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Abstract

In this paper, we investigate Volterra spaces and relevant topological properties. New characterizations
of weakly Volterra spaces are provided. An analogy of the Banach category theorem in terms of Volterra
properties is obtained. It is shown that every weakly Volterra homogeneous space is Volterra, and there
are metrizable Baire spaces whose hyperspaces of nonempty compact subsets endowed with the Vietoris
topology are not weakly Volterra.
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1. Introduction

Let f : X → Y be a function from one topological spaceX into another topological
spaceY. We shall denote byC. f / (respectivelyD. f /) the set of points at which
f is continuous (respectively discontinuous). Recall thatf is said to bepointwise
discontinuous, abbreviated asPWD, if C. f / is dense inX. This class of functions was
originally introduced by Hankel [8] in 1870, and used to be the main object of studies
in the classical real function theory until the appearance of the works of Lebesgue. It
can be shown that a function of a Baire space to a metric space is PWD if and only
if D. f / is of first category. In 1881, Volterra [16] proved the following interesting
theorem.

THEOREM 1.1 ([16]). Let f : R → R be a PWD function. Then there exists no
other PWD functiong : R → R with C.g/ = D. f /.
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Hence, for example, the setC. f / of the function f : R → R given by

f .x/ =
∑
k≥1

.kx/

k2
= .x/

12
+ .2x/

22
+ · · · + .kx/

k2
+ · · · ;

where.x/ denotes the fractional part ofx ∈ R, is precisely the irrationals, and there
exists no functiong : R → R whose set of points of continuity is the rationals.
These ideas and their generalizations have been studied in the last ten years by Gauld,
Greenwood and Piotrowski in [3, 6, 4, 5] respectively. Their work leads to the
following definitions of Volterra and weakly Volterra spaces.

DEFINITION 1.2 ([5]). A topological spaceX is calledVolterra (respectivelyweakly
Volterra) if for each pair of real-valued PWD functionsf; g : X → R, the set
C. f / ∩ C.g/ is dense (respectively nonempty) inX.

We notice that the range spaceR in Definition 1.2 can be replaced by any de-
velopable space by considering the generalized oscillation. Although Volterra and
weakly Volterra spaces are defined in terms of ‘external’ functions on them, there are
some ‘internal’ characterizations for these two classes of spaces as well, namely, a
spaceX is Volterra (respectively weakly Volterra) if and only if the intersection of
any two denseGŽ-sets inX is dense (respectively nonempty) [6]. Recall that a space
is Baire (respectivelyof second category) if the intersection of any countably many
dense open subsets is dense (respectively nonempty). Now, it is clear that every Baire
space is Volterra, and every space of second category is weakly Volterra. Of course, all
nonempty Baire spaces are of second category, and all nonempty Volterra spaces are
weakly Volterra. In general, these four classes of spaces are all distinct, and relevant
examples can be found in [6, 4, 5, 7]. In answering a question in [4], Gruenhage and
Lutzer [7] provided some natural classes of topological spaces in which a space is
Volterra if and only if it is Baire. In particular, the following theorem is essentially
proved in [7].

THEOREM 1.3 ([7]). Let X be a topological space which satisfies any one of the
following conditions:

(a) X contains a dense metrizable subspace.
(b) X is a Lǎsnev space, that is, a closed continuous image of a metric space.
(c) X is a metacompact sequential space which has a¦ -closed discrete dense set.
(d) X is separable and sequential.
(e) X is a metacompact Moore space.

ThenX is a Baire space(respectively a space of second category) if and only if it is a
Volterra (respectively weakly Volterra) space.
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However, it is still not clear how to extend Theorem1.3 to some classes of topo-
logical spaces with certain types of generalized metric properties. For example, it is
still an open question whether it is true that every Volterra Moore space is Baire, see,
for example, [7, Question 2.11].

In this paper, we shall continue the study of Volterra and weakly Volterra spaces.
In Section2, new characterizations of weakly Volterra spaces are given, and an error
in a result of [4] is corrected. In Section3, an analogy of the Banach category
theorem is established. This enables us to discover a decomposition for an arbitrary
topological space in terms of Volterra properties, and further prove that any weakly
Volterra homogeneous space is Volterra. In the last section, we study hyperspaces
of Volterra spaces with the Vietoris topology. It is shown that in certain classes of
spaces, if the hyperspace of nonempty compact subsets of a given space is Volterra
(respectively weakly Volterra) then all its finite powers must be Volterra (respectively
weakly Volterra). We also give two examples to show that in general, the property
of being (weakly) Volterra is not preserved by the hyperspace of nonempty compact
subsets of a given space. Finally, some open questions related to Volterra properties
of hyperspaces are posed.

