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h i g h l i g h t s

• Noise-like pulses are an optical phenomenon that consist of chaotic pulse bunches.
• These form a stable envelope with a fluctuating internal structure.
• These noise-like pulses can occur in mode locked laser systems.
• They may emerge from soliton-like mode locking by different dynamic mechanisms.
• The statistics may be near-Gaussian, or heavy-tailed.
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a b s t r a c t

Noise-like pulses and optical rogue waves are connected nonlinear phenomena which can occur in
passivelymodelocked laser systems. Herewe consider a range ofmodel systems to explore the conditions
underwhich noise-like pulses can be expected to occur, and furtherwhen the resulting statisticsmeet the
optical rogue wave criteria. We show, via a series of careful simulations, that noise-like pulses and optical
rogue waves can arise either separately or together, and that theymay emerge from standard soliton-like
solutions via different mechanisms. We also propose a quantitative definition of noise-like pulses, and
explore the issues carefully in convergence testing numerical methods for such systems.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Noise-like pulses (NLPs) are a phenomenon observed in opti-
cal systems (both experimental and theoretical) wherein a chaotic
pulse bunch forms a stable temporal envelope with a fluctuating
internal structure (e.g. [1–4]). This often occurs as a bifurcation in
systems which also exhibit stable single-pulse solutions, and the
NLP statistics may either be Gaussian, or heavy-tailed [5,6]. If the
distributions are sufficiently heavy-tailed, they may meet the cri-
teria to be considered optical rogue waves (ORWs) [4].

Optical rogue waves are rare, large amplitude events in optical
systems. They have recently gained much attention, both theoret-
ical and experimental [7,8], in part because of potential parallels
with oceanic rogue waves. Although questions remain about how
much insight can be gained into ocean roguewaves from their opti-
cal cousins, optical rogue waves (ORWs) are nonlinear phenomena
of interest in their own right. In particular we look here at rogue
waves in laser systems, which differ in important ways from those
originally observed by Solli et al. [7]. Here the system is no longer
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conservative, because of gain and loss in the laser cavity, and so
some of the potential connections with oceanic waves have been
lost [9]. Still, the term ‘‘roguewave’’ is widely used in such systems,
and here we consider the origins, dynamics and statistics of such
laser rogue waves. The concepts of ORWs and NLPs are connected
by the fact that some NLPsmeet the criteria to be considered rogue
waves [4], though of course ORWs can arise by other mechanisms.

Here we consider the dynamic origins of noise-like pulses in
passively modelocked laser systems, and also their statistics and
role as generators of ORWs. We first consider a generic formula-
tion and outline themethod of study; then we consider several ex-
ample systems drawn from the literature. Each of these systems is
selected to consider the role of one or more (potentially) impor-
tant system characteristics. We show that NLPs can emerge from
the single-pulse solution in several different ways; that they can
occur in either normal or anomalous dispersion systems; in either
one or two polarization systems; and with an explicit or lumped
modelocking mechanism. Further, our examples demonstrate that
from this set of trial systems, no single characteristic is sufficient
to predict the character of the pulse amplitude statistics a priori. As
part of this analysis we propose a quantitative definition of NLPs in
these systems.

http://dx.doi.org/10.1016/j.physd.2015.07.003
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Fig. 1. Schematic illustration of sample passively mode-locked laser system.

One significant challenge in studyingNLPs inmodelocked lasers
is reproducibility of existing studies. Here we provide full, explicit
and complete descriptions of the models and numerical methods
used, as well as demonstrations of numerical convergence (partic-
ularly near the chaotic attractors).

2. Models

We begin by considering a nonlinear polarization evolution
(NPE) modelocked laser in its most general terms: a laser cavity
which consists of optical fibre (including gain media) and a po-
larization controller (PC); see Fig. 1. Propagation of light through
the fibre is described by the cubic nonlinear Schrödinger equation
(NLS), or one of its variants, while the PC is a discrete element. The
combination must effectively act as a saturable absorber. The sys-
tem is said to be mode-locked if a stable solution, modulo phase
rotation, emerges after some (possibly very large) number of round
trips.

If we take a section through one location in the cavity (e.g. at
the output coupler), and discretize the PDE, then the models we
consider are iterated maps

f : CN
→ CN

where each iteration of the map corresponds to a single round trip
of the laser cavity. Then a modelocked solution can be thought of
as an invariant set of this iterated map.

