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We will be discussing the relations between a sequence of theories
in dimension 2-3-4-5:

I Conformal blocks of the WZW model in dimension 2.

I The Jones polynomial and Chern-Simons gauge theory in
dimension 3.

I N = 4 super Yang-Mills in dimension 4.

I A dimension 5 construction that will lead to a categorification
of the Jones polynomial – a candidate for Khovanov homology.



The Jones polynomial is a rather subtle invariant of a knot in R3:

Ever since Vaughn Jones’s original work, constructions of it have
generally been related to mathematical physics – in a bewildering
variety of ways.



One of Jones’s original constructions involved the Jones
representations of the braid group. A braid in the mathematical
sense is a picture like this:

Points move around in the plane, then return to their starting
positions. In this example, I’ve drawn a braid with 4 strands.



Braids form a group: they can be composed by gluing one braid on
top of another. Jones constructed some rather mysterious
representations of the braid group. The representation matrices
depended on a complex parameter q, so I will call these
representations Ri (q) (here i ranges over a finite set, the precise
number depending on the number of strands considered).



One of the early definitions of the Jones polynomial of a knot was
as follows. We can build a knot by gluing together the top and
bottom ends of a braid:

This gluing is a little bit like taking a trace. Let B be a braid. Let
us write Ri ,q(B) for the matrix that represents this braid in the
representation Ri (q). An early definition of the Jones polynomial is
that it is a certain linear combination of these traces

J(q) =
∑
i

ci (q)TrRi (q)Ri ,q(B).



Everything about this formula was a bit mysterious: the
construction of the braid group representations Ri (q) was
non-obvious, the particular functions ci (q) were obscure, and –
since the same knot can be constructed by taking the “trace” of
many different braids – it is not obvious why a knot invariant can
be constructed in such a fashion anyway.

I first learned about all these things from Michael Atiyah, who
predicted that the mysteries should be unraveled by interpreting
the Jones polynomial in quantum field theory.



A very important step was taken by Tsuchiya and Kanie. They
showed that the Jones representations of the braid group are the
ones that arise when one decomposes the correlation functions of
the two-dimensional WZW model in conformal blocks, as originally
analyzed by Knizhnik and Zamolodchikov. The WZW model is a
two-dimensional conformal field theory that depends on the choice
of a compact symmetry group G and a positive integer k . It turns
out that in the relation to the Jones polynomial, we should take
G = SU(2) and relate k to q by q = exp(2πi/(k + 2)). The WZW
model has “primary fields” in various representations of G . To
make contact with the Jones representations of the braid group, we
consider a primary field Φ in the two-dimensional representation.



Consider genus 0 correlation functions of Φ:

G (z1, z̄1; z2, z̄2; · · · ; zn, z̄n) = 〈Φ(z1, z̄1)Φ(z2, z̄2)Φ(z3, z̄3) · · ·Φ(zn, z̄n)〉.



These functions are neither holomorphic nor antiholomorphic, and
they cannot be factored as the product of a holomorphic and an
antiholomorphic function. But Knizhnik and Zamolodchikov had
shown that they are finite sums of products of holomorphic and
antiholomorphic functions:

G (z1, z̄1; z2, z̄2; · · · ; zn, z̄n) =
∑
α

fα(z1, z2, · · · , zn)f̄α(z̄1, z̄2, · · · , z̄n).

Here the functions fα(z1, z2, · · · , zn) are multivalued holomorphic
functions. For each n, we can define a vector bundle Vn over the
configuration space of n distinct points z1, z2, · · · , zn with a basis
given by the fα. Single-valuedness of the original correlation
functions G (z1, z̄1; z2, z̄2; · · · ; zn, z̄n) implies that the Vn are flat
vector bundles, so their monodromies when the points move
around give representations of the braid group. The observation of
Tsuchiya and Kanie was (simplifying slightly) that these are the
Jones representations.