All topological spaces are assumedT1, although it is not always necessary. As
usual, SA and intA will denote the closure and interior of a subsetA in a spaceX
respectively. WhenX is a subspace of a topological spaceY, we shall useSAX and
intX A to denote the closure and interior of a subsetA in the subspaceX respectively.
For a cardinal�, cf.�/ denotes the cofinality of�, and�+ will represent the next
cardinal after�. The symbolAB stands for the set of all functions from a setA to a
set B. We refer the readers to [9] for basic facts and undefined notation about Baire
spaces. For the other undefined terminology, see [11, 12].

2. Weakly Volterra spaces

In this section, we first correct an error in an example of Gauld, Greenwood and
Piotrowski on weakly Volterra spaces in [4]. Then, we provide some new characteri-
zations for weakly Volterra spaces, which enable us to resolve a problem in [4]. The
following result can be found in [4].

THEOREM 2.1 ([4]). If X is a Volterra space,Y1; : : : ;Yn .n ∈ N/ are developable
spaces andfi : X → Yi .i ≤ n/ are PWD functions, then

⋂{C. fi / : 1 ≤ i ≤ n} is
dense inX.

In the light of Theorem2.1, it is natural and also interesting to consider the following
question.
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QUESTION 2.2. Is it true that for any weakly Volterra spaceX, any developable
spacesY1; : : : ;Yn .n ≥ 3/ and any PWD functionsfi : X → Yi .1 ≤ i ≤ n/,⋂{C. fi / : 1 ≤ i ≤ n} 6= ??

In fact, this question has been already considered in [4] and a negative answer
was provided there. More precisely, a weakly Volterra spaceX and three real-valued
functions f; g; h : X → R such thatC. f /, C.g/ andC.h/ are denseGŽ-sets ofX,
but C. f / ∩ C.g/ ∩ C.h/ = ?, were constructed in [4, Example 3]. Unfortunately,
this example is false as we are going to show next.

EXAMPLE 1. The spaceX in [4, Example 3] is not weakly Volterra. First, we shall
briefly describe the space presented in [4]. Let

A = {〈x; y〉 ∈ R2 : y ≥ 0}:
For each real numberr ≥ 0, let Ar = {〈x; y〉 ∈ R2 : y + r > 0}. DefineB; Br to be
the sets obtained by rotatingA; Ar 120◦ about〈0; 0〉 anti-clockwise, andC;Cr by a
similar rotation clockwise. Let

D = .A0 ∩ B0/ ∪ .B0 ∩ C0/ ∪ .C0 ∩ A0/ and

E = .A0r .B ∪ C// ∪ .B0r .C ∪ A// ∪ .C0r .A ∪ B//:

Furthermore, let us defineB1,B2 andB3 by

B1 = {.Ar ∩ Bs ∩ Ct ∩ D/r F : r; s; t > 0 andF ⊆ R2 is finite};
B2 = {.Ar ∩ Bs ∩ Ct/r F : r; s; t > 0 andF ⊆ R2 is finite} and

B3 = {.Ar ∩ Bs ∩ Ct ∩ E/r F : r; s; t > 0 andF ⊆ R2 is finite}:
Then the spaceX considered in [4, Example 3] isR2 endowed with the topology
generated by

⋃{Bi : 1 ≤ i ≤ 3} as a base. It is clear thatA; B;C are denseGŽ-sets
of X. In addition, it can be checked easily that bothA0 ∩ B0 andC r .A ∪ B/ are
GŽ-sets ofX (but, they are not dense inX).

Now, consider the two subsetsG andH of X shown in Figure1 as the two shaded
regions without including their boundaries. These two sets can be defined by the
following formulae

G = .A0 ∩ B0/ ∪ .C r .A ∪ B// and H = .B0 ∩ C0/ ∪ .Ar .B ∪ C//:

It is not difficult to see thatG is dense inX. Being the union of twoGŽ-sets inX, G
is also aGŽ-set of X. Thus,G is a denseGŽ-set in X. Similarly, H is also a dense
GŽ-set of X. However, it is obvious thatG ∩ H = ?. Therefore, we have verified
that the spaceX is not weakly Volterra.
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FIGURE 1.

Interestingly, the answer to Question2.2 is positive. To show this, we shall first
provide some new characterizations for weakly Volterra spaces.

THEOREM2.3. The following statements are equivalent for a spaceX:

(a) X is a weakly Volterra space.
(b) The intersection of any finitely many denseGŽ-sets ofX is somewhere dense

in X.
(c) The intersection of any finitely many denseGŽ-sets ofX is not empty.

