in a ring
A, then se is a,, ..., a,, be.

Proor. 1t suffices to check that be is not a zero-divisor in Af{ay, ..., a,). This
is clear since by hypothesis neither b nor ¢ is a zero-divisor in Af(ay, ..., a,).
]

‘53
=

-
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Proposition 23,7, The homogeneous terms of
bxg+ o +xdl+yi+-Fy)—1

Jorm a reqular sequence in 4 = B{xy, ..., X5, Y14 0oes Wil

Proor. The proof proceeds by induction on j and & Suppose j =1 and
k= 1. Then R[x;, y;1/(x; + »,) = B{x,] and the image of x,y¥; in R[x,,
y13/(x; + »1) is —x}, which is nol a zero divisor. So x; + vy, Xy, is &
regular sequence in R[x,, y,]. For a genéral j and k, letS; be the homogen-
eous term of degree i in (1 + x4 + -+ + x)(I + y; -+ -+ + y,) = I. We first
show that fi, ..., fise—1. X; and £y, ..., flan—1, ¥ are regular sequences. By
Lemma 23.5, f1, ..., fjrx—1s X; is & regular seguence if and only il x,, f3, ...,
Ji+x—1 is. Let f; be the image of f; in Af(x)). Since x; is not a zero-divisor in
A, it suffices to show that fi, ..., fj41x— Is a reguiar sequence in Af(x)). This
is true by the induction hypothesis, since

Aj(xj) = |R}[xl’ ey i1y Py onns yk]
and
Thfid o fo = x4+ )L+ y + o+ i)

Therefore, fy, ..., firk-1, *; is a regular sequence in 4. Similarly, f3, ...,
Ji+a—1, ¥r is also a regular sequence in 4. By Lemima 23.6, s0 is f), ...,

Srex—1s X5 Ve o

By Propositions 23.4 and 23.7, i I is the idesl in
A=RIxy, .00y Xyt Vs eees Vi)
generated by the homogensous térms of
(T x; Xl + by — 1
wherc dog x; = 2f and deg y, = 2i, then the Poincaré scrics of A/l is

A= -1
£2) - (t — 2O — ) (1 — £

PAAI) = o

The Classification of Vector Bundles

We now show that the vector bundles over a manifold M may be classificd
up ta isomorphism by the homotopy classes of maps from M into a Grass-
mannian. We will first discuss this in the complex case and then extend it by
analogy to the real case,
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Lemma 23.8. Let E be a rank k complex vector bundle over a differentiable
manifold M of finite type. There exist on M finitely many smooth sections af
E which span the fiber at every point.

Proor. Let {U};.; be a finite good cover for M. Since U, is contractible,
Elu.- is trivial and so we can {ind k sections 5; 4, ..., s; , over U; which form
a basis of the fiber above any point in ¥/;. By the Shrinking Lemma (see
(21.4} and (21.5)), there is an open cover { ¥}, ; with ¥ « U, and smooth
functions f; such that f; is identically 1 on ¥, and identically 0 outside U7,
Then {fi51,.--,./i5, 1)1 e global sections of E which span the fiber at
every point. O

Proposition 23.9. Let E be a rank k complex vector bundle over a differ-
entiable manifold M of finite type. Suppose there are n global sections of K
which span the fiber at every point. Then there is o map f from M to sume
Grassmannian G (C") such that E is the pullback under [ of the universal
quotient bundle Q; that is, E = 1.

Proor, Let sy, ..., 8, be n spanning scctions of E and let V7 be the complex
vector space with basis sy, ..., 8,. Since sy, ..., 8, are spanning sections, for
each point p in M the evaluation map

ev,: Vs E - O

is surjective. Hence ker ev,, is a codimension k subspace of ¥, and the fiber
of the universal quotient bundle ¢ at the point kerev, of the Grassmannian
Gy(V)is Viker ev, = E,. If the map f: M - Gy(V) is defined by

[ pr—rkerev,,

then the quolient bundle @ pulls back to E. We can identify ¥ with C*, and
GV} with G,(C"). > 0

This map [ : M — G(C") is called a classifying map for the bundle E.

In the proposition above, if {8}, ..., &} is another choice of global sec-
tions which span the fiber at every point, and ¥ the veclor space with basis
8, ..., 55, then there is a natural isomorphism of V with 77, and of G{}V)
with G(V"). Therefore the classifying map f 1 M — G (L") is well-defined up
to the identification of ¥V with C", independent of the choice of the n
spanning sections. More precisely, any two such maps f and f* from M to
G{C") differ by the action of an element B of GL{n, C} on G,{C"; thal is,

f =DBof, where B:GTY-— G(C").

Since GL(n, C) is connecied, there is a path p(f) joining the identity element
I and B in GL(n, ©). Then f, = ¥t} = f is a homotopy beiween f and f".
Therefore we may refine Proposition 23.9 to include the following state-
meni.
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(23.9.1) The homotopy class of the classifying map f 1 M— GJC") of the
vector bundle E is uniquely determined by E.

In fact, if g : E— E’' is an isomorphism of vector bundles over M, then g
gives a one-to-one correspondence between the sections of F and the sec.
tions of E'. S0 by the same reasoning as in (23.9.1), we see that E and B’
determine homotopic classifying maps f and f* from M to the Grassman-
nian G{C"). Writing Vect (M ; C) for the isomorphism clusses of the rank &
complex vector bundles over M and [X, Y] for the set of all homotopy
classes of maps from X to ¥, we have the following,

(23.9.2) For n sufficiently large, there is a well-defined map

B Veet(M; C)— [M, G(TT)]
given by the classifyving map of a vector bundle.

REMARK 23.9.3. From the proof of Lemuma 23.8, if M has a good cover with
r open sets, then every rank k& bundle over M has a set of rk spanning
sections. Thus in (23.9) given the manifold M of finite type and the integer
k, if n is an integer =rk, then the Grassmannian G(C") classifies all vector
bundles of rank k over M.

