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ABSTRACT

Rare Event Simulation for Lightwave Systems

Using the Cross-Entropy Method

Graham Mauch Donovan

Rare events are studied in an increasing number of areas, ranging from lightwave and

optical communication systems, to industrial routing problems, to rogue ocean waves, to

financial asset pricing, to the rare failure of something as common as Gaussian elimination,

as well as numerous others. In optical communication systems, a per-bit error rate of one

part in 1010 quickly becomes relevant because of high data rates, currently 40 Gb/s or

greater. Minimizing error rates at a reasonable cost and understanding sources of errors

are important aspects of these practical engineering problems.

In this thesis a new method is described which allows the use of multiple importance-

sampled Monte Carlo simulations for these systems. The key step is to provide a numerical

algorithm for the determination of the biasing distributions, modified probability distribu-

tions under which rare events in the system are no longer rare. This new method makes use

of a stochastic optimization scheme known as the cross-entropy (CE) method to solve an



4

optimization problem for these distributions, and the singular value decomposition (SVD),

linear operator decomposition, to efficiently compute the important directions in the sys-

tem, the system modes. The details of the SVD-CE-IS method are presented in a more

general context (it is not constrained to optical systems), and then it is applied to specific

optical communication systems.

A further application of this new SVD-CE-IS method is also demonstrated: it can be

used as a performance probe, targeting the behavior of the simulated system in regions of

specific interest. In these regions, system characteristics can be examined in greater detail

to help explain the reasons for the type of performance being considered. For example,

simulation trials which generate particular types of errors can be examined to determine

the underlying root causes. This capability is another desirable feature of the new method.
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CHAPTER 1

Introduction
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Rare events are studied mathematically in many widely varying contexts, from lightwave

and optical communication systems [1–7], to industrial routing problems [8], to rogue

ocean waves [9], to financial asset pricing [10], and even the rare failure of something

as common as Gaussian elimination [11]. Many different methods have been deployed

in the search for rare events. The most straightforward simulation approach, known as

Monte Carlo simulation, is computationally infeasible for rare events [12], simply because

of the number of trials required to generate even one such event. For example, accurately

simulating a rare event which occurs with probability 10−10 requires more than 1010 simple

Monte Carlo trials, and in most cases this is impractical.

A number of more sophisticated techniques known as variance reduction techniques

have been developed and used to alleviate this difficulty [13]. These techniques decrease

the simulation variance so that the number of trials required to simulate rare events is

greatly reduced, and thus doing so becomes computationally feasible. Within the spectrum

of available variance reduction techniques, there are many techniques with various benefits

and drawbacks for different types of problems. Generally speaking, dimensionality — that

is, the number of noise dimensions — is a key complicating factor [14]. Simple techniques

which work well on low-dimensional problems are ineffective in higher dimensions, and

effective variance reduction schemes for high-dimensional problems often must be much

more sophisticated.

To deal with some of the problems associated with high-dimensional systems, here a

new method for rare event simulation is proposed that combines Monte Carlo simulations

and importance sampling [15] with the application of the singular value decomposition
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(SVD) [16] and the cross-entropy (CE) method [17–19]. It is the latter two elements

that provide the main benefit here. Because the SVD is designed to determine the per-

turbations that produce the biggest outputs, the SVD allows one to reduce the effective

dimension of the problem. The CE method assesses the probabilistic significance of each

of these perturbations. This new technique has the benefit that it places few restrictions

on the problems to which it can be applied, while it is still capable of providing physical

insight into the inner workings of the simulated system and the nature of the rare events

under investigation. In particular, we will apply this technique to the simulation of several

lightwave communication systems. This technique does not make use of any particular

mathematical structure of the lightwave systems involved, and thus the technique should

be easily generalized to a much wider class of problems.

In the past, importance sampling (IS) has been used as a variance reduction technique

with great effect to speed simulations of communication systems [14]. However, the

application of IS has generally been restricted to problems where sufficient mathematical

structure was available to allow essential quantities known as biasing distributions to be

estimated via a reduced problem [1, 5, 20, 21]. We propose a new method which can

generate the biasing distributions numerically without need for recourse to an analytically

reduced problem. In particular, we use the cross-entropy method along with the singular

value decomposition to solve an optimization problem for the biasing distributions. With

these biasing distributions determined, importance sampling can then be employed to speed

up Monte Carlo simulations and provide computationally efficient simulation of rare events

in lightwave systems. We will demonstrate this method for two sample problems: one for
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which rare-event simulations have been previously obtained with analytically-determined

biasing distributions so that we can validate our results, and another which appears too

difficult to simulate by such methods.

This dissertation is organized as follows. First, the mathematical details are described,

including the Monte Carlo method, importance sampling, multiple importance sampling,

and the cross entropy method. Although not strictly speaking a simulation technique, the

details of the singular value decomposition are contained here as well, as it is essential to

the new method we will be presenting.

We then discuss the background information about optical communications systems

required for this work: modeling with the nonlinear Schrödinger equation, the improvement

of system performance using dispersion management, the degrading effects of amplifier

noise, and the special mathematical structure of optical pulses known as solitons. Because

much of the work we will be discussing has no analytical solution and must be performed

numerically, we devote a chapter to the relevant numerical methods and issues involved

in accurately and efficiently simulating these optical systems numerically, including issues

associated with introducing numerical noise.

With this background information in place, we proceed to lay out the proposed new

method and demonstrate it for example optical communications systems. The details

of the new method are presented first for a general case, one not necessarily an opti-

cal communication system. This scheme is then made specific to a general lightwave

communication system, and then finally to the particular example systems for which we

demonstrate results.



15

The results of rare-event simulation for the two example systems are then presented,

along with comparison with the previously published results for one of the problems, which

is approachable via an alternative technique. The second example problem is a modification

of the first for which the previous technique is inapplicable. We then demonstrate the utility

of our new method as a probe to determine the underlying differences between these two

systems. Thus, this new method has utility as a tool to determine the underlying causes

of rare events affecting system performance.

Finally, we discuss the potential application of this new method to rare event simulation

problems in areas beyond lightwave communication systems. Though demonstration of the

technique to these proposed areas is beyond the scope of this dissertation, we believe it

can potentially be applied to problems in many other areas.
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CHAPTER 2

Mathematics of Simulation
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2.1. The Monte Carlo method & importance sampling

Monte Carlo methods are a broad class of computational methods which evaluate an

unknown quantity using random sampling. The value of the unknown quantity is evaluated

with random trials within a specified sample space, and by collecting statistics on the

results of these random samples the underlying unknown quantity can be estimated. A

simple unknown quantity to consider for conceptual purposes is nothing more than a one-

dimensional definite integral,
∫
V
Φ(x)dx on some domain V . The domain is unimportant

for purposes of our discussion here, but the quantity being evaluated remains a definite

integral.

Consider first the problem of estimating some quantity

(2.1.1) � =

∫
V

φ(x)f (x)dx

where the integrand is now written as the product of two functions. In this form, φ(x)

is the function whose expectation with respect to some probability distribution function

(PDF) f (x) is to be evaluated. Traditional Monte Carlo integration would determine this

quantity by using the estimator

(2.1.2) �N = Ef [�] =
1

N

N∑
i=1

φ(xi)

where the xi are random samples drawn from the PDF f (·). The drawback to traditional

Monte Carlo simulation is that if φ(x) is large when f (x) is small, the variance of the

estimate can be unacceptably large, when compared with the number of samples required,
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and hence the computational cost is high. While it is true that

(2.1.3) lim
N→∞

1

N

N∑
i=1

φ(xi) =

∫
V

φ(x)f (x)dx,

i.e., the estimator converges to the desired value by the law of large numbers, it is also

true that the variance of our estimator is given by

(2.1.4) var[�N] =
1

N
var[φ].

The convergence rate of the standard deviation of �N is thus O
(
1√
N

)
. Consider

Chebyshev’s inequality [22]

P

⎡
⎣( 1
N

N∑
i=1

φ(xi)− 〈φ(x)〉
)2
≥ δ

−1

N
var[φ(x)]

⎤
⎦ ≤ δ

which bounds the error between the estimate �N =
1
N

∑N
i=1 φ(xi) and the exact solution

� = 〈φ(x)〉 at δ−1
N
var{φ(x)} with probability 1− δ. This is the result previously mentioned;

to simulate rare events which occur with probability 10−10, we require an accuracy (at

least) better than 10−10. Thus we require

N ≥ δ
−1var[φ(x)]

(error)2
=

(
1
100

)−1
var[φ(x)]

(10−10)2
= var[φ(x)]× 1022

trials for a 99% confidence. For many problems, this convergence is simply too slow to

achieve good results within a reasonable time. For example, if we are interested in a
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binomial random variable, then var[�N] ≈ �
N
and the relative standard error is

√
var[�N]

�
≈ 1√
N�
.

Then to obtain an acceptable error, we require N 	 1/� samples [23].

Importance sampling (IS) is a variance reduction technique that can be employed along

with Monte Carlo simulations to gain a dramatic performance improvement over standard

Monte Carlo simulations [15]. The idea behind IS is to concentrate the random samples

in the areas of sample space that are most important for the quantity being estimated,

and then make the appropriate corrections to the statistics. To reduce the variance of this

estimator, we introduce the biasing distribution f ∗(·) and estimate the value of Eq. (2.1.1)

using

(2.1.5) �N =
1

N

N∑
i=1

φ(xi)
f (xi)

f ∗(xi)
=
1

N

N∑
i=1

φ(xi)w(xi) = Ef ∗[�]

so that now we are evaluating the quantity φ(x)w(x) with samples drawn from f ∗(·). Here

(2.1.6) w(x) =
f (x)

f ∗(x)

is known as the likelihood ratio [12]. The likelihood ratio can be viewed as a correction

factor, appropriately weighting a sample trial as if it had been drawn from the original

distribution, despite having been drawn from a biased distribution.
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In principle, the optimal biasing distribution f ∗(·) can be calculated by minimizing the

variance of our estimator, given by

(2.1.7) var

[
φ(x)

f (x)

f ∗(x)

]
=

∫
V

(
φ(x)

f (x)

f ∗(x)
− �

)2
f ∗(x)dx.

Clearly, variance minimization occurs when

φ(x)
f (x)

f ∗(x)
− � = 0

→ f ∗(x) = φ(x)f (x)
�

.(2.1.8)

In fact, if f ∗(·) is given by Eq. (2.1.8), then the variance of our estimator is zero!

This is, of course, infeasible, as Eq. (2.1.8) depends on the quantity being estimated,

�. The goal of importance sampling, then, is to find f ∗(·) such that our estimator is

as near as possible to the zero-variance estimator, without having to know the answer a

priori. There are a number of restrictions and rules of thumb concerning good choices of

biasing distributions [24], and in principal choosing a poor biasing distribution can in fact

make the simulation results much worse than the case of unbiased trials. In this work we

primarily restrict ourselves to mean-shifted distributions but otherwise identical to those

of the underlying model, which alleviates many of these difficulties [20].

For simplicity, up to this point we have considered only one distribution and one random

variable. If, instead, our problem contains n independent random variables given by xi ,

i = 1 . . . n, drawn from distributions fi(·) and with corresponding biasing distributions
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f ∗i (·), then the likelihood ratio is given by

(2.1.9) w(�x) =
f (�x)

f ∗(�x)
=

n∏
i=1

fi(xi)

f ∗i (xi)
.

2.1.1. Example of Importance Sampled Monte Carlo Integration

An extremely simple example of importance sampling is to consider 1D Monte Carlo in-

tegration. Clearly there are better ways of solving this problem, but it serves to visually

demonstrate the action of importance sampling. Suppose we wish to evaluate

(2.1.10) � =

∫ 100

−100
e−x

6

f (x)dx

where we take f (x) to be a uniform distribution on [−100, 100]. Thus

(2.1.11) f (x) =

⎧⎪⎨
⎪⎩

1
200
, |x | ≤ 100

0, |x | > 100

and

(2.1.12) � =
1

200

∫ 100

−100
e−x

6

dx ≈ 0.00928

Knowing as we do the structure of e−x
6
, we can take as our biasing distribution, for

example, the normal distribution with mean 0 and variance 1:

(2.1.13) f ∗(x) =
1√
2π
e−x

2/2.
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Figure 2.1. Function for Monte Carlo integration with sampling distri-

butions: The function to be integrated via Monte Carlo integration φ(x),

along with the original distribution f (x) and the biasing distribution f ∗(x)

It is easy to see from Fig. 2.1 how the biasing distribution better represents the portion

of e−x
6
which contributes to the integral than the initial, uniform distribution f (x).

Of course, there are much better biasing distributions that could be used, but even

this very rough approximation produces a dramatic increase in simulation performance.

In Fig. 2.2, the mean and variance of each estimator is plotted against the number of

samples. It is easy to see that the importance-sampled estimator converges to the known

solution much more quickly than the crude Monte Carlo estimator. For any given variance

level, several orders of magnitude fewer samples are required when using the IS estimator.
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Figure 2.2. Performance increase in Monte Carlo integration obtained

with importance sampling: Left, convergence of estimated values to true

solution as a function of sample size. Right, variance of estimate vs. sample

size.

2.1.2. Multiple importance sampling

For some problems, a single biasing distribution may be insufficient to capture all of the

desired information. Consider, somewhat trivially, simply performing Monte Carlo integra-

tion of a function with disjoint but important regions which contribute to the integral, for

example

(2.1.14) φ(x) = (x − 100, 000)4 + (x + 100, 000)4.

This is a highly exaggerated, simple problem, but it illustrates the dilemma nicely. One

could perform importance-sampled Monte Carlo integration of this problem using a multi-

modal distribution which captures the character of φ(x), but in general sampling from
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an arbitrary distribution may be difficult. It can be easier to use two simple, uni-modal

distributions from which samples are easily generated, centered at each of the relevant

regions, and combine the results.

The problems we will be considering can have similar character, though in much higher

dimensional spaces. In such cases, we make use of multiple importance sampling. Multiple

importance sampling allows the use of several biasing distributions or biasing targets. The

Monte Carlo trials require only trivial modification - trials are drawn in prescribed num-

bers from each biasing distribution. Appropriately weighting and combining the results

from multiple biasing distributions requires a bit more work. If we now have M biasing

distributions, our estimator then becomes

(2.1.15) � =

M∑
j=1

1

nj

nj∑
i=1

Wj(�xj,i)φ(�xj,i)w(�xj,i)

where nj trials are drawn from the j-th biasing distribution, Wj is a weighting function,

and w is given by Eq. (2.1.9). The difficulty lies in determining the appropriate weighting

function to be used for combining the results of the different biasing distributions. In what

follows, we will use what is known as the balance heuristic.

The balance heuristic, developed in [25], uses the weighting function

(2.1.16) Wj(�xj,i) =
nj f

∗
j (�xj,i)∑M

k=1 nk f
∗
k (�xj,i)

.

The balance heuristic is so named because weights samples from distributions according

to the number of samples expected to be produced by them. Hence the sample values are
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balanced across all biasing distributions. Samples are weighted according to the number

that each biasing distribution is expected to generate at each point; distributions that

are expected to generate more samples are weighted more heavily. When it is used as

the weighting function, the sample value in our estimator does not depend on j or the

underlying distribution, for a given �x . By substituting Eq.( 2.1.16) into Eq. (2.1.15) and

recalling Eq. (2.1.6), one can see that 1
nj
Wj(�xj,i)φ(�xj,i)w(�xj,i) becomes independent of j

for fixed �x .

In fact, it can be shown that no other weighting function performs significantly better

than the balance heuristic, with performance measured in terms of the variance of the

estimator. The “variance gap” between the estimator with optimal weighting functions

and the estimator with balance heuristic weighting functions is bounded by

(2.1.17)

(
1− 1
M

)
1

n
�2

for M biasing distributions with n samples drawn from each, with the gap → 0 as n →∞.

The scope of the proof is beyond this dissertation, but the details are contained in [26].

2.1.3. Coefficient of variation and quality of simulated PDFs

We have now provided the necessary detail to simulate PDFs via multiple importance-

sampled Monte Carlo simulations, but we have not discussed any method of measuring

the quality of these PDFs. While good importance sampling distributions provide variance

reduction and rapid convergence to a low-variance estimate, poor biasing distributions can
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result in few samples being generated in the region of interest and thus a high-variance

estimator. To evaluate the quality of our biasing distributions and the resulting variance

of our PDF estimators, we make use of the coefficient of variation

(2.1.18) cv =
σ

μ

which is a dimensionless measure of the standard deviation relative to the mean. We do

not use the coefficient of variation as a measure of the simulated distribution, which has no

bearing on the quality of the simulation (that is, we are not interested in
√
var[φ(x)]/〈φ(x)〉),

but rather on the bin-by-bin sample distribution of the histogram. Each Monte Carlo sam-

ple can be expressed as performance and estimated probability pairs

(2.1.19) [φ(�xi ,j),W (�xi ,j)w(�xi ,j)]i .

and, these samples are binned into a histogram by the value of φ. The k th histogram

bin contains performances confined to the interval φk ± δφ2 , while the W (�xi ,j)w(�xi ,j) values

are unconstrained. The coefficient of variation we are interested in is the cv of this

distribution, the estimated probabilities within each bin. A high cv then indicates wide

intra-bin variation relative to the estimated probabilities, and poor convergence of that bin

(and thus the PDF). Conversely, a low cv indicates a tightly clustered intra-bin distribution,

relative to the estimated probabilities, and thus good convergence of the histogram in

that bin. Coefficients of variation are measured in this way throughout this work to assess
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the quality of the biasing distributions. Collecting the coefficient of variation in multiply

importance sampled simulations requires some modifications; see [20] for details.

