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a b s t r a c t

We present a multiscale, spatially distributed model of lung and airway behaviour with the goal of

furthering the understanding of airway hyper-responsiveness and asthma. The model provides an

initial computational framework for linking events at the cellular and molecular levels, such as Ca2 +

and crossbridge dynamics, to events at the level of the entire organ. At the organ level, parenchymal

tissue is modelled using a continuum approach as a compressible, hyperelastic material in three

dimensions, with expansion and recoil of lung tissue due to tidal breathing. The governing equations of

finite elasticity deformation are solved using a finite element method. The airway tree is embedded in

this tissue, where each airway is modelled with its own airway wall, smooth muscle and surrounding

parenchyma. The tissue model is then linked to models of the crossbridge mechanics and their control

by Ca2 + dynamics, thus providing a link to molecular and cellular mechanisms in airway smooth muscle

cells. By incorporating and coupling the models at these scales, we obtain a detailed, computational

multiscale model incorporating important physiological phenomena associated with asthma.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

It is estimated that 300 million people worldwide suffer from
asthma (Braman, 2006), a disease characterised by the emergent
phenomena of airway hyper-responsiveness (AHR) and airway
hyper-sensitivity. In AHR, the airways contract too severely; in
airway hyper-sensitivity, they contract too readily. In particular,
AHR is of primary interest because it is associated with the
majority of asthmatic mortality and morbidity (Sterk and Bel,
1989). While the exact mechanisms involved are still an area of
active research, it is believed that the role of airway smooth
muscle contraction is critical in this excessive airway narrowing
(Krishnan et al., 2008).

This work is part of a larger effort to create a comprehensive
multiscale model of asthmatic AHR. The ultimate goal of the
project is to develop a model encompassing and linking the
molecular, cellular, tissue and organ scales. In this work, we
present an initial computational framework for this multiscale
model, focusing on how the organ level model can be linked to the
ll rights reserved.
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tissue level model, and also on how molecular and cellular models
can be included, resulting in a multiscale model that spans the
entire range of spatial scales.
2. Multiscale model

Our approach to creating a multiscale model of asthmatic AHR
involves joining models at four spatial scales: organ, tissue,
molecule and cell. At the organ level, a continuum mechanics
approach is employed to solve the mechanical deformations of
the lung due to breathing and gravity (Section 2.1). The organ-
level model provides the boundary pressures and local elastic
properties of the parenchyma used as model inputs in the tissue-
level model (Section 2.2), describing the behaviour of individual
airways. The airway lumen radii computed at the tissue-level
depend on the coupling with the organ level model, the nonlinear
properties of the airway wall, and the active force generated by
the airway smooth muscle cells (SMC) at the cellular level. The
active force is modelled according to sliding filament theory, and
controlled by intracellular Ca2þ dynamics, which is determined
by the degree of external stimulation (Section 2.3). The stimula-
tion is provided by an introduced agonist, triggering Ca2þ release

www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2010.07.032
mailto:g.donovan@auckland.ac.nz
dx.doi.org/10.1016/j.jtbi.2010.07.032


A.Z. Politi et al. / Journal of Theoretical Biology 266 (2010) 614–624 615
at the molecular level and thus airway contraction. This
introduced agonist mimics bronchial challenge, a standard clinical
practice in the study of asthma (Cockcroft et al., 2001). The
crossbridge model has already been treated in detail by Wang
et al. (2008), while, for simplicity, we shall assume a piecewise
constant Ca2þ concentration. We are currently developing a
detailed model of Ca2þ dynamics in SMC, accounting for Ca2þ

oscillations and frequency encoding of the stimulus (Perez and
Sanderson, 2005), and this model can be easily incorporated into
the framework described here.
2.1. Organ-level model

The human lung contains a bronchial airway tree with an
asymmetric branching structure beginning at the trachea and
descending to more than 30,000 distal terminal bronchioles no
more than 0.6 mm in diameter, with a total of 27 airway orders,
on average (Horsfield et al., 1971). The bronchial airways do not
take part in gas exchange. The airway wall consists of a layer of
airway smooth muscle, as well as an inner layer of mucosal and
epithelial cells, all surrounding the airway lumen. The terminal
bronchioles, the smallest and most peripheral conducting air-
ways, connect with respiratory bronchioles, alveolar ducts, and
alveolar sacs, each of which has walls fully or partially comprising
alveoli. The alveoli are the site of respiratory gas exchange. Along
with the corresponding pulmonary vasculature, this complex
structure fills the volume of the lungs.

We begin by considering an arbitrary three-dimensional unit of
lung tissue. While the methods we employ are agnostic to the
tissue geometry, and can in fact be applied to anatomically-correct,
Fig. 1. Schematic of multiscale interactions. Upper left panel: complete anatomically-a

lung and the embedded airway tree in the right. Upper right panel: organ-level tissue u

represent the radii computed at the tissue level. Lower right panel: in the tissue level, ea

smooth muscle cells, and a parenchymal layer. Lower left panel: cellular/molecular le

generated by the attached populations, AM and AMp. Phosphorylation is controlled by

dephosphorylation is controlled by MLCP, which itself can be regulated by agonists.
patient-specific geometries (Tawhai et al., 2006, 2009), for
simplicity at this stage we consider a smaller tissue unit which
can be thought of as a spatial segment of the larger problem; see
Fig. 1. The location of the tissue unit is not explicitly anatomically
defined, but may be thought of as being away from the surface of
the lung, in the centre of the gravitational field, and away from
inter-lobar fissures. This tissue unit is initially uniform pulmonary
parenchyma, within which the conducting bronchial tree is
embedded. All structures aside from the conducting bronchial
tree, including the acini and vasculature, are included in the
parenchymal continuum. The conducting airway tree can thus be
thought of as being embedded, or, alternately, as being suspended
in a fibre network (Weibel, 1984). The conducting bronchial tree in
the tissue unit may also be considered as a terminal subtree of the
entire lung tree: it contains 90 airways ranging from distal terminal
bronchioles at order 1 up to order 8, but no higher-order airways.