PROOF. It is clear that (b)⇒ (c) and (c)⇒ (a).
We shall prove (a)⇒ (b) by induction. SupposeX is weakly Volterra. First,

for any two denseGŽ-sets A1; A2 of X, we defineB1 = A1 r A1 ∩ A2 and B2 =
A2r A1 ∩ A2. It is obvious thatB1 ∩ B2 = ?. SinceA1 and A2 are dense inX, we
haveB1 = X r int A1 ∩ A2, and B2 = X r int A1 ∩ A2. If int A1 ∩ A2 = ?, then
B1 and B2 are two denseGŽ-sets ofX which are disjoint. This is a contradiction.
Therefore, we have shown that the intersection of any two denseGŽ-sets of X is
somewhere dense inX.

Next, suppose that it has been shown that the intersection of anyi many dense
GŽ-sets of X is somewhere dense inX, where 1 ≤ i ≤ n and n ≥ 3. Let
A1; : : : ; An+1 ben + 1 many denseGŽ-sets ofX. Then, by our induction hypothesis,
int

⋂{Ai : 1 ≤ i ≤ n} 6= ?. For each 1≤ j ≤ n − 1, let us define the subsetCj ⊂ X
by

Cj =
(

Aj r

⋂
{Ai : 1 ≤ i ≤ n}

)
∪

(⋂
{Ai : 1 ≤ i ≤ n}

)
:

Furthermore, we define the setCn ⊂ X by the following

Cn =
(

An r

⋂
{Ai : 1 ≤ i ≤ n}

)
∪

(
An+1 ∩ int

⋂
{Ai : 1 ≤ i ≤ n}

)
:
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Now for every 1≤ j ≤ n − 1, sinceAj is dense inX, we have

Cj = X r
⋂

{Ai : 1 ≤ i ≤ n} ∪
⋂

{Ai : 1 ≤ i ≤ n}

=
(

X r int
⋂

{Ai : 1 ≤ i ≤ n}
)

∪
⋂

{Ai : 1 ≤ i ≤ n}
= X:

Thus, all the setsCj (1 ≤ j ≤ n−1) are denseGŽ-sets ofX. Similarly, one can check
Cn is also a denseGŽ-set inX. Moreover, it is easy to see that⋂

{Cj : 1 ≤ j ≤ n} ⊂
⋂

{Ai : 1 ≤ i ≤ n + 1}:

By our induction hypothesis again,
⋂{Cj : 1 ≤ j ≤ n} is somewhere dense inX,

then so is
⋂{Ai : 1 ≤ i ≤ n + 1}.

Our next result shall provide an affirmative answer to Question2.2.

COROLLARY 2.4. Let X be a weakly Volterra space,Y1; : : : ;Yn (n ∈ N) developable
spaces andfi : X → Yi .1 ≤ i ≤ n/ PWD functions. Then

⋂n
i =1{C. fi /} 6= ?.

PROOF. It is easy to see that eachC. fi / (1 ≤ i ≤ n) is a denseGŽ-set ofX. Hence,
by Theorem2.3, we obtain

⋂{C. fi / : 1 ≤ i ≤ n} 6= ?.

3. Volterraness in homogeneous spaces

A spaceX is said to behomogeneousif for any two distinct pointsx; y ∈ X
there exists a homeomorphismf : X → X such thatf .x/ = y. In this section, the
following main theorem shall be proved.

THEOREM3.1. Let X be a homogeneous space. ThenX is Volterra if and only if it
is weakly Volterra.

To achieve this goal, we shall first study non-weakly Volterra subspaces in a given
space. It is shown that the rôle of non-weakly Volterra subspaces in the theory of
Volterra spaces is somehow similar to that of first category sets in the theory of Baire
spaces. In what follows, we split the proof of Theorem3.1into several lemmas, which
are interesting for their own sake.

LEMMA 3.2. If a spaceX contains a nonempty weakly Volterra open subspaceY,
thenX itself is weakly Volterra.
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PROOF. Suppose thatU andV are any two denseGŽ-sets inX. ThenU ∩ Y and
V ∩ Y are two denseGŽ-sets in the subspaceY. SinceY is weakly Volterra, then
U ∩ V ⊃ .U ∩ V/ ∩ Y 6= ?. Hence,X is weakly Volterra.

REMARK. In Lemma3.2, ‘Y is open’ can be replaced with a weaker condition
‘there exists aGŽ-setH in Y such that intH is dense inY’.

LEMMA 3.3 ([5]). A space is Volterra if and only if every nonempty open subspace
is weakly Volterra.

LEMMA 3.4. If a spaceX contains a denseGŽ-subspace that is not weakly Volterra,
thenX itself is not weakly Volterra.