As a simple example, one might consider a single piece of gain
fibre, with one polarization, and a lumped polarization controller.
Then the governing equations are given by the NLS with saturating
gain

i
∂u
∂z

+
D
2

∂2u
∂t2

+ γ |u|2u = G(z)u (1)

for propagation in the fibre, where

G(z) =
g0

1 + (1/E0)


∞

−∞
|u|2dt

, (2)

paired with a lumped saturable absorber

uout(t) = uin(t) exp


−

∆

2

1 + |u|2/Psat

 . (3)

Here u(t, z) is the propagating light (with the optics convention of
z as the propagation direction),D as the fibre dispersion, γ the fibre
nonlinearity, g0 the small signal gain, E0 the gain saturation energy,
∆ the modulation depth of the saturable absorber, and Psat is the
saturation power.

Then propagation through the fibre, combinedwith the discrete
element, forms the action of f . Of course the systems we consider
in detail differ somewhat, butwe present thisminimal formulation
here to illustrate the model concept. Here we have used a lumped
saturable absorber, wherein the action of the whole NPE is taken
with a single empirical element (Eq. (3)).Wewill also consider sys-
temswhere all the physical elements of theNPE are explicitlymod-
elled, and we refer to this as an explicit NPE—for full details, see
Appendix A.

We can then consider the behaviour of the laser by studying
the dynamics of this iterated map; in general we consider a sin-
gle bifurcation parameter associated with the gain of the system.
For ‘‘small’’ values of the bifurcation parameter we might expect
to see single, stable pulse modelocking (solitons, or soliton-like).
As the parameter is increased, more complex modelocking can oc-
cur, including noise-like pulses.

The example systems we consider are variations on this theme.
Complete descriptions and references are given in the following
sections and Appendix A. In short, we consider example system to
explore the roles of several important system characteristics and
modelling choices:
• optical fibre dispersion: normal or anomalous dispersion
• standard or coupled NLS (one polarization or two)
• polarization controller (NPE) model: explicit or lumped.

Details of each model system are provided in the following sec-
tions.

3. Results

3.1. Soliton solutions, invariant sets, and bifurcations

In general, for ‘‘small’’ values of the bifurcation parameter, the
systemmode-locks to a single, stable pulsewhichmay be a soliton,
or soliton-like (if mode-locking occurs at all). However, one must
be aware of the difference between observed optical mode locking,
which measures |u(t)|2, and the iterated map in u(t); because of
the phase rotation, even this simplemode-locking regime does not
yield an equilibrium, but rather an invariant set. (Fortunately, the
governing equations are also phase invariant in general.) Typically
the soliton-like solution for small gain is found simply by iterating
the map numerically from a small, white-noise seed. From there
continuation is employed to generate bifurcation diagrams; either
naive continuationwhere possible, ormore sophisticatedmethods
where required—see Appendix B for more details.

3.2. Models

We begin by considering three models drawn from the liter-
ature, chosen to explore the influence of dispersion (normal vs.
anomalous), polarization, and NPE modelling type. These models
are:
1. The normal dispersion, two polarization, explicit PC model of

Zaytsev et al. [10].
2. The normal dispersion, single polarization, lumped PCmodel of

Zaviyalov et al. [11].
3. The anomalous dispersion, single polarization, lumped PC

model of Soto-Crespo et al. [12].

We further create a fourth model by hybridizing the first and
second listed above, in the sense of converting the explicit NPE of
case 1 into a lumpedNPE, so thatwe also have amodelwith normal
dispersion, a lumped PC, and two polarizations.

In each case we have calculated steady state solutions, (par-
tial) bifurcation diagrams, and evolution statistics to test for optical
roguewaves. The details of each case are presented in the following
sections.

3.2.1. Normal dispersion, two polarizations, explicit PC
We first consider themodel of Zaytsev et al. [10], which features

normal dispersion, two polarizations, and an explicit PCmodel. The
bifurcation parameter here is the gain saturation energy Esat , and
we begin by computing the bifurcation diagram for Esat ranging
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(a) Modelocking hysteresis. (b) ORW threshold. (c) Soliton-like modelocking.

(d) NLP detail. (e) Near-Gaussian statistics.

