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Abstract

The notion of a microbundle was introduced in the 1960s but the theory
came to an abrupt halt when it was shown that for a metrisable manifold mi-
crobundles are equivalent to fibre bundles. In this paper we consider microbun-
dles over non-metrisable manifolds. In some cases microbundles are equivalent
to fibre bundles but in others they are not. In particular we show that a mani-
fold is metrisable if and only if its tangent microbundle is equivalent to a fibre
bundle. We also illustrate that for some non-metrisable manifolds every triv-
ial microbundle contains a trivial fibre bundle whereas other manifolds may
support a trivial microbundle not containing a trivial fibre bundle.

1 Definitions and Notation

Throughout this paper by a manifold we mean a connected Hausdorff space in which
each point has a neighbourhood homeomorphic to euclidean space. It is well-known
(cf [20, p 637]) that a manifold is metrisable if and only if it satisfies any one (and
hence all) of the following properties: paracompact; o-compact; second countable;
meta-Lindelof.

In 1964 Milnor [19] introduced the notion of a microbundle as a means of transfer-
ring some of the procedures applicable to bundles over smooth manifolds to manifolds
which are not necessarily smooth. The development came to an abrupt halt when
Kister [16] showed that over metrisable manifolds every microbundle is equivalent
to a fibre bundle. At the time the major effort in the study of manifolds was con-
centrated on compact manifolds and, as far as we know, the study of non-metrisable
manifolds did not begin systematically until the late 1970s.

Definition [19]. A microbundle, denoted B — E —1, B, consists of topological
spaces B and F, called the base space and the total space respectively, and continuous
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functions 7 and j, called the injection and projection maps respectively, such that
the following conditions hold:

e ji = 1p, the identity map on B; and

e there is an open cover U of B so that for each U € U there are aset V C j1(U),
with ¢(U) C V, and a homeomorphism

oV — U xR

such that the following diagram commutes:

where x0: U — U x R™ is defined by (x0)(u) = (u,0), and p; is projection
on the first coordinate.

Definition. For any base space B, and any n > 0, B X0 B xR P4 Bis called
the standard trivial microbundle.
Definition. For any manifold M the diagram

M2 M ox M2 M,

where A is the diagonal map, constitutes a microbundle; it is called the tangent
microbundle. ‘ ‘ . ‘
Definition. Two microbundles B -+ E; " B and B % Ey % B are
equivalent if there exist neighbourhoods Wy of i1(B) in Ey and Ws of is(B) in Fs,
and a homeomorphism ¢ : W7 — W5 such that the following diagram commutes:

Wi
/ j1|W1
B ) B .
x J2|Wo
Wa



Definition. A microbundle which is equivalent to the standard trivial bundle is
called a trivial microbundle.

We will denote the fibre bundle with base space B, total space F, 0-section e
and bundle projection p by B -~ F L, B. In the following, fibre bundles will be
assumed to have a O-section and fibre R™.

A fibre bundle satisfies all of the requirements of a microbundle. Kister’s result
[16] shows that if the base manifold is metrisable then any microbundle admits a fibre
bundle which is microbundle equivalent to the original microbundle. We address the
question in the case where the base manifold is not metrisable.

Some of the results in this paper have been described in the authors’ paper [12].

2 Trivial Microbundles may or may not be Equivalent
to Trivial Bundles

Example 1 For a particular non-metrisable manifold it may be the case that every
trivial microbundle over the manifold contains a trivial fibre bundle.

Milnor [19] showed that if the base space B of a trivial microbundle is paracompact
then some open subset of the total space is homeomorphic to all of B x R". In
this case there is an equivalent fibre bundle. This is also the case for any trivial
microbundle over the long ray L™ since, by the pressing down lemma, any neigh-
bourhood of Lt x {0} in L™ x R must contain a long tube, i.e. aset (a,wi) x (—h,h)
for some « € wy and some positive h € R.

Example 2 There is a manifold supporting a trivial microbundle which does not
contain a trivial fibre bundle with the same injection and projection.