PROOF. Let Y ⊂ X be a denseGŽ-subspace that is not weakly Volterra. Then there
are two disjoint denseGŽ-setsU and V in Y. Pick two denseGŽ-setsÛ and V̂ in
X with U = Û ∩ Y andV = V̂ ∩ Y. Suppose thatX is weakly Volterra. Then, by
Theorem2.3 (c), we haveÛ ∩ V̂ ∩ Y 6= ?. It follows thatU ∩ V 6= ?. This is a
contradiction, sinceU ∩ V = ?.

Since every non-weakly Volterra subspace in a topological space must be a set of
first category, our next lemma can be treated as an analogy of the Banach category
theorem in topology and analysis.

LEMMA 3.5. In any spaceX, the union of any family of nonempty open non-weakly
Volterra subspaces is not weakly Volterra.

PROOF. LetU be a family of nonempty open subspaces ofX such that each member
of U is not weakly Volterra inX. Let =N V be the set of all collections of nonempty
open subsets ofX with the following two properties:

(a) each collectionV ∈ =N V is pairwise disjoint; and
(b) for each collectionV ∈ =N V and each memberV ∈ V , there exists some

U ∈ U such thatV ⊂ U .

Then, by Zorn’s lemma,=N V has a maximal elementV = {VÞ : Þ ∈ A}. Let
V = ⋃{VÞ : Þ ∈ A}. By the maximality ofV , we have

⋃{U : U ∈ U } ⊂ V .
Moreover, it follows from (b) and Lemma3.2 that for eachÞ ∈ A, VÞ is not weakly
Volterra as an open subspace ofX. Thus, there are two families{FÞ : Þ ∈ A} and
{HÞ : Þ ∈ A} of GŽ-sets ofX such that

(c) FÞ ∩ HÞ = ? for all Þ ∈ A; and
(d) FÞ ⊂ VÞ ⊂ FÞ andHÞ ⊂ VÞ ⊂ HÞ for all Þ ∈ A.
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Let F = ⋃{FÞ : Þ ∈ A} and H = ⋃{HÞ : Þ ∈ A}. By (a) and (c), we have
F ∩ H = ?. For eachÞ ∈ A, let

FÞ =
⋂

{Fn
Þ : n ≥ 1} and HÞ =

⋂
{Hn

Þ : n ≥ 1};

whereFn
Þ andHn

Þ are nonempty open subsets ofX contained inVÞ such thatFn+1
Þ ⊂ Fn

Þ

andHn+1
Þ ⊂ Hn

Þ for all Þ ∈ A and alln ∈ N. Now, put

Fn =
⋃

{Fn
Þ : Þ ∈ A} and Hn =

⋃
{Hn

Þ : Þ ∈ A}:
for all n ∈ N. After a simple computation, we can obtain

F =
⋂

{Fn : n ≥ 1} and H =
⋂

{Hn : n ≥ 1}:

By (d), we haveVÞ ⊂ FÞV andVÞ ⊂ HÞ
V for eachÞ ∈ A. Since{FÞ : Þ ∈ A} and

{HÞ : Þ ∈ A} are two discrete families in the subspaceV of X, then

V ⊂
⋃{

FÞ
V : Þ ∈ A

} = F V and V ⊂
⋃ {

HÞ
V : Þ ∈ A

} = H V :

Thus,F andH are two disjoint denseGŽ-sets in the subspaceV of X. Consequently,
V is not a weakly Volterra subspace ofX. It follows from Lemma3.4 that V is not
a weakly Volterra subspace ofX either. Since

⋃{U : U ∈ U } ⊂ V , by Lemma3.2
again,

⋃{U : U ∈ U } is not a weakly Volterra subspace ofV . Therefore, we
conclude that

⋃{U : U ∈ U } is not a weakly Volterra subspace ofX.

As an immediate application of Lemma3.5, we obtain the following decomposition
lemma for an arbitrary topological space.

LEMMA 3.6. Let X be an arbitrary topological space. Then there are two open
(possibly empty) subspacesXN V and XV of X such that

(a) X = XN V ∪ XV and XN V ∩ XV = ?;
(b) every nonempty open subspace ofXN V is not weakly Volterra inX; and
(c) every nonempty open subspace ofXV is Volterra in X.

Furthermore,X is a Volterra space if and onlyXN V = ?, andX is a weakly Volterra
space if and only ifXV 6= ?.