Fig. 2. Simulation results from themodel of Zaytsev et al. [10]. Panel (a) gives the bifurcation diagram and illustrates the co-existence of soliton-like and NLP solutions, with
the red circles giving solution amplitudes while increasing the bifurcation parameter, and the blue crosses in the decreasing case. Panel (b) overlays the decreasing branch
with the significant wave height (SWH), black dashed curve, and the rogue wave threshold (2.2 times SWH), solid dashed curve. Panel (c) gives an illustrative profile of
modelocking to a soliton-like solution (Esat = 145 pJ), and panel (d) gives detail of a noise-like pulse (Esat = 1000 pJ). Panel (e) compares the maximum amplitude statistics
of a noise like pulse (black curve, Esat = 1000 pJ) with the best-fit Gaussian (dashed red). The SWH threshold is also given; note that the ORW threshold of 2.2 times SWH is
well off-axis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
from145 to 1200 pJ, shown in Fig. 2(a). The red circles give the con-
tinuation path for increasing Esat , beginning with a stable, soliton-
like solution 2(c) and changing into a noise-like pulse for Esat ∼

950 pJ 2(d), in agreement with the findings of [10]. The system is
hysteretic in the sense that there is a broad region of coexistence of
both soliton and noise-like solutions, depending on the initial con-
ditions. We illustrate this by continuing in the negative 1Esat di-
rection, back from 1000 to 145 pJ; these solutions are given by the
blue crosses in 2(a). Thus from approximately 300 to 950 pJ, both
solution types coexist. Above and below this, only one is possible.

We consider the statistics of these noise-like pulses, in particu-
lar the variation in peak intensity with each round trip. In partic-
ular we are interested in classifying the high-intensity tail of the
distribution (so-called L-shaped statistics), and to do so we use the
established criteria in terms of the significant wave height (SWH)
or significant intensity [11,13]. The SWH is defined as the mean of
the upper third of wave heights, and then ORWs as waves exceed-
ing 2.2 times the SWH.1 In 2(b)we give both the SWH and the ORW
threshold, as the dashed and solid lines, respectively; at no value
of Esat are there amplitudes above the ORW threshold. In fact, the
distributions are relatively close to Gaussian—see 2(e) as an illus-
tration at Esat = 1000 pJ, along with the Gaussian matched to the
sample mean and variance.

In short, this model yields clear noise-like pulses in a normally
dispersive regime (the dark solitons are clear in the evolution of
both solutions, 2(c) and (d)), but the statistics of these solutions
are near Gaussian and far from optical rogue waves. There is also a
significant region of co-existence between soliton-like pulses, and
NLP operation.

1 Some authors define the ORW threshold as 2 times the SWH.
3.2.2. Normal dispersion, single polarization, lumped PC
We next consider the model of Zaviyalov et al. [11] with

normal dispersion, one polarization, and a lumped PC model. The
bifurcation parameter here is the small-signal gain g0, and we be-
gin by computing the bifurcation diagram for g0 ranging from 0.4
to 2.4 (m−1), shown in Fig. 3(a). This solution loses stability at
g0 ∼ 0.41 (m−1) and the quasi-periodic solution that emerges is
illustrated in 3(c).

As the gain is increased, more complex solutions emerge,
e.g. Fig. 3(d), and now optical rogue waves occur. We again cal-
culate the SWH and ORW threshold, given in 3(a) as the dashed
and solid black lines respectively. It is clear that ORWs do occur,
and their observed probabilities are given in 3(b); the distribution
of peak amplitudes for g0 = 2 (m−1) is given in 3(e), along with
a best fit Gaussian for comparison—clearly large amplitude events
occur much more often than predicted by Gaussian statistics. The
solutions which give rise to these heavy-tailed statistics are per-
haps chaotic, but they do not qualify as noise-like pulses accord-
ing to our definition (see Section 3.3). Thus, in this model, again a
clearly normal dispersion regime with clear dark solitons, optical
roguewaves do occur, but without noise-like pulses. It is also note-
worthy that the dynamics are entirely different, with the original
soliton-like solution losing stability, and the occurrence of quasi-
periodic solutions before these giveway to chaotic solutions. There
is no region of co-existence between soliton-like and more com-
plex solutions.

3.2.3. Anomalous dispersion, single polarization, lumped PC
Up to this point we have considered only normally dispersive

systems; here we examine the anomalous dispersion model of
Soto-Crespo et al. [12]. This model employs a single polarization
and a lumpedNPE. The loss of stability occurs via a period-doubling
cascade, and optical rogue waves occur in the chaotic regime (as
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(a) ORW threshold. (b) ORW probabilities. (c) Pulse detail at g0 = 0.5.

(d) Pulse detail at g0 = 2. (e) Heavy-tailed statistics.

