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Abstract

In this paper, we investigate Volterra spaces and relevant topological properties. New characterizations
of weakly Volterra spaces are provided. An analogy of the Banach category theorem in terms of \olterra
properties is obtained. It is shown that every weakly Volterra homogeneous space is \Volterra, and there
are metrizable Baire spaces whose hyperspaces of nonempty compact subsets endowed with the Vietor
topology are not weakly \Volterra.
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1. Introduction

Let f : X — Y be a function from one topological spakeinto another topological
spaceY. We shall denote byo(f) (respectivelyD(f)) the set of points at which

f is continuous (respectively discontinuous). Recall thas said to bepointwise
discontinuousabbreviated aBWD, if C( ) is dense inX. This class of functions was
originally introduced by HankeH] in 1870, and used to be the main object of studies

in the classical real function theory until the appearance of the works of Lebesgue. It
can be shown that a function of a Baire space to a metric space is PWD if and only
if D(f) is of first category. In 1881, Volterral§] proved the following interesting
theorem.

THEOREM 1.1 ([1€]). Let f : R — R be a PWD function. Then there exists no
other PWD functiorg : R — R with C(g) = D(f).
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Hence, for example, the s€f( f) of the functionf : R — R given by

ko 0 @0, ko

=2 =272 @ T

k>1

where(x) denotes the fractional part &fe R, is precisely the irrationals, and there
exists no functiong : R — R whose set of points of continuity is the rationals.
These ideas and their generalizations have been studied in the last ten years by Gauls
Greenwood and Piotrowski in3] 6, 4, 5] respectively. Their work leads to the
following definitions of Volterra and weakly Volterra spaces.

DEFINITION 1.2 ([5]). Atopological spac« is calledVolterra (respectivelyweakly
Volterra) if for each pair of real-valued PWD function§, g : X — R, the set
C(f) N C(g) is dense (respectively nonempty)Xn

We notice that the range spa®ein Definition 1.2 can be replaced by any de-
velopable space by considering the generalized oscillation. Although Volterra and
weakly Volterra spaces are defined in terms of ‘external’ functions on them, there are
some ‘internal’ characterizations for these two classes of spaces as well, namely, ¢
spaceX is Volterra (respectively weakly Volterra) if and only if the intersection of
any two densé&;-sets inX is dense (respectively nonempty).[ Recall that a space
is Baire (respectivelyof second categoyif the intersection of any countably many
dense open subsets is dense (respectively nonempty). Now, it is clear that every Bair
space is Volterra, and every space of second category is weakly Volterra. Of course, al
nonempty Baire spaces are of second category, and all nonempty Volterra spaces ar
weakly Volterra. In general, these four classes of spaces are all distinct, and relevan
examples can be found i6,[4, 5, 7]. In answering a question ], Gruenhage and
Lutzer [7] provided some natural classes of topological spaces in which a space is
\olterra if and only if it is Baire. In particular, the following theorem is essentially
proved in [7].

THEOREM 1.3 ([7]). Let X be a topological space which satisfies any one of the
following conditions

(a) X contains a dense metrizable subspace.

(b) Xis aLasnev space, that s, a closed continuous image of a metric space.
(c) Xis ametacompact sequential space which has@osed discrete dense set.
(d) X s separable and sequential.

(e) Xis ametacompact Moore space.

ThenX is a Baire spacérespectively a space of second cateddirgnd only if it is a
\olterra (respectively weakly Volterjapace.
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However, it is still not clear how to extend Theordn8to some classes of topo-
logical spaces with certain types of generalized metric properties. For example, it is
still an open question whether it is true that every Volterra Moore space is Baire, see,
for example, 7, Question 2.11].