Theorem 23,10, Let M be a manifold having a good cover consisting of r open
sets and let k be a positive integer. For every integer n = kr, there is a
one-to-one correspondence

Vecty(M; C) >~ [M, G,(C")]
between the isomorphism classes of rank k complex vector bundles over M and
the homotopy classes of maps from M into the complex Grassmannian G,(C"}.
ProoF. By the homotopy property of vector bundles (Theorem 6.8), there is
a map
o [M, G{C"] — Veot (M; C}
given by the pullback of the universal quotient bundle over G{T™:
fefrte.

By (23.9), (23.9.2), and (23.9.3), for any integer n > rk, the map

' B Vecty(M; €)— [M, G{C)],
given by the homotopy class of the classifying map of a vector bundle, is

inverse to . (I

As a corollary of the existence of the universal bundle (23.9), we now
show that in a precise sense the Chern classes are the only cohomotogical
invariants of a smooth complex vector bundle.
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Vroposition 23.11. Every natural transformation frem the isomorphism classes -

of complex vector bundles over a manifold of finite type ta the de Rhom
cohamology can be given as a polynomial in the Chern classes.

Proor, Let T be a natural transformation from the functor Vect,( ; C) to
the functor H*{ } in the category of manifolds of finite type. By Proposition
23.9 and the naturality of T, if F is any rank k complex vector bundle over
M andf : M— G{C") a classifying map for E, then

TE) =T 'Q =1*TQ)

Beeause the cohomology of the Grassmannian GR(C") is generated by the
Chern classes of  (Prop. 23.2{(b)), T(Q) can be written as

T(Q) = PrledQ) -, @)

for some polynotial P, depending on T. Thercfore

T(E) = f*T(Q) = Pr(f*eslQ), ..o [ el @)y = Py {61(E} coalE). O

Of course there is an analogie of Theorem 23.10 for real vector bundles.
Recall that we write Vect,{M) for the isomorphism classes of the rank k real
vector bundles over M.

Theorem 23.12. Let M be a manifold having a good cover consisting of r open
sets and k a positive integer. For every integer n = rk, there is a one-to-one
corregspondence

Vect, (M) = [ M, G, (R%)].

The proof is completely analogous to that of Theorem 23,10,
We now classify the vector bundles over spheres and relate them to the
homotopy groups of the orthogonal and unitary groups.

Exercise 23.13. (a) Use Exercise 17.24 and the homotopy exact sequence of .

the fibration

Olk)— On)/O(n — k)
!
G{R"

o show that
AAGU(R) = r,_{0K) if nx>=k+gq+ 2.
(b) Similarly show that
T {GC) = m,_(UE) if nz(Q2k+q+1)/2.

Combining these formulas with Proposition 17.6.1 concerning the re-
lation of frce versus base-point perserving homotopies we find that for

S
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sufficiently large,
Vecot, (59 = [89, G {R")]
= R (G(R")/m1 (GL(R)}
= R (O mo(OLK)).

Exactly the same computation works for the complex vector bundles over
59, We summarize the results in the following,

Proposition 23.14. The isomorphism classes of the differentiable rank k real
vectar bundles over the sphere 87 are given by

Vecty(57) ~ m,_(O(R)/Z5;
the isomorphism classes of the complex vector bundles are given by

Vecty (8%, C) o m,_ (LK)

Remark 23.14.1 If G js a Lie group and a € G, then conjugation by a defines
an automorphism h, of G:
-1

h(g) = aga
Let m be any integer, The map h, induces 2 map of homotopy groups:

1)y T (G)—+ 1, (G).

If two elements a and b in G can be joined by a path y(z) in G, then h,
homotopic to h, via the homotapy h.,,,. Consequently (h Dy == (). In thls
way conjugation induces an action of ny(G) on =,(G), called the adjoint
action,

We know from (17.6) that for any space X with base point x, conjugation
on the Ioop space £2, X induces an action of m,(X) on = AX) With a little
more classifying space theory, it can be shown that the action of 7,(0(k)) on

-1{0(k)) corresponding to the action of n,{G,(R") on x A G(R*) under the
1dent1ﬁcat10n of n,.. {(O(k)) with = (G,(R") is precisely the adjoint action.

ReEMARK 23.14.2. Tt is in fact possible to cxplain the correspondence {23.14)
directly, Let E be a rank k vector bundle over §7 with structure group O(k),
and let Uy and U, be small open neighborhoods of the upper and lower
hemispheres. Because U, and U, are contractible, E is trivial over them.
Hence E is completely determined by the fransition function

: Uo ™ U.l_) OU{]

gor 15 called a clutching funcnm: for E. Then Proposition 23.14 may be
interpreted as a correspondence between the isomorphism classes of vector

bundles over a sphere and the frec homotopy classes of the clutching func-
tions.
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Exercise 23.15. Compute Vect,(S1), Vect,($2), and Vect(§%).

ExaMpPLE 23.16 (An orientable sphere bundle with zero Euler class but no
section). Because S* is simply connected, every vector bandle over §* ig
orientable (Proposition 11.5), For a line bundle orientability implies friy-
iality. Therefare,

Veet, (84 = 0,

By (23.14),

Veet{S*) = na(SO2))/Z, = my(8")/2, =0,

Veety(5*) = na(SOB)Z, = ny(RPY)/Z,

= ny(S°YZ, = 2/Z,.

Cansequently there is a nontrivial rank 3 vector bundle E over §*. The
Euler class of E vanishes trivially, since e(E) is in H}S% = 0. If E has a
nonzero global section, it would split into a direct sum E = L & F of a line
bundle and a rank 2 bundie. Since Vect,{(5*) = Vect,(S*) = 0, this would
imply that E is trivial, a contradiction. Therefore the unii sphere bundle of
E relative to some Ricmannian metric is an orientable $%-bundle over $*

with zero Euler class but no section. This example shows that the converse
of Proposition 11.9 is nat true.