The airway tree geometry is generated throughout the tissue
unit by a morphometrically-accurate, asymmetric-branching, 3D
tree-generating algorithm (Tawhai et al., 2004). Because of the
number of airways involved in computing a complete lung, we
make several simplifying assumptions with regard to the airway
tree in order to achieve computational feasibility. While perhaps
not strictly necessary for simulating the smaller tissue unit, the
computational complexity concerns are essential for scaling up to
the complete lung geometry. For each airway segment, we
assume that the airway is radially symmetric and longitudinally
stiff. Thus, while they are distributed in a 3D tissue unit, each
airway segment is essentially 1D. The change in length of the
airway is computed during simulated breathing, however, the
radial airway mechanics are assumed to be independent of
changes in airway length during tidal breathing.
ccurate organ-level model, with parenchymal tissue elements displayed in the left

nit with 90 embedded airway segments. The circles at the airway tree bifurcations

ch airway segment is modelled as a cylinder. We consider three layers: airway wall,

vel. Phosphorylation of myosin (M to Mp) enables binding to actin (A). Force is

several stimuli that increase Ca2+ release which in turn activates MLCK, whereas
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The tissue unit is subject to expansion and recoil to simulate
the breathing process, as well as the effects of gravity. The tissue
mechanics are considered in a finite deformation elasticity
framework, in which the pulmonary parenchyma is modelled as
a compressible, hyperelastic material. This material is assumed
to be initially isotropic, with a strain energy density function
given by

WðEÞ ¼
C

2
expðaJ2

1þbJ2Þ ð1Þ

due to Fung et al. (1978). Here J1 and J2 are the first and second
invariants of the Green strain tensor E, given by J1 ¼ TrðEÞ and
J2 ¼�

1
2½TrðE2Þ�ðTrEÞ2�. The parameter values are taken to be

a¼ 0:433, b¼�0:611, and C¼2500 Pa. The value of the C

coefficient is chosen such that uniform inflation of the tissue to
volumes equivalent to functional residual capacity (FRC) and total
lung capacity (TLC) requires physiologically reasonable expansion
pressures. The equivalent linear bulk and shear moduli obtained
with this material law are proportional to the inflation pressure;
the pressure–volume, and shear modulus–stress relationships for
this model have been previously published (Tawhai et al., 2009).
There are many other models in the literature which could be
used to describe parenchymal mechanics, some of which
include phenomena which the strain energy approach fails to
capture—see Section 4. In the spatially restricted tissue unit, a
number of these alternative models might be employed; however,
it is with an eye toward the next stage of model development,
wherein full patient-specific geometries obtained from imaging
data will be used, that we have selected the strain energy
approach. In this case, from a computational, finite-element
perspective, it is the best available model.

The boundary conditions on the tissue unit are set to provide a
prescribed change in volume via uniform expansion/contraction
of gravitationally deformed tissue to simulate the breathing
process. The tissue begins at a reference state, referred to as
reference volume (Vref), with zero strain and is initially inflated by
a factor of two in volume to FRC. A body force with direction and
magnitude of gravity is added to the system at FRC. From FRC,
tidal breathing involves a 20% increase in volume, while TLC is a
doubling in volume from FRC. Thus TLC is a total four-fold
volumetric increase from the reference state. Note that our
reference state is not physiological residual volume, but that the
operational regime of the lung is far away from zero stress–zero
strain. Because the stress–strain curve has small slope in this
range, our reference state is a reasonable approximation to the
true physiological zero stress–zero strain state.

The finite elasticity governing equations are then solved via a
finite element method. As the lung tissue unit undergoes
expansion or recoil due to breathing, pressure is exerted on the
embedded airway tree structure and the material properties
around the airway change. At each point in the tree, the pressure
and local material properties at the airway location are calculated
from the organ-level continuum model and used as inputs in the
tissue-level model. Note that because the expansion is aniso-
tropic, the linearisation depends on airway orientation—see
Section S.II in the supplementary material for more details. With
the airway radius data from the tissue-level model (coupled to the
cellular and molecular scale models), described in the following
sections, and the airway tree geometry data from the organ-level
model, we have a complete description of the behaviour of the
airway tree.

2.2. Tissue-level model

In the tissue-level model, each airway segment, modelled as a
1D line in the previous section, is now represented as a cylinder of
fixed length. We consider three layers: the airway wall, a smooth
muscle cell layer, and a parenchymal layer. It has previously been
shown that when considering dynamic airway contraction it is
necessary to consider both airway wall properties, including
significant stiffness, and elastic parenchymal tethering forces in
order to obtain good agreement with experimental data (Bates
and Lauzon, 2007). The lower-right panel of Fig. 1 is a simple
schematic of the layers included in the model. The circles at each
airway bifurcation in the upper-right panel of Fig. 1 represent the
airway radius in the segment above that bifurcation.

