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Airway Bistability Is Modulated by Smooth Muscle
Dynamics and Length-Tension Characteristics
Graham M. Donovan1,*
1Department of Mathematics, University of Auckland, Auckland, New Zealand
ABSTRACT Airway closure has important implications for lung disease, especially asthma; in particular, the prospect of bist-
ability between open and closed (or effectively closed) airway states has been thought to play a prominent role in airway closure
associated with the formation of clustered ventilation defects in asthma. However, many existing analyses of closure consider
only static airway equilibria; here we construct, to our knowledge, a new model wherein airway narrowing and closure dynamics
are modulated by coupling the airway to cross-bridge models of airway smooth muscle dynamics and force generation. Using
this model, we show that important qualitative features of airway pressure-radius hysteresis loops are highly dependent on
both airway smooth muscle dynamics, and the length-tension relationship. Furthermore, we show that two recent experimental
results from intact bronchial segments are both expressions of the same phenomenon: that a monotonically increasing length-
tension relationship, with sharply higher tension at longer lengths, is needed to drive the observed changes in low-compliance
regions of the baseline pressure-radius curve. We also explore the potential implications of this finding for airway closure in
coupled airway models.
INTRODUCTION
Bistability in airways between open and closed states has
long been studied for its potential to help understand airway
closure in asthma. There are several distinct, yet related,
ideas: static bistability, either in an isolated airway (1)
or in a terminal airway unit with coupled parenchymal
tethering (2); dynamic coupling of the airway with airway
smooth muscle (3–5); and mechanisms by which spatial
organization of airway closure or near closure may lead
to clustered ventilation defects (6,7). All are interrelated,
but as of yet there is no integrated synthesis of all three
mechanisms.

Here we are motivated to consider the ways in which
airway smooth muscle (ASM) dynamics may modulate
this bistability. This is driven by two recent studies on intact
bronchial segments, which together challenge our expec-
tations of how ASM dynamics might modulate the transi-
tions between open and closed airway states (8,9). This
could have profound consequences for our understanding
of airway closure in disease. In the absence of activated
ASM, the quasi-static airway pressure-radius curve is
known to have a characteristic shape, sigmoidal in small
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airways with a highly compliant region, and progressively
flattening for larger airways (e.g., Harvey et al. (8), Lambert
et al. (10), and LaPrad et al. (11); see Fig. 1 a for represen-
tative curves). Also of interest is the hysteresis shown as
the airway is inflated and deflated, which originates both
with viscous equilibration mechanisms, but also because
of transitions between bistable open and closed airway
states. A key question is how this hysteresis relationship is
altered by ASM activation. One might suppose that several
results are possible: for example, either a simple shift of the
passive curves corresponding to higher force; or perhaps
a widening of the hysteresis loop in the highly compliant
region, where changes are relatively easier to affect, but
with little change in the less compliant regions of the pres-
sure-radius curve.

Recent evidence casts doubt on these simple interpre-
tations. In particular, the deflation pressure-radius curves
measured by Harvey et al. (8) in intact bronchial segments
display a markedly different character, showing instead
sharp reductions in radius with ASM activation in the
less compliant plateau regions, and less so in the highly
compliant region. This may imply an effective ASM ten-
sion curve that rises sharply at longer ASM lengths.
More recently, Gazzola et al. (9) have used a different pro-
tocol, also in intact segments, to measure the ASM tension
and found, qualitatively, exactly these sharp rises in tension
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FIGURE 1 Model concept illustrations. (Left) Typical airway static

pressure-radius curves (10,20). The solid curve is typical of smaller air-

ways, and the dashed shaded curve is typical of larger airways. Here we

have used orders 14 and 21, respectively, using the Horsfield classification

scheme (27). (Right) Schematic illustration of the ASM cross-bridge model

structure. The states are as follows: M, myosin unbound, unphosphory-

lated; Mp, myosin unbound, phosphorylated; AMp, bound, phosphorylated;

AM, bound, unphosphorylated; and A, isolated actin; binding site is un-

available. The solid region is the core cross-bridge model, while the shaded

addition is the filament overlap modification introduced by Donovan (21).

Setting gE ¼ fE h 0 eliminates the shaded portion and restores the standard

cross-bridge model (A h 0).
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at longer lengths. Taken together, this suggests the need
for a new model that accounts for these observations, and
allows us to consider both their origins and potential
consequences.

