
A

G
A

a

A
A

K
M
A
B
B
M

1

b
u
e
a
p
t
p
i
s
t
t
i
2
a
p
c
a
2
K

s
m

1
d

Respiratory Physiology & Neurobiology 171 (2010) 144–150

Contents lists available at ScienceDirect

Respiratory Physiology & Neurobiology

journa l homepage: www.e lsev ier .com/ locate / resphys io l

simplified model of airway narrowing due to bronchial mucosal folding

raham M. Donovan ∗, Merryn H. Tawhai
uckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand

r t i c l e i n f o

rticle history:
ccepted 22 February 2010

eywords:
ucosal folding

a b s t r a c t

Bronchial mucosal folding during bronchoconstriction can be a significant phenomenon, and a number
of previous studies have provided models which examine a number of aspects of this important problem.
Previous approaches include finite-element analyses, fluid–structure interaction, linear elasticity models,
geometrical computer optimisation, and more. These models have focused on changes to the elastic
irway resistance
ronchoconstriction
asement membrane
athematical modelling

properties of the airways due to mucosal folding, rather than airway narrowing, and suffer from too great
a degree of computational complexity for use in multiscale, spatially distributed models of the lung now
being developed. We propose a simplified, geometrical model of airway folding under the assumptions
of fixed airway wall area, fixed basement membrane perimeter during constriction, specified shape and
number of folds, and liquid filling of the mucosal folds, in the context of determining effective airway
radius and hence airway impedance. We show that this model generates predictions in good agreement

ile be
with existing models wh

. Introduction

The bronchial airways may develop mucosal folding during
ronchoconstriction, wherein rather than contracting in a radially
niform manner, the airway develops a number of folds (Carroll
t al., 2000; Lambert et al., 1994; Okazawa et al., 1995; Seow et
l., 2000). The problem is akin to the buckling of a cylinder under
ressure, where the number of folds developed is determined by
he buckling mode. Bronchial mucosal folding has been thought
hysiologically important for two principal reasons: first, that it

nfluences the mechanical and elastic properties of the airway; and
econd, that the folding affects the resistance to airflow through
he airway. A number of studies have examined potentially impor-
ant aspects of airway folding using several different approaches
ncluding fluid–structure interaction (Heil, 1999; Heil and White,
002; Heil et al., 2008), finite-element (FEM) analyses (Wiggs et
l., 1997), linear elasticity models which result in boundary value
roblems (Flaherty et al., 1972; Lambert et al., 1994), geometrical
omputer optimisation (Seow et al., 2000), mechanotransduction
nd the importance of compressive stresses (Tschumperlin et al.,
004; Tschumperlin and Drazen, 2006), and other approaches (cf.

amm, 1999).

While these previous approaches have many advantages, they
uffer from being quite difficult to solve in practice, especially for
ore than a single airway. The need for a simplified model of
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E-mail address: g.donovan@auckland.ac.nz (G.M. Donovan).
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ing vastly simpler to solve.
© 2010 Elsevier B.V. All rights reserved.

folding is exemplified by the development of multiscale, spatially
distributed models of the lung which potentially require computing
a folding solution for each airway at any given time. The model we
propose attempts only to determine how the airflow is affected by
the folded, constricted airway, rather than considering the changes
to the elastic airway properties due to folding. Under the assump-
tion of liquid filling of the folded regions (Heil, 1999; Yager et al.,
1989), this amounts to finding an effective luminal radius for a given
degree of airway constriction. That is, this model depends on a sep-
arate model of the mechanical airway properties to determine the
uniform airway radius, for example that of Lambert et al. (1982).
The existing methods in the literature are difficult to adapt to these
requirements. The fluid–structure and FEM approaches are compu-
tationally too costly. The linear elasticity approach involves solving
a boundary value problem for a third or fourth order ordinary
differential equation which always admits the unfolded, uniform,
trivial solution. Ensuring that a numerical solver always finds the
non-trivial folded solution is again a difficult problem. The geomet-
rical computer optimisation approach likewise suffers from a need
to conduct an exhaustive numerical search of all possible folding
shapes. This is not tractable for a multiscale, spatially distributed
model that aims to compute bronchoconstriction through a large
number of airways. Several important studies include airflow as a
critical factor in predictions of behaviour for bronchoconstricted
asthmatic airways (Anafi and Wilson, 2001; Venegas et al., 2005)

but do not account for folding; the inclusion of a folding model may
improve the predictions of these models.

