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Abstract

After showing that the topological notion of boundedly metacompact (first
named finitistic) is equivalent to metrisability for a topological manifold we
then study related notions. In particular we study the star order of covers of
a space. This leads us to propose a definition of dimension which we call star
covering dimension.

1 Introduction

Motivated by the definition of local covering dimension (see, for example, [8, p.188]),
Swan in [9] introduced the property of a topological space being finitistic. This con-
cept was introduced to help extend the classical P A Smith theorems to a more
general setting. The importance of this concept is illustrated by its frequent appear-
ance in the cohomological theory of transformation groups, see [1], for example. The
concept was taken up by Fletcher, McCoy and Slover, [4], who (apparently unaware
of its appearance a decade earlier) renamed it boundedly metacompact. The precise
definition is as follows:

Definition 1.1 A space X is boundedly metacompact or finitistic provided that
for every open cover U of X there is an open refinement V and a positive integer
m such that for each x € X the set V, has cardinality at most m.

In this definition and elsewhere in this paper we use the following notation. Let F
be a family of subsets of a set X and let A C X. Then

Fa={FeF | ANF # z}.

In the case where A = {a} we abbreviate Fr,, to F.
The following property was also introduced in [4].
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Definition 1.2 We say that a space X s boundedly paracompact provided that
for every open cover U of X there is an open refinement ¥V and a positive integer m
such that for each x € X there is a neighbourhood N of x such that the set Vn has
cardinality at most m.

In this paper we introduce a third, even stronger, property and study all three.

Definition 1.3 We say that a space X is boundedly strongly paracompact provided
that for every open cover U of X there is an open refinement V and a positive integer
m such that for each V€V the set Vy has cardinality at most m.

Given an open cover V of the space X, we will call the supremum of the cardinalities
of the sets Vy the star order of V.

Recall [2] that a space X is strongly paracompact or hypocompact if every open cover
of X has a star finite open refinement. Recall also from [2, Example 6.2(ii), p 390]
that there are metrisable spaces which are not strongly paracompact.

We first show that for a Hausdorff space the combination of boundedly metacom-
pact and paracompact implies boundedly paracompact. The main result of the early
part of the paper is that for a topological manifold all three conditions, boundedly
metacompact, boundedly paracompact and boundedly strongly paracompact, are
equivalent to one another and to metrisability. As the property boundedly strongly
paracompact appears not to have been studied before we then look at it, particularly
at the minimum star order for a refinement of an arbitrary open cover. It may be
possible to define a notion of dimension in terms of the star order and we explore
this briefly.

2 Preliminary Results

In the definitions we allowed the integer m to depend on the open cover U. One might
ask whether the definitions are equivalent to those obtained by demanding that m
not depend on Y. In general the answer is “no”, as shown by the following example.
However for a (metrisable!) manifold the integer m can be chosen independently of
the open cover U, as seen in the proof of Theorem 3.3.

Example 2.1 A boundedly metacompact space X in which the bound m in the def-
inition depends on the original open cover U.

For each positive integer n let X,, be a topological space which is homeomorphic to
the unit n-sphere and chosen so that if m # n then X,, N X,, = @. Let X denote the
one-point compactification of the topological sum of the spaces X,,; denote by oc € X
the point added to form the compactification. Then X is boundedly metacompact
(indeed, boundedly paracompact by Theorem 2.2) but it is not possible to choose the
integer m of the definition independently of the open cover . That X is boundedly
metacompact may be proved as follows: let U be any open cover of X and choose
some U € U,, containing the point co. Then X — Uy, is compact so Uy, contains
all but finitely many of the subsets X,,. Set m = max{n / X,, ¢ Ux} + 1. For each



n < m we have dim X,, = n so there is a refinement V,, of {UNX,, / U € U} such
that for each = € X, the set {V € V,, / « € V} has at most n + 1 members. Let

V = (UpnemVn) U{Usxo — UpemXn}

Then V is an open refinement of & and for each z € X the family {V €V /x € V}
has at most m members. Note, however, that m must depend on U/ as we may arrange
for U to contain exactly one member Us, containing oo such that max{n / X, ¢ U}
is arbitrarily large. m

Theorem 2.2 A Hausdorff space is boundedly paracompact if and only if it is both
boundedly metacompact and paracompact.