In this study, we construct, to our knowledge, a new
model of airway narrowing coupled with ASM constriction,
wherein airway opening and closing transitions are modu-
lated by coupling to a cross-bridge model of ASM. We first
show that existing models of cross-bridge ASM length-
tension behavior, when coupled to the airway, are consistent
with the naive interpretation of hysteresis opening pre-
dominately in the highly compliant region of the pressure-
radius curve, but at odds with the findings of Harvey et al.
(8). To investigate this discrepancy, we modify the model
to compute the implied ASM length-tension curves needed
to generate the experimental deflation curves, and find the
sharp rise in tension at longer lengths described by Gazzola
et al. (9). Furthermore, we show that one possible explana-
tion for such implied ASM length-tension curves is that the
ASM is operating in situ at lengths considerably shorter than
the optimal ASM length, and hence confined to only the
lower half of the ascending branch of the traditional bell-
shaped length-tension curve (12).

These implied length-tension curves suggest that modu-
lation of the transitions between open and closed states,
via ASM dynamics, plays a significant role; and that hyster-
esis loops are likely to open across a much broader part of
the (relaxed) pressure-radius curve, not merely confined to
the highly compliant portion. This suggests, on the whole,
that individual airways may be more susceptible to nar-
rowing than to closure; if so, this could have important im-
plications for models that rely on the open-closed transitions
(or at least functional closure) to drive clustered ventilation
defects (6,7).
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MATERIALS AND METHODS

Model

Motivation

There are arguably two key analyses of static airway bistability: those of

Anafi and Wilson (2,3), and Affonce and Lutchen (1). Although the phys-

iological motivations differ in important ways, in both cases the crux of the

analysis is a balance between the constricting force of ASM, and the

restoring forces of the airway wall (and parenchymal tethering). The under-

lying mathematical structure of both studies is surprisingly similar: pressure

associated with the ASM scales as ~1þ 1/r, and the balancing pressures are

represented by a high order polynomial (cubic or higher in r). If the param-

eters are such that these curves have multiple intersections, then multiple

(static) equilibria are possible. Because much of the physiological range

of parameter space does allow multiple equilibria, this bistability has often

been used to explain the occurrence of ventilation heterogeneity and clus-

tered ventilation defects (6,7). However, these largely static representations

contain incomplete information about how these states may be modulated

by ASM dynamics. Other studies have considered coupled dynamics in

the context of narrowing, rather than closure (notably the work of Hiorns

et al. (4,5)), or with highly simplified ASM representations (3).

To consider how these dynamics modulate closure and reopening,

we extend a model of this type by coupling to it a cross-bridge model

of ASM dynamics. This section is organized as follows: first, we present

a brief review of existing ASM cross-bridge models; second, we present

the airway wall model; and finally, we discuss the coupling between the

two, which gives rise to the combined model used in this study.

ASM cross-bridge models

The history of ASM cross-bridge models originates with Huxley’s sliding

filament theory for striated muscle (13), with key extensions by Hai and

Murphy (14) and reaching its modern form with the spatially extended

ASM model of Mijailovich et al. (15) (and further extensions (16–18)).

Because the ASM length-tension relationship is key to this analysis, we

also consider two variations of the cross-bridge model of Mijailovich et al.

(15), which offer extensions to account for length-tension measurements

inASMstrips (e.g.,Wang et al. (19)): principally an empirical length-tension

transfer function (e.g., Politi et al. (20)) and an extension to the standard

cross-bridge model that uses filament length distributions and binding site

availability to generate the characteristic length-tension shape (21).

Because of their similarities, all three models can be expressed in a

common framework, illustrated schematically in Fig. 1 b. The underlying

idea in all cases is the relative sliding of actin and myosin filaments, and

their phosphorylation and binding to one another. Thus the populations

are as follows: M, myosin unbound, unphosphorylated; Mp, myosin

unbound, phosphorylated; AMp, bound, phosphorylated; AM, bound, un-

phosphorylated; A, isolated actin, binding site unavailable. (For more back-

ground details see, for example, Keener and Sneyd (22).) The governing

equations are then given by the following set of hyperbolic partial differen-

tial equations (PDEs):

vM

vt
� vðtÞ vM

vx
¼ k2Mp þ gðxÞAM � ðk1 þ fEðxÞÞM þ gEA;

