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Abstract

By blending techniques from Set Theory and Algebraic Topology
we investigate the order of any homeomorphism of the nth power of
the long ray or long line I having finite order, finding all possible
orders when n = 1,2,3 or 4 in the first case and when n = 1 or 2 in
the second. We also show that all finite powers of L. are acyclic with
respect to Alexander-Spanier cohomology.

1 Introduction

Topologists have adapted two powerful tools from other branches of Math-
ematics to assist them in solving topological problems: Algebra and Set
Theory. Each has made major contributions but in distinct areas of topol-
ogy. Algebraic Topology has been very effective in the context of compact
spaces, essentially requiring finiteness. Set Theory has been effective in deal-
ing with the large infinite. In the context of topological manifolds, Algebraic
Topology has been invaluable in the study of compact manifolds while Set
Theory has been of most use in the study of non-metrisable manifolds. Un-
fortunately it has been unusual for the two to be combined. In this paper
we discuss one way in which these techniques can work together and as a
result solve a problem in the theory of non-metrisable manifolds.
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We denote by wy the set of countable ordinals and by IL the long line,
which is obtained by inserting an open interval between each countable
ordinal and its successor to obtain the closed long ray Ly then joining two
copies of Ly (which we denote by L and L_) by identifying the ordinals
0 € Ly and 0 € L_. We denote the open long ray, which is Ly with 0
removed, by L.

The primary goal of this paper is to determine the torsion of the group
of homeomorphisms of low powers of the long line and long ray. Our main
result shows that the only torsion in these groups is torsion corresponding
to permutation of the coordinates and 2-torsion. The computation involves
a blend of notions of the Set Theory of the countable ordinals and Algebraic
Topology, particularly the P A Smith theorems. Details appear in Section
4.

In order to apply the P A Smith theorems we find it necessary to calculate
the Alexander-Spanier cohomology of powers of the long line. Of course it
is trivial to show that in singular cohomology theory all powers of the long
line are acyclic. We find in Section 3 that in Alexander-Spanier cohomology
theory the powers are also acyclic. Although we will work with coefficients
in an R-module GG, we will suppress this in the notation.

In Section 2 we present a number of results which exhibit covering prop-
erties of powers of the long line. These results will be useful in Section
3.

We conclude this section by recalling some relevant facts from Algebraic
Topology and Set Theory.

Definition 1.1 [6, Chapter 6] Let X be a topological space. For each q € w
set

CUX)={p: X" = G / ¢ is a function}

with pointwise addition and R-multiplication. Declare a function ¢ € C1(X)
to be locally zero provided that there is an open cover U of X such that for
each xg,...,xq € U € U we have o(xy,...,xq) =0. Let

Cl(X) ={p € CUX) / ¢ is locally zero},

and set C1(X) = C1(X)/CL(X).
Define § : C1(X) — C1TL(X) by

q+1

(OfeD) (o, - - Tqr1) = O _(=1)'@(x0, - -+ Fis ... Tq)-

=0



Then (C9(X),6) is a cochain complex. The cohomology of this cochain com-

plex is called the Alexander-Spanier cohomology of X and its groups are
denoted by HI(X).

An important class of subsets of wy is the class of closed, unbounded sets.
These sets possess the curious and invaluable property that the interesection
of any two is always nonempty. More generally and more precisely, we have
the following useful result, a proof of which is found in many books on Set
Theory, for example [5, page 78]:

Proposition 1.2 The intersection of a countable collection of closed, un-
bounded subsets of wy is again closed and unbounded.

We will also use the next result frequently. In this we use the following
standard terminology. A function f : A — w1 is regressive if for each
a € A—{0} Cw we have f(a) < a. A set S C wy is stationary provided
that it meets every closed, unbounded subset of w;.

Proposition 1.3 (Pressing Down Lemma) Let S C wy be a stationary
set and f : S — wy be a regressive function. Then there is o € wy so that
f~Y«) is stationary.

2 Covering Properties of the Long Line and its
Powers

Whenever x is a point in the finite product of sets we denote by z; the ith
coordinate of z. If a € L let & = (a,...,a) € L™. For t € R and r > 0 set

Cltir] ={s €RF /Vj=1,....0, t; —r <s; <t; +7}.
For z,y € L' set
Diz,yl={z€L™ /Vj=1,...,m, min{z;,y;} < z; <maz{z; y;}}.

