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A B S T R A C T

Homeostasis is the biological notion of certain outputs being stable with respect to input perturbations, at least
over a relatively broad range. In general this is a result of coordination of regulatory mechanisms, and is thought
to occur throughout biology. Recently the mathematical concept of infinitesimal homeostasis has been introduced,
with the key idea being that the emergence of homeostasis is governed by certain geometric structures; these
have previously been found in several mathematical models of biological processes. The theory of infinitesimal
homeostasis has been applied to several specific classes of problems. Here we propose a more general method
which allows for discovery of points of infinitesimal homeostasis, as well as their continuation, without imposing
strong conditions on the underlying systems. The central idea is to construct an augmented system in which the
desired point(s) of infinitesimal homeostasis occur as equilibria of the augmented system. The proposed method
is developed and tested on several examples, ranging from synthetic test problems to examples drawn from the
literature.

1. Introduction

Homeostasis is a biological concept in which regulatory mechanisms
coordinate in order to ensure that certain system outputs are insensitive
to input perturbations over a relatively broad range. A classic example
is mammalian body temperature (thermoregulation) in which core
body temperature is close to constant over a relatively broad range of
ambient temperatures [1]. Many other biological processes are thought
to be homeostatic, and the literature abounds with examples, ranging
from insulin [2] and cholestorol regulation [3] to lymphocyte
counts [4] and many more.

More recently the concept of infinitesimal homeostasis has been in-
troduced, which formalizes the mathematical structures by which
homeostasis might be expected to occur [5–7]. The central idea is that
certain geometric structures govern the occurrence of homeostatic re-
gions, and that these can be described in terms of appropriate local
conditions on the derivatives of the equilibria with respect to the
parameters. An outline of this theory is presented in Section 2 to give
appropriate context.

This manuscript is concerned principally with the problem of dis-
covery; that is, locating points of infinitesimal homeostasis. Previous
work has shown methods which are applicable under certain (relatively
strong) assumptions, but here we aim for a more general approach.
While the principal concern is discovery, it is also worthwhile con-
sidering the potential for continuation; that is, once a point of in-
finitesimal homeostasis has been discovered, can its progression and

change through parameter space be tracked? If so, the discovery pro-
cess can then be easily extended to a more complete understanding of
the infinitesimal homeostasis points of a given system.

We propose a method based on continuous gradient descent in an
augmented system which allows both discovery and continuation of
points of infinitesimal homeostasis. The central idea is that points of
infinitesimal homeostasis will be attracting equilibria in the (newly
constructed) augmented system. The difficulty of the discovery process
will then depend upon the basins of attraction of those equilibria. Once
such a point has been located, standard continuation methods can then
be used to continue the equilibria of the augmented system [8]. We
develop this method and demonstrate its utility in a series of examples
ranging from synthetic test problems to gene regulatory networks.
Throughout this we concern ourselves principally with one particular
type of infinitesimal homeostasis. Extension of this approach to other
types is discussed but not explicitly undertaken.

2. Infinitesimal homeostasis

The concept of infinitesimal homeostasis has been developed in a
recent series of papers [5–7,9]. Here we present a brief outline which
allows the method proposed here to be understood in isolation, but this
is by no means a complete presentation and the reader is referred to
those works for most details. We begin by considering a system of first-
order ordinary differential equations, which might be thought to de-
scribe a mathematical model of a biological process:
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=x f x p p( ; , )1 2 (1)

Here x n are the system variables, and we explicitly include the
dependence upon two parameters p1 and p2 ( ). At equilibrium we
have

=f x p p( *; , ) 01 2 (2)

where the equilibrium x* depends on the two parameters and so we
write

=x p p* ( , ).1 2 (3)

It is important to note that in general we cannot assume an explicit form
for the equilibrium. Now we look at nth component1 of x and define

=X n. This (X(p1)) is known as the input-output map. Points of in-
finitesimal homeostasis then satisfy conditions on the derivatives of X
with respect to p1 and/or p2 (and in higher dimensional settings, more
parameters still). One particular form of infinitesimal homeostasis,
known as a chair, is defined by p1 and p2 such that
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Such a point has the universal unfolding (describing changes under
perturbation and up to changes in coordinates) given by

= ± +X p p p p p( , )1 2 1
3

1 2. This is illustrated in Fig. 1, along with the
unfolding perturbations (in ± p2) giving rise to monotonic behaviour
and local extrema. The chair is thought to be an important form of
infinitesimal homeostasis because it is robust and relatively common in
biological models [6], and it is this form on which we focus for the
remainder of this paper; however, other forms infinitesimal home-
ostasis also exist [6,7].

