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Abstract. Regular and irregular pretopologies are studied. In particular,

for every ordinal there exists a topology such that the series of its partial
(pretopological) regularizations has length of that ordinal. Regularity and

topologicity of special pretopologies on some trees can be characterized in
terms of sets of intervals of natural numbers, which reduces studied problems

to combinatorics.
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1. Introduction

By a convergence we understand a relation x ∈ limF , between filters F and
points x, such that F ⊂ G implies limF ⊂ limG, and for which the principal
ultrafilter of x converges to x for every point x. A convergence ζ is finer than a
convergence ξ (in symbols, ζ ≥ ξ) if limζ F ⊂ limξ F for each filter F . A map f from
a convergence space to another is continuous provided that f(limF) ⊂ lim f(F) for
every filter F (1). The class of convergences is a category (with continuous maps
as morphisms). A convergence is Hausdorff if the limit of every filter is at most a
singleton.

The notion of regularity was generalized from topological to convergence spaces
in two ways, by Fischer [13] and by Grimeisen [15][16]. A convergence is regular
(in the sense of Fischer) if the limit of a filter F is included in the limit of the filter
generated by the family of the adherences of the elements of F . The definitions
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1We denote by f(F) the filter generated by {f(F ) : F ∈ F}.

1



2 SZYMON DOLECKI AND DAVID GAULD

of Fischer and Grimeisen coincide for pseudotopological spaces, and a fortiori for
pretopological spaces, which are the framework of this paper (2).

Regular convergences form a concretely reflective subcategory of the category
of convergences; we denote its reflector by R. In particular, for every convergence
ξ there exists a regular convergence Rξ, which is the finest among the regular
convergences that are coarser than ξ. The convergence Rξ is the regular reflection
of ξ (the regularization of ξ).

To our knowledge, there exists no explicit description of the filters that converge
in Rξ in terms of those convergent in ξ. It is possible however to define, explicitly
and simply, a partial regularization rξ of ξ so that ξ ≥ rξ ≥ Rξ for every convergence
ξ, and a convergence τ is regular if and only if ξ ≤ rξ (3). Moreover r is a concrete
functor, and for each convergence ξ there is a least ordinal α (the irregularity of ξ)
such that Rξ is equal to the α-th iteration (4) of r applied to ξ.

In this paper we show that for each ordinal α there exists a Hausdorff pretopol-
ogy the irregularity of which is precisely α. Our result is more precise (and our
construction is much simpler) than that of Kent and Richardson [18][19] who proved
that for every ordinal β there exists a pretopology ξ such that β is the least ordinal
for which (rω)βξ = Rξ.

We call an element x regular for a convergence ξ if x ∈ limrξ F implies x ∈ limξ F
for every filter F , and irregular otherwise. We witness an interesting phenomenon
of “propagation of irregularities” concerning the regularity of elements: an element
can be regular for a convergence ξ but irregular for its partial regularization rξ,
which, by construction, is “more regular” than ξ. This observation leads to a notion
of irregularity spectrum.

The irregularity of x with respect to ξ is the least ordinal β such that x is regular
for rβξ. The irregularity spectrum of an element x with respect to a convergence
ξ is the set of ordinals α for which x is irregular for rαξ. Consequently, an element
is irregular if and only if 0 is in its spectrum. It is amazing that for every subset A
of an ordinal, one can construct a Hausdorff pretopology such that the irregularity
spectrum of an element with respect to this convergence is precisely A.

Study of regularity (and irregularity) of some special pretopologies on sequential
trees (standard pretopologies) led us to a concept of states (sets of intervals of an
ordinal). Each standard pretopology is completely determined by its state, and the
functors r, R are transferred to the space of states. In this way, each investigation
concerning regularity of such a pretopology can be reduced to a combinatorial
problem concerning states.

We have observed that an element x of a pretopology of countable character (5)
is irregular (thus of irregularity ≥ 1), then there exists a homeomorphic embedding
“at x” of an irregular standard pretopology (on a tree of rank 2). On the other
hand, the fact that an element x is of irregularity 2 does not imply the existence of
a homeomorphic embedding “at x” of an irregular standard pretopology on a tree
of rank 3.

2Pseudotopologies and pretopologies are subclasses of convergences; we will define them in
Preliminaries.