2.2. The cross-entropy method

The cross-entropy (CE) method [17] is an optimization algorithm which we will use to

solve an optimization problem for the biasing distributions. In fact, the derivation of the

CE method proceeds directly from the premise of finding the optimal importance sampling

biasing distribution. Here we follow the derivation of [19]. Consider a random vector

�x = [x1, . . . , xN] drawn from a PDF f (�x) and a real-valued performance function p(�x).

Then we define

� = P[p(�x) ≥ a] = Ef [I{p(�x)≥a}]

as the probability that the performance is greater than some set value a, where I{p(�x)≥a}

is the indicator function given by

I{p(�x)≥a} =

⎧⎪⎨
⎪⎩
1, p(x) ≥ a

0, p(x) < a

and Ef indicates that the �x are drawn from the PDF f (�x). If � is sufficiently small, we

consider p(�x) ≥ a to be a rare event. Of course, as before, one might consider a Monte

Carlo simulation to estimate �. The crude Monte Carlo estimator is given by

1

N

N∑
i=1

I{p(�xi )≥a}
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with �xi , i = 1 . . . N drawn from f (x). When p(x) ≥ a is a rare event, however, this is

likely to be a poor estimator. In fact, when

N � 1/�

it is likely that the rare event does not occur at all and our estimate is zero, and to

obtain a low-variance estimate a very large number of samples is likely required. We can

dramatically improve the quality of the estimator by introducing a biasing distribution g(x)

and using the importance sampled estimator

(2.2.1)
1

N

N∑
i=1

I{p(�xi )≥a}
f (�xi)

g(�xi)

where the xi are now drawn from the biasing distribution g(x). Of course, as before, the

optimal, but impractical, biasing distribution is given by

(2.2.2) g∗(x) =
I{p(�x)≥a}f (x)

�

and results in a zero-variance estimator – only N = 1 sample is required in Eq. (2.2.1) to

return the true result, �. Of course, we cannot actually use g∗(x) because it depends on

the quantity we are trying to estimate, �.

The central idea behind the cross-entropy method is to make use of the Kullback–

Leibler (KL) distance [19] to estimate this optimal biasing distribution g∗(x). The KL
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distance between two distributions h1(x) and h2(x) is given by

(2.2.3) D(h1, h2) = Eh1
[
ln
h1(x)

h2(x)

]
=

∫
h1(x) ln h1(x)dx −

∫
h1(x) ln h2(x)dx.

Note that the term distance in KL distance is a slight misnomer in that D is not a true

distance in the formal sense. For one thing,

D(h1, h2) = D(h2, h1).

Regardless, the KL distance is a very useful quantity for our purposes. Consider the KL

distance between our optimal biasing distribution g∗(x) and another, as of yet unknown

distribution ḡ(x) ∈ G

(2.2.4) D(g∗, ḡ) =
∫
g∗(x) ln g∗(x)dx −

∫
g∗(x) ln ḡ(x)dx.

Assumptions about the family of distributions G will be important and discussed shorty.

Consider first the minimization problem

(2.2.5) min
ḡ∈G
D(g∗, ḡ).

Because the first term on the right hand side of Eq. (2.2.4) does not depend on ḡ(x),

Eq. (2.2.5) is equivalent to

(2.2.6) min
ḡ∈G

(
−
∫
ln ḡ(x)g∗(x)dx

)
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which is trivially equivalent to

(2.2.7) max
ḡ∈G

∫
ln ḡ(x)g∗(x)dx.

Substituting for g∗(x), we obtain

(2.2.8) max
ḡ∈G

∫
I{p(�x)≥a}f (x)

�
ln ḡ(x)dx

and by passing to the probabilistic equivalent we obtain

(2.2.9) max
ḡ∈G
Ef

[
I{p(x)≥a} ln ḡ(x)

]
.

Although this is in some sense already an importance sampled Monte Carlo estimator,

there is nothing preventing us from applying importance sampling to it a second time, and

obtaining

(2.2.10) max
ḡ∈G
Eh

[
I{p(x)≥a}w(x) ln ḡ(x)

]

where w(x) is the likelihood ratio

(2.2.11) w(x) =
f (x)

h(x)
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and samples are now being drawn from the distribution h(x). The solution to this program

for ḡ(x) ∈ G is then given by

(2.2.12) ḡ∗(x) = argmax
ḡ∈G

{
Eh

[
I{p(x)≥a}w(x) ln ḡ(x)

]}

where argmax denotes the argument of the maximum, i.e. the ḡ within G which maximizes

the given expression. The result of this program is the distribution ḡ∗(x) within the family

of distributions G which has the minimum KL distance to the optimal importance sampling

distribution g∗(x). Unlike obtaining g∗(x), which depends on the quantity we are after, it

is feasible to get ḡ∗(x).

Under certain assumptions, it may be possible to solve the maximization problem

Eq. (2.2.12) analytically. For example, see [18] for solutions when G is restricted to a

natural exponential family. However, we will follow a somewhat more general approach of

and assume only that G is restricted to distributions with product form. A distribution g(x)

has product form if it can be written g(x) =
∏n
i=1 gi(xi) [19]. Using this mild assumption,

we can estimate the moments of the product form distribution which solve the stochastic

program Eq. (2.2.12) as follows.
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In particular, we can estimate the nth moment of the sample distribution drawn from

ḡ∗(x) for samples where p(x) ≥ a as

Eḡ∗[(x)
n|p(x) ≥ a] =

∫
(x)nI{p(x)≥a}ḡ∗(x)dx

=
Ef

[
(x)nI{p(x)≥a}

]
Ef

[
I{p(x)≥a}

]

=
Eḡ∗

[
(x)nI{p(x)≥a}

f (x)
ḡ∗(x)

]
Eḡ∗

[
I{p(x)≥a}

f (x)
ḡ∗(x)

] .(2.2.13)

This formula is obtained by introducing conditional probabilities for the indicator functions;

for details of the derivation, see [19]. For Gaussian distributions, as we are using, the

distribution is fully specified by the first two moments. In fact, we will be using mean-

shifted Gaussians (with fixed variance), and in this case only the mean is necessary. For

other distributions, more moments may need to be calculated, but this can be done using

the same formula.

There is one additional difficulty to be resolved still: p(�x) ≥ a is still a rare event under

f (�x). Eq. (2.2.13) is thus not yet of any practical use - our estimated values are still

likely to be zero, as no rare events will occur. The solution to this problem is to develop

a multi-stage algorithm, such that we create a sequence of performance values ak and

biasing distributions gk(·) for (k = 1, 2, . . . ) such that

(2.2.14) p(�x) ≥ ak
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is not a rare event when drawn from gk(·). The method of achieving this is the sample

quantile. By taking the (1 − ρ)-quantile performance from performance samples at the

k-th level of the algorithm as ak (where ρ is an algorithm parameter for the size of the

performance quantile), the moments of gk+1(x) can be estimated via Eq. (2.2.13). This

process then repeats until ak ≥ a [19].

The practical setup then is as follows. We begin by defining the performance function

p(·) for the system at hand. We define p(·) to be the quantity of interest for our rare

events. For example, in a lightwave transmission system in which errors are rare, p might

be given by the center voltage after detection at the end of the transmission line. Further,

we select some value a such that p(·) > a is our desired rare-event condition.

We allow the CE method to control the distributions from which the random variables

in the system are drawn, the gk(·). The CE method then is posed to return these gk(·) in

optimal fashion iteratively until p(·) > a is no longer a rare event.

The algorithm proceeds as follows [19]: k is the iteration number in this algorithm,

N is the sample size (per level), f is the initial distribution, gk is the distribution at the

k th level of the algorithm, a is the target value of the performance metric p(Z, ρ), where

Z will be random samples, and ρ is a parameter in the algorithm specifying the quantile

size. The (1 − ρ) quantile of the performances of the Z’s is p(Z, ρ). The algorithm will

generate the sequence of distributions g1, g2, . . . , gN such that the performance function

being greater than the target value (p(Z) > a) is no longer a rare event when samples are

drawn from gN(·) as it was under g(·).

The algorithm then proceeds as follows:
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Cross-Entropy Method Algorithm

(1) k = 1, set N, g0 = f : Initialize the algorithm.

(2) Draw random samples Z1 . . .ZN from the PDF gk : Sample from the current

distribution.

(3) Let p̂k = min{a, pN(Z, ρ)}: Compute the performance quantile of our current

sample.

(4) Compute gk+1: Calculate the parameters for the next distribution in the sequence.

(See details following algorithm.)

(5) If p̂k = a, stop. Return g
k as the output of the algorithm: Here we check to see

if the distribution sequence has reached the target.

(6) Else, k ← k + 1, go to step 2

For simplicity, this is the most basic version of the CE method. There are modifications

to step 6 to improve the convergence properties of the algorithm. For details, see [19].

Step 4 requires additional explanation. For continuous distributions, computing the

entire PDF is computationally infeasible. Luckily, we do not require the full distribution.

We consider instead that gk(·) must belong to some family of distributions parameterized

by a vector �v such that

(2.2.15) gk(·) = gk(·, �v).

Computing the PDF gk now requires computing the parameter vector �v , which in turn

requires computing moments of the sample distribution according to Eq. (2.2.13). It is
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necessary to derive a formula relating the parameter vector to the moments. For example,

if we allow gk(·, �v) to be a mean-shifted Gaussian distribution, then �v has length 1 (the

mean-shifted Gaussian distributions are a one-parameter family) and we need only calculate

the mean to determine the new distribution. Then the single-parameter family is

gk(x, �v) = gk(x, v) = gk(x, μ) =
1

σ
√
2π
e−(x−μ)

2/(2σ2)

and the formula relating the parameter vector and the moments is trivial: �v = v = μ =

Eḡ∗[(x)
1] = Eḡ∗[x ]. To fit the parameter vector �v in this case, we need estimate only

the mean of the sample distribution. To obtain the value of this parameter, we apply

Eq. (2.2.13) (with n = 1) directly to the performance quantile samples, independently for

both the numerator and the denominator.

In principle, we could use only the CE method to generate the biasing distributions for

any system. Unfortunately, the dimension of the space in which we wish to optimize is

simply too large to obtain reasonable results from the CE method. Consider that for a

lightwave system, we would require two distributions for each computational Fourier mode

(real and imaginary), at every point noise is introduced into the system. The dimensionality

of the system considered in this way is simply far too large. In Sec. 2.3 we resolve this

problem by employing the singular value decomposition to reduce the dimensionality of the

optimization problem.
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2.2.1. Coin-flipping with the CE method

A simple problem in rare-event simulation is the coin-flipping problem. Consider that we

take 100 fair coins and flip them, and count the number of heads. What is the probability

of having 80 or more heads? The answer turns out to be, in fact, startlingly small:

(2.2.16) p≥80% =
20∑
n=0

(.5)80+n(.5)20−n

⎛
⎜⎝ 100

80 + n

⎞
⎟⎠ ∼ 5.5795× 10−10

If we were to attempt to simulate this result via standard Monte Carlo simulations,

we would find that our estimator has an unacceptably high variance for a computationally

reasonable number of samples. The solution to this problem in the context of importance

sampling is equivalent to using an unfair coin - one that comes up heads 80% of the time

- and correct the statistics with the likelihood ratio. We will use the cross-entropy method

to demonstrate the same result.

For this problem, the probability distributions we consider are discrete distributions with

a single parameter we will call w such that the initial distribution f is given by

(2.2.17)
f (0) = 1− w

f (1) = w

where w = 0.5 for a fair coin and we take 1 to be heads and 0 to be tails.

Of course, it is only necessary to consider a single distribution for one coin and draw

from it 100 times. As a slightly more general result, we will use 100 different distributions,

one for each coin. This is instructive in the context of the lightwave systems we will
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soon be considering – many distributions must be biased independently. Then the fi(·),

i = 1 . . . 100 are given by Eq. (2.2.17).

We begin then by setting k = 1, N =100,000, and g1i = fi . We then draw N =100,000

samples from g1i (·) and evaluate the performance of each sample by counting the total

number of heads. The histogram of this result is given in Fig. 2.3 along with the elite

sample histogram, the histogram of the (1− ρ) quantile.

To evaluate our progress, we check the value of the (1 − ρ) quantile - in this case,

it is 56. (Again, ρ is an algorithm parameter. Here, ρ = .1) That is, the next set of

distributions in the CE method sequence will be biased as far as a coins that comes up

heads an average of 56% of the time. As 56 < 80, our target value, the algorithm

continues. Using the (1− ρ) quantile samples, we compute the distribution parameters wi
by calculating moments of the performance quantile samples by applying Eq. (2.2.13) to

the samples in the performance quantile for n = 1. For this problem, the mean estimator

involves calculating the sample mean of

(xi)
1I{p(xi )≥a}

f (xi)

gki (xi)
=

⎧⎪⎨
⎪⎩
0, xi = 0

I{(
∑100
i=1 xi)≥a}(w

0
i /w

k
i ), xi = 1

in the numerator, and the sample mean of

I{p(xi )≥a}
f (xi)

gki (xi)
=

⎧⎪⎨
⎪⎩
I{(

∑100
i=1 xi)≥a}[(1− w

0
i )/(1− w ki )], xi = 0

I{(
∑100
i=1 xi)≥a}(w

0
i /w

k
i ), xi = 1
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in the denominator. Note this only uses samples in the performance quantile. Here the

superscript on w denotes the CE method level — w 0i is the initial (level 0) value for the

ith distribution parameter. The result of these calculations is used as the mean of the

distribution, w k+1i , at the next level. Note that due to the construction of Eq. (2.2.17), our

distributions belong to a single parameter family, so we only need compute the parameters

wi as the mean for each of the 100 distributions. These parameters are then used to

fix the 100 biased distributions for the next iteration, the g2i . These calculated means

w ki are returned for each of the 100 distributions and plotted in Fig. 2.4. The process

then repeats, and as it does we obtain Fig. 2.3, displaying the evolution of the sample

histograms and performance quantiles. The algorithm proceeds in this fashion until the

(1− ρ) quantile level is larger than 80. In this case, this occurs at the fifth iteration.

The results of the algorithm can be summarized by the wi values at each level of

the algorithm. Fig. 2.4 plots these wi values for each iteration. Observe that the final

iteration of the algorithm gives a mean value of 0.819, so that the cross-entropy method

is indicating that as a biasing function we should use a biased coin which comes up heads

81.9% of the time on average. This is of course the result obtained in this simple case

analytically. However, the coin-flipping example problem serves to give an intuitive grasp

of the method. Note that the value of the average mean here is unique to the artificial

introduction of 100 distributions where one would do – in general, the parameters of each

distribution in the method are independent and their average has little meaning.

One additional study which is possible with this simple example problem is checking the

convergence of the CE method itself. While estimating the variance of �v k directly from a
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Figure 2.3. Evolution of histograms for coin flipping problem: Left

column, full sample histograms at each CE method iteration. Right column,

corresponding performance quantile sample histograms.

single instance of the CE method is very difficult, for a simple problem like this we have

the computational power necessary to perform Monte Carlo simulation directly on the CE

method. Thus, we set N =100,000 and run the CE method multiple times, collecting
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Figure 2.4. Biasing distribution means for the coin flipping problem:

Output biasing distribution means for each coin, proceeding upward with

each cross-entropy level toward the analytical solution at w ≡ 0.8.

statistics as we go. Fig. 2.5 shows the mean values for each parameter along with ± one

standard deviation error bounds.

2.2.2. Sum of Gaussians with the cross-entropy method

Another simple rare-event simulation problem is the sum of Gaussians problem. Consider

the rare event

(2.2.18)

N∑
i=1

xi > Ā
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Figure 2.5. Average biasing distribution means for the coin flipping

problem: Multiple trials of the cross-entropy method, with biasing parame-

ter output averaged and standard error bands applied.

where the xi are drawn from N Gaussian distributions with PDFs

fi(x) =
1

σ
√
2π
e−(x−μi )

2/(2σ2),

where we take σ to be equal and fixed for all i . Then the family of distributions we are using

is parameterized by only the mean, and we can make use of Eq. (2.2.13) to estimate the

mean at each step in the CE method toward the goal that Eq. (2.2.18) is no longer a rare

event under the final biasing distributions. We then proceed via the main cross-entropy

method algorithm and obtain the sequence of PDFs and quantiles in Fig. 2.6.
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Figure 2.6. Evolution of histograms for sum-of-Gaussians problem:

Full distribution histograms in the left column, elite sample histograms in the

right column, with CE method iterations from top to bottom, with
∑N
i=1 xi

on the x-axis.

The CE method algorithm, following the sample PDFs and histograms, converges on

the optimum distribution parameters to reach our specified target. Recall that we have
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parameterized the normal distributions in this problem only by the mean. The converged

optimum values of the means are given in Fig. 2.7. We can compare this numerical result

to the analytical solution. Consider

max

{
N∑
i=1

exp
(−(x − μi)2)

}
⇐⇒ min

{
N∑
i=1

(
(x − μi)2

)}

subject to

N∑
i=1

xi = Ā.

The solution to this optimization problem is given by

(2.2.19) μi =
Ā

N
, ∀i

and thus the solution to the optimization problem is to shift the mean of each Gaussian

distribution by an equal share Ā/N for each of the N distributions. We can see that the

numerical solution produced by the cross-entropy method agrees very well.

