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This chapter reviews the multiscale structure–function relationships of the lung parenchyma, from fibres
through surface tension to alveolar septal network, with an emphasis on abnormalities such as emphysema,
pulmonary fibrosis, pneumonia and lung metastases, and with consideration of implications for their
clinical assessment. Structural abnormalities of the airway wall observed in obstructive disease are
described, as are the implications for function at a local tissue level and how these may manifest in vivo
when considering the heterogeneity of structure–function. We also look at length adaptation, a major
property of airway smooth muscle: changes in cell length initially disassemble the contractile apparatus,
resulting in a reduction of contractility, which is followed by reassembly of the contractile apparatus
and recovery of contractility. This confers on the muscle the ability to modulate airway calibre in
response to deep inspirations. Finally, the impact of structure–function characteristics and airway–
parenchymal interdependence on standard lung function tests is examined, and we highlight how
interferences between various mechanisms may affect overall lung function differently, depending on
the underlying disease and severity.

Introduction
The human lung is a complex organ, the function of which is determined by the interactions
between structures with different morphological and mechanical properties. A major difference
between the lung and other internal organs is that the lung is continuously submitted to external
forces throughout life, and dysfunction may occur whenever pathological changes alter the
structure or the mechanical behaviour of the airways, lung parenchyma, or both.

This chapter will first describe the structural and functional abnormalities of lung parenchyma
in the healthy lung, and in several main parenchymal diseases, such as emphysema, pulmonary
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fibrosis (PF) and lung cancer. Next, we will discuss the structural abnormalities of the airway
wall in obstructive disease, and the implications for function at a local tissue level in the
presence of heterogeneity. We then provide an overview of length adaptation of airway smooth
muscle (ASM), with emphasis on how changes in cell length regulate the contractile apparatus
in response to deep inspiration (DI). The last section of the chapter examines the impact of
structure–function characteristics and airway–parenchymal interdependence on standard lung
function tests, highlighting how different mechanisms interact to influence overall lung function,
depending on the severity of underlying disease. The way in which disease impacts clinical lung
function testing will be illustrated throughout the chapter.

Lung parenchymal structure, mechanics and functional abnormalities
Alveolar structure
The lung parenchyma, by definition, is the structure beyond the respiratory bronchioles, which
includes the alveolar ducts, with occasional branching, and the alveoli, where gas exchange
occurs (figure 1). This complex structure has been optimised for efficient gas exchange via
passive diffusion, which requires a large surface area and a small distance between air in the
alveoli and capillary blood. The demands of gas exchange impose severe constraints on alveolar
structure, including alveolar size and septal wall thickness [1, 2]. For example, the large surface
area (∼70 m2) requirement is satisfied by packing ∼480 million alveoli into the volume of the
lung, with diameters at total lung capacity (TLC) reaching 200 µm in the adult human lung; in
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FIGURE 1 Image of the lung parenchyma showing a respiratory bronchiole (RB) and two alveolar ducts (AD). The
arrow points to a single alveolus. Scale bar: 500 μm. Reproduced and modified from [1] with permission.
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contrast, the short diffusion distance (∼1 µm) means that the septal walls separating neighbouring
alveoli only need a thickness of <8 µm [3]. This complex interconnected network of thin-walled
tubes and spherical gas exchange units displays a fractal organisation [2]. The evolution of the
lung tissue has not only fine-tuned parenchymal structure for gas exchange but has also resulted
in proper composition of its extracellular matrix (ECM), including elastin and collagen, with
mechanical properties that allow easy stretching and force transmission during breathing [4].

Taken together, the healthy lung parenchyma is a well-designed structure suitable to serve an
organism’s needs both at rest and at maximum effort [1].

Multiscale mechanics
Lung tissue mechanical function derives from ECM and alveolar structure, the mechanical
properties of the constituents and their interactions [5]. The primary load-bearing structural
protein of the alveolar ECM is thought to be the fibril-forming collagens, including types I and
III. The very stiff, rod-like collagen molecules [6] are arranged into hierarchical fibrils and
fibres that are stabilised by cross-links [7]. These fibres form: the axial fibre system running
from the airways down to the alveolar ducts; the peripheral fibres emanating from the visceral
pleura; and the network of fibres in the septal walls linking the axial and peripheral networks
[7]. During development [8, 9] and in diseases such as COPD [10] and PF [11], the collagen
amount and type can vary in lung tissue. As a result, collagen fibres have been associated with
the structural stability and biomechanical properties of the parenchyma. Collagen fibres are also
wavy at low and intermediate lung volumes [12]. As the lung inflates, fibres become straighter
and, as lung volume approaches TLC, the waves gradually disappear. This recruitment process
stiffens the septal walls [13], resulting in stiffer parenchyma, and leading to the saturation-like
plateau of the pressure–volume (P–V ) curve of the lung [14, 15].

