
Journal of Theoretical Biology 333 (2013) 102–108
Contents lists available at SciVerse ScienceDirect
Journal of Theoretical Biology
0022-51
http://d

n Tel.:
E-m
journal homepage: www.elsevier.com/locate/yjtbi
Modelling airway smooth muscle passive length adaptation via thick
filament length distributions

Graham M. Donovan n

Department of Mathematics, University of Auckland, New Zealand
H I G H L I G H T S
� Airway smooth muscle (ASM) is implicated in asthma and airway constriction.

� Relationship between exerted force and ASM length is critical for airway behaviour.
� Long-term changes in force–length relationship are governed by length adaptation.
� New model of ASM with length adaption, based on Huxley's sliding filament theory.
� Critical role for the distribution of filament lengths, based on recent data.
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a b s t r a c t

We present a new model of airway smooth muscle (ASM), which surrounds and constricts every airway
in the lung and thus plays a central role in the airway constriction associated with asthma. This new
model of ASM is based on an extension of sliding filament/crossbridge theory, which explicitly
incorporates the length distribution of thick sliding filaments to account for a phenomenon known as
dynamic passive length adaptation; the model exhibits good agreement with experimental data for ASM
force–length behaviour across multiple scales. Principally these are (nonlinear) force–length loops at
short timescales (seconds), parabolic force–length curves at medium timescales (minutes) and length
adaptation at longer timescales. This represents a significant improvement on the widely-used cross-
bridge models which work so well in or near the isometric regime, and may have significant implications
for studies which rely on crossbridge or other dynamic airway smooth muscle models, and thus both
airway and lung dynamics.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding the behaviour of airway smooth muscle (ASM)
is crucial to understanding the reversible airway obstruction
central to asthma. A layer of ASM surrounds each airway in the
lung, and ASM activation thus leads to airway narrowing (and,
potentially, closure). Similarly the relaxation of ASM may reverse
airway narrowing or closure; mechanisms which limit the ability
of ASM to exert force are especially important.

The relationship between airway calibre and force is thus
central to understanding the dynamic processes associated with
asthma, and ASM exhibits a rich series of behaviours in this regard.
These are often termed force–length relationships, where of course
the length of the ASM wrapped around the airway is connected
with airway calibre.
ll rights reserved.
There are three characteristic behaviours widely seen in active
ASM, each occurring at a different scale. It is important to note that
in what follows we consider only the active component of ASM,
with the passive component excluded.
�
 Force–length loops: At the shortest timescale, with length
oscillations measured in seconds, ASM exhibits a characteristic,
nonlinear, hysteretic force–length ‘loop’ where the degree of
hysteresis and nonlinearity are dependent on the amplitude
and frequency of the length oscillations (Mijailovich et al.,
2000; Bates et al., 2009). These are sometimes referred to as
‘banana-shaped’ and a typical example is reproduced in the left
panel of Fig. 1.
�
 Force–length curves: At an intermediate timescale, measured in
minutes, changes in the length of ASM affect a change in the
ability of the muscle to exert force. Typically the peak of this
force–length curve, where maximal force is exerted, is at what
is called the adapted length. Increases or decreases away from
this adapted length result in reductions in exerted force, and
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Fig. 1. Characteristic ASM behaviours. Left panel: Force–length loops, data from Bates et al. (2009). These force measurements are taken with length oscillations imposed
with amplitude 1, 2 and 4% of reference length and frequency 2 Hz. Right panels: Force–length curves and adaptation, data from Wang et al. (2001) with best-fit quadratics.
Here in the top (bottom) panels the muscle is passively shortened (lengthened) to a new adapted length and allowed to re-equilibrate over 24 h. At each adapted reference
length, the characteristic ð1−L2Þ shape is observed, with adaptation simply shifting this shape left and right along the length axis. Peak force for each adapted length is
roughly constant.
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the typical shape might be roughly characterised by an inverted
quadratic (Wang et al., 2001; Gunst and Stropp, 1988). Typical
data are reproduced in the right panels of Fig. 1, where one
should consider for now only a single curve. The peak of any
single curve is the adapted length; if the muscle is shortened or
lengthened away from this value the exerted force will be
decreased as shown after 5 min.
�

(footnote continued)
Length adaptation: If left at a new length for a sufficiently long
time, ASM will adapt to its new length, now exerting peak force
at this new length (Wang et al., 2001; Bossé et al., 2008)—thus
ASM can exert maximal force at any length. Moreover, if the
force–length curve protocol is repeated at this new adapted
length, the same characteristic shape is observed, which can be
seen in the experimental data reproduced in the right panels of
Fig. 1, where the two panels illustrate passive shortening and
lengthening, from top to bottom.