Lemma 2.1 Let I,m > 0 be integers and let U be a collection of open
subsets of Rl x L™ which covers [0,1]! x L™. Then there are o € Ly and a
cover {Ji,...,Jp} of [0,1] by open intervals such that for each s,t € [0, 1]
and each x,y € L' if for each j = 1,...,1 there is i; with s;,t; € J;; and
xj,y; > o for each j =1,...,m then there is U € U with (s,x),(t,y) € U.

Proof. For cach ¢ € [0,1)" and each limit ordinal A € Ly we have (¢, \) €
[0,1]" x L' so there is U € U with (t,\) € U. Thus there are an integer

n > 0 and an ordinal f(\) < A so that C[t; 1] x D[f(\),\] C U.



By the Pressing Down Lemma there is an ordinal o such that f1(ay) is
uncountable, hence there are an unbounded set S; C f~!(ay) and an integer
n¢ > 0 such that for each A € Sy there is U € U with CJt; n%} x D]ag, \] C U.

By compactness finitely many interiors of the hypercubes {C|[t; nit] /te
[0, 1)} cover [0,1]%; say {Clt; n%} / i=1,...q}, where we abbreviate n
to n;; we similarly abbreviate o, and Sy, . Let a = maz{o; [i=1,...,q}.
From the hypercubes {C[t(;); n%] /i =1,...q} we may construct open in-
tervals {Ji,...,Jp} covering [0, 1] such that each of the sets ngl Ji; lies in
some C/[t(;; n%}

Suppose that s, t € [0,1]" and z,y € L' are such that for each j = 1,...,1
there is ¢; with s;,¢; € J;; and zj,y; > a for each j = 1,...,m. Then
s,t € Clt(y; n%} for some i. Choose any A € S; such that z;,y; < X for each
j; then z,y € D[a;, A]. Choose U € U such that Cltay; n%] x Dl[a;, \] C U.
Then (s, z), (t,y) € U. .

Corollary 2.2 Let U be an open cover of L™, let | > 0 be an integer and
let B € Ly. Then there are a € L and a cover {Ji,...,Jp} of [-5,0] by
open intervals such that for each x,y € L™ with xj,y; € Ji; for | values of
J and |z}, |y;| > o and z; and y; having the same sign for the remaining
m — 1 values of j, there is U € U such that x,y € U.

Proof. Apply Lemma 2.1 to each of the (71") 2m=! yegions in each of which
some fixed ! coordinates lie in [—(3, 8], some of the remaining coordinates
are restricted to (—wy, — 3] and the remaining are restricted to [3, w1 ). After
rearrangement of coordinates, each such region is of the form [—3, 3] XL;”_Z.
Take the intersections of the resulting open intervals in say (—/3, 3) and the
maximum of the resulting ordinals |a. n

Proposition 2.3 Let m > 0 be an integer and let U be an open cover of
L™. Then there are open intervals Iy, ..., I, such that {Iy,...,I,} coversL
and for each x,y € L™ such that for each j = 1,...,m there is an interval
L;; such that xj,y; € I;;, there is U € U with z,y € U.

Proof. We apply Corollary 2.2 inductively over [ =0,...,m to the cover U.
In the case | = 0 we take 8§ = 1, and obtain a point ag € LL such that for
each z,y € L™ with |zj|, |y;| > ap and with z; and y; having the same sign
for each j = 1,...,m, there is U € U such that z,y € U. Set pg = 0.
Suppose that for some [ between 0 and m we have constructed o; € L
and open intervals J1,...,J;, covering [—oy—1,aq—1] such that for each



z,y € L™ with z;,y; € J;; for | values of j (this condition is vacuous when
[ = 0 so in that case we do not need any intervals Jo;) and |z;|, |y;| > o
and z; and y; having the same sign for the remaining m — [ values of j,
there is U € U such that x,y € U. We have already exhibited these in the
case [ = 0.

If [ < m, apply Corollary 2.2 to the integer [ + 1 and 8 = «;. Then
there are a;y1 € L and a cover {Ji411,.- -, Jip1,p, } Of [=az,q] by open
intervals such that for each z,y € L™ with z;,y; € J;; for [ + 1 values of j
and ||, |y;| > ag41 and z; and y; having the same sign for the remaining
m — [ — 1 values of j, there is U € U such that z,y € U. We will assume
when [ > 0 that each of the intervals J;; ; is small enough that if it meets
[—ay_1, 1] then it lies in at least one of the intervals J; .