2.3. The singular value decomposition

We make use of the singular value decomposition (SVD) to reduce the dimensionality

of the optimization problem by numerically finding the singular modes of the linearized

system [16]. To see the need for this, consider a lightwave transmission system that has Na

amplifiers, and we wish to use Nf numerical Fourier modes to simulate the system. Without

the SVD, the optimization space is 2NaNf . For a typical problem, perhaps Na ∼ 100 and
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Figure 2.7. Biasing distribution means for the sum-of-Gaussians prob-

lem: Output biasing distribution means for distribution, proceeding upward

with each cross-entropy level toward the analytical solution at μi = 0.5.

Nf ∼ 1000. 105 optimization dimensions is simply beyond the capability of the CE method

(or any other). By finding the modes of the system, we can reduce the overall dimension

from 2NaNf to perhaps CNa, where C is a small integer constant – a vastly more tractable

number for getting good results from the CE method.

In general, if M is an m-by-n matrix, then there is a factorization of the form

(2.3.1) M = PΣQ∗

known as the singular value decomposition where

• Q is n-by-n and contains the orthonormal input basis vectors
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• P is m-by-m and contains the orthonormal output basis vectors

• Σ is a m-by-n diagonal matrix and contains the singular values as entries along

the diagonal.

The SVD can be thought of as a generalization of the eigenvalue/eigenvector decom-

position. In fact, if M is Hermitian positive semi-definite, then the SVD reduces to the

eigenvalue/eigenvector decomposition [27]. There is an additional relationship between

the SVD and the eigenvalue decomposition that is useful for our purposes. That is, the

squares of the nonzero singular values of M are equal to the nonzero eigenvalues of M∗M

and the columns of Q are the eigenvectors of M∗M.

Finding the singular modes in the problem here via the SVD proceeds as follows.

Consider some nonlinear propagation operator for our system N (zL; 0)[·], for now just a

generalized operator, and some initial data U(0, t) such that

(2.3.2) U(zL, t) = N (zL; 0)[U(0, t)].

Because of the conventions of the example problem we will soon be considering, we here

use the notation with initial data as a function of t and propagation in the z-direction.

We will call u0(z, t) the nominal solution to Eq. (2.3.2) for all z and t. We then

linearize N (zL; 0)[·] about our nominal solution u0, and obtain a linear operator Φ such

that the solution to the linearized problem can be written as

(2.3.3) u(zL, t) = Φ(zL; 0)u(0, t).
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We now wish to find the modes of this linearized operator, Φ. It may not be possible to

form the full matrix Φ, but we do not need to in order to take the SVD. To determine the

SVD iteratively, it is only necessary to know the action of the direct linear operator as well

as that of the adjoint linear operator (Φ∗). Then we use an iterative eigenvalue/eigenvector

solver to find the eigenvalues and eigenvectors of Φ∗Φ, from which it is trivial to calculate

the singular values and input vectors of Φ.

In a typical lightwave system, consider then the propagation problem from z = 0 to

z = zL with intermediate amplifiers at z = z1, z2, . . . zN. We need to compute the modes

at each amplifier ; recall that we are generating the biasing distributions for importance

sampling in a reduced-dimension space. The SVD gives us the most important directions

in this state space, but it is different at each amplifier (the noise distributions at each

amplifier are independent), and so we must compute the SVD at each amplifier. To do

this, we first solve the nonlinear problem from z = 0 to z = zL and store it – we will need

the full nonlinear solution for each subsequent application of the SVD. Then, at each zn,

we apply an iterative procedure to compute the eigenvalues and eigenvectors of the action

Φ∗(zL, zn)Φ(zL, zn) (and hence the SVD of Φ(zL, zn)) , i.e. from the current location

to the end of the line. This gives us the singular modes at each amplifier. The relative

importance of the output modes from the SVD is given by the corresponding singular values

(calculated from the eigenvalues). For the problems we have been studying, the essential

behavior is captured by a handful of the largest singular values. Concrete examples from

lightwave systems will be presented in following chapters where the systems have been

described in the necessary detail.



47

CHAPTER 3

Optical Communications Systems
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3.1. The nonlinear Schrödinger equation

The primary governing equation for the type of lightwave communication system we

will be considering in this dissertation is the nonlinear Schrödinger (NLS) equation. Later

in the thesis we will merely cite this (or a close relative) as the appropriate model for the

system at hand, but here we consider some aspects of the derivation and the limitations

of the NLS as a model for optical systems.

Propagation of an optical pulse in fiber, as an electromagnetic phenomenon, is governed

by Maxwell’s equations [28]. We will not proceed through all of the details of the derivation

of the NLS from Maxwell’s equations, but will follow the derivation in [29]. By merely

some formal manipulations, without assumption, one can begin at Maxwell’s equations

and arrive at the wave equation

(3.1.1) ∇2E− 1
c2
∂2E

∂t2
= −μ0∂

2P

∂t2

where E is the electric field, P is the induced polarization, c is the speed of light in a

vacuum, μ0 is the vacuum permeability, and t is our time variable. From this starting point,

a number of simplifying assumptions are needed. First, we split the induced polarization

into linear and nonlinear parts

(3.1.2) P = PL + PNL

so that we may treat the nonlinear part as a small perturbation to the linear part. The

optical field is also assumed to be “quasi-monochromatic”, that is, the spectral width is
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much less than the center frequency (Δω � ω0). As a practical matter, for the systems

we will be considering, this will restrict us to pulses with width ≥ 0.1 ps [29]. We must

also assume that the optical field maintains its polarization while propagating through the

optical fiber. For our systems, pulses will be launched with a single polarization and we

assume that this single polarization is maintained throughout. We are thus justified in using

the scalar approximation. While in general an optical fiber can support many propagating

modes, we restrict ourselves to single-mode fiber.

We will also assume that the optical field can be described using the slowly-varying

envelope approximation. That is, the electric field will be expressed in terms of the fiber

mode (which gives the transverse structure), a slowly-varying envelope function, and a

rapidly-varying phase term. If we refer to our fiber propagation direction as z , this slowly-

varying envelope approximation allows us to neglect the second derivative of the slowly

varying envelope with respect to z in the derivation. The signal envelope function is

then the critical quantity with which we will be concerned, denoted here by U. Note

that U is a function of propagation distance as well as either time (U = U(z, t)) or

frequency (U = U(z, ω)), where the initial condition is given in either time or frequency

and propagated through space. Also note that the time domain and spectral versions are

equivalent (under transfer via the Fourier or inverse Fourier transform) and both will be

used throughout this work where a switch results in either simplicity or insight.

We will also make an assumption about the form of the nonlinearity involved. We have

already assumed that the nonlinear portion of the induced polarization is small compared

to the linear part, and under this assumption we justify an expansion of the induced
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polarization in terms of the Taylor series. The material comprising the the optical fiber

(specifically, fused silica) is centro-symmetric, which means that there is no second order

quadratic term, and thus the first non-zero nonlinear term in the induced polarization is

cubic.

With these assumptions in hand, we arrive at the nonlinear Schrödinger (NLS) equation

(3.1.3)
∂U

∂z
= −i d

2

∂2U

∂t2
+ iγ|U|2U − αU

where U is the envelope function, d is the group-velocity dispersion coefficient, γ is the

nonlinear coefficient, z is the propagation distance, and t is the retarded time

(3.1.4) t ← τ = t − 1

vgz

where vg is the group velocity coefficient. Note here that the wavenumber β has been

expanded in a Taylor series about the center frequency with coefficients βn:

(3.1.5) β(ω) = β0 + (ω − ω0)β1 + 1
2
(ω − ω0)2β2 + . . .

With this definition in mind,

vg =
1

β1

d = β2(3.1.6)
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and higher order terms have been neglected under the quasi-monochromatic assumption

as previously discussed. The nonlinear coefficient γ is given by

(3.1.7) γ =
2πn2
λAeff

where n2 is the Kerr coefficient, λ is the light wavelength, and Aeff is the effective fiber

mode area. The linear transmission loss of the fiber is described by the loss coefficient α.

The dimensional units for this problem are given in the following table.

quantity t z d γ α |U|2

units ps km ps2/km 1/(W-km) 1/km W

Several different non-dimensionalizations are commonly used. In the non-dimensionalization

that we will use for our discussion, consider the two length scales in the problem, the dis-

persion length scale and the nonlinear length scale. Accordingly, we define

LD =
T 20
|d |

LNL =
1

γP0

with a characteristic width T0 which we will take to be the pulse width and a characteristic

power P0 which we take to be the pulse power. By restricting ourselves to the regime

where dispersion and nonlinearity play roughly equal roles, we assume LD = LNL to obtain

the relation

(3.1.8) T0 =

√
|d |
γP0
.
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We then apply the following change of variables

U ← U√
P0

z ← z

LD

t ← t

T0
(3.1.9)

to obtain the dimensionless nonlinear Schrödinger equation

(3.1.10)
∂U

∂z
− i
2

∂2U

∂t2
− i |U|2U = 0

Here the scalings have been specifically chosen to give unity coefficients, for convenience.

3.2. Solitons

In the anomalous dispersion regime (d < 0), the nonlinear Schrödinger equation gives

rise to the famous soliton solution. The soliton is a “solitary wave” which maintains its

shape and travels at a constant speed due to the balancing of the dispersive and nonlinear

effects. Solitons were first observed in water waves in 1834 by John Scott Russell, who

referred to the soliton as a “wave of translation” [30]. The existence of optical solitons in

fiber was proposed in 1973 [31] and demonstrated in 1980 [32], and much work has since

been based on the idea.
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For solitons in the nonlinear Schrödinger equation, for convenience we will work with

the dimensionless version, Eq. (3.1.10). The soliton solution for this equation is given by

(3.2.1) U(z, t) = A sech (A [t − T −Ωz ]) exp
(
iΩt +

i

2
(A2 −Ω2)z + iφ

)
,

where A,T ,Ω, and φ are known as the soliton parameters. They correspond, accordingly,

to the amplitude, position, frequency, and phase of the pulse. The reader should be aware

of potential ambiguity in the terminology with z as the direction of propagation: “position”

T refers to the location of the pulse in retarded time t, and “frequency” Ω refers to the

offset from the carrier frequency.

The theory of solitons has contributed heavily to the construction of this new rare

event simulation method. In a soliton system, perturbation theory can be applied to find

analytically the modes of the system corresponding to the soliton parameters; i.e. for

frequency, the frequency mode is the direction of perturbation which produces the largest

change in the soliton frequency parameter Ω. These modes are given by [33]:

UA =
1

A
(t − A(t − T ) tanh (A(t − T )))Us ,

UT = A tanh(A(t − T ))Us ,

UΩ = −i(t − T )Us ,

Uφ = iUs ,(3.2.2)
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Figure 3.1. Soliton modes found with the SVD: Amplitude and frequency

modes for a soliton pulse found with the SVD, compared with the analytic

solution. Left – amplitude mode, right – frequency mode. Black – real part,

gray – imaginary part. Solid – SVD mode, dashed – analytic mode.

where Us is the soliton solution given by Eq. (3.2.1). In such a system, arbitrary pulse

perturbations can be described in terms of the projection of the perturbation onto the

modes, and a remaining radiative component, where the perturbation energy which is not

in the direction of a mode will be shed by the soliton as radiated energy. That is, for a

perturbation ΔU,

(3.2.3) ΔU = UAΔA+ UTΔT + UΩΔΩ+ UφΔφ+ R.

where ΔA, ΔT , ΔΩ and Δφ are the induced changes in the pulse parameters and R is

the radiative component. For this case, where the modes are available analytically, we can

test the SVD method of determining the system modes against the analytic solution. The

results of the comparison are displayed in Fig. 3.1.
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Within this framework, a reduced problem (in the asymptotic, perturbation sense) can

be posed and solved to generate the biasing distributions required for importance sampling.

Our method strives to be more general than this previous technique which requires the

mathematical structure of soliton perturbation theory, but this theory is instructive in

guiding the new method. Rather than having an asymptotic, analytical solution for the

modes, they will be computed numerically using the singular value decomposition. Without

an analytical form for the modes and evolution equations for the pulse parameters derived

from soliton perturbation theory, there is no reduced problem to solve for the biasing

distributions. However, we can still expect to find the important directions for the system

by using the SVD. The invariances of the NLS lead to integral conserved quantities by

Noether’s theorem; in the case of soliton pulses, this gives the soliton parameters. Even in

the absence of soliton pulses, we have these conserved quantities, but we have no analytical

form for the linearized modes. We seek to find the modes then through the use of the

SVD. The biasing distributions will have to be found by posing an optimization problem

which depends upon these numerically determined modes; the optimization problem can

then be solved by the cross-entropy method.

3.3. Dispersion management

No practical commercial systems operate in the soliton regime as described in the

previous section. This is because in practice dispersion management is used, whereby the

the dispersion profile of the transmission line is tailored to enhance system performance.

Generally, the dispersion map, i.e., the arrangement of dispersion in the transmission line,



56

is a periodic alternation of fiber segments with normal and anomalous dispersion, such that

a pulse launched into the transmission line “breathes” as it propagates: broadening and

then narrowing, according to the dispersion of the current section of fiber. The dispersion,

then, as a function of propagation distance z , is periodic and piecewise-constant. The

piecewise-constant and periodic nature of the dispersion map, as well as the corresponding

pulse breathing, is illustrated in Fig. 3.2. In the upper portion of the figure, contours of

the propagating, breathing pulse are plotted for three dispersion map periods; the lower

plot is of the corresponding dispersion map.

A well-designed dispersion managed system yields a performance increase over a constant-

dispersion system. For example, dispersion managed systems have been designed to min-

imize channel cross-talk as well as four-wave mixing [29, 34], nonlinear effects which

commonly degrade system performance.

For our purposes, we will generally consider dispersion maps in terms of an average

dispersion term and a zero-mean, varying term, namely

(3.3.1) d(z/za) = davg +
1

za
ΔD(z/za)

where za is the dispersion map period, here set equal to the amplifier spacing, and we

require that

(3.3.2)

∫ 1

0

ΔD(z ′)dz ′ = 0.
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Figure 3.2. Breathing pulse and dispersion map: Top, contour plot of

breathing pulse propagating through a dispersion managed fiber line, through

three dispersion map periods. Bottom, the corresponding dispersion map of

the system.

With this definition of the dispersion map, a key quantity for determining the effect of

the map on the system is the map strength, s, given by

(3.3.3) s =
1

4

∫ 1

0

|ΔD(z ′)|dz ′

which measures the total variation away from the mean dispersion in the map. When

s = 0, the dispersion managed system reduces to a constant dispersion system; however,
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the simple sech()-shaped solitons are not supported in the dispersion managed regime

(s = 0).

3.4. Dispersion managed solitons

Although simple solitons are not supported in dispersion managed systems, a similar

set of solutions exists, known as dispersion managed solitons. They maintain many of

the same properties as their cousins from constant-dispersion systems, but in general the

soliton shapes cannot be found analytically and must be computed numerically. Unlike the

simple soliton solution these dispersion managed solitons do not have a stationary energy

profile throughout propagation, but are stroboscopically stationary when observed with the

period of the dispersion map. There are a number of methods available for finding these

pulse shapes [35], but we use an iterative correction method originally due to [36] and

modified to preserve pulse energy [37, 38].

The central idea is that launching a pulse that is “near” the desired dispersion managed

soliton shape (for example a Gaussian or sech() shaped pulse with the proper pulse energy

and desired width) into the dispersion-managed fiber produces a pulse evolution with slow,

secondary oscillations. If one averages out these slow, secondary oscillations, the underly-

ing true dispersion managed soliton pulse shape can be extracted. The idea then is to begin

with this “near” DM soliton pulse, u0(t), and propagate numerically through the transmis-

sion line. As the pulse is propagated through the periodic dispersion maps, the full-width,

half-max pulse width (Tf whm) is observed stroboscopically (that is, at the same point in

each map). This propagation continues until both a local minima and maxima in Tf whm
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are observed, and the pulse profiles corresponding to these extremal widths are aligned in

phase at the pulse center and then averaged, and the resulting average pulse is corrected

in energy back to the original pulse. Deviations between the launched pulse and the ideal

pulse result in slow oscillations during propagation; averaging out these oscillations allows

the underlying ideal pulse to emerge. That is,

(1) Launch u0(t) into the dispersion managed fiber.

(2) Repeat:

(a) Propagate the pulse through the dispersion map.

(b) Observe Tf whm at a fixed point (stroboscopically).

(c) Check for local minima and maxima in Tf whm. Record the pulse profile at

these locations as umin(t) and umax(t), respectively. Exit loop when both

(umin(t) and umax(t)) are found.

(3) Phase-align at pulse-center and average:

α = atan

(� [umax(0)]
� [umax(0)]

)
− atan

(� [umin(0)]
� [umin(0)]

)

û = (umax + exp (iα)umin) /2

(4) Rescale to original pulse energy:

u = û

√∫ |u0(t)|2 dt∫ |û(t)|2 dt
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(5) Compute the residual

∫
|umax − exp (iα)umin| dt

(6) If the residual is larger than the predefined threshold, goto step 1 with u0 ← u.

(7) Return u(t) as the converged dispersion-managed soliton pulse shape.

This method is efficient and robust for finding the dispersion managed soliton pulse

shapes [36]. There are potential convergence issues when the net dispersion is normal,

but in this work we deal exclusively with net anomalous dispersion systems. We will need

to compute dispersion managed soliton pulse shapes for the systems we will be studying

in detail later. Note, however, that this procedure does not need to be repeated, except

when the system parameters are changed. The entire rare-event simulation procedure for

a fixed dispersion-managed soliton system requires only that the pulse shape be found once

and stored for reference.

3.5. Amplifier noise

Transmission loss due to absorption and scattering in communications systems must

be balanced by amplification, or the transmitted signal would be lost before reaching the

detector [29]. The type of amplifier used is called an erbium doped fiber amplifier, or EDFA.