Because of the importance of ASM force–length dynamics to
understanding airway and asthma dynamics, it is thus important to
understand the origins of each of these representative behaviours. In
this manuscript a new mathematical model of ASM is presented
which accounts for all three via the explicit inclusion of thick filament
length distributions. While existing models may account for one or
more, none reproduce all; this is discussed in more detail below.

A number of models of ASM exist in the literature, and these
can primarily be classified into two groups: viscoelastic models,
and crossbridge models. The former category describes the muscle
behaviour empirically using mechanical analogues (i.e. springs and
dashpots) and is able, depending on the construction, to reproduce
at least some of the characteristic force–length behaviours (i.e.
Bates et al., 2009). The latter group is based on the sliding-filament
model of Huxley (1957), which has been extended by several
groups to incorporate important phenomena specific to smooth
muscle (i.e. Hai and Murphy, 1988; Mijailovich et al., 2000; Wang
et al., 2008). Later models of this type are capable of predicting
reasonable force–length loops on the shortest timescale, but the
combination of force–length curves and length adaptation remains
unexplained with this family of models. In general, for existing
crossbridge models the force–length curve is a length-
independent constant rather than the desired parabolic shape,
and thus the concept of adaptation is moot as the muscle already
exerts equal force at all lengths.1 It is possible to impose,
1 This is true for the model of Wang et al. (2008) and a 5 min re-equilibration
iod: by the measurement time the muscle has already re-equilibrated. Strictly
empirically, a force–length relationship which approximates the
experimental data merely by a multiplicative scaling factor (i.e.
Politi et al., 2010); however this approach has neither a biophysical
basis, nor does it allow for adaptation.

Recently, the hypothesis that the force exerted by ASM is controlled
by the ASM length-dependent overlap between adjacent thin fila-
ments has gained traction (Seow, 2005; Ali et al., 2007; Seow and
Fredberg, 2011; Syyong et al., 2011; Brook and Jensen, in press), and
thus that changes in muscle length lead to changes in filament overlap
and thus altered ASM force. Combined with the quantitative measure-
ment of the distribution of thick filament lengths found in ASM, this
allows the construction of a crossbridge-type model in which cross-
bridge binding sites are preferentially available within and near the
thin filament overlap region, and dependent on the thick filament
length distribution. The distribution of thick filament lengths provides
a stochastic component, which determines the availability of binding
sites. Away from the filament overlap region, then, binding sites are
increasingly unavailable and thus exerted muscle force is reduced. This
is the central hypothesis on which this model is based, and it provides
a simple and elegant explanation for the characteristic force–length
behaviours at all three scales. This has potentially important implica-
tions for understanding airway and asthma dynamics, and for other
models which depend upon crossbridge or ASM dynamics as one of
their constituent parts (i.e. Anafi and Wilson, 2001; Venegas et al.,
2005; Politi et al., 2010; Amin et al., 2010).

There are other models in the literature which address length
adaptation, including the empirical and viscoelastic type approaches
of Ijpma et al. (2011) and Lambert et al. (2004), as well as the 2D
cytoskeletal network model of Silveira et al. (2005). Here instead this
phenomenon is incorporated into the well-known framework of the
crossbridge model, obtaining appropriate force–length behaviours
across the three scales discussed above.
2. Model

2.1. The crossbridge model

In order to understand the theoretical framework of the
model presented in this manuscript, it is useful to outline briefly
speaking the result depends upon the model recovery timescale and the recovery
time allowed by the protocol, but no such combination exists which simultaneously
yields appropriate force–length curves and adaptation in a traditional
crossbridge model.



Fig. 3. Schematic illustration of sliding filament and binding site arrangement.
Two thin filaments, attached at each end to dense bodies, may be bound preferentially
to the thick filament within the binding region, due to binding site availability. Thick
filaments are illustrated in various lengths, with unavailable sites denoted ‘X’.
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the basic precepts of crossbridge theory (see, i.e. Keener and
Sneyd, 2008).