Now set n = py, + 1, let I; = Jp,j when j = 1,...,pp, and let Iy =
(—w1, —ayy,) and I, = (a,,w1). Suppose that z,y € L™ are such that for
each j = 1,...,m there is an interval I;, such that z;,y; € I;;. Suppose that
i; is neither 0 nor n for exactly [ values of j. Because for the other values
of j we have |z;|, |y;| > an > oy and because of the nesting of the intervals
Ji,; with [, it follows from the [th inductive step that there is U € U such
that z,y € U. "

3 The Cohomology of Powers of the Long Line

Lemma 3.1 Let A C X be a non-empty subspace of a topological space and
© € CUX) be a cochain, q > 1, such that §p is identically zero on AT+2,
Then p|AT is a g-coboundary.

Proof. Fix a point z € A. For each p > 1 define a function D : CP(A) —
CP~1(A) by setting
(DY) (ao, - . ap—1) = ¥(z,a0,...,ap-1).
Then for each (p + 1)-tuple (ao,...,ap) € A we have:
p

(D& + 6DY)(ag, - . ., apy) = 51/J(z,a0,...,ap)+Z(—l)i(Dzb)(ao,...,&i,...

/4
= 1/)(&0,...,ap)—Z(—l)id)(z,ao,...,di,...,ap)



Thus on A%*! we have D&y + §Dv) = 1. Because dp vanishes on A92, it
follows that ¢ = §Dy on A9t ie ¢ is a coboundary. "

Proposition 3.2 ﬁlq(L+) =0 for each ¢ > 0.

Proof. Since Ly is a connected space, by [6, Corollary 6.4.7] it follows that

o (L4 ) is trivial, so we will assume that g > 1.

Let [¢] € H q(L+) = HY(Ly) be an arbitrary cohomology class, where
p ]Lq++ — (G is a g-cocycle. Then dy is locally zero on L4 so there is
an open covering U of L. such that whenever z,...,2441 € U € U then
do(xo,...,xg+1) = 0. By Lemma 2.1 there is o € Ly such that for any
B € (a,wip) the interval [, 5] is contained in some member of U. Given
any zo,...,Tg+1 € [o,wi) we can choose [ so that xg,...,zq41 < G5 so
zo,...,Zq+1 € U € U and hence 6p(x,...,2q+1) = 0. Thus by Lemma 3.1
there is 1 € C971(IL;) such that on [a,w;)?"! we have d¢ = . It follows
that [p]|(a,w1) = 0.

Now V = [0, + 1) and W = («,w1) are open subsets of L, whose
union is L4 and intersection is an open interval, therefore acyclic. Con-
sider the following Mayer-Vietoris sequence for reduced Alexander-Spanier
cohomology:

-1

e H(VAW) » H (Ly) = H (V)& H (W) - H(VAW) = .
It follows that the homomorphism jig (Ly) — }:Iq(V) @ ﬁq(W), which takes
[¢] to ([¢]|V,[¢]|W), is an isomorphism. Since V is contractible we have
that [¢]|V = 0 and by what we showed in the previous paragraph we also
have that [¢]|WW = 0, so that [¢] = 0. n

Corollary 3.3 The Alexander-Spanier cohomology of the long line is given

by: ¢ i
- _ ifq=20
HA(L) = { 0 ifqg>0.

Proof. We may use the Mayer-Vietoris sequence for reduced Alexander-
Spanier cohomology as applied to the space L and its closed subspaces L
and IL_, noting that L, NIL_ consists of a single point. Proposition 3.2 now

tells us that A" (L) ~ A (L)@ H'(L_) = 0. .

Proposition 3.4 For each n > 1 and each q¢ > 0 the reduced Alexander-
Spanier cohomology groups H ! (L) are all trivial.



Proof. We use induction on n, the case n = 1 having been shown in Propo-
sition 3.2. Assume the result true for powers less than n.

Let [¢] € H ! (L7 ), where ¢ is a cocycle. Then there is an open cover U of
L such that d¢ is locally zero on U 4+2 Hence by Lemma 2.1 there is a < w
such that §¢p is identically zero on ([, w1)™)972. Hence by Lemma 3.1 there
is 1 € CT ([a,w1)™) such that 51 = p|[a, w1)™. Thus [p]|[a,w1)” = 0.