3. Gradient flow augmentation

We now describe the proposed method for efficiently locating points
of infinitesimal homeostasis. The central idea is to define an appro-
priate potential such that the augmented system

=x f x p p( ; , )1 2 (8)

=p , (9)

which contains both the original system dynamics (Eq. (1)) as well as
gradient flow toward minima of the potential, has stable, attracting
equilibria at (X, p1, p2) satisfying the chair conditions (Eqs. (4)–(7)).
Here =p p p[ , ]1 2 . Such a system could then be used for either chair
finding, or continuation.

To do so we define
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with Λ( · ) an appropriate function where Λ(x) ∼ 0 for x ≠ 0 and
x( ) (1) for x ≈ 0. The weight parameters α, β, δ and γ (all ≥ 0)

may be useful numerically but can otherwise be thought of as being
equal to unity. In general it is not possible to construct this potential

explicitly without an explicit form for X, which we cannot assume
(though we will later consider a synthetic test problem in which this is
possible).

However, can still be approximated. One approach is to define an
augmented system which allows approximation of . The idea is as
follows. Suppose we wish to approximate X

p1
. To do so we can define a

new variable +x where

= ++ +x f x p h p( ; , ),1 2 (11)

that is, following the same dynamics as x but shifted in p1-space. We
then take

+X
p

x x
h1 (12)

which has error h( ) as t → ∞ for h small and =x Xlimt .
The same idea can be extended to the higher order derivatives in-

volved in . However, rather than explicitly constructing the finite
differences as done in the motivation above, in order to approximate

we instead define an appropriate higher order stencil which allows
approximations of the derivatives involved via an appropriate inter-
polating polynomial on that stencil. Expanding we have2
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We define our stencil on the following points:
x x x x, , , ,2, 2 2,0 1, 1 1,2 x x x x x, , , , ,0,0 1, 2 1,1 2, 1 2,2 where the subscripts
indicate shifts of h with respect to p1 and p2 respectively3 – see also
Fig. 2 for a schematic illustration. By extension we have at each stencil
point the shifted dynamics

= + +x f x p ih p jh( ; , ).i j i j, , 1 2 (14)

Now we define a polynomial
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Fig. 1. Illustration of the chair form of infinitesimal homeostasis (black), along
with unfolding curves showing monotonic behaviour (blue, dotted) and local
extrema (red, dashed).

1 More general reductions ( n ) can be used, but here we consider taking
a single component for simplicity.

2 In the following we neglect the X
p p

4

1
3 2

term, but this can be incorporated in
the same way.

3 We use the same h for steps in both p1 and p2 for clarity, though this can
easily be generalized either through explicit use of h1 and h2, or by appropriate
rescaling of p1 and p2.
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with terms chosen to represent appropriate derivatives. The coefficients
c1 through c9 can be determined by interpolation on the 9-point stencil
by solution of the linear system.4

We then compute derivatives of Eq. (15) as needed to complete
Eq. (13) – that is, , , ,C

p
C

p p
C

p1

3

1 2
2

4

1
4 . By substituting into Eq. (13) we

obtain in terms of c c1 9 and hence in terms of x at the stencil
points (via solution of the linear system). Explicitly this yields

+ + +
+ +

c c c c c c c c
c c c c c c

4 24 24 (6 ) 2 ( )
2 8 2 ( )

.2 5 5 6 9 6 7 4

2 4 5 7 8 4 (16)

In principle this can be expressed explicitly in terms of the values at
the stencil points, but this involves the solution of the 9x9 linear
system; in practice it is easier to leave it in this form and solve the linear
system directly. Using the ordering of the stencil points given above, the
Vandermonde coefficient matrix is given by

=A

h h h h h h h h
h h h h

h h h h h h h h
h h h h h h h h

h h h h h h h h
h h h h h h h h
h h h h h h h h
h h h h h h h h

1 2 2 4 4 8 8 8 16
1 2 0 0 4 8 0 0 16
1
1 2 2 2 4
1 0 0 0 0 0 0 0 0
1 2 2 2 4
1
1 2 2 4 8 4 2 16
1 2 2 4 4 8 8 8 16

2 2 3 3 3 4

2 3 4

2 2 3 3 3 4

2 2 3 3 3 4

2 2 3 3 3 4

2 2 3 3 3 4

2 2 3 3 3 4

2 2 3 3 3 4

where

… =A c c c x x x x x x x x x[ , , ] [ , , , , , , , , ] .1 2 9 2, 2 2,0 1, 1 1,2 0,0 1, 2 1,1 2, 1 2,2

(17)

Eqs. (8) and (9) can then be combined with (16) to form the augmented
system.