(1)

vMp vMp �

vt

� vðtÞ
vx

¼ k1M þ gpðxÞAMp � fEðxÞ þ k2

þ fpðxÞ
�
Mp; (2)

vAM vAM
vt
� vðtÞ

vx
¼ k4AMp � ðk3 þ gðxÞÞAM; (3)
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vAMp vAMp � �

vt

� vðtÞ
vx

¼ k3AM þ fpðxÞMp � k4 þ gpðxÞ AMp;

(4)

vA vA � �

vt

� vðtÞ
vx

¼ fEðxÞ M þMp � gEA; (5)

subject to the conservation equation

Mðx; tÞ þMpðx; tÞ þ AMðx; tÞ þ AMpðx; tÞ þ Aðx; tÞ ¼ 1:

Here the constants k1�4 and gE, along with the functions fpðxÞ; gðxÞ;
gpðxÞ; fEðxÞ, and gEðxÞ define the transitions between states (for more

detail, see Donovan (21) and Keener and Sneyd (22)). Note that setting

gE ¼ fEh0 restores the standard cross-bridge model ðAðx; tÞh0Þ.
The relative filament velocity v is related to the muscle length L by

�g
dLðtÞ
dt

¼ vðtÞ;

where the proportionality constant scales as

g ¼ g0=ð2pr0Þ (6)

to account for the arrangement of contractile units, where r0 is the maximal

ASM radius (20).

Then the ASM force is given by

k ¼ bk FLðrðtÞÞ
Z N

0

x
�
AMðx; tÞ þ AMpðx; tÞ

�
dx; (7)
TABLE 1 ASM Model Details

Standard Cross Bridge (15)

FLðrÞ 1

g0 25

fEðxÞ 0

gE 0

k1 0.06 (1/s)

k2 0.1 (1/s)

k3 0.06 (1/s)

k4 0.1 (1/s)

fpðxÞ ¼
8<
:

0; x < 0

fp1x=h; x˛½0; h�
0; x > h

fp1 0.88 (1/s)

gpðxÞ ¼

8><
>:

4ðfp1 þ gp1Þ; x < 0

gp1x=h; x˛½0; h�
4gp1x=h; x > h

gp1 0.22 (1/s)

gðxÞ ¼
8<
:

20g1; x < 0

g1x=h; x˛½0; h�
4g1x=h; x > h

g1 0.01 (1/s)

h 1

This table gives rate functions and constants for the ASM models. Airway wall m

parameters (Ri, P1, P2, n1, n2, rimax). Throughout, we use r ¼ 1 (1/s) and r0 ¼ R(2

the smallest airways are of the smallest order, with the largest airways in huma
using the standard assumption that both bound states exert force equally,

and in proportion to their first moments—but with two modifications. First,

we have explicitly incorporated the empirical force-length relationship via

the transfer function FLðrÞ; and second, we have truncated the moment

integral to x R 0 to reflect the inability of ASM to exert a negative force

opposing shortening. All three ASM models are represented by this general

framework, with their different binding rate functions and parameters;

details are given in Table 1.

Airway wall model

We construct the airway wall model for coupling to the ASM cross-bridge

model as follows. We begin with the static airway wall model of Lambert

et al. (10), which is supported by more recent experimental evidence

(8,11); qualitatively similar empirical models (23) and solid mechanics

models (4) also exist. Rewriting the static model of Lambert et al. (10) in

terms of airway radius, this gives us

RðPÞ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
i ð1� P=P1Þ�n1

q
; P%0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2imax �
�
r2imax � R2

i

�ð1� P=P2Þ�n2
q

; P> 0;

(8)

where P is the transmural pressure and the parameters depend upon airway

size (20). Assuming that this static relationship holds at equilibrium,

we then employ a general method of approaching these equilibria. We

use the notation r for the (time-dependent) airway radius, and R for the

equilibrium radius, and impose dynamics as

dr

dt
¼ r½RðPÞ � r�; (9)

which for r> 0 then has stable fixed points at the open and closed states

from the static analysis (as in Dowie et al. (24)). Coupling to the ASM
Empirical L-T (20) Filament Overlap (21)

sin3
�

p
2

r
Rref

�
1

25 44

0 u0; see Donovan (21)

0 3 � 10�5 (1/s)

