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a b s t r a c t

The idea that the apparently random motion of T cells in lymph nodes is a result of movement on a

reticular network (RN) has received support from dynamic imaging experiments and theoretical

studies. We present a mathematical representation of the RN consisting of edges connecting vertices

that are randomly distributed in three-dimensional space, and models of lymphocyte movement on

such networks including constant speed motion along edges and Brownian motion, not in three-

dimensions, but only along edges. The simplest model, in which a cell moves with a constant speed

along edges, is consistent with mean-squared displacement proportional to time over intervals long

enough to include several changes of direction. A non-random distribution of turning angles is one

consequence of motion on a preformed network. Confining cell movement to a network does not, in

itself, increase the frequency of cell–cell encounters.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The adaptive immune response depends on T cells coming into
physical contact with antigen-presenting cells (APCs) in the T cell
zone of one of the body’s lymph nodes (Miller et al., 2004a; Hugues
et al., 2004; Celli et al., 2005; Bajénoff et al., 2007; Bousso, 2008).
Recent advances in imaging techniques, especially two-photon
microscopy, have enabled direct observation of the movement of
labelled cells in the lymph nodes of living mice (Miller et al., 2002,
2004b; Stoll et al., 2002; Beauchemin et al., 2007; Millington et al.,
2007; Garside and Brewer, 2008; Bousso et al., 2002). A large body of
experimental evidence andanalysis of the trajectories of individual
cells indicate that their paths are consistent with an underlying
random process: plotting the mean-squared displacement against
time yields a straight line, as would be found if cells underwent
Brownian motion, in a range of time intervals from several minutes
to an hour (Miller et al., 2002; Wei et al., 2003; Catron et al., 2004;
Sumen and Mempel, 2004; Meyer-Hermann and Maini, 2005;
Zinselmeyer et al., 2005; Woolf et al., 2007; Beauchemin et al.,
2007; Riggs et al., 2008; Worbs and Förster, 2009).

It has recently been proposed that, rather than exploring
three-dimensional space, T cells move on the network that fills
the T-cell zone of the lymph node known as the reticular network

(RN) (Katakai et al., 2004; Kaldjian et al., 2001; Gretz et al., 1997;
ll rights reserved.
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Ushiki et al., 1995). The RN contains fibroblastic reticular cells
(FRCs) (Bajénoff et al., 2006, 2008; Beauchemin et al., 2007;
Mueller and Ahmed, 2008; Mueller and Germain, 2009) and
may be referred to as the FRC network or stromal network. It
has also been reported that the RN acts as a conduit system,
transporting soluble antigen to resident dendritic cells (Sixt et al.,
2005), and that FRCs secrete the T cell survival factor interleukin-7
(Link et al., 2007). There is experimental evidence, from combina-
tions of imaging techniques, that T lymphocytes and thymocytes
migrate in contact with FRCs and that their changes of direction
are correlated with branches in RNs (Bajénoff et al., 2006, 2008;
Sanos et al., 2011).

A number of models of lymphocyte movement exist in the
literature, generally considering free movement in space (Worbs
and Förster, 2009; Beltman et al., 2007a; Grigorova et al., 2010;
Textor et al., 2011), and sometimes with the idea of movement on
a network in mind (Preston et al., 2006; Beltman et al., 2007b;
Bogle and Dunbar, 2008). For example, Beauchemin et al. (2007)
use three parameters: free speed, free run time and pause time,
where cells crawl for the free run time at the free speed, and then
pause before heading in a new direction chosen from a density of
turning angles. This model exhibits a characteristic two-regime
behaviour in mean displacement as a function of time. Beltman
et al. (2007b) employ the Potts model on a lattice, explicitly
following cell shapes and interactions. Bogle and Dunbar (2008)
use an agent-based model on a packed lattice, and Preston et al.
(2006) a transport-limited chemical reaction. Grigorova et al.
(2010) consider a series of periods of straight-line movement
with the possibility of correlations between successive directions.
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Here, we take a different approach by first explicitly constructing
the RN network, and then confining all cell motion to it.