Based on the sliding filament theory of Huxley (1957) for
striated muscle and extended to smooth muscle by Hai and
Murphy (1988) and others (i.e. Mijailovich et al., 2000; Wang
et al., 2008), the central concept is the binding of actin filaments to
myosin filaments, and the asymmetric cycling of the so-called
crossbridges. Actin and myosin are also referred to as the thin and
thick filaments, respectively. The thick filament contains heads,
known as crossbridges, which bind to the thin filament. It is the
ratchet-like interaction of these crossbridge heads, which occurs
asymmetrically, that generates muscle force. The relative sliding of
these filaments along their length is then directly connected with
the muscle length. This theory has been widely, and successfully
deployed to account for a number of important aspects of smooth
muscle behaviour. The typical model for ASM thus consists of four
populations: unphosphorylated, unbound myosin (M); phosphory-
lated, unbound myosin (Mp); bound, phosphorylated (AMp);
bound, dephosphorylated (AM). Transitions between these states
are governed by (spatially-independent) phosphorylation and
dephosphorylation rates, and spatially-dependent binding and
unbinding. The model is illustrated schematically in Fig. 2, speci-
fically the gray portion (the black is part of the new model, to be
discussed). The relative sliding velocity of the filaments is con-
nected with the ASM length, and thus one arrives at a coupled set
of hyperbolic partial differential equations governing the evolution
of the populations. The force exerted is then given by the moment
integral

FðtÞ ¼ κ

Z ∞

−∞
x½AMðx; tÞ þ AMpðx; tÞ� dx ð1Þ

under the assumption that both bound species exert equal force.

2.2. Unavailable sites and partial length adaptation

The model of partial length adaptation presented in this
manuscript is formulated according to the following principles:
1.
Fig
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Traditional crossbridge models work well in isometric condi-
tions, and near adapted length.
2.
 Availability of crossbridge binding sites is determined by the
thin filament overlap region and thick filament length distribu-
tion—there is high binding site availability in and near the
overlap region at steady state.
3.
 Away from the overlap region, binding sites are increasingly
unavailable, leading to a reduction in exerted force.
4.
 Once disrupted, re-formation of the thick filament within the
myofilament lattice (i.e. Seow, 2005) is a slow process.
. 2. Model schematic illustrating population states and transition rates. The new
tment of unavailable sites is in black, while the standard 4-state crossbridge
del is in grey. The new state A for unavailable binding sites is populated from
ound myosin, phosphorylated or not, by the spatially-dependent transition rate
) (see text). Re-equilibration occurs via the slow recovery rate gE. The other
ulations are governed by traditional crossbridge mechanics (i.e. Mijailovich
l., 2000; Wang et al., 2008).
These ideas are illustrated schematically in Fig. 3. Here we see
two thin filaments at top and bottom, each attached to a dense
body at the left and right, respectively. The thick filament is
formed by a combination of myosin monomers and polymers,
according to a length distribution to be discussed, and inter-
spersed with unavailable sites (denoted ‘X’). The central idea is
that within and near the filament overlap region, the density of
available myosin binding sites is near to 1 and traditional cross-
bridge theory applies; while away from the overlap region sites are
increasingly unavailable (according to the myosin length distribu-
tion). From this arrangement, we define several values which lie
outside the typical crossbridge model: (1) The width of the thin
filament overlap region, δ; (2) the length of a single thick filament
dimer ϵ; (3) the transition rate from available, unbound sites to
unavailable sites fE(x), and (4) the return rate from unavailable
sites to available sites gE. The structure of the model is then as
given in Fig. 2, which contains the four traditional crossbridge
populations along with the new state Aðx; tÞ containing the
unavailable states. The new treatment of unavailable sites is in
black, while the standard 4-state crossbridge model is in grey.

The governing equations are then given by the following set of
hyperbolic PDEs:

∂A
∂t

−vðtÞ ∂A
∂x

¼ f EðxÞðM þMpÞ−gEA ð2Þ

∂M
∂t

−vðtÞ ∂M
∂x

¼ gEAþ k2Mp þ gðxÞAM−ðk1 þ f EðxÞÞM ð3Þ

∂Mp

∂t
−vðtÞ ∂Mp

∂x
¼ k1M þ gpðxÞAMp−ðf EðxÞ þ k2 þ f pðxÞÞMp ð4Þ

∂AM
∂t

−vðtÞ ∂AM
∂x

¼ k4AMp−ðk3 þ gðxÞÞAM ð5Þ

∂AMp

∂t
−vðtÞ ∂AMp

∂x
¼ k3AM þ f pðxÞMp−ðk4 þ gpðxÞÞAMp ð6Þ

subject to the conservation equation

Aðx; tÞ þMðx; tÞ þMpðx; tÞ þ AMðx; tÞ þ AMpðx; tÞ ¼ 1

with exerted ASM force given by Eq. (1) as before. The rates
k1; k2; k3; k4; gðxÞ; f pðxÞ; gpðxÞ are identical to those used in Wang
et al. (2008). The relative motion of the ASM filaments is governed
by what is termed the crossbridge velocity, denoted v(t), which is
the derivative with respect to time of the relative crossbridge
filament positions. Thus crossbridge velocity and tissue length are
related by