We now prove by induction on m that [¢]][0,w1)™ X [, w1)"™™ = 0,
having already begun the induction at m = 0. Suppose that []|[0,w;)™ ! x
[, w1)"~™ L = 0. Note that

[0,w1)™ x [a,w1)"™™ = [0,w1)™ ™" x ([0,0] U o, wr)) x e, w1)" ™™

= ([O,wl)m_l x [0,a] X [a,wp)" ™) U ([0,w1)m_1 X [e,wr)

Thus we have expressed [0, w1)™ X [a,w1)™™"™ as a union of two closed sub-
sets. By inductive hypotheses with respect to n, [¢]|[0,w1)™ ! x [0,a] x
[, w1)™™™ = 0 because the compact interval [0, ] is contractible, and by in-
ductive hypothesis with respect to m we have [0]|[0,w1)™ ! x [a, wy)* ™ =
0. Furthermore the intersection of these two closed subsets is [0,w;)™~! x
{a} x [a,w1)™ ™, which is homeomorphic to [0, w1)™ ! x [, w1 )" ™ s0 again
by inductive hypothesis is acyclic. Thus by the reduced Mayer-Vietoris
sequence for these two closed sets we may conclude that [p]|[0,w;)™ X
[a’ wl)n—m =0.

Taking m = n in the statement above, we conclude that [¢] = 0. Thus
H'(LM) =0. .

Theorem 3.5 The Alexander-Spanier cohomology of powers of the long line

s given by:
— G ifg=0
Q) —
HA(L") { 0 ifq>0.
Proof. Using induction on n and m < n we show that each of the groups

H q(]Lm x LI™™) is trivial for each ¢ > 0. When m = 0 we already know

that " (L% x L%) is trivial for any n from Proposition 3.4. When n = 0 we
know that H" (L% x L2) is trivial by [6, Lemma 6.4.3].

Suppose that 0 q(Lm X L:ﬁ/_m) is trivial for each n’ < n and each m and
that I?Iq(Imel x L'™™ 1) is trivial for each ¢ > 0. Write

L™ x L™ = L™ 1'x (LyUL_)x L™
= L' x Ly u LT x Lo x L™,

n—m—l—l)‘



Note that L™t x L_ x L}~ is homeomorphic to L™t x Li_mH and
each of the subsets L™ x L’};mﬂ and L™t x L_ x L4 is closed so by
inductive hypothesis

=q =q

H (L™ x L™ = H (L™ x Lo x LE™) = 0.
Furthermore the intersection of these two sets is L™~! x {0} x L™, which
is homeomorphic to L™~ x L1 ™™, so again by inductive hypothesis

H (L™ L™ (L™ x Lo x L77™)) = 0.

Now apply the reduced Mayer-Vietoris for Alexander-Spanier cohomology
to the closed sets L1 x L:Lfmﬂ and L1 x L_ x L™ to deduce that
H (L™ x L™™) is trivial,

The induction above continues until m = n, at which stage we conclude
that H q(IL”) is trivial for each ¢ > 0, as required. "

4 Torsion of the Group of Homeomorphisms of
Powers of the Long Line

In this section we study the group of homeomorphisms, H(X), of a space
X, where X is a finite power of L or L. Although Theorems 4.2 and 4.3
are subsumed in later results of this section we present them independently
because the proofs which we present here show a strong interplay between
Algebraic Topology and Set Theory.

Proposition 4.1 The cohomological dimension of the long line, dimgz(LL) is
1.

Proof. As a 1-manifold, L is locally compact. The cohomological dimension
of a locally compact space is determined locally and, as the local cohomo-
logical dimension of L is 1, so is the (global) cohomological dimension. =

Theorem 4.2 Let L denote either Ly or L,. Then the group H(L) has no
torston.

Proof. It is enough to show that H(L) has no elements of prime order.
Suppose to the contrary that there is a homeomorphism h : L — L of prime
order p. Let G = [h] be the cyclic group of order p generated by h, and
L" = {x € L / h(z) = x} be the fixed point set of h. Evidently L" = L,
the fixed point set of the group G.



The space L is a locally compact Hausdorff space which, by Proposition
3.2, is acyclic (modp) with respect to Alexander-Spanier cohomology, and
G is a group of order p. Hence by the P. A. Smith theorem, [3], the fixed
point set. L¢ must also be acyclic (modp). Hence L& must be connected by
[6, Corollary 6.4.7]. We also know from the proof of [4, Lemma 2] that L"
must contain an unbounded subset of wi. It follows that L" = L¢ = L, ie
that A is the identity, a contradiction. "

Theorem 4.3 The group H(LL) has only 2-torsion, ie any nontrivial ele-
ment of finite order must be of order 2.

Proof. Let h € H(L) be a nontrivial homeomorphism of finite prime power
order, say - e, the identity. It suffices to show that p¥ = 2, ie that p = 2
and k= 1.