The first step in constructing a computational model of motion
on the RN is the construction of the network itself. One must
define a set of vertices and edges joining the vertices. We assume
each vertex in the network is connected to exactly three edges,
motivated by the idea that a vertex is formed when a growing
fibre branches into two. The second step is to define the rules of
cell motion on this network. We consider different hypotheses for
the motion of cells along edges of the network, and rules
governing the direction chosen at vertices. The properties of cell
paths depend on these rules as well as on the properties of the
network itself.

We also explore the implications of RN-based motion for
encounters between APCs and T-cells. Because some dendritic
cells reside on the network (Lämmermann and Sixt, 2008),
restricting T cell motion to a network may be envisaged as a
mechanism for bringing about T cell-dendritic cell encounters
more efficiently (Charnick and Lauffenburger, 1990). However, we
find that motion confined to the network does not increase the
frequency of encounters, compared to the frequency of encounters
of cells following Brownian motion in three-dimensional space.
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Fig. 2. Upper panel: probability densities (PDF) of angles between edges sharing a

vertex, for l ranging from 0 to 1000, sampled from 100 realisations with

N¼14,000 and R¼ 160 mm. The sin y density is shown for comparison. Lower

panel: corresponding coefficient of variation (c.v.) for each simulation.
2. Network model

2.1. Constructing the network

Our spatial random networks (Deijfen, 2009; Holroyd et al.,
2009) are constructed by first positioning vertices at random, by
sampling from the uniform distribution, and then generating
edges between them. The position of each of the N vertices
is independently drawn from the uniform distribution inside a
sphere of radius R, so that the density of vertices is r¼ 3N=4pR3.
Connecting the set of vertices with edges is done in two stages. In
the first stage, a randomly-chosen vertex, n1, is connected to its
nearest neighbour, denoted n2; n2 is connected to n3, where n3 is
the nearest vertex to n2 that is not yet connected, and the process
is continued until nN�1 is connected to nN. In the second stage,
N�1 vertices are picked without replacement from the set of N,
and for each vertex an edge is created joining it to the nearest
vertex that it is not already connected to and has fewer that three
edges. In this way, a random network is generated with a known
number of vertices, uniformly distributed in space, each con-
nected to three other vertices. The network thus constructed does
not divide into non-communicating subsets; a path exists
between any two vertices of the network, although the shortest
path may pass through many other vertices.
Fig. 1. Left: sample network. R¼ 160 mm, N¼1000 and l¼ 1. Right: mean edge length

solid line is b¼ 0:87r�1=3.
In Fig. 1, we display a small sample network and a plot of the
mean edge length, denoted b, averaged over numerically-generated
networks. The set of points labelled l¼ 0 is generated according to
the algorithm just described. The set of points labelled l¼ 4 is
generated with the modification that, instead of connecting to the
nearest available neighbour, vertices are connected to the jth
nearest, where j�1 is chosen from a Poisson distribution with mean
l. The data points were obtained by constructing networks with N

between 100 and 40,000 in a sphere with radius 200 mm. A practical
consideration is the size of the computational domain, in particular
the sorting required to establish connections during network gen-
eration which restricts the size of the computational domain.
Domains of the size of a typical experimental imaging region inside
a T cell zone are feasible, but models of an entire lymph node are not
as yet feasible.

When the number of vertices, N, is sufficiently large, we observe
that b¼ AðlÞr�1=3, where we estimate AðlÞ ¼ 0:87þ0:10l from the
data in Fig. 1. The deviation from r�1=3 scaling at low values of N is
due to the increased proportion of vertices close to the surface
of the sphere whose edges can only be with nodes in the interior.
For example, the edge lengths of about 17 mm that are estimated
in mice lymph nodes (Bajénoff et al., 2006) are obtained with
rC105 mm�3, corresponding to 1000 per sphere of radius 133 mm.