Fig. 3. Simulation results from the model of Zaviyalov et al. [11]. Panel (a) gives the maximum amplitude as the parameter g0 is varied, with significant wave height (SWH),
black dashed curve, and the rogue wave threshold (2.2 times SWH), solid dashed curve. Panel (b) gives the optical rogue wave probability, where ORWs appeared in the
sample—the black dashed line gives the minimum detectable threshold, given the sample size. Panel (c) gives an illustrative profile of a quasi-periodic solution (g0 = 0.5),
and panel (d) gives detail of a more complex solution (g0 = 2). Panel (e) compares the maximum amplitude statistics of a noise like pulse (g0 = 2, black curve) with the
best-fit Gaussian (red, dashed), as well as the SWH and the ORW threshold of 2.2 times SWH. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Table 1
Summary of model behaviour.

Model Dispersion NLPs Statistics NPE/PC Polarizations Co-existencea

Zaytsev et al. Normal Yes Gaussian Explicit 2 Yes
Zaviyalov et al. Normal No ORWs Lumped 1 No
Soto-Crespo et al. Anomalous Yes ORWs Lumped 1 No
Hybrid Normal Yes Gaussian Lumped 2 Yes
a Co-existence of soliton and NLP solutions for a single value of the bifurcation parameter.
demonstrated in [12]). The bifurcation parameter here is the satu-
ration energy Qsat .

Again we calculate the bifurcation diagrams, and compare the
bifurcation diagram with the SWH and ORW thresholds 4(a). Ex-
ample solution evolutions are given in panels 4(c)–(d), at Qsat =

2.5 and 60 illustrating a period-2 solution, and a noise-like pulse
respectively. Here there is no co-existence of solutions, with the
soliton-like solution losing stability through a period-doubling cas-
cade. The chaotic, bunched solutions which emerge in bands for
higherQsat are noise-like pulses according to our criterion (see Sec-
tion 3.3).

The observed ORW probabilities are given as Qsat varies in 4(b).
There are clearly significant regions where the probability of large
amplitudes meets the ORW test, and these correspond to the re-
gions of noise-like pulses. The statistics of these solutions are ex-
plored in some detail in the original paper [12].

3.2.4. Normal dispersion, two polarization, lumped PC
The models considered so far have been drawn from the litera-

ture to examine the role of dispersion, NPE model type, and bire-
fringence on both NLP and ORW formation. The suggestion from
this limited sample is that ORWs might occur in either lumped PC
systems, or single polarization systems. To explore further,we con-
struct a hybrid system, by taking system 1 (Normal dispersion, two
polarizations, explicit PC from [10]) andmodifying by reducing the
explicit NPE to a lumped model as follows
uout
vout


= exp

−
1
2

δ01z

1 +
|u|2+|v|2

Psat

u
v


(4)

where the modulation depth δ01z = 2 and Psat = 321 W (mod-
ified from [11]). We maintain the Gaussian filter as in the original
description (see Appendix A).

This model continues to exhibit NLPs, and these have (near)
Gaussian statistics. The coexistence hysteresis loop between
soliton-like operation and NLPs is given in Fig. 5(a) and (b) using
simple ramping of the parameter [14]. The distribution of ampli-
tudes at Esat = 500 nJ is given in 5(c) alongwith a best-fit Gaussian
for comparison.

Thus the hybridized model exhibits NLPs with Gaussian statis-
tics, with co-existence of NLPs and standard modelocking. The
properties of the models considered in the preceding sections are
concisely summarized in Table 1.

3.3. Defining noise-like pulses

Noise-like pulses are often defined qualitatively by an autocor-
relation with a narrow peak on a broad base. We propose a quan-
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(a) ORW threshold. (b) ORW probabilities. (c) Pulse detail at Qsat = 2.5.

(d) Pulse detail at Qsat = 60.

Fig. 4. Simulation results from the model of Soto-Crespo et al. [12]. Panel (a) gives the maximum amplitude as the parameter Qsat is varied, with significant wave height
(SWH), black dashed curve, and the rogue wave threshold (2.2 times SWH), solid dashed curve. Panel (b) gives the optical rogue wave probability, where ORWs appeared in
the sample—the black dashed line gives the minimum detectable threshold, given the sample size. Panel (c) gives an illustrative profile of a period-2 solution (Qsat = 2.5),
and panel (d) gives detail of a noise-like pulse (Qsat = 60).
(a) Increasing Esat . (b) Decreasing Esat . (c) Near-Gaussian statistics.

