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Abstract Clustered ventilation defects are a hallmark of asthma, typically seen via
imaging studies during asthma attacks. The mechanisms underlying the formation of
these clusters is of great interest in understanding asthma. Because the clusters vary
from event to event, many researchers believe they occur due to dynamic, rather than
structural, causes. To study the formation of these clusters, we formulate and analyze
a lattice-based model of the lung, considering both the role of airway bistability and a
mechanism for organizing the spatial structure. Within this model we show how and
why the homogeneous ventilation solution becomes unstable, and under what circum-
stances the resulting heterogeneous solution is a clustered solution. The size of the
resulting clusters is shown to arise from structure of the eigenvalues and eigenvectors
of the system, admitting not only clustered solutions but also (aphysical) checkerboard
solutions. We also consider the breathing efficiency of clustered solutions in severely
constricted lungs, showing that stabilizing the homogeneous solution may be advan-
tageous in some circumstances. Extensions to hexagonal and cubic lattices are also
studied.
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1 Introduction

Asthma is a widespread disease, with mortality and morbidity which may startle those
unfamiliar with its scope—for example, there are 300 million sufferers worldwide, and
250,000 deaths annually (World Health Organization 2007). Asthma is fundamentally
a disease of reversible airway constriction, and one of its hallmarks is ventilation het-
erogeneity, or more specifically, clustered ventilation defects (VDs). That is, imaging
studies of asthmatic lungs during asthma attacks typically show clustered regions of
very low ventilation, as might be expected in a subject struggling to breathe, but inter-
estingly also exhibit hyper-ventilated regions (see Fig. 1). Because these clusters vary
from event to event, even for the same patient, many researchers believe that the causes
are dynamic rather than structural (e.g. Venegas et al. 2005).

This dynamic clustering has motived interest in models of individual airways which
exhibit bistability between open and closed airway states (Anafi and Wilson 2001;
Venegas et al. 2005; Lambert et al. 1982; Donovan et al. 2012). In general this is
the result of interaction between (passive) airway wall mechanics and the dynamics of
airway smooth muscle (ASM), which surrounds each airway and serves to constrict the
airway when the muscle is activated. However, this bistability is only a partial answer
to the question of how clustered VDs form, although it is highly suggestive. That is, if
individual airways may be open or closed, dependent upon history but under equivalent
conditions, then this can explain heterogeneity but not the spatial clustering. What
principle organises the spatial structure? This question has been partially answered
by Anafi and Wilson (2001), and Venegas et al. (2005), who suggest that pressures
felt by any individual airway in the lung are related to the inflation of nearby lung
tissue. The latter group has demonstrated via direct numerical simulations that this

Fig. 1 Typical asthmatic clustered ventilation defects from imaging studies. Left panel voxel fractional
ventilation map from hyperpolarized 3he MRI, colored from red (high) to black (low) reproduced with
permission from Tzeng et al. (2009); right panel xenon density from K-edge subtraction synchrotron
imaging, colored from red (high, 4.0 mg/ml) to black (low, 0.0 mg/ml) reproduced with permission from
Layachi et al. (2013) (color figure online)
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mechanism may be responsible for clustered VDs, at least in an idealised geometry
and under certain conditions.

Here we formulate a model of the lung, consisting of a coupled lattice of terminal
airway units, (a terminal unit consisting of the terminal conducting bronchiole, with
pulmonary acinus) for the purpose of studying the conditions under which clustered
ventilation defects arise. The airway units employ the previously known bistability in
isolation; furthermore, we consider one possible mechanism of spatial organization
wherein neighbouring units are coupled depending on the flow to their neighbours.
Analysis of this model allows us to consider the implications of clustered ventilation
defects caused via this organising mechanism.

This structure also allows us to consider the role of the mechanism controlling
breathing pressures. Consider: when airways constrict, does airflow decrease, or does
the driving pressure increase to compensate? We will show that assumptions about the
nature of this control have important implications for the formation of clustered venti-
lation defects. This approach allows a great deal of analysis which lends understanding
as to why and how clustered ventilation defects occur in the model.

2 Model

Here we formulate the lattice dynamical system which is the basis of this work. We
assume a 2D lattice of terminal airway units, neglecting the airway branching struc-
ture (Horsfield et al. 1971) and assuming that each element in the lattice experiences
equivalent input conditions.

The internal dynamics of a single terminal unit are described in terms of airway
luminal radius r ; for the i th lattice element then

ṙi = ρ
[
Φ(ri ; r j1 , r j2 , r j3 , r j4) − ri

]
(1)

where j1...4 ∈ Ni are the coupled (nearest) neighbors. Here we have employed simple
first-order relaxation kinetics with a time constant ρ, and the function Φ is based on
(static) experimental data for the behaviour of conducting airways. Following Donovan
et al. (2012) (who considered a similar construction as an iterated map) we assemble
Φ from composition of several existing models in the physiology literature, so that

Φ(ri ; r j1, r j2 , r j3 , r j4) = R(P(ri ; r j1, r j2 , r j3 , r j4))

where R(P) describes airway radius as a function of transmural pressure according to

R(P) =
⎧
⎨

⎩

√
R2

i (1 − P/P1)−n1, P ≤ 0
√

r2
imax − (r2

imax − R2
i )(1 − P/P2)−n2 , P > 0

(2)

from Lambert et al. (1982) where Ri , rimax , P1, P2, n1 and n2 are parameters from
Lambert et al. (1982) with notation adapted from Politi et al. (2010), see Sect. 5. Note
that other choices for this radius-pressure relationship are possible, see Sect. 3.8. Here
P(r) gives transmural pressure as a function of the radius as
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Fig. 2 Typical individual small
airway bistability, with “open”
and “closed” states (e.g. Affonce
and Lutchen 2006; Donovan et
al. 2012). Blue indicates stable
fixed points, red unstable. Note
these are the fixed points of
Eq. 1 if μ is constant and so the
dependence of one airway on its
neighbors vanishes (color figure
online)
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P(ri ; r j1 , r j2 , r j3 , r j4) = Pb − κ Rref

ri
+ τ(ri ; r j1 , r j2 , r j3 , r j4). (3)

Here the terms on the right-hand side correspond to a base pressure, the constricting
pressure of airway smooth muscle (represented by the smooth muscle pressure κ ,
with 1/ri from the Laplace law for thin-walled cylinders and Rref as a normalizing
reference radius), and the so-called parenchymal tethering pressure. This arises from
the restoring forces generated by the parenchymal tissue surrounding the airway, and
is described by