Proof: It is clear that a boundedly paracompact space is both boundedly metacom-
pact and paracompact.

Suppose that X is a boundedly metacompact, paracompact, Hausdorff space and
let U be an open cover of X. Because X is boundedly metacompact there is an open
refinement V of U and an integer m such that for each x € X the family V, has
cardinality at most m. We note in passing that the proof is complete if every point
of X lies in exactly m members of V because then given z € X there are m + 1
members {Vp,...,V,,} of V containing z and the open neighbourhood N/, V; of z
cannot meet any other members of V.

As X is paracompact, the open cover V has a locally finite open refinement W
and there is a bijection ¢ : ¥V — W such that for each V € V we have (V) C V.

Every paracompact Hausdorff space is normal and a space is normal if and only
if every point finite open cover has an open shrinkage. Thus there is an open cover
S of X and a bijection ¢ : YW — S such that for each W € W we have (W) C W.
We show that for each x € X there is a neighbourhood N, of x such that the set
{§ €S8/ N,;NS # &} has cardinality at most m.

Suppose given z € X. Let {V1,...,V;} denote those members of V which contain
x. Set

l
Ne = (V)N (X = U{gp(V) / V eV = {Vi,... . VilD),
Then

1. z € N,. Certainly x € V; for each i and if V € V but V' # V; for any ¢ then
z ¢V so

reX-VCX—pV)CX—vpV).

2. N, is open. Because {¢(V) / V € V —{W1,...,V;}} is locally finite, so is

closed and hence its complement is open.

3. The cardinality of {S € § / N, NS} is at most m. Indeed the only members
of § meeting N, are some or all of Yp(V1),...,1Ye(V)).

This completes the proof that X is boundedly paracompact. m



Proposition 2.3 Let X be a Hausdorff boundedly paracompact space. Then X has
finite covering dimension if and only if the integer m in the definition of boundedly
paracompact can be chosen independently of the cover U.

Proof: Suppose that X has finite covering dimension, say n. As X is paracompact,
the following are equivalent (cf [3]):

e every finite open cover of X has an open refinement of order < k;
e every open cover of X has an open refinement of order < k.

Since X has covering dimension n, every finite open cover, and hence by Dowker’s
result every open cover, has an open refinement of order < n. Conversely, if X has
infinite covering dimension then for each integer n there is an open cover U of X
such that each open refinement V of U has order at least n. Thus in this case the
number in the definition of boundedly paracompact depends on the open cover . m

Lemma 2.4 Suppose that X is a o-compact, locally compact, Ty space. Then there
s a proper continuous function f: X — R.

Proof. As X is o-compact, we may write X = U,c,X,, where each X, is compact.
Moreover, because X is locally compact we may assume that X, C )O(n+1 for each
n. Let D denote the non-negative dyadic rational numbers. By induction on the
exponent of 2 in the denominator of each member of D we construct compacta
X, (p € D) such that X, C )ﬂ(q whenever p < ¢ as follows. X, has already been
defined when the exponent of 2 is 0, such numbers being the non-negative integers.
Suppose that p € D has exponent n > 0: then there are ¢, € D such that the
exponents of 2 in the denominators of ¢ and r are both less than n and ¢ is the
largest such rational less than p while r is the smallest such greater than p. As
X, C )oi} and X, is compact while X is locally compact and Ty, we can cover X,
by finitely many open, relatively compact subsets of X whose closures all lie in
)2;: let X, be the union of the closures of these sets. Then X, is compact and
X, C X, C X, C X,

Now define f: X — R by f(z) =inf{p e D / z € X,,}. It is standard to verify
that f is continuous; see, for example, [6, p. 210]. It is also readily verified that f
is proper. n

Any open cover of a compact metric space has a corresponding Lebesgue number,
but usually for non-compact metric spaces such numbers do not exist. We will find
the following lemma a useful compensation for this lack.

Lemma 2.5 Let U be an open cover of R™. Then there is a homeomorphism h :
R™ — R" such that the cover h(U) has Lebesgue number 1.

Proof. We use the metric on R” induced by the norm
|(z1,...,20n)| = maz{|z;| /i=1,...,n}.

