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Abstract. Modern optical communication devices and systems often have such low error rates
that accurate study of these errors becomes difficult or impossible by traditional methods. We con-
sider a soliton-based, actively mode-locked laser model with a very low error rate. In this model,
errors are expected to occur in two different error “modes,” referred to as “position slips” and “am-
plitude dropouts.” Accurate and efficient Monte Carlo simulation of system performance and these
error modes is obtained using importance sampling, made possible by the use of soliton perturbation
theory. Furthermore, these two error modes are both shown to arise from a more general biasing
problem for errors in the modeled system.
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1. Introduction. While mode-locked lasers are a technology dating back many
years [1] and have been modeled extensively by many researchers (i.e. [2]), in recent
years advances in the technology have allowed breakthroughs in many areas from op-
tical frequency metrology [3] to optical clocks [4–6], breath analysis [7], communica-
tions [8], generation of high harmonics [9], measurement of fundamental constants [10]
and possibly optical storage rings [11]. These applications are made possible by the
very low error rates of the underlying laser systems.

One potential avenue of theoretical study of these systems is Monte Carlo sim-
ulation, which is frequently attractive in complex systems which can nonetheless be
simulated numerically. Because of the high levels of performance obtained in these
systems, and the correspondingly very low error rates, traditional or unbiased Monte
Carlo simulation is often computationally infeasible because of the large number of
trials required to accurately simulate rare events [12]. One approach to resolving this
issue is a variance reduction technique known as importance sampling, which has been
successfully applied to a number of problems in optical systems [12–19].

Importance sampling involves replacing the underlying probability distributions in
the studied system with new, biasing distributions, under which previously rare events
in the system (under the original distributions) are no longer rare. Generally speaking,
determining these biasing distributions is the difficult aspect of employing importance
sampling. While good biasing distributions can provide dramatic variance reduction
and corresponding simulation speed-up, poor biasing distributions may instead make
things worse.

For soliton-based systems, as the one we are considering, soliton perturbation
theory provides a valuable tool for determining the biasing distributions [12]. The
soliton modes, as well as the ODEs describing the soliton parameter evolution, allow
us to pose a constrained optimization problem which can then be solved to obtain the
biasing distributions. Using these biasing distributions in importance sampled Monte
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Carlo simulations (ISMC), we are able to accurately simulate extremely rare events
in this mode-locked laser system.

Furthermore, solving for the biasing distributions proves to be insightful in terms
of the types of errors in the system. We first speculate that there are two, most-
common types of error in the system, and are able to solve for the biasing distributions
that generate these types of errors. However, posing a more general optimization
problem results in families of biasing distributions which exhibit a bifurcation between
the two expected error modes.

2. Model formulation. We model an actively mode-locked fiber laser as an
optical cavity oscillator including an amplifier, filter, polarization rotator (and po-
larizer), and phase modulator. These elements introduce, respectively, (linear) gain,
filtering, nonlinear gain (or loss), and phase modulation, in addition to the effects of
optical propagation. The system under consideration is represented schematically by
Fig. 2.1. Propagation through optical fiber is described by the nonlinear Schrödinger
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Fig. 2.1. Schematic diagram of the simple mode-locked laser model, as an optical laser cavity
including an amplifier, filter, polarization rotator and phase modulator.

equation (NLS), which includes the dispersion and self-phase modulation effects in-
herent in optical fiber. The NLS is given by

∂u

∂z
−

i

2
β
∂2u

∂t2
− iγ|u|2u = −F (u, z, t) (2.1)

where u is the optical field, β is the dispersion coefficient, γ is the nonlinear coefficient
[20] and we have introduced in F perturbation terms to account for the other physical
effects. Of course, in the absence of these perturbation terms, when F ≡ 0, Eq. (2.1)
admits the well-known soliton solution

us(z, t) = E sech(E(t− T − Ωz)) exp (iΩ(t− T ) + iφ) (2.2)

arising from the balance between dispersion and nonlinearity. Here the soliton pa-
rameters E, T,Ω and φ correspond to the amplitude, position, frequency and phase
of the soliton pulse, respectively. Note that the direction of propagation is z, with
initial data u(0, t) = u0 in the slow time coordinate.