REMARK 23.16.1 Actually Vecty(8*) = Z, because the action of Z, on
as(SO(3) is trivial. Indeed, by Remark 23.14.1 this action is induced by the
action of —1 ¢ 0(3) under conjugation on SO{3). But conjugating by —1
clearly gives the identity map.

In genera), by the same reasoning, if k is odd, then the action of m(Q(k))
on 7, {0(k)) is trivial for all g.

The Infinite Grassmannian

We will now say a few words about vector bundles over manifolds not
having a finite good cover. For Theorem 23.10 to hald here the analogue of
the finite Grassmannian is the infinite Grassmannian, Given a sequence of
complex vector spaces
reVehg e o Sdimg V=1,
there is 4 naturally induced sequence of Grassmannians
G GV r) = GV 1) =---.

The infinite Grassmannian G(V,,) is the telescope constructed from this
sequence. Over each G(V,) there are the nniversal quotient bundles 0, and
there are maps

e e =0

= .
4
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By the telescoping construction again there is a bundle Q of rank k over
GV} A point of Gi(V,,) is a subspace A of codimension & in V and the
fiber of @ aver A is the k-dimensional quotient space V, /A.

Unfortunately the infinite Grassmannian is infinite-dimensional and so is
not a manifold in our sense of the word. Since to discuss infinite-
dimensionai marifolds would take us too far afield, we will merely indicate
how our theorems may be extended. By the countable analogue of the
Shrinking Lemma (Ex, 21.4), with the finite cover replaced by a countable
locally finite cover, ong can show just as in Lemma 23,8 that every vector
bundle over an arbitrary manifold M has a collection of countably many
spanning sections sy, s,,.... If ¥, is the infinite-dimensional vector space
with basis sy, 55, ..., there is again a surjective evaluation map at each
point p in M:

ev,: V,— E,—0.

The kernel of ev, is a codimension k subspace of V. So the function
f{p) = ker ev, sends M into the infinite Grassmannian G,(V,.). This map fis
a classifying map for the vector bundle E and there is again a cne-to-one
correspondence

Vect,(M; C) =~ [M, G,(C*9)].
All this can be proved in the same way as for manifolds of finite type. From

Proposition 23.2, it is reasonable to conjecture that the cohomology ring of
the infinite Grassmannian G,(C*) is the free polynomial algebra

RleydQ), ..., elQ)).

This is indeed the case. (For a proaof see Milnor and Stasheff [1, p. 161] or
Husemoller [1, Ch. 18, Th. 3.2, p. 269].) Hence Proposition 23.11 extends to
a general manifold.

Exercise 23.17. Tt V be a veclor space over R and V* = Hom(V, [§) its
dual.

(a) Show that P{V*) may be interpreted as the set of all hyperptanes in V.
(b) Let ¥ « P(¥) x P{V*) be defined by

Y ={((v], [HDIH®) =0, ve V,He V*},

In other words, ¥ is the incidence correspondence of pairs (line in V,
hyperplane in V) such that the linc is contained in the hyperplane. Compute
H*(Y).

Concluding Remarks
In the preceding sections the Chern classes of a vector bundle E over M

were fitst defined by studying the relations in the cohomology ring H*(PE)
of the projective bundle, where the ring was considered as an algebra over
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H*(M). This somewhat ad hoc procedure turned out to yield all characteris-
tic classes of I only after we learned that all bundles of a given rank were
pullbacks of a universal bundle and that the cohomology ring of the uni-
versal base space (the classifying space) was generated by the Chern classes
of the universal bundle.

From a purely topological point of view one could therefore dispense
with the original definition, for by designating a set of generators of the
cohomology ring of the classifying space as the universal Chern classes, one
can define the Chern classes of any vector bundle simply as the pullbacks
via the classifying map of the universal Chern classes. On the other hand,
from the differential-geometric point of view the projective-bundle defini-
tion is more appealing, starting as it does, with ¢;(5*), 4 class that we
understand rather thoroughly and that furnishes us with a canenical gener-
ator for H*(PE) over H¥M). However, this ¢ is taken on the space P(E)
rather than on M and is therefore not directly linked to the geometry of M.
The question arises whether one can write down a form representing ¢, (E)
in terms of the following data:

(1} a good cover U = {U,} of M which trivializes E;
(2} the transition functions

o Uy Up— GL(n, ©)

for E relative to such a trivialization;
{(3) a partition of unity subordinate to the open cover M,

The answer to this question is yes and the reader is referred to Bott [2]
for a thoroughgoing discussion. Here we will describe only the final recipe,
for to understand it properly, we would have to cxplore the concepts of
connections and curvature, which are beyond the scope of this book.

ey i, ot i i
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be the pertinent transition matrix function for E. Consider the expression
2 1
Or = 2. g5/ dgo;
i=0

as a matrix of I-forms on U, x R2*L, the ¢'s being linear coordinates in
R7*' From ¢ one can construct the matrix of 2-forms
K;=do; + 16}

on U; x R**! and set
eAE) = det(l + =— K.
2n

Qur recipe is now completed by the following ansatz. Let
Ay = GRS tard it = O,Z t; =1}

be the standard g-simplex in R2**, The 2k-form ¢}(E) restricted to U, x A,,
and integrated over the “fiber A,” yields the desired form on U, :

ok a(E) ==f cHE).
A?