PROOF. Let XN V be the union of all nonempty open non-weakly Volterra subspaces
of X, and letXV = Xr XN V. By Lemma3.5, XN V is not weakly Volterra as an open
subspace ofX. It is obvious that every nonempty open subspace ofXV is weakly
Volterra. Thus, following from Lemma3.3, every nonempty open subspace ofXV is
Volterra. So, we have shown thatXN V andXV fulfil (a), (b) and (c). By Lemma3.3
again,X is Volterra if and only ifXN V = ?. If XV 6= ?, thenXV is a weakly Volterra
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subspace ofX. By Lemma3.2, the spaceX itself is weakly Volterra. Conversely,
suppose thatX is weakly Volterra, andXV = ?. ThenX = XN V. SinceXN V is not
weakly Volterra, then by Lemma3.4, the spaceX itself is not weakly Volterra either.
This is a contradiction.

Now we are able to prove Theorem3.1by applying the previous lemmas.

PROOF OFTHEOREM3.1. The necessity is trivial. To prove the sufficiency, suppose
that X is a weakly Volterra space. Then, by Lemma3.6, XV is a nonempty open
Volterra subspace ofX. Now, letU be any nonempty open subspace ofX. Then there
exists a pointx ∈ XV and a homeomorphismf : X → X such thatf .x/ ∈ U . The
spaceU ∩ f .XV/, being a nonempty open subspace of the Volterra spacef .XV/, is
also Volterra. Thus, it follows from Lemma3.2 thatU is a weakly Volterra subspace
of X. Finally, by Lemma3.3, the spaceX itself is Volterra.

The relationships among the classes of Baire spaces, Volterra spaces, weakly
Volterra spaces and spaces of second category can be summarised in the following
figure.

weakly Volterra

homogeneous

metric

metr
ic

2nd category

homogeneous
metr

ic

Volterra

homogeneous

Baire

FIGURE 2.

REMARK. It is well known that a homogeneous space is Baire if and only if it is of
second category. Note that homogeneous Volterra spaces which are not Baire do exist.
For example, letX = R be the set of all reals. LetT1 be the lower topology onX, that
is, T1 = {?; X} ∪ {.a;+∞/ : a ∈ X}. LetT2 be the co-countable topology onX.
EquipX with the topologyT = T1 ∨T2. ThenX is aT1 homogeneous space. Every
denseGŽ-set A of X can be expressed by eitherA = X r S, or A = .a;+∞/r S,
or A = [a;+∞/r S, wherea ∈ X andS ⊂ X is countable. Hence, the intersection
of any finitely many denseGŽ-sets ofX meets every nonempty member ofT . It
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follows that X is Volterra. On the other hand,X is not Baire, because the subsets
Un = .n;+∞/ of X are all open and dense but their intersection overN is empty.

Since the space given in the previous remark is not Hausdorff, the following question
arises naturally.

QUESTION 3.7. Does there exist a Tychonoff homogeneous space or even a Haus-
dorff topological group which is Volterra but not Baire?

By Lemma3.6, a nonempty space is not weakly Volterra if and only if no nonempty
open subspace is weakly Volterra. Our next result, which says thata semi-open
subspace of a given space is not weakly Volterra if and only if it is nowhere weakly
Volterra, is a slight extension of this fact. Recall that a subsetA of a spaceX is
semi-openif int A is dense inA. It is clear that in any topological space, all open
subspaces are semi-open.

THEOREM3.8. Let A be a nonempty semi-open subspace of a spaceX. ThenA is
not weakly Volterra inX if and only if for every open subsetU of X with U ∩ A 6= ?
there exists a nonempty open subsetV of X contained inU such thatV ∩ A is not
weakly Volterra inX.

PROOF. The necessity follows from Lemma3.2directly. So, we shall consider the
sufficiency. First, suppose thatA is a nowhere dense subset ofX. Let U andV be
any two denseGŽ-sets inA. If A is weakly Volterra, then by Theorem2.3, U ∩ V is
a somewhere dense set in the subspaceA. We shall derive a contradiction. LetG be
any nonempty open subset ofA, and letH be an open subset ofX with G = H ∩ A.
Then H ∩ int A 6= ?, as intA is dense inA. SinceA is a nowhere dense set ofX,
thenU ∩ V is a nowhere dense subset ofX as well. Thus, there exists a nonempty
open subsetO of X contained inH ∩ int A such thatO ∩ .U ∩ V/ = ?. This shows
thatU ∩ V is a nowhere dense set in the subspaceA, which is a contradiction. Hence,
A is not weakly Volterra in this case.