To model the desired physical effects, we include the following terms in our pertur-
bation F . First, we include the filtering cavity element with the frequency dependent
gain (or loss) given by

a
∂2u

∂t2
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where the parameter a is the filtering strength. The active phase modulation (mode-
locking) is accomplished via

ib cos(ωt)u

where b is the modulation strength and ω is the external modulation frequency. Fi-
nally, the linear amplification gain is combined with the polarization rotator and
polarizer in the form of a nonlinear gain term

c1u+ c2|u|
2u+ c3|u|

4u,

and Gaussian white noise is added at each pass through the gain medium (zn = nza)
so that the governing equation is then

∂u

∂z
−

i

2
β
∂2u

∂t2
− iγ|u|2u = (2.3)

a
∂2u

∂t2
+ ib cos(ωt)u + c1u+ c2|u|

2u+ c3|u|
4u+

N
∑

n=0

fn(t)δ(z − zn).

Here the noise is described by

〈fi(t)〉 = 0

〈fi(t)f
∗

j (t
′)〉 =

(G− 1)2

G lnG

ηspγ

|β|
δ(t− t′)δij

and β = 1.0 ps2/km, γ = 1.0 (km)−1, a = .002 ps2/km, b = .01 (km)−1, c1 = −0.01
(km)−1, c2 = 0.034 (km)−1, c3 = −0.02 (km)−1, and the spontaneous emission factor
ηsp is 1.25. The gain G exactly counterbalances the fiber loss α = 0.21 dB/km.
The governing equations are solved numerically via the split-step Fourier method [21]
with 128 Fourier modes and a computational width of 30 ps, a propagation stepsize
of dz = 0.05 km, and an initial soliton full-width half-max (FWHM) pulsewidth of
1.76 ps. The phase-modulation frequency is ω = 2π/25 (1/ps).

3. Error modes & biasing distributions. In order to generate the biasing
distributions needed for importance sampling in this system, we appeal to a reduced
problem. By treating our modifications to the NLS and any deviations from the soliton
pulse shape as small perturbations, we obtain evolution equations for the soliton pulse
parameters. These evolution ODEs can then be used to formulate a boundary value
problem (BVP), which can be solved to generate the biasing distributions and allow
importance-sampled Monte Carlo simulations of the target system.

Consider a soliton pulse described by Eq. (2.2) and governed by Eq. (2.1), where
the right-hand side is treated as a perturbation. The soliton parameter evolution
equations can then be computed from

dE

dz
= Re

∫

∞

−∞

u∗Fdt (3.1)

dΩ

dz
=

1

E
Re

∫

∞

−∞

(iu∗

t − Ωu∗)Fdt (3.2)

dT

dz
= βΩ +

1

E
Re

∫

∞

−∞

(t− T )u∗Fdt (3.3)
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with the similar fourth equation for phase neglected in this phase-insensitive problem.
By direct evaluation, we obtain the evolution equations for the soliton parametersE, T
and Ω in differential form. The pulse frequency and position equations are given by

dΩ

dz
= −AΩ+B sin(ωT )

dT

dz
= βΩ, (3.4)

where for clarity we assign A = − 4aE2γ2Ω
3β2 , and B = bω2βπ

2Eγ csch
(

βωπ
2Eγ

)

. Of course,

these may be combined into a single, second-order governing equation

d2T

dz2
+A

dT

dz
− βB sin(ωT ) = 0, (3.5)

describing a nonlinear oscillator for the soliton position parameter T .
Likewise, the evolution equation for the pulse energy is given by

dE

dz
= 2(c1 + aΩ2)E +

(

4c2γ

3β
−

2aγ2

3β2

)

E3 + c3
16γ2

15β2
E5. (3.6)

The parameters c1, c2 and c3 are set such that there are two stable energy states in
the system. The first stable state corresponds to the desired, stable, nonzero pulse
energy in the system. The second state is the zero state. The noiseless output from
the laser is a series of fixed-length time intervals known as bit slots. In an on-off keyed

(OOK) system, each bit slot would contain either a perfect soliton pulse (“on”) or be
identically zero (“off”). It is thus undesirable to have small amounts of energy in an
otherwise empty bit slot grow into a pulse, and thus the zero energy state should be
the second stable state.