τ(ri ; r j1 , r j2 , r j3 , r j4) = 2μ(ri ; r j1 , r j2 , r j3 , r j4)((
Rref − ri

Rre f

)
+ 1.5

(
Rref − ri

Rre f

)2
)

(4)

according to Lai-Fook (1979), where μ is the parenchymal shear modulus, which
is dependent on lung inflation. With constant μ, this model exhibits a previously-
demonstrated bistability (Donovan et al. 2012; Affonce and Lutchen 2006; Lambert
et al. 1982), shown as the ASM pressure varies in Fig. 2. Here we introduce the local
effect that the shear modulus is a function of the local inflation via mean local flow,
so that

2μ(ri ; r j1 , r j2 , r j3 , r j4) = Pb
A

5

⎛

⎝r4
i +

∑

j∈Ni

r4
j

⎞

⎠ (5)

where the 4th power dependence arises from the assumption of quasi-steady Poiseuille
flow and the parameter A represents the coupling strength. (Recall that Ni are the
nearest neighbors to element i .) This choice of dependence on local flow, rather than
local volume, is a key assumption which enables much of the analysis presented—
please see Sect. 6. Note that total closure of airways does not occur (rather, very
near closure) and so changes in driving pressure are always transmitted throughout
the lattice. (It is worth noting here that we consider only one possible mechanism of
spatial organisation, and that others have been proposed; see Sect. 6 for more details.)
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Spatial pattern formation in the lung

Identical units with these dynamics are configured in a square lattice denoted L
of dimensions N × N with periodic-type boundary conditions. If we assume that Pb

is constant, then this is a lattice dynamical system with nearest-neighbour coupling;
hence we refer to this as local-only coupling. This corresponds physiologically to the
assumption that the pressures driving breathing do not increase to compensate for
airway constriction.

If we consider instead that total flow must be maintained despite constriction
(e.g. Venegas et al. 2005), and that Pb takes this control role, then by Poisseuille
flow we have

(Pb(t) − P0)
∑

k∈L
r4

k (t) = σ Q̂ (6)

with the Poisseuille flow coefficient σ = 8μdv L/π where μdv is the dynamic viscosity
of air and L is the length of a terminal airway. Because we are interested in relative
flow, we scale σ to unity and take P0 = 0 so that

Pb(t)
∑

k∈L
r4

k (t) = Q̂ (7)

where Q̂ is the target flow taken at reference: Q̂ = Pb(0)N 2 R4
re f . That is, pressure

increases to maintain flow despite constriction. Thus Pb is a function of all elements in
the lattice and we have a global coupling term. We will refer to these two distinct cases
as local-only coupling and global and local coupling; this is an important distinction
both for the analysis and the qualitative results. Note that other units and parameter
values are given in Sect. 5.

To a certain extent, much of the analysis presented is agnostic to many of the model
specifics, but instead is based only on

– the intrinsic airway bistability;
– the nearest-neighbour (local) coupling;
– global coupling via breathing control, and
– the relevant partial derivatives, evaluated at the homogeneous fixed points.

As discussed in Sects. 3.8 and 6, at least some modelling assumptions can be relaxed
while retaining these features, and the qualitative results.

3 Results and analysis

3.1 Homogeneous vs. clustered solutions

We first consider some numerical results to illustrate the types of solution that one
might expect from this system. The most obvious is the homogeneous ventilation
solution; that is, all lattice elements equilibrate to the same value. Somewhat less
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obviously, clustered ventilation solutions also occur: see Fig. 3 for an example with
global and local coupling.

Of course, this is only illustrative and naturally raises the questions: under what
conditions does the homogeneous solution lose stability? What sorts of heterogeneous
distributions arise?

3.2 Jacobian structure and eigenvalues

To answer the first of these questions we first look to the eigenvalues of the system,
which can be obtained because of the structure of the Jacobian arising from the lattice
and coupling structure.

3.2.1 Local-only coupling: eigenvalues

Recall that the local-only coupling case takes Pb = constant and represents the state
where airway constriction results in reduced flow rather than increased driving pres-
sures.

Here we form the Jacobian using the definitions

α = ρ

(
∂Φ

∂ri
− 1

)

β = ρ
∂Φ

∂r j

for compactness of notation, then J has block structure

J =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

A B 0 . . . 0 B
B A B 0 . . . 0
0 B A B 0 . . .
...

. . .
. . .

. . .
...

0 . . . 0 B A B
B 0 . . . 0 B A

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

where the blocks are N × N (and so J is N 2 × N 2). The main diagonal blocks are
self-similar with

A =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

α β 0 . . . 0 β

β α β 0 . . . 0
0 β α β 0 . . .
...

. . .
. . .

. . .
...

0 . . . 0 β α β

β 0 . . . 0 β α

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

and the off-diagonal blocks B are diagonal matrices with β on the diagonal.
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Several things are immediately obvious. First we can obtain an eigenvalue bound
from Gershgorin’s disk theorem:

α − 4|β| ≤ λ ≤ α + 4|β|

(where a real, symmetric matrix gives us real eigenvalues). Moreover one eigenvalue
is obvious from inspection as the eigenvector v = [1, 1, 1, . . . , 1]� has corresponding
eigenvalue λ = α + 4β. Thus if β > 0, the largest eigenvalue λmax = α + 4β occurs
on the boundary of the Gershgorin disk.

Moreover the full structure of the eigenvalues and eigenvectors is generally known
because J is block circulant (or sometimes, compound circulant) (Tee 1963, 2007),
and so

λn,m = α + 2β(cos(nθ) + cos(mθ)), for j, k = 1, . . . , N

where θ = 2π/N . This arises as a special case of the more general global coupling
scenario, for which we give the full calculation in the next section. Thus independent
of the sign of β the largest real eigenvalue approaches

λmax → α + 4|β|

as N becomes large, either on or near the boundary of the Gershgorin disk depending
on the parity of N and the sign of β.

However, because of the nature of the internal dynamics we cannot explicitly solve
for the homogeneous fixed point which would allow explicit stability conditions.
Nonetheless the block circulant structure of J , and subsequent calculation of the
eigenvalues and eigenvectors, allow much insight into the behaviour of the system.

3.2.2 Global coupling eigenvalues: general case

Here we consider the more general case of global coupling and show that the block
circulant structure of the Jacobian is preserved. We need now to account for increases
in driving pressure to counteract constriction and maintain total flow. That is,

Pb = Pb(rk ∀k ∈ L) = Q̂

/(
∑

k∈L
r4

k (t)

)

.