0.06 (1/s) 0.06 (1/s)

0.1 (1/s) 0.1 (1/s)

0.06 (1/s) 0.06 (1/s)

0.1 (1/s) 0.1 (1/s)

¼
8<
:

0; x < 0

fp1x=h; x˛½0; h�
0; x > h

¼
8<
:

0; x < 0

fp1x=h; x˛½0; h�
0; x > h

0.88 (1/s) 0.88 (1/s)

¼

8><
>:

4ðfp1 þ gp1Þ; x < 0

gp1x=h; x˛½0; h�
4gp1x=h; x > h

¼

8><
>:

3ðfp1 þ gp1Þ; x < 0

gp1x=h; x˛½0; h�
4gp1x=h; x > h

0.22 (1/s) 0.22 (1/s)

¼
8<
:

20g1; x < 0

g1x=h; x˛½0; h�
4g1x=h; x > h

¼
8<
:

20g1; x < 0

g1x=h; x˛½0; h�
g1; x > h

0.01 (1/s) 0.03 (1/s)

1 1

odel parameters are drawn from Politi et al. (20) for order-dependent static

5 cmH2O). We also use Horsfield order to classify airway size (27); briefly,

ns being ~25.
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cross-bridge model comes via the contribution of ASM tension to constrict-

ing the airway, as

P ¼ P0 � k

r
; (10)

with the 1/r dependence arising from the thin-walled Laplace law approx-

imation (1,25) and where P0 is the equivalent passive transmural pressure.

For purposes of comparison with experiments on excised airways, we

have opted for direct inclusion of the transmural pressure, rather

than explicit inclusion of parenchymal tethering. However, it would be

straightforward to incorporate a parenchymal tethering treatment based

on Lai-Fook (26).

Model coupling and numerical solution

The ASM and airway wall models are interconnected by the relationship

between ASM length and airway radius, and the contribution of ASM

tension to the constricting pressure. For the former, we have r ¼ 2pL and

so v ¼ �gðdL=dtÞ ¼ �2pgðdr=dtÞ; for the latter, we have Eqs. 10 and 7

substituted into Eq. 9.

The model is solved numerically by using the method of characteristics

to reduce the cross-bridge PDEs (Eqs. 1–5) to a system of ordinary differ-

ential equations (ODEs) without introducing artificial numerical dispersion,

a standard technique for models of this type. Discretizing the cross-

bridge displacement variable x using Nx equally spaced points, this

yields 5Nx ODEs for the ASM model alone, and when augmented with

Eq. 9 we have 5Nx þ 1 ODEs to solve. These are relatively stiff and

can display loss of order with Runge-Kutta methods, and so must be

carefully convergence tested. Explicitly, changing variables along the

characteristics

x ¼ x �
Z t

0

vðtÞdt ¼ x þ 2pg½rðtÞ � rð0Þ�

¼ x þ g0

r0
½rðtÞ � rð0Þ� (11)

transforms the PDEs (Eqs. 1–5) into ODEs, now with x as a parameter.

These ODEs are then discretized in x, yielding ODEs, which now depend

not on muscle length or velocity (vðtÞ or LðtÞ) but instead airway radius

ðrðtÞÞ. These equations are then augmented by

dr

dt
¼ r½RðP0 � k=rÞ � r�; (12)

(arising from substituting Eq.10 into 9), where k is given by Eq. 7 (and

depends on the full cross-bridge model state), completing the governing

set of ODEs. This system is size 5Nx þ 1 for the filament overlap model,

but for the standard cross-bridge models where Aðx; tÞh0, Eq. 5 is dis-

carded and the system is size 4Nx þ 1. The system size can be reduced

further by exploiting the algebraic constraint and/or rate equivalence

(k1 ¼ k3 and k2 ¼ k4).
RESULTS AND DISCUSSION

Airway pressure-radius hysteresis

We first compute families of quasi-static pressure-radius
(P-R) hysteresis curves using our three ASM model vari-
ants to account for differing length-tension treatments.
Mimicking the protocol of Harvey et al. (8), we cycle be-
tween 30 cmH2O, and �15 cmH2O with an 80 s period
with a constant rate of pressure change (only changing
2330 Biophysical Journal 111, 2327–2335, November 15, 2016
sign for inflation/deflation). Examples of the resulting P-R
curves are given in Fig. 2: the left-hand column shows var-
iations in the degree of ASM activation (with airway size
fixed), while the right-hand column gives changes in airway
size (with ASM activation fixed); the rows are, from top to
bottom, the standard cross-bridge model (15); the standard
cross-bridge model with an empirical length-tension rela-
tionship; and the filament overlap model. Although there
are differences, certain qualitative commonalities stand
out. In particular, it is notable that 1) the hysteresis loops
open predominantly in the highly compliant part of the
baseline P-R curve; 2) ASM activation has little or no effect
on the low compliance plateau above 10 cmH2O; and 3)
larger (less compliant) airways systematically exhibit less
hysteresis.