Moreover, the elastic mechanical properties of the peripheral
airways in particular are not well understood, and models thereof
often depend on extrapolation from central airway data as well

http://www.sciencedirect.com/science/journal/15699048
http://www.elsevier.com/locate/resphysiol
mailto:g.donovan@auckland.ac.nz
dx.doi.org/10.1016/j.resp.2010.02.011
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Nomenclature

r0 outer radius of airway wall
�r0 initial thickness of airway wall
�r0 amount of contraction of outer airway wall
r, � polar coordinates
f (�) assumed functional form of folded boundary
P original basement membrane perimeter
P ′ constricted basement membrane perimeter
A original airway wall area
A′ constricted airway wall area
N number of folds
�N change in number of folds N
ru radius of uniformly contracted airway (no folding)
reff effective luminal radius of folded airway
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Fig. 1. Diagram of the folding airway wall model. When unconstricted (and undi-
lated) the airway wall has outer radius r0 and thickness �r0. When the outer radius
˛, ˇ parameters describing folded boundary
� expression used for compactness—see Section 2.2

s calibration with airflow data (cf. Lambert et al., 1982). An eas-
ly applied model of mucosal folding might help to quantify the
otential impact of the phenomenon on these models.

We propose that a geometrical model, developed under assump-
ions used elsewhere in the literature, can be used as an effective
lternative to the existing, more complex models. Complete details
f the model are presented in the next section. We then demon-
trate the effectiveness of this model in comparison with one
xisting approach, the collapsible tube model (Flaherty et al., 1972;
ambert and Wilson, 1972; Lambert et al., 1994) and find that the
odel predictions are in good agreement while being vastly easier

o solve.

. Model

To develop the simplified geometrical model, we employ two
asic assumptions, as in Seow et al. (2000): first, that the material
f the airway wall is incompressible, and second, that the area of
he basement membrane is constant under constriction. If the air-
ay is dilated, the wall is still considered incompressible but the

asement membrane is allowed to stretch (McParland et al., 2004;
oble et al., 2005). In the plane, the area of the airway wall is con-

tant, and the perimeter of the basement membrane is constant
uring constriction.

Rather than attempting to solve for all possible folded shapes,
e make several assumptions. First, that the number of folds for
given airway order is known physiologically a priori. Second, we
ssume that the folding pattern is symmetric with the number of
olds. The validity of these assumptions, and alternatives, as well as
he method of determination of the number of folds are addressed
n Section 4. We then assume a functional form of the folded base-

ent membrane, described by two parameters. Then for a given
egree of constriction, finding the folded solution amounts to solv-

ng a system of two equations (airway wall area and basement
embrane perimeter, each held constant) with two unknowns (the

wo parameters).
We take the initial unconstricted outer radius of the airway to

e r0 and the initial thickness of the airway wall to be �r0. The
irway is then constricted by an amount �r0 so that the outer (cir-

ular) boundary of the airway wall has constricted radius (r0 − �r0).
ee Fig. 1 for an illustration of this configuration. The folded inner
oundary has N folds and hence N-fold rotational symmetry, so
hat in general the folded boundary is given in polar coordinates
here � is the radial angle from 0 to 2�/N and ˛ and ˇ are the two
is constricted by an amount �r0 (i.e. to r = r0 − �r0) the inner boundary of the airway
folds such that the airway wall area and basement membrane perimeter are both
preserved. Under the assumption of liquid filling of the folds, the effective luminal
radius reff is determined by the point on each fold nearest to the centre of the lumen.

parameters determining the folded boundary. The interpretation
of the parameters ˛ and ˇ depends on the assumed form of f (�),
which will be discussed in the following sections. We use the nota-
tion r = f (�; ˛, ˇ) to indicate that the radius of the folded boundary
depends on the independent variable � (the polar coordinate angle)
as well as parametrically on ˛ and ˇ. This partial folded boundary
is then extended periodically another (N − 1) times around the air-
way to generate the complete folded boundary. This 2D model does
not account for axial variation along the airway.

