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Abstract

In the context of topological manifolds we consider a number of new
topological properties involving covers of a space. Several of these con-
ditions are equivalent to metrisability for manifolds. The recently intro-
duced topological notion of property (a) is related to absolute countable
compactness and also to normality. We show that not all manifolds pos-
sess property (a), that a manifold is metrisable if it satisfies a stronger
version of property (a) and that all manifolds possess a weakened form of
property (a). We also consider near metaLindelofness and combine it with
linear Lindelofness to obtain the condition nearly linearly metaLindelof.

1 Introduction

Throughout this paper, when we use the term manifold we mean a locally
euclidean, connected, Hausdorff space.

Matveev, [6], introduced the following definitions (except [strongly] wa-
favourable and wpp) and showed how they are related to one another and
to paracompactness, see Proposition 2.1. In this section we investigate these
relationships in the context of topological manifolds.

Definition 1.1 A space X has property (a) (respectively, has property (wa),
“weak (a)”) provided that for every open cover U of X and every dense subset
D C X there is a subset F C D such that F is a closed and discrete (respectively,
is a discrete) subspace of X and st(F,U) = X.

Definition 1.2 A space X is a-favourable (respectively, is wa-favourable) pro-
vided that for every open cover U of X there is a winning strategy for the second
player in the following topological game: at the ath step the first player chooses
a dense subspace D, C X then the second player chooses a point x, € Dg;
the second player wins if for some o the set Fr, = {xg / f < a} is closed and
discrete (respectively, is discrete) in X and st(F,,U) = X.
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Definition 1.3 A space X is strongly a-favourable (respectively, is strongly wa-
favourable) provided that for every open cover U of X there is a winning strategy
for the first player in the following topological game: at the ath step the first
player chooses a non-empty open set O, C X then the second player chooses a
point x4 € O the first player wins if for some o the set Fo, = {xg | f < a} is
closed and discrete (respectively, is discrete) in X and st(Fo,U) = X.

Definition 1.4 A space X has property pp (respectively, has property wpp)
provided that every open cover U of X has an open refinement V consisting of
non-empty sets such that for every choice function f:V — X (ie f(V) €V for
each V € V) the set f(V) is closed and discrete (respectively, is discrete) in X.

The next two definitions are found in [4] and [1] respectively.

Definition 1.5 A space X is nearly metaLindelof if every open cover of X has
an open refinement which is point-countable at the points of some dense subset.

Definition 1.6 A space X is linearly Lindelof if every open cover of X which
is a chain has a countable subcover.

Combining these two we propose the following:

Definition 1.7 A space X is nearly linearly metaLindelof if every open cover
of X which is a chain has an open refinement which is point-countable at the
points of some dense subset.

In this paper we prove the following result

Theorem 1.8 (Main Theorem) Let M be a manifold. Then the following
are equivalent.

(i) M is metrisable;
(i1) M has property pp;
(iii) M has property wpp;

(i) every open cover of M has an open refinement V consisting of non-empty
sets such that for every choice function f:V — M the set (V) is closed
mn M;

(v) M is nearly metaLindelof;

(vi) there is a base B for the topology on M and a dense set D C M such that
for each x € D the family {B € B / x € B} is countable.

While we show that property (a) is strictly weaker than metrisability we exhibit
a manifold which does not have property (a). By way of contrast we find
that every manifold has property (wa); indeed, every manifold is strongly wa-
favourable.



2 Property (a) and related properties

The following result, with the exception of (b)=-(c), is discussed in [6]. We note
that every space with property pp is also T;.

Proposition 2.1 For any space X each of the following conditions implies the
next:

(a) X is paracompact and Th;

(b) X has property pp;

(c) X is strongly a-favourable;

(d) X is a-favourable;

(e) X has property (a).

Proof: We prove only (b)=-(c). Let U be any open cover of X and suppose that
V is an open refinement as in the definition of property pp. Index V by ordinals:
V = {V, / a < ¢} for some ordinal §, with V;, # Vs whenever a # 3. Then the
strategy of the first player should be to choose the set V,, at stage a. The second
player will then be forced to construct a partial choice function f, : V, — X,
where V, = {V3 / f < a}. As every extension of f, to a full choice function f
is such that f(V) is closed and discrete it follows that f,(V,) is also closed and
discrete. The game must stop at some stage as st(fs(Vs), V) = X; at this stage

the first player has won. [
Remark. We may insert the symbol w in each of conditions (b) to (e).
When k = Nj, the following proposition gives a partial converse to the

implication (a)=(b) of Proposition 2.1.