Each airway segment is classified according to Horsfield order

(Horsfield et al., 1971), and the properties of the airway wall
depend on airway order (Lambert et al., 1982; Lambert and
Wilson, 2005). Initial airway radii are determined only by airway
order; all airways of the same order begin with equal radii. For
additional details of order-dependent parameters, see supple-
mentary material Section I.

The local parenchymal layer is required to account for the
additional tethering force that develops due to local tissue stretch
during active airway contraction; the organ-level model provides
the boundary pressure and elastic material parameters for this
layer. Force balance across all layers determines the size of the
airway lumen. In the following, we briefly describe the different
elements of the tissue-level model. A detailed derivation of the
model is given in the supplementary material. For simplicity, all
results assume plane strain and cylindrical symmetry.
2.2.1. Airway wall and smooth muscle

We treat the airway wall and surrounding airway smooth
muscle as separate layers—see lower right panel of Fig. 1. The
passive properties of the airway wall determine the size of the
airway lumen in response to transmural pressure, while the active
smooth muscle force generated in the smooth muscle layer
contributes to the pressure across the airway wall. Thus the radius
ri of the airway lumen is determined by the transmural pressure
Ptm across the airway wall

Ptm ¼ PiþPw, ð2Þ

where Pi and Pw are the pressures on the luminal and adventitial
side of the airway wall, respectively. All surface normal vectors
point in the direction of increasing airway radius. The relationship
between Ptm and ri is detailed in the supplementary material,
Section I. The pressure Pw at the interface between the airway
wall and the smooth muscle layer is computed from the pressure
exerted by SMC and the parenchymal layer and is then given by

Pw ¼ Pm�f
Rm�Rw

rs
, ð3Þ

where f is the active circumferential stress exerted by the SMC, Pm

is the pressure at the SMC-parenchyma interface, rs ¼ ðrwþrmÞ=2
is the mean SMC radius, and Rm�Rw is the order dependent SMC
layer thickness at Ptm ¼ 0 (see also supp. mat. Section I). The
parameters Rw and Rm are the radii rw and rm in the reference
configuration, Ptm ¼ 0. All radii are given in units of mm, and thus
the quantity (Rm�Rw/rs) is dimensionless and f is a stress.
Sufficiently large activation of SMC will induce a negative
pressure Pw and hence airway contraction.

We assume incompressibility in both the airway wall and SMC
layer. Conservation of volume yields a relation between deformed
and undeformed radii in these two layers, Eqs. S.4 and S.5 in the
supplement. Note that in the absence of smooth muscle force,
f ¼ 0 and hence Ptm ¼ PiþPm.

The active stress f is computed from the crossbridge model
(Wang et al., 2008); it accounts for binding and dissociation of
myosin heads to actin and how those rates vary with external
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stimulation, contraction velocity, and SMC length (see Section 2.3
and supplement Section III).

2.2.2. Parenchyma

Airway contraction distorts the parenchyma surrounding the
airway and increases what is known as tethering force, a recoil
force opposing airway contraction. We consider for each airway
two regions of parenchyma: the parenchymal continuum, in the
organ-level model, and a layer of parenchyma local to each
airway, located between rm and rt. There are no explicit alveoli in
the model; they have been absorbed into the parenchyma. The
pressure Pt is calculated from the organ-level model, and the local
parenchymal layer is used to calculate the local increase in
tethering force due to airway constriction yielding the pressure
Pm. A decrease in airway radius causes an expansion of the local
parenchymal region and hence an increase in tethering force and
Pm. Note that the boundary between the local parenchymal layer
and the organ-level model at rt (Rt) will be taken as a far-field
condition where rt brm (Rt bRm) and hence rt and Rt do not
appear explicitly in the final equations. We will also assume that
no neighbouring airways exist within the radius of the local
parenchyma, so that parenchymal distortion caused by the
contraction of one airway does not influence other airways.

For the material law given in Eq. (1), no analytical solutions of
parenchymal displacement and stress inside this local layer could
be found; we therefore approximate the problem using linear
elasticity. Assuming that active contraction causes small displace-
ments of the parenchyma, we linearise the local stress, obtained
from the organ-level model, around the actual deformation state.
This depends both on the nonlinear material state and airway
orientation—see supplement Section II. The linearisation yields a
pre-stress and the shear modulus m describing the local, linear
parenchymal layer. These two parameters depend on the actual
strain of the parenchymal tissue obtained from the organ-level
model. This method intrinsically accounts for the stiffening of the
parenchyma for increasing lung volumes and is originally due to
Lai-Fook (1979). To account for additional local nonlinear effects
caused by airway contraction, we use a second-order phenomen-
ological approximation

Pm ¼ 2m½DRmþnðDRmÞ
2
�þPt , ð4Þ

where

DRm ¼ ðRm�rmÞ=Rm: ð5Þ

The linear term comes from the linear elasticity assumption,
while the quadratic coefficient n¼ 1:5 has been determined from
experimental data (Lai-Fook, 1979). In this equation Pt and m are
obtained from the organ-level model of the parenchymal
continuum—important details of this relationship are discussed
further in Section 2.2.3. Because the alveoli are included in the
parenchymal continuum, alveolar pressure appears implicitly as
part of Pt. While in general the unstrained parenchymal radius is
constant, the linearisation creates an implied linearised unstrained
parenchymal radius, denoted Rm (see supplement Section II).