These observations are important, in part, for their stark
contrast with the recent data of Harvey et al. (8), which
show instead a significant constriction response in the
low-compliance plateau (and less so in the higher-compli-
ance transition region). This begs the question: if our existing
characterization of ASM length-tension behavior is inade-
quate to explain intact quasi-static pressure-radius (QSPR)
curves, then what sort of ASM length-tension behavior is
needed?
Implied ASM length-tension relationship

To answer this question, we use the notion of our empirical
length-tension transfer function (FLðrÞ; see Eq. 7), but now
with a more general form. That is, we use a parameterized
form with four evenly spaced anchor points, and a piecewise
cubic interpolating polynomial between these. The model
simulated deflation PR curves are then fitted to the deflation
data of Harvey et al. (8) using the tension values at the an-
chor points; this is done for both smaller and larger airways,
with airway sizes selected to match the passive QSPR
curves (order 14 for smaller airways, and 21 for larger).
The implied L-T curves, and resulting deflation PR curves,
are given in Fig. 3.

Here ASM activation alters airway behavior in qualita-
tively different ways from the model results previously
shown in Fig. 2; most notable are the differential effects
of constriction, with large changes in the relatively flat
part of the QSPR curve above 10 cmH2O, and much smaller
changes through the high compliance region. This is true for
both larger airways, seen in Fig. 3 a, and for smaller airways
in Fig. 3 b. The tension required to create changes of this
character is illustrated in Fig. 3, c and d. Fig. 3 c shows
the implied ASM tension transfer function, which is a piece-
wise cubic interpolant based around four evenly spaced
nodes (with separate curves for both larger and smaller air-
ways). However, the large and small airway curves are
treated separately, as in Harvey et al. (8), where they have
a similar shape up to a multiplicative scaling factor; see
Fig. 4 a. This suggests that the difference between the large



FIGURE 2 Pressure-radius hysteresis curves,

illustrating changes in ASM model, ASM activa-

tion, and airway order. The left-hand column

shows changes in ASM activation (with airway or-

der fixed); the right-hand column shows changes

in airway order, but with ASM activation fixed

(dark curves correspond to smaller airways,

lighter curves to larger airways; annotations are

provided in the first row only, with the same color

scheme as used in subsequent figures). Each row

corresponds to a different ASM model, as labeled.

Changes in parameter values are indicated in the

annotations in the first row, with the same values

used in subsequent rows. In the left-hand column,

the airway order is 5; in the right-hand column,bk ¼ 5. To see this figure in color, go online.

Airway Bistability
and small curves lies not so much with the shape of FLðrÞ,
but rather the magnitude of bk, which could arise from dif-
ferences in ASM mass or activation in airways of different
sizes. The ASM tension hysteresis associated with these
transfer functions and simulations are given in Fig. 3 d.
Here the qualitative agreement with the results of Gazzola
et al. (9) are striking, with both data sets characterized
by monotonic increases in tension with sharp rises at
longer lengths, and also a similar characteristic shape
(e.g., compare with Fig. 2 in Gazzola et al. (9)).