We remark that the P A Smith theorems are also valid for prime-power
order groups, for any prime p. It follows from Corollary 3.3 that the fixed
point set " is a connected closed subset of L. Since connected subsets of
L are intervals, it follows that L" is either a point or a nontrivial interval.

If L" is a nontrivial interval then h maps X = L — L" to itself. Note
that X is either connected or has two components.

If X is connected then h|X € H(X) ~ H(L;), which, by Theorem 4.2,
has no torsion. Thus h|X is the identity, so that h = e, a contradiction.

If X is disconnected then X has two components, say A and B, each
of which is homeomorphic to L. Continuity of & at the end points of L
ensures that h(A) = A and h(B) = B, and, as in the previous paragraph,
we conclude that h = e, a contradiction.

It follows that L" is a single point. Hence h(A) = B and h(B) = A,
where A and B are the two components of L — L”. Thus h?(A) = A, and,
as above, we conclude that h% = e. ]

For each o € wy we denote by S, = {z € L" / |z| < a} the “square” of
sides 2a.

Lemma 4.4 Let h : L™ — L" be a homeomorphism. Set D = {a €
w1 / h(Sa) = Sa}. Then D is closed and unbounded.

Proof. D is closed. Suppose that (o) is a sequence in D converging upwards
to a. If y € S, then there is n € w such that y € Sy, s0 h(y) € h(Sa,) =
Sa,, C Sa. This shows that h(So'a) C S4 so that hA(S,) C Sa. On the other
hand, if h(y) € S, then there is n € w such that h(y) € Sa, = h(Sa,) so

Yy € Sa, C So and as before S, C h(S,). Thus h(S,) = S, and hence



a€eD.

D is unbounded. Suppose that 8 € w; and set ag = 3. Suppose that a,, has
been constructed. Because h(Sa,) U h 1(S,,) is compact, we may choose
Qn41 > ap 5o that h(Sa,) U™ (Sa,) C Sans- Suppose that o, /" a.

We claim that o € D. Suppose that y € S,. As «,, / « it follows that
there is n so that y € S,,. Then h™'(y) € Sa,., C Sa 50 y € h(Sy), ie
Se C h(Sa) and hence S, C h(S,). Similarly S, C h=1(S,), ie h(Sy) C Sa.
Thus S, = h(Sy) so a € D. u

Now let L be either L or L. Given z € L™ — {0} define the (open) ray
through z in the following way. Let

|| = max{|z;| /i =1,...n},
t={ie{l,...,n} / |z;| = |z|}, z={1,...,n} — % and
|z|| = max{|z;| /i € &} (with ||z]| =0if & = {1,...,n}).

Then the open ray through x is

R(:E):{yEL”/‘|x|H<yi:yjforeachi,jei“andyi:xiforeachiei"}.
T ZT; iEj

NCTL T

: Y Y Y Y Y Y :

Define an equivalence relation ~ on L™ — {0} by setting « ~ y if and only
if z and y belong to the same open ray in L™ —{0}. Let R, be the quotient
space (L™ — S,)/ ~ and denote the quotient map by 7, : L™ — S, — R,.
Then R, consists of the ends of all the open rays. For each o, € w;

10



with a < 3 let pg : R — R, be the bijection induced by the inclusion
L™ —S3 C L™ —S,. Then Pl is continuous (but (ph) 1 is not unless 8 = «).

Thus (p} : R — R,) is an inverse system.

Definition 4.5 The ray space, R(L"), of L™ is the limit of the inverse
system (p : Rg — R,).

We have the following facts about R(L"):

1. There is a natural continuous bijection, which we denote by p, :

R(L™) — Ry;

2. R(L") has a natural stratification R(L") = U'_ R;, where each R; is
a finite disjoint union of subsets each of which is homeomorphic to L’
when L =L and L! when L =L;

3. R(L™) is a compact Hausdorff space.

R(L™) may be thought of as the boundary of a hypercube in which each
open face of dimension i has been replaced by a copy of L?. Furthermore,
the closure of a face of dimension ¢ is homeomorphic to the ith power of
the 2-point compactification of L. For R(LL. ) the situation is similar except
that the faces are replaced by copies of L.. One may carry out a similar
construction in R™ and so get an ordinary hypercube in which each face is
the 2-point compactification of R. The following lemma shows that there
is a major difference between the situations in R™ and L": the analogue of
this lemma in R™ is false. As a result there is a major difference between
the behaviours of homeomorphisms of L™, as exhibited by Corollary 4.10,
and R™.

Lemma 4.6 If e : wy — L™ is an embedding then there is a unique point

r € R(L") such that for each o € wy the set e (ma'pa(r)) is a closed
unbounded subset of w1.