We define the contribution of this extra global coupling (as opposed to the previous
local-only coupling) as γ = ρ ∂Φ

∂rk
for k �= i, k ∈ {L \ Ni }. Then the Jacobian matrix

of the system will be the square matrix of order N 2 with the following structure
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J =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

A B C · · · C B
B A B C · · · C
C B A B C · · ·
...

. . .
. . .

. . .
...

C · · · C B A B
B C · · · C B A

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

with A, B and C being the square matrices of order N

A =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

α β γ · · · γ β

β α β γ · · · γ

γ β α β γ · · ·
...

. . .
. . .

. . .
...

γ · · · γ β α β

β γ · · · γ β α

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

N

B=

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

β γ · · · γ

γ β γ · · · γ

...
. . .

...

γ · · · γ β

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

N, and C=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

γ · · · · · · γ
...

. . .
...

...
. . .

...

γ · · · · · · γ

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

N.

As before, λ = α + 4β + (N 2 − 5)γ continues to be an eigenvalue associated with
the eigenvector [1, 1, 1, . . . 1]�. Similarly Gershgorin’s theorem continues to bound
the positive eigenvalues as

λ < α + 4|β| + (N 2 − 5)|γ |

(though as a practical matter the positive bound is loose, as we shall see). Thus we
will have to find the whole spectrum.

We can see that J is a block-circulant matrix and that the blocks A, B and C are
themselves circulant matrices. Recall that the local-only coupling corresponds to the
case γ = 0.

We begin by finding the eigenvalues and eigenvectors of the three circulant matrices.
Let ρ be a scalar and let w be the vector

w =

⎡

⎢⎢⎢⎢⎢
⎣

1
ρ

ρ2

...

ρN−1

⎤

⎥⎥⎥⎥⎥
⎦

.
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If λA is the eigenvalue of A corresponding to w, we obtain Aw = λAw. and by
substitution, the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α + β(ρ + ρN−1) + γ (ρ2 + · · · + ρN−2) = λA

(α + β(ρ + ρ−1) + γ (ρ2 + · · · + ρN−2))ρ = λAρ
...

(α + β(ρ−N+1 + ρ−1) + γ (ρ−N+2 + · · · + ρ−2))ρN−1 = λAρN−1.

We take ρn = einθ where θ = 2π
N and n = 0, 1, . . . , N − 1, so that ρN = 1 for all

values of n. The system is then equivalent to the single equation

α + β(ρ + ρ−1) + γ (ρ2 + · · · + ρN−2) = λA

which gives us, if r �= 0:

λA,n = α + 2β cos(nθ) + γρ2(1 + · · · + ρN−4)

= α + 2β cos(nθ) − γ (2 cos(nθ) + 1) (8)

and if n = 0:

λA,0 = α + 2β + γ (N − 3).

Each such λA,n is an eigenvalue of A.
Furthermore, let wn be the vector

wn =

⎡

⎢⎢⎢⎢
⎢
⎣

1
ρn

ρ2
n
...

ρN−1
n

⎤

⎥⎥⎥⎥
⎥
⎦

.

We have shown above that the N vectors wn for (n = 0, 1, . . . , N −1) are eigenvectors.
We can also see that these vectors are mutually orthogonal, as

w∗
nwm = [1, ρ̄n, . . . , ρ̄n

N−1]

⎡

⎢⎢⎢
⎣

1
ρm
...

ρN−1
m

⎤

⎥⎥⎥
⎦

= 1 + e
2π i(m−n)

N + · · · + e
2π i(m−n)(N−1)

N

=
{

0 if n �= m
N if n = m

and so the family of eigenvectors is orthogonal. We can apply the same process with
B and C . As the order of these matrices is N too, we obtain the same eigenvectors wn .
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A similar calculation gives the associated eigenvalues. If n �= 0, then Bwn = λB,nwn

gives us

λB,n = β + γ (ρ + · · · + ρN−1)

= β + γ eiπn sin
( N−1

2 θn
)

sin
(

θ
2 n

)

= β − γ

while if n = 0, the associated eigenvalue is λB,0 = β + (N − 1)γ . Similarly for the
matrix C , if n �= 0, λC,n = 0 and λC,0 = Nγ .

We can now apply this process to the matrix J , by considering the compound
vectors

Wn,m =

⎡

⎢⎢⎢⎢⎢
⎣

wn

ρmwn

ρ2
mwn
...

ρN−1
m wn

⎤

⎥⎥⎥⎥⎥
⎦

with wn as before. Given that wn are the eigenvectors of the three matrices A, B and
C , then Wn,m is an eigenvector of J . Let λn,m be the eigenvalue associated with Wn,m .
Then J Wn,m = λn,m Wn,m gives us the single equation (as ρN

m = 1)

Awn + (ρm + ρ−1
m )Bwn + (ρ2

m + · · · ρN−2
m )Cwn = λn,m Wn,m

and so gives us the eigenvalues. If m �= 0,

λn,m = λA,n + 2 cos(mθ)λB,n − λC,n(2 cos(mθ) + 1)

and if m = 0,

λn,0 = λA,n + 2λB,n + (N − 3)λC,n .

By substitution of the values of λA, λB and λC , the eigenvalues of the matrix J are
given by

λn,m = α + 2β(cos(nθ) + cos(mθ)) − γ (2 cos(nθ) + 2 cos(mθ) + 1)

if (n, m) �= (0, 0), and

λ0,0 = α + 4β + (N 2 − 5)γ.

These results, obtained for the local and global coupling system, can be thought of
as a generalization of the local-coupling only system, with the sub-case given when
γ = 0. We find then
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Fig. 4 Global and local coupling bifurcation to clustered solutions (N = 8). Left panel max and min local
flow in each terminal unit. Right panel corresponding λmax

λn,m = α + 2β(cos(nθ) + cos(mθ))

as before.

3.3 Global coupling leads to clustered ventilation defects

Understanding the structure of the eigenvalues and eigenvectors of the system allows
us to understand the loss of stability of the homogeneous solution into clustered ven-
tilation defects (Fig. 3). Even though we cannot write α, β and γ explicitly in terms
of the system parameters (because we cannot write the homogeneous equilibrium
explicitly because of the nature of the nonlinearities), we can understand how the
homogeneous solution loses stability.

We argue from physical intuition (and numerical evidence) that

β > 0, and

γ ≤ 0

within the physiological range, with important exceptions to be discussed. Thus as
the lattice becomes large, the largest eigenvalue tends to λ = α + 4β − 5γ and when
this largest eigenvalue crosses the axis the homogeneous solution loses stability (see
Fig. 4) and clustered ventilation solutions emerge—see Fig. 3.