Let B"™ denote the closed unit ball in R” and S"~! its boundary.



For each positive integer k let £ > 0 be a Lebesgue number for {UNkB" / U €
U}; we may assume that the e have been chosen so that % > €, > €xy1- Define the
homeomorphism A : R® — R"™ by letting h|kS"~! be division by the scalar ;11 and
extending linearly on each line segment which joins a point of kS"~! to a point of
(k+1)S™~! and which lies on a ray emanating from the origin. Then on the annulus
between (k — 1)S™™! and kS"~! the homeomorphism h magnifies by a factor of at

least Kl-ﬁ-l

Set h(U) ={h(U) / U € U}. Then h(U) is an open cover of R™. Moreover h(U)
has a Lebesgue number of at least 1. Indeed, suppose that z € kB™ — (k — 1)B".
Then either the ei-ball centred at z lies in kB™ — (k — 2)B"™ or the ex1-ball centred
at = lies in (kK + 1)B™ — (k — 1)B™ and in either case the ball lies in some member,
say U, of U. In the first case h magnifies by a factor of at least i and hence the
1-ball centred at h(z) lies inside h(U). In the second case h magnifies by a factor
of at least ﬁ and hence again the 1-ball centred at h(x) lies inside hA(U). Thus

h(U) has a Lebesgue number of at least 1. n

3 Boundedly Metacompact Manifolds and Metrisability

Where we use the term manifold we mean a connected, Hausdorff, locally euclidean,
topological space.
An improved version of the following result is proved later as Proposition 4.7.

Lemma 3.1 Fach open cover U of R™ has an open refinement V such that for each
V €V the family Vy contains at most 3™ members.

Proof: Suppose that U is an open cover of R". By Lemma 2.5 there is a homeomor-
phism A : R™ — R"™ such that h(U) has a Lebesgue number of at least 1.

Let V' consist of all open 1-balls in R™ whose centres lie at points having integer
coordinates. Then V' is an open refinement of h(U) and each member of V' meets
m members of V. Let V = {h='(V) / V € V}. Then V is an open refinement of U
and each member of V meets m members of V. n

Corollary 3.2 Suppose that C C R" is closed. Then every open cover of C' has an
open refinement whose star order is at most 3".

We now present the main result of this section.

Theorem 3.3 Let M be a manifold. Then the following conditions are equivalent:
(1) M is metrisable;

(2) M is boundedly metacompact;

(3) M is boundedly paracompact;

(4) M is boundedly strongly paracompact.

Proof: (1)=-(4). Suppose that M is metrisable and has dimension n. Then by
[5, Theorem 2|, M is o-compact and separable. As a separable metric space of



covering dimension n, M embeds in R?**! (by [8, Proposition 7.3.9, p. 271]); say
e/ : M — R?"t! is an embedding. Let f : M — R be a proper continuous function,
as given by Lemma 2.4. Define e : M — R?"+2 by setting e(x) = (¢/(x), f(x)). Then
e is also an embedding. Moreover, e(M) is closed.

Let U be any open cover of M. Then e(d) = {e(U) / U € U} is an open cover of
e(M). By Corollary 3.2, it follows that there is an open refinement V' of e(U) such
that the star order of each member of V' is at most 32"*2. Let V = {e7 (V) / V €
V'}. Then V is an open refinement of & and the star order of each member of V is
also at most 3212,

(4)=>(3). Trivial.

(3)=(2). Trivial.

(2)=(1). Every boundedly metacompact space is metacompact and hence
metrisable if it is a manifold, by Theorem 2.5 of [7] (see also [5, Theorem 2]). "
Remark. The implications above do not need the full force of the properties of a
manifold. It may be shown that every metaLindel6f space (hence every boundedly
metacompact space) which is connected and locally separable is Lindel6f and that
every Lindelof space which is T3 is metrisable. Every metrisable space is paracom-
pact. Thus the implications (2)=-(1) and (2)=-(3) require only that M be connected,
locally separable and Ts. The implication (1)=-(2) requires that M has local cover-
ing dimension at most n for some n. The implication (1)=-(4) requires more as we
use the fact that if M is metrisable then it is both separable and o-compact.