In this paper, we shall continue the study of Volterra and weakly Volterra spaces.
In Section2, new characterizations of weakly Volterra spaces are given, and an error
in a result of f}] is corrected. In Sectiof3, an analogy of the Banach category
theorem is established. This enables us to discover a decomposition for an arbitrary
topological space in terms of Volterra properties, and further prove that any weakly
\olterra homogeneous space is Volterra. In the last section, we study hyperspace:
of Volterra spaces with the Vietoris topology. It is shown that in certain classes of
spaces, if the hyperspace of nonempty compact subsets of a given space is Volterr:
(respectively weakly Volterra) then all its finite powers must be Volterra (respectively
weakly Volterra). We also give two examples to show that in general, the property
of being (weakly) Volterra is not preserved by the hyperspace of nonempty compact
subsets of a given space. Finally, some open questions related to Volterra propertie:
of hyperspaces are posed.

All topological spaces are assumg&g although it is not always necessary. As
usual, A and intA will denote the closure and interior of a subgein a spaceX
respectively. WherX is a subspace of a topological spatewe shall useAX and
intx A to denote the closure and interior of a sub&én the subspac& respectively.

For a cardinak, cf(x) denotes the cofinality of, and«™ will represent the next
cardinal afterc. The symbol*B stands for the set of all functions from a s&to a
setB. We refer the readers t@] for basic facts and undefined notation about Baire
spaces. For the other undefined terminology, $éel2].

2. Weakly Volterra spaces

In this section, we first correct an error in an example of Gauld, Greenwood and
Piotrowski on weakly Volterra spaces ii][ Then, we provide some new characteri-
zations for weakly Volterra spaces, which enable us to resolve a probleth ifiHe
following result can be found ird].

THEOREM 2.1 ([4]). If X is a Volterra spaceYy, ..., Y, (n € N) are developable
spaces and; : X — Y; (i < n) are PWD functions, thef){C(fj)) : 1 <i <n}is
dense inX.

Inthe light of Theoren2.1, itis natural and also interesting to consider the following
question.
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QUESTION 2.2. Is it true that for any weakly Volterra spacé, any developable
spacesYy, ..., Y, (n > 3) and any PWD functionsf; : X — Y; (1 <i < n),
MC(f) :1<i<n}#a?

In fact, this question has been already consideredijrapd a negative answer
was provided there. More precisely, a weakly Volterra spa@ad three real-valued
functions f, g, h : X — R such thatC(f), C(g) andC(h) are densé>;-sets ofX,
butC(f) N C(g) N C(h) = @, were constructed ind] Example 3]. Unfortunately,
this example is false as we are going to show next.

ExaMPLE 1. The spaceX in [4, Example 3] is not weakly Volterra. First, we shall
briefly describe the space presented4h Let

A={(x,y) e R®:y>0}.

For each real number> 0, let A, = {(X,y) € R?: y+r > 0}. DefineB, B, to be
the sets obtained by rotatidgy, A, 120 about(0, 0) anti-clockwise, ancC, C; by a
similar rotation clockwise. Let

D=(ANBy)U(BNCp)U(CoN Ay and
E=(A~(BUC))U By~ (CUA)U(Cy~ (AU B)).

Furthermore, let us defin®,, %, and %, by

PBr={(ANBNC,ND)~ F:r,st>0andF C R?is finite},
Br={(ANBsNC) N F:r,s t>0andF C R?is finite} and
By ={(ANBsNC,NE)~ F:r,st>0andF C R?is finite}.

Then the spac& considered in4, Example 3] isR? endowed with the topology
generated by J{% : 1 <i < 3} as abase. Itis clear that B, C are densé&;-sets
of X. In addition, it can be checked easily that b&thn B, andC ~ (AU B) are
G;-sets ofX (but, they are not dense KX).

Now, consider the two subse®&andH of X shown in Figurel as the two shaded
regions without including their boundaries. These two sets can be defined by the
following formulae

G=(ANBy)U(C~N(AUB)) and H=(ByNCyp U(A~N (BUCQC)).

It is not difficult to see thaG is dense inX. Being the union of twd;-sets inX, G
is also aG;-set of X. Thus,G is a denses;-set in X. Similarly, H is also a dense
G;-set of X. However, it is obvious thas N H = &. Therefore, we have verified
that the spac« is not weakly Volterra.
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FIGURE 1.

