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Abstract

In this addendum we correct an argument concerning the torsion of homeomor-
phisms of finite powers of the long line. In the original paper Alexander-Spanier coho-
mology was used but instead Alexander-Spanier cohomology with compact supports
is required.
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The proofs of the following two results in [2] rely on unproved statements about
P.A.Smith theorems:

THEOREM 3.2. Let L denote either L+ or Lo. Then the group H(L) has no torsion.

THEOREM 3.3. The group H(L) has only 2-torsion, that is, any nontrivial element
of finite order must be of order 2.

The proofs of both theorems as given in [2] use P.A.Smith fixed point theorems for
p-power groups. The problem arises because all of the spaces L+, Lo and L are locally
compact but not paracompact. It is true that all of these spaces are of finite cohomo-
logical dimension and so the Smith theorems apply, but the cohomology used should be
Alexander-Spanier cohomology with compact supports [1] and [4, p320], rather than the
general cohomology. It is not known whether the Smith theorems are true for the long line
using Alexander-Spanier cohomology with general supports. In any case the proofs in [2]
are easily modified when we use Alexander-Spanier cohomology H̄c with compact supports.

Following the arguments used in proving [2, Theorem 2.5], one can easily establish the
following results:

THEOREM A. Let L denote either L+ or Lo. Then H̄q
c (Ln;G) = 0 for all q ≥ 0.

THEOREM B: H̄q
c (Ln;G) =

{
G if q = n
0 if q 6= n.
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PROOF. (THEOREM 3.2): It suffices to show that H(L) has no p-torsion for any prime p.
Suppose to the contrary that there is a homeomorphism h of order p. Then by [3, Lemma
2] the fixed point set Lh contains an unbounded subset of ω1. If α < β are fixed points
then h[α, β] must be an interval containing α and β so [α, β] must be invariant under h.
Applying Smith theory to the (Euclidean) interval [α, β] we conclude that [α, β]h must be
acyclic with respect to Alexander-Spanier cohomology. Thus h fixes every point of [α, β].
It follows that h is the identity, a contradiction.

PROOF. (THEOREM 3.3) Suppose that h ∈ H(L) is an element of order pk where p
is prime and k > 0. We will show that p=2 and k=1. Since L is locally compact and
is of finite cohomological dimension, we apply the Smith theorem for Alexander-Spanier
cohomology with compact supports, H̄c (mod p). By Theorem B, L is a cohomology 1-
disc(mod p) with respect to H̄c and hence by the Smith theorem the fixed point set Lh

must be an r-disc (mod p) for H̄c, where 0 ≤ r ≤ 1.

Suppose that r=1. Then Lh, being closed, must be either unbounded by [3, Lemma
2] or must be compact. In the case that Lh is unbounded, the argument of the previous
theorem shows that h is the identity, a contradiction. Thus Lh must be compact. It
follows that r=0 and hence by the Smith Parity Theorem p=2. It also follows that Lh is
connected, so that Lh = [α, β] for some α ≤ β.

Because h is a homeomorphism of order 2k we cannot have α < β. Then it follows as
before that h2 is the identity.
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