Consider the manifold M (allied to the Priifer manifold) found in [20, Example 3.6]
except that we interchange the z- and y-axes. Let

A={(z,y): 2,y € R and = # 0} and for each y € R, let B, = {(0,y)} x R.

We will write (y, z) for a typical member ((0,y), z) of By. Set M = AU (UyerBy) .
M is topologised by using the usual topology on A and replacing each point, (0,y),

of the missing y-axis by the copy, By, , of the real line. More precisely, suppose that
(y,z) € By. Declare

{w. Q) eBy:lz=( <1/n}UT(y,z,n):neN}

to be a neighbourhood basis at (y, z), where

T(y,z,n) = {(&,n) € R*: 0<|§|<landz—l< e Yoot = }



The triangles T'(y, z,n) are bounded by segments of rays emanating from (0,y) with
slopes +(z — 1) and £(z + 1), where the + sign is determined by which side of the
y-axis we are looking at. Because M contains an uncountable discrete closed subset
it cannot be Lindel6f, hence cannot be metrisable.

Define an open subset E of M x (—1,1) by

E—[Ax (=1, 1] U{({(y,2),£) € By x (=1,1) : y € R and |¢| < min{1, %}}.

Then M 2% B P4 M is a trivial microbundle which does not contain a trivial fibre
bundle.

Suppose to the contrary that this microbundle did contain a trivial fibre bundle.
Then there would be a continuous function f : M — (0, 1) so that

Vpe M and Vt € (—1,1),|t| < f(p) = (p,t) € E.

Such a function may be obtained from a trivial fibre bundle as follows: if M X0,
D 24 M is a trivial fibre bundle then there is a fibre-preserving homeomorphism
h: M xR — D, so we may define f by letting f(p) be the second coordinate of
h(p,1).

For each m,n € N set S(m,n) = {y € R : f(T(y,0,n)) C (%.,1)}. Then
Upnnen S(m,n) = R because for each y € R continuity of f implies that there are
integers m,n € N such that f(7T(y,0,n)) C (%, 1). Since the union is countable,
S(m,n) is uncountable for some m,n € N; suppose we have chosen such m,n. As
an uncountable subset of R, the set S(m,n) contains a point a which is a limit
point of S(m,n) N (a,00). Thus f(T(a,0,n)) C (£,1). By the definition of E we
have that f({a,m)) < L, so there is I € N so that f(T'(a,m,l)) C (0,1); we may
assume that [ > n. Pick (z,y) € T'(a,m,l). Then y > a and as a is a limit point of
S(m,n) N (a,00), there is b € S(m,n) with a < b < y; thus f(T(b,0,n)) C (%, 1).

Because a < b < y and [ > n, it follows that 7'(b,0,n) N T'(a,m,l) # &, say
(u,v) € T(b,0,n) N T(a,m,l). On the one hand (u,v) € T(b,0,n) so f(u,v) > L.
On the other hand (u,v) € T'(a,m,1) so f(u,v) < L, a contradiction.

Thus such a continuous function as f cannot exist, so the trivial microbundle
M — E — M does not contain a trivial fibre bundle.

Example 3 Two fibre bundles may be equivalent as microbundles while not being
equivalent as fibre bundles. Indeed, the following fibre bundle is microbundle equiv-
alent to the standard trivial microbundle but is not fibre bundle equivalent to the
trivial fibre bundle.

Let LT -5 Lt x L 25 L+, where Lt is the long ray and L is the long line, be
the fibre bundle in which p maps (z,y) to z if z > |y| and to |y| otherwise. Note that



{(0,a) : @ € w1} covers Lt and that each p~1(0, @) is homeomorphic to (0,a) x R.
This bundle is microbundle equivalent to the standard trivial microbundle, for we
may let

Wy =Wy ={(z,y) eLT xL: |yl <z <1}U{(a,y) eLT xL:Jy| <1<z},

and ® : W7 — W5 be the identity. However it is not equivalent to the trivial fibre
bundle as LT x L is not homeomorphic to LT x R.