Comparison between implied tension transfer function and
empirical sin3( ) form

One natural question arising from the implied tension
transfer function shape (Fig. 3 c) is the relationship with
the sin3( )-type empirical length-tension form. That is,
could the implied tension transfer function simply be the
ascending branch of the sin3( ) form? The results in Fig. 2
suggest that there is a significant difference, but making an
explicit comparison is instructive. In Fig. 4 a, we again
show the implied tension transfer functions (for both small
and large airways) but with two different versions of the
sin3( ) form overlaid. The first is a naive sin3( ) form forwhich
the optimal length is taken to be r0, which is exactly the form
used previously. It is immediately apparent that this sin3( )
form deviates significantly from the implied transfer func-
tions, even considering only the ascending branch. Another
possibility is that the ASM optimal length might not be r0,
as suggested by thework of Lee-Gosselin et al. (12) regarding
in situ length. If we allow for significant variation between the
optimal and in situ length, then the implied tension transfer
function does have a strong similarity to the lower portion
of the ascending branch of the sin3( ) form—this is the fit
sin3( ) form in Fig. 4 a. That is, for the ascending branch of
the sin3( ) form to be sufficient to explain the data, the ASM
in situwouldbe operating significantly away from theoptimal
length, on only the lower half of the ascending branch.

Comparison with experimental QSPR inflation data

Another valuable comparison is with the limited QSPR
inflation data available. Recall that we have fitted out
implied tension transfer functions based on only the
Biophysical Journal 111, 2327–2335, November 15, 2016 2331



FIGURE 3 Pressure-radius fits and length-

tension dependency implied by Harvey et al. (8)

data. (a) Larger airway deflation pressure-radius

curves, relaxed (darker curve) and constricted

(lighter curve). Model simulations are the heavy

lines, superimposed over the experimental data

of Harvey et al. (8). (b) Smaller airway deflation

pressure-radius curves, relaxed (darker curve)

and constricted (lighter curve). Model simulations

are the heavy lines, superimposed over the exper-

imental data of Harvey et al. (8). (c) Implied trans-

fer function required to generate P-R curves in (a)

and (b). The lighter curve is for larger airways, and

the darker curve is for smaller airways. Note that

the two curves are similar up to a multiplicative

scaling factor; see Fig. 4 a. (d) Length-tension hys-

teresis curves from the constricted airway simula-

tions in (a) and (b), using the implied transfer

functions given in (c). To see this figure in color,

go online.
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deflation data of Harvey et al. (8). We validate this approach
by comparing with the inflation QSPR curves of LaPrad
et al. (11) for large bovine airways, but for both baseline
and constricted cases. These simulation data are given in
Fig. 4 b and are both qualitatively and quantitatively similar
to those of LaPrad et al. (11) (see Fig. 8 in that article). Spe-
cifically there is significant narrowing in both the compliant
region, and the relaxed plateau, but little narrowing at low
transmural pressures. There is also little increase in hyster-
esis, with relatively modest hysteresis in both baseline and
constricted airways. This suggests the validity of extrapo-
lating the inflation branches using implied tension transfer
functions fitted from the deflation data only.

Potential consequences of implied length-tension curves

The implied length-tension curves computed in the previous
section could potentially have significant implications for
ison with published inflation data from LaPrad et al. (11) (compare to their Fig. 8)

function, with bk ¼ 0 and 6 for the baseline and constricted cases, respectively.
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bistable airway behavior in coupled systems. To assess
how bistability might change, we extrapolate the inflation
branches of each curve, based on the implied tension transfer
function fitted to the deflation branch, for different airway
sizes and degrees of activation. The results of these simula-
tions are given in Fig. 5, with changes in ASM activation
shown in the left panel, and changes in airway order in the
right (using the same parameter values and color coding as
Fig. 2). Clearly there is a qualitatively different pattern of
response to ASM activation, with significant changes in the
low-compliance plateau region and little increase in hystere-
sis as ASM activation is increased (Fig. 5, left panel). Simi-
larly there is much less hysteresis in larger airways (Fig. 5,
right panel). As a result, regions of bistability shrink mark-
edly when compared with the naive modeling assumptions
(compare with Fig. 2), with only narrow windows of Ptm

over which bistability occurs. Increasing ASM activation
FIGURE 4 Tension transfer function comparison

and QSPR inflation curves. (A) Comparison of

implied tension transfer functions with empirical

sin3 forms, both naive and fitted. The naive sin3

form assumes that the in situ and optimal ASM

lengths are equal, and in this case there is signifi-

cant discrepancy between the ascending branch

and the implied transfer functions. If instead the

in situ and optimal ASM lengths are allowed to

diverge significantly, then the lower half of the

ascending sin3 branch is a reasonable approxima-

tion to the implied transfer function. (B) Baseline

and constricted QSPR inflation curves for compar-

. Here the airway is order 22, using the large airway implied tension transfer

To see this figure in color, go online.