The constraints are then as follows. The initial airway wall area
is given by A = �(r2

0 − (r0 − �r0)2) and the folded airway wall area
is computed by the integral

A′ = �(r0 − �r0)2︸ ︷︷ ︸
wall and lumen area

− N

2

∫ 2�/N

0

f 2(�; ˛, ˇ)d�︸ ︷︷ ︸
folded lumen area

. (1)

Here the two terms correspond to the areas of the entire con-
stricted airway and the folded airway lumen, respectively. The
initial basement membrane perimeter is P = 2�(r0 − �r0) and the
perimeter of the folded boundary is obtained by integrating the arc
length (cf. Lynch and Ostberg, 1970) as

P ′ = N

∫ 2�/N

0

√
f 2(�; ˛, ˇ) +

(
d

d�
f (�; ˛, ˇ)

)2

d�. (2)

Then the two constraints A = A′ and P = P ′ are used to deter-
mine the two parameters, ˛ and ˇ. The model is purely geometrical
and intended to account for airway narrowing in a straightfor-
ward fashion; the modified mechanical properties of the airway
due to folding are not addressed. In particular, the strain energy
associated with these configurations is not addressed. This model
approximates the implied radius rather than the strain energy.

2.1. Sigmoidal folding

We consider and compare two types of assumed folded bound-
aries, a sigmoidal folding pattern and a linear folding pattern. The
sigmoidal boundary is given by

r = f (�; ˛, ˇ) = ˇ − ˛ sin(N�) (3)

so that ˛ controls the amplitude of the folds and ˇ the average
radius of the folded boundary. With this assumed form, Eq. (1) can
be evaluated as ( )

A′ = �(r0 − �r0)2 − �

˛2

2
+ ˇ2 . (4)

Unfortunately, with this assumed form, Eq. (2) cannot be use-
fully evaluated analytically. However, the integral can be evaluated
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ig. 2. Diagram of one segment of the linear folding model. With N folds, a single
egment spans the angle � = 0 . . . 2�/N. The folded boundary consists of two line
egments, connecting the points of radius ˛ at � = 0 and � = 2�/N with the point
ith radius ˇ at � = �/N.

umerically or via Jacobi elliptic functions and a simple optimi-
ation problem for ˛ and ˇ can be solved using standard MATLAB
unctions. See Appendix A for details.

.2. Linear folding

The second folding form we consider is the linear, straight-line
pproximation. On each folded segment, for � from 0 to 2�/N, the
olds connect the points with radius ˛ at angles � = 0 and � = 2�/N
ith the point with radius ˇ at � = �/N. See Fig. 2 for a schematic

f this arrangement.
With this simple arrangement the folded airway wall area and

asement membrane perimeters can be constructed geometrically
nd are given by

′ = �(r0 − �r0)2 − ˛ˇN sin
(

�

N

)
(5)

′ = 2N

√
˛2 − 2˛ˇ cos

(
�

N

)
+ ˇ2. (6)

Imposing A′ = A and P ′ = P and solving, one obtains expressions
or the parameters

2 = 1
2

⎧⎨
⎩

(
2� cos

(
�

N

)
+ P2

4N2

)

±

√(
2� cos

(
�

N

)
+ P2

4N2

)2

− 4�2

⎫⎬
⎭ (7)