The probability density of the angle y between two edges
sharing a vertex is shown in Fig. 2, for three values of l. In each
versus density of vertices, for random networks generated with R¼ 200 mm. The
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case b� 17 mm, where N has been varied as necessary to preserve
b. Symmetry around 901 would be found if successive edges were
independent (Beltman et al., 2009). With our method of con-
struction, turning angles smaller than 901 are slightly favoured
with small values of l. At sufficiently large values of l, on the
other hand, confinement of the nodes to a closed region produces
an average turning angle close to 1201. We note that the
distribution of edge turning angles is close to random only when
the value of l is in a relatively small range. Although it is
not possible to assess which value of l corresponds to real RN,
we can conclude that the in vivo distribution of edge turning
angles is unlikely to be symmetric about 901.

In analysis of imaging data, turning angles are calculated from
measurements of cell position at fixed time intervals. There are
two consequences for the measured distribution of turning
angles, compared to that of edge turning angles. First, a narrow
peak at y¼ 01 will appear, more prominent the smaller the time
interval used, corresponding to cells that have remained on one
edge for three or more timepoints. Second, the turning angle that
is measured in the case where a cell does pass through a vertex to
another edge will only correspond to the edge turning angle if the
cell position is on the vertex at the second timepoint of three,
otherwise the measured angle will be smaller than the edge
turning angle.

2.2. Motion on the network

Constant speed network motion (CSDB and CSNM): A simple
hypothesis is that cells travel at a constant speed changing
direction upon reaching a vertex. At the vertex, an important
distinction is made—between paths which are allowed to ‘‘dou-
ble-back’’ onto the edge which they have just traversed, and those
which must choose from the other edges. In each case, an edge is
selected at random from those available. We refer to the former as
constant speed network motion with doubling-back (CSDB) and
the latter as constant speed network motion (CSNM). Each motion
is thus characterised by the speed parameter denoted v. The speed
is assumed constant at all times, including while turning onto a
new edge. A movie illustrating CSDB is included as supplementary
material.

Supplementary data associated with this article can be found
in the online version of 10.1016/j.jtbi.2011.11.001.

As models for the movement of a T cell along an edge, the
constant-speed and Brownian motion cases can be thought of as
two ends of a spectrum of possibilities. At one end, the cell never
changes direction, except perhaps at vertices; at the other end,
the cell is constantly changing direction. For example, a cell that
moves with constant speed v, and reverses its direction with
constant probability, q, per unit time, will have mean-square
displacement equal to 2tv2=q as t-1. Models of stop-pause-go
motion, for example, are used for the effective motion of T cells in
three-dimensional space, resulting from motion along the net-
work with branches (Beauchemin et al., 2007). It is to be expected
that the characteristics of cell motion along an individual network
edge in vivo, will be those of an intermediate case, with some of
the characteristics of BNM and CSNM. It is also possible, of course,
that cells could exhibit some more complex form of behaviour;
for example, moving between nearby edges at locations not
joined by a vertex.

It is also important to note that cells cannot exit the network,
and thus over sufficiently long simulation times confinement
effects appear. In order to minimise this, cells are started near
the centre of the computational domain, and total simulation
times are smaller than the mean time required to reach the
boundary. A more detailed analysis of the effects of finite imaging
volume can be found in Appendix A.
3. From network motion to apparent Brownian motion

We begin by recalling some properties of Brownian motion and
of motion consisting of straight-line segments. Brownian motion
in three space dimensions, with diffusivity D, is the stochastic
process ðXt ,Yt ,ZtÞ having independent Brownian motions, with
diffusivity D, for each of its three Cartesian components (Ito and
McKean, 1974; Stirzaker, 2005):

E½X2
t � ¼ E½Y2

t � ¼ E½Z2
t � ¼ 2Dt so E½X2

t þY2
t þZ2

t � ¼ 6Dt:

The displacement at time t, Rt ¼ ðX
2
t þY2

t þZ2
t Þ

1=2, has mean
E½Rt� ¼ ð16Dt=pÞ1=2. Here, we measure the effective diffusivity of
a T cell, Deff , as the long-time limit of E½X2

t þY2
t þZ2

t �=6t.
If a T cell moves a distance l in a direction that is randomly-

chosen in three space dimensions, then the mean-squared dis-
placement in any one Cartesian direction is l2=3. If the motion
has constant speed v along each direction, then the time taken to
traverse an edge with length l is l=v. The effective diffusivity of
T cells following paths consisting of a succession of straight-line
segments, each of length l, in independently-chosen directions is

D¼
E½X2

t þY2
t þZ2

t �

6t
¼

l2

6l=v
¼

vl

6
:

The ‘‘minimalist’’ model (Beauchemin et al., 2007) incorporates a
pause time tpause at each vertex, so that the total mean time to
traverse an edge is l=vþtpause, and D¼ ðvl=6Þð1þvtpause=lÞ�1.