3Kent and Richardson [18][19] introduced another functor of partial regularization, which in

our terminology is equal to rω .
4to be defined later.
5also called first-countable
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This discovery led us to a concept of ramified standard pretopologies and to our
main result that if x is an element of finite irregularity of a pretopology of countable
character, then there is a homeomorphic embedding “at x” of a ramified standard
pretopology of the same irregularity.

2. Preliminaries

Families F ,H (of subsets of a given set) mesh (in symbols, F#H) if F∩H 6= ∅ for
every F ∈ F and each H ∈ H. A systematic use of the operation # in conjunction
with other operations, like that of contour, has led to a versatile calculus (see, for
example, [8],[9],[3],[11],[4]). The operation # is related to the notion of grill H# of
a family H, which was defined by Choquet [1] as H# =

⋂
H∈H{G : G ∩ H 6= ∅}

(denoted also sec(H) in [17]); of course,

F#H ⇔ F ⊂ H# ⇔ H ⊂ F#.

The adherence of a filter H with respect to a convergence ξ is defined by

adhξH =
⋃
F#H

limξ F .

In particular, adhξ H denotes the adherence of the principal filter of H. If F is a
filter on the underlying set |ξ| of a convergence ξ, then the symbol adh\

ξ F denotes
the filter generated by {adhξ F : F ∈ F}. The infimum Vξ(x) of all filters that
converge to x, is called the vicinity filter of x with respect to ξ.

A convergence ξ is regular (in the sense of Fischer) if

(2.1) limξ F ⊂ limξ(adh\
ξ F)

for every filter F (6). If ξ is a topology, then x ∈ limξ F is equivalent to Nξ(x) ⊂ F
and adhξ H is equal to the closure clξ H of H, and thus, for topologies ξ, (2.1) is
equivalent to

Nξ(x) ⊂ cl\ξNξ(x),
that is, a topology is regular if each neighborhood filter admits a base of closed
sets.

More generally, if θ is any convergence on |ξ|, then a convergence ξ is said to be
θ-regular if

(2.2) limξ F ⊂ limξ(adh\
θ F)

for every filter F . If now J is a concrete functor, then ξ is called J-regular if it is
Jξ-regular.

IfW(y) is a family of subsets of X for every y ∈ Y , and if A is a family of subsets
of Y , then the contour of W along A is defined by

(2.3)
∫
A
W =W(A) =

⋃
A∈A

⋂
y∈A

W(y).

It seems that this notion, introduced by Kowalsky for filters in [20] (the so called
diagonal operation), and used by many authors under various names (in [2] Cook
and Fischer call it the compression operator, Froĺık uses it for ultrafilters in [14] as
the sum of ultrafilters), appears in the full generality of (2.3) for the first time in
[7].

6Notice that a regular convergence need not be Hausdorff.
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The following formula belongs to the calculus of grills and contours, mentioned
above: if A and B are families of sets, then

(2.4) A#Vξ(B)⇐⇒ (adh\
ξ A)#B.

A convergence is a pseudotopology if limF ⊃
⋂
H#F adhH for every filter H.

The class of pseudotopologies is a concretely reflective subcategory of the category
of convergences. It is known [18] that a pseudotopology ξ is regular if and only if

(2.5) adhξ Vξ(H) ⊂ adhξH

A convergence is a pretopology if limF ⊃
⋂

H#F adh H. A convergence ξ is a
pretopology if and only if x ∈ limξ Vξ(x) for every x ∈ |ξ|. A pseudotopology is a
pretopology if and only if

⋂
H#G adhH ⊂ adhG for every filter G. A pretopology ξ

is a topology if and only if Vξ(Vξ(x)) for every x ∈ |ξ|. The classes of topologies,
pretopologies and pseudotopologies are concretely reflective subcategories of the
category of convergences. We denote by T, P and S the corresponding reflectors.

3. Partial regularizations

The partial regularization r associates with each convergence ξ another conver-
gence rξ as follows: x ∈ limrξ F if there exists a filter G such that x ∈ limξ G and
F ≥ adh\

ξ G.
It is clear that ξ ≥ rξ and that ξ is regular if and only if ξ ≤ rξ. The partial

regularization can be iterated: for each ordinal β > 1, set

rβξ = r(
∧

α<β

rαξ),

where
∧

stands for the infimum in the complete lattice of convergences on a fixed
(underlying) set. Sometimes we consider intermediate iterations

r<βξ =
∧

α<β

rαξ.