In other words, ¢,(E) is represented by the chain

k—1

Y TR e oL O,

q=0
Note that for dimensional reasons this chain has no component below the
diagonal and also no component in the zero-th column. This fact has
interesting applications in foliation theory (Bott [1]). In any case, the col-

Observe first that we are already in possession of the desired formula for 5 lating procedure (9.5) now completes the construction of the forms c,(E) in
the first Chern class of a complex line bundle L (see (6.38)). Indeed, if g, is terms of the specified data.
the transition function for L, the element 5

1,

i
e 1=§;dloggaﬂ

i eterbi e

in the Cech-de Rham complex C* (i, Q*) is both d- and d-closed. By the
collating formula {9.5), once a partition of unity is selected, this cocycle
yields a global form. The cohomology class of this giobal form is ¢,(L).

In the general case onc can construct a coeyle yi=g ¢~ 2¥*% with
ctrakta fn CEo9(l, OF 9, that represents the k-th Chern class ¢,(E) by the
following unfortunately rather formidable “averaging” procedure.

Let J = (ig, ' -+, i) correspond to a nonvacuous intersection, set

UJ= Uinﬁ ] U[q,

b
0
H
&

doy iUy, 0 Uy— GL(, ©) 1

i

and let
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cohomology 98, 167, 175 (See also
Cech—de Rham isomorphism)
of a complex Grassmannian 293
of a complex projective space 172,
173, 177, 269
of a fiber bundle 170 (See also
Leray — Hirsch theoren)
of a flag bundle 285
of a flag manifold 285
of & manifold 87
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DeRham cohomolapy (cont.)
of a projective bundle 270, 283
of a real projective space 78
of a Rigmann surface 35
of a vector bundle 60, 61
of an infinite complex
Grassmannian 303
of an open Mobiug strip 40, 138
of an open setin B° 15
of an orientable manifold 47, 87
of B" 16, 35
of the circle 24
of the n-sphere 36
twisted de Rham cohomology 83
with compact supports  (Sec Compacl
cohomology)
with compact supports in the vertical
direciion 61
with valugs in 4 flat vector bundle 80
e Rham—(lech isomorphism  (See
Cech—de Rham isomorphism)
Decomposable 259
Deforntation retraction 36
invariance of de Rham cohomology

under 36
Degencrate at the £ term 166
Degree
and Hopf invariant 234
local 123

of a hypersurface 282
of apropermap (See IJegree of aproper
map)
of a 0-chain 134
Degree of a proper map
between compact orienled
manifolds 47
between Euclidean spaces 40
between sphercs 215
is an integer 41
Density &5
titegration of 86
Density bundle 85
transition fonctions 85
Derived couple 135
stattonary 158
Diagonal
normal bundle is isomorphic to the
tangent bundle 127
Poincard dual of 127
self-interseciion number 128
Difference operator 110 {See also
Allernating difference; Coboundary
‘operator; Differcotial operator)
Differentiable function on a manifold 21

Index

Difterential in a speciral sequence 162,
164

Differential complex 16, 156

Dilferential forms (See also Forms)
on a Fuclidean space 13
on a manifotd 21
with valucs in a vector bundle 80
with values in a veclor space 79

Differential graded commutative

algebra  (See Differential graded
algebra)

Differential graded algebra 259
existence of & minimal model 260
1-connected 260

Differential operator 13, 16
in the Maycr— Vietoris sequence 93
on # double complex 90, 162, 164

Diluting & bundle 291

Dimension of a filtration 160

Direct limit 112

Direet product
Chern clusses of 267, 272
dual is not always a direct sum 46
of vector bundles 56

Direct sum
Chern classes of 279
dual is a dircet product 46
of vector bundles 56

Direct sum orientalion 66

Direct system of groups 112

Dirccted sct 43

Divergence 14

Divided polynomial algebra 2035

Double complex 90 (See also Cech—de

Rham complex; Cech-singular
complex)
diffcrential operator on 90, 162, 164
filtration on 136 '
speciral sequence of 165

Dual 56 (See also Dual bundle; Poincaré

dual)

Dual bundle 56
and conjugate bundle 286
Chern classes of 207, 280

Iidge homorphism 1738

Edge path gronp 147

Effeciive action 48
Eilcuberg—Sicenrod axtoms 5
Filenberg— MacLanc space 9, 240,

250
K(Z,1y 240
KirZ, 2y 242

e s
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Index
K(Z,3) 245
Kigs 1) 242
K{Z g 1) 243

rational cobomoelogy ring 245
Elementary symmetric functions 278
Embedding a manifold 290
Endpoint map 252
Bquivalent cocycles 54
Equivalent oriented trivializations 54
Euclidean space

compact cohomology 39

de Rham cohomalopy 35

infinite Euclidcan space 183

singular conomology 189

singular homology 185
Buler characteristic 126

js equal to the Buler number 128

of a fiber bundle 182
Buler class 72, 116

and spectral sequences 171

and the top Chern class 273

functoriality 74

in terms of the transition functions 73

in the Gysin sequence 179

is independent of good covers 118

is Poincaré dual to the zero locus of a

section 125
is the pullback of the Thom
class 132
naturality 74
of an onented 5*-bundle 126
of an oriented vector bundic 118
of the normal bundle of CP* in CP*
of the 2-sphere 125
Whitney product formula 133
Euler pumber 122
and locul degree 124
is cqual to the Enler characteristic 128
is the self-intersection of the
diagonal 128
Evaluation map 298, 303
Exact couple 135, 158
Exact forms 15
Exact sequence
of set maps 209
of vector bundles 65
of vector spaces 17

Ext 193-—-194

Extension principle 147

Extension problem 167

Exterior algebra 203

Exterior differentiation 14

Extertor derivative 14

is an antiderivation 14
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Exterior power 278
Chern classes of 278, 279