Of course this only demonstrates numerically that clusters emerge. To understand
why, analytically, we must look at the eigenvectors of the system.

3.4 Eigenvector associated with the largest eigenvalue

3.4.1 Local-only coupling

In the case of local-only coupling, we consider two cases: β > 0 and β < 0. (In the
β = 0 case the lattice is uncoupled).

123



Spatial pattern formation in the lung

We argued previously that from physical intuition we expect β > 0 within the
physiological range. In this case, the largest eigenvalue is λ = α+4β and is associated
with the eigenvector [1, 1, 1, . . . 1]�.

The β < 0 case turns out to be an important exception. Here we can see that the
eigenvalues are all in the disk of center α and radius 4|β| (Gershgorin disk) and that,
when N becomes large, the largest eigenvalue tends to α − 4β. This eigenvalue is
obtained for n = m = [ N

2 ], which means that the eigenvector associated with the
largest eigenvalue tends to

W =

⎡

⎢⎢⎢
⎢⎢
⎣

w
−w
w
...

(−1)N−1w

⎤

⎥⎥⎥
⎥⎥
⎦

with

w =

⎡

⎢⎢⎢
⎢⎢
⎣

1
−1
1
...

(−1)N−1

⎤

⎥⎥⎥
⎥⎥
⎦

which corresponds to a “checkerboard” vector. Thus if the local-only coupling system
has the largest eigenvalue cross the stability boundary when β < 0 we expect a
checkerboard pattern to emerge, though the physiological relevance of this solution
would be in doubt.

3.4.2 Global and local coupling

In the case of local and global coupling, when β > 0 and γ < 0, the largest eigenvalue
is obtained when (n, m) is one of the four couples : (1, 0), (N − 1, 0), (0, 1) or
(0, N − 1). In these cases, λ = α + 2β(1 + cos(θ)) − γ (2 cos(θ) + 3) and tends to

λ∞ = α + 4β − 5γ

as N becomes large. Given the previous results, the multiplicity of λ is 4 and we
know four complex orthogonal eigenvectors associated with this eigenvalue : W1 =
W1,0, W2 = WN−1,0, W3 = W0,1, W2 = W0,N−1. We can see that we can obtain
four real orthogonal eigenvectors associated to the same eigenvalue, by considering

V1 = 1

2
(W1 + W2) , V2 = 1

2i
(W1 − W2) ,

V3 = 1

2
(W3 + W4) , V4 = 1

2i
(W3 − W4) .
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Here we have used here the fact that ρk
N−1 + ρk is a real number and ρk

N−1 − ρk is
an imaginary number, for every integer k. The new family of vectors is orthogonal
because the original vectors were orthogonal and had the same norm. Thus we obtain

V1 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

1
...

1
cos(θ)

...

cos(θ)

cos(2θ)
...

cos((N − 1)θ)
...

cos((N − 1)θ)

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

⎫
⎪⎬

⎪⎭
N

V2 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0
...

0
sin(θ)

...

sin(θ)

sin(2θ)
...

sin((N − 1)θ)
...

sin((N − 1)θ)

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

⎫
⎪⎬

⎪⎭
N

V3 =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1
cos(θ)

...

cos((N − 1)θ)

1
cos(θ)

...

1
cos(θ)

...

cos((N − 1)θ)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

N

V4 =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0
sin(θ)

...

sin((N − 1)θ)

1
sin(θ)

...

1
sin(θ)

...

sin((N − 1)θ)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

N

.

These vectors of order N 2 can be seen in the lattice as N × N matrices. In fact if
we consider the associated matrix of each vector, we can see that:

V1(x, y) = cos(xθ) (9)

V2(x, y) = sin(xθ) (10)

V3(x, y) = cos(yθ) (11)

V4(x, y) = sin(yθ) (12)

with x and y being the coordinate of the point in the lattice, both varying from 0
to N − 1. Direct numerical calculation of the eigenspace for the largest eigenvalue
is in good agreement, illustrating these ‘long-wave’ modes: see Fig. 5. These four
eigenvectors are all N -periodic (along the x or y axis), and this ‘long wave’ will tend
to gather closed airways together.
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Fig. 5 Global and local coupling—eigenvectors associated with λmax. Direct numerical calculation of
the eigenvectors and eigenvalues also shows the predicted ‘long-wave’ modes associated with the largest
eigenvalue. Note that the basis of the eigenspace found numerically differs (approximately, and arbitrarily)
from the analytic calculation by: V1 
→ V4, V2 
→ V1, V3 
→ V2, V4 
→ V3. (c.f. Eqs. 9–12)

Interestingly, as we shall see, other positive eigenvalues follow the largest very
near the bifurcation point, and these play an important role. Thus we have to take
into account all positive eigenvalues which are responsible of the instability of the
system.We can see that Wn,m and WN−n,N−m are eigenvectors associated to the same
eigenvalue λn,m . As their roles are symmetric, we will now consider that n is smaller
than N − n, and m smaller than N − m. By using the same process as above, we can
add them to obtain a real eigenvector:

Vn,m = Wn,m + WN−n,N−m =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1

ρn

...

ρN−1
n

ρm

ρmρn

...

ρmρN−1
n

...

ρN−1
m ρN−1

n

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1

ρN−n

...

ρN−1
N−n

ρN−m

ρN−mρN−n

...

ρN−mρN−1
N−n

...

ρN−1
N−mρN−1

N−n

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦
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= 2

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1
cos(nθ)

...

cos(n(N − 1)θ)

cos(mθ)

cos((m + n)θ)
...

cos((m + (N − 1)n)θ)
...

cos(((N − 1)m + (N − 1)n)θ)

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

If we again consider this vector as a N × N matrix on the lattice, we obtain

Vn,m(x, y) = cos((nx + my)θ)

so the eigenvector will be N
n -periodic along the x-axis and N

m -periodic along the y-
axis. For example, the second largest eigenvalue is obtained for (n, m) = (1, 1) (and
three other symmetric values), which means that the eigenvector is N periodic along
the x and the y axes. This means that the biggest clustered region is obtained when
the largest eigenvalue is the only positive eigenvalue, and that clustered regions will
be smaller and smaller when there are more positive eigenvalues. We can even have an
idea of the size of the clustered region: N

2n along the x-axis and N
2m along the y-axis,

where (n, m) is one of the couple associated to the smallest positive eigenvalue (we
still consider n ≤ N − n and m ≤ N − m).