Of course, rβξ = r(r<βξ), and r<βξ = rβ−1 in case β is an isolated ordinal. As
every set can be well-ordered, for every convergence ξ there is a least ordinal β
(called the irregularity of ξ) such that rβ+1ξ = rβξ and thus rβξ = Rξ.

The irregularity ρ(x, ξ) of x with respect to ξ is the least ordinal such that x is
regular for rβξ for every β ≥ ρ(x, ξ). Let us observe that β is the irregularity of x
if and only if for every α < β there exists a filter Fα such that x /∈ limrαξ Fα and
x ∈ limrβξ Fα. The inversion of quantifiers leads to a slightly stronger property:
the irregularity ρ(x, ξ) is strong if there is a filter F such that x ∈ limrρ(x,ξ)ξ F and
x /∈ limrαξ F for all α < β. Notice that if the regularity of an element is an isolated
ordinal, then it is strong.

By definition, A t B is defined and equal to A ∪ B whenever A ∩ B = ∅;
similarly,

⊔
A∈AA is defined and equal to

⋃
A∈AA whenever A0∩A1 = ∅ for every

two distinct elements A0, A1 of A.

Example 3.1. Consider T = {o} t {tn : n < ω} t {tn,k : n, k < ω}. Let τ be the
finest topology on T , for which o = lim(tn)n, and tn = lim(tn,k)k for each n < ω.
Consider now a topology ξ on T such that the neighborhood filter Nξ(t) = Nτ (t) for
each t 6= o, and Nξ(o) is generated by the restriction of Nτ (o) to T\{tn : n < ω}.



IRREGULARITY 5

We observe that adh\
ξNξ(o) = Nτ (o) and thus is not equal Nξ(o), which shows that

o is irregular for ξ. Actually, rξ = τ and so the irregularity of o is 1.

Example 3.2. Consider the set T of Example 3.1 and the following topology π on
T : the sets Bm = {o}∪{tn,k : m ≤ n < ω, k < ω} with m < ω form a neighborhood
base of o, the sets {tn} ∪ {tn,k : l ≤ k < ω} with l < ω form a neighborhood
base of tn for each n < ω, and the elements of the form tn,k are isolated. Then
clπ Bm = Bm ∪ {tn : m ≤ n < ω}, so adh\

πNπ(o) is not equal to Nπ(o), and thus o
is irregular for π. As rπ is regular, the irregularity of o is 1.

The two examples above are very similar from the point of view of regularity.
In fact, all the elements of T have the same irregularity spectra for ξ and for π.
An importance difference between ξ and π is that only the second is of countable
character (We recall that for a cardinal number κ, a convergence is of character κ
if x ∈ limF implies the existence of a filter E admitting a base of cardinality not
greater than κ and such that x ∈ lim E and E ≤ F ; if κ = ℵ0 then we say that a
convergence is of countable character).

Proposition 3.3. For every ordinal β, there exists a Hausdorff pretopology of
irregularity β (of cardinality |β| ∨ ℵ0).

Proof. Actually we will show that this irregularity is attained at an element for
which it is strong. The irregularity of each regular pretopology is 0. Examples
3.1 and 3.2 describe a Hausdorff topology of irregularity 1 and of cardinality ℵ0.
Suppose that β > 1 and that for each α < β, there exists a set Xα (of cardinality
|α| ∨ℵ0), a Hausdorff pretopology πα on Xα, an element xα of Xα, and a free filter
Fα on Xα such that xα ∈ limrαπα

Fα \ limrγπα
Fα for each γ < α. If β is limit,

then consider the simple sum (7)
⊕

α<β πα on
⊔

α<β Xα and let F be the image on
{xα : α < β} of the coarsest filter on β = {α : α < β} that converges to β in the
natural topology. Define a pretopology π on

⊔
α<β Xαt{o} (which is of cardinality

|β| ∨ ℵ0) by setting {o} = limπ

∫
F (F α)α<β .

This is a Hausdorff pretopology of cardinality |β|, and o /∈ adhrγπ F for each
γ < β but o ∈ limrβπ F , because adh\

rβπ

∫
F (F α)α<β ≤ F . If β is isolated, then

mimic the construction above, on replacing {πα : α < β} by countable infinite
simple sum of copies of β − 1, and F by the cofinite filter of a countable infinite
set of copies of xβ−1.