Next, we shall consider the case thatA is a somewhere dense subset ofX. Let
U = int A. ThenU is a nonempty open subset ofX. Let U = {Uþ : þ ∈ B} be
the family of all nonempty open subsets ofX such that for eachþ ∈ B, Uþ ⊂ U and
Uþ∩ A is not a weakly Volterra subspace ofX. Note that for eachþ ∈ B, Uþ ∩ A is not
weakly Volterra as an open subspace of the subspaceA. It follows from Lemma3.5
that

⋃{Uþ ∩ A : þ ∈ B} is not weakly Volterra in the subspaceA. By hypothesis,⋃{Uþ ∩ A : þ ∈ B} is a dense open subspace ofA ∩ U . Hence, it follows from
Lemma3.4that A∩U cannot be weakly Volterra. Furthermore, since intA ⊂ A∩U ,
by Lemma3.2, int A is not weakly Volterra inX. Finally, as intA is dense and open
in the subspaceA, by Lemma3.4again, we conclude thatA is not a weakly Volterra
subspace ofX.



[11] Volterra spaces revisited 71

REMARK. Note that the condition ‘A is semi-open’ in Theorem3.8 is not needed
in the proof of necessity. However, the authors do not know whether this condition
can be dropped from the proof of the sufficiency.

4. Hyperspaces of Volterra spaces

In this section, we shall study hyperspaces of Volterra and weakly Volterra spaces.
For a given Hausdorff topological spaceX, let 2X denote the collection of nonempty
closed subsets ofX. For any finite familyU = {U1;U2; : : : ;Un} of subsets ofX, we
define〈U 〉 ⊂ 2X by

〈U 〉 =
{

F ∈ 2X : F ⊂
⋃

{Ui : 1 ≤ i ≤ n}; andF ∩ Ui 6= ? ∀i = 1; : : : ; n
}
:

Throughout this section, 2X shall be equipped with the so-calledVietoris topology−V

(also known asthe finite topologyin the literature), which has the family of all subsets
of 2X of the form〈U 〉 as a base, whereU runs through all finite families of open
subsets ofX. LetF .X/ (respectivelyK .X/) be the subspace of 2X consisting of
all nonempty finite (respectively compact) subsets ofX with the relative topology.
In what follows, we shall first give some necessary conditions for spaceX in certain
classes of spaces such thatK .X/ is (weakly) Volterra. Then we give two examples
from well-known constructions to show that the (weak) Volterraness of a spaceX is
not preserved by its hyperspaceK .X/ in general.

LEMMA 4.1. For any Hausdorff spaceX, ifK .X/ is Volterra(respectively weakly
Volterra) thenX is Volterra(respectively weakly Volterra).

PROOF. For a family{BÞ : Þ ∈ A} of subsets ofX, it is easy to check that

(a) 〈⋂{BÞ : Þ ∈ A}〉 = ⋂{〈BÞ〉 : Þ ∈ A}; and
(b) for anyÞ ∈ A, BÞ is dense (respectively nonempty) inX if and only if 〈BÞ〉 is

dense (respectively nonempty) inK .X/.

Now suppose thatK .X/ is Volterra (respectively weakly Volterra). LetU and V
be two denseGŽ-sets inX. Then〈U 〉 and〈V〉 are denseGŽ-sets inK .X/. Since
K .X/ is Volterra (respectively weakly Volterra), then〈U 〉∩〈V 〉 is dense (respectively
nonempty) inK .X/. By (a) and (b) above,U ∩ V is dense (respectively nonempty)
in X. Therefore,X is Volterra (respectively weakly Volterra).

We notice that the conclusion of Lemma4.1 still holds whenK .X/ is replaced
by 2X. Next, we shall show that the conclusion of Lemma4.1can be strengthened for
certain classes of spaces.



72 Jiling Cao and David Gauld [12]

THEOREM4.2. Let X be a Tychonoff space which satisfies any one of the following
conditions:

(a) X has a dense metrizable subspace.
(b) X is a Lǎsnev space, that is, a closed continuous image of a metric space.
(c) X is separable and first countable.
(d) X is a metacompact Moore space.

If K .X/ is a Volterra(respectively weakly Volterra) space, thenXn is a Baire space
(respectively a space of second category) for all n ∈ N.

PROOF. Suppose thatK .X/ is a Volterra (respectively weakly Volterra) space. By
Lemma4.1, X itself is Volterra (respectively weakly Volterra). Then, by Theorem1.3,
under any of these conditions,X is a Baire space (respectively a space of second
category). We first show that under any one of these conditions,K .X/ is a Baire
space (respectively a space of second category). The cases of (a), (b) and (c), which
are easier, shall be shown in the next. Suppose that (a) holds. LetY ⊂ X be a dense
metrizable subspace. ThenF .Y/ is a dense metrizable subspace ofK .X/. If (b)
holds, then there is a metric spaceM and a closed continuous mappingf : M → X
from M onto X. Define f̂ : K .M/ → K .X/ by letting f̂ .K / = f .K / for all
K ∈ K .M/. It can be checked that̂f is closed and continuous. Moreover,f̂ .K .M//
is a dense subspace ofK .X/. Now, suppose that (c) holds. ThenF .X/ is a dense
separable and first countable subspace ofK .X/. Hence, by [7, Corollary 2.8], under
any of conditions (a), (b) and (c),K .X/ is Baire (respectively of second category).