During normal breathing, the elastic fibres provide the majority of recoil pressure of the lung
parenchyma [16]. These fibres contain elastin, a soft and resilient biopolymer, surrounded by
microfibrils. The stiffness of elastic fibres is at least 100 times lower than the stiffness of fully
straightened collagen fibres [6]. The easy stretchability of elastic fibres derives from the entropic
nature of the extension of the hydrophobic molecule, coupled with dense cross-linking, which
together produce a perfect linear stress–strain curve, with near zero hysteresis up to a strain of
⩾150% [6]. These fibres are also mechanically associated with collagen fibres [17], perhaps
through microfibrils or proteoglycans [18–20]. The fibres form a fully connected network in the
parenchyma [12], meaning they play a major role in lung elasticity at low-to-medium lung
volumes [16], and are primarily responsible for lung compliance during breathing. Due to their
superb mechanical characteristics, it has been suggested that elastic fibres behave mechanically
as an ideal linear spring that does not dissipate energy during cyclic stretching [6]. Hence,
elastic fibres are ideally suited to supporting breathing throughout life.

Several additional factors contribute to parenchymal mechanics. The most important is the
pre-existing stress, or prestress, in the septal walls due to transpulmonary pressure [21]. The
pleura transmits the mechanical stresses of transpulmonary pressure to the subpleural alveolar
septal walls, which in turn transmit these stresses to the neighbouring alveoli, and their next
neighbours, and so on, forming a complex interdependent prestressed network. The actual stress
transmission occurs through the fibre network [22]. The total stress in alveolar tissue therefore
arises from the dynamic stresses caused by breathing, superimposed onto the static prestress.
Consequently, all adherent cells, such as epithelial, endothelial, and fibroblast cells, feel and
respond to these stresses via mechanotransduction, affecting many cellular functions [23, 24].
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An important function of the prestressed alveolar network is that it structurally supports small
airways, preventing them from collapse in the normal lung.

In addition to prestress and ECM, lung mechanics is also influenced by the surface tension of
the air–liquid interface lining the alveolar surface, especially at low lung volumes [25–28].
Because pulmonary surfactant lowers surface tension as lung volume decreases, alveoli remain
stable at end-expiration [28].

Other constituents of the parenchyma that contribute to a lesser extent to lung mechanics include
the compressibility of proteoglycans [29] and the elastic properties of adherent cells [30–32].

The effects of disease on alveolar structure and function
How do diseases affect the ECM, the septal walls and their network organisation? Emphysema,
one of the major subtypes of COPD, is known to attack and remodel both the elastic and
collagen fibres [33–35], which, due to prestress (particularly in the apex of the lung), become
prone to rupture [36]. Once fibres in the wall fail, ECM fragments are exposed that can drive
further progression [37]. At some point, the wall itself ruptures, redistributing the mechanical
load it carried among neighbouring septal walls, and increasing the likelihood that these walls
will rupture [38]. This process leads to airspace enlargement, a characteristic feature of
emphysema, locally softening the tissue. Furthermore, residual inflammation in the
enzymatically weakened septal walls can undergo cyclic stretch-induced fatigue, leading to
rupture and causing continued airspace enlargement and functional decline [39], potentially
even in the absence of stimulus. In PF, activated myofibroblasts remodel the septal walls [40]
through mechanotransduction-driven scar formation [41], resulting in uncontrolled collagen
deposition [42] and cross-linking [43]. Subsequent stiffening of the alveolar tissue further
activates myofibroblasts in a positive feedback loop [44]. Alveoli affected by pneumonia are
usually oedematous, which hinders normal surfactant function [45]. However, little is known
about how ECM remodelling influences alveolar mechanics in lung cancer.

In a recent study, BANERJI et al. [46] introduced novel technology: the crystal ribcage. This
technology makes it possible to perform multiscale imaging and probing of the mechanics of
single alveoli in the mouse lung as a function of heterogeneous remodelling of the ECM and
septal walls in several diseases, including lung metastasis (nodular versus infiltrative tumour
growth), emphysema and fibrosis. In the study, nodular and infiltrative tumours, also known as
co-optive tumours, were created in the lung through intravenous injection of murine breast
cancer cell lines. Pneumonia was induced via bacterial infection with Streptococcus pneumoniae
serotype 3, and fibrosis was modelled using bleomycin treatment (figure 2). In the nodular
phenotype, tumours were observed to “push” into the lung tissue and bulge out of the pleural
surface, whereas infiltrative tumours replaced existing lung tissue and were superficially located
on the pleural surface. While this differential growth pattern has been reported previously in
brain tumours [47], there is poor understanding of its presence in the context of the lung and
how it may affect the surrounding alveoli. Compared with the healthy lung, in pneumonia,
alveoli were filled with neutrophils, whereas in fibrosis, injured regions demonstrated thickened
septal walls with gross heterogeneity.