3.5 Unstable modes and cluster size

Given the structure of the eigenvalues and eigenvectors, we expect that the character-
istic length of the clustered ventilation defects is determined by the number of positive
eigenvalues, with each additional eigenvalue adding a family of unstable modes with
higher and higher frequencies within the lattice. Numerically we see exactly the result
expected from the theory, illustrated by advancing well past the bifurcation in κ (Fig. 4)
studied already. Recall that the eigenvalues are given in this case by Eq. 8. In Fig. 6
we illustrate the characteristic cluster sizes at steady state, first for a value very near
the first crossing with only long-wave modes (from the largest eigenvalue only), and
subsequently for increased values of κ pushing more and more high frequency modes
across the stability boundary.

3.6 Local-only coupling does not admit clustered ventilation solutions

If we employ local-only coupling in the physiological range of parameter space con-
sidered for the local and global coupling case, the homogeneous solution remains
stable. However efforts to demonstrate that the homogeneous solution is always stable
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Fig. 7 Local-only coupling and stability. The red lines indicate the stability boundary. Solutions which
cross the boundary for β > 0 may result in clustered solutions, while those which cross for β < 0 generate
checkerboards. Left panel parameter family branches, with the −δPre f branch leading to checkerboard
solutions. Right panel MCMC search for region of parameter space which may produce clustered solutions
(100,000 trials) (color figure online)

in this case in fact turned up a counter example. Consider in Fig. 7, left panel, the
effects of each parameter on the values of α and β. We already know that independent
of the sign of β we have the stability condition α + 4|β| < 0 and so by looking
at the (α, β) plane we can easily draw the stability boundary. The initial parameter
values begin well away from the boundary, but naive exploration of parameter space
by varying parameters independently reveals that in fact the −δPre f branch crosses
the stability boundary (just before Pre f becomes negative). Examining this case more
closely we find that this is in the exception case where β < 0, meaning that physical
intuition about the role of nearest-neighbour coupling has now reversed and that as a
result the checkerboard is the first unstable mode.

Caution must be exercised in physiological interpretation; both the very small value
of Pre f and the fact that this is the exception case where β has changed sign both
indicate that this may be an anomaly outside of the physiological range. (Here the
reference state is at such low pressure that the time course of the airways is not
constricting but expanding; the tethering force, relative to reference, is then not an
expanding force but a compressing force, hence the change in the sign of β. In short
the design of the model has been reversed.) Nonetheless it is interesting that the local-
coupling only system does not always have a stable homogeneous solution, and that
the heterogeneous solutions which emerges is qualitatively different.

While the naive exploration revealed only occurrences of the β < 0 instability,
it remains possible that there is a region of parameter space which allows β > 0
instabilities. To explore this possibility we conducted a series of Markov Chain Monte
Carlo (MCMC) searches of parameter space, optimized toward the line α = −4β;
100,000 trials failed to turn up any such instabilities (see Fig. 7, right panel). Of course
this does not preclude there being regions which we have not been able to find, but it
suggests at least that any such region of parameter space is small. If this were the case,
the λmax = α +4β would be associated with the [1, 1, 1, . . . 1]� eigenvector and thus
the homogeneous solution would be preserved if this is the only positive eigenvalue.
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Fig. 8 Relative efficiency of
homogeneous and
heterogeneous states. Driving
pressures required to maintain
homogeneous and clustered
solutions in global and local
coupling case.
(homogeneous–red, dashed;
clustered—black, solid) (color
figure online)

20 25 30 35 40 45 50
10

20

30

40

50

60

κ
P

ba
se

Only if the second largest eigenvalue also crossed the axis would the long-wave modes
become unstable, potentially leading to clustered ventilation solutions.

3.7 Efficiency of stabilized homogeneous solution

One question which naturally arises is whether stabilizing the homogeneous solution
to prevent clustered ventilation defects would be beneficial. That is, if clustered VDs
are a hallmark of asthma, and they can be eliminated, does that improve respiratory
function in and of itself? Or are clustered VDs merely a by-product, or even a beneficial
response, to the underlying airway constriction?

While this is an impossible experiment to conduct on patients, it is trivial to “sta-
bilize” the homogeneous solution by exploiting the numerical meta-stability (that is,
do not perturb the uniform solution). Then a direct comparison can be made between
the respiratory efficiency of the homogeneous, and clustered, solutions. One obvious
measure is the differential in driving pressure required to maintain flow, given in Fig. 8.
In fact the difference is relatively small, though initially the heterogeneous solution
does in fact require greater driving pressures than a homogeneous solution would, if
it were stable. However the effect is reversed for more severe constriction, with the
clustered solution becoming more efficient. Because of the connection with cluster
size, this suggests that large clusters are relatively inefficient while smaller clusters
may in fact be more efficient than the homogeneous solution.

That said, the effect is small, and this is only one simple way of considering the
wider merits of homogeneous versus heterogeneous solutions. Other considerations,
such as epithelial damage from airway reopening (e.g. Kay et al. 2004; Bilek et al.
2003; Yalcin at al. 2007) or ventilation/perfusion (V/Q) matching (Wagner et al. 1987;
Rodriguez-Roisin et al. 1991), might be considered more important.

3.8 Alternate airway models

One challenge in the analysis of this model is the inability to write the homoge-
neous equilibrium explicitly (that is, even for a single airway, coupling considerations
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aside).This naturally arises in part from the complexity of the Lambert model (Lambert
et al. 1982) for the airway wall, Eq. 2, giving luminal radius as a function of transmural
pressure. This piecewise function employs two rectangular hyperbolae matched at zero
transmural pressure for continuity. Naturally one might consider if a simpler model
might be available which would preserve the qualitative features of the full model but
allowing greater analysis, particularly an explicit solution for the fixed points. Two
possibilities arise: the model of Thorpe and Bates (1997), and a linear pressure-radius
relationship (possibly with parameters extracted from tangency with the one of the
nonlinear models). As it turns out, both simplifications do admit clustered ventila-
tion defects (so long as negative radii are excluded), and thus the nonlinearity of the
Lambert model is not critical to this central result; however, neither does this allow
the sought analytic simplification. That is, even with a linear R–P relationship the
fixed points are roots of a sixth-order polynomial, arising from the combination of the
r−4 dependence in Eq. 7 and the r2 dependence of Eq. 4 combined into Eq. 3. Thus
the complexity of the airway wall model itself is neither critical for the qualitative
behaviour of clustered VDs, nor solely responsible for the analytic challenges.