4 The Minimum Star Order of Covers

In this section we assume that all spaces are boundedly strongly paracompact and
explore the minimum value of the star order for refinements of arbitrary open covers.

Definition 4.1 Say that a topological space has star order at most n provided that
every open cover has an open refinement whose star order is at most n. The smallest
integer n for which a space has star order at most n is the star order of the space.
Denote the star order of a space X by stor(X).

Proposition 4.2 Let C C X be a closed subset of a topological space. Then
stor(C') <stor(X).

Proof: Straightforward. =
We recall the following definition from [8, p 24].

Definition 4.3 Let {Ay / A € A} and {By / X\ € A} be two families of subsets of a
topological space X. We say that the two families are similar if for each finite subset
F C A we have

MrxerAx # @ <= MrerBy # 2.

Note that for any two similar families {Ay / A € A} and {B) / A € A} the order
of the star of A, is the same as the order of the star B),. This is because for any
A #£ Mg we have A)\OQA)\#Q@B/\ODB/\#Q.

The following result is found in [8, p 24].



Proposition 4.4 Let {Uy / A € A} be a locally finite family of open subsets of a
normal space X and {Fy / X € A} be a family of closed subsets of X such that
Fy C Uy for each A € A. Then there is a family {Gx / X\ € A} of open subsets of X
such that

FCG)yC G,\ c Uy

and the families {F\ / X € A} and {G / X € A} are similar.

Proposition 4.5 Let X be a paracompact Hausdorff space. Then for any integer
s > 0 the following conditions are equivalent:

(a) Every open cover of X has an open refinement of star order < s.

(b) Every open cover of X has a closed refinement of star order < s.

Proof. (a)=-(b): Let U be an open cover of X. By (a) there is an open refinement
V ={V\ / A € A} of U having star order at most s. In particular V is locally finite.
Thus, as X is normal, we can shrink V to an open cover W = {W, / A € A} such
that for each A\ we have Wy C Wy C Vi. Then {Wy / A € A} is a closed refinement
of U of star order at most s.

(b)=-(a): Suppose that U is an open cover of X. Since X is paracompact,
there is a locally finite open refinement V = {V) / A € A} of . By (b) there is a
closed refinement {F,, / p € M} of V having star order at most s. For each p we
choose V), such that F,, C V,,. Then {V,, / p € M} is again a locally finite open
cover of X. Hence by Proposition 4.4 there is an open cover {G,, / p € M} of X
such that for each u we have

F,cG,cG,CV,

and the families {F},} and {G,,} are similar. Thus the families {F,,} and {G,} are
also similar and hence {G,} has star order at most s. Of course {G,} is an open
refinement of U. n

Lemma 4.6 Suppose that the space X has star order n. Then every subset of X
has star order at most n if and only if every open subset of X has star order at most
n.

Proof. Suppose that every open subset of X has star order at most n and suppose
that S C X is any subset. Let U/ be a cover of S by open subsets of the subspace S.
Then there is a collection U of open subsets of X such that U = {UNnS/UEe Z/?}
Let S = UU. Then U is an open cover of the open subset S so there is an open
refinement V of star order at most n. The open refinement V = {V NS / V € V} of
U has star order at most n. ]

The following result improves on Lemma 3.1.

Proposition 4.7 R"™ has star order is at most 2”1 — 1.



Proof: As before, we use the metric 6 on R" defined by

0(z1y---yxn), (Y1, -y Yn)) =max{|z;i —yi| /i=1,...,n}.

For each n we construct a lattice A,, of points in R™ as follows. Firstly by induction
we construct a family of sets A, C Z". Let Ay = {0}. If A;, has been constructed
then let A, 41 be the union of the two sets

{(2z1,..., 220, 2,) / (x1,...,2,) € Ay} and

{(2x1,...,2xn,1,2xn—|—2”+1,xn +2") ) (z1,...,2n) € /~\n}

It is easily shown by induction on n that the ith coordinate of any point of A, is
at least 0 and less than 2"*! (less than 2" if i = n) and is an integer multiple of
2nt+1=i Now set

Ay = {(z14Y1,- s Zptyn) € R™ / (z;) € A, and y; € 2"M1Z if i < n and y,, € 2"Z}.
We prove the following two facts:

(1) For each y € R™ there is € A, such that 6(z,y) < 2"~1;

(2) For each x € A, there are exactly 2"t —1 points y € A,, such that 6(z,y) < 2™.