3 Microbundles and Metrisability

Recall that a topological space is defined to be meta-Lindel6f if and only if every
open cover has a point-countable open refinement. Also (cf [20, Theorem 2.5]) for
a manifold the following conditions are equivalent: metrisable, paracompact, meta-
Lindelof, (hereditarily) Lindel6f, second countable and o-compact.

Lemma 1 . Let M be a manifold and suppose that M = UpenUy,, where for each
n € N we have that U, is open and metrisable. Then M is metrisable.

Proof. Let V be an open cover of M. Foreachn e NletU, ={VNU, : VeV }.
Then U, is an open cover of U,,. As U, is metrisable it is also metacompact, hence U,
has a point finite open refinement, say W,,. Let W = U,enW,,. Then W is a point-
countable open refinement of V. Thus M is meta-Lindel6f and hence metrisable.

Theorem 1 . Let M™ be a manifold. Then the following conditions are equivalent:
(i) M is metrisable;

(ii) there is an open cover U of M such that for each x € M the set st(x,U) is
homeomorphic to an open subset of R™;

(iii) there is an open cover U of M such that for each x € M the set st(x,U) is
metrisable;

(iv) there is an open cover U of M such that for each x € M the set st(x,U) is
Lindeldf;

(v) there is a cover U of M such that for each x € M the set st(x,U) is open and
Lindeldf;

(vi) there is a cover U of M such that for each © € M the set st(x,U) is open and
metrisable.

Proof. (i)==-(ii): suppose that M has a metric. As a metrisable manifold, M is
o-compact, so may be expressed as a union of countably many compact subsets, say
M = U, ey Cn- We may assume that C,, C én+1 for each n € N. When n < 0, by
C,, we will mean the empty set.

By compactness we may cover C,, — é’n_l by a finite family V),, of sets each of
which is homeomorphic to an open subset of R™ and each of which is a subset of
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Cha1—Cp_o. Let &, > 0 be a Lebesgue number for V,, ie &, is such that every ball
of radius ¢,, and centre in C,, — é’n_l lies in some member of V,,. We let g5 = 1.

For each n € N, let U,, be a cover of C,, — Co'n,l by balls whose centres lie in
C, — C,_; and whose diameters are min{e,_1.6p,enq1}. Let U = U, enUn. If
x €M, say x e Cp— Co'n_l, then st(x,U) is a union of balls from Uy,—1 UUp UUp41,
hence of diameters at most e,. Thus st(x,U) C B(z;e,), so st(x,U) lies in some
member of V,, so is homeomorphic to an open subset of R™.

(il)==-(iii): obvious.
(ili)==(iv): let U’ be a cover as in (iii) and let
U={UCM : Uisa component of some member of U }.

Then each U € U is connected and open; thus for each x € M, st(z,U) is con-
nected and open, and hence a manifold which is a subset of the metrisable manifold,
st(z,U"). Thus st(z,U) is Lindelof.

(iv)=(v): obvious.

(v)==(vi): take U as in (v). Then st(x,U) is T3 and Lindel6f, hence metrisable.
(vi)==-(i): suppose that U is a cover of M such that st(z,U) is open in M and

metrisable for each x € M. Firstly we will show that the manifold contains a
sequence (V, : a € wy) of subsets of M satisfying

e V., is Lindelof, connected and open for each «,
° Vﬁ C Vu whenever § < «a, and
o Vi = Uyer Va for each limit X € wy

(i.e. M is of Type I) as follows.
1. Let Vi be any open subset of M homeomorphic to R™.

2. If V, is defined as above for any ordinal « , then V, is separable: let D, be
a countable dense subset. Note that Vo, C Uzep, st(d.U), for given z € Vi,
choose d € D, N st(x,U); then = € st(d,U). Thus because V,,, hence V, is
a connected set, it is contained in a single component of (J;cp_st(d,U). Let
Vat1 be the component of |Jyep st(d,U) containing V,. By Lemma 1, the
set V41 is Lindelof. Clearly the other conditions required of V41 are also
satisfied.