As understood by physicists at the time, the WZW model is a
purely two-dimensional quantum field theory, with no particular
connection to three dimensions. But the relation of the conformal
blocks of the WZW model to the Jones representations of the braid
group showed that the WZW model somehow had an unexpected
relation to three dimensions. (Another somewhat similar clue in
that direction came from work in this period of E. Verlinde, and
there was important work on the conformal blocks by G. Moore
and N. Seiberg. I won’t have time to recall those matters.)



In three dimensions, there actually is a quantum field theory that
depends on precisely the same data as the 2d WZW model, namely
a gauge group G and a nonzero integer k. We simply do
Yang-Mills theory in three spacetime dimensions, with a compact
gauge group G , but we choose the action to be the Chern-Simons
function

I =
k

4π

∫
W

d3x εijkTr

(
Ai∂jAk +

2

3
AiAjAk

)
and not the usual Yang-Mills action. The function I is only
gauge-invariant mod 2πk. In quantum theory, the action must be
gauge invariant mod 2πZ so that the argument exp(iI ) of the
Feynman path integral will be well-defined. So k must be an
integer. (This argument, due originally to Deser, Jackiw, and
Templeton, is somewhat similar to the argument showing
integrality of k in the WZW model in two dimensions.)



The importance of using the Chern-Simons function rather than a
standard Yang-Mills action is that it can be defined on an oriented
three-manifold W with no choice of metric tensor on W , so
therefore the Feynman path integral of this theory

ZW (k) =

∫
DA exp(iI )

doesn’t depend on anything except W itself – in other words if it
makes sense at all, it will give a topological invariant of W .



We can include a knot or embedded circle K ⊂W by including a
Wilson loop operator

WR(K ) = TrRP exp

∮
K
A,

where R is a representation of G and the symbol P represents
“holonomy.” Now the path integral∫

DA exp(iI )WR(K )

depends on K (and R) as well as on W , but nothing else. So
(taking W = R3) this will potentially give an invariant of a knot.



The basic relation between the 3d Chern-Simons theory and the 2d
WZW model is that the space of physical states of the 3d theory is
the same as the space of conformal blocks of the 2d theory. For
example, quantize the 3d theory on R× Σ where Σ is a Riemann
surface, say of genus g :

To construct the physical Hilbert space HΣ, we have to quantize
the appropriate classical phase space.



The classical phase space is the space of classical solutions of the
theory on Σ× R. Since the classical field equation is just F = 0,
i.e. vanishing of the curvature F = dA + A ∧ A, the classical phase
space MΣ that has to be quantized is the moduli space of flat
G -bundles over Σ. This can be quantized by picking a complex
structure on Σ, which then induces a complex structure on MΣ.
The “prequantum line bundle” is then Lk , where L is the
fundamental holomorphic line bundle over MΣ (the “determinant
line bundle”) and the physical Hilbert space is the space of
holomorphic sections H0(MΣ,Lk).



I’ve drastically shortened what is actually a long story, but the
point is that the answer H0(MΣ,Lk) coincides with a known and
in a sense standard – though rather abstract – description of the
space of conformal blocks on a genus g surface. (I probably
learned this description from Graeme Segal. It is widely used – in a
more general form – in research on the geometric Langlands
program.) This is the basic link between 2 and 3 dimensions.



To get the Jones representations of the braid group, we replace Σ
by R2 (or CP1, in a slightly different approach) but with parallel
Wilson lines:

Quantizing in the presence of these
Wilson lines, we get the Jones representations of the braid group.
With some further arguments, one can obtain a formula for the
expectation value of a Wilson operator

J(q) =
∑
i

ci (q)TrRi (q)Ri ,q(B)

that coincides precisely with Jones’s formula for the Jones
polynomial in terms of traces.