Proof. Clearly for each 7 € R(L™) and each o € wy we have that e (75 'pa (1))
is closed so we need only show that there is a unique r for which this set is
unbounded. If we can show that there is at least one such r then it must
be unique as any two closed unbounded subsets of w; have non-empty inter-
section by Proposition 1.3. Thus we need only show the existence of such a
point r € R(L").

Because wy, and hence e(w;), is not Lindel6f whereas every bounded
subset of L™ is Lindeldf, it follows that at least 1 coordinate of e(w;) is un-
bounded; let us suppose that exactly k coordinates of e(w;) are unbounded,

11



and for ease of notation we will suppose that the first £ coordinates are
unbounded. Thus:

1. for each a € L4 there is a, € w; such that for each i < k we have
lei(aq)| > a;

2. there is b € L4 such that for each o € w; and each ¢ > &k we have
lei(a)| < 0.

Firstly we show that £ = {a € w1 / |ei(a)| = lej(e)| for all 4,5 < k} is
closed and unbounded. FE is clearly closed, so we need only show that E
is unbounded. Suppose that Gy € wi. Given 3, € w; choose a, € Ly so
that e([0, Bn]) C [~an,an]* x [~b,b]"F. By assumption there is £,41 € w1
such that |e;(Bp4+1)| > ay, for each i < k. Let a, /" a and 3, / 5. Then
‘ez(ﬁﬂ =a,so B € F.

Now we show that there is a ray r € R(L"™) as described. For each
y € L% consider L* x {y} ¢ L¥F x L"=* = LL". It suffices to show that
e Y (IL* x {y}) is unbounded for some y € [—b,b]" ¥, for then this set will
form a closed, unbounded subset of wy, and this must intersect the closed,
unbounded set E of the previous paragraph in a closed, unbounded set.
Suppose instead that this is not the case. Then for each y € [—b,b]"*
there is o, € wy such that e *(L* x {y}) C [0,q,). By continuity of e it
follows that e~1(LL* x {n}) C [0, ) for each n in some neighbourhood of
y in [—b,b]"*. Then by compactness of [—b,b]" ¥ we conclude that there
is @ € wy such that e Y (L*¥ x {y}) C [0,a] for each y € [~b,b]" "%, which
contradicts assumption 1. ]

Lemma 4.7 Suppose that X is a compact first countable space and e : wy X
X — L" is an embedding. Then the induced map € : X — R(L™), where
e(t) is that point of R(L™) given by Lemma 4.6 applied to e, is also an
embedding.

Proof. To show that € is continuous we must show that for each o € w; the
composition &, : X —— R(L™) Lo, R, is continuous. Suppose that t € X.
Then 7€, (t) will consist of a homeomorph of the open long ray in which
some coordinates are fixed and up to sign the remaining coordinates are
equal and range through (o, w;): without loss of generality we will assume
that the first k& coordinates are equal and range through (a,w;) and the
remaining coordinates are all non-negative, so that 7, 'e,(t) is of the form
{(z,z,...,2,b1,...,bh—k) / * > a}. Then a basic neighbourhood of &,(t)
may be taken in the form 7, (N), where N = (a,w)® x [/ (b, b)) and
bi_ < b < b:_.

12



Suppose that e, 7, (N) is not a neighbourhood of t. Then there is a
sequence (t;) of points of X — e 'm,(N) converging to t. Thus there are
closed, unbounded subsets (C;) and C such that e(C; x {t;}) "N = @& while
e(C x {t}) € N. As the countably many sets {C} U{C; /i € w} are all
closed and unbounded, by Proposition 1.3 so is their intersection; choose
B € CN(NicwCi). Then ((5,t;)) converges to (F,t) but (e(S,t;)) does not
converge to e(3,t), contradicting continuity of e.

Now e must be an injection, for if not then there will be two points
s,t € X so that e(s) = e(t). Hence there are closed, unbounded subsets
Cs, Cy C wy so that es(Cs) and e;(Cy) are mapped to the same ray. Then we
can find two distinct points (s, s), (¢, t) € wy x X so that e(s',s) = e(t', 1),
contrary to e being an embedding. As a continuous injection from a compact
space to a Hausdorff space, e is then an embedding. n

Lemma 4.8 If f : I — R(L™) is a path then f(I) C R; for some stratum
R;.