4 Hexagonal and cubic lattice extensions

To this point we have considered only the case of 2D square lattice coupling. One
might naturally wonder what role the geometry of this assumption plays; here we
consider (2D) hexagonal and (3D) cubic lattice extensions. We alter the model as
follows, changing Eq. 5 to

2μh(ri ; r j1 , . . . , r j6) = Pb
A

7

⎛

⎝r4
i +

∑

j∈Ni

r4
j

⎞

⎠ (13)

where now Ni contains 6 neighbouring sites. The normalizing coefficient has been
changed so that the homogeneous fixed points remain unchanged. However, this does
alter the values of α, β and γ so that we now have

αh = ρ

(
∂Φh

∂ri
(r∗) − 1

)

βh = ρ
∂Φh

∂r j
(r∗)

γh = ρ
∂Φh

∂rk
(r∗)

for j ∈ Ni and k ∈ {L \ Ni }, k �= i at the homogeneous fixed point r∗ =
[r∗, r∗, . . . , r∗], where we use the subscript h to distinguish the hexagonal and cubic
lattice cases from the previous square lattice.
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4.1 Hexagonal lattice

In this section, we only consider lattices of order N , with N being an even number, in
order to obtain a whole hexagonal lattice.

4.1.1 Eigenvalues of the Jacobian

In the hexagonal case, each airways has six coupled neighbours. The Jacobian matrix
for the system thus has the following structure

Jh =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Ah Bh Ch · · · Ch Bh

B ′
h Ah B ′

h Ch · · · Ch

Ch Bh Ah Bh
...

...
. . .

. . .
. . . Ch

Ch · · · Ch Bh Ah Bh

B ′
h Ch · · · Ch B ′

h Ah

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

with B ′
h being the transpose of Bh . Now Ah and Ch are the same square matrices of

order N as before but now with αh and γh , and Bh is given by

Bh =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

βh γh · · · γh βh

βh βh γh · · · γh

γh βh βh
...

...
. . .

. . . γh

γh · · · γh βh βh

⎞

⎟⎟⎟⎟⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

N

The main difference between the square lattice and this one is the matrix Bh , which
now has a sub-diagonal row. Thus Bh is no longer symmetric, and so Jh is not block-
circulant. Still, the previous process can be modified in order to find the eigenvalues
of the system.

We already know the eigenvalues and eigenvectors of Ah and Ch . The matrix
Bh remains circulant, so we already know its eigenvectors (wr ) and the associated
eigenvalues are

λB,n = βh(1 + ρ−1
n ) + γh(ρn · · · ρN−2

n )

= βh(1 + ρ−1
n ) + 2γhρ

−1/2
n cos

(
nθ

2

)

= ρ
−1/2
n cos

(
nθ

2

)
(2βh − 2γh)

for n �= 0 and λB,0 = 2βh + (N − 2)γh if n = 0.
The matrix B ′

h has the same eigenvalues as Bh but the eigenvector associated with
the eigenvalue λB,n is not wn but wN−n , and we can easily see that λB,N−n = λB,n .
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Jh is not block circulant because of the transpose of Bh , so we make the ansatz that
Wn,m is

Wn,m =

⎡

⎢⎢⎢⎢⎢
⎣

anwn

a−1
n ρmwn

anρ2
mwn
...

a−1
n ρN−1

m wn

⎤

⎥⎥⎥⎥⎥
⎦

for some an . If n = 0 or n = N
2 , λB,n is real, so we can take an = 1 and we obtain

a single relation for λn,m . If n �= 0 and n �= N
2 , Cwn = 0 and thus, Wn,m is an

eigenvector of M if λn,m satisfies

{
λA,n + a−2

n λB,n(ρm + ρ−1
m ) = λn,m

λA,n + a2
nλB,n(ρm + ρ−1

m ) = λn,m

and we choose an =
(

λB,n
|λB,n |

)1/2
so that we obtain a single relation. Given the value

of λB,n , we obtain

an =

⎧
⎪⎨

⎪⎩

ρ
−1/4
n if 0 < n < N

2
iρ−1/4

n if N
2 < n < N

1 if n = 0 or n = N
2

and thus

λn,m =
{

λA,n + 2|λB,n| + (N − 3)λC,n, if m = 0
λA,n + 2|λB,n| cos(mθ) − λC,n(2 cos(mθ) + 1), for m �= 0.

By substitution, we finally obtain N 2 eigenvalues

λn,m =
⎧
⎨

⎩

αh + 6βh + (N 2 − 7)γh, if n = m = 0
αh + 2βh(cos(nθ) + 2| cos (nθ/2) | cos(mθ))

−γh(2 cos(nθ) + 4| cos (nθ/2) | cos(mθ) + 1), otherwise,

where n = 0, 1, . . . , N − 1 and m = 0, 1, . . . , N − 1.

4.1.2 Eigenvector associated with the largest eigenvalue

When βh > 0 and γh < 0, the largest eigenvalue is obtained for the couples (n, m) =
(1, 0) and (n, m) = (N − 1, 0). As a1 = ρ

−1/4
1 and aN−1 = iρ−1/4

N−1 = ρ
1/4
1 , the two

corresponding eigenvectors are
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W1,0 =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

ρ
−1/4
1 w1

ρ
1/4
1 w1

ρ
−1/4
1 w1

...

ρ
1/4
1 w1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

and WN−1,0 =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

ρ
1/4
1 wN−1

ρ
−1/4
1 wN−1

ρ
1/4
1 wN−1

...

ρ
−1/4
1 wN−1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

.

Here again, we can obtain real eigenvectors by considering

V1 = 1
2

(
W1,0 + WN−1,0

) =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

cos(−θ
4 )

cos( 3θ
4 )

...

cos((N − 1)θ − θ
4 )

cos( θ
4 )

cos( 5θ
4 )

...

cos((N − 1)θ + θ
4 )

cos(−θ
4 )

...

cos((N − 1)θ − θ
4 )

...

cos( θ
4 )

...

cos((N − 1)θ + θ
4 )

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
N

(14)

and V2 = 1
2i

(
W1,0 − WN−1,0

)
which is the same vector with sine instead of cosine.