Face map 183

- Fiber 47, 48, 199

connectedness 202
homatopy type 200
Fiber bundle 47
cohomology (See Leray— Hirsch
theorem)
spectral sequence of 169
Fibering 199
as & basic trick of the trade 249
in the sense of Hurewicz 199
in the sense of Serre 199
Fibration 199 (Sce also Fibering)
Tiltered complex 156
spectral sequence of 156
Filtration 156
induced filwation 159
length 159
on a double complex 156
Finite type 42
Finite-dimensionality of de Rham
cohomology 43, 99
Finitely generated Abclian group 9
First homotopy group 1 (See also
Fundamental growp; Homotopy
ETOUPS)
Five Lemyma 44
Fixed-point formula
of Lefschotz 129
Flag 282
Flag bundle 282
cohomology ring 283
is a split manifold 282
Poincaré series 283
Flag manifold 282
cohomology 1ing 284
obtained from the Grassnannian by two
flag constructions 293
Poincaré polynomial 285
Fiat vector bundle 80
cohomology with cocfficients in
80
Forms with compact support 8, 23
integration of 29
Forms with compact suppotl in the vertical
direction 61
Frame 54
Free homotopy class 211
Free resclution 193
Front r-face 192
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Functor 20, 109 (See also Contravariant
functor; Covariant functor)
Functoriality {See Naturality)
Fundamental group 1, 206 (See also
Homotopy groups)
of a Riemann surface 1, 240
of the nerve of a guod cover 148
of the support of a simplicial complex is
the cdge path group 147

G-bundle 48
General linear group 56
Generator 40
for the cohomology of a circle 24
for the cohomology of a complex
projective space 236G
for the cohomology of & sphere 37
for the compact cobomology of a
Buclidean space 40
Geodesically convex neighborhood 43
Global angular form 71, 73, 121, 124
formula for 122
God-given set of differential equations 15
Gaod-given vector bundles 268
Good covers 42
are cofinal 43, 190
on a manifold 42
on a topological space 147
on a Iriangularizable space 190
on the torus 105
Graded algebra  (Sce also Differential
graded algebra)
commulativity 20
Poincaré serics 294
Gradient 3, 14, 221
Grassmannian  (See Complex
Grassmannian; Infinite complex
Grassmannian; Real Grassmannian)
Griffiths, Philip A. 262
Grothendieck, Alexander 266
Gysin sequence 177

Helicoid 268
Hessian 220
Hiiton, Peter 265
Hirzebiuch, F. 280
Hirzebruch—Riemann— Roch
theorem 280

Hirzebruch signature formula 290
Helemorphic section 282
Holemorphic tangent bundle 280
Hom functor 56, 169

exactness of 169

Index

Homogeneous coordinates 75
Homogeneous space 292
Homology 183 (Sec also Singular
homology)
relation with homotopy 225
Homology Mayer— Vietoris
sequence 188
Homology spectral sequence 196
Homomorphism of presheaves 109
Homotopy 35
between continuous and differentiable
maps 213
Homotopy axiom for de Rham
cohomology 35
Homotopy exact sequence  (See
Homotopy sequence)
Homotopy groups 2, 206
higher homotopy groups are
Abelian 207
in the €% sense and in the continuous
sense 214
of a bouquet of cireles 240
of a Carlesian product 207
of a Riemann surface 240
of asphere  (See Homotopy groups of a
sphere}
of a wedge of spheres 265
of an Eilenberg— MacLane space 240
of the circle 240
of the infinite real projective space 241
rclation with homolegy 225
relative homotopy proups 213
Homotapy groups of a sphere 214, 215
Hurewicz isomorphism 227

a8 256
(S 251
y(SH 227

Serre’s theorern 254, 262
Homaotopy invariance of de Rham
cohomology 5, 24
Homotopy operator 34
for the compact Poincaré lemma 38
for the generalized Mayer — Victoris
sequence 94
for the Poincaré lemma 34
Homotopy property of vector bundles 57
Homoetopy sequence
of a fibering 209
relative homotopy sequence 213
Homotopy type
in the C”sense 36
of u CW.complex 219
of a manifold 220
of the fiber of a fibering 200
Hopf, Heinz 7, 227, 266

¥

Index

Hop{ invariant 228
degree definition 234
differential form definition 230
homotopy invariance 228
Hopf fibration 235
intersection-theory definition 229
of £+ §%~1-58" {5 zevo for odd . 228
Hopf fibration 227
fiber over = 238
fiber over 0 238
Hopf invariant 235
Hopf index theorem 129
Hurewicz
fibering in the sense of 199
Hurewicz isomorphism theorem 225
Hurewicz, W. 2
Hypersurface in a complex projective
space 282
Chern classes of 282

Incidence correspondence 303
Inclusion 249
Index
of a nondegenerate critical point 220
of a zero of a vector field 128
Index theorem
Atiyah—Singer 1
Hopf 129
Indices
convention on 93
Induced filtration 159
Induced map
in cohomelogy corresponds to pre-image
in geometry 69
in homotopy 210
on the houndary 18
Induced orientation on the boundary 31
Infinite complex Grassmannian 302
cohomelogy ring 303
lnfinite complex projective space 242
cohomology ring 243
Infinite-dimensional manifeld: 303
Infinite Fuclidean space 183
Infinite lens space 243
Infinite teal projective space 241
cohomology ring 245
has no higher homotopy 241
is the infinite Lens space L(e, 2) 243
Infinite sphere 242
has no homotopy 242
Integral 3, 27
Integration
of a density 86
of a differential form 27
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Integration along the fiber 37, 6163
commutes with d 38, 62
in the Gysin sequence 179
Invariant form on a sphere 77

Jacobian determinant 28
Jacobian matrix 60, 220, 223, 224

Kernel of a set map 209

Kill
to get killed 177

Killing homotopy gronps 250

Kiinneth formula
algebraic Kiinneth formula 173
finiteness hypothesis 108
for the compact cohomology 50
for the de Rham cohomology 47
for the singular cohomology 192
Mayer— Victoris argument 47
spectral sequence proef 170
tic-tac-foe proof 106