Raman amplification is also commonly used. Systems with in-line EDFAs, like those that

we will be considering, are subject to a performance penalty due to accumulating noise.

Each amplifier adds what is known as spontaneous emission noise to the signal as part

of the amplification process. These amplifiers are in-line, and the spontaneous emission



61

noise from one amplifier is then amplified by the next, and so on, leading to amplified

spontaneous emission (ASE) noise. This noise can build up in such a way that in rare

cases the transmitted signal can’t be properly detected at the output. It is in fact precisely

these cases of noise buildup that we are interested in; they are the rare events in these

communication systems that cause transmission errors.

The model for amplified spontaneous emission noise is additive Gaussian white noise.

While in reality the noise consists of a discrete number of photons, the noise bandwidth

and pulse energy are sufficiently large to allow the use of the (continuous) Gaussian noise

model. The mean of the noise distribution is zero, and the variance is set by the power

spectral density, essentially power per unit bandwidth. The power spectral density of ASE

noise at the carrier frequency ω0 is given by

(3.5.1) S(ω0) = �ω0nsp
(G − 1)2
G log2 G

where amplifier gain and transmission loss have been averaged out, � is Planck’s constant,

nsp is the spontaneous emission factor, and G is the amplifier gain. Thus the noise model

is given by

(3.5.2) 〈N(t)〉 = 0
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and

〈N(t)N∗(t ′)〉 = S(ω0)δ(t − t ′)

= �ω0nsp
(G − 1)2
G log2 G

δ(t − t ′)(3.5.3)

where the bandwidth of the noise is restricted by our spectral numerical method. Recall

that U is a complex quantity; the noise is added as half of the above quantity in each

quadrature. In general, the amplifier gain can be specified arbitrarily by system design,

but we use the amplifier gain which is specifically tailored to counteract transmission loss.

That is, in relation to previously specified parameters, with a loss rate given by α and

amplifier spacing za, periodic amplifier gain is

(3.5.4) G = e2αza .

Our full model for optical fiber propagation with added noise, then, is given by

(3.5.5)
∂U

∂z
= −i d

2

∂2U

∂t2
+ iγ|U|2U +

Na∑
k=1

Nk(t)δ(z − kza)

where the periodic loss and gain is averaged out [29]. The noise-addition process is

illustrated graphically for a sample pulse and noise variance in Fig. 3.3.

We have now fully specified the simulation and optics-related theoretical background

material necessary for the development of our new method. In practice, some details of

numerical implementation of the idea still remain.
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Figure 3.3. Illustration of noise addition to an optical pulse: Schematic

illustrating a noiseless optical pulse, both real and imaginary parts (black

and gray, respectively), and the numerical ASE noise to be added, both real

and imaginary, and the resulting noisy pulse.
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CHAPTER 4

Numerical Methods
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There are several different numerical methods required for the work in this dissertation.

For one, the physical systems concerned are governed by the nonlinear Schrödinger equa-

tion (NLS) or NLS-type equations. Because we wish to simulate these system directly,

we must have numerical schemes for solving these governing equations quickly and accu-

rately. Secondly, these lightwave systems operate in the presence of amplified spontaneous

emission (ASE) noise, represented by Gaussian white noise. Our numerical schemes must

accommodate this noise as well. Finally, it is necessary to compute the singular value

decomposition (SVD) of the linearized propagation operator as part of our rare-event

simulation scheme. Efficiently computing the SVD is also a numerical concern.

4.1. Split-step Fourier method

The split-step Fourier method [29] is a popular technique for solving the NLS numeri-

cally. As we will see, it has favorable stability properties as well as advantages in terms of

introducing numerical noise. In order to illustrate the split-step Fourier method, consider

a general partial differential equation with an evolution operator given by

(4.1.1)
∂u

∂z
= F (u,

∂u

∂t
,
∂2u

∂t2
, ...)

where we again use the convention of the initial condition in t and propagation in the

z-direction.
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The split-step Fourier method uses the idea of operator splitting and can be applied

to problems where Eq. (4.1.1) can be written as

(4.1.2)
∂u

∂z
= f1(u,

∂u

∂t
,
∂2u

∂t2
, ...) + f2(u,

∂u

∂t
,
∂2u

∂t2
, ...)

by then alternately solving the sub- or half-problems

(4.1.3)
∂u

∂z
= f1(u,

∂u

∂t
,
∂2u

∂t2
, ...)

and

(4.1.4)
∂u

∂z
= f2(u,

∂u

∂t
,
∂2u

∂t2
, ...).

There are some accuracy concerns with operator splitting which will be discussed

shortly; the primary benefit, however, is that now each half-problem may be solved via

the numerical scheme best suited to each half-problem, not necessarily the numerical

scheme which is the best compromise for both operators as a whole.

For the NLS, we split the propagation operator

(4.1.5)
∂u

∂z
=
i

2
d(z)

∂2u

∂t2
+ iγ|u|2u

into

(4.1.6)
∂u

∂z
=
i

2
d(z)

∂2u

∂t2
= D[u]
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and

(4.1.7)
∂u

∂z
= iγ|u|2u = N [u]

and solve the two equations independently. Eq. (4.1.6) is a linear, dispersive, partial

differential equation, and Eq. (4.1.7) is merely a nonlinear, first-order ordinary differential

equation with t as a parameter.

The dispersive equation is solved via a pseudo-spectral method. By transforming to

Fourier space, Eq. (4.1.6) becomes

(4.1.8)
∂

∂z
û(ω, z) = (iω)2

i

2
d(z)û(ω, z) = − iω

2

2
d(z)û(ω, z).

Discretizing in the Fourier domain using the Fast Fourier Transform (FFT), we obtain

ordinary differential equations for each spectral component

(4.1.9)
∑
j

d

dz
ûωj (z)e

−iωj t =
∑
j

− iω
2
j

2
d(z)ûωj (z)e

−iωj t .

Note that the ω subscript indicates the Fourier component, not a derivative with respect

to ω. We solve these equations independently in the spectral domain for a single time step

and obtain

(4.1.10) ûωj (z +Δz) = ûωj (z) exp

(
− iω

2
j

2

∫ z+Δz

z

d(z ′)dz ′
)
.
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If d(z) is constant for z ∈ [z, z +Δz), then this reduces to

(4.1.11) ûωj (z +Δz) = ûωj (z) exp

(
− iω

2
j

2
d(z)Δz

)
.

We then transform back into the time domain using the inverse Fast Fourier Transform.

The nonlinear subproblem Eq. (4.1.7) is solved in the time domain, taking advantage

of the operator splitting to avoid computing the convolution of the nonlinear term required

for solution in the spectral domain. We will also use the fact that the pulse intensity is

pointwise constant within this subproblem. To see this, multiply Eq. (4.1.7) through by

u∗ to obtain

(4.1.12)
∂u

∂z
u∗ = iγ|u|4.

It follows that

(4.1.13)
∂u

∂z
u∗ = −

(
∂u

∂z
u∗

)∗

and thus

0 =
∂u

∂z
u∗ + u

∂u∗

∂z

=
∂

∂z
|u|2.(4.1.14)
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Thus with both the pulse amplitude and the nonlinear coefficient constant throughout

the time step, we obtain

(4.1.15) u(t, z + Δz) = u(t, z) exp
(
iγ|u(t, z)|2Δz).

Alternating the steps as described previously, we obtain our split-step Fourier scheme for

the nonlinear Schrödinger equation

ũn = F−1
[
F [un] exp

(
− iω

2

2
d(nΔz)Δz

)]
(4.1.16)

un+1 = ũn exp
(
iγ|ũn|2Δz).(4.1.17)

Note that while the split operators were solved in similar ways, the difference (and thus

the operator splitting) is quite important. Solving the nonlinear operator in the spectral

domain would require computing a convolution integral, a computationally very costly step.

Operator splitting makes this step unnecessary.

The error associated with operator splitting can be easily assessed. We begin with the

exact solution to Eq. (4.1.5) given formally as

(4.1.18) u(t, z + Δz) = exp (Δz(D +N ))u(t, z)

and, by expanding using the Baker–Campbell–Hausdorff formula [39], we see that

(4.1.19)

exp (Δz(D +N )) = exp
(
ΔzD +ΔzN + 1

2
Δz2[D,N ] + 1

12
Δz3[D −N , [D,N ]] + . . .

)
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for non-commuting operators D and N where [f , g] = f g− gf . By employing the scheme

given in Eq. (4.1.16), we are then left with 1
2
Δz2[D,N ], a truncation term of O(Δz2).

We can improve upon this scheme. Consider instead applying the operator splitting as

(4.1.20) u(t, z + Δz) = exp

(
Δz

2
D
)
exp (ΔzN ) exp

(
Δz

2
D
)
u(t, z)

by applying Eq. (4.1.19) twice, we see that the O(Δz2) truncation term becomes

1

2
Δh2

[D
2
,N

]
+
1

2
Δh2

[
N , D
2

]
+O(Δz3) = 1

4
Δh2 ([D,N ] + [N ,D]) +O(Δz3)

=
1

4
Δh2 (DN −ND +ND −DN ) +O(Δz3)

= O(Δz3).

By applying this scheme, called symmetric operator splitting, to each step and com-

bining adjacent like half-steps

u(t, z + 2Δz) = exp

(
Δz

2
D
)
exp (ΔzN ) exp

(
Δz

2
D
)

× exp

(
Δz

2
D
)
exp (ΔzN ) exp

(
Δz

2
D
)
u(t, z)

= exp

(
Δz

2
D
)
exp (ΔzN ) exp (ΔzD) exp (ΔzN ) exp

(
Δz

2
D
)
u(t, z)

(4.1.21)

we obtain a higher-order scheme by beginning and ending the computation with a half-step

application of the dispersive operator. Eq. (4.1.21) can of course be applied in general
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Figure 4.1. Numerical solution of NLS for a dispersion managed pulse:

The solution to the nonlinear Schrödinger equation with a periodic dispersion

map with anomalous average dispersion, observed stroboscopically, found

numerically using the split-step Fourier method.

for an arbitrary number of steps. This pseudo-spectral method is also all-orders in Δt,

and thus the overall accuracy of the scheme is [(Δz)2, (Δt)p]. Solving a representative,

noiseless problem for a dispersion-managed pulse, we obtain Fig. 4.1. The error for this

numerical solution, with Δz = 5km and Δt = 0.39ps, is given in Fig. 4.2. The convergence

of the error for this problem in space in time is given in Fig. 4.3.
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step Fourier method with Δz = 5km and Δt = 0.39ps.

The split-step Fourier method for solving the nonlinear Schrödinger equation numeri-

cally has several additional benefits for our purposes. First, the split-step Fourier method

has been shown to be the most computationally efficient method for solving the NLS owing

to the “exact” nature of numerical solution to the nonlinear step [40]. The method is also

ideal for adding numerical noise to the solution, as we will be required to do. The benefit

here is three-fold; first, by using a spectral method instead of a finite difference method,
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Figure 4.3. Convergence tests for numerical solution of DM soliton:

Split-step Fourier method numerical solver. Left – convergence in t, right –

convergence in z .

any concerns about taking finite difference derivatives of noise are alleviated. Second,

the error of the split-step Fourier method is not dissipative, and thus it will not artificially

dampen the noise. Finally, the method is unconditionally stable [41].

4.2. A higher-order numerical scheme

An alternate numerical scheme to the split-step Fourier method can be employed to

simulate the nonlinear Schrödinger equation when the Δz accuracy is of more concern.

For certain applications, it may be more beneficial to employ a modified scheme which

still employs an exact solution to the linear operator D in Fourier space, but uses a fourth

order Runge–Kutta “time”-stepping scheme (in our case, remember, we are advancing in

space, z) to advance both the integrating factor exact solution to D and the numerical

approximation to N . We make use of this numerical method to solve the linearized

equations (direct and adjoint) that are required to compute the SVD; see Sec. 2.3.
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The fourth order Runge–Kutta (RK4) [42] method for ordinary differential equation

integration uses a weighted average of different numerically calculated slopes to obtain a

higher order method than merely approximating the slope with a single approximation. In

the forward Euler method, for example, the slope is merely calculated at the beginning of

the time-step interval; conversely, in backward Euler the slope is only calculated at the

endpoint of the interval. The RK4 method uses four different slope calculations: 1) at

the beginning of the interval, 2) at the midpoint of the interval, with the midpoint value

calculated using slope from 1, 3) at the midpoint of the interval, with the midpoint value

calculated using the slope from 2, and 4) at the endpoint of the interval, with the endpoint

calculated using the slope from 3.

If the slope from the nth point is referred to as kn, employed in solving the ordinary

differential equation

(4.2.1)
dy

dz
= f (z, y)

then

k1 = f (zi , yi)

k2 = f

(
zi +

Δz

2
, yi +

Δz

2
k1

)

k3 = f

(
zi +

Δz

2
, yi +

Δz

2
k2

)

k4 = f (zi +Δz, yi +Δzk3)(4.2.2)
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and the integrating scheme is advanced using the weighted average

(4.2.3)
yi+1 − yi
2

=
1

6
(k1 + 2k2 + 2k3 + k4) .

If we return to solving Eq. (4.1.5) numerically, and adapt this integrating scheme along

with the integrating factor method from the split-step Fourier technique. This scheme,

then, called the integrating factor Runge–Kutta 4th order method (IFRK4) [43] is given

as

(1) ũ ← F [u(z0)]

(2) for j = 1 . . . N

(a) ū ← F−1[ũ]

(b) s1 ← F(iγ|ū|2ū)Δz

(c) û ← exp (− i
4
d(zj)ω

2Δz
)
ũ

(d) ū ← F−1 [û + 1
2
exp

(− i
4
d(zj)ω

2Δz
)
s1
]

(e) s2 ← F(iγ|ū|2ū)Δz

(f) ū ← F−1 [û + 1
2
s2
]

(g) s3 ← F(iγ|ū|2ū)Δz

(h) û ← exp (− i
4
d(zj)ω

2Δz
)
û

(i) ū ← F−1 [û + exp (− i
4
d(zj)ω

2Δz
)
s3
]

(j) s4 ← F(iγ|ū|2ū)Δz

(k) ũ ← û + 1
6

(
exp

(− i
2
d(zj)ω

2Δz
)
s1 + 2exp

(− i
4
d(zj)ω

2Δz
)
(s2 + s3) + s4

)
(l) optional: u(zj+1)← F−1[ũ]
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(3) u(zN)← F−1[ũ]

Here we assume γ is constant, and we have merely written d(zj) to avoid confusing the

algorithm hopelessly. If d(z) is not constant, the d(zj) terms above should be replaced

with 1
Δz

∫ zj+1
zj
d(z ′)dz ′. Clearly this is a much more complicated and computationally costly

scheme per step, as compared with the split-step Fourier method. However, with the

additional complexity comes additional accuracy. Recall that the accuracy order of the

split-step Fourier method was either O (Δz) or O (Δz2), depending on the step ordering

scheme. The IFRK4 scheme has accuracy O (Δz4).

Of course, we have stated the IFRK4 scheme for solving the nominal problem,

Eq. (4.1.5), where it can be applied if necessary. We use the SSFM for the nominal

problem and apply the IFRK4 scheme only to the linearized operators, which requires a

few simple modifications. The dispersive term is still solved in the same way — it is linear

in the nominal problem, and hence unchanged in the linearized problems. The nonlinear

terms are now linear, but are still ODEs after the operator splitting and can still be solved

as such using the RK4 method.

4.3. Noise in simulations

There are several practical numerical issues pertaining to adding numerical noise to

simulations. We have already selected a numerical scheme which does not artificially

dampen the noise, the split-step Fourier method. An additional concern is the inherently

finite bandwidth of the numerical approximation. True Gaussian white noise has an infinite

bandwidth; that is, the power spectrum is constant across all frequency components.
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While it is of course impossible to provide infinite noise bandwidth numerically, we do

impose the condition that the numerical noise bandwidth sufficiently exceeds the pulse

bandwidth for accurate representation of the noise. This argument is aided by the fact

that amplified spontaneous emission noise from Erbium-doped fiber amplifiers does not

have an infinite noise bandwidth, unlike the Gaussian model. ASE noise from EDFAs

typically has bandwidth in the range of 2.5 THz [29], still significantly wider than the pulse

bandwidth of roughly 50 GHz. Numerically, we impose a similar condition, that is that the

numerical noise bandwidth significantly exceeds the pulse bandwidth. Generally, 64 to 128

Fourier modes per pulse provide sufficient numerical noise bandwidth.

Gaussian random variables are generated numerically by way of a linear congruential

generator with a shuffle table (to reduce sequential correlation) [22] which generates a

high-quality uniform distribution. The uniform distribution generator can then be adapted

to a normal distribution generator with the Box-Muller method, which generates the normal

distribution

(4.3.1) p(y) =
1

σ
√
2π
exp

(−(y − μ)2
2σ2

)
.

The Box-Muller method [22] takes a pair of uniform random variables [x1, x2] and

returns a pair of normal random variables [y1, y2] via

y1 =
√
−2 ln(x1) sin(2πx2)σ + μ

y2 =
√
−2 ln(x1) cos(2πx2)σ + μ.(4.3.2)
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This method is used to generate normal random variables of any mean and variance

for both the cross-entropy method as well as generating full-bandwidth numerical noise for

the simulated system itself.