FIGURE 5 Changes in pressure-radius hystere-

sis curves, using the implied tension transfer func-

tion, as ASM activation is varied for fixed order

(left) and as airway order is varied for fixed activa-

tion (right). Color coding as in Fig. 2; see annota-

tions in that figure. Note that in the left panel,

a relatively small airway (order 5) is used, as in

Fig. 2 (left column), compared with the relatively

large (order 22) airway in Fig. 4 b. To see this

figure in color, go online.

Airway Bistability
does not significantly broaden the window of bistability, but
instead primarily serves to narrow the open state. Taken
together, this indicates a much greater predilection toward
airway narrowing rather than airway closure, which if true
could have significant implications for coupled airway
models. There are several important notes of caution needed
for interpreting these results, which are considered more
fully in the Conclusions.
CONCLUSIONS

In this article, we have constructed, to our knowledge, a new
model of airway constriction with narrowing and transitions
between open and closed states modulated by ASM dy-
namics (represented by a cross-bridge model). In doing so,
we show that airway quasi-static pressure-radius hysteresis
loops can have qualitatively different characteristics, and
that naive modeling yields different qualitative character-
istics from recent experimental data. To redress this defi-
ciency, at least partially, we fitted implied length-tension
transfer functions needed to capture these missing features,
and in doing so we recover the length-tension dependency
recently found by Gazzola et al. (9); the consistency of their
results with those of Harvey et al. (8), as shown by the
model, is an additional step forward in understanding intact
airway behavior, though it is important to note that the
implied length-tension transfer function we have computed
is only a crude representation that gives no direct bio-
physical basis for the behavior. However, there are several
possible interpretations of the implied transmission func-
tion. One possible resolution is that the ASM in situ length
is significantly shorter than the ASM optimal length, and
that the data of both Harvey et al. (8) and Gazzola et al.
(9) occur only on the lower part of the ascending branch
of a sin3( )-type length-tension relationship (e.g., Fig. 4 a).
Such a mismatch in lengths is supported by the work of
Lee-Gosselin et al. (12). However, there are other possibil-
ities: instead of intrinsic ASMmechanics (e.g., in situ versus
optimal length), such behavior could be attributed to (in)
effective transmission of ASM force to the airway wall, or
to more complex wall behavior such as collagen prestrain
or effective mechanical modification of the airway wall in
constriction. There is currently insufficient data to pinpoint
the precise mechanism; however, the implied transfer func-
tion captures the inadequacy of our current models, and sug-
gests several possible resolutions.

We also extrapolated our model results to consider the
potential implications of ASM-modulated airway opening/
closing transitions to coupled airway models, such as the
formation of clustered ventilation defects (e.g., Venegas
et al. (6) and Donovan and Kritter (7)). The qualitative
features of these curves suggest a greater propensity
toward more modest airway narrowing, rather than effec-
tive closure, than might have been expected. There are
several important caveats in interpreting the Implied ASM
Length-Tension Relationship in this context. First, as
mentioned previously, the implied L-T transfer function is
a crude representation, lacking explicit biophysical basis,
which is explicitly fitted only to the deflation branch and
extrapolated to the inflation branch. As such, there is an
obvious degree of uncertainty about the inflation branches
(and hence the extent of the hysteresis and bistability).
Similarly, we have not included a passive ASM component
(e.g., Donovan et al. (28)), and this might be reasonably
expected to contribute disproportionately to the inflation
branch. However, perhaps it is more important to emphasize
that isolated airway bistability of the sort considered here
(akin to Affonce and Lutchen (1)) is not strictly necessary
for coupled airway models that drive clustered ventilation
defect formation; instead, feedback mechanisms via airflow
and parenchymal tethering (2) could introduce bistability
in coupled systems, even where isolated airways lack such
behavior. That said, decreased bistability in isolated airways
would require a greater role for these feedback mechanisms
in generating closure (or near closure) leading to clustered
ventilation defects in coupled airway systems. Even then,
ASM dynamics might continue to play an important role
in modulating transitions in these modified coupled system
dynamics.