Proposition 2.2 Let k be any cardinal with k > 1. Suppose that X is a space
with property pp, with character at most k and having at most k many isolated
points. Then any open cover of X has an open refinement which is locally < k.

Proof: Let U be an open cover of X and let V be an open refinement as in the
definition of property pp. We firstly show that V is locally < k at non-isolated
points.

Suppose instead that z € X is a non-isolated point such that every neigh-
bourhood of 2 meets at least x many members of V. Let A, be a neighbourhood
basis at 2 of cardinality at most x. Then there is an injection g : N;; — V such
that g(N) N N # & for each N € N.

Let f:V — X be any choice function such that f(g(N)) € g(N)NN — {z}
if N e Ny and f(V) e V—{z} if V ¢ g(N;). The sets g(N) N N — {z} and
V — {z} are non-empty as x is not an isolated point. Then x ¢ f(V) but each
neighbourhood of x meets f(V). Thus f(V) — f(V) is non-empty so f(V) is not
even closed, giving a contradiction.

Now let

S ={x € X / each neighbourhood of = meets at least £ many members of V}.

By what we have just shown, S consists entirely of isolated points. Thus S
has cardinality at most s so there is a choice function f : V — X such that



S C f(V). As f(V) is closed and discrete, it follows that S is closed. Let
W={V-S/Veviu{{z}/xzeS}

Then W is an open refinement of & such that each point of X has a neighbour-
hood meeting fewer than x many members of W. =

We can now prove the equivalence of conditions (i) and (ii) in Theorem 1.8.
By [7, Theorem 2.5] and Proposition 2.1 it suffices to show that property pp
implies paracompactness for a manifold. If M has property pp then M has
no isolated points and is first countable, and hence by Proposition 2.2 M is
paracompact.

Remark. In the part of the proof of Proposition 2.2 dealing with non-isolated
points we did not use the full strength of property pp; we need only that the
image of the choice function should be closed. In fact by the following lemma
we could just as well replace the word “closed” by the word “discrete.” This
proves the equivalence of conditions (ii), (iii) and (iv) of Theorem 1.8.

Lemma 2.3 Suppose that M is a manifold. Then the following three conditions
are equivalent:

(a) M has property pp;

(b) every open cover of M has an open refinement V such that for every choice
function f:V — M the set f(V) is closed in M;

(c) every open cover of M has an open refinement V such that for every choice
function f:V — M the set f(V) is discrete in M.

Proof: It suffices to show that (b) and (c) are equivalent.

(b)=(c): Suppose that V is an open refinement as in (b) and f:V — M is a
choice function. If f(V) were not discrete then there would be z € f(V) such
that each neighbourhood of x meets f(V) in some point other than x. Define
a new choice function g : V — M by setting g(V) = f(V) whenever f(V) # x
and choosing g(V) € V — {z} whenever f(V) = z. Then g(V) cannot be closed
as xz € g(V) —g(V).

(¢)=-(b): Suppose that V is an open refinement as in (c) and f:V — M is a
choice function. If f(V) were not closed then there would be z € f(V) — f(V).
Choose some V, € V such that x € V,, and define a new choice function g : V —
M by setting g(V) = f(V) whenever V # V, and g(V,) = z. Then z € g(V)
but every neighbourhood of x meets g(V) in some point other than z so g(V) is
not discrete. (]

Example 2.4 The long line, L, is a non-metrisable manifold which is strongly
a-favourable.

Denote by A the set of limit ordinals of w;. Intervals are intended to be in L
rather than just w;. Let U be an open cover of L. Define f: A — w; by

f(A) =min{a € wy / AU € U such that (o, \] C U}.



As U is an open cover of L it follows that f(\) < A so by the Pressing Down
Lemma there is § € w; such that f~!(§) is uncountable. Then (§,w1) C
st(x,U) for any = > 4. Similarly there is v € L such that —y € w; and
(—w1,7) C st(x,U) for any © < . As [v,d] is compact there is a finite subfam-
ily {Uy,...,Up} C U which covers [, d].

The first player wins the game if the following strategy is followed. Let
Oy = (—w1,7), for i = 1,...,nlet O; = U;, and let Opqq1 = (d,wy). Tt is
claimed that at this stage the first player already wins. Indeed, suppose that
x; € O; foreach i =0,...,n+ 1 and let F,yo = {2; /i < n+2}. As a finite
subset of L, F,, 15 is both closed and discrete. Further, st(F,,42,U4) = L because
if z € L then z € O; for some 7 and hence z € st(z;,U). "

The following result should be compared with [5] where there is constructed
a Tychonoff space which does not have property (wa).