In this presentation, the theory is really defined only for an integer
k , or for q for the form q = exp(2πi/(k + 2)), k ∈ Z. If one wants
a theory that is defined on an arbitrary three-manifold W , that is
the right answer. But if one considers just knots in R3, then one
can analytically continue the knot invariant J(q) (and its analogs
for other groups and representations) to functions of a complex
variable q. More specifically J(q) (and its generalizations) is a
Laurent polynomial in q, which is why the invariants that Jones
discovered are described as a knot “polynomial.” This is mysterious
from the 3d Chern-Simons point of view, but the interpretation in
terms of 2d conformal blocks makes it clear: it follows from simple
properties of the Knizhnik-Zamolodchikov connection.



So the approach that makes topological invariance clear does not
seem to directly explain why the invariants are a “polynomial.” For
about 20 years, I accepted this state of affairs, but by around
2007-8, new developments notably involving the “volume
conjecture” (Kashaev,....; Gukov) motivated me to look for a new
explanation of why the 3d Chern-Simons path integral for knots in
R3 can be analytically continued away from integer k. It turns out
that this involved a link between 3 and 4 dimensions that I think is
just as interesting as the link between 2 and 3 dimensions.



Before tackling path integrals, let us start with an
ordinary integral in 1 dimension:

Z (a) =

∫ ∞
−∞

dx exp(−x4 + ax2).

To improve the analogy between this integral and a
Feynman path integral, let us derive a Ward identity:

0 =

∫ ∞
−∞

dx
d

dx

(
x exp(−x4 + ax2)

)
,

or (
1− 4

d2

da2
+ 2a

d

da

)
Z (a) = 0.

When we generalize the path integral, we want to
preserve the Ward identity.



To generalize the original integral, we analytically
continue from x to a complex variable z = x + iy .
We can write the original integral as∫

Γ

dz exp(−z4 + az2),

where Γ is an integration cycle that happens to be
the real axis. We will generalize the integral by
considering some other Γ in the “same” integral.



What sort of Γ can we use? A closed cycle is no use,
as the integral will vanish by Cauchy’s theorem. Nor
can we let Γ have a boundary, for then the Ward
identity (whose proof involved integration by parts)
will fail. The only option is for Γ to run from infinity
to infinity, in such a way that the integral converges.



Here are a couple of examples of possible contours:



I’ve presented this in one dimension, but it should be clear that we
can treat an n-dimensional integral∫

Rn

dx1 . . . dxn exp(−F (x1, . . . , xn)),

where F is a suitable polynomial, in much the same way. We first
analytically continue from real variables xk to complex variables
zk = xk + iyk . Then we consider an integral over a suitable cycle
Γ ⊂ Cn: ∫

Γ
dz1 . . . dzn exp(−F (z1, . . . , zn)).

The properties we want for Γ are the following: (i) It must be
middle-dimensional and without boundary; (ii) the function
h = −ReF must go to −∞ at infinity along Γ, so that the integral
over Γ will converge.



For every such Γ, we get a generalization of the original integral,
such that all “Ward identities” are obeyed. It turns out – though I
won’t explain all the details today – that there is a nice theory of
the possible Γ’s, given by Morse theory, and that this gives a good
framework for understanding analytic continuation of such
integrals. What we want to do today is to place the Chern-Simons
path integral in the same framework. A quantum mechanical path
integral in 0 + 1 dimensions can, by the way, be studied in a very
similar fashion.



The Chern-Simons path integral∫
U
DA exp

(
i
k

4π

∫
W

Tr(A ∧ dA +
2

3
A ∧ A ∧ A)

)
is an integral over the infinite-dimensional space U of all gauge
fields A for gauge group G . The integrand is the exponential of a
polynomial, so we are in roughly the situation that I just described.
There is no problem formally in analytic continuation of the
integrand. A is replaced by a complex-valued connection
A = A + iφ, with the gauge group now being the complexification
GC of the original gauge group. (For example, SU(2)→ SL(2,C).)
Also the exponent of the path integral is a polynomial in A that
can be analytically continued to the “same” polynomial in A. And
U is replaced by the space UC of complex-valued connections. The
only catch is that the integration has to run over a
middle-dimensional subspace Γ ⊂ UC.