Statement (1) is proved by induction on n, it being obvious when n = 1. Suppose
that statement (1) is true for n and let y = (y1,...,yns1) € R*. By inductive
hypothesis there is (z1/2,...,2,/2) € A, such that

0((x1/2, ..y xn/2),(Y1/2y ..., yn/2)) < 2"~1 hence 0((x1y.vvyxn)s (Y1ye vy yn)) < 2™

Now choose an even integer x,,4+1 within 2" of y,41 so that (z1,...,2,41) € Apt1;
this can be done by the definition of A, 1. Then 6((z1,...,Zp+1), WY1,y Ynt1)) <
2" as required.

Now consider statement (2). Because of the lattice structure, it suffices to show
the result when z = (0,...,0) = 0, say. The only translates of (0,...,0) within
2" of 0 are (0,...,£2") and 0 itself, a total of 3 points. The last coordinate of
each point of A, — {0} differs from 0 by more than 0 but less than 2", so may
be decreased by 2" and still remain within 2" of 0. Of the other coordinates of a
point of A, — {0}, exactly one is 2", the others being strictly between —2" and 2"
or strictly between 2" and 2"*!; thus there is only one value for all of the other
coordinates except that which is 2 and for the latter there are two possible values:
42", Thus for each point of A, — {0} there are two coordinates which may be given
two different values while ensuring that the point is within 2" of 0 while all of the
other coordinates have a unique such value, giving a total of 4 different points of A,
which are translates of points of A,, — {0} and are at most 2" from 0. As there are
271 — 1 points in A,, — {0}, it follows that the number of points of A,, within 2" of
0is 3+4(2"" 1 —1) =27+t 1.

Consider the collection of open balls centred at points of A,, and of radii 27~ +1.
By statement (1) these balls cover R™ and by statement (2) each ball meets exactly



2"+1 1 members of the collection. By applying the contraction  +— x/2" we obtain
a new cover of R™ by a regular collection of open balls each of which has radius less
than 1 so that it is still the case that the collection covers R™ and each ball meets
exactly 2"t — 1 members of the collection.

Now suppose given an open cover U of R"™ and let the homeomorphism A : R" —
R™ be as given by Lemma 2.5. Let V' consist of all open balls in R™ of radii less
than 1, covering R” and with star order 2" — 1 as in the first part of the proof.
Then V' is an open refinement of h(U). Let V = {h=1(V) / V € V}. Then V is an
open refinement of & and V has star order 2! — 1. m

Proposition 4.8 R has star order 3.

Proof: By Lemma 3.1 we know that the star order of R is at most 3, so it suffices
to show that there is an open cover U of R all of whose open refinements have star
order at least 3.

Consider the open cover U = {(n,n+2) / n € Z} and let V be any open
refinement of Y. Clearly V has infinitely many members.

Suppose there is some non-empty member of V, say Vi, which meets no other
member of V. Set Vo =U{V €V / V # Vi}. Then {Vi, V,} is a disconnection of R,
giving a contradiction. Thus every member of V meets at least one other member
of V.

Let V1, V5 € V be such that Vi NV, £ @. Since V is a refinement of U it follows
that V3 UV, # R. If no other member of V meets ViUV then Vs =U{V €V / V] #
V # Va} will produce a disconnection {V; U Vo, V3} of R, giving a contradiction.
Thus there is some member V3 € V such that V3 N (V4 U Va) # @. Thus V3 meets
either V7 or V5, so that either V7 or Vo meets at least 3 members of V. Hence V has
star order at least 3. m

Corollary 4.9 The star order of any non-trivial interval in R or in S! is 3.

Proposition 4.10 A subset X of R or of S' has star order 3 if and only if X
contains a non-trivial interval. If X # @ contains no non-trivial interval then X
has star order 1.

Proof. If X contains a non-trivial interval then by Corollary 4.9 X has star order
at least 3 and hence exactly 3 by Proposition 4.8.