BANERJI et al. [46] achieved mechanical probing of individual alveoli by assessing the pressure–
diameter (P–D) curves, which revealed a large inter-alveolar heterogeneity in the healthy lung,
as well as distinct functional impairments specific to each disease (figure 2b). For example,
nodular tumours demonstrated how growth-induced forces, one of the physical hallmarks of
cancer [48, 49], affect neighbouring tissue. Alveoli that contained nodular tumours (100–
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200 µm in diameter) were unable to inflate, rendering them non-functional for gas exchange.
These alveoli remained maximally dilated across the quasi-static alveolar pressure range,
indicating that cancer cells occupied the entire airspace and forced alveoli to remain fully
distended. These functional impairments extended to one or two layers of the adjacent alveoli in
the peritumoral region. Larger nodules (1–2 mm in diameter) caused alveoli to become stretched
and compacted up to 200 µm from the tumour boundary, while maintaining larger diameters at
greater distances. In sharp contrast, infiltrative tumours did not impair the mechanical function
of alveoli that were inside or adjacent to the tumour. These alveoli behaved similarly to the
healthy ones, suggesting that this type of tumour preserved existing tissue architecture, and did
not compromise mechanical function. Interestingly, when the elasticity of the lung and tumour
areas were mapped with a multiscale mathematical model, both the tumour and nearby normal
lung tissue showed substantial strain stiffening, a sign of collagen recruitment, with the tumour
regions stiffening at a higher rate [50].

In the pneumonia model, infected alveoli exhibited functional deficits over the range of
quasi-static alveolar pressures (3–18 cmH2O). Alveolar diameters remained largely constant,
resembling healthy alveoli at 7 cmH2O. This loss of expansion and contraction capacity resulted
in a very low compliance that may be attributed to neutrophil infiltration, pulmonary oedema,
likely caused by surfactant inactivation [45] and compromised vascular integrity [51], allowing
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FIGURE 2 a) Multiscale imaging of the lung, from whole organ down to alveoli, in health and disease, and b) the
corresponding alveolar pressure–diameter values measured via the crystal ribcage platform, with healthy alveoli
indicated in blue and diseased alveoli indicated in red. MRP8: reporter for neutrophils. Reproduced and modified
from [46] with permission.
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fluid influx into the airspaces. Finally, in the fibrosis model, the injured alveoli demonstrated a
heterogeneous structure with thickened septal walls. The P–D curves displayed reduced
diameters at higher alveolar pressures compared with normal alveoli, consistent with a stiffening
phenotype and lower compliance, as reported in human PF [52].

These findings underscore the structural and functional mechanical alterations in individual
alveoli across different pulmonary diseases, highlighting the distinct mechanisms of ECM and
septal wall remodelling and dysfunction.

Assessment of parenchymal function
The clinically measurable functional index of the parenchyma is lung compliance, the slope of
the lung’s P–V curve, which is an emergent property arising from the mechanical properties of
the ECM’s fibres, their structural arrangement, the surfactant system and their multiscale
interactions. The P–V curve of a single alveolus is determined by elastin stiffness and collagen
waviness in the septal wall and the surface tension along the wall [14]. In health, the P–V curve
of the lung is essentially the sum of the individual alveolar P–V curves, corresponding to the
gravitational position of each alveolus [53]. Lung compliance is therefore sensitive to the
mechanisms that govern the P–V curve of individual alveoli.

In parenchymal diseases such as emphysema, PF, pneumonia and lung cancer, the characteristics
of the single alveolar P–V curve can change drastically and in a highly heterogeneous manner
(figure 2). Hence, the P–V curve and lung compliance also reflect the spatial distribution of
disease and the interdependence of diseased and normal alveoli.

In general, it is difficult to extract specific information on alveolar remodelling from a single
quasi-static lung compliance measurement. When compliance is measured as a function of
frequency, the static to dynamic compliance ratio [54] or the variation of compliance or
reactance with frequency [55] may convey information about changes in alveolar mechanics.
However, it is likely that this is a result of time-constant inequalities involving the spatial
distribution of alveolar compliance and airway resistance, without carrying specific insight into
the remodelling of individual alveoli [56]. It is therefore useful to supplement pulmonary
function tests with CT or MRI, which can reveal regional variations in tissue pathology.

Airway remodelling: structural and functional abnormalities
Origins
A loose definition of airway remodelling is any structural feature of the airway wall which is
abnormal in terms of its cross-sectional thickness (area or equivalent volume in three-dimensions)
and the composition of its constituent elements. That is, structures may have grown (or shrunk),
which in turn alters their mechanical properties. The mechanism(s) of airway remodelling have
not been conclusively established, although the majority of scientists favour inflammation as the
driver of pathology [57]. A second possibility is structural changes mediated through activation of
mechanotransduction pathways, such as that occurring during bronchoconstriction [58]. Finally,
evidence that airway remodelling is observed early in life and even prior to diagnosis of
obstructive disease [59, 60] raises the possibility that abnormalities of the airway wall are a
remnant of some developmental disorder [61]. Even COPD, which has long been associated with
cigarette and environmental exposure, is now recognised as having a developmental foundation in
some patients [62]. Nevertheless, airway remodelling may also be related to persistent and residual
inflammation, even after a stimulus such as cigarette smoke is removed [63].
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Structural modifications
There is variation in the broad structure of airways that make up the bronchial tree, where small
airways lack cartilage, exhibit more predominant ciliation of the epithelium, and show a greater
proportion of club cells and, conversely, fewer mucus-producing goblet cells [64, 65]. The point
of distinction between a “large” and “small” airway is often defined as a lumen diameter of
<2 mm, a somewhat arbitrary definition that tends to lead to broad hypotheses of small or large
airway disease, which may be an oversimplification [66].