Theorem 2.5 Fvery manifold is strongly wa-favourable.

Proof: Let M be an n-manifold and let & be an open cover of M. We may
assume that each U € U is homeomorphic to R”.

Construct a sequence (Cy)a<s of open n-cells in M as follows. Cj is any
open n-cell in M. Now suppose given an ordinal o such that Cg has been
defined for each 8 < « such that each Cg is an open n-cell in M and if 8 #
then CgNCy = 2. If UgenCp = M then 0 = o and we end the construction.
If Us<aCp # M then we may choose an open n-cell C, C M —Ug<,Cs. There
is some ordinal § at which this construction stops. )

For each o < § pick a homeomorphism h,, : C,, — B™ (B™ being the ball of
radius 1 in euclidean space) and divide C, into an open cell A, = h;l(%é")
and concentric open annuli with
[+1 An l

——B") (lew—{0}).

Aay=h3'"(+—
= ha (s I+1

Of course the open sets A,; do not cover C, but the closure of their union
contains all of C. Choose open cells By ;m C Aq, (M € w) so that

o the sets By i (M € w) are mutually disjoint;
i m contains A, ;;
o diamh,(Ba,i,m) — 0 as m — o0;

o dist(ha(Ba,m), 535" 1) — 0 as m — oc.

For example we may choose a sequence of spheres in the annulus between the

spheres of radii —~ and fi—%, converging outwards to the latter sphere, then

subdivide each alr-li_riulus between consecutive members of the sequence into a
finite number of disjoint open cells, where the number of cells in such an annulus
increases as we approach the outer sphere.

For cach v < § and | € w let Uyy = {UN Ay, / U € U}. Then Uy,

is an open cover of the paracompact space A, ;. Let V,; be a locally finite



open refinement; we will assume that V., does not contain the empty set. Let
Weai = Vi U{Baim /| m € w}. Then W, is a locally finite collection of open
subsets of A, ;. Now let W =U{W,, / a < and | € w}.

Suppose that f: W — M is a choice function. Because each set A, ; is open
and the collection W, is locally finite and all of the sets in it lie in Ay, it
follows that f(W) is discrete. Moreover, st(f(W),U) = M. Indeed, if z € M
then there are three possibilities:

1. z € Ay, for some a < § and [ € w. In this case,

T € UVa,l = St(f(va,l); Va,l) C St(f(W),U)-

2. x € 0A,, for some o < 0 and [ € w; we avoid possible ambiguity for [ by
assuming that [ is so chosen that h,(z) is in the sphere of larger radius.
Choose U € U so that z € U. Then there is m € w so that Ba,,m C U, so

2 € st(f(Basm), {UY) C st(FOV), ).

3. x € M —Uy<esC,. Choose U € U so that x € U. Then there is a < ¢
so that U N C, # @. Because U and C,, are both homeomorphic to R™
and U contains points in C, as well as points not in C,, it follows that
there are also I,m € w so that Ba;m C U. Again we conclude that

x € st(f(W),U).

We can now describe a winning strategy for the first player in the game
defining strongly wa-favourable. Index the sets in W by ordinals, say W =
{W, / a < ~} for some 7, so that there is no repetition. When it is the first
player’s turn that player chooses the non-empty open set W,. Then the second
player, in choosing a point f(W,) € W, is constructing a partial choice function
for the collection W. As any complete choice function f : W — M is such that
f(W) is discrete and satisfies st(f(W),U) = M, it follows that at some stage
the first player wins. m

Example 2.6 A manifold which does not have property (a).

Let S = {(z,y) € R? / 2 # 0} with the usual topology from R?. Let M =
SU[{0} x R x (—1,1)]. For each y € R, each t € (—1,1) and each r > 0 let

n—y
&2+ (n—y)?

If in addition —1 <t—17r <t+r <1 then set

Wyer={En) €S /t—r< <t+rand ¢ <r}.

Wy = {0} x{y} X (t =t + 1)U Wy 10

Let D ={(z,y) € S / z,y € Q}. Let {E, / y € R —Q} list all subsets of D
which are closed and discrete in S.