= �

˛
(8)

here we take � = [�(r0 − �r0)2 − A]/[N sin(�/N)] for compact-
ess. In some situations this approximation may be inappropriate,
rincipally either when ˛ (and hence ˇ) is complex, or when the
olds bulge outside the airway wall (max(˛, ˇ) > r0 − �r0). In the
ormer case we assume that the basement membrane perimeter
ontracts, but that the airway wall area is preserved exactly. Thus
e take the uniform circle solution with radius√
u = (r0 − �r0)2 + �r2
0 − 2r0�r0 (9)

n the case where either ˛ or ˇ is imaginary. The conditions for
omplex-valued parameters can easily be found but unfortunately
re not instructive. In the latter case, we likewise enforce the isoarea
Fig. 3. Folding model comparison. Three folded boundaries given for the same
degree of airway constriction in an airway of Horsfield order 1. The solid curves
represent the folded boundary for each of the models. The dashed circles represent
the corresponding effective luminal radii.

constraint but relax isoperimeter, and take the folded solution ˛ =
r0 − �r0, with ˇ = �/˛ from the constraint A′ = A.

An example of the folded inner airway boundaries computed
with both of these models is given in comparison with that found
by the collapsible tube model of Lambert et al. (1994) in Fig. 3.
The collapsible tube model is given in black, the sigmoidal model
in blue, and the linear model in red. The circles of corresponding
effective radius are given by the dashed curves.

The effective luminal radius for each folded boundary is the
largest uniform circle which fits inside the folded airway. This is
the effective radius under the assumption of liquid filling of the
folded areas. For the sigmoidal case, this minimal radius is given by
reff = ˇ − |˛| and in the linear case by reff = min(˛, ˇ), where both
parameters are non-negative.

Of course, one might assume a functional form different from
the two that we have considered. With a different assumed form,
one would need to repeat the calculations we have performed for
the sigmoidal and linear cases. The sigmoidal form was taken as a
physically realistic shape for the folded airway, while the linear case
is a simpler-still approximation for which there is a closed-form
solution. Other assumed forms were tested, but none were found
to perform better than those presented here (data not shown).

3. Model performance

To assess the performance of the simplified model, we com-
pute effective airway radii with each model and compare with the
results obtained with the model in Lambert et al. (1994). We repeat
this calculation for each airway Horsfield order in the human lung
(Horsfield et al., 1982), and across the entire range of constric-
tion for that airway. The airway dimension parameters are taken
from Lambert et al. (1982), and the assumed number of folds for
each order is fit to and extrapolated from data in Carroll et al.
(2000); Okazawa et al. (1995). The full parameter set used for this
study appears in Table 1. We have opted to use a parameter for

a fixed number of folds for a given airway order, rather than cal-
culating the lowest-energy buckling mode (Lambert et al., 1994;
Wiggs et al., 1997). Such buckling mode calculations can differ sig-
nificantly from the physiologically observed folding numbers, and
several theories have been advanced to explain this discrepancy
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Table 1
Model parameters. Airway dimension parameters taken from Lambert et al. (1982),
and the assumed number of folds for each order as fitted and extrapolated from data
in Carroll et al. (2000); Okazawa et al. (1995) at zero pressure. We have then taken
the radius r0 to be the radius at a transmural pressure of 490 Pa using the model
of Lambert et al. (1982) to approximate functional residual capacity. Airways are
classified according to Horsfield order (Horsfield et al., 1982).

Horsfield order r0 (mm) �r0 (mm) No. of folds N

1 0.263 0.017 12
2 0.281 0.017 13
3 0.298 0.017 13
4 0.316 0.018 14
5 0.338 0.018 14
6 0.366 0.018 15
7 0.391 0.019 16
8 0.427 0.019 16
9 0.473 0.020 17

10 0.533 0.022 18
11 0.608 0.023 18
12 0.695 0.025 19
13 0.802 0.027 19
14 0.923 0.029 20
15 1.054 0.032 20
16 1.207 0.036 20
17 1.397 0.039 20
18 1.620 0.044 20
19 1.872 0.049 20
20 2.197 0.056 20
21 2.588 0.063 20
22 2.994 0.071 20
23 3.452 0.078 20
24 3.993 0.088 20

(
a
(
m
c

t
o

F
a
T
c

25 4.660 0.099 21
26 5.645 0.110 21
27 6.968 0.127 21
28 8.514 0.159 21

Carroll et al., 2000; Lambert, 1991; Lambert et al., 1994; Seow et
l., 2000). We have taken the radius below which folding occurs
r0) to be the radius at a transmural pressure of 490 Pa using the
odel of (Lambert et al., 1982) to approximate functional residual
apacity.