L-class 279
Hirzebruch signature formula 250
Lefschetz fixed-point formula 129
Tefschety, number 129
Length of a filtration 159
Lens space 243
cohomology 244
Leray —Hirsch thcorem 50
for the singular cohomology 192
Mayer— Vietoris argument 50
spectral sequence proof 170
tic-tac-toe proof 108
Leray, Jean 5, 10
Leray’s construction 179
Leray's theorem
for the de Rham cochomology 170
for the singular cohomology 192
Lic group 196, 208, 292
Line bundle 115
Chern class of the dual Iine bundle 267
Chern class of a tensor product of line
bundles 267
complex line bundle 267
Ling integral 3
Linking number 229
Live to the E, terny 163
Local compatibility condition 114
Local degtee of a section 123
Local product crientation 4§61
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Localization principle 53, 67
Locally constant presheaf 100

on an open cover 143

with group Z ,
Locally constant sections 80
Locally constant trivialization 80
Locally finite open refinement 58
Long cxact sequence 17, 157

coboundary operator in 17

derived couple 157

of homotopy proups 209
Loop space 1, 199

homotopy groups 208

of a sphere  (See Loop space of a

sphere)

of an Eilenberg—MacLane space 241
Loop space of a sphere

integer cohomoelogy 203

ring structure 204

Manitold 4, 20
existence of a good cover on 42
homotopy type of 220, 224
i§ parsconipact 58
of finite 1ype 42
orienlable <== has a global nowhere
vanishing top form 29
orieftable == tangent bundle is
oricntable 55
simply connected == orientable
116
Manifold with boundary 30 (See also
Surlace with boundary)
Map between spheres
degree 215
Hopf invariant 227
normg) form 216
Mapping cylinder 249
Massey, William 155
Mathematical physics 8
Mayer— Vietoris argument 42
finite-dimensionality of de Rham 43
for the singular cohomolopy 193
Kiinneth forinula 47
Leray-Hirsch theorem 50
Poincaré duality 44—46
Thom isomorphisma 52
Muayer — Vieloris sequence 4, 22
for compact suppoits 26, 139
for countably many open sets 94
for singular chains 186
for singular cochains 189
for two open sets 22, 89
generalized 94

Index

homology Mayer — Vietoris sequence for
two open sets 188
Mayer— Vicloris principle
as a consequence of the lie-tac-toe
lemma 138
generalized 96
spectral sequence proof of 166
Measure rero 41, 42
Milnor, John 220, 221, 222, 226
Minimal model 259
existence of 260
main theorem 262
hMobius band 7 (Sce alse open Mibius
strip)
Mobius strip  (See open Mdébius sirip)
Morgan, John 262
Morse, A. P, 41
Morse function 223, 324
Morse lemma 222
Morse theory 220
main theorems 221, 222
Monodromy representation 146
Mormphism 20
Multiplicity
of a fixed point 120
of a zero 125

Natural transformation 109, 300
Naturality
Chemn class 271
Luler class 74
n-connected 253
Nerve of an open cover 100
Nondegenerate critical point 220
Nondegencrate pairing 44
Monorientable Peincaré duality 87, 141
Nonorientable Thom isomorphism 88,
131
Normal bundie 66
of CPin CP? 75
of the diagonal is isomorphic to the
tangent bundle 127
of the zero locus of a transversal
section 133
Mormal form of a map between two
spheres 216

Object 20
Obstruction theory 123
I-connected 261
Open coliar 232
Open cover
Cech cohomaology of 97, 95, 110

seabi s e

Index

coordinate open cover 21
good cover 42
Open Mobius strip
compact cohomology 40, 60, 141
de Rham cohomology 40, 138
Orientability
a stmply connected manifold is
orientable 171
of & manifold 29
of asphere bundle  (See Crientability of
& spherc bundle)
of a vector bundle 115
Orienlability of a sphere bundle 114
spectral sequence point of view 171
Orientable manifold 29
Orientable sphere bundle (See Oriented
sphere bundlc)
Orientable veclor bundle 54 (See also
Ouiented vector buadle)
vver an otientable manifold 60
Orientation
direct sum orientation 66
loca! product orfentation 61
on & manifold 29
on a sphere bundle 114
on & vector bundle 55
on the normal bundle of an oriented
submunifold a6
on the zero locus of a section 134
product orientation 123
Orientation bundle
of a manifold 84
of a vector bundle 88
Orientation-preserving map 28
Criented manifold 29
Oriented sphere bundle 114, 171
cohomology 177
Euler class 72, 116, 171
Gysin sequence 177
odentation 114
Oriented vector bundie 54, 60
Euler cluss 118
Orthogonal group  (See also Special
orthogonal group)
redaction to 55
stable homotopy grovps of 239