In the system we have described thus far, we begin with the ansatz that there
are two primary types of failure, or error modes, which occur. Understanding these
error modes and their likeliness in given operating regimes is key to understanding the
performance of the laser system, and to accurately simulating the rare error events
involved.

One error mode is termed a position slip, in which a pulse shifts position (and/or
frequency) so dramatically that it overcomes the phase modulation and “slips” into a
neighboring bit slot. This error mode is illustrated schematically in the left panel of
Fig. 3.1. In this case, our reduced problem guides us to the escape problem from the
potential well created by the external phase modulation for pulse position, described
by Eq. (3.5).

The other error mode we refer to as an amplitude dropout. In this case, the
noise perturbations build up in the direction of decreasing amplitude and decrease
the pulse energy past the crossover point into the stable state at zero energy. The
pulse then disappears entirely into the zero-mean noise background. This error mode
is illustrated schematically in the right panel of Fig. 3.1. This process is governed by
the reduced problem given in Eq. (3.6).

4. Optimal biasing solutions.

4.1. Position slips. We now pose the problem for position slips only (ignoring
the amplitude dropouts for now). We formulate the problem in terms of the addition
of the product a biasing coefficient and the adjoint mode of the soliton to the signal to
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Fig. 3.1. Left panel: cartoon of position slip error mode, with the phase-modulation potential
(red, dashed) and a pulse moving from potential well to potential well. Right panel: cartoon of
amplitude dropout error mode, with an energy potential overlaid on the vertical axis (red, dashed)
and a pulse losing amplitude from its initial amplitude toward zero.

produce the desired change in the soliton parameters in the most efficient (i.e. most
likely) way, subject to the parameter evolution equations. It is not necessarily obvious
that the adjoint soliton modes, as opposed to the direct, soliton modes give rise to the
optimal solution. However, it can be shown that in fact it is the adjoint modes that
lead to the most likely total changes in the corresponding soliton parameters [12].
Thus we will add the products of the biasing coefficients ηΩ(z) and ηT (z) and the
corresponding adjoint soliton modes uΩ(t) and uT (t) along the path from z = 0 to
z = zL such that starting from an initial position T (z = 0) = T0 (corresponding to
the noiseless soliton solution) we arrive at a prescribed value T (z = zL) = T̂ . Here T̂
is an error state, a result of a rare event in the system.

The biasing added to the solution, ηΩuΩ + ηTuT , is a mean-shift of the additive
Gaussian noise added at each pass through the gain media. Thus, our optimal solution,
that which reaches the parameter target with the highest probability, is the solution
which minimizes the total exponent

∫ zL

0

{

η2Ω(z)||uΩ||
2 + η2T (z)||uT ||

2
}

dz

subject to the differential equation side constraints

dΩ

dz
= −AΩ +B sin(ωT ) + ηΩ||uΩ||

dT

dz
= βΩ + ηT ||uT ||

and the boundary conditions

T (0) = T0

T (zL) = T̂

Ω(0) = Ω0.
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The relevant modes are given by [22]:

uT = E tanh(E(t− T ))us,

uΩ = −i(t− T )us.

(4.1)

Here the primary constraint in terms of creating rare events is the final position
T̂ . In a position slip, the pulse moves from its original position into a neighboring bit
slot, i.e. |T (zL) − T0| > τ/2, where τ = 2π/ω is the bitslot width. Note that Ω(zL)
is unconstrained in this problem; this results in a natural boundary condition within
the variational optimization problem [23]. Additional details for solving BVPs of this
type are given in Sec. 5. Solving the resulting boundary value problem numerically,
we obtain the continuous version of the biasing distributions for the optimal path
from the fundamental soliton to the prescribed soliton parameter value T̂ . For fairly
short total distances, the solution follows a simple path, rising monotonically toward
the target value; for zL = 100km, this solution is depicted in Fig. 4.1.
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Fig. 4.1. Optimal biasing path solution for the position slip error mode at zL = 100 km. This
optimal path is representative of the direct type of biasing path in the position slip error mode.