First we assess the degree of difference between the effec-
ive luminal radius calculated with each model and that which is
btained by assuming uniform constriction. The results of these

ig. 4. Airway radius reduction due to folding. Reductions in effective airway radius com
irway Horsfield orders, as a function of normalised constriction. Each folding model pre
he collapsible tube model is solved for increasing constriction up to the point of contac
ollapsible tube model. Order 1 corresponds to the terminal bronchiole.
logy & Neurobiology 171 (2010) 144–150 147

calculations are shown in Fig. 4 for several representative airway
orders. All three models predict significant reduction in effective
radius versus uniform constriction. However, the sigmoidal model
tends to overestimate this effect relative to the collapsible tube
model, and the linear model gives the best agreement.

Principally the airway radius is of interest in calculating airway
impedance. Using our model results for effective airway radius, and
under the assumption of Poiseuille flow, we calculate the airway
resistance (the real part of impedance) in each of these repre-
sentative airway orders for a given degree of constriction. The
resistance values are normalised such that the resistance of the
unconstricted airway is 1. The results of this calculation are given
in Fig. 5. The dashed curve indicates the resistance under uniform
constriction. All three models predict significant increases in airway
resistance, as expected given the predicted decrease in effective
radius. Again the sigmoidal model tends to overestimate the air-
way resistance relative to the collapsible tube model, and the linear
model gives the best agreement. Note that as resistance is given on
a log scale, the difference between the uniform and folded mod-
els is very significant, especially for the smaller airways. For the
Horsfield Order 1 airway in Fig. 5, for example, at �r0/r0 = 0.2
the uniform and linear predictions of resistance differ by more
than 50%.

To demonstrate the cumulative effect of folding on airway tree
resistance, we use a simple model of a conducting airway tree con-
taining 90 asymmetric-branching airways, ranging from Horsfield
order 1–10. We compute the baseline resistance of this airway tree
at functional residual capacity using radius values from Table 1,
using the method of Lutchen and Gillis (1997). We then constrict
the outer radius of each airway by 20% and compute reff under
both uniform constriction and linear folding and again calculate
the resistance. The results of these calculations are given in Fig. 6,
which shows a marked increase in airway resistance under folding
versus uniform constriction.

The simple linear model appears to provide good agreement

with the more sophisticated collapsible tube model for the pur-
pose of computing effective radius and thus resistance at the
sampled airway orders. To assess the performance of the linear
model for all airways, we calculate the relative error in radius pre-
diction between the linear model and the collapsible tube model

pared with uniform constriction as predicted by each folding model for selected
dicts a significant decrease in effective luminal radius versus uniform constriction.
t between adjacent folds. The linear model provides the best agreement with the
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ig. 5. Airway resistance increase due to folding. Normalised airway resistance as p
unction of normalised constriction. Resistance is normalised such that the value is 1
specially for the smaller orders. Normalised resistance is given on a log scale.

or all orders and all degrees of constriction. These error calcu-
ations are given in Fig. 7 both as an error boundary in the left
anel and as an average error for each airway order in the right
anel. Constriction is normalised such that at 0 the airway radius

s r0 and at 1 contact between folds occurs in the collapsible tube
odel.
The linear folding model compares very favourably with the col-

apsible tube model for all but very high degrees of constriction,
hough the relative error does not exceed 10% for any combination
f airway order and degree of constriction. For all orders, the mean
rror between the two models is less than 3.1%. Because the largest

rrors occur near closure, the errors tend to be in resistance values
hat are already very high. As the airway resistance is so large as
o be representing a nearly closed airway, the relative errors seen
etween the models are potentially less relevant to overall airflow
esults.