It is important to emphasize that here we have only
considered slow, quasi-static behavior (pressure oscillations
with an 80 s period; the experiments of Gazzola et al. (9) are
slower still at 0.004 Hz). Certainly ASM is known to exhibit
different behavior when forced at higher frequencies (29),
and airway-ASM coupling on shorter timescales is certainly
an area worth investigating more carefully; for example,
Biophysical Journal 111, 2327–2335, November 15, 2016 2333
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Hiorns et al. (4,5) have looked at coupled narrowing dy-
namics at higher frequencies. However, there is limited
data available for higher-frequency behavior of intact seg-
ments; even at the low rates considered here, the significant
discrepancies between naive models, and the experimental
data, suggest that our understanding of airway-ASM inter-
action is incomplete.

There are also caveats regarding the construction of
the airway wall model, where we have opted for a simple
construction based around the static equilibria (1) using
the model of Lambert et al. (10). Certainly many alterna-
tives are possible. For example, Hiorns et al. (4) constructed
a similar model, which couples an ASM cross bridge to an
airway wall model, but using a more sophisticated solid
mechanics airway wall model. Clearly this significantly
increases the computational complexity; although Hiorns
et al. (4) do not explicitly consider opening/closing transi-
tions, the qualitative similarity of their results regarding
the mutual dependence of ASM dynamics and airway
compliance in airway narrowing suggest that many of the
same mechanisms are at work. Having decided to use an
empirical airway wall model, there are still other choices
available. For example, one could use instead the model
of Thorpe and Bates (23), which has many similar features;
perhaps the best reason for selecting the Lambert model is
the recent intact airway data supporting it (8), although
replacing the Lambert model with the Thorpe/Bates model,
or similar, in this study is unlikely to significantly alter the
results.

Coupling the Lambert airway wall model with ASM
dynamics could also be done in different ways; here we
have applied first-order relaxation dynamics on top of the
static equilibria provided by the data. One alternative would
be to enforce the static equilibria as algebraic constraints,
as done in Politi et al. (20); however, this introduces sig-
nificant computational challenges (PDEs with algebraic
constraints), and furthermore there is no good reason to
suppose that the static equations are, in fact, satisfied at
all times. It is also possible that the dynamics are entirely
more complicated; for example, power law relaxation
(e.g., Lenormand et al. (30)), but such a model would add
a great deal of complexity and is not currently well sup-
ported by data for airway dynamics. On balance, for this
study the first-order relaxation kinetics approach offers
the best modeling compromise between model complexity
and realism, elucidating the underlying coupling mecha-
nisms without undue complications from either analysis
or computational cost.
ACKNOWLEDGMENTS

I am grateful to Brian Harvey for providing the experimental data from

Harvey et al. (8) used for fitting and shown in Fig. 3, a and b.

This work was supported by the Marsden Fund from the Royal Society of

New Zealand.
2334 Biophysical Journal 111, 2327–2335, November 15, 2016
REFERENCES

1. Affonce, D. A., and K. R. Lutchen. 2006. New perspectives on the me-
chanical basis for airway hyperreactivity and airway hypersensitivity in
asthma. J. Appl. Physiol. 101:1710–1719.

2. Anafi, R. C., and T. A. Wilson. 2001. Airway stability and heterogene-
ity in the constricted lung. J. Appl. Physiol. 91:1185–1192.

3. Anafi, R. C., and T. A. Wilson. 2002. Empirical model for dynamic
force-length behavior of airway smooth muscle. J. Appl. Physiol.
92:455–460.

4. Hiorns, J. E., O. E. Jensen, and B. S. Brook. 2014. Nonlinear compli-
ance modulates dynamic bronchoconstriction in a multiscale airway
model. Biophys. J. 107:3030–3042.

5. Hiorns, J. E., O. E. Jensen, and B. S. Brook. 2016. Static and dynamic
stress heterogeneity in a multiscale model of the asthmatic airway wall.
J. Appl. Physiol. 121:233–247.

6. Venegas, J. G., T. Winkler, ., R. S. Harris. 2005. Self-organized
patchiness in asthma as a prelude to catastrophic shifts. Nature.
434:777–782.

7. Donovan, G. M., and T. Kritter. 2015. Spatial pattern formation in the
lung. J. Math. Biol. 70:1119–1149.

8. Harvey, B. C., H. Parameswaran, and K. R. Lutchen. 2015. Can breath-
ing-like pressure oscillations reverse or prevent narrowing of small
intact airways? J. Appl. Physiol. 119:47–54.

9. Gazzola, M., C. Henry, ., Y. Bossé. 2016. Smooth muscle in human
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