Interestingly, the answer to Questi@r? is positive. To show this, we shall first
provide some new characterizations for weakly Volterra spaces.

THEOREM 2.3. The following statements are equivalent for a spAce

(@) Xis aweakly Volterra space.

(b) The intersection of any finitely many derGg-sets ofX is somewhere dense
in X.

(c) The intersection of any finitely many derdgsets ofX is not empty.

PrROOF ltis clear that (b}= (c) and (¢)= (a).

We shall prove (a)= (b) by induction. Suppos& is weakly Volterra. First,
for any two denseG;-setsA;, A, of X, we defineB; = A; ~ AiN A, andB, =
A, . A; N Ay ltis obvious thatB; N B, = @. SinceA; and A, are dense irX, we
haveB; = X ~intA ;N A, andB, = X ~intA;N A, Ifint A;N A, = &, then
B; and B, are two densé&s;-sets of X which are disjoint. This is a contradiction.
Therefore, we have shown that the intersection of any two déssets of X is
somewhere dense N.

Next, suppose that it has been shown that the intersection of arany dense
G;-sets of X is somewhere dense iX, where 1< i < nandn > 3. Let
A1, ..., Ay ben 4+ 1 many dens&;-sets ofX. Then, by our induction hypothesis,
int{A :1<i <n}#@. Foreach I< j <n—1, letus define the subsg} c X
by

Cj=(Aj\ﬂ{A:15i5n}>u(ﬂ{Ai;15i5n}).

Furthermore, we define the get ¢ X by the following

Cn:(An\ﬂ{Ai:lfi §n})U(An+1mintﬂ{Ai:1§i §n}).
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Now for every 1< j < n — 1, sinceA; is dense inX, we have

Ci=X~[)A:1<i=znU[){A:1<i=<n)

:(X\intﬂ{Ai:lfi5n}>uﬂ{ﬁq:1§ifn}
= X.

Thus, all the set€; (1 < j < n—1) are dens&;-sets ofX. Similarly, one can check
C, is also a dens&;-set in X. Moreover, it is easy to see that

(Ci:1=jsnc(|A:l<i<n+1).

By our induction hypothesis agaifi){C; : 1 < j < n} is somewhere dense IX,
thensoig){A :1<i <n+1}. O

Our next result shall provide an affirmative answer to Questi@n

COROLLARY 2.4. Let X be aweakly Volterra spac¥y, ..., Y, (n € N) developable
spaces and; : X — Y, (1 <i < n) PWD functions. Themi”:l{C(fi)} # .

PROOF Itis easy to see that ea€h f;) (1 <i < n)is a dens&;-set of X. Hence,
by Theoren?.3, we obtain{C(fi)): 1 <i <n} # @. O

3. Volterraness in homogeneous spaces

A spaceX is said to behomogeneousd for any two distinct pointsx,y € X
there exists a homeomorphism: X — X such thatf (x) = y. In this section, the
following main theorem shall be proved.

THEOREM3.1. Let X be a homogeneous space. Thers Volterra if and only if it
is weakly Volterra.

To achieve this goal, we shall first study non-weakly Volterra subspaces in a given
space. It is shown that théle of non-weakly Volterra subspaces in the theory of
Volterra spaces is somehow similar to that of first category sets in the theory of Baire
spaces. In what follows, we split the proof of Theor@grinto several lemmas, which
are interesting for their own sake.

LEMMA 3.2. If a spaceX contains a nonempty weakly Volterra open subspéace
then X itself is weakly Volterra.
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PROOF. Suppose that) andV are any two dens€;-sets inX. ThenU N'Y and
V NY are two densé&s;-sets in the subspacé. SinceY is weakly Volterra, then
UnvV > UnNV)NY # &. Hence,X is weakly Volterra. O

REMARK. In Lemma3.2, ‘Y is open’ can be replaced with a weaker condition
‘there exists &5;-setH in Y such that inH is dense irY’.

LEMMA 3.3 ([5]). A space is Volterra if and only if every nonempty open subspace
is weakly Volterra.