ig. 6. Airway tree resistance. Total resistance is given for a sample airway tree con-
aining 90 airways from Horsfield order 1 to 10. The dotted curve gives the baseline
esistance with no constriction. The outer radius of each airway is then constricted
y 20% and resistance calculated for both uniform constriction (dashed) and the

inear folding model (solid).
ed by each folding model and uniform constriction for selected airway orders, as a
= 0. The increase in resistance is significant at even modest degrees of constriction,

4. Discussion

We have demonstrated a simplified model of airway narrow-
ing due to mucosal folding in constricting airways. Under the
assumptions of constant airway wall area and basement mem-
brane perimeter during constriction, as well as liquid filling of the
folded regions, we have demonstrated that this simplified model
generates predictions of effective airway radius and corresponding
airway resistance in good agreement with existing models.

We have assumed that each airway has a base level radius
such that during dilation to larger radii, the basement membrane
perimeter stretches, but during constriction to smaller radii, the
basement membrane perimeter is constant. This assumption is in
agreement with existing experimental evidence (McParland et al.,
2004; Noble et al., 2005). A more sophisticated treatment of the
perimeter of the basement membrane and epithelial length may
have certain benefits; however, it is important not to compromise
the analytic solution, which is critical to the value of this simplified
model.

The need for a simplified model arises from the development
of multiscale, spatially distributed models of the lung in which it is
necessary to calculate airflow properties of many airways, for many
degrees of constriction. The complexity of existing mucosal folding
models in the literature prevents their use. Furthermore, in many
models bronchoconstriction and airflow are coupled together in
ways which critically determine the behaviour of the model (Anafi
and Wilson, 2001; Venegas et al., 2005) but the contribution of
mucosal folding to this relationship is not yet taken into account.
The availability of a simplified model will allow the effects of folding
to be easily taken into account in such models.

We have presented the simplified model in such a way that dif-
ferent assumed forms of the folded airway boundary may be used.
However, the simplest version, the linear model, has proved to
make predictions in best agreement with the existing collapsible
tube model (Lambert and Wilson, 1972; Lambert et al., 1994). This
is fortuitous, in that the linear model has a closed-form solution and

does not involve solving an optimisation (or other computationally
intensive) problem as with other folding models. The agreement
between the linear model and the collapsible tube model is very
good for all airways in this parameter set as demonstrated in
Fig. 7.
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ig. 7. Accuracy of linear model. Error in effective luminal radius predictions betw
f constriction. Left panel: 3D plot of error versus order and degree of constriction
ollapsible tube model versus airway order, with mean error at all orders less than

There are many aspects of bronchial folding which have been
onsidered important by authors in previous studies which we have
eglected in this model including fluid–structure interaction (Heil,
999; Heil and White, 2002; Heil et al., 2008), the role of folding and
urface tension in determining the mechanical properties of the
irway wall (Lambert and Wilson, 1972; Lambert, 1991; Lambert
t al., 1994, 2001; Wiggs et al., 1992), mechanotransduction and
he importance of compressive stresses (Tschumperlin et al., 2004;
schumperlin and Drazen, 2006), and flow through the folded tube
without liquid filling of the folds) (Flaherty et al., 1972). For some
pplications it may be important to consider these factors. With this
odel we have only attempted to capture the geometrical aspects

f airway narrowing rather than modifications to mechanical air-
ay properties.

Models of airway pressure–radius relationships, particularly for
eripheral airways, often rely on extrapolation from central air-
ays (Lambert et al., 1982). Moreover, such models are expected

o yield realistic airflow without any account of the possible effect
f mucosal folding. A simplified model might be used to consider
he contribution of mucosal folding to airway narrowing in such
ituations.

The assumptions made of a fixed, physiological number of folds
or a given Horsfield order, as well as the assumption of symmetric
olding patterns, are significant assumptions. The fixed number of
olds arises as the best available choice among existing models, as
revious attempts to determining the folding mode by minimising
he associated strain energy have not demonstrated a high degree
f accuracy. In part, this may be because of inaccuracies in what is
nown about the mechanical properties of the peripheral airways.
n this work, we have made a fit to the best-available experimental
ata (Carroll et al., 2000; Okazawa et al., 1995) in order to determine
he number of folds found in Table 1. Other experimental data sets,
r a separate model, could alternately be used. However, while the
umber of folds is an important parameter, the results are not crit-

cally sensitive with respect to N—see Appendix B for a sensitivity
nalysis. Symmetric folding patterns are also a significant assump-
ion; however, there is no obstacle to extending this type of analysis
o accommodate, for example, self-similar folding patterns.