At the gross level, airway wall thickness has been shown to be increased in patients with asthma
when imaged using CT [67, 68]. While CT can assess total wall thickness, histological assessment
is required to resolve specific changes to wall compartments; in patients with asthma, there is an
increase in the thickness of the inner and outer airway wall layers and therefore total wall thickness
[69]. There is evidence that the airway epithelium is also thicker [70], with hyperplasia of goblet
cells [71]. Beneath the epithelium, the basement membrane is thickened in patients with asthma,
which is considered one of the most distinguishing features of the disease [72].

Several studies have reported changes to ECM expression within and external to the airway wall
in patients with asthma [73, 74]. Changes to ECM within the ASM layer are particularly
notable, including an increased expression in elastic fibres and fibronectin within the ASM of
large airways from patients with fatal asthma, and an increase in elastic fibres within the ASM
of small airways from patients with fatal asthma compared with non-fatal asthma [75].

Another striking change to the airway wall in asthma is an increase in the thickness of the ASM
layer. When averaged across cases of asthma, remodelling of the ASM has been observed in
both small and large airways [69]. Our understanding of ASM remodelling has since been
advanced to consider phenotypes based on anatomical location; remodelling in the small
airways or large airways only; remodelling in both the small and large airways; or absence of
ASM remodelling altogether [76]. Hence, the presence and extent of ASM remodelling varies
both between and within subjects with asthma (figure 3) [77], an observation that should be
considered when designing therapies that strive to address these structural abnormalities.

COPD has similarities to asthma in airway remodelling, but also some important differences
[78], particularly obliteration of the small airways [79–81]. Again, there is generalised

FA
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FIGURE 3 Variation in airway smooth muscle (ASM) remodelling between and within subjects with asthma. Each
cluster is a different subject. Each dot is an airway with remodelled (orange) or normal (blue) ASM. FA: fatal
asthma; NFA: non-fatal asthma; NA: non-asthmatic. Reproduced and modified from [77] with permission.
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thickening of the airway wall [82], which in some patients includes the ASM layer [83], though
perhaps not to the same degree as has been documented in asthma. Variation in ASM
remodelling between patients with COPD has also been demonstrated after bronchial biopsy;
interestingly, patients with high amounts of ASM responded positively to inhaled corticosteroids
compared with patients who had relatively less remodelling [84]. An important distinction in
COPD is that the volume fraction of ECM expands disproportionately and is inversely related to
lung function [85]; this is in contrast to patients with asthma, where there is a proportional
increase in ECM and smooth muscle that accounts for most of the area of the ASM layer [85].
Compositional changes to ECM in COPD are observed throughout the airway wall [86].

Functional changes at the cellular and tissue level
At the cellular and tissue level, structural impairment precedes functional impairment. The degree to
which impairment at the local cell or tissue level translates to integrated organ function is dependent
upon the distribution and magnitude of the pathology, and airway-to-lung interdependence, as
will be discussed. Loss of the epithelial barrier’s integrity will increase the sensitivity of the
airway wall to a bronchoconstrictor agonist delivered via the lumen [87]. Furthermore, the
capacity of the epithelium to repair is reduced in both patients with asthma [88] and COPD [89],
leaving the airway susceptible to environmental exposures that drive inflammatory processes.

As the principal effector cell producing bronchoconstriction, a change in ASM function is a
likely contributor to airflow limitation. Morphology and function of the ASM cells appears
intimately associated with the external structural and mechanical environment established by the
surrounding ECM. Mechanosensitivity to a specific ECM substrate alters ASM contractile
capacity, with evidence of enhanced contraction in the presence of fibronectin [90]. As the
stiffness of the external environment to which the ASM is exposed increases, so too does cell
size (hypertrophy) and expression of cytoplasmic markers of contractility [91].

At the tissue level (whole airway segments), increased thickness of the ASM layer enhances
force production and narrowing in airways from patients with asthma [92]. It has been argued
that of all the various changes to the airway wall that characterise remodelling, an increase in
ASM thickness is the most influential in driving an increase in bronchoconstriction [93].
Patients with fixed airflow limitation (COPD) exhibit a somewhat different response, with
airways narrowing more, even without an increase in gross ASM thickness [94]. An increase in
airway narrowing that is independent of ASM bulk is potentially related to the aforementioned
changes to ECM within the ASM layer [94] and an associated increase ASM contractility [95].