The construction in the proof of Proposition 3.3 shows the existence of pretopolo-
gies of arbitrary irregularity attained at point of strong irregularity. Example 3.4
illustrates a case of irregularity that is not strong. The construction in the proof of
Proposition 3.3 uses elements the irregularity of which is strong. Here is an example
of an element whose irregularity is ω0 and is not strong.

Example 3.4. Let πn be a Hausdorff pretopology on Xn of cardinality ℵ0 of irregu-
larity n attained at xn. Let Fn be a filter such that xn ∈ limrnπn Fn\ limrn−1πn

Fn.
Take the simple sum

⊕
n<ω πn on

⊔
n<ω Xn and take the pretopological quotient π

by identifying all xn in o . Then o ∈ limrnπ Fk exactly for k ≤ n, rωπ = r<ωπ,
and o ∈ limrωπ Fn\ limrn−1πn

Fn for every n < ω , while there is no filter which
converges to o in rωπ but does not converge in rnπ for every n < ω, that is, does

7If ξi is a convergence on Xi for each i ∈ I then x ∈ limL
i∈I ξi

F if there is i ∈ I such that

x ∈ Xi ∈ F and x ∈ limξi
F .
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not converge in r<ωπ. If we pretopologize rωπ then we get a regular pretopology,
the vicinity filter at o of which is equal to

∧
n<ω Fn ∧ {o}, where {o} stands for the

principal ultrafilter of o.

4. Regularity in the category of pretopologies

We shall concentrate here on regularity in the case of pretopologies. This level of
generality, on one hand, enables one to notice several interesting phenomena (like
the propagation of irregularities) that are not visible in the realm of topologies, and
on the other to avoid certain complexity, which can be qualified as technical, and
which is not essential for the phenomena mentioned above.

Proposition 4.1. If H is a filter, then

(4.1) adhrξH = adhξ Vξ(H).

Proof. By definition, x ∈ adhrξH if there exists a filter F ≥ H such that x ∈
limrξ F , hence there is a filter G such that x ∈ limξ G and adh\

ξ G ≤ F , thus
adh\

ξ G meshes with H, equivalently G meshes with Vξ(H), which means that x ∈
adhξ Vξ(H). Conversely, if x ∈ adhξ(Vξ(H)) then there is a filter G such that
G#Vξ(H) and x ∈ limξ G, hence adh\

ξ G meshes with H and adh\
ξ G converges to x

in rξ, so that x ∈ adhrξH.

In particular, for every set H,

adhrξ H = adhξ(Vξ(H)).

Proposition 4.2. If ξ is a pretopology, then rξ is a pretopology, and

(4.2) Vrξ(x) = adh\
ξ Vξ(x).

Proof. If ξ is a pretopology, then by (4.1) for every set A,

adhrξ A =
⋂

V ∈Vξ(A)
adhξ V.

By definition, a set A meshes with Vrξ(x) if and only if x ∈ adhrξ A, so when
ξ is a pretopology, if and only if x ∈ adhξ V for every V ∈ Vξ(A), equiva-
lently if V ∈ Vξ(A) then Vξ(x)#V , that is, Vξ(A)#Vξ(x), which amounts to
A# adh\

ξ Vξ(x). Therefore (4.2) holds. Now if ξ is a pretopology x ∈ limrξ F
whenever F ≥ adh\

ξ Vξ(x), which proves that rξ is a pretopology.

Corollary 4.3. If ξ is a pretopology, then rnξ is a pretopology for every n.

In general, the pretopologicity of ξ does not imply that r<ωξ is a pretopology.
Therefore, starting from ω0, we need distinguish between iterated partial regular-
izations and pretopologically iterated partial regularizations, which are rP ξ = rξ
and if β > 1,

rβ
P ξ = rP (

∧
α<β

rα
P ξ).

If Ξ is a set of pretopologies (on a given set), then the infimum
∧P Ξ of Ξ in the

category of pretopologies is equal to P (
∧

Ξ) (the pretopological reflection of the
infimum

∧
Ξ of Ξ in the category of convergences). One can easily compute the
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corresponding adherence for principal filters (which determines the pretopology),
namely [7, (2.17)]

adhV
Ξ A =

⋃
ξ∈Ξ

adhξ A.

In agreement with our convention, a convergence ξ is topologically regular if ξ
is Tξ-regular (8). We observe here a peculiar, but simple fact concerning regular
pretopologies, which seems to have passed unnoticed so far.

Proposition 4.4. Each regular pretopology is topologically regular.