Paracompact space 38

Parallel translation 125

Partition of unity 4, 2§

Path components 1, 189, 208
and connected components 208

Path fibration 199, 225

Path space 198
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Physics 8
Poincaré conjecture 147
Poincaré dual 51, 230 (Sec also Closed
Poincaré dual; Compact Poincaré
dual)
is the Thom class of the normal
bundie 67
localization principle 53, 67
of a circle on a torus 68
of a closcd oriented submanifold 51
of a point 68
of a transversal intersection 69
of the ambient manifold 68
of the diagonal 127
of the BEuler class 125
of the pullback of a form 69
of the zero locus of a section 125
supporl of 67
Poincaré, Henri 5, &
Poincaré duality 44
and (he Thom isomorphism 60, 67
nonorientable 87, 141
Poincaré lemma 16, 35
for compact supports 19, 39
for compact vertical supporls 63
Poincaré polynomial (See also Poincaré
series)
of a Grassmannian 293
Poincaré series 269, 296, 287
of a complex Grassmannjan 252
of a complex projeclive space 269
of a flag bundle 283
of & flag manifold 283
of a graded algebra 294
of a projective bundle 271
Pontrjagin classes 289
application 10 the embedding of a
manifold 290
of a sphere 250
sign convention 289, 250
Ponlrjagin, Lev §. B, 266
Positive form 70
Postnikov approximation 250, 251
in the computation of homotepy
groups 9, 10, 256
in the computaticn of w4(8%) 256, 257
in the computation of w457 251,
. 252
Postnikov tower 250
Presheaf 108
cohomotogy presheaf 109
constant presheaf 109, 141, 177
homomorphism of presheaves 109
locally constant on an open cover 143
locally constant presheaf 109,141,177
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Presheaf (cont.)
of compaet vertical cohomology 131
on an open cover 142
trivial presheal 109
Product bundic
aver a Grassmanpian 292
over a projective space 268
Pruduct orientation 123
Product structure
on a teysor preduct 176
on the Cech complex 174
on the Cech—de Rham complex 174
on the de Rham complex 14
on the singular cohomoelogy 191
Projective general lincar group 269
Projective plane
real projective plane 105
Projective space  (Sce Complex projective
space; Infinite complex projective
space; Infinile real projective space;
Real projective space)
Projectivization of & vector bundle 269
cohamolopy ring 270, 283
pullback bundle 270
tautological exact sequence 270
universal quotient bundle 270
universal subbundle 270
Projection formula 63
Proper map 26
depree 40, 41
image is closed 41
not surjective == degree is zero 41
Pullback
commutes with 4 19
in the Oysin sequence 179
of a differential form 19
of a vector bundle 56

Quadratic transformation 268

Rational homotopy theory 259
mauin theorem 262
Reul Grassmannjan 292
and the classification of vector bundles
over & spherc 301
as a homogencous space 292
homotopy groups 300
Real projective plane 105
good cover on 105
Real projective space 77, 241 (See also
Infinite real projective space; Real
projective planc)
de Rham cohomology of 78

Index,

Real vector bundle 53
Realization 267, 286

of a complex matrix 287

of & complex vector bundle 267, 286
Reduction of the structure group 34

and orientability 55

to the orthogonal group 55

to the unitary group 267
Refinement 43
Repular sequence 295, 296
Regular value 40, 224, 220
Relative de Rham cohomology 79
Relative de Rham theory 78
Relative homatopy group = 213
Relative homotopy sequence 213
Restriction 109
Retraction 36
Ricmann intcgral 27
Riemann-Roch theorem 280
Rigmann surface 1

#s an Eilenberg— MacLane space 240

de Rham cohomology of 3

homotopy groups of 2, 240
Ricmannian structure 42

Sard, A, 41 .
Sard’s theorem 41, 42, 215, 218, 224
Second spectral sequence 166
Scetion
and the Enler class 119, 302
oxistence of 123, 272
cxistence === zero BEuler class 119
partial section 122
singularities of 122
Serre
fibering in the sense of 199
Serre, Jean-Piene 10, 227
Setre’s theorem on the homotopy groups of
the spheres 254, 262
Short exact sequence 17
Shrinking lemma 276, 303
Sign converlion
general principle 174
indices 93
Ponirjagin classes 289, 290
Signature 290
Signature formula of Hirzebiuch 290
Singular chain 183
Singular cochain 188
Singularities of a section 122
local degree 123
Simplex
barycenter 142
barycentric subdivision 142

Index

standard g-simplex 183
Simplicial approximation theorem 147
Simplicial complex 142
good cover on 190, 220
k-skeleton 142
support of 142
Simplicial map 146
Sinpula; cohomology 189
and Cech cohomelogy 189, 191
of a Buclidean space 189
of a fiber bundle 192
afl o flag bundle 285
of a flag manifold 285
of a Lens space 243, 244
of a special orthogonal group 195, 196
of a unitary group 196
of an Eilenberg—MuacLane
space 245—248

of K(Z,3) 245

of the infinite complex projective
space 243

of the infinite real projective space 245

of the loop space of a sphere 203

of the unit tangent bundle of a

sphere 194 )
Singular homology 184

of a Euclidean space 185
Skeleton

of a CW-complex 219

of a simplicial complex 142
Spanning sections 298
Special orthogonal group 53, 195

action of oy on r, 302

and orieptability 55

and the classification of vector

bundles 302
identification of SO(3) with RP>
195

integer cohomology of SG(1) 195

integer cohomology of $(3(3) 195

reduction to 55
Spectral sequence 159

and the Eauler class 171

Cech—de Rhamisomorphism 167,175

convergence 160

differential  161—164

exact couples 155

Kiinneth formula 170

Leray—Hirsch theoremn 170

Mayer— Vietoris principle 167

product structures 174

of a double contplex  (See Spectral

sequence of a double complex)