Conversely, suppose that X contains no non-trivial interval and let & be any
open cover of X. Then as X has covering dimension 0 it follows that ¢/ has an open
refinement V such that for each x € X there is a unique member of V containing x.
Thus V has star order 1. "

Proposition 4.11 Let G be a finite graph. Then either G may be embedded in S*
or G has star order 4.

Proof: Suppose that G may not. be embedded in S'.
Case (1). G has exactly one vertex of valency more than 2 and that vertex has
valency 3. Write G = AU BUC, where AN BN C = {0} is the common vertex and



each of A, B and C' is connected. As each of A, B and C' is homeomorphic to [0,1]
it follows that we may transfer the linear order from [0,1] to each of A, B and C' in
such a way that the common vertex 0 is the least member of each of A, B and C.

It is clear that the star order of G is at most 4, because we can cover 0 by a
small open set and then the remainders of each of A, B and C' may be covered by
three series of open sets, each series lying in just one of A, B and C' with the order
of the star of each member of each series at most 3: the star order of this open cover
will be 4 as the order of the star of the set containing 0 is 4.

Now let Uy be an open subset of G containing 0 and three short open intervals
projecting from 0, one into each of A, B and C. Then U = {Uy, A— {0}, B—{0},C —
{0}} is an open cover of G. Let V be an open refinement of U: we will show that V
has star order at least 4. Pick any V € V containing 0 and let ay € A, by € B and
¢o € C maximal with respect to the conditions ag, by, co € V. If ag, by and ¢g lie in
different members of V then Vj has star order at least 4 and we are finished. On the
other hand if at least two of ag, by and ¢y lie in the same member of V then we may
assume without loss of generality that there is Vi € V with ag,by € V1. Let a1 € A
and by € B be maximal with respect to the conditions a1,b; € V;. Again either ay
and b; are in different members of V, in which case the order of the star of V7 is
at least 4, or they lie in the same member, V5 € V. Continuing in this way, either
we reach a stage where a set V,, € V meets V,,_1, itself and two other members of
V, so the order of its star is at least 4, or else we obtain such sets V,, and points
an, b, € V,, for every positive integer n. In the latter case the sequence (a,,) must
converge, say to a € A, and any member of V containing a must meet all but finitely
many of the sets Vj,, so again the star order of V is at least 4.

Case (2). G has exactly one vertex of valency more than 2. Then we may write
G = U, A;, where each A; is an arm of G and the vertex, 0, of higher valency n is
the only point common to any two, hence all, of the sets A;.

As U3_; A; C G is of the form of the graph G in Case (1), it follows from Case (1)
and Proposition 4.2 that G has star order at least 4. We prove the reverse inequality
by induction on n, Case (1) having started the induction at n = 3.

Let U be any open cover of G: we must show that there is an open refinement
of U whose star order is at most 4. Choose any Uy € U containing 0. As in case
(1) we linearly order each A; so that 0 is the least member of each A;. For each
1 =1,...,n, use the order on A; to choose a sequence of open intervals (Ii,j>?;0 in
A; so that:

(1) {Li1,...Lin,} covers A;;
(2) each of the intervals is a subset of some member of U;
(3) if j < then I, ; C Up;
(4) I;j N1, # @ if and only if [j — k| < 1.
Now set V = {UL;L;; / j = 1,....n} U{L;; / j > i}. By (1), (2) and (3), V is

an open refinement of U. By (4), the star order of V is at most 4, sets of the form

10



Ui i 1i.j for 1 < j < n being those which meet the largest number of members of
V, and the only members of V that such sets meet are the four sets U  I; ;. (for
k= ] - 1vjvj + 1) and Ij+1:]"

Case (3) General case. Again we need only show that the star order is at most 4.
Let U be an open cover of G. Firstly take an open refinement of U so that each
multi-valent vertex of GG is covered by a single member of the refinement and no
two of these intersect. Then apply Case (2) to each vertex of G to get a refinement
of U restricted to a neighbourhood of each vertex so that the star order is at most
4. Now fill in between each vertex by a refinement of order at most 3 to get the
required open refinement V of star order at most 4. n

Corollary 4.12 R? has star order at least 4.

Example 4.13 There is a compact, connected and locally path connected space X
having star order 2" — 1 and an open cover U such that every open refinement V
of U having star order 2" — 1 contains disconnected members.