4.4. Computing the SVD numerically

We have previously discussed the general formulation of the singular value decompo-

sition. However, there are some issues concerned with efficiently computing the SVD of

our propagation operator, which was presented in general in Sec. 2.3 and will be presented

specifically for systems we will demonstrate in Sec. 5.4.1. As mentioned previously, we

will take advantage of the fact that if we are concerned with the SVD of a linear operator

Φ, the squares of the singular values of Φ are given by the eigenvalues of Φ∗Φ, and the

corresponding orthonormal input vectors are given by the eigenvectors of Φ∗Φ. We then

concern ourselves with the estimation of the largest few eigenvalues and corresponding

eigenvectors of Φ∗Φ, as these contain the essential modes for our purposes.

To efficiently estimate these eigenvalues and eigenvectors, we employ the implic-

itly restarted Arnoldi method as implemented in the freely available software package

ARPACK [44]. The full details of this complex algorithm are beyond the scope of this

dissertation, but the essential idea is as follows. To solve the eigenvalue problem for the

matrix Φ∗Φ, starting with an initial random vector �v , we form the Krylov matrix

Kn =
[
�v Φ∗Φ�v (Φ∗Φ)2�v (Φ∗Φ)3�v . . . (Φ∗Φ)n−1�v

]
.
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By extracting the orthonormal basis vectors from Kn, we obtain approximations for

the eigenvectors corresponding to the n largest eigenvalues of Φ∗Φ. The span of these

vectors is known as the Krylov subspace, denoted Kn. The key to the Arnoldi method is to

extract these basis vectors in a numerically stable way. Thus we use the Arnoldi method

to execute the similarity transformation Φ∗Φ = QHQ∗ or, for our purposes of extracting

only a few eigenvectors and eigenvalues,

(Φ∗Φ)Qn = Qn+1Hn

where

Qn =
[
q1 q2 q3 . . . qn

]
contains the orthonormal basis vectors qk spanning Kn, and Hn is an upper Hessenberg ma-

trix whose eigenvalues approximate the n largest eigenvalues of Φ∗Φ. The basic algorithm

then is

(1) �v = random, q1 = �v/||�v ||

(2) for k = 1, 2, 3, . . .

(a) b = Φ∗Φqk

(b) for j = 1 . . . k

(i) hj,k = q
∗
j b

(ii) b = b − hj,kqj
(c) hk+1,k = ||b||

(d) qk+1 = b/||b||



80

Note that the algorithm makes use of of stabilized Gram–Schmidt orthonormalization.

The algorithm outputs the vectors qk which are the eigenvectors of Φ
∗Φ and thus the

singular input vectors of Φ, corresponding to the singular values which are contained as

the square roots of the eigenvalues of the upper Hessenberg matrix Hn, the components

of which are also output by the algorithm. ARPACK includes documentation [44] of the

many refinements that are used in practice to this basic algorithm, including the crucial

implicit restarting procedure. However, this basic overview should serve to give an intuitive

grasp of the method.
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CHAPTER 5

The SVD-CE-IS Method for Rare-Event Simulation
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The previous sections of this dissertation have presented the theoretical underpinnings

of a new rare-event simulation method. We now present the details of the SVD-CE-IS

method and demonstrations of its effectiveness for simulating rare events in problems

in optical communication systems. This new technique makes use of the cross-entropy

method, the singular value decomposition and multiple importance sampling along with

the Monte Carlo method combined into a new method applicable to a wide class of rare-

event simulation problems in optical communications systems and beyond, without need

of recourse to intricate mathematical structure of the underlying problem.

The idea of the SVD-CE-IS technique is to simulate rare events via multiple importance

sampling, a well-established technique. The difficulty with the application of multiple im-

portance sampling to Monte Carlo simulations is generally the determination of the biasing

distributions; this is especially true in complex systems with very large noise dimensional-

ity (see Sec. 2.1.2), and the benefit of this new technique is in the generation of these

biasing targets. The technique we propose determines the biasing distributions using the

cross-entropy method, a stochastic optimization algorithm outlined in Sec. 2.2. While

the cross-entropy method is a powerful optimization tool, it is generally incapable of han-

dling the number of noise dimensions found in the lightwave systems that prompted this

work. If the cross-entropy method were capable of handling our full system dimensional-

ity, say N random variables, we could simulate rare events with an algorithm represented

schematically by Fig. 5.1.

In each iteration, the cross-entropy method would provide N random variables for our

system simulation, and receive in return a performance function value from the simulated
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Figure 5.1. Schematic of CEM based simulation method without the

SVD: Dashed lines represent stochastic elements repeated many times.

Solid lines represent elements executed only once. The upper portion of the

diagram represents the biasing phase, and the lower portion the simulation

phase. The method illustrated in this schematic lacks the dimensionality-

reducing aspect of the singular value decomposition, and would be generally

infeasible for the problems we wish to consider.

system. This process would be repeated the necessary number of times (dashed lines)

until the cross-entropy method obtained the biasing distributions. The biasing distributions
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would then be fed into importance sampled Monte Carlo simulations, which again provide N

random variables to the simulated system (now the random variables are biased according

to the provided biasing distributions) many times until the desired observed histograms

are obtained with the prescribed accuracy. However desirable in theory, this algorithm

is computationally infeasible for the problems under consideration; N ≈ NaNf for the

amplified lightwave systems under consideration, where Na is the number of amplifiers

in the system (≈ 40) and Nf is the number of computational Fourier modes used, (≈

256, 512, 1024 or more), and the resulting N is simply too large to obtain reasonable

results with currently available computing power.

To reduce the dimensionality of the underlying problem, we apply the singular value

decomposition to reduce the biasing problem from an infinite (or computationally large)

number (N) of Fourier modes to merely a handful (n � N) of “modes” of the sys-

tem [16], an approach inspired by soliton perturbation theory-based approaches to similar

problems [1, 5, 21]. Having reduced the number of optimization dimensions so dramati-

cally, the cross-entropy method provides optimal biasing distributions for multiple impor-

tance sampling in our Monte Carlo simulations in a computationally feasible manner. Note

that the singular value decomposition must be called upon again during the importance

sampled Monte Carlo phase of the algorithm, because the biasing distributions generated

under this scheme depend upon the computed modes of the system, and thus the modes

must be recalculated for full noise trials as well. This improved algorithm with the SVD

included, the SVD-CE-IS method, is represented schematically in Fig. 5.2. In both figures,

the dashed lines represent connections or processes which are executed multiple times to
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collect statistics, due to their stochastic nature. The solid lines represent connections or

processes which are only made once, based upon the aggregation of the stochastic trials.

This method requires little of the system under consideration. Of course, it must

be possible to accurately simulate the system numerically, but this is a requirement held

over from any type of Monte Carlo method. The additional requirements imposed by the

variance reduction scheme are those of applying the singular value decomposition, which

are modest and will be discussed at length later in this chapter.

5.1. Application to a general lightwave system

For a lightwave communication system, rather than a general simulated system, we

can qualitatively describe the method of application. The full details of application to a

specific system will be presented in a later section. Consider that our general lightwave

system is specified by a propagation operator described by

(5.1.1) U(z1, t) = N (z1; z0)[U(z0, t)]

and some initial condition U(z0, t) = U0, along with a detector operator I to be discussed

at length later and a stochastic specification of the noise in the system. We will treat the

case of loss compensated by periodic amplification such that noise is added to the system

at specified points. Thus Gaussian white noise is added at each amplifier to represent the

amplified spontaneous emission noise. Let us suppose for simplicity that they are equally

spaced throughout the system, and we call the distance between amplifiers za. That is, if

there are Na amplifiers, the system begins at z = z0 and ends at z = z0 + Naza, with the
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Figure 5.2. Schematic of the SVD-CE-IS method: Dashed lines rep-

resent stochastic elements repeated many times. Solid lines represent el-

ements executed only once. This schematic represents our new proposed

method, with the SVD employed to reduce the noise dimensionality of the

simulated problem to a tractable level for the CE method. As before, the

upper portion of the diagram represents the biasing phase, and the lower

portion the simulation phase.
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signal amplified at the intermediate points z = z0 + jza. If we are using Nf Fourier modes

in our computational scheme, then the simulated system takes in N = NaNf random

variables for the noise components at each amplifier, via

(5.1.2) U(z0 + jza, t)← U(z0 + jza, t) + F−1
⎡
⎣ Nf /2∑
ω=−Nf /2

r̃ω,je
iωt

⎤
⎦

where the r̃ω,j are the N random noise components, full spectrum noise in each Fourier

mode. The system then outputs some performance function or observations as a result

of propagating the input signal and all the added noise, via the detector operator I. The

performance function can be anything at all of concern that can be extracted from the

simulated system. If the method of Fig. 5.1 were sound, we would simply supply a ‘black-

box’ function of the system as described above, and simulate rare events.

To use instead the new – and feasible – method of Fig. 5.2, we must discuss how

to apply the singular value decomposition to the lightwave system to reduce the noise

dimensionality. The idea is to apply the SVD at each amplifier (z = z0 + jza for the j
th

amplifier). Recall that the SVD provides the mode which produces the largest change in

the prescribed output function; thus applying the SVD at the j th amplifier results in the

most efficient way to produce the desired change from that amplifier forward. Suppose

we use nm � Nf singular modes at each amplifier; call these modes ui ,j(t) for i = 1 . . . nm
and j = 1 . . . Na, i.e. the i

th mode at the j th amplifier. (The decision about the number

of modes to use depends on both physical knowledge of the system and the spectrum of

the singular values.) Then for the purpose of generating the biasing distributions, the top
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half of Fig. 5.2, we add noise to the system via

(5.1.3) U(z0 + jza, t)← U(z0 + jza, t) +
nm∑
i=1

r̂i ,jui ,j(t)

and we have obtained a vast reduction in the noise dimensionality. Now the cross-entropy

method need only provide and control n = nmNa random variables, a dramatic decrease

from N = NfNa. This reduction makes the problem computationally feasible and we are

able to generate the appropriate biasing distributions using this formulation, and it is made

possible because the performance of the system is really controlled only by a few singular

modes.

During the importance-sampled Monte Carlo phase, the noise addition is somewhat

different. While the reduced problem is acceptable for generating the biasing distributions,

the full simulations require full noise in each Fourier mode and the biasing distributions are

specified with shifted means in terms of the modes. The addition of full-bandwidth noise

as well as biased noise thus appears as combination of the two sources, that is

(5.1.4) U(z0 + jza, t)← U(z0 + jza, t) +
nm∑
i=1

bi ,jui ,j(t) + F−1
⎡
⎣ Nf /2∑
ω=−Nf /2

r̃ω,je
iωt

⎤
⎦ .

Where bi ,j are the biasing coefficients as determined by the biasing distributions. This can

be viewed as a shift in the means of the distributions of the r̃ω,j . While before the r̃ω,j were

Gaussian white noise, and thus drawn from distributions with 0 mean, we can rewrite the
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noise terms of Eq. (5.1.4) as

nm∑
i=1

bi ,jui ,j(t) + F−1
⎡
⎣ Nf /2∑
ω=−Nf /2

r̃ω,je
iωt

⎤
⎦ = F−1

⎡
⎣F

[
nm∑
i=1

bi ,jui ,j(t)

]
+

Nf /2∑
ω=−Nf /2

r̃ω,je
iωt

⎤
⎦

= F−1
⎡
⎣ Nf /2∑
ω=−Nf /2

(
r̃ω,j + B̃ω,j

)
e iωt

⎤
⎦

= F−1
⎡
⎣ Nf /2∑
ω=−Nf /2

R̃ω,je
iωt

⎤
⎦(5.1.5)

where B̃ω,j are the Fourier transform components of
∑nm
i=1 bi ,jui ,j(t) and the Rω,j are ran-

dom normal variables drawn from distributions with the same variance as those of the r̃ω,j

but now with mean B̃ω,j instead of 0. Note also that a time-domain formulation of the

noise is also valid, with noise at each time point instead of in each spectral component.

The biasing of the modes in the time domain can still be viewed as a mean-shift of the

existing normal variables in exactly the same way. Mean-shifted normal distributions allow

for a particularly simple likelihood ratio calculation, though in principle much more general

distributions could easily be used. All that remains, then, is to collect the desired statistics

and apply the correction for the biasing via the likelihood ratio as discussed previously.

Recall that by using mean-shifted Gaussian distributions as our biasing distributions, cal-

culating the optimal distribution parameters as part of the cross-entropy method requires

simply calculating the value of the single parameter we have used via the first moment,

according to Eq. (2.2.13). More precise details of application to a real system are included

in the following sections.
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5.2. SVD operator formulation including the detector

Up to this point we have assumed that the nonlinear operator N and, correspondingly,

the linearized operator Φ are operations which map CN → CN. However, in many lightwave

systems with a detector at the end of the line, the operator we are interested in might

instead map CN → RN or CN → R in some potentially complicated way. For example, the

“integrate-and-dump” detector, a common detector, is a CN → R operator. Defining the

action of adjoint operator Φ∗ in this case requires a slight formal manipulation.

We have the nonlinear propagation operator which describes the full behavior of our

system given by

(5.2.1) U(z2, t) = N (z2; z1)U(z1, t).

We linearize this operator via U = U + εu, and in the case where N is a differential

operator, obtain the linearized operator

(5.2.2)
d�u

dz
= A(z, t)�u

where we also rewrite the complex scalar quantity u as the real-valued vector quantity

�u =

[
�(u) �(u)

]	
.

We can write the solution to this linearized problem in terms of the matrix Green’s

function [45] for Eq. (5.2.2) as G(z, t; z0, t0) which propagates the solution �u from �u(z0, t0)
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to �u(z, t) via

(5.2.3) �u(z, t) =

∫
G(z, t; z0, t0)�u(z0, t0)dt0

where

d

dz
G(z, t; z0, t0) = A(z, t)G(z, t; z0, t0)

(5.2.4)

with

G(z0, t; z0, t0) = Iδ(t − t0).(5.2.5)

We will simplify this notation slightly by suppressing the explicit time dependence.

There are two justifications for this:

• we are primarily considering this for applications as a numerical scheme, so we

will think of a time discretization and thus vector quantities in the time direction

instead of time-dependent quantities, and

• for our applications to this point, A has self-adjoint time derivatives, and so can

be treated as a simple matrix instead of a differential operator.

This section is written in the context of a more general formulation; for the specifics

of systems governed by the NLS, see the more detailed presentation in Sec. 5.4.1.
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Suppressing t-dependence, then, we obtain

(5.2.6) �u(z) = G(z ; z0)�u(z0)

as the linearized propagation operator where G(z ; z0), using Eq. (5.2.4), solves the lin-

earized differential operator

d

dz
G(z ; z0) = A(z)G(z ; z0)

with

G(z0; z0) = I.(5.2.7)

Up to this point we have made no modifications to the existing scheme to include the

detector, but we have reformulated it slightly to accommodate doing so. We will first

consider a simple integrate-and-dump detector given by

(5.2.8) I =

∫ T/2

−T/2
|U(zL, t)|2dt

in the full nonlinear version, where we suppose that the detector is applied at the point

z = zL in the transmission line. Linearizing the detector, again via U = U + εu, we obtain

the linearized detector

(5.2.9) ΔI = 2

∫ T/2

−T/2
� (U∗u) dt.
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If we break this out into real and imaginary parts using

U = U1 + iU2

and

u = u1 + iu2,(5.2.10)

then the linearized detector becomes

ΔI = 2

∫ T/2

−T/2
(U1u1 + U2u2) dt

= 2

∫ T/2

−T/2

[
U1 V1

]⎡⎢⎣ u1
u2

⎤
⎥⎦ dt

= 2

∫ T/2

−T/2
�U	�udt.(5.2.11)

This is where the difficulty is introduced by the detector. This is a linear operator

that maps CN → R, which is a perfectly sensible element to integrate into our linearized

propagation operator Φ, but to apply the Arnoldi method for finding the singular vectors

and values numerically we must also define the adjoint operator Φ∗. To make sense of
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this, we write the detector as mapping a vector to a vector artificially as

⎡
⎢⎣ ΔI
ΔI

⎤
⎥⎦ =

⎡
⎢⎣ 2
2

⎤
⎥⎦∫ T/2

−T/2

[
U1 U2

]⎡⎢⎣ u1
u2

⎤
⎥⎦ dt

=

∫ T/2

−T/2

⎧⎪⎨
⎪⎩
⎡
⎢⎣ 2
2

⎤
⎥⎦[
U1 U2

]⎫⎪⎬
⎪⎭

⎡
⎢⎣ u1
u2

⎤
⎥⎦ dt

=

∫ T/2

−T/2

⎡
⎢⎣ 2U1(z1, t) 2U2(z1, t)
2U1(z1, t) 2U2(z1, t)

⎤
⎥⎦
⎡
⎢⎣ u1(z1, t)
u2(z1, t)

⎤
⎥⎦ dt

=

∫ T/2

−T/2
K(t ′, t; z1)�u(z1, t)dt

where K(t ′, t; z1) is a matrix kernel. This kernel has two special properties, as a result

of our construction: K(t ′, t; z1) 1) is independent of t ′, and 2) has two identical rows.