It is possible to modify the above ‘‘minimalist’’ model to take
into account some of the features of motion on preformed
networks. If the lengths l of the segments are not fixed, but
themselves drawn independently from a probability density with
E½l� ¼ b and E½l2� ¼ a, then

D¼
a
b

v

6
: ð1Þ

For example, supposing that edge lengths vary between 5 mm
and 37 mm, with mean 17 mm (Beauchemin et al., 2007), a rough
estimate based on a uniform distribution between 5 and 29 mm gives
b¼ 17 mm and a¼ 337 mm2. Then, for instance, v¼ 18 mm=min
yields D� 59 ðmmÞ2=min.

Second, the description can be modified by allowing the cell,
with probability p at the end of each segment, to reverse its
direction. Then the mean number of distinct segments traversed
in time t is proportional to tð1�pÞ=ð1þpÞand

D¼
va
6b

1�p

1þp
: ð2Þ

If all vertices are connected to three edges and a cell, once it
arrives at a vertex, is allowed to take the edge along which it
arrived, then p¼ 1

3 and so the factor ð1�pÞ=ð1þpÞ in (2) is
precisely 1

2.
Now consider motion in which a cell executes one-dimen-

sional Brownian motion, with diffusivity Dlin, along an edge that is
oriented in a randomly selected direction, until it has travelled a
distance l, then in another direction, and so on. (Successive values
of l may themselves be chosen from a probability density.) The
mean time spent on an edge is l2=2Dlin, and the relationship
between the diffusivity of the motion on each edge, and the
effective diffusivity is

D¼
E½X2

t þY2
t þZ2

t �

6t
¼

l2

6

2Dlin

l2
¼

1

3
Dlin: ð3Þ

On preformed networks, we observe effective diffusivities obey-
ing this relationship if the rules for the choices of direction at
vertices prevent the cell from revisiting an edge that has been
traversed from end to end before another edge is traversed. The

dx.doi.org/10.1016/j.jtbi.2011.11.001
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property that the mean-square displacement is proportional
to time is common to motions in which the number of distinct
vertices visited in time t is proportional to t. An interesting
counter-example, to be discussed in Section 4, where the number
of distinct vertices visited and, consequently, the mean-squared
displacement, are proportional to

ffiffi
t
p

, is found for BNM.
In this section, we have derived formulae describing the

apparent random motion that results from simple hypotheses
about motion confined to a network. In the next, we consider the
cell motion as observed in imaging experiments.
Fig. 4. Effective diffusivity versus mean edge length for CSDB with v¼ 12 mm=min.

The solid lines are Deff ¼ ða=bÞv=6. The numerical realisations were carried out with

R¼ 300 mm.
4. Observed motion

Apparently random motion that results from motion along a
preformed network is illustrated in Fig. 3. We followed individual
T cells on a network for 12 min and imitated the experimental
methodology of Miller et al. (2003) for analysing the motion of
in vivo T cells as acquired by two-photon microscopy; that is, the
three-dimensional cell traces are sampled every 10 s, projected
into the two-dimensional x-y plane, and adjusted to begin at the
origin. The results are given as the individual traces, in the left
panel, and mean displacement as a function of

ffiffi
t
p

, in the right
panel. As in Miller et al. (2002) (Fig. 3), Miller et al. (2003) (Fig. 4)
and Mempel et al. (2004) (Fig. 1f), linear regression of the mean
displacement versus

ffiffi
t
p

is performed. Here we obtain a very good
Fig. 3. (A and C): trajectories for 39 simulated cells undergoing (A) CSNM and (C) BNM

using l¼ 1, resulting in b¼ 17:47 mm. As in Miller et al. (2003), 39 cells are tracked

displacement, plotted as a function of
ffiffi
t
p

, along with linear regression (R2
¼ 0:96). Stand

diffusivity of Deff ¼ 60 ðmmÞ2=min. In (D), BNM with Dlin ¼ 596:73 ðmmÞ2=min.
linear fit with R2
¼ 0:95. Equivalent simulations were performed

for BNM; the results are given in Fig. 3D again with good linear fit;
simulations for CSDB likewise yielded R2

