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I New invariants of smooth four-manifolds are needed

I Donaldson and Seiberg-Witten invariants do not distinguish
smooth four-manifolds that may well be different

I Something may be needed that goes beyond counting
solutions



I Recall Donaldson invariants are based on counting solutions of
the instanton equation for an SU(2) gauge field:

F+
µν = 0

I To define the usual Seiberg-Witten equations, we replace
SU(2) by U(1) but we add a charged “hypermultiplet” field
M. Resulting equations are schematically

F+
µν + M̄Γ+

µνM = 0, /DM = 0.

M is a positive chirality spinor of charge 1.

I Many variants of these equations can be obtained by replacing
U(1) with some other gauge group G and replacing M with a
spinor field valued in some other representation R.

I We can try to define invariants by counting solutions of these
equations.



Two basic problems:

I Unless the representation R is very small, there are
compactness issues such as those discussed by Taubes

I In particular, as we vary the metric on a four-manifold X , a
solution may run off to M =∞ and disappear

I There is also a problem of a completely different kind: to the
extent that one can define such invariants, Seiberg-Witten
theory of the Coulomb branch tends to suggest that they will
not contain new four-manifold information.

I I want to stress that the last point is not bullet-proof and
some experts disagree, or at least are skeptical.



Today I will focus on a particular case that is related to N = 4
super Yang-Mills theory. We will consider any gauge group, but
SU(2) is a typical example. The hypermultiplet will be valued in
the adjoint representation. For that particular case, there are more
options in the “twisting” that formally produces a topological field
theory. The case I want to focus on today are what are sometimes
called the Vafa-Witten (VW) equations (C. Vafa and EW,
hep-th/9408074).



I After twisting, the fields are a gauge field A, which is a
connection on a G -bundle E → X ; a field B that is a self-dual
two-form valued in the adjoint representation of G , in other
words B is a section of Ω2,+(X )⊗ ad(E ), and a scalar C
valued in the adjoint representation, in other words C is a
section of ad(E ).

I The equations are schematically

F+ +
1

2
[C ,B] +

1

4
[B,B] = 0, DµBµν + DνC = 0.

I One can show that in any irreducible solution on a compact
four-manifold, C = 0. However, including C is important for
the ellipticity of the equations.



I Based on an index theorem, the expected dimension of the
moduli space of solutions is 0.

I So imitating Donaldson, the natural (formal) invariant is the
“number” of solutions, for a given choice of the instanton
number.

I However, solutions can actually naturally occur in families
because some reductions of the equation lead to a nontrivial
expected dimension.

I The most obvious such reduction is to set B = C = 0, whence
the equations reduce to the instanton equations and the
solutions of those equations occur in families of positive
dimension.



Vafa and I were not really interested in defining four-manifold
invariants. We were trying to test the S-duality conjecture of
N = 4 super Yang-Mills theory, which was hard to test because
computations for strong coupling are difficult. We showed that if
X satisfies a very strong condition that its Ricci tensor is
non-negative, Rµν ≥ 0, then all solutions have B = C = 0 and are
instantons. Moreover, a formal argument then shows that the
invariant ak that “counts” solutions for instanton number k is the
Euler characteristic of Mk , the instanton number k moduli space.
S-duality predicts that the function

F (q) =
∑
k

akq
k

should have modular properties.



Not too many four-manifolds have Rµν ≥ 0, but luckily for a few
cases that do (a K3 surface, CP2, and an ALE space) the values of
the ak could be extracted from results of mathematicians
(Klyachko, Yoshioka, Nakajima, et. al.). From these examples, it
was possible to make some interesting tests of the S-duality
prediction.

Much more has been done in this direction more recently (for
example, R. Thomas, arXiv:1810.00078).



I But what if we want to define four-manifold invariants, rather
than testing S-duality? Then we have the two problems that I
already mentioned:

I The equations are not known to have useful compactness
properties (lecture by Taubes)

I Seiberg-Witten theory tends to suggest that if we can define
invariants that count the solutions, they will not contain new
four-manifold information.



An optimistic idea about the second problem:

I Formally, the VW invariants can be categorified.

I That is because the solutions of the VW equations are the
critical points of a certain functional, and the gradient flow
equation for this functional is an elliptic PDE in five
dimensions.