In the absence of active force and airway contraction, the
pressures at the airway wall, smooth muscle layer, and parench-
ymal tissue/far-field are all equal: Pw ¼ Pm ¼ Pt . Sufficient SMC
activation ðf 40Þ causes both inward force on the airway wall so
that PwoPm and parenchymal tethering force such that Pm4Pt .

2.2.3. Parenchymal coupling

The model contains multiple representations of the parench-
yma, and the relationship between these regions requires
additional description. At the organ scale, the global parenchyma
is an anisotropic continuum, as described in Section 2.1. Each
individual airway is connected to a local parenchymal layer,
which accounts for the increased tethering force caused by airway
constriction. It is assumed that only one airway occurs within
each local parenchymal layer.

The material properties of the local parenchymal layer are
connected to the global parenchymal state at that location, but
they are not identical. The local parenchyma is a linear, rather
than nonlinear, material, with material parameters determined by
linearising the global, organ-level parenchyma at each specific
location in both space in time. This process depends upon the
local airway orientation because the organ-level material stress is
anisotropic, and a single value for the stress is taken by averaging
radially (perpendicular to the airway vector). Precise details of
this relationship are given in the supplementary material S.II.
2.3. Cellular- and molecular-level models

At the cellular level, airway SMCs are modelled according to
the sliding filament theory, and the generated force is calculated
using a modified crossbridge model (Wang et al., 2008). This
model takes into account both the SMC length and external
stimulation; for complete details, see supplement Section III.
Binding of myosin to actin, and hence force generation, is
controlled by myosin light chain phosphorylation. This is set by
the balance between two stimulus-dependent enzymes, myosin
light chain kinase (MLCK) and phosphatase (MLCP). Binding of
agonists to membrane receptors causes Ca2 + release from
intracellular stores into the cytoplasm and triggers activation of
MLCK (Kamm and Stull, 2001). The MLCP can in turn be
inactivated by the presence of other agonists, in a process called
Ca2þ sensitisation (Somlyo and Somlyo, 2003).

Following Hai and Murphy (1988), we distinguish four states
for myosin (see Fig. 1, lower-left panel): two actin-bound states,
AM and AMp, and two free states, M and Mp, where the subscript
indicates phosphorylation. It is only the bound states that
generate active force. The transition between attached and
detached states is modelled according to the sliding filament
theory, which has been shown to reproduce several important
dynamic properties of SMC (Mijailovich et al., 2000; Wang et al.,
2008). Because the attachment and detachment rate constants are
functions of the crossbridge displacement x, the amount of
attached myosin depends directly on dynamic length changes in
the SMC—the velocity of airway contraction and relaxation. The
length changes are in turn determined by the coupling to the
tissue and organ level models (see supplement Section III).

The SMC force is also set by its overall length. It has been
shown that long after a change in SMC length, the isometric force
remains below the force obtained at the so-called adapted length
(Gunst and Stropp, 1988; Ishida et al., 1990; Wang et al., 2001;
Herrera et al., 2005). The relation between isometric force and
length is characterised by a force–length curve. To include this in
the model, we take the SMC tension as

f ¼ fL fa, ð6Þ

where fa is the adapted-length tension given by

fa ¼ k
Z 1
�1

xðAMþAMpÞdx: ð7Þ

Here we have assumed that the crossbridges act as linear springs,
and k characterises the stiffness of the muscle. Furthermore, we
assume as in the original work (Hai and Murphy, 1988), that the
latch state, AM, exerts the same force as phosphorylated attached
myosin, AMp. We approximate the experimental data with

fL ¼ sin
prs

2rsmax

� �3

ð8Þ



A.Z. Politi et al. / Journal of Theoretical Biology 266 (2010) 614–624618
for rsr2rsmax and fL ¼ 0 otherwise. Different functional forms can
be used without significant impact on the results. We assume that
fL ¼ 1 at TLC, so that rsmax is the radius at TLC (see Table S.1).

The cellular-level crossbridge model is dependent on a
molecular-level Ca2þ model. At the current stage, for simplicity,
we assume a simple imposed Ca2þ concentration: initially
constant until agonist application, when a 2-second period linear
increase precedes a higher constant level for the duration of the
simulation.

2.4. Multi-scale interactions

To solve the multi-scale model at each time step, we perform
the following calculations:
�
 Impose a volume change on the lung and solve the finite
elasticity problem. Together with gravity, this yields deforma-
tion and stress in the lung.

�
 At each airway segment, the deformation gradient tensor is

used in conjunction with the airway direction vector to
compute the radial stress and local shear modulus of the local
parenchymal layer, which in turn determines the increase in
tethering force.

�
 The crossbridge model is used to compute the velocity of

displacement and force exerted by the SMC.

�
 The new airway radius is given by force balance of all these

factors.