−γL′ðtÞ ¼ vðtÞ

following the convention that velocity is positive during shortening.
2.3. Modelling the site loss rate using the thick filament length
distribution

Assuming initially alignment between the crossbridge displa-
cement and the discrete filament lengths, as illustrated in Fig. 3,
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Fig. 4. Force–length loops: short timescale. Model simulations of force–length
loops at 2 Hz, with amplitudes 1%, 2% and 4% of reference length from top to
bottom. The first loop is given in solid black, subsequent loops in grey, and the 40th
loop in dashed black. The loops illustrate the typical hysteresis seen experimentally
(see, i.e. Fig. 1 or Bates et al., 2009) and in crossbridge models (Mijailovich et al., 2000).
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for jxj4δh define

s≡ 2
jjxj−δhj

ϵ

� �

as the required discrete thick filament length to extend from site x
to the overlap region. Then given a (discrete) thick filament length
distribution with probability mass function z(m), the probability
that the thick filament at x does not reach the overlap region is

F̂ Eðx; δh; ϵÞ ¼ ∑
s−1

j ¼ 1
zðjϵÞ:

By taking z(m) to be a geometric distribution zðmÞ ¼ ð1−pÞðm−1Þp,
with p¼0.45 as an approximation to the experimental data (see
Section 4), F̂ E can be expressed in terms of the cumulative
distribution function as

F̂ Eðx; δh; ϵÞ ¼ 1−ð1−pÞsðx;δh;ϵÞ:

However, this still assumes alignment between the crossbridge
binding site and the discrete lengths of the thick filament;
accounting for binding site alignment offset gives

FEðx; δh; ϵÞ ¼ F̂ Eðxþ Δ; δh; ϵÞ

where Δ is a uniform random variable on ½−ϵ=2; ϵ=2�. The site loss
function, averaged over all alignment offsets, can be computed
directly by Monte Carlo simulation, or easily approximated by a
moving average. For details of the alignment concept and the
moving average approximation, see Appendix B.

Now the overall site loss function can be constructed. Away
from the overlap region the loss rate increases according to the
probability that thick filaments of the required length exist in the
muscle; within the overlap region there is a small loss rate
proportional to the mean thick filament length (thick filaments
with more binding sites are more likely to remain, even within the
overlap region). Thus we have

f EðxÞ ¼
f E1FEðx; δh; ϵÞ; jxj4δh

f E2p; x∈½−δh; δh�:

(

Intuitively, one may think of fE1 as the maximal rate of site loss far
from the thin filament overlap region, and fE2 as the (lower) rate of
basal loss which occurs within the overlap region. The function FE,
based on the distribution of thick filament lengths, provides the
transition between these rates in the area adjacent to the overlap
region.

Binding sites are re-established at a constant, slow rate all
along the thin filament according to

gEðxÞ ¼ gE1:

We maintain the approximation that δ is constant for simplicity
because both fE and gE are slow processes; this could of course be
relaxed to the natural assumption that δ′ðtÞ∝vðtÞ, though this intro-
duces an additional degree of computational complexity via the
dynamic recalculation of FE; for more on this point see Section 4.

Steady state solutions of the governing equations are obtained
by setting the left hand side of Eqs. ((2)–(6)) to zero and solving
the resulting system of 5 equations for the 5 unknowns, which is
then used as the initial condition for all simulations. These
equations are reduced to systems of ordinary differential equa-
tions via the method of characteristics (Gockenbach, 2011) which
are then solved numerically by high-order variable stepsize
routine (i.e. by MATLAB's ODE45() routine). Parameter values
and fitting are discussed in Appendix A.
3. Results

The model as described accounts for the characteristic force–
length behaviours at each scale, as outlined in Section 1.