Fory e R—Qlet L, = {(z,y) /  # 0}; then E,NL, = &. As E, and L, are
both closed subsets of S there is a neighbourhood of L,, which is disjoint from E,.
Using this neighbourhood we may construct a homeomorphism 6, : S — S and
a neighbourhood Vj, of L, so that 0, (E,)NV, = @ and V}, is bounded by straight
lines passing through (0,y): for example using [3, Lemma 2] we may choose two
continuous functions R — R one of whose graphs lies above L, and the other
below and such that all points between the graphs lie in the neighbourhood of
L, and then use these functions to construct 6, to be a function which moves
points parallel with the y-axis in such a way that points of the graphs move
to points on the lines bounding V,,. Extend 6, to a function éy : M — M by
letting éy(O, 7,t) = (0,n,1).

For y € Q define éy : M — M to be the identity function.

Topologise M by declaring U C M to be open if and only if U N S is open
in S and for each (0,y,t) € UN (M —S) there is r > 0 so that Qy’l(WyJ,r) cU.
If each of the functions éy were the identity then we would obtain the double
of the manifold with boundary constructed as [7, Example 3.6]. Thus M is a
2-manifold and we now show that it does not have property (a).

Clearly D is dense in M. For each y € R — Q choose 7, € (0,1) such that
Wyor, C Vy. Then éy_l(Wy,OM) is an open subset of M containing (0,y, 0).
Let

U=1{0,"Wyo,,) /y€R=QU{M —{(0,5,0) / y e R - Q}}.

Then U is an open cover of M. We show that whatever subset £ C D we choose,
if F is closed and discrete in M then we do not have st(E,U) = M. Indeed,
given any such £, there is y € R — Q such that £ = E,. The only member of
U containing (0,y,0) is é;l(Wyﬁ,ry) but as 0, (E) N\ Wy.0,,, C0,(E,)NV, =2
it follows that (0,y,0) ¢ st(E,U), hence st(E,U) # M. Thus M does not have
property (a). n

3 Near metaLindelofness and related properties

In this section we adopt the following notation: suppose that S is a family of
subsets of a set X and A C X. Denote the subfamily {S €S/ ANS # @} by
Sa. If A= {a}, a singleton, then we will abbreviate S4 to S,.

Lemma 3.1 Suppose that the topological space X has a base B and a dense set
D C X such that for each x € D the family B, is countable. Then X is nearly
metaLindelof.

Proof. Let U be an open cover of X. For each x € X choose U, € U and B, € B
such that x € B, C U,. Let V ={B, / © € X}. Then V is an open refinement
of U which is point-countable at the points of the dense subset D. [

Lemma 3.2 Suppose that the topological space X is locally hereditarily separa-
ble and nearly (linearly) metaLindeldf. Then X is (linearly) metaLindeldf.



Proof. Suppose that U is an open cover of X (which is a chain). Let V be an
open refinement of i/ and D C X a dense subset such that V is point countable
at each point of D. We show that V is point countable.

Let « € X be arbitrary. Choose a hereditarily separable open neighbourhood
O C X of z. Let E be a countable subset of D N O which is still dense in O.
Choose a function ¢ : V,, — F as follows: for each V € V, we have ENVNO # &;
let (V) = e for some e € ENV NO. Because V, is countable it follows that
¢ !(e) is countable for each e € E. Thus V, = ¢ !(E) is also countable, i.e. V
is point countable. [

The following theorem provides a stronger conclusion than that of [2, The-
orem 3.1] but requires stronger hypotheses. It also shows the equivalence of
conditions (i) and (vi) of Theorem 1.8.

Theorem 3.3 Let X be a connected, locally second countable, T3 space. Then
X is metrisable if and only if there is a base B for the topology on X and a
dense set D C X such that for each x € D the family B, is countable.

Proof. If X is metrisable then the condition regarding the basis follows from
the stronger condition of [2, theorem 3.1].

Conversely suppose that the basis condition holds. By Lemma 3.1, X is
nearly metaLindel6f. Then by Lemma 3.2, X is metaLindel6f. Now every
connected, locally second countable, metaLindelof space is second countable
and (by Urysohn’s metrisation theorem) every Ts second countable space is
metrisable. Thus X is metrisable. (]

We can now prove the equivalence of (i) and (v) of Theorem 1.8. The impli-
cation (i)=(v) follows from the fact that every metrisable space is paracompact,
hence (nearly) metalindel6f. The implication (v)=-(i) uses Lemma 3.2 to de-
duce that M is metalindelof and hence, as in the proof of Theorem 3.3, M is
metrisable.