Thus the output of applying this matrix kernel is a 2-vector that likewise is independent of

t ′ and has two identical entries. We are now nearly ready to define the adjoint operator

containing the detector. First, however, we require an inner product, given by

(5.2.12) 〈�v, �u〉 =
∫ T/2

−T/2
�v	�udt.
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Using this definition, we have

〈�v,K�u〉 =
∫ T/2

−T/2
�v	(t ′)

∫ T/2

−T/2
K(t ′, t)�u(t)dt dt ′

=

∫ T/2

−T/2

[∫ T/2

−T/2
K	(t ′, t)�v(t ′)dt ′

]	
�u(t)dt

= 〈K†�v, �u〉

where the † denotes the operator adjoint, so that if we have

K�u =
∫ T/2

−T/2
K(t ′, t)�u(t)dt(5.2.13)

then

K†�v =
∫ T/2

−T/2
KT (t, t ′)�v(t)dt(5.2.14)

is the adjoint. If we break out into components, with �v =

⎡
⎢⎣ v1
v2

⎤
⎥⎦, we obtain

K†�v =

⎡
⎢⎣ U1(t ′)
U2(t

′)

⎤
⎥⎦∫ T/2

−T/2

[
2 2

]⎡⎢⎣ v1(t)
v2(t)

⎤
⎥⎦ dt

=

⎡
⎢⎣ U1(t ′)
U2(t

′)

⎤
⎥⎦∫ T/2

−T/2
[2v1(t) + 2v2(t)] dt.
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In this case, the adjoint has a particularly simple form; in fact, it is just a simple

projection of the “input” (which is the “output” of the direct linearized problem), then

multiplied against

[
U1(t

′) U2(t ′)

]	
, the full nonlinear solution at the output. Note that

the solution is truncated outside of t ′ ∈ [−T/2, T/2]. Other detectors can be handled in

very much the same way, though in general the nature of the adjoint as a projection which

then multiplies the nonlinear solution does not hold.

If we add the propagation back into the equation, to define the complete operator (and

its adjoint), we have

KL�u(z0) =
∫ T/2

−T/2
K(t ′, t; z1)G(z1; z0)�u(z0)dt(5.2.15)

and the adjoint

(KL)†�v = L†K†�v

= L†
⎡
⎢⎣ U(z1, t ′)
V (z1, t

′)

⎤
⎥⎦∫ T/2

−T/2
[2v1(z1, t) + 2v2(z1, t)] dt.(5.2.16)

Now we have everything required to compute the action Φ∗Φ required by the Arnoldi

iterations for the singular values and vectors. The action Φ∗Φ is given by the action

(KL)†KL = L†K†KL, according to Eq. (5.2.15) and Eq. (5.2.16) along with the linear

propagators specified by L and L†, which will be specified explicitly for specific problems

shortly. In this particular case, we have a bit of luck in that the adjoint linear operator L†

merely propagates the nonlinear output back to the input, multiplied by a scalar. Thus,
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in this case, we need only make the calculation once and carry the scalar obtained by the

projection through the linear operator.

5.2.1. Detectors with filtering and the SVD

In the previous section we have demonstrated how to apply a simple integrate-and-dump

detector to our problem. Many different types of detectors can be included in much the

same way. However, one aspect of common detection schemes which requires a bit more

work is filtering. We consider the problem with optical filtering and an integrate-and-dump

detector, where we seek the amplitude mode. That is, we want to transform our signal

into Fourier space, apply the filter, bring the signal back to the time domain where we

apply the integrate-and-dump detector:

(5.2.17) I =

∫ T/2

−T/2
|F−1[f (ω)F [U(t)]]|2dt

where f (ω) is our filtering function. For our problem, T is sufficiently large, relative to

the pulse, that we approximate this in the Fourier domain as

(5.2.18) I =

∫ ∞

−∞
|f (ω)Ũ(ω)|2dω

by Parseval’s theorem [46]. Following then as in the previous section, the action of the

operator Φ∗Φ is given by
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L†K†KL�̃u =L†

⎡
⎢⎢⎣
f 2Ũ1(zL, ω)

f 2Ũ2(zL, ω)

⎤
⎥⎥⎦
∫ ω2

ω1

dω′

⎡
⎢⎣ 2
2

⎤
⎥⎦

·
∫ ω2

ω1

dω

⎡
⎢⎣ 2f 2Ũ1(zL, ω) 2f 2Ũ2(zL, ω)
2f 2Ũ1(zL, ω) 2f

2Ũ2(zL, ω)

⎤
⎥⎦L�̃u(5.2.19)

assuming f (ω) ∈ R, where the nominal solution in Fourier space is broken out into real

and imaginary parts as Ũ(z, ω) = Ũ1(z, ω) + i Ũ2(z, ω).

Of course, we might wish to employ a more sophisticated detector employing filtering

which is not amenable to this simple change into the frequency domain; perhaps electrical

filtering, or some more sophisticated design. Consider a more general detector function

acting on the filtered signal Uf = F−1[f (ω)F [U(t)]] given as

I =

∫
V

J [Uf ] dt

for some detector operator J on the integration domain V . (The detector we are using is

simply this detector with J [U] = |U|2 and V : t ∈ [−T/2, T/2].) Then if we consider the

linearization of J via

J [U + εu] = J0[U] + εJ1[u] + . . .



99

then we have the detector operator

I =

∫
V

J [(U + εu)f ] dt

=

∫
V

J [F−1[f (ω)F [U + εu]]] dt

=

∫
V

J [F−1[f (ω)(Ũ + ˜εu)]] dt

=

∫
V

J [Uf + εuf ] dt

=

∫
V

{J0[Uf ] + εJ1[uf ] + . . . } dt

and the linearized detector operator

ΔI =

∫
V

J1[F−1[f (ω)F [u]]] dt

where J ,F and F−1 are all linear operators and we may define the necessary operator K

as done previously when the specific form of the detector operator J is given.

5.3. Mode identification and alignment

Two so far unaddressed issues arise from the identification and alignments of the

modes given by the SVD, or the singular vectors. The primary tool for identifying modes

is to examine the corresponding singular values; generally there is some (small) number

of modes with singular values appreciably greater than 1, and a large number of modes

with singular values at or smaller than 1. As the Arnoldi factorization only estimates the
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largest magnitude eigenvalues (and eigenvectors) , we are entirely unconcerned with these

smaller values. However, suppose that our vector of ordered largest singular values looks

like

(5.3.1) [ 2.03 2.0 1.05 1.0 1.0 .9 ].

We might expect to easily be able to distinguish at each iteration the modes with singular

values around 2 from those with values near 1. But we must also distinguish the two

modes with singular values ≈ 2. In a slightly different stochastic realization, on the next

iteration, for example, the perceived ordering of these two larger-value modes may no

longer be consistent. It is important to keep the modes separate, as they must correspond

with assigned biasing strengths that are being adjusted by the cross-entropy method.

Convergence of the method will be much more difficult, if not impossible, if the mode

being used with a particular biasing is being confused with a different mode.

Generally, for the lightwave systems we are considering, the pulse modes can be distin-

guished using nothing more than the inner product (or, a pair of inner products). For other

potential applications, a more sophisticated system might have to be employed. Suppose

we are using the singular value decomposition to determine the modes of a pulse in a light-

wave system where the detector is specified such that there are two modes with singular

values above one, but otherwise indistinguishable from one another, and in this case they

correspond roughly to the adjoint amplitude mode and the frequency mode, uA and uΩ

respectively. We might find modes that look like noisy versions of Fig. 5.3.
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Figure 5.3. Numerical modes in need of identification: Two hypo-

thetical modes extracted from the singular value decomposition with similar

(and indistinguishable) singular values. The undisplayed portions, Re[u2] and

Im[u1], are near zero.

However, we are not sure which mode is uA and which is uΩ based on the singular values,

because in this situation the singular values are close enough to be unreliable identifiers

in a system where the singular values vary stochastically and are estimated. We know

only that we have two modes, or singular vectors, u1 and u2. We need not necessarily

know which is the amplitude mode and which is the frequency mode (or, in fact, that they

correspond with pulse parameters in this precise way). We do need to know that we are

using the proper biasing coefficients; that is, we need to know that u1 is the same as it
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was in the last trial, and will be in the next trial, so that the modes are not mixed up. In

this scenario, it is easy to distinguish them, because

〈u1, u〉 ≈ 2

and

〈u2, u〉 ≈ 0.(5.3.2)

where u is the full nonlinear pulse. While these values will also vary stochastically some-

what, they are no longer nearly equal and easy to distinguish for application of proper

biasing coefficients.

The second difficulty is mode alignment, which is essentially a sign problem. That is,

the modes may come out in different stochastic realizations with opposite signs, which

must also be corrected to avoid confusing the cross-entropy method. This outcome is

due to the fact that both increases and decreases are large changes, and we have asked

for the largest magnitude singular vectors. Consider that due to the stochastic nature

of the process, we might obtain as our numerical mode either u1 or u
′
1 as pictured in

Fig. 5.4. These modes both have the same (or very similar) singular values, and so cannot

be distinguished in that way, and our inner-product scheme doesn’t provide any additional

information in this case, either, as

〈u1, u〉 ≈ 0
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Figure 5.4. Numerical modes in need of alignment: Two hypothetical

modes extracted from the singular value decomposition with similar (and

indistinguishable) singular values as well as indistinguishable inner products

with the pulse shape.

and

〈u′1, u〉 ≈ 0.(5.3.3)

However, if we use a time-weighted inner product, we can distinguish the sign of these

modes for alignment purposes. If we define this second inner product as

(5.3.4) 〈v1, v2〉t =
∫
(t − T )v1v ∗2 dt,
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where T is the pulse position. For the amplitude problem, it is reasonable to assume

T = 0; for other problems, T can be estimated using the position moment integral on the

full nonlinear pulse:

T =

∫
t|u|2dt∫ |u|2dt

Then we can use this to align the modes pictured in Fig. 5.4 by way of

〈u1, u〉t ≈ i

and

〈u′1, u〉t ≈ −i .(5.3.5)

Numerical output modes from the singular value decomposition then can be identified

and correctly aligned with the appropriate biasing coefficients using three different mea-

surements: the corresponding singular value, the inner product of the output mode with

the pulse shape 〈u1, u〉 =
∫
u1u

∗dt and the time-weighted inner product of the output

mode with the pulse shape 〈u1, u〉t =
∫
(t − T )u1u∗dt. When one is considering noise

perturbations of a single pulse, these three measures provide a unique separation of the

linear modes into distinct regions of 5-space (the singular values are real, and the two

inner products are potentially complex) such that stochastic variations away from the ideal

value does not cause the numerical modes to be misidentified, and as such the cross-

entropy method and the later importance-sampled Monte Carlo simulations can efficiently
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use these modes. Of course, for more complicated situations, it might be necessary to

add additional criteria in order to separate the modes.

5.4. Application to a specific dispersion-managed system

As a demonstration and validation of the method we will apply it to a problem in

rare-event simulation with previously published results. For this purpose we select sample

system (b) from a paper by Li, Spiller and Biondini [21], who consider large-amplitude

pulse distortions in a dispersion-managed communication system. There are several as-

pects of this problem that make it an ideal test case. First, the authors have demonstrated

a semi-analytic method for generating the biasing distributions, ideal for comparison with

a fully-numerical method. Second, the resulting PDF deviates significantly from a normal

distribution. And finally, in some sense this problem is on the cutting-edge of the type

of problem that may be solved with this type of semi-analytic method; in the previous

work, a complicated semi-analytical procedure was required to determine the biasing for

importance-sampled Monte Carlo simulations. Here we reproduce the results precisely as

described in [21], except that instead of using the averaged, nonlocal governing equa-

tion required for the semi-analytic method, the dispersion-managed nonlinear Schrödinger

equation (DMNLS), we do so directly from the NLS equation with a variable dispersion

coefficient.



106

As described previously, dispersion-managed propagation is described by the NLS with

a variable dispersion coefficient,

(5.4.1)
∂U

∂z
=
i

2
d(z/za)

∂2U

∂t2
+ iγ |U|2U

where the dispersion d(z/za) is a periodic function over the dispersion map length za given

by the periodic extension of

(5.4.2) d(z/za) = Davg +

{ 4sDavg,
∣∣z/za − 1

2

∣∣ < 1
4

−4sDavg,
∣∣z/za − 1

2

∣∣ ≥ 1
4

, z/za ∈ [0, 1]

The model calls for amplified spontaneous emission (ASE) noise to be added periodically

at evenly spaced amplifiers, with the amplifier spacing corresponding to the dispersion map

period, za. The detector in the system is given by

(5.4.3) I =

∫ T

−T
|Uf (zL, t)|2dt

where

Uf (zL, t) = F−1[f (ω)F [U(zL, t)]].

where f (ω) is the filter transfer function. The initial condition for this problem is the

dispersion managed soliton (DM soliton) with amplitude λ = 2 computed numerically

following Sec. 3.4.

Proceeding as described previously, we use the SVD and the CEM to build a target set

of biasing distributions to cover the relevant range of output energies. Using these biasing
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distributions, we can make use of multiple importance sampling Monte Carlo simulation

to generate the final energy PDF.

We pose the biasing problem in the following way: at each amplifier location, z = nza

(n = 1 . . . N), we add to our solution U(nza, t) the mode of the system from this location

along with a biasing coefficient ηn such that

(5.4.4) U(nza, t)← U(nza, t) + ηnuA(t)

where the ηn will be determined by the CEM and the uA(nza, t) will be determined by the

SVD. Note that the ηn play the roll of the bi ,j from the method description for a general

lightwave system.

The constrained optimization problem we wish to have the CEM solve is then to reach

some target in detector value in the most likely way. Observe that ηnuA(nza, t) is a

noise projection of a Gaussian white noise source; maximizing the probability of this event

actually occurring is then equivalent to minimizing the exponent

(5.4.5)
∑
n

∫
|ηnuA(nza, t)|2dt =

∑
n

η2n

where the mode norm is 1 due to normalization, subject to

(5.4.6) I =

∫ T

−T
|Uf (zL, t)|2dt ≥ Î
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where Î is our target value for the detector output. The performance function for the CE

method (p(Z)) is then given for this system as

(5.4.7) p = I = I(�η)

where we write explicitly the dependence on �η = [η1, η2, . . . , ηN]. Selecting Î is an im-

portant step in building a set of biasing distributions. In general, it is necessary to use

several values of Î which cover the areas of system state space which one is interested in

simulating. If the desired output isn’t an entire PDF but merely the probability associated

with a specific output condition, it may be possible to use only one biasing target and set

the value of Î to correspond to this specific condition.

For determining the biasing distributions, the system is noiseless aside from the biasing

coefficients, which are randomly assigned by the CE method. The performance function

therefore only depends upon �η. As far as the CE method is concerned, this is a black box

procedure - input N randomly drawn biasing coefficients, output detector performance.

Assessing the optimal distribution parameter is a simple matter of computing the first

moment of the sample distribution by using the moment estimator Eq. (2.2.13). The

details of applying the SVD to compute the required mode uA are an important part of

this, described in the next section.
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5.4.1. Computing the SVD for the dispersion-managed system

In order to apply our new method, we must be able to compute the modes of the dispersion-

managed system at each amplifier location. To that end, we start with the NLS equation,

Eq. (5.4.1) and take U = u0 + εΔu to obtain the linearized equation

(5.4.8)
∂Δu

∂z
=
i

2
d(z/za)

∂2Δu

∂t2
+ iγ(2Δu|u0|2 +Δu∗u20).

It is simplest to split this complex equation into real and imaginary parts and deal with a

vector system, as we will need to take the adjoint shortly. We split into real and imaginary

parts via Δu = u1 + iu2 and u
2
0 = ξ + iυ to obtain the vector propagation operator

(5.4.9)

∂

∂z

⎡
⎢⎢⎣
u1

u2

⎤
⎥⎥⎦ =

⎡
⎢⎣ −γυ −1

2
d(z/za)

∂2

∂t2
− 2γ|u0|2 + γξ

1
2
d(z/za)

∂2

∂t2
+ 2γ|u0|2 + γξ γυ

⎤
⎥⎦
⎡
⎢⎢⎣
u1

u2

⎤
⎥⎥⎦

so that now we can define the operator L in Eq. (5.2.19) as propagation from z = zc to

z = zL via Eq. (5.4.9) where zc is the current location. For example, zc = jza if we are at

the j th amplifier.

Recall that to define Φ∗ we require L† as well as K†. For the detector we are using

here, K† is given in Eq. (5.2.19). To obtain L†, we consider the matrix Green’s function

which solves Eq. (5.4.9) and find L† as the propagation operator for the adjoint Green’s

function. Because the differential operators in the matrix in Eq. (5.4.9) are self-adjoint,
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computing the adjoint operator is relatively simple.

− ∂
∂z

⎡
⎢⎢⎣
u1

u2

⎤
⎥⎥⎦ =

⎡
⎢⎣ −γυ −1

2
d(z/za)

∂2

∂t2
− 2γ|u0|2 + γξ

1
2
d(z/za)

∂2

∂t2
+ 2γ|u0|2 + γξ γυ

⎤
⎥⎦
∗ ⎡⎢⎢⎣
u1

u2

⎤
⎥⎥⎦

=

⎡
⎢⎣ −γυ 1

2
d(z/za)

∂2

∂t2
+ 2γ|u0|2 + γξ

−1
2
d(z/za)

∂2

∂t2
− 2γ|u0|2 + γξ γυ

⎤
⎥⎦
⎡
⎢⎢⎣
u1

u2

⎤
⎥⎥⎦(5.4.10)

Thus L† is given by propagation in the reverse direction from z = zL to z = zc via

Eq. (5.4.10). Thus, with a suitably defined filter f (ω) (defined for our dispersion managed

system in Sec. 5.6) and with Eq. (5.2.19), we now have the action Φ∗Φ required to

compute the SVD using the Arnoldi method applied to the associated eigenvalue problem.