3.1. Force–length loops

At the shortest timescale, length oscillations with amplitudes of
1%, 2% and 4% of the adapted length (2, 4 and 8% peak-to-trough,
respectively) are imposed at 2 Hz, and the ASM force is tracked
over 20 s. The resulting force–length loops are given in Fig. 4,
where the first loop is coloured solid black and the last loop is the
dashed black curve. These loops demonstrate the typical increas-
ing hysteresis and nonlinearity, increasing with oscillation ampli-
tude (i.e. Bates et al., 2009; Mijailovich et al., 2000). These results
are largely unchanged from existing crossbridge models, by design
as the protocol is confined to near the adapted length. The precise
‘banana-shaped’ loops seen experimentally are instead more
elliptical in the model and this remains a point of discrepancy
between experiment and theory (either this model, or previous
crossbridge type models). Recent work has shed some light on this
matter (Brook and Jensen, in press).

3.2. Force–length curves

On the medium timescale, to produce force length curves the
tissue begins at the adapted length (at steady state) before being
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Fig. 5. Force–length curve: medium timescale. Here the model is passively
shortened or lengthened over 10 s, and then activated by the elevation of
intracellular calcium (see text). After 5 min, the resulting force is measured and
the data plotted in the black dots. The grey curve is a best-fit quadratic.
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Fig. 6. Length adaptation: long timescale. Here the model is allowed to re-
equilibrate to a new length over a period of 24 h; after this, the protocol in Fig. 5
is repeated about this new length. The solid dots are as in Fig. 5; measurements
relative to the shortened length (23 Lref ) are given in the unfilled squares; measure-
ments relative to the lengthened tissue (43 Lref ) are the inverted triangles. In each
case a best fit quadratic is given in grey. The model illustrates the characteristic
parabolic shape at each new length, and the peak force of each curve is roughly
constant.

G.M. Donovan / Journal of Theoretical Biology 333 (2013) 102–108106
passively lengthened over the course of 10 s to the target length.
The muscle is then activated by the increase of intracellular
calcium to 1:3 μM and agonist dose to 1 (a.u., see Wang et al.,
2008), and held at the target length for 5 m. The exerted force is
then measured, and this value is recorded in Fig. 5. A total of seven
target values are taken between 0.6 and 1.4 times reference length,
and a best-fit quadratic is given for comparison. Here the model
reproduces very well the characteristic shape observed with this
protocol experimentally (i.e. Wang et al., 2001).

3.3. Length adaptation

For the longer timescale, we examine adaptation by passively
shortening or lengthening the tissue by one third of the adapted
length and allowing equilibration for 24 h, mimicking the protocol
of Wang et al. (2001). After this, the force–length curve protocol
(see Section 3.2) is repeated around the new adapted length. The
results of these measurements are given in Fig. 6, showing that the
muscle re-equilibrates fully to the new length and exhibits
identical force–length curves at each new adapted length, and
thus the model accounts well for passive length adaptation. This is
of course the expected result, as over the long re-equilibration
period the model returns to (length independent) steady state. The
slow recovery timescale was chosen from the data for passive
length adaptation, and may vary with activation or other factors—
see Section 4.
2 Approximate fit to unpublished, submitted data from Chun Seow's lab,
University of British Columbia. The model results presented here are qualitatively
robust to a reasonable range of thick filament length distribution assumptions.
Specifically, any monotonically decreasing probability mass function will broadly
match the results shown here; that is, that shorter filaments are more likely than
longer filaments at any point on the curve.
4. Discussion

By incorporating explicitly the availability of actin-myosin
binding sites, based on the distribution of thick filament lengths
of ASM, we have shown that this new model reproduces well the
force–length behaviours seen across multiple scales. Moreover,
this is based on the widely-used crossbridge model which repro-
duces well many behaviours near the isometric regime. By retain-
ing these near-isometric behaviours and extending to capture new
features away from the equilibrated length, we greatly extended
the viable range of the model.

While the model does accurately reproduce many key results,
there are several limitations. For instance, force–length loops
measured experimentally (i.e. Mijailovich et al., 2000; Bates
et al., 2009) typically exhibit a so-called ‘banana-shaped’ character
(see Fig. 1, left panel.) Crossbridge models, on the other hand, have
force–length loops which are closer to elliptical, especially in
equilibrated loops. By construction this model has similar
behaviour, and hence elliptical loops, rather than truly banana-
shaped. Recent work has suggested that this discrepancy may lie
with the passive component (Brook and Jensen, in press), which
we have excluded here.