Finally, suppose (d) holds. Then we can choose a development.U /n∈N such that
for eachn ∈ N, Un is a point finite open cover ofX andUn+1 is a refinement ofUn.
For eachn ∈ N, let Yn ⊂ X be a denseGŽ-subspace such thatUn is locally finite at
each point ofYn. For eachn ∈ N, set

Y =
⋂

{Yn : n ∈ N} and Vn = {U ∩ Y : U ∈ Un}:
Then,

⋃{Vn : n ∈ N} is a ¦ -locally finite base forY. Thus, by the Bing-Nagata-
Smirnov metrization theorem,Y is a metrizable subspace ofX. If K .X/ is Volterra,
as we have seen,X is Baire. Then,Y is dense inX, and thusF .Y/ is a dense
metrizable subspace ofK .X/. It follows thatK .X/ is Baire. Suppose thatK .X/
is weakly Volterra. By Lemma3.6,K .X/ contains a nonempty basic open subspace
〈U1; : : : ;Un〉 that is Volterra. LetU = ⋃{Ui : 1 ≤ i ≤ n}. We claim thatU is an
open Volterra subspace ofX. To see this, for any two denseGŽ-sets

G =
⋂

{Gm : m ∈ N} and H =
⋂

{Hm : m ∈ N}
of U , whereGm and Hm are open subsets ofU (thus they are open inX as well) for
all m ∈ N, let Gmi = Gm ∩ Ui and Hmi = Hm ∩ Ui for each 1≤ i ≤ n. Then, for
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eachm ∈ N, we can define two basic open subsets

Gm = 〈Gm1; : : : ;Gmn〉 and Hm = 〈Hm1; : : : ; Hmn〉
in K .X/. It can be readily checked thatG = ⋂{Gm : m ∈ N} andH = ⋂{Hm :
m ∈ N} are denseGŽ-sets in the subspace〈U1; : : : ;Un〉. Thus,G ∩H is dense in
〈U1; : : : ;Un〉. This implies thatG ∩ H is dense inU . Hence, we have shown that
U is a Volterra subspace ofX. Next, we choose an open subsetV ⊂ X such that
V ⊂ U andVi = V ∩ Ui 6= ? for all 1 ≤ i ≤ n. Being a nonempty open subspace
of 〈U1; : : : ;Un〉, 〈V1; : : : ; Vn〉 is also Volterra. By applying the condition (d) to the
closed subspaceV of X and then repeating the previous argument, we conclude thatV
contains a dense metrizable subspaceM . ThenM ∩ V is a dense metrizable subspace
of V . SinceF .M ∩ V/ is dense in〈V1; : : : ;Vn〉, then it follows that

F .M ∩ V/ ∩ 〈V1; : : : ;Vn〉
is a dense metrizable subspace of〈V1; : : : ;Vn〉. By Theorem1.3(a), we conclude that
〈V1; : : : ;Vn〉 is an open Baire subspace ofK .X/. Therefore,K .X/ is a space of
second category.

To complete the proof, we need to introduce some auxiliary tools. For any finite
family U = {U1;U2; · · · ;Un} of subsets ofX, let

U
∗ =

∏
{Ui : 1 ≤ i ≤ n} ×

∏ {⋃
{U j : 1 ≤ j ≤ n} : i > n

}
:

ThenU ∗ ⊂ X!. Let X! be equipped with a topology− ∗ by taking

= = {U ∗ : U is a finite family of open subsets ofX}
as a base. We denote the spaceX! with this topology byX!

∗ . We have shown that under
any of conditions (a)–(d),K .X/ is Baire (respectively of second category). Then
it follows from [13, Theorem 3.10] thatX!

∗ is also a Baire space (respectively space
of second category). For any fixedn ∈ N, since the canonical projection mapping
³ : X!

∗ → Xn, defined by³.〈xi 〉/ = 〈x1; : : : ; xn〉 for all 〈xi 〉 ∈ X!
∗ , is an open and

continuous surjection, thenXn is Baire (respectively of second category).

REMARK. (i) In general, none of the following properties: first countability,
Lašnev, metacompactness and sequentiality, is preserved by the hyperspace of non-
empty compact subsets of a given space. For example, the Sorgenfrey lineS is
metacompact, butK .S/ is not metacompact. The other relevant counterexamples
can be found in [1, 14].