The model contains four separate scales: organ, tissue, cellular
and molecular. In addition to the dynamics at each level, the
levels are connected as follows. The organ-level model influences
the tissue-level model via the cyclic recoil pressure and the local
parenchymal material state. The tissue-level model passes
information to the cellular-level by way of the macroscopic
smooth muscle contraction velocity, which is proportional to the
microscopic crossbridge velocity at the cellular level. The cellular
model is connected back to the tissue level model both by the
contraction velocity and the generated force. The molecular-level
imposes the Ca2þ concentration due to agonist on the SMCs at the
cellular level. These relationships are summarised in Fig. 2.

In order to implement this model computationally, it is
important to account for the fact that in certain situations the
pressure–radius relationship may become multi-valued, as has
been previously suggested by others (Macklem, 1995). This static
bistability would normally allow the solution to ‘‘jump’’ instanta-
neously from one solution to another, but this would not yield
correct dynamics; we demonstrate that because of the multiscale
coupling in this model, the crossbridge dynamics modulate the
transition between stable states such that slow and steady
contraction is still seen. See Section 3.3 for additional details.

It is important to note that we do not include one important
mechanism which triggers bistability found in Anafi and Wilson
(2001) and Venegas et al. (2005), the feedback between flow and
airway resistance, whereby tidal volume is maintained during
constriction and airways are connected such that constriction on
one part of the airway tree must be compensated by a dilation
elsewhere. In this model we have neglected airflow and all
variation comes from the pressure imposed externally on the
Fig. 2. Diagram of mult
airway (Pt), which is independent of all other airways. Neglecting
airflow is a significant assumption and is discussed in Section 4.
3. Results

To simulate agonist challenge, we choose to compute a 200 s
window with 4-second tidal breathing repeated throughout. A
variable timestep algorithm is used, with a minimum timestep of
t¼0.005 s and a maximum of t¼0.125 s. Thus we inflate the tissue
from Vref to FRC to initialise the simulation, and then proceed with
tidal breathing oscillations and introduce the agonist concentra-
tion at t¼10 s. The breathing is normal up to this point, when
agonist is introduced uniformly to the system and airway
contraction begins. The pressure applied on each airway in the
embedded tree due to the breathing is calculated from the organ-
level, continuum mechanics model, and represented in Fig. 3 for a
single breathing cycle. The variation between airways is a result of
the spatial distribution of tissue stress (due to the nonlinear
material properties), as well as airway orientation relative to the
gravitational body force. In fact, the pressure and material
property variation obtained within the tissue unit is relatively
small compared with expectations for variations across a
complete, anatomically-accurate lung geometry. Additional
discussion of this spatial variation can be found in Section 3.2.

This applied pressure is supplied to the tissue-level model,
which, along with the agonist concentration and parenchymal
material properties, determines the airway radii by way of
crossbridge dynamics, airway wall mechanics, and local parench-
ymal distortion. The (normalised) mean time courses of these
radii, with agonist introduced at t¼10 s, are given in Fig. 4. The
final conducting airway radii, measured at the final return to FRC,
vary from approximately 38.2% to 59.8% of their initial values; the
mean is 42.6%. Intra-order heterogeneity depends upon gravity,
nonlinear tissue expansion, and airway orientation; inter-order
heterogeneity is further influenced by order-dependent airway
wall mechanics. Further discussion of this point can be found in
Section 3.2.

Airway contraction causes distortion in the surrounding
parenchyma, and the resulting parenchymal tethering force is
incorporated into the force-balance calculation. The contribution
of this increase in tethering force, when compared with the cyclic
recoil pressure (from the organ-level only), is illustrated in Fig. 5
for a single, sample airway in the simulation. According to the
model the increase in the tethering force is of the same order of
magnitude as the applied pressure, and so contributes
considerably in determining the airway radius during SMC
activation. The increase in parenchymal tethering pressure
obtained here is qualitatively consistent with previously
obtained experimental results (Bates et al., 1994).

The final spatial distributions of Pt and the airway contraction
ratio ri/ri(0) are given for each airway segment in the tissue unit in
Fig. 6. The circle radii correspond to airway radii, while the colour
indicates the cyclic recoil pressure and airway cross-sectional
area contraction ratio, left and right, respectively.

One phenomenon observed in this multiscale model is the
reduction of crossbridge force generation due to macroscopic tidal
breathing oscillations, an effect previously demonstrated by
iscale interactions.
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others (i.e. Latourelle et al., 2002; Winkler and Venegas, 2007;
Brown et al., 1994). Because of the coupling between macroscopic
and microscopic velocities, macroscopic tidal oscillations create a
microscopic velocity which prevent actin–myosin binding and
cause force reduction. The force reduction then leads to an
increase in airway radius. To measure this effect, we simulate our
multiscale model with averaged external organ-level pressure and
material properties and compare with the results for tidal
breathing during agonist challenge. The results of these simula-
tions are given in Fig. 7, with the normalised volume of the airway
tree plotted against time in each situation. The grey curve is in the
case of tidal breathing, the black, solid curve is in the static case
without tidal breathing (with static properties equal to the mean
tidal breathing properties) and the black, dashed curve is the time
average of the grey curve. Force reduction due to tidal breathing
causes the difference between black dashed and solid curves.
While several studies have found much larger dilations than seen
here (cf. Latourelle et al., 2002; Winkler and Venegas, 2007;
Brown et al., 1994; Shen et al., 1997), more recent work in intact
airways suggests that, in situ, the dilation may in fact be very
small (LaPrad et al., 2010). The magnitude of the effect and the
factors influencing it within the multiscale model are discussed in
the following section.
3.1. Relative influence of oscillations on constriction