3. If X is any limit ordinal and V,, is defined for each a < A then V) = {J .y Va
is Lindelof, connected and open, being an increasing countable union of such
sets, and the other two conditions are clearly satisfied.

Note that M = {J,c,, aCwr
the other hand, ¢, Vo is closed, for suppose & € Uaew, Vo and let {U, : n € N }
be a countable neighbourhood base at x. For each n € N choose ,, € w1 such that
UnNVp, # @. Letting 8 = sup{ B, : n € N}, we have U,NVj3 # @& for each n € N
so that = € VB and hence x € Vg1, s0 z € UQEW] Va. As a non-empty open and
closed subset of the connected space M, |J aew, Vo is all of M.

Let A be the set of limit ordinals of wy. If for some A € A we have V) — V) = @
then V) is open and closed, so is all of M (by connectedness) and hence M is Lindelof
and hence metrisable.

Suppose instead that for each A € A we have V) — V) # @. Then M cannot be
metrisable but we will obtain a contradiction.

Choose z) € Vy — Vi. Define f : A — wq by

V. Indeed, as a union of open sets, |J V4 is open. On

f(A) = min{a € wy : st(xy,U) NV, # S}

As st(zy,U) is a neighbourhood of z) € Vy it follows that f(X\) < A. Thus by the
pressing down lemma we may choose a € wy such that A = f~1(a) is stationary.

Recall the dense subset D, of V,. For each A € A choose dy € st(xx,U) N D,
and let csty(dy,U) denote the component of st(dy,U) containing z): note that
estya(dy,U) is open and connected. Define g : A — w; by

g(A) = min{fB € wy : esty(dy,U) N Vg # T}.

Again we may apply the pressing down lemma to find 8 € wy so that B = ¢g71(3) is
stationary.

Because csty(dy,U) N Dg # @ for each A € B, and D, and Dg are countable
whereas B is uncountable, we may choose d € D,, and d’ € Dg such that

C={\eB : dy=dand d € cst\(dy,U)}

is uncountable. Thus for each A € C, we have that cst\(d,U) is a component of
st(d,U). Since also d’ € csty(d,U), it follows that N = |, esta(d,U) is connected
(in fact N = csty(d,U) for each A € C). Then N is a metrisable manifold, hence
Lindeldf.

Let X = {zx € M : X € C}. On the one hand, because X C N and N is
hereditarily Lindelof, X is Lindel6f. On the other hand, {V\ : A € A} forms an
open cover of X with no countable subcover, and hence X cannot be Lindel6f, a
contradiction.



Theorem 2 The tangent microbundle over a manifold M is microbundle equivalent
to a fibre bundle if and only if M is metrisable.

Proof. =: Suppose that the tangent microbundle, M oMM M , is
equivalent to a fibre bundle M — FE 2, M. Then there is an open neighbour-
hood W of A(M) in M x M, which is fibre-preserving homeomorphic to an open
neighbourhood W' of e(M) in E.

For each x € M let F, = {y € M : (x,y) € W}, an open subset of M. As
part of the fibre pl_l(ac) the set F}, is homeomorphic to an open subset of R™. Also
for each x € M choose an open subset U, of M such that U, x U, C W. Set
U ={U; : x € M}. Then U satisfies condition (ii) of Theorem 1 as Vx € M,
st(z,U) C Fy.
<=: If M is metrisable then every microbundle over M admits a fibre bundle by
[16, corollary 1].

Remark. We may use the ideas of the proof of Theorem 2 to obtain an alternative
proof of the (i)==(ii) part of the proof of Theorem 1. If M is metrisable then
by [16, corollary 1] there is a fibre bundle which may be embedded fibrewise as a
neighbourhood of the diagonal in M x M. Then the open cover U is obtained from
the fibres of this fibre bundle.

We thank Abdul Mohamad for suggesting the equivalent conditions (v) and (vi)
in Theorem 1.
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