In the examples that follow, this augmented system is solved using a
variable step-size 4th-order Runge-Kutta method. Initial conditions for
the augmented system are obtained by first running the intrinsic dy-
namics so as to start sufficiently near the equilibrium manifold.

4. Results

We now demonstrate the application of this method to several test
problems.

4.1. GRN model

First we consider the gene regulatory network (GRN) model of [5].
This model has been shown to have a known chair point. This is a feed-
forward network, with structure illustrated in Fig. 3. Briefly, x, y and z
indicate three species, with the r subscript being mRNA concentration
and the p subscript being protein concentration. The interested reader is
referred to Antoneli et al. [5] for full details. The model equations are
given by
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Using the method proposed in Section 3 we construct the aug-
mented system and potential and simulate the dynamics of this
system, shown in Fig. 4. The upper panel shows trajectories from
random initial conditions in (p1, p2) space with steady state locations
shown as red x’s. The equilibrium surface is shown explicitly for vi-
sualization, though in general this would not be a practical element of
the discovery calculation. The lower panels illustrate the proposed chair
point and its unfolding in p2, where the central point is found by taking
the median across all simulated trajectories. In short, the gradient flow
augmented system does indeed have an attracting equilibrium at the
chair point, and it has a sufficiently large basin of attraction that it can
be located using randomized initial conditions.

4.2. Generalized GRN model

The GRN model of Section 4.1 can be generalized into a double feed-
forward network. The extended network is illustrated schematically in
Fig. 5 and the model equations are given by
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While this model shares obvious commonalities with that of the
previous section, it has not previously been shown to have a chair point
of infinitesimal homeostasis. Again applying the gradient flow aug-
mentation method we obtain trajectories and proposed chair point and
unfolding as shown in Fig. 6. Again this method has generated an at-
tracting equilibrium at the chair point, with sufficient basin of attrac-
tion.

4.3. Synthetic test problem

We also demonstrate the method with a synthetic problem which

1. Contains a known chair (by construction), and
2. Allows explicit construction of .

This allows comparison of the approximation method with an
explicit version. Thus we take

=x X p p x( , )1 2 (18)

Fig. 2. Stencil in (p1, p2) space.

4 The design of the above stencil may have previously seemed arbitrary; in
fact, it is carefully chosen so that the linear system is full rank [10,11].
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where
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3

1 2 (19)

Then

= + +p p p(3 ) (6 )1
2

2
2

1
2 (20)

and, noting that both Λ( · ) terms are identically zero for this problem,
we have
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The Jacobian can of course be computed as well,

=|
1 0 0

0 72 0
0 0 2

,(0,0,0)
(22)

suggesting taking = 1/72 and = 1/2. A numerical demonstration of
the attracting gradient flow dynamics is shown in Fig. 7, with the ex-
plicit potential version shown in the left panel and the approximated
potential version shown in the right panel. From this we observe that
both cases share the same basic structure on the equilibrium manifold,
but that the off-manifold dynamics are altered by the approximation of
∇P, as is expected given the nature of that approximation.

5. Discussion and conclusions

Infinitesimal homeostasis is a mathematical extension of the biolo-
gical notion of homeostasis, and is thought to occur in many sys-
tems [12,13]. Previous work has considered many important theore-
tical issues, particularly in specific classes of systems, and here we
explore a proposed method for locating points of infinitesimal home-
ostasis in more general systems. The proposed method is based on
gradient flow in an augmented system with the central notion that the
derived system will have equilibria at points of infinitesimal home-
ostasis (in the original system). If these points are attracting and have
sufficient basins of attraction, this can be used for discovery of points of
infinitesimal homeostasis. Furthermore any equilibria in the augmented
system can also be used in standard numerical continuation of equili-
bria – that is, understanding how the equilibria change as the

Fig. 3. Schematic illustration of the GRN model. Solid arrows indicate positive
coupling and dashed indicate coupling which may be either positive or nega-
tive [5].