Functional changes at the end organ level
It has long been understood that functional heterogeneity (namely, bronchoconstriction and
heterogeneity of airway calibre) has important consequences for overall lung function; for
example, increased heterogeneity of airway calibre, as a result of any of the previously
discussed mechanisms that alter function at the cell or tissue level, leads to elevated resistance
and elastance of the whole system [96, 97]. Paired with the notion that functional heterogeneity
could be self-organised, that it arises from a structurally homogeneous beginning [98, 99], it is
tempting to conclude that structural heterogeneity (e.g. of ASM thickness) is a secondary
consideration. While it may be the case that this dynamic (or self-organised) heterogeneity is
present in vivo, it is also certainly true that there is significant structural heterogeneity [77], and
that overall patterns of functional heterogeneity are likely to emerge from a combination of the
underlying structural heterogeneity working in concert with the dynamic self-emergence process
[100]. This is supported by the observation that the locations of ventilation defects in asthma are
largely, though not entirely, persistent over time [101].
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Everything being equal, increased structural heterogeneity should lead to decreased lung
function and increased temporal persistence of ventilation patterns [102]. However, this is an
oversimplification, and potentially a gross one, because there are many ways in which airway
structure can be heterogeneous. The simplest notion is to imagine that airway structure is
independent and uncorrelated, in which case simple measures of dispersion (e.g. coefficient of
variation) might suffice. In reality, that does not appear to be the case; there are significant
correlations in remodelled airway structure both “along” and “across” flow pathways [77], and
these correlations may have significant implications for resulting functional heterogeneity and
lung function. The mechanism through which these structural correlations are generated is
unclear, which is perhaps unsurprising given that the mechanism of remodelling itself is
disputed. However, some possibilities have been suggested [103], and while the correlation in
structure itself is only partially revealed, the fact that airway remodelling is correlated may offer
a clue as to the underlying remodelling process itself. Moreover, the precise ways in which
structural heterogeneity, in its many guises, manifests as functional heterogeneity, remains only
partially solved [104].

The above largely focusses on the heterogeneity of ASM thickness, and airway calibre, as
prototypical examples of structural and functional heterogeneity, respectively. There are, of
course, other important aspects that manifest heterogeneously; for example, the location and
extent of mucus plugs [105, 106]. The statistics and correlations of the location of these plugs
are not perfectly understood but will seemingly have important contributions to overall
functional heterogeneity.

Length adaptation: a smooth muscle property that may underlie some of the unique
functions and dysfunctions of the lung
Smooth muscle has a working length range that is much greater than that of skeletal or cardiac
muscle. This is essential for the proper function of hollow organs, like the stomach, bladder,
uterus and digestive tract that regularly undergo large volume changes. The same property,
when not regulated appropriately, could be a source for pathophysiology that underlies diseases
like asthma and hypertension. To understand smooth muscle-related organ dysfunction, one
needs to know the mechanism responsible for the muscle’s ability to retain contractility over a
large length range.

When a striated muscle is stretched over 60% from its optimal length, it will not be able to
generate active force because the actin and myosin filaments no longer overlap each other [107].
In contrast, smooth muscle lining the urinary bladder is able to generate force over a seven-fold
length range [108]. In ASM, a constant active isometric force can be maintained over a
three-fold length range [109]. To achieve this, the muscle relies on a mechanism called “length
adaptation” [110].

A simple definition of length adaptation is that it is a process initiated by a change in cell
length, which involves rearrangement of contractile and cytoskeletal filaments to ensure
maximal overlap between actin and myosin filaments, in order to maintain optimal force
generation. The process does not occur instantly after a length change; rather, it takes some
minutes. There is evidence that immediately following a length change, the ability of ASM to
generate force is reduced, which accompanies partial dissolution of myosin filaments [111].
When the length of the muscle stops changing, the muscle contractility recovers over time (20–
30 min, with periodic stimulation), along with repolymerisation of myosin filaments [111]. This
myosin filament evanescence is part of a much more complex process, in which dismantling
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and rebuilding of the contractile apparatus occurs in adaptation to a change in cell geometry
[61]. In ASM cells, there is evidence that myosin filaments and myosin monomers or dimers are
in equilibrium in a dynamic polymerisation and depolymerisation process, facilitated by the
existence of a pool of myosin monomers and dimers within the cytoplasm of smooth muscle
cells [112, 113].