LEMMA 3.4. If a spaceX contains a dens6&;-subspace that is not weakly Volterra,
then X itself is not weakly Volterra.

PROOF. LetY C X be a dens&;-subspace that is not weakly Volterra. Then there
are two disjoint dens&;-setsU andV in Y. Pick two denses;-setsU andV in
XwithU =U NnYandV = V NY. Suppose thaK is weakly Volterra. Then, by
Theorem2.3(c), we haved NV NY # @. It follows thatU NV # &. Thisis a
contradiction, sinc& NV = &. O

Since every non-weakly Volterra subspace in a topological space must be a set of
first category, our next lemma can be treated as an analogy of the Banach categor
theorem in topology and analysis.

LEMMA 3.5. In any spaceX, the union of any family of nonempty open non-weakly
\olterra subspaces is not weakly Volterra.

PROOF. Let% be afamily of nonempty open subspaceXafuch thateach member
of 7 is not weakly Volterra inX. Let Jyy be the set of all collections of nonempty
open subsets of with the following two properties:

(a) each collectiory” € Jyy is pairwise disjoint; and
(b) for each collection € Jyyv and each membe¥ € 7, there exists some
U € % suchthaty c U.

Then, by Zorn’s lemmalyy has a maximal elemert” = {V, : « € A}. Let
V = J{V, : @ € A}. By the maximality of#", we havel J{lU : U € %} c V.
Moreover, it follows from (b) and Lemma.2that for eachw € A, V, is not weakly
\olterra as an open subspaceXf Thus, there are two familied, : « € A} and
{H, : a € A} of G;s-sets ofX such that

(c) F,NH, =2 foralla € A; and
(d F,cV,cF,andH, CcV, C H, foralla € A.
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LetF = J{F, : « € AfandH = [J{H, : « € A}. By (a) and (c), we have
FNH=g. Foreachr € A, let

Fa:m{F;:nzl} and Ha:ﬂ{H;:nzl},

whereF" andH!" are nonempty open subsetsotontained irV, suchthaf ™ c F"
andH ™ c H for all« € Aand alln € N. Now, put

Fo=|J(Fl:ae A} and H,=J(H}:a € AL
for all n € N. After a simple computation, we can obtain
F=(){Fi:n>1} and H={){H,:n>1}

By (d), we haveV, c F,Y andV, c H," for eacha € A. Since{F, : « € A} and
{H, : @ € A} are two discrete families in the subspatef X, then

VCU{F_aV:aeA}=EV and VCU{HT)’:aeA}:ﬁV.

Thus,F andH are two disjoint dens&;-sets in the subspasé of X. Consequently,
V is not a weakly Volterra subspace Xt It follows from Lemma3.4thatV is not
a weakly Volterra subspace of either. Sincd J{U : U € } ¢ V, by Lemma3.2
again, | J{U : U e %} is not a weakly Volterra subspace ®f. Therefore, we
conclude that J{U : U € %} is not a weakly Volterra subspace Xf O

As an immediate application of Lemrab, we obtain the following decomposition
lemma for an arbitrary topological space.

LEMMA 3.6. Let X be an arbitrary topological space. Then there are two open
(possibly emptysubspaceX v and Xy of X such that
(a) X = XNV Ux_vandXN\/ N XV =,
(b) every nonempty open subspaceX@f, is not weakly Volterra inX; and
(c) every nonempty open subspacexgfis Volterra in X.

Furthermore, X is a Volterra space if and onlXyy = &, and X is a weakly Volterra
space if and only iXy # @.

PrROOF. Let Xyy be the union of all nonempty open non-weakly Volterra subspaces
of X, and letXy = X ~. Xyv. By Lemma3.5, Xy is not weakly Volterra as an open
subspace oK. It is obvious that every nonempty open subspac&gfis weakly
\olterra. Thus, following from Lemma&.3, every nonempty open subspaceXaf is
\olterra. So, we have shown th&y, and Xy fulfil (a), (b) and (c). By Lemm&.3
again,X is Volterra if and only ifXyy = @. If Xy # &, thenXy is a weakly Volterra
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subspace oK. By Lemma3.2, the spaceX itself is weakly Volterra. Conversely,
suppose thak is weakly Volterra, andXy = @. ThenX = Xyy. SinceXyy is not
weakly Volterra, then by Lemma.4, the spaceX itself is not weakly Volterra either.
This is a contradiction. O

Now we are able to prove Theorednl by applying the previous lemmas.