We need to find a subspace Γ ⊂ UC that (i) is middle-dimensional,
and (ii) has the property that the analytically continued path
integral ∫

Γ
DA exp

(
i
k

4π

∫
W

Tr(A ∧ dA+
2

3
A ∧A ∧A)

)
converges. How are we supposed to do that?



There is a standard way to handle the first part. Let UC be any set
of fields on a manifold W . Pick a manifold X of one dimension
higher whose boundary is W .



Pick “any” (elliptic) differential equation on X such that the
desired fields on W give local “boundary values” for a solution of
those equations. Then define Γ to be the subspace of fields on W
consisting of boundary values of global solutions on X . This
subspace is always within a finite-dimensional amount of being
middle-dimensional – the difference being given by an index.



Example: suppose that W is a circle and UC is the space of
complex-valued scalar fields φ. By hand, we can pick a
middle-dimensional subspace. We make a Fourier expansion

φ =
∑
n∈Z

ane
inθ

and then we define Γ by setting to zero half of the Fourier
components

an = 0, n < 0.



But we could also put this in our picture: we regard the circle W
as the boundary of a unit disc X in the complex z plane. We write
z = re iθ. The picture is like this:



Now we regard the scalar field φ on W as boundary values of a
scalar field on X , which we also call φ and we ask that this
extended scalar field should obey

∂

∂z̄
φ = 0.

A general solution can be expanded

φ =
∑
n≥0

anz
n

so when restricted to |z | = 1 it is

φ =
∑
n≥0

ane
inθ.

In other words, the space of boundary values of solutions on X is
the middle-dimensional subspace Γ that we defined by hand at the
beginning.



Going back to our problem with the complex-valued connection
A = A + iφ on a three-manifold W , we now set W to be the
boundary of a four-manifold X , and on X we consider some
differential equation

P(A, φ) = 0.

More or less any (elliptic) P will do, if all we want is a
middle-dimensional subspace Γ in the space of complex-valued
gauge fields. However, P is essentially uniquely determined if we
want the path integral to converge.



Just as in the one-dimensional example we started with, the path
integral is in danger of diverging because after analytic
continuation the integrand of the path integral∫

Γ
DA exp

(
i
k

4π

∫
W

Tr(A ∧ dA+
2

3
A ∧A ∧A)

)
has a real part that is unbounded above.



What will save the day is an identity

Re

(
i
k

4π

∫
W

Tr(A ∧ dA+
2

3
A ∧A ∧A)

)
=

∫
X
P2 −

∫
X
d4x Tr

(
FµνF

µν +
∑
µ,ν

(Dµφν)2 +
∑
µ,ν

[φµ, φν ]2

)
.

This identity says that the dangerous left hand side is not negative
in general, but is negative when P = 0, which is what we need.



On glancing back at the last slide, a quantum field theorist might
notice something: the negative term on the right hand side is
closely related to (minus) the bosonic part of the action of N = 4
super Yang-Mills theory. One can think of φµ as four scalar fields of
N = 4 super Yang-Mills theory, topologically twisted to turn them
into a one-form. The other two scalar fields have been set to zero.



Related to this, the equations P = 0, which explicitly read

Fµν − [φµ, φν ]− εµναβDαφβ = 0

Dµφ
µ = 0

are BPS equations for a twisted version of N = 4 super
Yang-Mills; these equations were studied by Kapustin and me in
our work on gauge theory applied to geometric Langlands. (We
will also use the same equations on Sunday in discussing
four-manifolds.) We will soon see why this is useful, but for the
moment, let us leave aside the relation to super Yang-Mills theory.



Thus the picture is as follows. Let W be a closed oriented
three-manifold. For any choice of a four-manifold X of boundary
W ,

one gets an integration cycle for an analytically continued version
of the Chern-Simons path integral on W . The integration cycle U
consists of all complex gauge fields A on W that are boundary
values of a solution of the equation P = 0 on X .