If we interpret these vectors on the N × N lattice, we can see that

V1(x, y) = cos(xθ + (−1)y−1θ/4)

V2(x, y) = sin(xθ + (−1)y−1θ/4)

with x, y ∈ [0, (N − 1)]. As N becomes large, θ
4 → 0, and the two eigenvectors

will tend to be N -periodic. Similarly, the eigenvectors associated with the next largest
eigenvalues introduce higher frequency modes.
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4.1.3 Local-only coupling case

We will now focus on the particular case γh = 0, corresponding to local only coupling.
βh > 0 case

When βh > 0, which is the ‘physical’ case, the largest eigenvalue is αh + 6βh and
the associated eigenvector is the homogeneous one. But the second largest eigenvalue
corresponds to the ‘longwave’ eigenvectors (as in Sect. 4.1.2) and the eigenvalue tends
to αh + 6βh as N becomes large. The natural question then is if this instability can be
realized, as in the square lattice case. In both square and hexagonal lattices, we know
that

α/ρ = ∂φ

∂ri
(r∗)

= ∂ R

∂ P
(P(r∗))∂ P

∂ri
(r∗) − 1

= ∂ R

∂ P
(P(r∗))

(
∂

∂ri

−κ Rref

ri
+ ∂μ

∂ri
(r∗)g(r∗) + μ

∂g

∂ri
(r∗)

)
− 1

and

β/ρ = ∂φ

∂r j
(r∗)

= ∂ R

∂ P
(P(r∗))

(
∂μ

∂r j
(r∗)g(r∗)

)
.

where g(r) = 2((
Rre f −r

Rre f
) + 1.5(

Rre f −r
Rre f

)2).

However, in the hexagonal lattice case

∂μh

∂ri
(r∗) = ∂μh

∂r j
(r∗) = 4

7
Pb A(r∗)3

and in the square lattice case

∂μ

∂ri
(r∗) = ∂μ

∂r j
(r∗) = 4

5
Pb A(r∗)3

and all the other values are the same. We obtain then βh = 5
7β and αh = α − 2

7β

which gives us finally

αh + 6βh = α + 4β.

Thus when β > 0, the largest eigenvalue in the square lattice case is the same as in
the hexagonal lattice case. Thus if this instability does not occur in the square lattice
model (as the numerical evidence suggests, see Sect. 3.6), neither does it occur in the
hexagonal lattice.
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β < 0 case:
In this aphysical case, we saw previously that we could obtain a checkerboard

system for the square lattice. With the hexagonal formulation, the largest eigenvalue
is be obtained when n = N

3 (or n = 2N
3 ) and m = N

2 , and thus λmax = α − 3β. We
assume here that N is a multiple of 3. This eigenvalue is multiplicity two and the basis
of the eigenspace is given by

V1 =

1 0 −1 · · · 1 0 −1
−1 1 0 · · · −1 1 0

...
...

1 0 −1 · · · 1 0 −1
−1 1 0 · · · −1 1 0

and

V2 =

−1 2 −1 · · · −1 2 −1
−1 2 −1 · · · −1 2 −1

...
...

−1 2 −1 · · · −1 2 −1
−1 2 −1 · · · −1 2 −1

4.2 Numerical results

As in the square lattice case, there is a shortwave instability corresponding to the
aphysical β < 0 case, with eigenvalues and eigenvectors as computed in Sect. 4.1.3.
Numerical simulations for this case are given in Fig. 9, with the steady state solution in
the left panel (normalized flow), and the basis for the eigenspace corresponding to the
largest eigenvalue in the center and right panels. Here there is a qualitative difference
with the square lattice, as the stable pattern (and unstable modes) can no longer be
described as checkerboard patterns.

In the physically realistic β > 0 case with the global and local coupling, clustered
VDs emerge in a similar fashion to the square lattice mechanism, via long-wave
unstable modes. As more and more eigenvalues cross the axis, higher frequency modes
occur and lead to decreased characteristic length scale for the ventilation defects. We
give simulation examples of this dependence in Fig. 10, where here the mechanism is
qualitatively similar to the square lattice case.

4.3 Cubic lattice

The cubic lattice case can be understood as a hybrid of the square and hexagonal
lattice cases. The partial derivatives remain the same as in the hexagonal case, with
stability boundary αc + 6|βc| = α + 4|β|. The Jacobian remains block circulant, now
of order N 3. In the β < 0 case, there is an aphysical local-only stability loss into a

123



G. M. Donovan, T. Kritter

F
ig

.9
L

oc
al

on
ly

co
up

lin
g,

he
xa

go
na

ll
at

tic
e,

β
<

0
in

st
ab

ili
ty

.L
ef

tp
an

el
st

ea
dy

st
at

e
flo

w
,n

or
m

al
iz

ed
.R

ig
ht

an
d

ce
nt

er
pa

ne
ls

ba
si

s
of

ei
ge

ns
pa

ce
fo

r
la

rg
es

te
ig

en
va

lu
e

123



Spatial pattern formation in the lung

F
ig

.1
0

G
lo

ba
lc

ou
pl

in
g,

he
xa

go
na

ll
at

tic
e,

β
>

0
in

st
ab

ili
ty

.C
lu

st
er

si
ze

de
pe

nd
en

ce
on

nu
m

be
ro

fp
os

iti
ve

ei
ge

nv
al

ue
s,

at
st

ea
dy

st
at

e.
L

ef
tt

o
ri

gh
tκ

=
23

.3
,
κ

=
26

,
κ

=
50

123



G. M. Donovan, T. Kritter

3D checkerboard; in the β > 0, global coupling case, the largest eigenvalue is mul-
tiplicity six with eigenspace corresponding to the 3D long-wave modes. Subsequent
eigenvalues crossing add higher frequency modes, again setting the VD length scale.
Thus the cubic lattice is essentially identical to the square lattice case.

5 Numerical methods and parameters

Differential equations were solved numerically by Euler’s method. Generic simula-
tions employed random perturbations (normally distributed with standard deviation
0.001 mm) to break numerical meta-stability; artificially stabilized homogeneous sim-
ulations (Sect. 3.7) used no perturbation and exploited the meta-stability. Numerical
partial derivatives of homogeneous solutions were computed using finite differences,
and eigenvalues and eigenvectors were found with MATLAB’s eig(), or eigs()
for large systems.

Parameter values used throughout are ρ = 2 s−1, Ri = 0.058 mm, P1 =
0.16 cm H2O, P2 = −27.6 cm H2O, n1 = 1, n2 = 7, rimax = 0.296 mm, Pre f =
10 cm H2O, Rref = R(Pref ) = 0.2792 mm, Pb = 10 cm H2O, and A =
500(mm)−4, except where otherwise noted. It is worth noting that these parameters are
illustrative and qualitatively similar behaviour exists across very large parts of parame-
ter space, often extending orders of magnitude away. The Lambert model parameters
for the airway wall are taken from Politi et al. (2010) for an order 1 airway. The airway
luminal radius r is in mm. The ASM pressure κ has units cmH2O. The flows Q, Q̂ and
q are obtained from Poiseuille flow considered independent of dynamic viscosity and
tube length, formally with units (mm3)/s where π/(8μdv L) = 1(cm H2O s mm)−1

and P0 = 0.