PrOOF OFTHEOREM 3.1 The necessity is trivial. To prove the sufficiency, suppose
that X is a weakly Volterra space. Then, by Lemra#&, Xy is a honempty open
Volterra subspace of. Now, letU be any nonempty open subspaceXofThen there
exists a poinx € Xy and a homeomorphisrh : X — X such thatf (x) € U. The
spacel N f(Xy), being a nonempty open subspace of the Volterra spag ), is
also Volterra. Thus, it follows from Lemm&2thatU is a weakly Volterra subspace
of X. Finally, by Lemma3.3, the spaceX itself is Volterra. O

The relationships among the classes of Baire spaces, Volterra spaces, weakly
\olterra spaces and spaces of second category can be summarised in the followin
figure.

Baire
K

homogeneous

Volterra 2nd category
metric 7

weakly Volterra

FIGURE 2.

REMARK. Itis well known that a homogeneous space is Baire if and only if it is of
second category. Note that homogeneous Volterra spaces which are not Baire do exis
For example, leX = R be the set of all reals. L&t be the lower topology oiX, that
is, 71 = {9, X} U {(a, +o0) : a € X}. Let 7, be the co-countable topology ot
Equip X with the topology7 = 71 v Z%. ThenX is aT; homogeneous space. Every
denseG;-set A of X can be expressed by eithA&r= X . S, or A = (a, +00) \ S,
or A=[a, +o0) \ S, wherea € X andS c X is countable. Hence, the intersection
of any finitely many dens&;-sets of X meets every nonempty member &7. It
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follows that X is Volterra. On the other handK is not Baire, because the subsets
U, = (n, +00) of X are all open and dense but their intersection évés empty.

Since the space given in the previous remark is not Hausdorff, the following question
arises naturally.

QUESTION 3.7. Does there exist a Tychonoff homogeneous space or even a Haus-
dorff topological group which is Volterra but not Baire?

By Lemma3.6, a nonempty space is not weakly Volterra if and only if no nonempty
open subspace is weakly Volterra. Our next result, which saysattsgmi-open
subspace of a given space is not weakly Volterra if and only if it is nowhere weakly
\olterra, is a slight extension of this fact. Recall that a sub8edf a spaceX is
semi-openf int A is dense inA. It is clear that in any topological space, all open
subspaces are semi-open.

THEOREM 3.8. Let A be a nonempty semi-open subspace of a spacéhenA is
not weakly Volterra inX if and only if for every open subsetof X withU N A # @
there exists a nonempty open subgedf X contained inU such thatV N A is not
weakly Volterra inX.

PROOF. The necessity follows from Lemnfa2 directly. So, we shall consider the
sufficiency. First, suppose thétis a nowhere dense subsetXf LetU andV be
any two densé&s;-sets inA. If Ais weakly Volterra, then by Theoreth3 U NV is
a somewhere dense set in the subspacgVe shall derive a contradiction. L& be
any nonempty open subset Af and letH be an open subset of with G = H N A.
ThenH Nnint A # &, as intA is dense inA. SinceA is a nowhere dense set &f,
thenU NV is a nowhere dense subsetXfas well. Thus, there exists a nonempty
open subsed of X contained inH Nint A such thatO N (U NV) = @. This shows
thatU NV is a nowhere dense set in the subspacehich is a contradiction. Hence,
A'is not weakly Volterra in this case.