Once we set C = 0, the VW equations for the other fields are the
equations for a critical point of a certain functional

W (A,B) =

∫
X
d4x
√
g

(
BµνF+

µν −
1

3
Bµν [Bνλ,Bλµ]

)
.

Since this is the case, we can add a fifth dimension and look at the
gradient flow equation for this functional

∂Φ

∂t
= −δW

δΦ
,

where Φ schematically represents the pair (A,B) and the gradient
is defined using the obvious metric on the space of fields

|Φ|2 = −
∫
X
d4x
√
g Tr

(
δA2 + δB2

)
.



Fortuitously, this gradient flow equation (sometimes called the
Haydys-Witten or HW equation) is elliptic. It does NOT have
five-dimensional rotation symmetry, so it is only defined on a
five-manifold such as X ×R with a preferred “time” direction. But
since it is elliptic, one can sensibly count its solutions. So one can
do Morse or Floer theory for the functional Γ. In this way, one
would define a “categorified” version of the VW invariants: the
invariants would be vector spaces associated to a four-manifold
rather than numerical invariants. To the extent that the VW
invariants are Euler characteristics of instanton moduli spaces, the
categorified invariants would be the cohomology groups of
instanton moduli space – vector spaces rather than numbers.



The physical interpretation would be in terms of 4 + 1-dimensional
super Yang-Mills theory. On a five-manifold of the particular form
X × R, this theory has a “twisted” version that is topological on
X , but not on R. It has two unbroken supercharges, say Q and Q̄,
satisfying Q2 = Q̄2 = 0 and {Q, Q̄} = H, where H is the
Hamiltonian. The “categorified” invariant is the cohomology of Q.
To the extent that the solutions of the VW equations all have
B = 0 and we do not have to worry about singularities, the
classical ground states in the sector with Pontraygin number k are
instantons, the operator Q is the de Rham differential of instanton
moduli space Mk , and the categorified invariant is the cohomology
of Mk . The categorified theory is doubly-graded by k , that is by
the instanton number, and by the degree d of a differential form.



Let us discuss a few facts about the VW solutions. The VW
equations have a Z2 symmetry τ : B → −B (and C → −C ). The
obvious τ -invariant solutions are instantons, with B = C = 0.
There is another branch of τ -invariant solutions in which the gauge
field A is u(1)-valued (not su(2)-valued) and B is nonzero, but one
can compensate for B → −B by a U(1) gauge transformation.
Using a standard basis t1, t2, t3 of su(2), this happens if A is
proportional to t1 and B is a linear combination of t2 and t3. Let
us write Mk and Wk for the moduli spaces of τ -invariant solutions
with Pontryagin number (instanton number) k.



An index theorem says that the expected dimension of the moduli
space of VW solutions is 0, so one expects a “typical” solution to
be isolated. But τ -invariant solutions come in families Mk and
Wk . The index theorem predicts for Mk the dimension

dk = 8k − 3∆, ∆ = 1− b1 + b+2

and for Wk the dimension

d̃k = −8k + ∆.

So Mk is generically empty unless k is sufficiently positive, and
Wk is generically empty unless k is sufficiently negative. (Later,
when convenient we take k sufficiently positive so we can focus on
instantons and not worry about Wk .)



It can be shown that the grading of the physical Hilbert space by
the degree of a differential form is odd under B → −B, which acts
as the Hodge ? operator on the cohomology of instanton moduli
space. (If this moduli space has degree d , the natural grading
ranges from −d/2 to d/2, shifted from usual by −d/2 so as to be
symmetric around degree 0.)



Now let us discuss the solutions that are not τ -invariant:

I They occur in pairs related by B → −B and these pairs have
opposite cohomological grading.

I They are generically expected to be isolated.

I Without a solution of the compactness issue, they can
disappear when we vary the metric of X .

I This last point is why VW theory and its categorification are
hard.



The fact that the solutions might disappear when we vary the
metric might be unfamiliar so let me go in a little detail. We
imagine a family of metrics on X depending on a parameter t. For
t < t0, there is a pair of solutions related by B ↔ −B. But for
t → t0, they may disappear:

When this happens, the
VW “invariants” and their categorification will jump. Thus some
sort of bound keeping B from going to infinity is needed in order to
really define invariants.