Functional evidence indicates that in ASM adapted to different lengths, shortening velocity,
power output and adenosine triphosphate consumption of the muscle are linearly proportional
o the cell length, whereas isometric force is length-independent [114]. To explain the observations,
a conceptual model of length adaptation has been proposed, as illustrated in figure 4. The
increased shortening velocity in ASM adapted to a longer length can be explained by the
increased number of contractile actomyosin units in series. The increased power output and energy
consumption can be explained by the increase in the overall number of contractile units in the
muscle adapted to a longer length. The length-independent isometric force at different adapted
lengths can be explained if length adaptation involves only addition and subtraction of contractile

Dense body
Myosin

monomer
or dimer

Myosin
filament

Length
adaptation

Actin
filament

Cell
membrane

FIGURE 4 Reversible length adaptation in smooth muscle. When a muscle cell is lengthened or shortened from
its original adapted length, disassembly of the contractile apparatus occurs, resulting in a loss of contractility.
This is followed by reassembly of the contractile apparatus at the new cell length, so that the overlap between
the myosin and actin filaments is optimal. This reassembly phase is accompanied by the recovery of the
muscle’s ability to generate force. The dynamic equilibrium between myosin filaments and myosin monomers
and dimers facilitates the adaptation process. Note that a key feature of the adaptation process is that the
contractile units can only be added or subtracted from the contractile unit array in series. This is required to
accommodate the length-dependent behaviour of the muscle in terms of force, velocity and power, as described
in the main text.
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units in series, without changing the number of contractile units in parallel. Besides functional
changes, structural changes in ASM adapted to different lengths have also been found. Using the
number of myosin filaments in a cell cross-section (myosin filament density) to indicate the extent
of myosin filament polymerisation, it has been shown that filament polymerisation rises as the
adapted muscle length increases [114], supporting the assumption that more contractile units are
present in smooth muscle cells adapted to longer lengths. The model shown in figure 4 presents a
minimalist approach to explaining smooth muscle structure and function. As more structural and
functional properties of smooth muscle are uncovered, more complexity will need to be added to
the model to accommodate new evidence.

A shift in the length–force relationship of ASM is another consequence of length adaptation [111].
As illustrated in figure 5, adaptation of ASM to lengths shorter or longer than the reference length
results in shifts to the left or right of the length–force curve respectively, while maintaining
maximal force. In striated muscle, the length–force relationship cannot be shifted, because the
underlying sarcomeric structure in striated muscle is fixed [107]. The fact that the same
relationship in smooth muscle can be shifted indicates that the structure of the contractile apparatus
in smooth muscle is not fixed, and can be altered by length adaptation. When fully adapted, ASM
can generate maximal force. However, immediately after a length change (either shortening or
lengthening), ASM can only generate submaximal force defined by the specific length–force curve
associated with a specific length at which the muscle has been adapted (figure 5).

The length adaptation model described in figure 4 is compatible with the argument that smooth
muscle cells possess material properties similar to that of plastic [109] or soft glass [115]. The
model predicts that dissolution of contractile filaments in smooth muscle cells occurs after a
change in cell length, which can be lengthening, shortening or length oscillation. During this
phase of length adaptation, smooth muscle cells temporarily lose their ability to generate maximal
force. It is likely that this is an explanation for the bronchodilatory and bronchoprotective effect
of DI. The DI effect has been observed in human subjects [116, 117] and in ex vivo lungs
[118, 119]. Furthermore, the distension of airway calibre during DI has been shown to be
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FIGURE 5 Shifting the length–force relationship due to length adaptation. After the muscle has been fully
adapted to a reference length (Lref ), shortening or lengthening from Lref will result in a temporary loss of
contractility, along the curve specific to the muscle adapted to Lref. However, if the muscle is held at the
shortened or lengthened state for a prolonged period of time (e.g. 30 min), the curve will shift with little change
in shape, so that the muscle can again generate the maximal force (Fmax). The shift can be explained by the
model shown in figure 4.
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sufficient to stretch the smooth muscle cells encircling the airways and cause a temporary loss of
contractility of these cells [119, 120]. These observations provide a plausible explanation for the
bronchodilatory and bronchoprotective effects of DI.

The lack of beneficial effects of DI in asthmatic patients [117] could be a consequence of
maladaptation of ASM to an abnormally short length, causing it to enter a “frozen state” [121],
meaning DIs are unable to “fluidise” [122]. In human asthmatic lungs, it has been noted that
ASM cells are hyperreactive [123]. This could be a consequence of “force adaptation”; that is,
an increase of ASM contractility due to chronic activation of the muscle cells in the
inflammatory environment of the asthmatic lung [124]. Chronic activation of ASM could put
the muscle in a frozen state and become refractory to DI perturbation.

Airway hyperresponsiveness develops when lung volume is chronically reduced (for example,
in cases in which chest strapping is used [125], when the subject is in the supine position [126]
or when the subject is obese [127]). In such situations, ASM may adjust to abnormally short
lengths. As illustrated in figure 5, maximal force can be achieved again after adapttion to a
short length, resulting in exaggerated airway narrowing. When lung volume is increased, such
as under positive end-expiratory pressure or continuous positive airway pressure, experimentally
induced bronchoconstriction in healthy human subjects can be attenuated and airway reactivity
in stable asthmatics can be reduced [128]. These can be taken as examples of adapting ASM at
long lengths. As illustrated in figure 5, when ASM is adapted to a long length, shortening of the
muscle results in less force generation (without adaptation), thus conferring bronchoprotection
on the lung. Knowing the adaptive behaviour of smooth muscle, adaptation of ASM to short
lengths should be prevented to preserve healthy lung function.