(ii) For any given spaceX, the associated spaceX!
∗ , or a more general spaceX�

∗
(where� ≥ !), has been studied in [13, 15] respectively. In particular,− ∗ is called
the pinched-cube topologyin [15].
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Now, we give two examples to show that the hyperspaceK .X/ of a Volterra (even
a metric Baire) spaceX does not need to be weakly Volterra, that is, the converse of
Lemma4.1does not hold in general.

EXAMPLE 2. A Baire metric spaceX whose squareX2 is nowhere Baire and
whose hyperspaceK .X/ is not weakly Volterra. For any cardinal� > !, let
C!� = {Þ ∈ � : cf.Þ/ = !}. For any f ∈ !�, let f ∗ = sup{ f .n/ : n ∈ !}. Next,
define a metric² on !� by

². f; g/ =
{

0; if f = g;

1=2n; if f 6= g, where n = min{m ∈ ! : f � m 6= g � m}.
Then the metric space.!�; ²/ is simply denoted byJ� . Let M = J2 × Jc+ be given
the product metricd, that is,d.〈x1; y1〉; 〈x2; y2〉/ = ²1.x1; x2/+ ²2.y1; y2/. Now, let
{Ay : y ∈ J2} be a family of pairwise disjoint stationary subsets ofC!c

+. Consider
the subspaceX = {〈y; f 〉 ∈ M : f ∗ ∈ Ay} of M . It is shown in [2, Example 4] that
X is a Baire space, butX2 is of first category. By Theorem4.2,K .X/ is not weakly
Volterra.

EXAMPLE 3. A hereditarily Baire metric spaceX all of whose powers are Baire,
but whose hyperspaceK .X/ is not weakly Volterra. LetX ⊂ R be a Berstein set
endowed with the Euclidean topology (refer to [10, 12] for the existence of such a set
in R). It is known thatX is a hereditarily Baire metric space such that neitherX nor
R r X contains a perfect subset ofR. Moreover, it is also known that all compact
subsets ofX are countable andX� is a Baire space for any cardinal�. SinceX is
separable, it has a countable baseB. For any nonempty memberV ∈ B, let

AV = {K ∈ K .X/ : K ∩ V contains exactly one point}:
Suppose that〈U1; : : : ;Un〉 is any basic open subset ofK .X/, whereU1; : : : ;Un are
nonempty open subsets ofX. We consider two cases.

(i) V ∩ ( ⋃n
i =1 Ui

) = ?. In this case, we haveAV ∩ 〈U1; : : : ;Un〉 = ?.
(ii) V ∩Ui0 6= ? for some 1≤ i0 ≤ n. First, we can choose two disjoint nonempty

open subsetsU 1
i0

andU 2
i0

of X both of which are contained inV ∩Ui0. Then, it follows
that〈U1; : : : ;U1

i0
;U 2

i0
; : : : ;Un〉 is a basic open subset ofK .X/ which is contained in

〈U1; : : : ;Un〉 such thatAV ∩ 〈U1; : : : ;U1
i0
;U 2

i0
; : : : ;Un〉 = ?.

Thus, we have shown thatAV is a nowhere dense subset ofK .X/. Since each
nonempty compact subset is not perfect, it must have an isolated point. Consequently,
K .X/ = ⋃

V∈BAV andK .X/ is a space of first category. In addition, sinceK .X/
is metrizable by the Hausdorff metric of the Euclidean metric onX, by Theorem1.3,
K .X/ is not weakly Volterra.
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By a result of McCoy in [13], if X is a Tychonoff space such thatK .X/ is a Baire
space, thenXn is Baire for alln ∈ N. We conclude this paper with the following two
questions motivated by this fact and Theorem4.2.

QUESTION 4.3. Let X be a Tychonoff space. IfK .X/ is a Volterra (respectively
weakly Volterra) space, is it true thatXn is Volterra (respectively weakly Volterra) for
all n ∈ N?

QUESTION4.4. Let X be a Tychonoff space. If 2X is a Baire (respectively Volterra,
weakly Volterra), is it true thatXn is Baire (respectively Volterra, weakly Volterra) for
all n ∈ N?

NOTE ADDED IN PROOF. In the system[ZFC+ P.c/], there is a Hausdorff-Volterra
group which is not Baire; refer to V. Malykhin, ‘Extremally disconnected and nearly
extremally diconnected groups’,Soviet Math. Dokl. 16 (1975), 21–25. Recently, an
affirmative answer to the case of Baire spaces of Question4.4 has been given by
J. Cao, S. Garc´ıa-Ferreira and V. Gutev in a joint paper.
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