Numerically, these linearized propagators are solved using the IFRK4 method, while the

solution to the full nonlinear problem is obtained via the split-step Fourier method. It is

necessary to have the linear solver z-step size be an integer multiple of the nonlinear solver

step size, because at each solution point for the linear solver, the nonlinear solution must

be available (ideally, pre-calculated and stored). In practice, the linear solutions require a

more accurate numerical solution than the nominal solution, and so using a 1:1 step size

ratio with the same numerical method either does not achieve the required accuracy in the

linear solver or requires unnecessary computational effort in the nonlinear solver. There

are two solutions to this problem: 1) use a lower (e.g., 1:2) step size ratio, or 2), use a

higher-order method for the linear solver. We opt for the latter.
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As an additional numerical concern, consider the dependence of the linearized problems

on the full nonlinear problem. The direct linearized problem, as well as the adjoint problem,

depend upon the nonlinear solution (via u20 = ξ + iυ), but it is inefficient to compute

this nonlinear solution each time it is required by the linearized problems. The linearized

problems must be solved many times as part of the iterative application of the operator

action in solving the eigenvalue problem. However, the nonlinear problem need only be

solved once for each application of the SVD (and thus the eigenvalue problem) and merely

stored and referenced by each linear (and adjoint linear) numerical solve.

5.5. A test case for the SVD-CE-IS method

We begin with a test of our method based on the solution from the semi-analytical

method. The full numerical method is computationally less efficient, but serves as a good

test of the properties of the technique.

We will consider the system as described earlier, with no filter (f (ω) = 1), but with

a slight modification. Instead of adding just one mode at each amplifier, as we have

described, we will also add the frequency mode uΩ(z, t) so that Eq. (5.4.4) becomes

(5.5.1) U(nza, t)← U(nza, t) + ηnuA(nza, t) + ζnuΩ(nza, t)

and the CEM now controls two sets of biasing coefficients, both the ηn and the ζn. We

will show that the CEM adjusts ηn properly, but does not change ζn since the output of

the detector does not depend upon frequency changes.
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Of course, our minimization quantity changes so that Eq. (5.4.5) becomes

(5.5.2)
∑
n

∫ {
[ηnuA(nza, t)]

2 + [ζnuΩ(nza, t)]
2
}
dt

and also the performance function such that Eq. (5.4.7) becomes

(5.5.3) p = I = I(�η, �ζ).

To compute the frequency mode uΩ(z, t) for the biasing, we must solve an independent

eigenvalue problem (thus a total of two SVD solves at each amplifier) with a different

detector and thus a different linearized detector operator, K. Normally, we would only

use the one detector which gives the quantity of interest, and this would determine all

of the modes upon which the desired output quantity depends. Here we are artificially

adding an extra detector so we can include an additional mode that would not normally

be present. We define KΩ as the detector for this mode, which is based on the position

moment integral

(5.5.4) T0 =

∫
t|U(Naza, t)|2dt∫ |U(Naza, t)|2dt .

Here one of the connections to soliton perturbation theory and the conserved quantities of

the NLS is apparent. If we use as the detector an integral conserved quantity of the NLS

(corresponding to a system invariance via Noether’s theorem), the detected quantity is

the soliton parameter and the largest singular mode is the soliton mode. For the detector

Eq. (5.5.4), if a soliton pulse shape is used, the integral conserved quantity is the soliton
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position T and the largest singular input mode is the soliton frequency mode uΩ, since

frequency perturbations turn into position perturbations upon propagation. Of course, in

this case, we are not using soliton pulses, and the corresponding “pulse parameter” and

singular mode must be computed numerically.

Proceeding as in Sec. 5.2, we obtain the linearized operator

(5.5.5) KΩ =

⎡
⎢⎣ AU1(z1, t) + BtU1(z1, t) AU2(z1, t) + BtU2(z1, t)
AU1(z1, t) + BtU1(z1, t) AU2(z1, t) + BtU2(z1, t)

⎤
⎥⎦

where for convenience and compactness we have defined

A =
−2 ∫ t ′�U∗(z1, t ′)�U(z1, t ′)dt ′[∫
�U∗(z1, t ′)�U(z1, t ′)dt ′

]2

and

B =
2∫

�U∗(z1, t ′)�U(z1, t ′)dt ′
,

and the adjoint K† is obtained by taking the transpose.

In principle, the addition of an entirely separate second mode should have little or no

impact on the solution, other than the computational efficiency. The detector that we use

as the performance function for the system as a whole with the CEM is the detector which

renders uA in a natural way, while uΩ has been introduced artificially. Thus we expect �η

to be unchanged aside from a slower convergence rate as a result of the computational

inefficiency, and we expect that each component of �ζ should converge to zero. The most
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efficient perturbation mode should be uA - this is the definition of what we are asking the

singular value decomposition to provide.

Note also that this is not necessarily the appropriate way to treat a system with two (or

more) relevant modes. If the detector model is an accurate physical model which outputs

the quantities of interest, there is no need to artificially introduce additional detectors to

isolate additional modes. In fact, the idea of identifying the numerically computed modes

as ones roughly corresponding to the pulse parameters in a manner similar to soliton

perturbation theory is not the correct approach. The modes which we are referring to

as the amplitude and frequency modes are only rough analogs to those modes in soliton

systems. The numerically determined modes, in practice, are linear combinations of these

fundamental modes, if they exist, in appropriate combination to produce large changes in

the desired output quantity. Identifying the physical meaning of the modes or their number

is not necessary; the singular values corresponding to these modes (via the singular vectors)

indicate the magnitude of changes, and the overall significance, induced by perturbations

represented by that singular vector. The method need only account for the modes with

sufficiently large singular values.

Proceeding with our test (with the artificially introduced frequency mode), the algo-

rithm to generate a CE method biasing trial is then

(1) Begin with the DM soliton U(0, t). Set j = 0.

(2) Propagate U(zj , t) via Eq. (5.4.1) from zj to zj+1.

(3) If j + 1 = L, goto 7.
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(4) Apply the SVD to U(zj+1, t) from zj+1 to zL to obtain normalized modes (uA(zj+1, t)

& uΩ(zj+1, t)).

(5) Add modes to Uj+1 according to random values ηj+1 and ζj+1 drawn from the

appropriate distributions in ĝk(·).

Uj+1 ← Uj+1 + ηj+1uA(zj+1, t) + ζj+1uΩ(zj+1, t)

(6) j ← j + 1. Goto 2.

(7) Apply detector with performance metric p =
∫ |U(zL, t)|2dt.

This process is of course repeated many times in the CE method, and the coefficients

ηn and ζn are updated by calculating the means of the high-performance quantiles, based

on the p values of many realizations. When these ηn and ζn values are returned by the

biasing phase, (i.e. when the CE method has converged), they can be used as the biasing

coefficients for importance sampled Monte Carlo simulations.

A sample simulated system realization for the CEM part of the algorithm is given in

Fig. 5.5. Recall that the biasing trials do not have full-bandwidth noise, as the noise

dimensionality has been reduced to two directions per amplifier by the SVD. In this case,

Î is set for a 50% decrease in pulse energy. To illustrate these modes as SVD output, for

the last segment of this trial, the pulse profile is given in Fig. 5.6 and the corresponding

modes for the last segment are shown in in Fig. 5.7. One can see that the SVD modes,

which are rough analogs of the soliton amplitude and frequency modes, roughly correspond

to these roles.
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Figure 5.5. Sample Monte Carlo trial: Plot of a single Monte Carlo trial,

biased in this case toward a decreased energy target.

The results showing the overall convergence of the CE-determined biasing coefficients

for this problem are given for N = 1000, 2000, 4000 and 8000 in Fig. 5.8. One can

see that the results improve as expected as N increases, and agree qualitatively with our

expectations for the solution. The frequency mode coefficients (�ζ) converge to zero as

N increases at each level of the cross-entropy method, as this mode has been artificially

introduced, and the results bear this out. The nonzero biasing coefficients of the ampli-

tude mode (�η) also agree qualitatively with our expectations, though precise quantitative
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Figure 5.6. Pulse profile at amplifier: This is the pulse profile from a

sample trial at the last amplifier, where the final set of modes are generated.

comparison between methods would at the least require a very large number of trials, and

might still be impossible due to the different assumptions made by the two methods in

order to determine the biasing. The method passes these simple tests.

This is only the biasing problem, of course. Because we want to do multiple impor-

tance sampling, and combine the results using the balance heuristic, we must use the

described method and repeat to generate the biasing for each biasing target. Then these

results can be used as the biasing distributions for multiple importance sampled Monte

Carlo simulations. Because this test problem is merely designed to test the generation
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Figure 5.7. Numerically extracted modes: The modes extracted nu-

merically for the last segment of a sample trial, from the pulse in Fig. 5.6.

Left, the amplitude mode. Right, the frequency mode.

of biasing distributions, we have not yet generated a full set of biasing distributions and

run the final simulations. In the next section we will eliminate �ζ and uΩ and only use the

modes determined by the SVD from the detector of interest, as originally intended, and

demonstrate the full algorithm.

5.6. Full algorithm application to dispersion-managed system

We now apply the full method to our dispersion-managed sample problem, problem (b)

from Li et al [21]. For this system, the total propagation distance is 4000 km, the average

dispersion is 0.15 ps2/km with a dispersion map strength s = 4 and dispersion map period

za = 100km. The nonlinear coefficient is 1.7 (W−km)−1, the fiber loss is 0.21 dB/km,

and the DM soliton amplitude is λ = 2. The noise spontaneous emission factor is 1.5.

We remove the frequency mode from the algorithm and restore Eq. (5.4.4), so that

we regain our computational efficiency, as well as install the filtering function appropriate
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Figure 5.8. Convergence of biasing coefficients for the amplitude prob-

lem: The results of the convergence test for the SVD-CE-IS method where

two modes are biased but only one should impact the detected measure, the

pulse amplitude. The biasing for the frequency mode converges to zero, and

the biasing for the amplitude mode converges to the amplitude-only biasing

solution. In each figure, both sets of biasing coefficients are displayed for

two different levels of the CEM. Left to right, top to bottom, the number

of trials per CEM level increases from 1, 000 to 2, 000 to 4, 000 to 8, 000.

for a 10 GHz Gaussian optical filter,

(5.6.1) f (ω) = exp

(
− 2 ln (2)ω

2

(2π5/TL)
2

)
,

where TL is the length of the computational domain, here expressed in picoseconds [47].
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Including the filter does affect the shape of the modes, as the singular value decom-

position now finds perturbations that maximize the change in the filtered detector out-

put. With a very strong, narrow filter one can imagine that the filter could completely

dominate the modes. Consider, for example, a filter which passes only a single Fourier

mode. Clearly the application of such a filter would drastically alter the computationally-

determined mode. With the practical filter we use, the change is more subtle. Fig. 5.9

shows the amplitude mode from a sample trial in the filtered system, along with the (un-

filtered) pulse shape at the amplifier where the mode was computed. Both the pulse and

the mode have been phase-shifted so that the pulse center-phase is 0. The addition of the

filter to the system has changed the “amplitude mode” from a copy of the pulse profile

to a different shape, which best reflects the performance increase in the filtered detector.

Note that this pulse and mode are from a biasing trial, so full-bandwidth noise is not

present, only the noise projected in the direction of each mode.

Using the cross-entropy method with the singular value decomposition, we generate the

biasing distributions for this problem. In principle, each biasing target requires a separate

application of the cross-entropy method to determine the biasing distribution, though they

can build off one another, in that “further out” biasing targets can use nearer ones as

a starting point. For this problem, we will use 6 biasing distributions for the normalized

output energy at the end of the system. If the unperturbed value of the normalized output

energy is 1 (by virtue of the normalization), we might assign our six biasing targets to

correspond to normalized output energies Î = 0.25, 0.5, 0.75, 1.25, 1.5, 1.75 if this is the

region of the system state space and PDF with which we are concerned. The spacing and
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Figure 5.9. Amplitude mode computed with filtering detector: The am-

plitude mode (solid curves) overlaid with the underlying pulse shape (dashed

curves) when the mode is extracted from the filtered detector. Both real

(black) and imaginary (gray) parts displayed.

density of the biasing targets is problem dependent, as are the number of trials to be used

per biasing target. Of minor note is that we have only formulated the CE algorithm for an

increasing function. To create the biasing targets for lower energy points, one can simply

redefine the performance function with a sign flip. For our example, nothing more than

p ← −p is required.



122

A useful possible modification is that intermediate iterations of the cross-entropy

method, when p < Î, may provide acceptable intermediate biasing targets. Consider

that we set Î = 1.75, and the cross entropy method requires 5 iterations to reach this

specified value. We can check the performance values of these intermediate iterations to

see if there exist distributions with performance values sufficiently close to 1.25 and 1.5

to be used.

Alternatively, we might first bias to Î = 1.25 and obtain that biasing target, and

then use this result as the starting place to iterate higher toward 1.5 and 1.75. This

approach results in more precise locations for the biasing targets in terms of proximity to

the prescribed values.

Using the first approach, where incidental CE method levels are used as the biasing

targets, we apply the method twice to generate a full set of biasing targets, reproduced in

Fig. 5.10 with the mean of the biasing distribution on the vertical axis and the amplifier

number on the horizontal. Note that some data smoothing has been employed to reduce

the number of samples required by the CEM. Also displayed is a 7th “biasing” target, the

unbiased case. Because this plot is of the distribution means and we are using mean-shifted

normal distributions, zero is the unbiased case.

Finally, we can use these biasing targets along with the SVD in multiple importance-

sampled Monte Carlo simulations. The complete SVD-CE-IS algorithm, then, has been

fully described for this practical problem. First, we compute the biasing distributions re-

quired for importance sampling by using the CE method to solve the optimization problem
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Figure 5.10. Biasing coefficients for DM soliton system: The biasing co-

efficients for the amplitude mode in the dispersion-managed soliton system,

for each of the 7 (6 nonzero) biasing targets.

in the SVD-reduced problem. The optimization problem specifies reaching a certain tar-

get in the detected quantity (Î) while maximizing probability, i.e. minimizing the biasing

strength (
∑
η2n). For each biasing trial, we solve the nominal, fully nonlinear problem

over the length of the system, and store it to be referenced by each iterative linear and

nonlinear application of the action Φ∗Φ required by the SVD. The SVD then returns the

singular values and modes. These modes are identified and aligned by their singular values,

as well as the pair of inner products discussed in Sec. 5.3. The amplitude mode uA is then

multiplied by the biasing strength ηn and added to the propagating solution. These trials
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are repeated until the CE method returns the converged biasing distributions, under which

p > Î is no longer a rare event.

These biasing distributions are then used in the second phase of the SVD-CE-IS

method, the importance sampled Monte Carlo phase. In this phase, full-bandwidth noise is

introduced added to the signal, but it is mean-shifted according to the biasing distributions.

The performance values that result are very rare events under the original, mean-zero dis-

tributions. We then calculated the likelihood ratio to correct for the biasing, apply the

balance heuristic, and collect the statistics of interest (in this case, the filtered output

energy histogram).

This filtered output energy histogram we compute is the same observation generated

in [21]. The comparison with previous results is shown in Fig. 5.11; and the agreement is

nearly perfect. The coefficient of variation is computed as described in Sec. 2.1.3.

Thus, without making use of any of the detailed mathematical structure of dispersion-

managed solitons, we have demonstrated the SVD-CE-IS method of simulating rare events

in this system and shown that the results agree well with alternative techniques. There

are several potential sources of discrepancy between this and previous results. The primary

reason is that we use as our governing equation the NLS equation with periodically varying

coefficients; in [21], the governing equation used is necessarily the dispersion-managed

NLS equation (DMNLS), an averaged equation with a non-local term to account for the

averaging of the dispersion management. While the DMNLS does reduce to the NLS as

s ← 0, for nonzero s there is a degree of approximation involved. While it would be possible

to apply the SVD-CE-IS method to the system described by the DMNLS to eliminate this
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Figure 5.11. Simulated PDF for DM soliton system: Top, the full simu-

lated PDF for the DM soliton system (black, solid) compared with the same

PDF generated in [21] (gray, dashed). Bottom, the coefficient of variation

corresponding to the former.

potential source of discrepancy, this is in some sense counterproductive, since the previous

result had to resort to the DMNLS equation as an approximation, because the method

used could not be applied to the full equation. Here, the method can be applied directly to

the full NLS equation with dispersion management, and thus it is certainly more sensible

to do so.

5.7. Beyond analytically tractable problems

We have successfully demonstrated the application of the SVD-CE-IS method to an

existing problem for validation. We now move beyond those problems which are tractable
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by the existing semi-analytic technique. The dependence of the previous method upon

precise mathematical structure is actually quite constraining: to transform the problem

into one in which it is still solvable by the new method but not by the old, we only have to

change the pulse shape. Instead of the dispersion-managed soliton shape which we used

previously, we now use a 50% duty-cycle, raised cosine pulse shape

(5.7.1) U0 =
1 + cos(π sin( πt

100ps
))

2cDM

with the total pulse power matched to that of the dispersion managed soliton via the

normalization factor cDM, numerically determined from the previous solution. Of course,

we could select any pulse shape of interest for this system – the selected pulse shape is of

interest in at least one practical system [48]. The difference in pulse shape is not overly

dramatic, and there is no difference in pulse power. The pulse shapes are compared in

Fig. 5.12.

In terms of system behavior, however, the change is more noticeable. Without the

dispersion-managed soliton initial condition, the nominal solution is no longer stroboscop-

ically stationary, i.e., it no longer returns to the same pulse shape after each dispersion

map period. The noiseless numerical solution using this new pulse shape is presented in

Fig. 5.13. These longer period oscillations, as compared to the DM soliton evolution

shown in Fig. 4.1, will be important in assessing the performance of the system later on.

For this pulse shape there is no other result for comparison, but we can apply our

method in exactly the same way as described before, with merely a changed initial condition.
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Figure 5.12. Comparison of pulse shapes: The two pulse shapes used in

the different dispersion managed systems. The dispersion managed soliton

shape in the solid curve, and the raised cosine shape in the dashed curve.