While the thick filament length distribution is assumed to be a
geometric distribution with parameter p¼0.45 from experimental
data,2 several other parameters pertaining to the site loss rate (FE)
are fit parameters (see Appendix A).

It is also important always to be aware of the distinction
between passive and active tissue, and to be aware that here we
have not considered all possible combinations of passive/active
mechanics and passive/active protocols. We have considered
active mechanics in the sense that the ASM model does not
generate force without activation, as opposed to passive
mechanics (i.e. Donovan et al., 2010) where unactivated muscle
responds to stretch with force. Similarly, we consider only passive
length adaptation, wherein the muscle is adjusted to its new
length without stimulation. This combination leaves several
important caveats: (1) ASM activation affects the adaptation
timescale (i.e. Wang et al., 2001), with a much faster recovery
timecourse when the muscle is periodically stimulated. This is
easily accommodated by making gE activation dependent, how-
ever, the data currently available make such a crude empirical
adjustment undesirable. In particular, while it is clear that activa-
tion accelerates the adaptation timescale, the dependence upon
strength and frequency of stimulation is unclear. Thus we have
opted to treat only the passive adaptation case for now, and thus
the adaptation timescale is set to fall within the observed 3–24 h
range for passive recovery; (2) Passive force also exhibits length
adaptation, and without the inclusion of a passive mechanics
model this cannot be considered at all. Both of these points remain
important areas for future work.

By construction, this new model preserves the behaviours seen
in crossbridge models near to the adapted length, while extending
to incorporate non-equilibrium force–length curves as well as
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Fig. B1. Left panel: The site loss function FE, directly calculated by Monte Carlo simulation and approximated by a moving average. Right panel: Illustration of alignment
between filament overlap region and binding sites. Here configurations A and B have identical overlap regions, but different alignments (Δ¼ 0 in A, and Δ≠0 in B). The site
loss function is computed as an average over all possible alignments.
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length adaptation. We have shown that certain characteristic
behaviours are retained, though there are other important beha-
viours as well. For example, the characteristic, hyperbolic short-
ening velocity-load curves originally due to Hill (1938) remain
intact (data not shown); it remains an area of future work to
explore if other important crossbridge model results are retained
as well. Nonetheless, we have demonstrated that accounting for
thick filament length distributions and binding site availability
allows sliding filament theory to match experimental data in this
set of data at multiple time scales, and far from the equilibrated
length.
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Appendix A. Parameter fitting

The modified model introduces a minimal number of free para-
meters, with gE1, f E2, and ϵ chosen from data as described below.
This leaves δ and fE1 as fit parameters, obtained as follows. Because
of the computational complexity of solving the governing equa-
tions with high resolution over long times, we appeal to a reduced
problem to obtain an initial, approximate fit. To do so, we observe
that the force exerted after a length change at the intermediate
timescale will be limited by unavailable sites, and because fE and gE
are slow we can approximate Aðx; tÞ by a translation of the steady
state distribution A0ðx; tÞ by
Aðx; tÞ∼A0ðxþ ΔxÞ

for a length change corresponding to the crossbridge displacement
Δx. Then for equivalent muscle activation conditions, the force
exerted by the muscle is proportional to the available sites
determined by ð1−AÞ as

FðΔxÞ∼α
Z 1

0
x½1−A0ðxþ ΔxÞ� dx:

Then by normalising to Fð0Þ we eliminate the unknown α, and fit a
quadratic approximation to the experimental data. The error in
this fit is then minimised by Markov Chain Monte Carlo (MCMC)
parameter estimation (Robert et al., 1999).

Having obtained an approximate fit as above, a smaller number
of MCMC simulations are used from this starting point using
full dynamic simulations. The resulting parameter values
are δ¼ 11:84, f E1 ¼ 4:32� 10−5ð1=sÞ, f E2 ¼ 1:5� 10−5ð1=sÞ, ϵ¼ 4,
gE1 ¼ 3� 10−5ð1=sÞ, p¼0.45. All other parameters are as in Wang
et al. (2008).
Appendix B. Approximation of site loss function FE

The site loss function FE can be computed directly by Monte
Carlo simulation; however, as a computational convenience it can
also be approximated by a moving average with window width
ξ¼ 3:5; see Fig. B1, left panel. The right panel illustrates two
configurations with identical overlap regions, but differing binding
site alignments. The site loss function is averaged over all possible
alignments.
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