of a fiber bundle 169

of a filtered complex 160
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orientability 171
orienlability of a simply connected
manifold 17}
Spectral sequence of a double
complex 161
differenttal 162, 164
second spectral sequence 166
Sphere
Cech cohomology of 102
cohomology of 36
Euler class of the tangent bundle of 125
generator in the top dimepsion of 37
homotopy groups 214, 215, 227
invariant form en 77
minimal model 259, 260
Scrre’s theorem on the homotepy groups
of 254, 262
tangent bundle  (See Tangent bundle of
a sphere)
unit tangent bundle of the 2-sphere is
SO(3) 195
volume form on 37, 233
Sphere bundle (See also Criented sphere
bundle}
orentation 114
structure group 113
Spherical coordinates 238
Split manifold 273, 275
is the flag bundle 283
Splitting
of a G-module 194
of a vector bundle 274
Splitting principle 275
in the computation of Chern
classes 27%
in the proof of the Whitney product
formula 277
Stable homotopy groups
of the orthogona! group 239
of the unitary group 239
Star 142, 190, 220
Standard orientation
on a sphere 70
on CP' 237
Standard g-sitoplex 183
Stationary derived couples 158
Steenrod, Norman 123
Stereographic projection 235
Stiefel, Eduard 266
Stokes® theorem 31
for densitics 86
Stone, A. H. 58
Structurc group 47
of a complex vector bundle 54, 267
of a fiber bundle 47
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Structure group (cont.)
of areal vector bundle 53
of a spherc bundle 113
of an orientable vector bundle 55
reduction of (See Reduction of the
struciure group)
Subcomples 156
Subdivision
barycentric 142
Sullivan, Deanis 259, 263
Suppori
of a form 24
of & function 18
of a simplicial complex 142
Surface with boundary 231
Sylvester's theorem 220
Symuimetric function theorem 278
Symmetric power 279
Chern classes of 279

Tangent bundte 55
holomorphic tangent bundle 280
of a sphere  (Sec Tangent bundle ol »
sphere}
Tangent bundle of a sphere
cohomology 194
BEuler class 125
unit tangent bundle of the 2-sphere is
SO 195
Tungent space 21
Tangent vector field {See Vector lield)
Tautological cxact sequence
over a Crassimnannian 292
over a projective bundle 270
over a projective space 268
Telescoping consirtiction 241
infinite complex projective space 242
infinite Grassmannian 302
infinitc Lens space 243
infinite real projective space 241
infinite sphiere 242
Tensor product
exaciness 169
Chern classes of 267, 279
of vector bundles 56
product structure 176
Thom class 64, 232
a characterization of 64
as a relative cohomology class 78
in ternis of the global angular form 74,
132
in terms of the patching data 75
of a direct sum 65

Tndex

pulls back to the Ruler class 74, 132
rclation to the Poincaré dual 67
Thom isomorphism 63
and Poincaré dualily 60
nonoricntable 88, 131
3-sphere 243
7SH 251
ws? 257
Tic-tac-toc lemma 135
Tic-tac-toc proof
of Poincaré duality 141
of the gencralized Mayer— Vielonis
principle 138
of the Kiinneth formula 105
of the Leray—Ilitsch theorem 108
Todd class 279

Tor funcior 193, 194
Torsion 9, 182, 194
Terus 221

good cover on 105
Total space 48
Total Chern class

classes)
Total Ponirjagin class
Pontgjagin classes)

of a complex manifold 290

of a sphere 290
Transition funciions

for a fibcr bundle 48

for a manifold 20

for & vecior bundle 53

for the conjugate bundic 286

for the density bundle 83

for the dircet sum 56

for the dual bundle 56

for the tensor product 56

reduction of the structure group 54
Transpression 247
Transgressive element 247
Transversal intersection 68, 69

codimension is additive 69

is dual to the wedge product 69

nermal bundle of 69
Transversalily theorem 123
Triangularizable space 190

good covers are cofinal 190
Triangnlation 190

of a manifold 190

270 (See also Chern

289 (See also

Tricks
basic tricks in homotopy theory
249
Trivial presheaf 109
Trivialization

anil transition functions 54

e

Tnddex

of a4 coordinale open cover 21
locally constant 80
Tubular neighborhood 65, 214
Tubular neighborhood thevrem 66
Twisted cohomology 80, 82
and trivialization 80, 83
juvariant under the refinement of open
covers B2
Twisted de Rham cohomelogy &4
is the same as the de Rham cohomology
on an orlentable manifold 85
Twisted de Rham cohomology with
compact supporls 84
Twisted de Rham complex 85

Unil sphere bundle 114
Unit tangent bundle of a sphere
cohomelogy of 195
Unitary gronp 196, 292
integer cohomology of 196
reduction of the structure proup to 267
stable homotopy groups of 238
Upiversal Chern classes 304
Universal cocfficient theorems 194
Universal covering 252
of g cirele 152
Universal quotient bundle
and the cohomology of a
Grassmannisn 293
classification of vector bundles 298
over a Grassmannian 292, 208
over a projective bundle 270
over 4 projective space 268
Universal subbundle 77, 270
over & Grassmannian 292
over a projective bundle 270
over a projective space 268
Upper half space 30
te-small chain 183

Vector bundles
bundle}

classification 299
cohomology 60
compact cohomology 60, 63
compact vertical cohoniology 61, 63
complex vector bundle 54
Euler class 72, 118
exact sequence of 65
flar 80

{See also oriented vector
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God-given 2638
isomorphic <= cocycles are
equivalent 54
oriemability of 54
orientable <= associated sphere
bundles are 115
orientable === determinant bundies
are 116
over 4 contractible manifold 39
over & simply connected manifold 116
over & sphere 302
real vector bundle 33
rcduction of the structure group 54, 267
spliling of 274
to “fdilme’ & vector bundle 291
unit sphiers bundie of 114
VYector field 21
Hopt index theorem 129
index of a zero 128
on a sphere 125
Volume integral 3
Velume form
on a sphere 27
on the 2-spherc 235

Wedge of spheres 153, 262

minimal model 263

ranks of the homotopy groups 265
Wedge product of differential forms 14

is Poincaré dual to a transversal

interscction 69

Weil, André 5, 10, 89
Whitehead tower 252, 253, 257
Whitney embedding theoremm 213
Whitney, Hassler 7, 217, 266
Whitney product formula

for the Chern clasy 272, 275

for the Euler class 133

for the L-class 279

for the Pontrjagin class 289

for the Todd class 279

Yang—Mills 8

Zero locus of a socction
normal bundle of 133
orientation on 134
Poincaré duai of 134

Zig-zag 95