¼ 0:95 (data not shown).
on a network. The network contains N¼14,000 nodes in a sphere of R¼ 160 mm

for 12 min and observed six times per minute. (B and D): corresponding mean

ard error bars are given. In (B), CSNM with v¼ 20:45 mm=min, yielding an effective
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4.1. Two regimes in mean displacement versus time

In the previous subsection, we have seen that different types of
cell motion along edges, constant speed or Brownian may produce
graphs of mean-squared displacement versus time that are con-
stant slope over some time intervals. However, followed over
longer times, differences emerge. If motion along edges is constant
speed, the resemblance of paths to Brownian motion becomes
stronger when cells are followed for longer times. In the case of
BNM, however, the long-time behaviour is subdiffusive. In Fig. 4
we plot the effective diffusivity versus mean edge length for CSDB
with v¼ 12 mm=min. The effective diffusivity, measure as described
in Section 3, is well approximated by (1).

A persistent feature of plots of mean displacement versus
ffiffi
t
p

for T cells, both in experimental and modelling studies, is that
they exhibit two distinct scaling regimes: in the short-time
regime, mean displacement is linear in t and is typically inter-
preted as an initial period of straight line, fixed speed movement;
in the long-time regime mean displacement is linear in

ffiffi
t
p

(i.e.,
Sumen and Mempel, 2004). This has been interpreted as a sort of
persistence length, or mean free path, characterising the cell
motion. In the context of movement on the network, there is an
intuitive explanation: the first regime corresponds to movement
along a single edge, and the second occurs as movement pro-
gresses across n edges, as n-1.

It is easy to understand the initial, small-time regime for both
BNM and CS motions. On a single edge, the displacement is on a
line: CS motions move at a constant speed with displacement
proportional to t; BNM with mean displacement proportional toffiffi

t
p

. The long-time regime has mean displacement growth in time
which is the square root of the small-time regime. To understand
this, consider the simple example of a non-intersecting path along
a network, where all edges are of length l and successive
directions are independently chosen at random—see Fig. 5. We
first show by an induction argument that the following relation-
ship holds between the number, n, of segments in random
directions, and the distance, rn, from the starting point, when
the length of each segment is constant:

E½r2
n� ¼ nl2: ð4Þ

If n¼1, the distance travelled is l, and the result holds. When
n¼2, the angle, y1, between the first and second directions is
symmetrically distributed about y1 ¼ p=2, so the mean distance
is that found by averaging over all possible turning angles:

E½r2
2� ¼ 2l2. Repeating this construction for two sides of a new

triangle, now with one side of length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�1Þl2

q
and the other

of length l, yields (4). If the length of the path, up to time t,
is lZðtÞ and the displacement at time t is rZðtÞ then, for sufficiently
small time, when ZðtÞo1, the displacement is along a single edge,
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½r2

ZðtÞ�
q

¼ lZðtÞ
θ1
θ2

1

2

3

n

l

rn

l l
l

Fig. 5. Schematic illustrating geometric construction relating path length and

displacement.
proportional to ZðtÞ. For large time, when ZðtÞb1, the path turns
through many angles and, by (4),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½r2

ZðtÞ�
q

¼ l
ffiffiffiffiffiffiffiffi
ZðtÞ

p

proportional to
ffiffiffiffiffiffiffiffi
ZðtÞ

p
.