The impact of airway-to-parenchymal interdependence on lung function tests
In vivo, the airflow through the airways is critically dependent on the balance between factors
that favour and factors that contrast with the airway tone [129, 130], the former being the
force-generation capacity of ASM and the latter being the magnitude of internal and external
elastic loads (figure 6). However, due to the complexity of lung structure-to-function changes in
disease, their net effect on airway calibre may be highly variable and even contrary to
expectations.

In this section of the chapter, we will examine how the mechanisms and structural characteristics
that modulate airway narrowing may impact on standard lung function tests in health and disease.

The effects of lung inflation on airway calibre
Following the seminal work by NADEL and TIERNEY [116], which reported that DI temporarily
reduces the resistance of constricted airways in vivo, a long series of studies confirmed that this
phenomenon is consistent in healthy subjects but absent or minimal in asthmatic subjects. The
lack of relationship between this and indices of airway inflammation [131] suggests that the
impaired effect of DI in asthma is the result of reduced distensibility of the airway walls,
possibly because of an increase in ASM and abnormal length adaptation, airway wall
remodelling, or reduced stretching by the surrounding lung parenchyma [132, 133]. Whatever
the mechanism, the different effects of DI between healthy and asthmatic subjects have an
important impact on the clinical assessment of airway responsiveness, with spirometric
measurement that requires a DI becoming more sensitive in separating asthmatic from
non-asthmatic subjects than measurements performed during tidal volume, such as airway
resistance [117, 134]. In 1995, SKLOOT et al. [135] found similar methacholine dose–response
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curves in asthmatic and normal subjects when DIs were strictly prohibited. This supports the
idea that hyperresponsiveness in asthma may reflect an inability to dilate constricted airways
rather an increased response to stimuli [135]. This was only partially confirmed when
volume-independent measurements were used, suggesting that both impaired bronchodilation
and increased contractile response may contribute to airway hyperresponsiveness [131].
A bronchoprotective effect of DIs taken before a single dose of methacholine was observed
in healthy but not asthmatic subjects [136]. However, the bronchoconstrictor response inferred
by measurements that do not require full lung inflation was enhanced rather than attenuated
by prior DIs both in healthy and asthmatic subjects [137].

Several studies suggest that the effects of DI on the assessment of lung function are widely
variable. In asthmatic subjects with spontaneous bronchoconstriction [138] and in COPD [139],
forced expiratory flows were found to be lower during a manoeuvre beginning at maximal rather
than partial lung inflation, which was explained by a discrepancy between the hysteretic
properties of airways and lung parenchyma [132, 138, 140]. The practical consequence of
this short-lasting bronchoconstrictor effect is that the effect of bronchodilators may be
underestimated by classical spirometric measures [141]. In COPD subjects with extensive
emphysema, FEV1 may not increase after bronchodilator inhalation, despite an increase in FVC.
The potential mechanisms for this isolated volume response are: space competition between
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FIGURE 6 Schematic representation of factors favouring (in ovals) and opposing (in rectangles) airway
narrowing. Continuous and dotted lines denote increasing and decreasing effects, respectively. Airway smooth
muscle (ASM) force together with mucosal thickening and bronchial secretions are the mechanisms that directly
decrease bronchial lumen. In contrast, the loads external and internal to the airway wall are the mechanisms
that tend to limit ASM shortening, thus opposing airway narrowing. Note that lung inflation has a negative effect
on load, as it transiently decreases elastic recoil, and an unpredictable effect on ASM, as it is capable of
decreasing ASM contractility in health, but increasing it in asthma. Reproduced and modified from [129] with
permission.
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airways; distended alveoli; and a decrease in airway calibre with lung inflation due to
longitudinal stretching in the presence of reduced radial tethering force [141]. Finally, in a small
subset of asthmatic subjects, a decrease in FEV1 was reported to occur with subsequent
spirometric manoeuvres, which was explained by an increase in ASM tone caused by DI
triggering a myogenic mechanism [142–144].

Another important mechanism linking DI to lung function assessment in clinical practice is
intrathoracic gas compression. During forced expiration, alveolar pressure increases, and gas is
compressed within the lung, thus causing lung volume and lung elastic recoil to decrease. The
latter will result in a reduction of driving pressure and distending pressure at choke point, thus
explaining why FEV1 measured at the mouth is less than it would be if measured by body
plethysmography. The magnitude of this effect is determined by the amount of gas within the
lung and airway resistance. Practical consequences are that FEV1 tends to overestimate the
severity of airflow obstruction in emphysema [145] and airway responses to pharmacological
interventions in subjects with larger lungs [146].

The effects of breathing pattern and operational lung volume
Studies in animals and humans have provided clear evidence that increasing the operational
lung volume or tidal volume reduces airway resistance and can attenuate or reverse the response
to bronchoconstrictor stimuli.