Likewise, assuming liquid filling of the folds (Yager et al., 1989)
s an important assumption. In this study it provides an important

implification, allowing simple flow and resistance calculations
ithin a cylindrical tube. The validity of the liquid-filling assump-

ion is influenced by several factors: the number of folds; the
everity of folding; the airway size. In particular, for large num-
ers of folds and relatively severe constriction, this assumption has
he linear model and the collapsible tube model, for all airway orders and degrees
rror at all points is less than 10%. Right panel: Mean error between the linear and

greater validity. Even if such deep, narrow folds are not entirely
liquid-filled, the additional airflow allowed might be expected to
be minimal. For smaller numbers of folds, incomplete liquid fill-
ing might have a greater influence on the airflow properties. The
relatively large folding numbers (12–21) used in this study help
to mitigate this deficiency; not only does the linear model provide
better agreement with the collapsible tube model at these larger N
values, but the liquid-filling assumption is stronger as well.

It may be possible to relax the liquid-filling assumption and
explore the properties of flow through the deformed tube under
various folding models (Flaherty et al., 1972). Even without liquid
filling of the folds, folding may be expected to have a significant con-
tribution to the airflow properties of the airway. However, under
conditions of normal surfactant, the use of an airway wall model
fit to experimental data, and the assumption of liquid filling of the
folds, the model presented here provides an accurate and vastly
simplified alternative.

Acknowledgement

This work was supported by NIH grant NHLBI R33HL87789.

Appendix A. Numerical solution of sigmoidal model

Under the sigmoidal form assumption, simple expressions for ˛
and ˇ are not available as Eq. (2) can only be evaluated as a Jacobi
elliptic function. This is true of most assumed folding forms that
one might try. However, the arclength integral can be integrated
numerically and a simple optimisation performed to find the two
parameters. Because the problem does not have multiple solutions
and involves only two degrees of freedom, this still presents sig-
nificantly less computational effort than required by the existing
models.

Such a solution can easily be found using MATLAB by constructing
a measure of the error

�(˛, ˇ) = (A − A′)2 + (P − P ′)2 (A.1)

where A and P are the initial wall area and membrane perime-
ter, respectively, A′ is given by Eq. (5) and P ′ must be computed
numerically. P ′ may be found by integrating Eq. (2) numerically

using the MATLAB function quad(), which employs adaptive Simp-
son quadrature. Then Eq. (A.1) may be minimised for values of
˛ and ˇ using the MATLAB function fminsearch(), which uses
a Nelder–Mead simplex optimisation method. Of course, other
numerical methods may be employed. The approach described in
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Fig. B.1. Sensitivity of reff to number of folds. For a selection of airway orders, we
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alculate the relative change in effective luminal radius under the linear folding
odel for folding numbers ranging from N − 5 to N + 5, where N is the experimen-

ally determined folding number given in Table 1. Within the ±5 fold range, there
s no more than 4% change in the effective inner radius.

his appendix may also be used for other assumed folding forms for
hich no closed-form solution is available.

ppendix B. Sensitivity to number of folds

One concern about selecting a priori the number of folds is the
ensitivity of the results to this parameter. To asses this sensitivity,
e calculate the linear folding solution for N − 5 to N + 5 folds,
here N is the folding number given in Table 1 as determined by

he experimental data, under 20% constriction of r0. We take the
ffset in number of folds as �N = (−5, . . . , 5) and measure reff(N +
N)/reff(N) to assess the relative change in effective radius due to
hanges in the number of folds. The results of this analysis are given
n Fig. B.1 for selected airways (Horsfield orders 1,7 and 21). Within
he ±5 fold range, there is no more than 4% change in the effective
nner radius.
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