While force reduction caused by breathing oscillation is a
phenomenon fundamentally due to the dynamics of the included
crossbridge model, the magnitude of dilation is determined not
only by the crossbridge model, but also the incorporated models



Fig. 6. Final spatial distributions at each airway segment in the tissue unit. Left panel: external cyclic recoil pressure Pt in (Pa). Right panel: airway cross-sectional area

contraction ratio ri/ri(0). In each plot, the circles at each junction represent the airway radius in that segment and the colour the indicated quantity.
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at other scales. A greater degree of dilation can be obtained by
altering the model parameters in various ways; however, most
parameters have been previously determined in order to agree
with experimental data and obtain other behaviours. For example,
altering the crossbridge cycling rates can achieve much larger
dilations, but potentially at the cost of the experimental
agreement obtained in Wang et al. (2008).

In order to assess the influence of interactions between
multiple scales on the overall radius increase due to oscillations,
we have performed a sensitivity analysis. We systematically
varied 16 model parameters and analysed their influence on this
particular outcome (Fig. 8). Unsurprisingly, the crossbridge
attachment and detachment rate parameters fp1 and gp1 have
the largest influence. However, significant impact is also obtained
by increasing the maximum isometric smooth muscle force k or
the phosphorylation rate kon2. The other parameters examined
have minimal influence.

It is also possible that this level radius increase is in fact the
appropriate degree for the situation under consideration here.
Potentially important differences with previous studies include
the order of the airways under consideration, the size of the tidal
oscillations, the state of health of the tissue, the observed
timescales and the severity of the imposed constriction. For
example, Brown et al. (1994) considers deep inspirations rather
than tidal oscillations; Winkler and Venegas (2007) consider the
problem as coupled with airway closure; and the largest force
dilations in Latourelle et al. (2002) occur under conditions of
larger pressure oscillations (DP of 500 Pa compared to approx.
150 Pa here) and on much longer timescales. However, it should
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be noted that smaller values of DP in Latourelle et al. (2002) still
yielded greater dilation than seen here. Another confounding
aspect in comparing studies is the mean value of the oscillations,
rather than only the amplitude; for example, the in vivo results of
Shen et al. (1997) use tidal oscillations above, rather than about, a
baseline value, such that by increasing DP the mean value of P is
correspondingly increased. It may also be that multiscale
interactions have a significant quantitative influence on this
effect (i.e. Bates, 2010). In fact, it has been suggested by more
recent experimental work (LaPrad et al., 2010) that in situ airway
behaviour, rather than isolated ASM, shows little or no effect, and
this is attributed to interactions between different scales.

For comparison, we also simulated the force reduction in the
model in isolated ASM, without coupling to the models at other
scales. For 5%, 10% and 20% length oscillations about fixed mean
(with g as for an upper, Horsfield order 27 airway), force reduction
versus isometric activation measured 3.49%, 6.93% and 15.22%,
respectively. Though fixed oscillations of this form are not directly
comparable to the multiscale case, this suggests that interactions
between scales are responsible for a significant reduction in the
observed magnitude of dilation.

3.2. Spatial heterogeneity

The simulation results exhibit spatial heterogeneity, both
intra- and inter-order, and this is due to four effects included in
the model. Intra-order heterogeneity is caused by gravity, non-
linear tissue expansion (Section 2.1), and varying airway orienta-
tion (Section 2.2.3). Additional inter-order heterogeneity is caused
by order-dependent airway wall parameters (Section 2.2).

For intra-order heterogeneity, the effects of gravity and
airway orientation may be easily assessed. Airway reactivity
(ri(200)/ri(0)) is significantly statistically correlated with gravita-
tional height (z) at the 95% level, though not with a 1-D measure
of airway orientation relative to gravity ðj~a �/0,0,1SjÞ. In control
simulations in the absence of gravity, the intra-order hetero-
geneity vanishes (data not shown). Nonlinear tissue effects are
responsible for the remaining heterogeneity, and airway reactiv-
ity is correlated with the distance between the centre of the tissue
block and the airway location at the 95% level. These assessed
correlations consider only the 45 order 1 airways amongst the 90
total airways within the restricted tissue unit. In full lung
geometries the gravitational effect and overall heterogeneity are
expected to be much more pronounced.
3.3. Airway contraction kinetics and bistability

An important consideration in implementing this model is that
in certain situations, the pressure–radius relationship determin-
ing the airway radius may be multi-valued. However, even in this
situation, the dynamics of the system are still modulated by the
crossbridge model and the result is slow and steady transition
between the two stable states. To illustrate this, we show the
results for one airway challenged with agonist at different lung
volumes in Fig. 9A and B in a static lung (that is, no tidal
breathing). The degree and kinetics of contraction are controlled
by lung inflation: at high lung volumes the contraction is less
pronounced and slower than at small lung volumes (t1/2¼32.1 s
for 1.5� FRC compared to 10.4 s at Vref). Fundamentally the
kinetics are determined by the sliding filaments in the crossbridge
model, but through numerous multiscale interactions this sliding
speed can be affected by other factors, such as volume as
demonstrated in Fig. 9A and B. This slow and steady contraction
is in agreement with the results of Fredberg et al. (1999) in the
case of a system in force balance.