Next, we shall consider the case thatis a somewhere dense subsetxf Let
U = intA. ThenU is a nonempty open subset ¥f Let% = {U; : B € B} be
the family of all nonempty open subsetsXfsuch that for eacp € B, U; c U and
Uy N Ais not a weakly Volterra subspaceXf Note that for eacls € B, Us N Ais not
weakly Volterra as an open subspace of the subspadefollows from Lemma3.5
that J{Us; N A : B € B} is not weakly Volterra in the subspade By hypothesis,
UfUs N A : B € B} is a dense open subspaceAdf U. Hence, it follows from
Lemma3.4that AN U cannot be weakly Volterra. Furthermore, sinceAnt ANU,
by Lemma3.2, int A is not weakly Volterra inX. Finally, as intA is dense and open
in the subspacé, by Lemma3.4 again, we conclude thak is not a weakly Volterra
subspace oK. O
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REMARK. Note that the conditionA is semi-open’ in Theorerf.8is not needed
in the proof of necessity. However, the authors do not know whether this condition
can be dropped from the proof of the sufficiency.

4. Hyperspaces of Volterra spaces

In this section, we shall study hyperspaces of Volterra and weakly Volterra spaces.
For a given Hausdorff topological spag let 2* denote the collection of nonempty
closed subsets of. For any finite familyZ = {U1, U,, ..., U,} of subsets oX, we
define(%Z ) c 2% by

(%):{FEZX:FCU{Ui:lfi <ny, andFﬂUi;«é@Vizl,...,n}.

Throughout this section,*2shall be equipped with the so-call®tktoris topologyry
(also known ashe finite topologyn the literature), which has the family of all subsets
of 2% of the form (%) as a base, wher#& runs through all finite families of open
subsets ofX. Let.Z (X) (respectively.# (X)) be the subspace of‘Zonsisting of
all nonempty finite (respectively compact) subsetsXofvith the relative topology.
In what follows, we shall first give some necessary conditions for spaicecertain
classes of spaces such thét(X) is (weakly) Volterra. Then we give two examples
from well-known constructions to show that the (weak) Volterraness of a spase
not preserved by its hyperspag¢€ (X) in general.

LEMMA 4.1. For any Hausdorff spac, if # (X) is Volterra(respectively weakly
Volterra) then X is Volterra (respectively weakly Volterja

PrOOF. For a family{B, : « € A} of subsets ok, it is easy to check that
@ (N{B,:a € A}) =N{(By) : « € A}; and
(b) foranya € A, B, is dense (respectively nonempty)Xnif and only if (B,) is
dense (respectively nonempty).# (X).
Now suppose that? (X) is Volterra (respectively weakly Volterra). L&t andV
be two densé&s;-sets inX. Then(U) and (V) are densés;-sets in# (X). Since
2 (X) is Volterra (respectively weakly Volterra), théd )N (V) is dense (respectively
nonempty) in (X). By (a) and (b) abovd) NV is dense (respectively nonempty)
in X. Therefore X is Volterra (respectively weakly Volterra). O

We notice that the conclusion of Lemmdal still holds when.# (X) is replaced
by 2X. Next, we shall show that the conclusion of Lem#acan be strengthened for
certain classes of spaces.
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THEOREM4.2. Let X be a Tychonoff space which satisfies any one of the following
conditions

(@) X has a dense metrizable subspace.

(b) Xis aLasnev space, that s, a closed continuous image of a metric space.
(c) Xis separable and first countable.

(d) X is a metacompact Moore space.

If ¢ (X) is a Volterra(respectively weakly Volterjaspace, therX" is a Baire space
(respectively a space of second categdoy all n € N.

PROOF Suppose thatz (X) is a Volterra (respectively weakly Volterra) space. By
Lemma4.1, X itself is Volterra (respectively weakly Volterra). Then, by Theorke®)
under any of these condition¥ is a Baire space (respectively a space of second
category). We first show that under any one of these conditigfigX) is a Baire
space (respectively a space of second category). The cases of (a), (b) and (c), whic
are easier, shall be shown in the next. Suppose that (a) hold¥. £eX be a dense
metrizable subspace. ThefA(Y) is a dense metrizable subspace’6f(X). If (b)
holds, then there is a metric spalgkand a closed continuous mappifig M — X
from M onto X. Define f : # (M) — ¢ (X) by letting f(K) = f(K) for all
K e ¢ (M). Itcan be checked thdtis closed and continuous. Moreovéx.# (M))
is a dense subspace .of (X). Now, suppose that (c) holds. Thef(X) is a dense
separable and first countable subspace&afX). Hence, by ¥, Corollary 2.8], under
any of conditions (a), (b) and (cy¢ (X) is Baire (respectively of second category).