Fig. 4. Upper: Equilibrium surface and sample of attracting gradient flow dynamics in GRN system with approximated potential. Initial conditions are selected
randomly, and final (steady state) is indicated by a red x. Here we seek a chair in (zp; I, δy), with fixed parameters = 10,x = 0.1,z = 0.4,x = 0.3,y and = 0.2z .
Here =x x( ) sech( ). Lower: unfolding about the located point.
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parameters are varied – and thus by extension to explore the progres-
sion of points of infinitesimal homeostasis throughout parameter space.
We have demonstrated the application of this method in several dif-
ferent problems, ranging from synthetic test problems through to ex-
amples drawn from the literature. It is also worth emphasizing that
while several of the test problems are feed-forward networks (i.e. of a
specific class of problem which admits more detailed analysis), this is
not a requirement of this method.

The central idea of this method is attempting to exploit the si-
multaneous evolution of both the underlying system and the gradient
flow in parameter space in order to locate points of infinitesimal
homeostasis more efficiently. By way of comparison, an alternate ap-
proach might seek to construct the input-output map (or equilibrium
manifold) directly before then seeking points of infinitesimal home-
ostasis within that. The potential advantages of the simultaneous ap-
proach is that it eliminates the need for many evaluations of the input-
output map, and also that this construction is naturally suited to con-
tinuation (once a point of infinitesimal homeostasis is found). The po-
tential disadvantages are that the augmented system has effective di-
mension +MN 2 where N is the original system size and M is the stencil
size, and also that the potential flow dynamics may be inaccurate if the
errors in approximating the local derivatives (e.g. Eq. (12)) are large,
either because t is insufficiently large or because the initial conditions
are not in the basin of attraction of X. That said, these problems are
largely confined to application of this method to discovery and not to
continuation, because in the latter case it should almost always be
possible to start sufficiently close to the point of infinitesimal home-
ostasis.

We have derived and demonstrated a method for locating chair
points in a 2D parameter space (e.g. (p1, p2) space) but the ideas could
be modified to other related settings. One alternative approach would
be to construct the augmented system in p1 only and neglect the mixed
partial term (e.g. =p p1 and = 0). The required stencil then consists
only of 5 points. It may be necessary to perform root-finding in p2 in
order to find a chair point, but this reduced formulation may be

Fig. 5. Schematic illustration of the double feed-forward GRN model. For
convenience the changes from Fig. 3 are indicated in blue. Solid arrows indicate
positive coupling and dashed indicate coupling which may be either positive or
negative.

Fig. 6. Upper: Equilibrium surface and sample of attracting gradient flow dynamics in generalized GRN system with estimated potential. Here we seek a chair in (zp;
I, δy), with fixed parameters = 10,x = 10,u = 0.1,z = 0.4,x = 0.4,u = 0.3,y = 0.2z and =I 1.52 . Here =x x( ) sech( ). Lower: unfolding about the located
point.
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sufficient for continuation.
Similarly these ideas might be extended to higher-dimensional

versions of infinitesimal homeostasis. For example, the hyperbolic um-
bilic is codimension 3 and has universal unfolding

+ + + +p p ap p bp cp1
3

2
3

1 2 1 2. A minimal version of gradient flow aug-
mentation for the hyperbolic umbilic would involve a 15-point stencil
(e.g. akin to the 5-point stencil in 1D for the chair). This might be
practical, given the computations done here with a 9-point stencil. A
full 5D stencil which explicitly captures the unfolding of the hyperbolic
umbilic could theoretically be constructed in the same way, but the
augmented system would probably be too large to be of practical use in
most situations.

In the development of this method we have worked directly with
derivatives of the input-output map (X(p1, p2)) before approximating
these. An alternate approach, proposed by Golubitsky and Stewart [6],
is to instead differentiate Eq. (2) implicitly and thus to work instead
with derivatives of f. It remains to be seen if this formulation is better
able to capture the desired dynamics.

More speculatively, there is also a potential connection with fast-
slow systems [14] which may be of interest, in terms of the potential
separation of timescales between the intrinsic system dynamics and the
potential flow dynamics. That is, the potential flow might be though of
as occurring on the equilibrium manifold (i.e. the input-output map).
Thus, depending on these timescales, methods from fast-slow systems
might be deployed in further understanding of the underlying beha-
viour of this method. However it is yet unclear how these might be
treated in the general case; in the synthetic test problem we explicitly
balanced the eigenvalues through our choice of α and β, but it is unclear
how this might be done without such an explicit formulation.

Taken together, these results suggest that the proposed approach –

gradient flow in an augmented system – is a plausible method for nu-
merically locating and continuing points of infinitesimal homeostasis
without strong restrictions on the underlying system.
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