There is a physical picture that can shed some light. We consider
Type IIA superstring theory on R×Ω+

2 (X )×R2 with N D4-branes
wrapped on R× X × {0}, where X is embedded in Ω+

2 (X ) as the
zero-section and {0} is the origin in R2. The low energy physics is
the twisted N = 4 super Yang-Mills (with gauge group U(N)) that
formally leads to categorified VW invariants. Compactness issues
have to do with the possiblity that a brane could separate from
X × {0} ⊂ Ω+

2 (X )× R2. Reducible solutions correspond to branes
separating in the R2 directions. This can be avoided by standard
topological conditions. B becoming large correspond to branes
moving in the fiber direction of Ω+

2 (X )→ X . There is no known
cure for this, or satisfactory understanding of how it happens.



We can think of Ω+
2 (X ) as a manifold with a (generally

unintegrable) G2 structure. B is analogous to the “Higgs field” in
Hitchin’s description of Higgs bundles in 2 dimensions: its
eigenvalues represent points in the fiber of Ω+

2 (X ). When B is
large, a semiclassical picture should emerge. The different
components of B will have to commute with each other because of
the Tr[B,B]2 term in the Yang-Mills action. As in Hitchin’s theory
of Higgs bundles, their common eigenvalues represent a point in
the fiber of the fibration Ω+

2 (X )→ X . For G = SU(2), there are
two such points in the fiber over any point p ∈ X . They are equal
and opposite because an su(2) matrix is traceless.



Thus when B is large, the picture looks something like this:

Drawn is X (horizontal line) inside Ω+
2 (X ). Motion of branes in the

fiber direction gives (for G = SU(2)) a submanifold Y ⊂ Ω+
2 (X ),

which projects to a double cover Y of X , as shown. Y is invariant
under B → −B because B is traceless. For supersymmetry, one
expects Y to be a “coassociative cycle” (a four-cycle on which the
three-form of the G2 structure restricts to 0) endowed with a line
bundle L → Y that will have a U(1) instanton connection a.



The moduli space of pairs (Y , a) has virtual dimension 0 according
to an index theorem, so it is reasonable to expect to find isolated
solutions. The compactness issue in this language has to do with
whether as we vary the metric on X and thus the G2 structure on
Ω+
2 (X ), Y can go to infinity. Such issues have been analyzed in

the gauge theory language by Taubes. Hopefully it is possible to
match that description with what I’ve said.



Continuing the search for new invariants of four-manifiolds,
consider this:

I Standard arguments show that for a generic metric g on a
four-manifold X (of b+2 > 1 to avoid reducible solutions), the
moduli space Mk of instanton number k is a smooth
manifold.

I The topological type of Mk is not a four-manifold invariant,
because when one interpolates between two different metrics
g and g ′, one generically will pass through a singularity.

I However, when one changes from g to g ′, Mk changes by a
cobordism.

I Can cobordism invariants of Mk such as Pontryagin numbers
be viewed as four-manifold invariants of X?



There are at least two reasons that this last question has not been
much studied:

I Technically, these Pontryagin numbers are hard to define
because of the singularity associated with instanton
“bubbling” (shrinking to zero size).

I Also, a formal argument predicts that if one could define
them, these numbers would not be essentially new
four-manifold invariants but could be expressed in terms of
Donaldson or Seiberg-Witten invariants.



I am going to suggest that not all Pontryagin numbers but
precisely those Pontryagin numbers that appear in the q-expansion
of the elliptic genus of Ochanine, Landweber, and Stong (OLS)
can be naturally defined as four-manifold invariants. I actually do
not claim that they are essentially new four-manifold invariants.
However understanding why they are invariants will help us to
define invariants that may really be new.



Instead of Type IIA superstring theory on R×Ω+
2 (X )×R2, we are

going to replace R2 by R× S1 and consider Type IIB superstring
theory on R2 × Ω+

2 (X )× R. In this theory, we consider N
D5-branes wrapped on R2 × X (times a point 0 ∈ R). The
resulting theory has (1, 1) supersymmetry on R2. The fields A,B
of the VW equations on X are promoted to superfields on R2.
They are governed by a superpotential which is the same
functional we studied before whose critical points are the solutions
of the VW equations:

W (A,B) =

∫
X
d4x
√
g

(
BµνF+

µν −
1

3
Bµν [Bνλ,Bλµ]

)
.