Proof. As noted, each component of the ith stratum of R(L") is homeomor-
phic to L’ or !, and the closure of this component is homeomorphic to the
ith power of the 2-point compactification. The 2-point compactification of
has 3 path components, viz I or L, and each of the 2 extra points. Hence
the closure of the component consists of 3° path components, one of which is
the component itself. Thus f(7) must lie in one of these path components,
which is a subset of some stratum. "

Corollary 4.9 If f : X — R(L") is continuous and X is path connected
then f(X) C R; for some stratum R;.

Corollary 4.10 Any homeomorphism h : L™ — L™ induces a homeomor-
phism B
h: R(L™) — R(L™). Moreover, h(R;) = R; for each stratum R;.

Proof. Given r € R(L"™) we apply Lemma 4.6 to 7 'p,(r), which contains
a subset order equivalent to wq, to find the natural candidate for i_z(r). By
Corollary 4.9 h takes each component of a stratum to a stratum and by
Lemma 4.7 it embeds each such stratum; hence no stratum is taken by
h to a stratum of lower dimension. Applying the same reasoning to h~!
we conclude that h carries a stratum of dimension i to one of the same
dimension. Continuity of A and its inverse is similar to the proof of continuity
in Lemma 4.7. ]
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Let G, be the group of symmetries of the hypercube [—1,1]" and G, ,,
be the group of symmetries of the hypercube [0, 1]™ which send any point
with at least one coordinate equal to 0 to another such point and any point
with no coordinate equal to 0 to another such point. Then the symmetric
group of order n, S, acts on G,, and G, ,, by permuting the coordinates and
the group ;" ; Zy acts on G, by letting the ith summand reverse the ith
coordinate. Let p: G, — H(L") and py : G4, — H(L}) be the natural
monomorphisms. By Corollary 4.10 there are homomorphisms ¢ : H(L") —
H(R(L™)) and ¢4 : H(L}) — H(R(LY)). The compositions ou : G, —
H(R(L™)) and @ypy 2 Gy — H(R(LY)) are also monomorphisms.

Theorem 4.11 Suppose that h € H(LY) is an element of finite order q.
Then:

. n=1=q=1;
2.n=2=q=1o0r2;
3 n=3=—q=1,2o0r3;
4. n=4=q=1,2,3,4 or6.
Proof. For any a € w; set
Vo ={(z1....,2,) € L} / 2; = 0 for exactly one coordinate i and z; = a for all others}.

By Proposition 1.2, Lemma 4.4 and Corollary 4.10 there is a closed un-
bounded subset A C w; so that for each o € A we have h(S,NLY}) = S,NL7
and h(Vy) = V,. Fix a € A: it suffices to show that the gth power of
h|Sq NLY is the identity, where ¢ is as in the theorem.

Case 1: h fixes V.

If necessary replace h by a power of h so that ¢ is a power of some prime
.

Consider h|0(S, N OLT) when n > 3: because 9(S, N IL") ~ S" 2 and
h fixes n points therein, it follows from the P A Smith theorem [2, Theorem
I11.5.1] that the fixed point set of h|0(S, N OLY) is a mod p homology 7-
sphere, where n — 2 — r is even if p is odd and A is an orientation-reversing
involution if p = 2. If n = 3 then 9(S, N OL") ~ S! so that h must fix all
of (Se NALY). If n = 4 then 9(S, NOLY) ~ S? and h has at least 4 fixed
points on this set. Furthermore if p is odd then the only way forn —2 —r
to be even is for 7 = 0 or 2. Now it is not possible to have » = 0 by the P
A Smith theorem [2, Theorem II1.5.2] because there are more than 2 fixed
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points. On the other hand, r = 2 means that h fixes all of 9(S, N OLY).
Thus when n < 3 h fixes 0(S, N OLY) and even when n = 4 h either fixes
9(Se NOLY) or is an involution there, ie h? fixes O(S, N ILT).

Firstly consider the case where h fixes 0(So, N OLY}) (n > 2). Consider
h|S, MOLY. As S, NOLY ~ B" ! and h fixes the boundary of this set it
follows from the P A Smith theorem [2, Theorem II1.5.2] that & fixes all of
Se NOLY. Similarly h fixes all of 9(S, NL7) —0L%. Thus h fixes all of
0(SoNLY), and this also holds if n = 1. Applying [2, Theorem II1.5.2] once
again, it follows that h fixes all of S,, ie is the identity there as claimed.

Secondly consider the case where h is an involution and apply the argu-
ment to k% to conclude that k2 is the identity.