Fig. 5. Simulation results from the hybrid model. Panels (a) and (b) illustrate the co-existence of soliton-like and NLP solutions, with (a) giving the profile while increasing
the bifurcation parameter, and (b) the decreasing case. Panel (c) compares the maximum amplitude statistics of a noise like pulse (Esat = 1000 pJ, black curve) with the
best-fit Gaussian (red, dashed). The SWH threshold is also given; note that the ORW threshold of 2.2 times SWH is well off-axis. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
titative definition based on widths of the autocorrelation, as

σ =
FW 75

FW25
(5)

where FW 75/25 are the full widths at 75% and 25% of maximum,
respectively. We then define noise-like pulses as those where σ <
1/50, that is, a minimum ratio of 50 between peak narrowness and
base width. Fig. 6 illustrates the concept using the autocorrelation
of pulses studied here; using this definition, all models except that
of Zaviyalov et al. have solutions which we classify as NLPs.

4. Discussion

We have shown, through careful simulation, that the related
phenomena of noise-like pulses and optical rogue waves can oc-
cur in a variety of passively modelocked laser systems. From these
few systems we hoped that some simple criteria for formation of
Fig. 6. Autocorrelations for complex pulses, given for comparison with the
proposed definition of a noise-like pulse. With a threshold of σ < 1/50, all but
the model of Zaviyalov et al. qualify as NLPs.

NLPs and/or ORWs might be clear; however, it remains possible
that normal dispersion NLPs always generate Gaussian statistics,
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and it is not clear in what circumstances NLPs occur. We have also
considered only statistics with respect to pulse amplitude, though
spectral rogue waves are also of interest and may not be subject to
the same system criteria as their temporal cousins [3,4].

Here we have also considered only models with discrete cavity
elements, rather than averaged models which apply those effects
continuously during propagation, resulting in a single governing
equation which is often a variant of the complex Ginzburg Landau
equation (e.g. [12,15]). Such averaged models can have significant
advantages because they are so much easier to work with; how-
ever, it is not clear underwhat conditions the averaging procedures
leave NLP dynamics intact. Of course it would be ideal to consider
these systems in greater generality, whether averaged or discrete,
rather than a handful of examples. However, the great challenge is
that modelocking, especially for NLPs, is extremely difficult to find
in model systems.

This is a combination of several factors. First is that, especially
with explicit NPEs, modelocking is extremely parameter sensitive.
Even small changes to waveplate angles or other system parame-
ters can prevent modelocking altogether. This is also true in phys-
ical systems, but exploring a high-dimensional parameter space is
relatively easier with physical systems, because iterations occur in
the MHz range. With a computationally intensive model, on the
other hand, iterations are more typically order 1 Hz, or worse. Be-
causemodelocking can also be slow, requiringmany iterations, this
puts simulations at a significant disadvantage in terms of exploring
parameter space.

Similarly, though there are other model systems in the litera-
ture which exhibit noise-like pulses (e.g. [16–23]) we found that
only the three systems considered in this paper exhibited NLPs in
our simulations.2

It would also be desirable to make more careful calculations
of the bifurcations, including precise continuation to bifurcation
points, and calculation of the spectra. However, computational cost
is again a significant obstacle. Typically 216 or more Fourier modes
are required to fully resolve the complex waveforms, and at those
levels brute-force numerical calculation of eigenvalues was found
to be impractical. A more detailed discussion of the numerical and
convergence issues is given in Appendix B.

In order to characterize NLPs quantitatively in our results we
have proposed the simple heuristic on the ratioσ =

FW75
FW25

in the au-
tocorrelation to reflect the qualitative definition of a narrow peak
on a broad base. Of course, the levels and ratio threshold of such a
criterion are open to interpretation; for example, is 75% of themax-
imum in the peak, or the base? Nonetheless, we feel it is worth-
while to define precisely what it is that we mean by a noise-like
pulse.
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Appendix A. Model descriptions

We provide here a complete description of the explicit NPE
model based on [10]. Ref. [15] also provides good background de-
tail, though their model does not address NLPs.

2 Because of the extreme sensitivity of themodelocking in parameter space, even
small omissions in model details are difficult to overcome. For this reason, full and
complete model details are given in Appendix A.
Themodelwe employ is as follows: the governing equations are

∂u
∂z

= iγ


|u|2u +
2
3
|v|

2u +
1
3
v2u∗


+ g(u, v)u −

i
2
β2

∂2u
∂t2

(A.1)

∂v

∂z
= iγ


|v|

2v +
2
3
|u|2v +

1
3
u2v∗


+ g(u, v)v −

i
2
β2

∂2v

∂t2
(A.2)

where g(u, v) = g0


1 +

 T
−T


|u|2 + |v|

2

dt/Esat


.