In vitro, dynamic swings can blunt the response of ASM to contractile stimuli through
mechanisms that reduce its force-generation capacity [147, 148], depending on the magnitude
and frequency of pressure oscillations. In healthy humans, bouts of five tidal volumes
terminating at ∼80%, ∼90% and 100% of TLC have been shown to cause gradual
bronchodilation that lasts for ⩾11 min [149]. Increasing ventilation by breathing a CO2-enriched
mixture [150] or through hypobaric conditions [151] significantly blunts the bronchoconstrictor
response to methacholine.

Breathing voluntarily at increased lung volume has also been shown to attenuate induced
bronchoconstriction in healthy subjects [152, 153]. However, the major determinant appeared to
be the operational lung volume, whether attained by increasing FRC or tidal volume [153].
Conversely, breathing voluntarily at low lung volume enhanced the bronchoconstrictor response
[152]. Analogously, airway responses to bronchoconstrictor stimuli are enhanced in healthy
subjects using chest strapping [125], in the supine position [126] and in obesity [127], with all
conditions associated with breathing at low lung volume.

Collectively, the available literature supports the notion that changes in lung volume are strong a
mechanism of airway calibre modulation. However, while increasing operational lung volume
has a beneficial effect that opposes airway narrowing, the effects of DI may vary according to
disease conditions.

The effects of ventilation heterogeneity: topographical and temporal patterns
It has long been understood that ventilation is not uniform in obstructive lung diseases [154],
but its impact on global lung function tests was not investigated until the beginning of this
millennium, when imaging studies documented the occurrence of large and important ventilatory
defects during bronchospasm [98, 155, 156].

Integrative modelling approaches suggested that even minimal anatomical variations between
peripheral airways of the same generation could cause responses to a constrictor agent that
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differed in magnitude and time, resulting in airflow diverting from more to less constricted
airways, thus paradoxically increasing the size of the latter (parallel inhomogeneity) [99]. This
mechanism may explain the insensitivity of forced expiratory flows to lung inhomogeneity
during induced bronchoconstriction [157]. Similar results were also achieved by considering the
hypothesis that constriction of more central airways will cause hypoventilation of the subtending
regions (serial heterogeneities), thus magnifying the effects of parallel heterogeneities occurring
within the peripheral airways [155]. Two major studies then attracted the attention of the
medical community on this issue. The first demonstrated that replications of such events were
associated with the occurrence of severely hypoventilated regions once a given threshold of
variability was exceeded [98]. The second found that ventilation heterogeneity was a major
determinant of airway hyperresponsiveness in asthma, independent of airway inflammation
[158]. However, in a recent study [159] airway hyperresponsiveness and abnormalities of
single- or multiple-breath nitrogen washout [160] were frequently present in subjects with
suspicion of asthma and normal spirometry, but were not necessarily associated in individual
subjects. This lack of concordance suggests that these tests reflect different pathological aspects
of the disease.

Ventilation heterogeneity has also been examined under the time domain on the ground that the
respiratory system exhibits mechanical fluctuations over different time scales. In a seminal study
by QUE et al. [161], the variability of respiratory impedance measured using the forced
oscillation technique for 15 min was much higher in asthmatic individuals than in healthy
subjects. When the latter inhaled a constrictor agent in supine position, the impedance
variability became similar to that of asthmatics, confirming the idea that ASM contraction and
unloading are basic mechanisms modulating bronchial tone. Importantly, the impedance time
series exhibited power law features with similar exponent of the relationship between groups,
suggesting that that the phenomenon is replicable at different time scales. The study by QUE

et al. [161] paved the way for the investigation of temporal variability, which represents a major
characteristic of bronchial asthma. Studies using peak expiratory flow were able to predict
asthma attacks 1 month in advance [162], as well as asthma worsening after withdrawing steroid
therapy [163]. Monitoring the daily variability of oscillatory resistance not only allowed the
prediction of airway narrowing 1 week in advance [164] but also made it possible to separate
asthmatic from healthy subjects more accurately and over a shorter period of time than by
monitoring peak expiratory flow [165].

Based on the above studies, it is hoped that the topographical and temporal variabilities of
airway narrowing will take a crucial place in the armamentarium of fundamental markers for
asthma diagnosis and monitoring in clinical practice.

Conclusion
In health, lung function is optimised by the mechanical interaction between airways and lung
parenchyma. In disease, heterogeneous structural changes occur in both the lung parenchyma
and the airways, impairing the ability of the whole organ to maintain a normal homeostatic state
in response to external stimuli. In this context, an important role is played by the ASM
length-adaptation property, with an abnormally short length placing the muscle in a “frozen”
state, making it unresponsive to the broncho-relaxant effect of deep and tidal inspirations.
Owing to the complex interactions between various structural units of the whole organ, the
mechanical effects of breathing can either enhance or attenuate the functional impairment
depending on the type and severity of underlying disease. This means the interpretation of lung
function tests in clinical practice is not always univocal, nor is it compliant with the
expectations and/or the recommendations of international guidelines.
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