The low energy theory is, formally a sigma-model whose target is
the VW moduli space.



Let us recall that the VW equations have a symmetry τ : B → −B.
In the brane picture on R2 × Ω2

+(X )× R, this symmetry acts as
−1 on the fiber of Ω+

2 → X and on the last factor R. In other
words, it acts as −1 on the normal bundle to the D5-branes. The
superpotential is odd under this symmetry, which means that τ is a
“discrete R symmetry” in the (1,1) supersymmetric theory on R2.



Let us now ask: what are interesting topological invariants that we
can extract from a (1, 1) supersymmetric theory in two
dimensions? Provided the theory has a discrete R-symmetry – such
as our τ – one can define the “elliptic genus” of OLS. In terms of
qft, it is defined by replacing R2 with R× S1, and then introducing
a monodromy by τ in going around the S1. Thus the geometry is
symbolically R× S1 × Ω̃+

2 (X )× R̃, where I write Ω̃+
2 and R̃ to

indicate the −1 monodromy in going around the S1.



The effect of the monodromy is that the fields (A,B) on X have
to be τ -invariant in order to maintain supersymmetry. This means
that we only have to consider the solutions parametrized by Mk

(instanton moduli space) or Wk (solutions in which A is abelian
and B is odd under a certain gauge transformation). Moreover, the
two types of solution exist for different ranges of instanton
number: Mk for k > 0 and Wk for k < 0. So if the instanton
number is sufficiently positive, we will only see Mk .



When we went from D4-branes on R× X ⊂ R× Ω+
2 (X )× R2 to

D5-branes on R2 × X ⊂ Ω+
2 (X )× R, we lost a U(1) symmetry –

rotation of R2 – that led to the cohomological grading in the
attempt to “categorify the VW invariants.” Hence the theory we
are discussing now is only graded by Z× Z2 (instanton number
times (−1)F ), not Z× Z. Also, once we make the monodromy by
τ to define the elliptic genus, we only have one unbroken
supercharge Q. Since Q2 6= 0, we cannot define cohomology
groups. But we can still define the index of Q, which in the
present context is really the elliptic genus

F (q) = Tr (−1)FqP ,

where P is the momentum along S1.



Now we ask: Is F (q) really a topological invariant, independent of
the Riemannian metric of X? I claim Yes:

I As a physicist, one would say that the answer is “yes,”
provided the target space of the sigma-model is effectively
compact.

I Here compactness means that the branes cannot effectively
separate from each other.

I The important issue is the instanton bubbling singularity.

I In brane physics, instanton bubbling at a point p ∈ X means
that an instanton turns into a D1-brane wrapped on
R× S1 × p.

I The question of compactness is then whether this brane can
separate from the remaining brane system.

I This is prevented if there is a nonzero theta-angle for the U(1)
gauge field on the D1-brane worldvolume.

I That in turn will be the case if in the underlying Type IIB
description in ten dimensions, we turn on a suitable RR
potential.



That explanation will probably sound mysterious if one is not a
string theorist. So I will explain a nontrivial special case just in
terms of PDE’s. Here I will consider only single-instanton bubbling.
If X is a simply-connected four-manifold with b+2 odd, then it
admits an almost complex structure, which in turn means that on
X , there exists an everywhere nonzero selfdual two-form ω. Any
choice of such an ω gives a way to resolve the instanton-bubbling
singularity. This follows from the ADHM construction (the
following was interpreted in terms of noncommutative geometry by
Nekrasov and Schwarz). The singularity when a single instanton
shrinks to a point is modeled by R8///U(1) where R8 is viewed as
a flat hyper-Kahler manifold and /// represents the hyper-Kahler
quotient. In other words, the singularity is described by

~µ−1(0)/U(1),

where ~µ is the hyper-Kahler moment map. Given ω, we can resolve
the singularity by replacing ~µ−1(0)/U(1) by

~µ−1(ω)/U(1).