In the case of CSNM ZCSNMðtÞ ¼ vt=l and thus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½r2

ZðtÞ�
q

¼
vt, t small;ffiffiffiffiffiffi

lvt
p

, t large:

(
ð5Þ

For BNM, on the other hand, the length along the path changes in
time as ZBNMðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dlint

p
=l and so

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½r2

ZðtÞ�
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dlint

p
, t small;

ð2Dlinl2tÞ1=4, t large:

(
ð6Þ

The two-regime behaviour of CSNM and BNM motion is
illustrated in Fig. 6. Note that a large value of b is chosen in
order to visualise the small-time regime more clearly. In the case
of CSNM, (A) and (B), the small-time behaviour is seen to be
proportional to t, transitioning to diffusive, p

ffiffi
t
p

behaviour for
large times. In (C) and (D) simulation results are given for BNM
with mean displacement plotted against

ffiffi
t
p

and t1=4. While the
motion is initially linear in

ffiffi
t
p

, for longer time it becomes linear in
t1=4, in agreement with (6). The dashed red lines are to aid the eye.
In the same way that diffusive behaviour means that speed is not
well-defined, long-time subdiffusive behaviour means that the
diffusivity is, strictly speaking, zero.
Fig. 6. Mean displacement collected from 3900 trajectories. (A and B): CSNM with

v¼ 20:45 mm=min. (C and D): BNM with Dlin ¼ 596:73 ðmmÞ2=min. The networks

used contained N¼14,000 nodes within a radius R¼ 160 mm with l¼ 1, resulting

in mean edge length b¼ 17:47 mm. The mean displacement is plotted versus t in

(A), and against
ffiffi
t
p

in (B) and (C), and against t1=4 in (D), with dashed lines

indicating approximate scaling regimes for small and large t (see text Section 4.1).
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4.2. Apparent speed

One typical experimental measure of lymphocyte movement
is the apparent speed, obtained by observing the position of the
cell at a fixed observation frequency. Because experimental axial
resolution is not as good as lateral resolution, lateral speeds
are measured from point to point on tracks projected into the
x–y plane (Miller et al., 2003). In Fig. 7, we replicate the procedure
of Miller et al. (2002, 2003, 2004a), by following cell motion
over a 12 min period, making observations of position at 10 s
intervals, and measuring the displacements in the x–y plane.
These displacements are then divided by the observation period
to give an apparent lateral speed. The mean speed is given as a
function of mean edge length b. At each value of b, the constant
speed v is chosen so that Deff ¼ 6071:2 ðmmÞ2=min. As may be
expected from (1) and (2), the value of v needed to yield a given
value of Deff with CSDB motion is twice that required with CSNM.
Mean apparent lateral speed measurements reported in the
literature are near 10 mm=min (Miller et al., 2002); comparison
with Fig. 7 suggests that the results from CSNM are closest to
experimental values. The mean apparent lateral speeds obtained
from measurements of BNM taken at time intervals separated
by Dt are proportional to ðDtÞ�1=2. If Deff ¼ 60 ðmmÞ2=min
then apparent velocities of order 10 mm will be found over
time intervals of about 1 min; smaller Dt yields larger apparent
velocities.

In summary, in this section we have shown how T cell motion
restricted to a preformed network would manifest itself in the
methodology typically used to analyse data from two-photon
imaging of lymph nodes in vivo. The simplest type of motion,
where velocity is constant along edges, is consistent with current
experimental data and has effective diffusivity well-approxi-
mated by a simple formula. BNM, or motion with multiple
changes of direction along an edge, will be subdiffusive if
observed for sufficiently long times.
5. Cell collisions

The underlying immunological question of cell dynamics in
lymph nodes is that of collision times—how long does it take for
an APC to come in contact with a specific T cell? We compare
mean collision times, when cell movement is restricted to a
network of vertices and edges, with those from off-network
motion. Note that, on a network, modelling cells as point particles
is sufficient to obtain collisions. In contrast, to obtain collisions
between cells moving in three spatial dimensions, at least one of
the cell types must have a non-zero radius of attraction because
point particles moving independently in three space dimensions
do not collide.

Here we choose to compare the rates of collision in network
and off-network models by fixing the effective diffusivity, mea-
suring the rate of collision on a computational network, and
calculating the effective radius that would need to be assumed in
an off-network Brownian motion model to obtain the same rate of
collision. That is, for any given network size and fixed Deff , the
resulting mean collision time for network-based motion implies
an effective cell radius: the cell radius for off-network motion
which yields the same mean collision time.