For an integration cycle of this kind, there is never any integrality
condition. A 1-dimensional analog is the analytic continuation of
the Bessel function by changing the integration cycle∮

dz

zk+1
exp(t(z + z−1))→

∫
Γ

dz

zk+1
exp(t(z + z−1)).

If we want to integrate on the unit circle, k has to be an integer. If
k is an integer, it is equivalent to integrate over Γ, and if we do
that, k no longer has to be an integer.



For the special case of knots in R3, one can argue using Morse
theory that all integration cycles are equivalent. So the standard
integration cycle of Chern-Simons theory can be replaced by one
for which k has no reason to be an integer. Therefore, we get a
new explanation of why the Jones polynomial can be analytically
continued away from integer k.



In fact, because of the relation to super Yang-Mills theory, we get
much more. The equation P = 0 is an equation of
“supersymmetric localization” for N = 4 super Yang-Mills theory
in four dimensions. In other words, the theory has a particular
supercharge Q, satisfying Q2 = 0, and such that if we pass to the
cohomology of Q, the Feynman integral of the four-dimensional
gauge theory “localizes” on solutions of P = 0.

(This type of localization, which is familiar to quantum field
theorists, is a generalization of Duistermaat-Heckman/Atiyah-Bott
localization in equivariant cohomology.)



Thus what I have said can be stated in a more physical way: Let X
be a four-manifold with boundary W . Assuming X is not flat, we
pick particular couplings to preserve the supercharge Q, and we
also pick a particular boundary condition along W . With this done,
the statement is that N = 4 super Yang-Mills theory on X gives
an analytically continued version of Chern-Simons theory on W .



The boundary condition we need has a simple description in terms
of string theory “branes”: it arises from the D3-NS5 system with a
nonzero theta-angle.

But it is actually a rather unusual boundary condition from a
topological field theory point of view. From the point of view of
the second order Yang-Mills equations of the underlying N = 4
theory, it is a standard elliptic boundary condition. But in the
theory localized on solutions of P = 0, the boundary condition
becomes trivial: it just says that P = 0 along the boundary. So it
looks very unusual in the twisted topological field theory. (An
analog of this boundary condition in dimension 2 is the one
associated to the “coisotropic branes” of Kapustin and Orlov.)



This step in going from 3 to 4 dimensions is relatively
non-standard, but once we get this far, we can get a lot farther
using more standard arguments.

First we apply electric-magnetic duality to the four-dimensional
N = 4 theory. In terms of branes this just changes a D3-NS5
system with a θ-angle to a D3-D5 system, still with a θ-angle.



In terms of gauge theory, what happens is the following:
I The gauge group G is mapped to the Langlands-GNO dual

group G∨.
I The q parameter q = exp(2πi/(k + 2)) of the Jones

polynomial is mapped to q = e iθ where θ is the gauge theory
θ-angle.

I This means that a field of instanton number N is going to be
weighted by exp(iNθ) = qN .

I In terms of the bulk localization equations, nothing happens.
Localization is still on solutions of the equation P = 0.

I However, because of the flip NS5→D5, the boundary
condition is now completely different. It now determines an
elliptic boundary condition (but an unusual one, as explained
shortly) on the equation P = 0.

I Because the equation and boundary condition are elliptic, it
makes sense (modulo compactness issues which we may hear
about in the next lecture by Cliff Taubes) to count, modulo
signs, the solutions of the equation P = 0 that satisfy the
boundary condition.



If aN is the “number” of solutions of P = 0 with instanton number
N that satisfy the boundary condition

then supersymmetric localization tells us that the partition
function is

J(q) =
∑
N

aNq
N

and this is then a dual formula for the Jones polynomial.

(To be precise, to get the Jones polynomial, the boundary
three-manifold W should be just W = R3, and the four-manifold
X of boundary W should be just X = R3 × R+ where R+ is a
half-line.)