Indeed, let X be the graph consisting of the 6 vertices 0,1, ...,5 and the 5 edges
joining 0 to each of 1,...,5, and let U consist of the following 6 open subsets of X:
each of the 5 edges with 0 deleted and X — {1,...,5}. Then from Proposition 4.11,
X has star order 4, so U has open refinements of star order at most 4: let V be such a
refinement and suppose that each member of V is connected. For each m =1,...,5
let m denote the first point on the edge from 0 to m for which there is no member
of V containing both 0 and m. Then there are distinct members V,, € V so that
m € Vi,. Choose V' € V containing [0, 1). We consider several cases.

1. V contains at least four of the intervals of the form [0,7). This is impossible
as then V meets at least four other members of V, viz at least four of the sets
Vin.

2. V contains three of the intervals of the form [0, ). This is impossible as then
there must be at least one other member, say V', of V containing 0 and then
V meets at least four other members of V, viz V'’ and three of the sets V},.

3. V contains two of the intervals of the form [0,/m). This is impossible as then
by case 2 there must be at least two other members, say V' and V", of V
containing 0 and again V meets at least four other members of V, viz V', V”
and two of the sets V,.

4. V contains no other interval of the form [0,m). This is impossible as then by
case 3 there must be five distinct members of V containing 0.

As each of the exhaustive cases is impossible, we conclude that not all members of
V can be connected. -

We observe that if each vertex of the graph G has valency at most 4 then it is
possible to find arbitrarily fine open covers of G whose star order is at most four
and whose members are all connected.
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Proposition 4.14 Let Y C T = [0,1] be a 0-dimensional subset with Y ¢ {0,1}
and set

X={0,9)eR?/ycDu{(z,y) cR?* /zcTandyc Y}
with the subspace topology. Then X has star order 4.

Proof: Choose any y € Y — {0,1}. Then by Proposition 4.11 the closed subset
{0} x TUT x {g} of X has star order 4, so by Proposition 4.2 the star order of X is
at least 4.

For the converse, suppose that I/ is an open cover of X. Then there is a partition
0=ty <...<tp=1)of Tand € > 0 such that for each i there is U € U such that
[0,e] x [ti— 1,ti]) NX C U. Because Y is 0-dimensional we may assume that each
i € I =Y except possibly when i =0 or n.

For each y € Y the set I x {y} is compact so there is an open interval J, C I
and a finite partition of [e,1] such that y € J, and for each elementary subinterval
I determined by the partition there is U € U such that (I x J,)NX C U. We
may also assume that J, C [t;_i,t;] for some i. Because Y is O-dimensional, it
follows that the open cover {J, / y € Y} of Y has an open refinement, 7, of order
0. Each member of J is the intersection of an open subset of R with Y, hence a
disjoint union of sets of the form JNY, where J is an interval: thus we may assuine
that each member of J is of this form. Because Y is Lindelof it follows that 7 is
countable, say J = {J,, / n € w}. Each J, extends to an open interval J, CIso
that J, NY = J,. We may assume that .J,,, N.J, # @ for m # n, for if this is not the
case then because we cannot have J,, N J, NY #+ @, we may inductively cut down
the ends of J, (and J,) so as to avoid Jm for m < n. Note that the end points of
each J, cannot be in Y — {0, 1}, and we may assume that ¢ is an end point of J;
for i € {0,1} NY. Thus we have a countable open cover, 7 ={J, / n € w}, of Y
satisfying the following:

(
(
ti

1. each set J, is of the form J, NY, where J,, is an open interval in I;

2. for i = 0,1 we have that ¢ is an end point of J; if ¢ € Y and no other point of
Y is an end point of a set J,,;

3. if m # n then jmﬂjnzg;
4. for each n € w there is i = 1,..., k such that J,, C [t;—1,;];

5. for each n € w there is a partition of [, 1] such that for each elementary
subinterval I determined by the partition there is U € U such that (I x J,,) N
XcCcU.