6 Discussion

We have presented a new lattice model consisting of identical elements represent-
ing terminal airway units. The lattice elements have nearest-neighbour coupling in
all cases, and an optional all-to-all global coupling depending on the type of breath-
ing control considered. The model neglects the branching airway structure and other
mechanisms which might organise the spatial structure and instead focuses on the
possible formation of clustered ventilation defects due to these types of coupling. We
have studied the resulting lattice dynamical system for the purpose of finding both the
conditions of clustered VDs, and the role that they may play.

The lattice DS arising from this model is an intrinsically discrete system due to
the structure of the acini and connected terminal airways within the lung; it does not
become a PDE in the limit of small lattice spacing. Such systems have of course
been studied by others in many different contexts and lattice systems have a long
history in mathematical biology (e.g. Keener 1987; Ermentrout and Edelstein-Keshet
1993). In general we are not able to make use of many of the convenient assumptions
making certain types of analysis possible. For example, the local coupling is not of
additive or diffusive type (Plahte 2001; Nekorkin et al. 1997), nor are we interested
only in balanced heterogeneous patterns (Wang and Golubitsky 2005). Moreover the
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complex form of the model nonlinearity does not even admit explicit solutions for
the fixed points. However, the structure of the spectra and corresponding eigenspaces
allows us to deduce much about the behaviour of the system from the sign of the
relevant partial derivatives at the homogeneous equilibrium.

This allows us to consider the emergence of clustered ventilation defects, and the
role played by different assumptions about breathing control. In particular we show
that clustered VDs do emerge in the case including global coupling (the case where
driving pressure increases to counteract constriction and maintain flow), and that the
characteristic length scale of the emergent clusters is determined by the number of
unstable eigenvalues, by way of each additional eigenvalue bringing higher frequency
unstable modes. In the local coupling only case, the homogeneous solution appears
to be stable for the physiological range of parameters space, however not universally
so. There is at least one (aphysical) part of parameter space where the homogeneous
solution gives way to a checkerboard solution, but there are no known clustered solu-
tions.

We extended the model and analysis to consider the hexagonal and cubic lattice
extensions, showing that both the hexagonal and cubic lattice models generate clus-
tered VDs in the global coupling, β > 0 case in qualitatively the same way as the
square lattice. In the local coupling only case, neither extension generated clustered
VDs; in fact, the stability boundaries remain the same so that the parameter search
for the square lattice model is valid for all three. That is, no parameters were found
for which local-only coupling produces clustered ventilation defects. In the aphysical,
β < 0, local-only case, there is a difference in the hexagonal lattice. Here the stability
boundary is slightly different, and the shortwave instability is qualitatively different
from the checkerboard solution. On the other hand, the cubic lattice model produces
a 3D checkerboard in much the same way as the square lattice case.

When comparing clustered solutions seen in the model and those obtained experi-
mentally, e.g. Tzeng et al. (2009), there are several factors to keep in mind. First is that
the model is idealized and designed to consider the action of this particular method
of spatial coupling; this is not to suggest that there are no other factors at work. For
example, in real lungs there certainly are structural factors at work, even if dynamic
phenomena are dominant, while we have considered only dynamic phenomena. For
instance, we have made no attempt to capture either gravitational dependence or lobar
structure, while both certainly play some role in determining experimental ventilation
distributions. Similarly, it is not clear at what point in time one should compare, as
we have defined the timescale arbitrarily—are experimental images taken near steady
state, or are they a snapshot of dynamic equilibration? In the former case, the model
suggests bimodal distributions with very narrow modes and very little in between, in
contrast to most imaging data. However, if the system is still in the midst of equili-
biration, we might expect to see much broader distributions (e.g. Fig. 3). Given that
breathing is inherently a dynamic process, the latter is a reasonable interpretation,
though we have made no effort to explicitly model this much more complex situation.

Several other key modelling assumptions deserve extra discussion. One is neglect-
ing the airway tree structure and considering only terminal units with identical input
conditions. This assumption potentially neglects important contributions from the air-
way tree structure to overall VD formation. However, a first step is to understand how
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clustered VDs might form from effects on the terminal units only, and this formula-
tion allows a great deal more analysis and understanding. Incorporating the airway tree
structure, and understanding its contribution, is an important area for future work. We
emphasize that other explanations for clustered ventilation defects have been offered
(e.g. Tgavalekos et al. 2005; Venegas et al. 2005); we have considered only one possi-
ble explanation in this model, and conclusions from its analysis are only valid in that
context.

We note that the proposed coupling mechanism is not that in the recent work of Ma
et al. (2013a,b) and Ma and Bates (2014) where direct mechanical strain is considered
and airway–airway interactions via the parenchyma are shown to be limited. Here
we are considering how parenchymal inflation is altered by constriction of supplying
airways. Still, the coupling coefficient A which describes the strength of this interaction
is not known. However, to a certain extent many of the results presented here can be
viewed in a more general context than the specific model presented here. That is,
the analysis of the eigenstructure relies only on the partial derivatives α, β and γ

representing internal dynamics, nearest neighbour coupling, and global (all-to-all)
coupling, respectively. These results are independent of the specific choice of model,
but depend only on the coupling structure. Of course the model specifics play a role
both in the conditions under which these instabilities occur, and also the stability of
the resulting heterogeneous pattern.

One physiological question which naturally arises is the efficiency of clustered
VD solutions. That is, would stabilizing the homogeneous solution be beneficial to
an asthmatic patient? Model results suggest that while large clusters are inefficient,
requiring greater driving pressure for equal total flow, smaller clusters are an efficient
response to airway constriction, requiring less driving pressure than the stabilized
homogeneous solution.

There are a number of areas where model assumptions leave room for important
future work. One question is the possibility of simplification which retains the quali-
tative behaviour while allowing explicit fixed point solutions. This raises the prospect
of showing conclusively that local-only instabilities are not of clustered VD type.

One might also wish to understand the role of the branching airway structure which
was neglected in the model construction, or a more realistic breathing control model
than two naïve approaches assumed here. Both remain important areas for future
work. Nonetheless the lattice-based model and analysis presented here demonstrate
the potential of this approach to answer important questions about the formation of
clustered ventilation defects.
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