General Case: As h(Vy,) = V,, it follows that some power of h fixes V,, and
this power must be 1 when n = 1, it must be 1 or 2 when n = 2, it must be
1, 2 or 3 when n = 3 and it must be 1, 2, 3 or 4 when n = 4; call it g. Thus
we may apply Case 1 to h? to conclude that either h? or h?? is the identity.
However when n = 4 the involution subcase does not arise when ¢ = 2 or 4
as then h? is already orientation-preserving. "

Theorem 4.12 For n = 1,2 and for any element of H(IL™) of finite order
there is an element of G, having the same order.

Proof. We have already provided a proof of Theorem 4.12 in the case n =1
in Theorem 4.3 but the proof below applies to both cases n =1 and n = 2.

Suppose that b : L™ — L" is a homeomorphism of finite order. Then the
corresponding homeomorphism h from Corollary 4.10 must map the strata
of R(L™) to themselves. Furthermore if two points 7, s € Ry are such that
7, 1(s) is obtained from 7, !(r) by changing the signs on each coordinate
(so they are on opposite ends of a diagonal when n = 2) then the same
applies to their images. It follows that there is an element v € G,, such that
ou(7)|Ro = h|Ro.

Suppose that v has order I. We claim that h also has order [. By
Lemma 4.4, Lemma 4.6, Corollary 4.10 and Proposition 1.2 there is a closed,
unbounded subset of w; such that for each « in this set we have h(S,) = S,
and hmy 1po(Ri) C my 1po(RZ-) for each stratum R;. It suffices to show that
RS, is the identity. We firstly show that h!|0S,, is the identity.

The set S, N 7wy 'po(Ro) consists of isolated points, the ends of the
interval or the vertices of the square, so by choice of v, it follows that A’
fixes these points. Thus A is the identity on 95, for the case n = 1. For the
case n = 2, because h! sends 95, to itself, fixes the corners and is of finite
order, again it follows that h! is the identity on 9S,.
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Now consider h!|S,. Because it is the identity on the boundary and has
finite order, and S, is homeomorphic to the unit ball in R", it follows from
[2, Theorem I11 5.2] that h'|S,, is the identity. n

Example 4.13 It is not the case that the only homeomorphisms of L? of
finite order are the eight which possibly interchange the coordinates and pos-
sibly reverse the direction of one or both.

For example suppose that 6, : [—1,1] — [—1,1] is any isotopy of order-
preserving homeomorphisms with 6; the identity and define a homeomor-
phism ¢ : [1,3] x [=1,1] — [1,3] x [=1,1] by ¥(x,y) = (2,0,2_4(y)): then
1) moves each vertical segment within itself, is like 8y when z = 2 and is
the identity on the boundary. Let p : L? — L2 be the rotation defined by
p(z,y) = (y,—x). Now define the homeomorphism A : L2 — L2 as follows.

if (z,y) € L2~ [(1,3) x (—1,1)U(~1,1) x (1,3) U(-3, ~1) x (~1,1) U

(=1,1) x (=3,=1)] let h(z,y) = (y, —2);
o if (z,y) € [1,3] x [-1,1] let h(z,y) = p¥(x,y);
o if (z,y) € p([1,3] x [~1,1]) let h(z,y) = p*¢p’(2,y);

f (z,y) € p*([1,3] x [-1,1]) let h(z,y) = p*~1p?(z,y);
o if (z,y) € p*([1.3] x [=1,1]) let h(z,y) = ¢~ p(a,y).

Then h has order 4. If 0; is the identity for all ¢ then h = p, which just in-
terchanges the coordinate axes and then reverses the sign of one. Otherwise
this is certainly not the case for h. ]

Question 4.14 Can we somehow be more specific concerning the homeo-
morphisms of finite order?

For example are they all isotopic to a homeomorphism h of the form h(zy,...,z,) =
(£2r(1),- - » £27(y)), Where 7 is a permutation of {1,...,n}?

Question 4.15 Do Theorems 4.11 and 4.12 hold for all n?

We should be more specific with respect to Theorem 4.11: the intention of
the question is that the torsion in H(L" ) should be the same as that of G, ,,.
As the statement of Theorem 4.11 part 4 does not satisfy this condition, the
question includes the case where n = 4.
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Certainly large parts of the proofs are valid for the general case. The
generalisation of the proof of Theorem 4.12 breaks down at the point where
we show that h!|0S, is the identity because we cannot be sure that h sends
each i-face of S, to an i-face except for i = 0. We have been able to show
that for o in some closed, unbounded set there is a subset of each i-face
which has non-empty interior in the face and which is mapped by h to an
i-face but this does not appear to be sufficient to complete the proof.
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