From [1, Theorem 4.1] we conclude that a manifold is metrisable if and only
if it is linearly Lindel6f. This leads us to ask whether a manifold is metrisable if
and only if it is linearly metaLindel6f or even nearly linearly metalindel6f. In
fact Lemma 3.2 tells us that for a manifold the conditions linearly metal.indel6f
and nearly linearly metalindel6f are equivalent so we are really only asking one
question. It would appear that there are two ways one may try to attack this
question:

1. In proving that a manifold is metrisable if it is metaLindel6f the simplest
way seems to be to note firstly that every metaLindeldf, locally separable,
connected space is Lindelof (see Lemma 3.4 below) and then use Urysohn’s
Metrisation Theorem. It may be possible to construct a parallel proof
using some of the properties of a manifold to show that every linearly
metaLindelof manifold is linearly Lindelof and then appeal to [1, Theorem
4.1] to conclude that the manifold is then metrisable.

2. One may try to adapt the proof of [1, Theorem 4.1] from the linearly
Lindelof context to the linearly metaLindel6f context.



Added later: In the paper “Covering Properties and Metrisability of Manifolds
2” the author and M K Vamanamurthy have combined both of these approaches
to show that every linearly metalLindel6f manifold is metrisable.

Lemma 3.4 Every locally separable, connected, metaLindelof space is Lindeldf.

Proof. Suppose that X is a locally separable, connected, metaLindelof space
and let & be an open cover of X. By local separability we may find a collection
V of subsets of X such that each member of V is separable, the interiors of the
members of V cover X and each member of V lies in some member of /. Tt
suffices to find a countable subcollection of V which still covers X.

Let W be a point countable open cover of X which refines the cover by the
interiors of the members of V. Then there is an extending function £ : W — V
such that W C E(W) for each W € W. There is also a function D : V — P(X)
so that D(V) is a countable dense subset of V' for each V € V.

Fix ¢ € X and set Wy, = W,. Note that Wy is countable. With the
countable family W; having been defined, set V; = U{E(W) / W € W;} and
Wiv1 = UWpemw / W' € W;}. Note that Wi, is also countable because
each Wppg v is countable.

Set V, = Ujew Vi We show that V,, = X. Firstly V,, is open, for suppose
that z € V,,, say = € V;. Choose some W € W with x € W. As z € V] there is
W' e W; with z € E(W’). Then WNDE(W') # @ so W € W;;1 and hence
W C Viy1. Secondly V,, is closed for suppose that 2 € V,,. Choose W € W
with x € W. Again we can show that there is some i € w and W’ € W; such
that W N DE(W’) # & and hence z € V;1; C V.

As a non-empty open and closed set, V,, must be the whole of X. Thus X
is covered by the countable subfamily U;c,WV;. =

4 Conclusion

A number of questions arise from the results and conditions considered in this
paper.

Question 4.1 Is the hypothesis that X has at most Kk many isolated points
needed in Proposition 2.29

Question 4.2 Is there an example of a manifold which is a-favourable but not
strongly a-favourable?

Question 4.3 Is there an example of a manifold which has property (a) but is
not a-favourable?

Question 4.4 Must every (nearly) linearly metaLindeldf manifold be metris-
able?

Added later: As noted above, just before Lemma 3.4, the answer to this question
is “yes.”



References

1]

2]

A V Arhangel’skii and R Z Buzyakova, On some properties of linearly Lin-
delof spaces, preprint.

D L Fearnley, Metrisation of Moore Spaces and Abstract Topological Man-
ifolds, Bull. Austral. Math. Soc., 56(1997), 395-401.

David Gauld, The graph topology for function spaces, Indian Journal of
Mathematics, 18(1976), 125-132.

E. Grabner, G. Grabner and J. E. Vaughan, Nearly metacompact spaces,
preprint.

Winfried Just, Mikhail V Matveev and Paul J Szeptycki, Some Results on
Property (a), (preprint).

M V Matveev, Some Questions on Property (a), Q & A in General Topology,
15(1997), 103-111.

Peter Nyikos, The Theory of Nonmetrizable Manifolds, in K Kunen and
J Vaughan, eds, “Handbook of Set-Theoretic Topology” (Elsevier, 1984),
634-684.

gauld@math.auckland.ac.nz

The Department of Mathematics
The University of Auckland
Private Bag 92019

Auckland

New Zealand.

10