In each numerical realisation, one T cell and one APC are given
random initial conditions on the network; the T cell moves
according to the rules of motion until colliding with the stationary
APC. Before each numerical evaluation of the frequency of colli-
sions on a network, we establish the values of the motion
parameters (Dlin or v) by Monte Carlo simulation (50,000 trials)
over a fixed time period (12 min).

The mean time for collision between a T cell (assumed to be a
point-particle) moving according to Brownian motion with diffu-
sivity Deff in a sphere of radius R, and a stationary APC with finite
radius b, is (Redner, 2001)

t¼ R3

3bDeff
: ð7Þ

The mean collision time t can be calculated for network-based
motions by Monte Carlo simulation, thus allowing a calculation of
the implied APC radius, b. Results are given in Fig. 7, panel B,
where each simulation data point is obtained from 50,000 Monte
Carlo simulations with R¼ 160 mm and Deff ¼ 60 ðmmÞ2=min. For
each type of motion as the mean edge length b decreases so does
the implied APC radius. This corresponds to an increase in the
mean collision time, which arises from an increase in total
network size. The T cell must search a larger and larger network
as b decreases, resulting in increased collision times.

The mean collision time is observed to be proportional to the
sum of the lengths of all the edges, Nb, which is proportional to r2=3.
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We find

t¼ R3

kvb2
, ð8Þ

where we estimate k¼0.0439 for CSNM and k¼0.0200 for CSDB.
In the estimated physiological range of b of 5237 mm (Bajénoff

et al., 2006), implied APC radii under network-based motion are
thus smaller than effective APC radii of approximately 19 mm
(Miller et al., 2004a). (In three-dimensional collision models, the
radius of attraction may in fact be larger than the physical cell
radius, due to local chemical signalling and dendritic APC struc-
ture (Day and Lythe, 2011).) In this sense, there is no increase in
contact efficiency due to RN-based motion.
6. Discussion

We construct an explicit network within the lymph node using
an algorithm for generating random spatial networks. Network
motion is an attractive hypothesis because it is able to produce
linear motion at short timescales and apparent Brownian motion
at longer timescales. The simplest, constant speed, motions
reproduce this characteristic two-regime behaviour with mean
displacement as a function of time initially proportional to time
and later proportional to the square root of time. The effective
diffusivity is approximately a=bv=6, where b is the mean edge
length and a is the mean-square edge length. Allowing a cell to
reverse direction at a vertex reduces its Deff by a factor of 2. If the
motion along edges is itself Brownian then the resulting cell path
is subdiffusive.

The distribution of cell turning angles depends, under the
assumption that cell motion is confined to the RN, on the
distribution of network edge turning angles. In our numerically-
constructed networks it is unusual to find a distribution of edge
turning angles that are random. We conclude that it should be
possible to observe the non-random distribution of turning angles
in analysis of in vivo imaging data as a consequence of network
motion. Of course, such bias in the turning angle distribution
could also be a result of a different type of persistent motion.

One possible rationale for the hypothesis of network-based
motion is that physical contacts between cells, such as an APC and
T cell, can be arranged more efficiently on the network than if all
cells wander freely in space. This was examined in Section 5 by
calculating the implied effective APC radius for each type of
motion. However, the implied APC radii are not sufficiently large
to justify the hypothesis that network motion, by itself, increases
the efficiency of cell collisions when compared with off-network
Brownian motion.

From the point of view of collision times, lower-density net-
works are more efficient. However, a dense network would be
required to sustain the hypothesis that most T cells, even in a
crowded lymph node, are constrained to move along it. Note that,
in our network dynamics model, however, we have not included
the possible effects of chemical gradients and occasional off-
network motion that may result in improved contact efficiency
(Mempel et al., 2006; Bajénoff et al., 2008).