The boundary condition on the equation P = 0 that comes from
the D3-D5 system has all the general properties of an elliptic
boundary condition, but it is constructed in an unusual way by
requiring the fields to have a certain sort of singularity along the
boundary. (This boundary condition was studied in R. Mazzeo and
EW, arXiv:1311.3167 and 1712.00835; it may enter in the next
lecture by Taubes.) Pick coordinates ~x along the boundary W and
a coordinate y normal to the boundary (so the boundary is at
y = 0). Write φ = ~φ · d~x + φydy . The boundary condition is

defined by requiring ~φ to have a “Nahm pole”:

~φ ∼
~t

y
y → 0,

where ~t are a standard set of generators of su(2).



Finally:

From this starting point, it is straightforward to “categorify” the
Jones polynomial and to get a candidate for the Khovanov
homology of a knot. What we get is closely related to work of
Gukov, Schwarz, and Vafa (2004), whose starting point was earlier
work of Ooguri and Vafa. I believe we will be hearing another
perspective from Aganagic.



In terms of branes, categorification just means replacing the D3-D5
system by a D4-D6 system. Starting with D3-branes on a
four-manifold X , the chain is

X → X × S1 → X × R.

Replacing X with X × S1 does nothing from a topological field
theory point of view, but replacing X × S1 by X × R is
“categorification.” It means that one constructs a physical Hilbert
space H, rather than purely numerical inariants. H is Z× Z
graded by instanton number N and “fermion number” F . (The
fermion number is given by an Atiyah-Patodi-Singer η-invariant.) If
one “decategorifies” by replacing R by S1, the natural thing to
calculate is the partition function, which is a supertrace or index,
giving back the Jones polynomial:

J(q) = TrH(−1)FqN .



Mathematically, without mentioning branes, what happens is the
following. Remember that the Jones polynomial comes from
counting solutions of an equation P = 0. In general, the set of
solutions of an equation cannot be categorified (as far as I know).
However, according to Morse theory, the set of critical points of a
function f on a manifold M can be categorified: the
categorification of the set of solutions of df = 0 is the cohomology
of M, H∗(M,R).



So we want the set of solutions of the equation P = 0 to be the
critical points of some functional. This is actually not true on a
generic four-manifold, but it is true for a four-manifold of the
special form X = W × R+ (which we use in studying the Jones
polynomial) or more generally W × L where L is a 1-manifold. For
such X , the equation P = 0 is schematically

δΓ

δΦ
= 0,

for some “action” or “energy” function Γ, where Φ = (A, φ) is the
full set of fields that appear in the equation P = 0.



Categorification means that one adds another dimension, replacing
X by Y = X × R, with R parametrized by the “time” t, and one
introduces the “gradient flow” equation

∂Φ

∂t
= − δΓ

δΦ
.

“Luckily,” this equation turns out to be elliptic (we will study the
same equation on Sunday in another guise) so it makes sense to
count its solutions, assuming that the relevant compactness issues
(which we may hear about in the next lecture) can be overcome.
Assuming this, we can construct an analog of Floer cohomology
and this is the categorification of the Jones polynomial.



Concretely, this means the following.

I The solutions of P = 0 are the “classical vacua.”

I We make a Hilbert space H0 with one basis vector for each
classical vacuum.

I The instanton number and fermion number (η-invariant) of
the classical vacua are two conserved charges N and F , giving
a Z× Z grading of H0.

I The physical Hilbert space H (which is expected to be an
invariant of the knot) is not H0 but rather it is the
cohomology of a supercharge Q that acts on H0.

I The matrix elements of Q between different basis vectors in
H0 are computed by counting the gradient flow lines between
different critical points, as usual in the supersymmetric
approach to Morse theory.



In summary, we have discussed the relations between a chain of
theories in dimensions 2-3-4-5:

I In dimension 2, we have the conformal blocks of the WZW
model.

I In dimension 3, we have the Jones polynomial and its
description by Chern-Simons theory.

I In dimension 4, we relate this to N = 4 super Yang-Mills
theory,

I In the last (?) step, we go to dimension 5 and get a
categorification of the Jones polynomial.