There is no dependence upon the initial data elsewhere in the method, unlike in the semi-

analytic method where the pulse modes must be known analytically.

We then repeat the method as previously described. The modes can be computed in

exactly the same way, though the results differ slightly due to the new pulse shape. A single

sample trial from a biasing (reduced noise dimensionality) run is given in Fig. 5.14. In this

case, the nominal problem has a more non-stationary character (compare with Fig. 5.13),

and this behavior can be seen carried over in the basic behavior of this biasing run. Of

course, the system mode, the linearized input vector, (in this case, only one) is computed
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Figure 5.13. Propagation of the raised-cosine pulse shape: The noise-

less propagation of the raised-cosine pulse shape in the dispersion managed

system, solved numerically using the split-step Fourier method, observed

stroboscopically.

numerically at each amplifier as previously described, with the result and the underlying

pulse shape at the last amplifier given in Fig. 5.15

As before, we generate the biasing distributions and then use them to simulate entire

output energy PDF for the new system. With the SVD-CE-IS method, adapting to the

new, modified system is straightforward.

Using the generated biasing distributions, we simulate the normalized output energy

PDF just as done previously. The biasing targets generated by the cross-entropy method in

conjunction with the singular value decomposition are displayed in Fig. 5.16. One can see
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Figure 5.14. Sample biased Monte Carlo trial for the raised-cosine

pulse: A sample Monte Carlo trial for the raised cosine pulse system with a

biasing target generating an increase in pulse energy at the detector.

that in this case the optimal biasing distributions are no longer constant with propagation

distance, as they were in the DM soliton case.

The comparison between the simulated PDF for the raised-cosine pulse shape and the

previous dispersion-managed soliton pulse shape is illustrated in Fig. 5.17. It is immediately

apparent that the simple pulse shape change has had a dramatic impact on the overall

system performance. Recall that the input pulse energy has been matched in each case.

Despite this, in parts of the PDF the probability of a given normalized output energy

outcome differs between the two systems by as much as two orders of magnitude. The
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Figure 5.15. Pulse shape and computed mode from sample trial: The

pulse shape at the final amplifier (dashed) from the sample trial in Fig. 5.14,

along with the computed filtered mode at that location (solid). Both real

and imaginary parts displayed, black and gray respectively.

ability to easily capture the changes in system performance provoked by changes like this

is one of the benefits of the SVD-CE-IS method. Proposed modifications in system design

can be tested quickly and with a minimum effort. Furthermore, it is possible to explore

the reasons for these differences in system performance using this new method.

If one examines Fig. 5.17, despite the matching of the input pulse powers, the different

pulses clearly change the probabilities at the output. However, in the region of roughly 1.1
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biasing coefficients for the amplitude mode in the raised-cosine pulse system,

for each of the 8 (7 nonzero) biasing targets.

to 1.5 in normalized output energy, the new pulse shape appears to produce significantly

lower probabilities than the dispersion-managed soliton, beyond what can be explained by

the filter-induced shift. To further explore this region, we can also use the SVD-CE-IS

method as a probe of system behavior.

To probe this region, we select a histogram bin around 1.3 in normalized output energy

and collect a new set of observations, the filtered pulse energy path, from z = 0 to 4000

km, as the pulse propagates for each trial. This is simply a new observation from the

simulated system, essentially applying the end-of-line detector at each amplifier, and the
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Figure 5.17. Simulated PDFs for both dispersion managed systems:

Full simulated PDFs generated with the SVD-CE-IS method for the disper-

sion managed system with both pulse shapes. The DM soliton-based system,

solid, black, as previously compared with published results in Fig. 5.11, and

the raised-cosine pulse-based system, dashed, gray.

statistics are corrected for the biasing distributions using the likelihood ratio and weighting

function just as for the normalized output energy. In this way we collect the mean path

for reaching a target output value and can examine this path to understand some of the

operational mechanisms responsible for the significant performance difference between the

two systems. Doing this for both systems, we obtain the mean energy path for arriving at

a designated filtered output energy level (1.3) and can compare them for hints as to the

reasons for the difference in system performance.
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Figure 5.18. Mean filtered energy paths, energy increase: The mean

filtered energy paths as a function of distance, collected from biased Monte

Carlo trials conditioned on the final output detector value falling into a bin

at normalized energy = 1.3. Black line, DM soliton path. Grey line, raised-

cosine pulse path.

Fig. 5.18 shows the computed mean paths for each system to reach this target value.

Recall that as per Fig. 5.17, the raised-cosine pulse system is considerably less likely than

the DM soliton pulse to reach this prescribed value. By inspecting the mean paths, we

can understand the reasons for the difference in system performance. In each system, the

rapid oscillation is a result of the periodic dispersion map; recall that the dispersion map

length is za = 100 km, and so each path in our 4000 km propagation span undergoes 40

of these periodic structures. However, this oscillation is common to both systems; it is the
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longer-period oscillation that is different. Not only does the raised cosine pulse have to

travel a longer “path” to reach the prescribed value, the longer-period oscillation makes

reaching certain target values more difficult. In particular, at the locations corresponding

to the “downstroke” of this oscillation, reaching larger amplitudes is more difficult.

We can also probe the amount of directed biasing required by the method to create

a particular deflection in state space. By measuring the projection of the biased noise

against the total noise introduced at each amplifier, we track this measure of biasing

strength. By computing this measure, displayed in Fig. 5.19 along with the paths for

easy comparison, both as the local biasing strength at each amplifier and the integrated

total biasing strength up to that point, we see that as expected, based on the probability

distributions, there is more biasing strength required to deflect the raised cosine pulse

shape path to this position for probabilities that are low. As we expected, as described

previously, the additional biasing strength for the raised cosine path is required in the

section where the long oscillation is working against the desired energy change, e.g., just

before z = 1000 km.

Similarly, this process can be performed at any point in the system parameter space to

evaluate performance measures of interest. The bin around 1.3 was selected merely as a

location of large deviation between the performance of the two systems.

Likewise, we can compare the mean filtered energy paths for a target which represents

a decrease in pulse energy, perhaps a more physically relevant region for practical systems,

even if it is not an area of such large deviation. Thus, we select the histogram bin nearest

0.7 in normalized output energy and collect the statistics for the mean path for each pulse
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Figure 5.19. Measured biasing strength, energy increase: The mea-

sured amounts of biasing required, on average, to reach the histogram bin

centered at 1.3 in normalized output energy. Top: mean energy paths,

for comparison. Middle: local biasing strength, the projection of the bias-

ing noise against total noise at the local amplifier. Bottom: total biasing

strength, the net biasing applied to reach this point in the path.

shape, just as described above. In this case, recall that this energy outcome is more likely

for the raised-cosine pulse shape than for the dispersion-managed soliton, by slightly less

than an order of magnitude. The mean paths in this case are plotted in Fig. 5.20. Again,

it appears that the biasing strength required to affect a large change in the filtered energy

is very low where the desired downward direction and longer period oscillation are in phase.

We can examine the noise projection measure of the required biasing strength to probe

the behavior of the systems in this section of the PDFs as well to explore the reasons
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Figure 5.20. Mean filtered energy paths, energy decrease: The mean

filtered energy paths as a function of distance, collected for biased Monte

Carlo trials where the output detector value fell into the bin at normalized

energy = 0.7. Black line, DM soliton path. Grey line, raised-cosine pulse

path.

for the differences in system performance. The appropriate measurements are presented

in Fig. 5.21. In this case, we can readily see that the required local biasing strength for

the raised cosine pulse is less than the required strength for the DM soliton at all points,

but particularly in those regions where the longer oscillation associated with the raised

cosine pulse mean path is traveling downward as part of its normal pattern. In the region

from roughly 0 to 1500 km, the raised cosine path decreases very quickly with little biasing

strength, in the region of natural energy decrease in the nominal problem. Once the energy
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Figure 5.21. Measured biasing strength, energy decrease: The mea-

sured amounts of biasing required, on average, to reach the histogram bin

centered at 0.7 in normalized output energy. Top: mean energy paths,

for comparison. Middle: local biasing strength, the projection of the bias-

ing noise against total noise at the local amplifier. Bottom: total biasing

strength, the net biasing applied to reach this point in the path.

has been pushed down to this level, it appears to require little biasing to maintain the low

level.

We have demonstrated by probing these two regions of system state space with the

SVD-CE-IS method that it can be a powerful tool for understanding the behavior and nature

or rare events in these systems. Of course, if the system called for a different quantity to

be studied for gaining this insight into the system behavior, the method can provide results

associated with any observations that can be made from the numerical system simulation.



138

Probing these regions of system behavior could be a valuable tool in system design. If

design requirements were imposed on this system we have been simulating, certainly this

information would allow us to tailor the design as required to improve system performance,

even far down in the tails of the probability distributions.

5.8. Beyond lightwave systems

Up to this point we have formulated and demonstrated our new rare-event simulation

technique in the context of lightwave communication systems, the area of interest that

originally inspired the work and the initial test-cases and applications. However, the SVD-

CE-IS method is not formulated using any particular elements of a lightwave system model.

The requirements placed upon the system to be simulated are much more modest, and

the technique should be applicable to much wider-ranging areas. While we have presented

details of applying the method to a specific propagation operator, a specific hyperbolic

partial differential equation, the nonlinear Schrödinger equation, the method does not

depend on any specifics of this equation. Certainly it should be possible to apply the

method to the Ginzburg–Landau equation modeling ultra-short optical pulses in a mode-

locked laser. But it is also possible to apply it to any linearizable propagation operator,

be it a partial differential equation, a system of ordinary differential equations, or virtually

any other kind of propagator.

With the current formulation of the method, the only restriction is that the stochastic

component be added discreetly, rather than continuously, in the propagation direction, and

that the noise also be delta-correlated in this direction. Certainly one can imagine that
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applications requiring continuous noise might be accommodated by some discreet noise-

discretization approximation in the propagation direction, so even this restriction might

be relaxed. The remaining restrictions still allow application to a wide class of problems

beyond the scope of lightwave systems that we have so far considered.

The method has also thus far only been formulated for additive noise. While there are

no formal results to present, adaptation of the method to other forms of noise have been

considered and seem to be possible. Certainly, multiplicative noise appears to present no

insurmountable difficulty. Noise which is introduced in a system parameter, rather than

as a perturbation to the dependent variable, provides a more substantial hurdle, though

it appears that there are possible routes to accommodating this sort of model as well.

Certainly we look forward to application of this method not only to different lightwave

systems, but areas far beyond lightwave systems.
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CHAPTER 6

Discussion
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In this thesis we have formulated and presented results for the SVD-CE-IS method for

rare-event simulation in optical communication systems. In fact, the method is presented in

a more general context, and could easily be applied to areas beyond optical communication

systems – the restriction to lightwave systems is only in the choice of sample problems we

have selected for this work.

The new method evolved from a previous, semi-analytic method used in many previous

works, including some referenced in this dissertation [1, 5, 21, 49]. This method is highly

effective for problems where it can be applied, especially those making use of soliton pulse

shapes. The authors of [21] managed to extend it to dispersion managed solitons. The

impetus for developing the new method was to move beyond these soliton or DM soliton

pulse shape restrictions, so that we could study rare events in a much broader class of

problems. We have demonstrated that the SVD-CE-IS method we have developed is

extremely useful for this task.

The SVD-CE-IS method is structured in such a way that the evolution from the spe-

cialized, soliton method is quite apparent – the basic framework is the same: (multiple)

importance sampled Monte Carlo simulation. The elements of the previous method which

depend upon soliton pulse shapes are 1) the soliton modes, and 2) the soliton parameter

evolution equations. The new method we have developed replaces these missing elements,

rather than restructuring the entire method. The pulse modes are found in the new method

in numerical fashion, by employing the singular value decomposition [16] on the linearized

problem to reduce the dimensionality of the overall problem to a tractable level. In the
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example problems we present, the dimensionality reduction is from 40,960 to 40. This

provides a vast simplification, and enables the replacement of the second missing element.

In the previous method, evolution equations for the pulse parameters were available

via soliton perturbation theory. These evolution equations could guide an optimization

problem for the biasing distributions. However, while the SVD does provide the modes, it

does not provide a replacement for the evolution equations used in the analysis to determine

the biasing. For that purpose, we turn to a stochastic optimization algorithm, the cross-

entropy method [17]. We use the CEM to solve for the optimal biasing distributions using

the SVD to reduce the noise dimensionality to a space on which the CEM can reasonably

act. Using this method, we obtain the biasing distributions needed for the importance

sampled Monte Carlo simulations.

This method is demonstrated successfully for two lightwave problems. For one, we

compare with previously published work [21] and obtain good results. For the other, we

take on a problem inaccessible to the previous method. We further demonstrate that the

SVD-CE-IS method has a further capability, in that it can be used to probe the differences

between these two systems we have studied. The output PDFs indicate significantly

different performances between similar systems. By delving into sections of the PDFs

and collecting additional data, we are able to asses these differences. This is yet another

benefit of the new method.

In total, we have demonstrated an effective new method for rare event simulation in

optical systems, which can be applied to problems which may have been impossible or

more difficult by existing means. The method further is capable of delving into the details
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of system operation to garner physical insights into system performance. We also believe

that the method is formulated generally enough to be applied in the future to a much

wider class of problems than optical systems.
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APPENDIX

Parallel computing considerations
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The method we have presented is very easy to parallelize for efficient computation

on a cluster or other parallel computing structure. Simulations for this work have been

carried out not only on standard, single processor machines, but a 64-processor distributed-

memory beowulf cluster and an 8-processor shared-memory workstation. The key to par-

allelizing the algorithm is to recognize the computationally time-intensive portions of the

process and distribute these sections.

We use a parallel system with a head or control node, which performs the central

structuring of the algorithm, and work-assignment and data collection, and a number of

work nodes, which do the heavy lifting for the head node. We use a message-passing

design appropriate for distributed memory architectures, where data packets containing

work assignments are sent from the head node to the work nodes, and the work nodes

return data packets with the results of their work assignment to the head node. The head

node processes this data and re-assigns work as necessary. We used the message-passing

interface MPICH2 [50] to develop this code.

The head node, then, executes the entirety of the cross-entropy method, except for the

evaluation of the performance function (as a function of the generated random variables).

Each needed performance evaluation is sent to an available work node, which returns the

performance function value to the head node for inclusion in the cross-entropy method.

This is an appropriate division of labor because the majority of the cross-entropy method

steps require relatively little computational power, while each iteration of performance

function value from random variables requires the simulation of the nonlinear PDE and
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iterations of the linearized PDEs to execute the singular value decomposition to find the

modes.

If we refer back to the schematic representation of the method, Fig. 5.2, looking only

at the top half of the diagram for the biasing distribution generation phase, recall that

the dashed lines represent connections or processes executed many times (stochastic),

and the solid lines represent connections made only once. The three-part circulation of

dashed lines from the Cross-Entropy Method to the Singular Value Decomposition (via

n random variables), to the simulated system (via N random variables) and back to the

CEM (via the performance function value) is the portion executed in parallel on the work

nodes. Within each level of the cross-entropy method, which is a course division, each trial

is independent, and thus can easily be executed in parallel. Only at the end of each level

does the work need to be synchronized before beginning the parallel execution phase again.

However, for the problems we have been working with, the number of levels is around 6

and the number of trials per level is around 10, 000, so this synchronization phase disrupts

the parallel execution infrequently. When the cross-entropy method has reached its target

value, the biasing distributions have been determined and can be sent on to the second

phase of the method, the Monte Carlo phase.

Likewise, in the second, Monte Carlo phase of the algorithm, a similar parallelization

scheme applies. Collection of statistics is handled by the head node, and the execution of

individual trials, including the computationally costly PDE simulation and SVD steps, are

executed independently by available work nodes. Here there are no cross-entropy method

levels to disrupt the parallel execution, and the processes can proceed without interruption.
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Again, referring back to Fig. 5.2, now the lower half of the algorithm, the circulation from

IS Monte Carlo Simulation to the simulated system (via full noise and reduced noise and

the SVD) and back to IS-MC (via observations) is the portion executed independently, in

parallel, on the work nodes. After the designated number of trials have been executed on

the work nodes, the head node has collected statistics from all the observations and can

report the results as PDFs, or as desired.

In pseudo-code, then, the algorithm is represented as

// CEM-biasing distribution phase

// head node

while I ¡ Ihat

// CEM levels

for ii=1:(N/size)

// N trials at each CEM level, size work nodes

MPI˙DISTRIBUTE(performancefunction())

//(x size times, distributed to work nodes)

end for

//... CEM innards

end while

// pass biasing distributions to

// IS-MC phase
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// head node

for ii=1:(M/size)

// M MC trials

MPI˙DISTRIBUTE(MCperformancefunction())

// x size times, distributed to work nodes

//... MC innards

end for

The algorithm is very simple to parallelize, which is one of its strengths. For systems

where execution of a single trial is a costly endeavor, crude Monte Carlo simulation is

particularly infeasible, in terms of computational time, and variance reduction strategies

become more important. If the trials were very quick to execute, perhaps it would be

possible to merely “brute-force” the rare-event problem by running many, many trials.

For complex problems, however, the reduction in variance and hence number of required

trials is critical, and the ability to distribute the required trials over parallel architecture

simply makes ever more complex problems tractable. Certainly there are many problems,

however, where parallelization of this method is unnecessary, as the computational cost

of rare event simulation has been reduced so dramatically by the method that it can be

handled on a single machine without need of recourse to more sophisticated computational

methods (or hardware).