However, when the total system length becomes longer, a new type of solution
emerges, one with an oscillatory behavior. Recall that in the reduced system, the
soliton position parameter T is governed by a damped nonlinear oscillator, Eq. (3.5).
In this sense, then, it is unsurprising to see the oscillatory behavior of the optimal
solution for zL = 600km, with all other parameters unchanged, in Fig. 4.2.

Each of these biasing solutions allows us to generate a given portion of the pulse-
position probability distribution function (PDF). Because we wish to simulate the
entire PDF down to very low probability levels, we must use several biasing targets
to encompass the entire region. Using family of solutions similar to Fig. 4.1 for zL =
100km and varying values of T̂ (= T (zL)), we generate a group of biasing targets and
combine the results using multiple importance sampling and the balance heuristic [24].
We then can use Monte Carlo simulation to generate a pulse position histogram and
PDF ranging from the center of the bit slot far down into the tails, into neighboring
bit slots. The results this simulation, along with the corresponding coefficient of
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Fig. 4.2. Optimal biasing path solution for the position slip error mode at zL = 600 km. This
optimal path is representative of the oscillatory type of biasing path in the position slip error mode.

variation, are displayed in Fig. 4.3. The simulated PDF is reproduced periodically to
illustrate the position overlap of pulses from neighboring bit slots.
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Fig. 4.3. Simulated PDF for final pulse position. Neighboring PDFs are superimposed in light
blue, and the bit slot boundaries at ±12.5 ps are indicated with dashed lines. The coefficient of
variation, indicating the convergence level of the simulations, is displayed in the lower plot.

4.1.1. Probability of exit from bitslot. The position-slip problem may also
be viewed as an exit time problem – that is, what is the probability of a pulse at
the equilibrium (T = 0,Ω = 0) first escaping from the bitslot at a given distance
zL? The phase modulation creates an effective potential well from which the pulse
must escape. For any given propagation distance, the optimal biasing problem can be
solved for the most likely escape path. The ISMC process can be repeated, as before.

Unfortunately, as zL increases the reduced problem begins to deviate significantly
from the full nonlinear PDE, and simulation yields become intractably small, with
very slow convergence. In Fig. 4.4, we give the results of the full ISMC simulations,
up to zL = 500 km. While for small values of zL the simulations converge well
with reasonable coefficients of variation, from approximately 200 km onward the c.v.
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climbs unacceptably and the simulations no longer converge properly. This, of course,
is always one risk when using ISMC.
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Fig. 4.4. Simulated exit time for position slips, log-linear scale, resulting from 500,000 ISMC
trials. Beyond ∼ 200 km, the c.v. is too large and the simulations no longer converge sufficiently.

In order to understand this failure, we examine individual pulse tracks from these
simulations, compared with the optimal biasing solutions, for selected values of zL
in Fig. 4.5. In each panel, we compare the optimal biasing path (heavy black) with
ten full simulations, using that biasing path. The simulations paths are colored red
if they reach the target position, and grey if they do not. For small values of zL (i.e.,
top panel), the simulation paths closely adhere to the optimal biasing solution, giving
a high yield and good convergence of the simulations. As zL increases (lower panels),
the simulation paths begin to deviate significantly from the optimal biasing solution.
This is the direct cause of the failure of the ISMC simulations to converge, and is also
reflected in the sensitive dependence upon the boundary data in the biasing ODEs,
which cannot be reliably solved by integration methods but instead by collocation [25].
Theory suggests that these tails, which cannot be captured numerically, should be
asymptotically exponential [26, 27].