Finally, suppose (d) holds. Then we can choose a develop(@ént such that
for eachn € N, 7, is a point finite open cover oX and?%,,, is a refinement o#,.

For eachn € N, letY,, C X be a dens&;-subspace such théx, is locally finite at
each point ofY,. For eacm € N, set

Y=()Ya:neN} and % ={UNY:U e %}

Then,U{#» : n € N} is ao-locally finite base fory. Thus, by the Bing-Nagata-
Smirnov metrization theoreny, is a metrizable subspace ¥f If .7 (X) is Volterra,

as we have seerX is Baire. Then,Y is dense inX, and thus.Z (Y) is a dense
metrizable subspace of (X). It follows that.# (X) is Baire. Suppose tha¥ (X)

is weakly Volterra. By Lemm&.6, .7 (X) contains a nonempty basic open subspace
(Ug, ..., U,) that is Volterra. LeU = [ J{U; : 1 <i < n}. We claim thatU is an
open Volterra subspace &. To see this, for any two dens&-sets

G=[){Gn:meN} and H=(){Hn:meN]}

of U, whereG,, and H,, are open subsets tf (thus they are open iX as well) for
almeN, letG, = G,NU; andH,,; = H,NU; for each 1<i < n. Then, for
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eachm € N, we can define two basic open subsets

gm = <Gmla ey Gmn> and <%ﬂm = <Hm1, ey Hmn)

in 7 (X). It can be readily checked that = (){%, : m € N} and.%# = ({5, :

m € N} are densés;-sets in the subspagely, ..., U,). Thus,¢ N o7 is dense in
(U, ..., U,). This implies thatG N H is dense inJ. Hence, we have shown that
U is a Volterra subspace of. Next, we choose an open subsetc X such that
VcUandV, =VNU #@foralll<i <n. Being a nonempty open subspace
of (Ug, ..., Un), (Vi,..., V,) is also Volterra. By applying the condition (d) to the
closed subspacdé of X and then repeating the previous argument, we conclud&that
contains a dense metrizable subspisiceThenM NV is a dense metrizable subspace
of V. SinceZ (M NV) isdense inVy, ..., V,), then it follows that

FZMAV)N (Ve ..., V)

is a dense metrizable subspacégVf, . . ., V,). By Theoreml.3(a), we conclude that
(V1, ..., V) is an open Baire subspace .¢f (X). Therefore, 7 (X) is a space of
second category.

To complete the proof, we need to introduce some auxiliary tools. For any finite
family 7 = {Uy, U,, --- , U, } of subsets o, let

%*:H{Uizlfi §n}><1_”U{U,-:1§j <n}:i >n}.
Then7* c X*. Let X” be equipped with a topology* by taking
S ={%* : % is afinite family of open subsets &f}

as abase. We denote the spx¢avith this topology byX?. We have shown that under
any of conditions (a)—(d),# (X) is Baire (respectively of second category). Then
it follows from [13, Theorem 3.10] thaK? is also a Baire space (respectively space
of second category). For any fixede N, since the canonical projection mapping
o X¢ — X", defined byr((Xi)) = (X1,..., X,) for all (x;) € X?, is an open and
continuous surjection, theX" is Baire (respectively of second category). O

REMARK. (i) In general, none of the following properties: first countability,
LaSnev, metacompactness and sequentiality, is preserved by the hyperspace of nor
empty compact subsets of a given space. For example, the Sorgenfre$ ikne
metacompact, butZ (S) is not metacompact. The other relevant counterexamples
can be found in{, 14].