The multiscale model also provides insight into the kinetics of
airway contraction when the system has multiple steady states.
One source of bistability is the positive feedback of airway radius
on the inward pressure—that is, the 1/rs dependency in Eq. (3)
(the Laplace law) causes an increase in the effect of contraction
force with decreasing radius (for fL ¼ 1). This triggers a feedback
mechanism wherein increasing muscle tension leads to decreas-
ing airway radius, which causes further decreases in transmural
pressure and thus even smaller airway radius. The behaviour
arises from combining Eq. (S.1), which relates airway radius and
transmural pressure, with Eqs. (2) and (3), which relate
transmural pressure and smooth muscle tension, into an implicit
equation relating airway radius and smooth muscle tension. For
certain parameter values, this force–radius relationship has
multiple solutions. For additional details see Section I of the
supplementary material. An example is shown in Fig. 9C, between
points a and b, where the system has three stationary states.
These model predictions are in good agreement with previous
predictions (Macklem, 1995) and importantly occur in both cases
in the absence of tidal breathing oscillations.

The contraction in the fL ¼ 1 case occurs on a much slower time
scale than in the case with the variable force–length relation
(Fig. 9D, t1/2¼103 s). Furthermore, when the dynamics reach
point a, we do not have a sudden collapse of the airway, but a
slow closure, which lasts for over 50 s. This is an emerging
property of the cellular/molecular-level model. As soon as the
airway begins to collapse after point a, the SMC contraction
velocity increases, which inhibits crossbridge attachment and
leads to a decrease in the stress fa. Hence due to the coupling of
crossbridge dynamics to the airway wall model, rapid collapse
cannot be sustained and the contraction follows the demon-
strated slow and steady time course. Thus, although the steady



Fig. 9. Airway closure kinetics and bistability resulting from tissue and cellular/molecular level coupling. Order 7 airway at Vref, FRC and 1.5 times FRC, challenged with

agonist. (A) Steady state radius as function of SMC stress, fa. (B) Time course of radius in response to simulated methacholine challenge. At 10 s agonist and Ca2þ

concentration are increased (from a¼0 and c¼0.1mM to a¼1 and c¼ 0:65mM, respectively). (C) Example of multiple stationary states. This occurs at large lung volumes

when the force–length relationship is unity, fL¼1. The arrow-heads indicate the trajectory after agonist addition. (D) Kinetics of the airway radius. In panels (A) and (B),

there is the variable force–length relation. In panels (C) and (D), the force–length relation is fL¼1 (Eq. (6)).
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state on the branch between a and b is unstable, the dynamics
closely follow the steady state curve in this region.

This is not to say that bistability necessarily occurs when the
force–length relationship is unity, or indeed that bistability
cannot occur otherwise. In fact, with a different choice for the
airway wall properties (Affonce and Lutchen, 2006), bistability
can also occur in the case where ðfLr1Þ. The important feature is
the dynamic progression within the bistable region; by coupling
the bistable airway wall behaviour with the kinetics of the
crossbridge model, we see the smooth and slow dynamics in the
region of bistability that could not be found with the airway wall
model alone.
4. Discussion

Understanding AHR is a critical component of understanding
asthma, and building a quality model of AHR necessarily involves
accounting for the multiple spatial scales which are fundamental
to the physical system. We have presented a model which
incorporates and couples these multiple scales to simulate the
complex physiological response.

We have demonstrated as a proof-of-concept example for this
model a simulated bronchial challenge in a spatially restricted
tissue unit. The model accounts for tissue deformations caused by
both breathing and gravity, nonlinear airway wall properties,
parenchymal tethering, and smooth muscle crossbridge dy-
namics; the strength of this model is the ability to incorporate
all of these essential aspects and their spatial distributions
simultaneously, while still maintaining a degree of computational
complexity which will allow the method to scale to the complete
anatomically-accurate lung geometry.

Even though the current model is restricted to a segment of the
lung, we already see emerging properties from the coupling of the
different levels. For instance, airway lumen radius bistability has
repeatedly been proposed to amplify constriction and patchiness
in respiration (Anafi and Wilson, 2001; Affonce and Lutchen,
2006; Venegas et al., 2005). Our dynamic multiscale model
provides insight into the transition between multiple steady
states, as it predicts a slow and smooth progression in this region
due to the myosin/actin interaction and the load of the external
pressure—see Section IV and Fig. S.2 in the supplementary
material. This slow and steady progression is in agreement with
(Fredberg et al., 1999), where slow and steady dynamics were
shown for a system in force balance; we have shown that these
dynamics are also found in a system with multiple steady state, as
suggested by Latourelle et al. (2002) and Oliver et al. (2007). The
existence of multiple steady states is a result of the airway wall
model due to Lambert et al. (1982), which arises from experi-
mental data. There are no intrinsic dynamics associated with this
static model. A similar mechanism for bistability has been
described in Affonce and Lutchen (2006). Integrating this model
with the crossbridge model imposes the slow crossbridge
dynamics on the coupled system and results in slow dynamic
transitions between multiple steady states. It is important to note
that the bistability encountered in this model differs in important
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ways to that found in Anafi and Wilson (2001) and Venegas et al.
(2005); while there are many similarities in the models, one very
important difference is the mechanism of feedback between flow
and airway resistance developed in Anafi and Wilson (2001) and
thus inherited by Venegas et al. (2005). This mechanism strongly
promotes bistable behaviour and is not present in this model.