There are three sections of optical fibre. The first section is single
mode fibre (SMF) with length 4 m, γ = 0.0047 (W − m)−1, β2 =

0.023 ps2/mand g0 = 0. The second section is Yb-doped gain fibre
(YDF) with length 2m, γ = 0.0016 (W−m)−1, β2 = 0.023 ps2/m
and g0 = 6.9. The third section is SMF, with length 0.5 m and
parameters as in the first section.

The explicit NPE is as follows: half wave plate (HWP), quarter
wave plate (QWP), polarization beam splitter (PBS), differential
delay line (DDL), filter, QWP.

The action of the first three elements are taken as3

uout(t) = cos(2φ)(((cos(θ))2 + i(sin(θ))2)u
+ (1 − i) sin(θ) cos(θ)v)
+ sin(2φ)((1 − i) sin(θ) cos(θ)u
+ ((sin(θ))2 + i(cos(θ))2)v)

vout(t) = 0

where φ = 0.5 and θ = 1.
The delay line is implemented as

uout = F −1 exp((i/2)ω2ρ)F [u]


(A.3)

vout = F −1 exp((i/2)ω2ρ)F [v]


(A.4)

with ρ = 0.105 ps2.
The filter is also applied in the Fourier domain, with transfer

function

exp


−

√
log(2)
2π

(5.4)−1ω


(A.5)

for ω in units ps−1.
A loss is imposed as

uout = 0.3u
vout = 0.3v

and the final QWP by
uout
vout


=


cos(φ2)

2
+ i sin(φ2)

2 (1 − i) sin(φ2) cos(φ2)

(1 − i) sin(φ2) cos(φ2) sin(φ2)
2
+ i cos(φ2)

2


×


u
v


(A.6)

with φ2 = 0.5.
The models of [12,10] are described fully in those citations.

3 Note that this expression differs from the standard model for HWP–QWP–PBS
with angles 0.5 and 1 respectively, e.g. [15].
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Fig. B.7. Convergence testing of numerical methods for noise-like pulses. Top
panel: convergence with respect to δt . Centre panel: convergence with respect to
δg , the variable stepping control parameter [25]. Bottom panel: illustration of grid
scale relative toNLP scale, with each spatial point plotted explicitly, and detail given
in the inset.

Appendix B. Numerical methods and convergence

For numerical solution of the fibre propagation equations we
transform Eqs. (A.1)–(A.2) into

∂U
∂z

= i
γ

3


2|U|

2
+ 4|V |

2U + g(U, V )U −
i
2
β2

∂2U
∂t2

(B.1)

∂V
∂z

= i
γ

3


2|V |

2
+ 4|U|

2 V + g(U, V )U −
i
2
β2

∂2V
∂t2

(B.2)

via the transformation
U
V


=

1
√
2


1 i
i 1

 
u
v


(B.3)

and then apply the standard split-step Fourier method4 [24].
For accuracy and computational efficiency we employ the vari-

able timestepping method of [25]. Numerical convergence was
carefully tested, especially for the solutions near chaotic attractors
(e.g. NLPs). Though tracking such trajectories is notoriously diffi-
cult [26], we propose using the autocorrelation envelope as con-
vergencemeasure, as this is the determinant of NLPs. Convergence

4 Observe, in the splitting into linear and nonlinear parts, that the gain here is a
nonlinear term.
results are given in Fig. B.7, with the left panel giving convergence
with respect to δt , the centre panel with respect to the stepping
control parameter δg (see [25]), and the right panel illustrating the
scale of the NLP structure relative to the numerical grid.

Domain sizes and spectral discretizations are as follows: for the
model of [10] we employed a spatial domain of width 200 ps and
217 spectral/time points, and also for the hybrid model. For [12],
800 ps and 216, and for [11], 120 ps and 213. In all cases the adaptive
stepping tolerance δg (see [25]) was 10−5 or smaller. Particularly
for NLPs it is important that the high-frequency components of the
solution are not grid-scale (see Fig. B.7, right panel), and that the
instability is physical rather than numerical.

Autocorrelations were calculated efficiently [27] via the Fourier
transform as

F −1

F

|u|2 + |v|

2 F 
|u|2 + |v|

2∗ . (B.4)

Initial conditions were taken to be random white noise seeds.
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