Choices have been made in this work in the construction of
networks, for example that each vertex is connected to exactly
three edges. This assumption was motivated both by the idea that
the network is formed by branching, and by the micrographs of
Ushiki et al. (1995), which show almost exclusively connections
of this type. Our model could be modified to allow for the
possibility of more than three edges at a vertex, to remove long
edges, or to incorporate curved edges. It would also be interesting
to consider algorithms that ’’grow’’ a network, beginning from a
single node and propagating outwards, although they tend to
produce a tree-like structure and contain a few long edges that
can have an important influence (Callaway et al., 2001). The
networks considered here also contain a small number of long
edges, due to the nature of the generation algorithm; the
influence of these links, and their relationship to the properties
of the genuine physiological network, is an important area for
future work.

If T cells routinely follow the FRC network, rather than
exploring the full three-dimensional volume available to them
in the T cell zone of a lymph node, then T cells will be found in the
same location at different times. Recent multiphoton observations
of lymphocyte motion have revealed evidence that changes in
T cell direction coincide with branches of the network (Bajénoff
et al., 2006, 2008; Sanos et al., 2011). On the other hand, our
result that the rate of encounters between cells is not enhanced
under the assumption that cells always move on a dense network,
and the question of how simultaneous motion of many cells could
be arranged under this assumption, suggest that a modified
model where cells occasionally leave the network, is a fruitful
area for study. It may also be possible for the current generation
of imaging experiments to yield precise data, on the distribution
of edge lengths in vivo and on cell motion along individual edges,
that can be used to refine computational models such as that
introduced here.
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Appendix A. Finite volume effects

Both in this modelling study, and in the experiments with
which we compare, lymphocytes are not imaged as they move
freely throughout the entire lymph node, but are instead confined
to a smaller imaging region. For example, Miller et al. (2002)
image a 200� 200� 50 mm3 region, while we have considered
a sphere with radius 160 mm (except where explicitly varied).
Because these regions are artificial, it is important to consider the
implications of this finite domain size.

We begin by reconsidering the mean displacement versus
ffiffi
t
p

for smaller imaging regions, centered within the R¼ 160 mm
sphere. Now, if a particle track exits the imaging region, that is
treated as the end of the track (i.e., the particle has been lost). If it
subsequently re-enters the imaging region, it is treated as a new
track. We consider imaging regions of 100� 100� 25 mm3 and
50� 50� 12:5 mm3 with particles tracked for 12 min. The result-
ing mean displacements are given in the left panel of Fig. A1,
along with the results in the sphere for comparison. At 100�
100� 25 mm3, the particles exhibit mild confinement within
12 min, with the mean displacement drifting below the target
value during the latter stages of the simulation. At 50� 50�
12:5 mm3, the particles are severely confined, with a significant
reduction in the final mean displacement. Although our computa-
tional domain is insufficiently large to perform the same experi-
ment with the full 200� 200� 50 mm3 region, extrapolating from
the smaller imaging regions clearly suggests that over a 12 min
observation period, confinement effects would not be significant
in a domain of that size.

To quantify this confinement effect more fully, we vary
both the simulation time and R with v fixed under CSNM. We
then measure Deff (the mean slope of the mean displacement
versus

ffiffi
t
p

curve). The value v¼ 23 mm=min is chosen to give
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Fig. A1. Effects of finite volume. Left panel: mean displacement versus
ffiffi
t
p

for increasingly confined imaging regions. As the ROI becomes smaller, the maximum possible

mean displacement also decreases. Right panel: quantifying confinement varying both time and R. Here CSNM motion is considered with b¼ 17 mm, and v¼ 23 mm=min

chosen to yield Deff � 60 ðmmÞ2=min in unconfined simulations; values significantly below this indicate simulations confined by the finite volume.
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Deff � 60 ðmmÞ2=min in unconfined situations; confinement is then
indicated by Deff o60 ðmmÞ2=min. Simulations are performed vary-
ing the duration from 4 to 20 min, and R from 80 to 200 mm, with
the results given in the right panel of Fig. A1. For severely confined
simulations (long time and small R), Deff values are decreased by
nearly a factor of 2 indicating severe confinement. However, for the
values used elsewhere in this manuscript (t¼12 min, R¼ 160 mm)
or better, confinement effects are negligible.
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