We have also shown that tidal breathing oscillations do cause a
reduction in SMC force generation, and measured this extent of
this phenomenon. Moreover, while this dynamic phenomenon is
fundamentally due to the crossbridge model, multiscale interac-
tions significantly influence the final magnitude of the effect.
While several studies have demonstrated more significant dila-
tion due to oscillations than seen here (Latourelle et al., 2002;
Winkler and Venegas, 2007; Brown et al., 1994; Shen et al., 1997),
we have discussed at length many potential differences between
these studies. Moreover, recent work (LaPrad et al., 2010) in
isolated airways suggests that length-scale interactions may in
fact lead to a much smaller effect.

We also show that, even for homogeneous inflation and
initially homogeneous material properties, the model predicts
the development of inhomogeneity in the pressure and material
properties surrounding the embedded conducting bronchial tree.
This is due to gravity and the nonlinear properties of the
parenchyma as well as airway orientation. This pressure and
material heterogeneity is reflected in the heterogeneous contrac-
tion seen in the airway tree in Figs. 4 and 6. In particular the
variation within any given order is entirely due to these
phenomena, as airways of the same order otherwise begin with
identical parameters.

The mechanisms driving the emergent inhomogeneity demon-
strated in this model are different from those found elsewhere in
the literature. The model of Venegas et al. (2005) employs a
dynamic instability that is sensitive to (and amplified by) small
perturbations in the airflow pressure: constriction of one airway
can lead to a cascade of constriction and dilation of airways in a
‘‘patchy’’ pattern. In our model airways constrict and dilate
without influencing their neighbours. Inhomogeneities develop as
a result of perturbation from the homogeneous state provided by
organ-level nonlinearity, gravity and airway orientation. The
locally-homogeneous expansion of the (inhomogeneous) organ-
level model in the region local to the airway is a feature not found
in these other models, where instead airway radius, tissue
expansion and airflow were linked functionally. Furthermore, all
smooth muscle dynamics in this model are due to the crossbridge
model, rather than an empirical smooth muscle model. However,
the primary strength of this work is not in considering the model
for each spatial scale in isolation and comparing with existing
models at that scale, but rather that we have developed a truly
multiscale model which incorporates important features at all
four spatial scales and their interactions in a spatially distributed
model. While these previous studies do include multiscale
aspects—for example, the coupling between terminal airway
and tissue in Anafi and Wilson (2001) and the bronchial tree
defining a spatial boundary between organ and tissue scales in
Venegas et al. (2005)—this new model accounts for spatial
distribution while including a physiologically realistic organ-level
model and biophysically-based crossbridge model smooth muscle
dynamics.

The model does have some limitations and omissions at this
stage. An airflow model is not included at this time—that is,
Pi � 0. The pressures generated by airflow are believed to be too
small relative to those already included (see Fig. 5) to have a
significant impact on the radius calculation. In the models of Anafi
and Wilson (2001) and Venegas et al. (2005) a positive feedback
mechanism amplifies these small differences; however, we
currently include no such mechanism. Of course, an airflow
model could be important in some situations, such as a severely
constricted lung, or for other purposes, and will be included in the
future. At this stage the hypothesis about the relative magnitudes
of the pressures and their significance may be tested.

The organ-level continuum model does not yet account for the
dynamics of surface tension, viscoelasticity, nor other mechan-
isms that contribute to tissue hysteresis, and as a result inflation
and deflation are symmetric processes. Realistic pressure–volume
curves for both inspiration and expiration require the inclusion of
these hysteretic effects. Many other approaches which account for
some of these phenomena are available in the literature (e.g. Fung
et al., 1978; Kowalczyk and Kleiber, 1994; Budiansky and Kimmel,
1991; Hantos et al., 1992; Wilson and Bachofen, 1982; Lai-Fook
et al., 1978; Stamenovic and Smith, 1986; Kimmel et al., 1987;
Kimmel and Budiansky, 1990). While some of these models might
be preferable within the current spatially restricted tissue unit,
we have selected the strain energy approach in order to facilitate
the next stage of model development, which is the incorporation
of detailed, patient-specific geometries acquired from imaging
data. These in turn are best solved computationally by a finite
element method, for which the strain energy model is the best
available approach.

There are several extensions of the model which might be
considered in the future, depending on the specific intended
application. Certain comparisons with clinical results may require
scaling the model up to the full lung geometry, rather than
restricting spatially to the tissue unit. It would also be necessary
to incorporate a model of a clinical measure, such as airway
impedance. Also a spatial distribution of applied agonist,
representing inhalation, as opposed to the current uniform
application, would be important for achieving the full range of
spatial and accuracy in mimicking the clinical procedure.

Other limitations are the failure to account for fluid interac-
tions (Heil et al., 2008) and mucosal folding in the airways, as
these may be sources of airway closure. We have only considered
active properties of the airway smooth muscle layer; to this point
the passive properties have been neglected. The local linearisation
of the parenchyma at each airway is only valid for small local
distortions—that is, airway constriction. We have thus far used a
simplified assumption for the Ca2þ concentration at the cellular/
molecular scale. Development and inclusion of a more sophisti-
cated Ca2þ model, which accounts for the Ca2þ oscillations
observed in SMC (Perez and Sanderson, 2005), is an important
area of future work. The model to date has been constructed to
easily accommodate such additions.
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