(i) For any given space, the associated spa®&’, or a more general spacé&
(wherex > w), has been studied irlB, 15] respectively. In particulary* is called
the pinched-cube topolodg [15].
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Now, we give two examples to show that the hypersp#0eX) of a Volterra (even
a metric Baire) spacX does not need to be weakly Volterra, that is, the converse of
Lemma4.1does not hold in general.

EXAMPLE 2. A Baire metric spaceX whose squareX? is nowhere Baire and
whose hyperspace? (X) is not weakly Volterra. For any cardinal > o, let
Cok = {a € k : cf(a) = w}. Foranyf e “k, let f* = sug f(n) : n € w}. Next,
define a metrigp on“« by

0o iff=g;

f =
(9 1/2", if f £#g,wheren=minfmew: f [Mm#g | m).

Then the metric spac€x, p) is simply denoted byl,. LetM = J, x J.+ be given
the product metrid, that is,d((X1, Y1), (X2, ¥2)) = p1(X1, X2) + 02(Y1, ¥2). Now, let
{Ay 1 y € J,} be a family of pairwise disjoint stationary subsetsk*. Consider
the subspac& = {(y, f) € M : f* € Ay} of M. Itis shown in B, Example 4] that
X is a Baire space, but? is of first category. By Theoremh.2, .7 (X) is not weakly
\olterra.

ExamMPLE 3. A hereditarily Baire metric spac¥ all of whose powers are Baire,
but whose hyperspac#” (X) is not weakly Volterra. LeiX C R be a Berstein set
endowed with the Euclidean topology (refer i®] 12] for the existence of such a set
in R). It is known thatX is a hereditarily Baire metric space such that neitkeror
R ~. X contains a perfect subset & Moreover, it is also known that all compact
subsets ofX are countable an&X* is a Baire space for any cardinal SinceX is
separable, it has a countable baeFor any nonempty membé&f € 4, let

oy ={K € 2 (X) : KNV contains exactly one point

Suppose thatUy, ..., U,) is any basic open subset of (X), whereUq, ..., U, are
nonempty open subsets ¥f We consider two cases.

(i) VN (UL U)=a. Inthis case, we havey, N (U, ..., U,) = .

(i) VNU,, # @ forsome 1< iy < n. First, we can choose two disjoint nonempty
open subsetd! andU? of X both of which are contained M N U;,. Then, it follows
that(Uy, ..., UL, U2, ..., U,) is a basic open subset of"(X) which is contained in
(Ug, ..., Uy) such thater, N (Uy, ..., UL U2, ... Uy) = @.

Thus, we have shown tha#, is a nowhere dense subset.gf (X). Since each
nonempty compact subset is not perfect, it must have an isolated point. Consequently
H(X) = Uyeg @ and# (X) is a space of first category. In addition, sinzé&(X)

is metrizable by the Hausdorff metric of the Euclidean metricgioy Theoremil.3,

2 (X) is not weakly Volterra.
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By a result of McCoy in13], if X is a Tychonoff space such that (X) is a Baire
space, therX" is Baire for alln € N. We conclude this paper with the following two
questions motivated by this fact and Theoréra

QUESTION 4.3. Let X be a Tychonoff space. If# (X) is a Volterra (respectively
weakly Volterra) space, is it true that" is Volterra (respectively weakly Volterra) for
alln e N?

QUESTION4.4. Let X be a Tychonoff space. 1f2is a Baire (respectively Volterra,
weakly Volterra), is it true thaK" is Baire (respectively Volterra, weakly Volterra) for
alln e N?

NOTE ADDED IN PROOEF In the systemiZFC+ P(¢)], there is a Hausdorff-Volterra
group which is not Baire; refer to V. Malykhin, ‘Extremally disconnected and nearly
extremally diconnected groupsSoviet Math. Dokl16 (1975), 21-25. Recently, an
affirmative answer to the case of Baire spaces of Questidrhas been given by
J. Cao, S. Gara-Ferreira and V. Gutev in a joint paper.
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