4.2. Amplitude dropouts. The same procedure can be performed for the other
error mode, the amplitude dropout. Making use of Eq. (3.6) as the governing equation
for the reduced problem, we reformulate the optimal biasing problem, but now with
just one biasing parameter ηE controlling a single adjoint mode uE , subject to the
constraint that the pulse amplitude parameter reaches a specified value, E(z = zL) =
Ê. The relevant adjoint mode is given by [22]

uE =
1

E
(t− E(t− T ) tanh (E(t− T )))us.

Observe that for this problem we will only be controlling the amplitude parameter,
and thus we set Ω = 0 in Eq. (3.6). The solution to this biasing problem, found
numerically by collocation, for a single value of Ê is given in Fig. 4.6, again for
zL = 100km. Here the behavior does not change qualitatively as zL varies, and this
solution is typical.
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Fig. 4.5. Comparison of optimal biasing and actual simulation paths. In each case, the heavy
black curve is the optimal biasing path, beginning at T = 0 at z = 0, and “escaping” to T = T̂ =
12.5ps at z = zL. Each panel is for a single zL, increasing from top to bottom. In each panel ten
simulation paths are also given; those which reach the target value are colored red, and those which
do not are grey.

5. Combined biasing problem. Instead of treating each assumed error mode
in isolation, we will now consider them together. To do so, we must consider and
define a detector. The detector assigns a corresponding scalar value to the signal in
each bitslot. One simple detector is the “amplitude detector”, given by

I =

∫ τ/2

−τ/2

|u(zL, t)|
2dt.

This is simply the pulse energy integrated across the bit slot (or a fixed window)
at the end of the transmission line. A decrease in this detected quantity can occur
via either of the two error modes, but we need not restrict ourselves to one or the
other. Instead, biasing for a decrease in this quantity with three of the adjoint modes
(amplitude, position, and frequency – phase is irrelevant to this detector), we find
expect to both error modes.

Now we have the biasing coefficients ηΩ(z), ηT (z) and ηE(z) and the corresponding
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Fig. 4.6. Optimal biasing path solution for the amplitude dropout error mode at zL = 100 km.

adjoint soliton modes uΩ(t), uT (t) and uE(t) along the path from z = 0 to z = zL, such
that starting from an initial position I(z = 0) = I0 (corresponding to the noiseless
soliton solution) we arrive at a prescribed value I(z = zL) = Î. Here Î is an error
state, a result of a rare event in the system (i.e. a decrease in energy below the
detection threshold).

The biasing added to the solution is ηΩuΩ + ηTuT + ηEuE , and we minimize

∫ zL

0

{

η2Ω(z)||uΩ||
2 + η2T (z)||uT ||

2 + η2E(z)||uE ||
2
}

dz

subject to the differential equation side constraints

dΩ

dz
= −AΩ+B sin(ωT ) + ηΩ||uΩ||

dT

dz
= βΩ + ηT ||uT ||

dE

dz
= 2(c1 + aΩ2)E +

(

4c2γ

3β
−

2aγ2

3β2

)

E3 + c3
16γ2

15β2
E5 + ηE ||uE ||

and the boundary conditions are

T (0) = T0

Ω(0) = Ω0

E(0) = E0
∫ τ/2

−τ/2

|u(zL, t)|
2dt = E2(zL)

∫ τ/2

−τ/2

sech2 (E(zL)[t− T (zL)])dt = Î

where the unconstrained boundaries again result in natural boundary conditions. Con-
structing the necessary functional with Lagrange multipliers λ(1,2,3) corresponding to
the differential equation side-constraints for Ω, T and E respectively, and taking vari-
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ations, we obtain the system

dλ1

dz
= λ1

4aE2γ2

3β2
− βλ2 + 4λ3aEΩ

dλ2

dz
= λ1

ω3bπβ

2Eγ
csch

(

πβω

2Eγ

)

cos(ωT )

dλ3

dz
=

bπβω2

4E3γ2
λ1 sin(ωT )csch

(

πβω

2Eγ

)[

−2Eγ + πβωcoth

(

πβω

2Eγ

)]