Let (a;) enumerate the end points of the intervals {J, / n € w}. In what follows,
whenever we have an interval of the form (a,b) it is, of course, an open interval in
I, but if either a = 0 or b = 1 then we will assume that the interval contains that
point. Similarly the interior of any interval will be taken as the interior in I, so if
the interval contains 0 or 1 then so does its interior.
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Construct a countable collection, 7, of tiles covering X as follows. 7 contains
all sets of either of the following forms:

S % [tict,ts] — [0, %J x {tii1,t;} and [S

[0, S
3 32

| x (tim1,ti)-
We add further tiles inductively on n € w. For each i reorder

(a; / j <n}yuU{ti1,t;i}) N [ti1,t]

so as to form a partition of [t;_1,;]: suppose that J is an elementary subinterval of
this partition. If J = J,, for some m and J is also an elementary subinterval from a
partition for a smaller n then ignore J; otherwise if J = J,,, for some m add to 7 a

tile of the form [(24;12)5’ g] x J; if J is not of the form J,, for any m add a tile of the
form [%, %] x J. Finally, for any n € w let I be an elementary subinterval

determined by the partition of [, 1] referred to in condition 5 above of the cover J:
add a tile of the form I x J,.

TN
..... -l ‘l -
:;":l' S
ti1 || |1
€ £ 2e 3€ me
3 2 3 4 m+1 €
Note that any tile from 7 meets at most 3 other tiles from 7 so the star order
of 7 is at most 4. Thus by Proposition 4.5, X has star order at most 4. n

Remark. In the quest for a subset of the plane of star order greater than 4 we
may ask whether adding to X the reflection of the space X of Proposition 4.14 in
the y-axis will increase its star order as it seems superficially that each tile (except
those at the ends) containing part of {0} x I will meet 4 other tiles, viz one above,
one below and one to either side. However the two tiles to either side may each be
split in half vertically and then the two pieces nearest the y-axis combined to give a,
disconnected member of the open cover 7.
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Another superficially apparent way of obtaining a subset of the plane of star
order greater than 4, but which also fails, is as follows. Take two complementary
subsets of R each of dimension 0, for example the rationals Q and irrationals P, and
let

X=({0}xDHu(Ix(InQ))uU(x ([-1,0]nP)).

Using the same procedure as in Proposition 4.14 and the previous paragraph, we
choose tiles covering {0} x I as before with ¢; € Q but replace their former common
boundary [—%,0] x {t;} by a straight line segment which runs from (0,#;) to a point
(—5.t;), where t; € P is near ¢; (except that ¢; = ¢; when t; = 0 or 1). Here “near”
is intended to mean that the resulting tiles still lie in some member of &/. Then the
construction of tiles to the left of the y-axis uses the partition determined by the

numbers ¢, while that to the right uses the partition determined by the numbers ¢;.

5 Conclusion

By analogy with covering dimension we may try to define a notion of dimension based
on star order. More precisely for a boundedly strongly paracompact space X define
the star covering dimension of X to be some appropriately chosen monotonically
increasing function of the star order of X. Preferably the function would be chosen
so that it gives R™ a star covering dimension of n. If the answer to Question 2
below is ‘yes’ we could declare that if the star order of X is p then the star covering
dimension of X is loga(p + 1) — 1. Whatever the case, from Proposition 4.11, star
order/dimension does give a way of discriminating between certain classes of graphs.

Question 1 Does the star analogue of Theorem 2.2 hold, ie is it true that a space
(maybe Hausdorff) is boundedly strongly paracompact if and only if it is both bound-
edly metacompact and strongly paracompact?

Question 2 Is the star order of R" exactly 2"+ — 17
Question 3 Is the star order of every subspace of R™ at most 2"+ — 12

Comment

From Propositions 4.2 and 4.7 we note that if C' C R" is closed then the star order
of C'is at most 2”71 — 1. It may be possible to answer this question in general by use
of Lemma 4.6 to reduce to the open case and then imitate the proof of Proposition
4.7.

Question 4 Do metrisable n-manifolds have star order 2"+t — 17

Comment
Of course the answer is ‘no’ for non-metrisable manifolds, the long line being an
example of a 1-manifold with infinite star order.

Question 5 In our tentative definition of star covering dimension we began with
an arbitrary open cover of X. Is it true, as in the case of covering dimension, that
it suffices to refine only finite open covers?
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Question 6 How does star covering dimension of a boundedly strongly paracompact
space compare with other dimensions, especially covering dimension?
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