This is smooth, so (if single-instanton bubbling is all we have to
worry about) all the Pontryagin numbers of Mk are well-defined
once we pick an almost complex structure and therefore a
homotopy class of ω’s. But what happens if we change the almost
complex structure? There are a couple of moves to consider, but
the main one is a change in the first Chern class of the almost
complex structure. By further study of the ADHM construction,
one can show that the change in the topology of Mk in such a
move is a “classical flop” (originally studied in Atiyah (1958)).



To describe a classical flop, consider complex variables z1, . . . , z4
that satisfy an equation

|z1|2 + |z2|2 − |z3|2 − |z4|2 = b

with constant b, and divide this space by U(1) acting by common
phase rotations on all the zi . The quotient, for b 6= 0, is a smooth
six-manifold. But it passes through a singularity, with a jump in
topology, in passing through b = 0. It turns out that the
Pontryagin numbers that appear in the elliptic genus are invariant
under a classical flop and no other Pontryagin numbers have this
property (Totaro, arXiv:math/0003240). (The fact that the
Pontraygin numbers that do appear in the elliptic genus are
invariant under a classical flop is a generalization of facts about
sigma-models with Calabi-Yau targets (Aspinwall, Morrison, and
Greene, 1993; EW, 1993).)



So I believe that the elliptic genus of Mk is a topological invariant
of X . But I do not believe that this invariant contains essentially
new information about four-manifolds. The reason that I do not is
that one can study the matter by Seiberg-Witten theory. To be
specific, we look at the Coulomb branch of a system of D5-branes
on S1 × S1 × R4 (with a discrete R-symmetry twist in going
around one of the two S1’s). The Coulomb branch in this case is
described by a particular K3 surface – an elliptic fibration over a
base space that in this example is a copy of CP1. Though I do not
have a complete description of this particular fibration, it is
possible to see that it only has singularities of a standard sort and
therefore that the resulting four-manifold invariants can be
expressed in terms of the standard ones.



I Though the elliptic genus is invariant under classical flops
(and many other operations) on any manifold Y , it is really a
much more natural invariant if Y is spin.

I Otherwise the sigma-model that would compute the elliptic
genus of Y is anomalous.

I Therefore, to proceed further, we want the case that Mk(X )
is spin.

I This can be analyzed by the same methods Donaldson used to
show that Mk(X ) is orientable.

I The upshot is to show that Mk(X ) is spin if X is.

I This is related to an anomaly of the brane construction if X is
not spin.



I continue assuming that X is spin.

I In this case, we can use the sigma-model with target Mk(X )
to define some invariants that go beyond the elliptic genus.

I In particular, if the dimension of Mk(X ) is of the form 8r + 1
or 8r + 2, then we can define the “mod 2 index” of the Dirac
operator on Mk(X ) acting on any of the representations that
appear in the elliptic genus.

I These should all be topological invariants of X by the same
arguments as for the elliptic genus.

I For example, the mod 2 index valued in each of these
representations will be invariant under classical flops (and lots
of other operations).



The representations that arise in the elliptic genus at successive
“mass levels” are the trivial representation; the n-dimensional
vector representation V of SO(n); ∧2V ; etc.

So I am talking about the mod 2 index of the Dirac operator on
Mk(X ) acting on sections of S , S ⊗ T , S ⊗ ∧2T , . . . , where S is
the spin bundle and T is the tangent bundle of Mk(X ). (Only
finitely many of these are independent, the number depending on
the dimension 8r + 1 or 8r + 2 of Mk(X ).)



To conclude:

I This is what I can offer that might be an essentially new
four-manifold invariant: the mod 2 index of the Dirac
operator on Mk(X ), with values in any of the representations
appearing in the elliptic genus.

I I don’t really know if these invariants are essentially new, but
it does not seem possible to use any standard physics
argument to argue that they are not.

I Even if they are new, I don’t know if they are useful.

I The essential difference (relative to VW invariants or the
elliptic genus of Mk(X )) is that these invariants cannot be
computed by a four-dimensional path integral.

I The “categorified VW invariants” – if they make any sense –
also cannot be computed by a four-dimensional path integral
so could potentially be new if the compactness problem can
be solved.