+
8λ1aγ

2

3β2
EΩ− 2c1λ3 − 2λ3

(

4c2γ

3β
−

a2γ2

3β2

)

E2

−
16

3β2
λ3c3γ

2E4 + 2λ3aΩ
2

dΩ

dz
= −

ω2bπβ

2Eγ
csch

(

πβω

2Eγ

)

sin(ωT )−
4aE2γ2Ω

3β2
+

λ1

2

dT

dz
= βΩ +

λ2

2
dE

dz
= 2c1E +

(

4c2γ

3β
−

2aγ2

3β2

)

e3 +
16c3γ

2

15β2
E5 − 2aEΩ2 +

λ3

2

which must be solved numerically to obtain the optimal biasing paths, for example
using AUTO or MATLAB’s bvp4c.

By varying the target energy decrease Î, we find that there is a bifurcation in the
optimal path through soliton parameter space to reach this target, with the branches
corresponding to the two previously assumed error modes. This can be seen if Fig. 5.1,
where the dashed line corresponds to the amplitude dropout mode, and the solid line
to the position slip. In the left panel, the relative probability of each solution is given;
in the right panel, the final position T (zL). For the position slip mode, the final
position must be near τ/2, while for the amplitude dropout mode, there is no change
in position so T (zL) = T0 = 0. For small prescribed decreases in energy (Î/I0 near
1), the most probable error mode is the amplitude dropout (dashed curve). As the
required decrease in energy becomes larger (Î/I0to0), the amplitude dropout becomes
less probable, and eventually the position dropout becomes the preferred mode. The
amplitude dropout mode always has a gradual descent in the detected quantity, as
decreasing the pulse amplitude creates a corresponding drop in the detected quantity.
However, the position slip has a different character – while initial changes in final
position have little impact on the detected quantity, as the pulse is still largely within
the integration window, when the body of the pulse reaches the edge of the integration
window the detected quantity decrease per unit of biasing strength becomes very large
at the margin. A small additional change in pulse position pushes a large amount of
pulse energy outside of the detector window. The results of the numerical bifurcation
solution are precisely in line with our qualitative expectations for the behavior of this
system.

6. Discussion. We have shown that multiple importance sampling techniques
based on soliton perturbation theory can be extended to be a useful tool for the study
of rare events in mode-locked laser systems, of particular interest due to recent tech-
nical developments in optical frequency metrology which depend on high performance
laser sources. This rare event simulation method allows fast and accurate simulation
of these rare events and their statistics, which are simply unobtainable via traditional
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Fig. 5.1. Diagram of the solution branches for the mode-locked laser system, where the solid
line corresponds to the position slip error mode and the dashed line corresponds to the amplitude
dropout. The relative probability of each solution (left) and the final pulse position T (zL) (right) are
plotted against the relative energy decrease on the horizontal axis.

Monte Carlo methods. While the method does depend critically on the mathematical
structure of solitons, many laser systems do in fact use soliton or near-soliton pulses.

We have also shown that in addition to providing rare event simulation data for
the system, this method also can provide interesting information about the types
of errors in the underlying system – in this case, the position slips and amplitude
dropouts. The combined biasing problem for any type of error in the system provides
the expected transition between these error modes. While the model we have studied
is a relatively simple choice, the method we have illustrated is shown to be highly
effective should be applicable to more complicated and physically realized systems.

One limitation of this approach, particularly for OOK systems, is that we are
unable to bias the “zeros” – that is, the bitslots which contain no pulse. Because the
noiseless solution is trivial, there is no soliton to linearize about; treating this case is
an open problem. There are of course other methods in the literature, for instance ap-
proaches based on assuming that the output distribution is Gaussian (though Fig. 4.3
is clearly not), or multi-canonical Monte Carlo (MMC) (i.e. [28–31]). While MMC
has advantages, for example that it could be applied to non-soliton systems, it only
produces the final output PDF and does not allow for exploring the importance of
the error modes in the system.
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