Proof. Let ξ be a regular pretopology, that is, Vξ(x) ⊂ adh\
ξ Vξ(x). By applying

adh\
ξ to this inclusion, we get adh\

ξ Vξ(x) ⊂ adh\
ξ2 Vξ(x) hence Vξ(x) ⊂ adh\

ξ2 Vξ(x).

Therefore Vξ(x) ⊂ adh\
ξn Vξ(x) for every n < ω and thus Vξ(x) ⊂ adh\

ξβ Vξ(x) for

every ordinal β, so that Vξ(x) ⊂ cl\ξ Vξ(x).

The property above does not hold for general convergences (9). For each n, m < ω
let An,m be a countably infinite set such that An,m+1 is a partition of An,m. Let
Am =

⊔
n<ω An,m and A =

⊔
m<ω Am will be called a sink (of countable character).

The map πm
m+1 : Am → Am+1 is the quotient defined by Am+1 on Am. The natural

convergence of a sink is defined by the fact that for each n, m and p ∈ An,m+1 the
cofinite filterN (p) of (πm

m+1)
−(p) converges to p. Of course, the natural convergence

of a sink is sequential. Let Fm be the filter generated by {
⋃

n≥l An,m : l < ω}.

Example 4.5. Let A =
⊔

n,m<ω An,m be a sink endowed with its natural conver-
gence. We extend the convergence of A to X = {∞}∪A so that

∧
m≤k Fm converges

to∞ for every k < ω. This is a Hausdorff pseudotopology of countable character. It
is regular, because adh\ Fm = Fm+1 ∧Fm, hence adh\

(∧
m≤k Fm

)
≥

∧
m≤k+1 Fm,

and adh\N (p) = N (p) for each n, m and p ∈ An,m+1. But it is not topologically
regular, because cl\ F0 =

∧
m<ω Fk, and the latter filter does not converge to ∞.

Actually, much more can be said if the underlying set is countable. If a conver-
gence is a pretopology, then it is Hausdorff if V(x0) does not mesh with V(x1) when
x0 6= x1. It is straightforward that each point of a Hausdorff pretopology is closed,
in other words, the pretopology is T1.

Theorem 4.6. The topological reflection of a Hausdorff regular pretopology on a
countable set is normal, hence regular.

Theorem 4.6 slightly improves [21, Theorem 2.4] by Nyikos and Vaughan who
attribute it to Foged. Actually the authors do not mention pretopologies, but talk
about weak bases of a topology. A weak base of a topology τ on X is a union
of filter bases B(x) where x ∈ X such that x ∈ B if B ∈ B(x), and O is open
whenever x ∈ O implies the existence of B ∈ B(x) such that B ⊂ O. If we define a
pretopology π by declaring B(x) to be a base of the vicinity filter Vπ(x), then it is
clear that τ = Tπ. In these terms, τ is weakly T2 means that π is Hausdorff, and
τ is weakly T3 means that π is topologically regular. Thus by virtue of Proposition

8The notions of pretopological and pseudotopological regularity coincide with that of regularity,

because adh\
Pξ = adh\

Sξ = adh\
ξ.

9Not even for pseudotopologies.
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4.4, we could relax the original assumption of topological regularity of [21, Theorem
2.4].

It follows from [10] that the countability assumption in Theorem 4.6 cannot be
removed.

5. Standard pretopologies

We found it useful to study regularity problems for some special pretopologies on
certain trees (called cascades), which are well-founded with respect to the inverse
order. It turns out that, for such pretopologies, properties related to regularity
and topologicity can be reduced to some combinatorial properties of subintervals
of ordinal numbers (10).

Denote by Σ the sequential tree, that is, the set of finite sequences of natural
numbers (This notation is better adapted to our considerations than the traditional
ω<ω). The empty sequence (in other words, the sequence of length 0) is denoted
by o. If s = (n1, . . . , np) and t = (m1, . . . ,mq) are elements of Σ, then the concate-
nation (n1, . . . , np,m1, . . . ,mq) of s and t is denoted by s _ t. The abbreviation
(s, n) for s _ (n) (where s ∈ Σ and n < ω) is a useful abuse of notation. By
definition, s < t if there is a non-empty finite sequence r such that t = s _ r. With
this partial order Σ becomes a tree. The level l(t) of an element t ∈ Σ is the length
of the corresponding finite sequence.

Recall that a subset S of a partially ordered set V is closed downwards if v <
s ∈ S implies v ∈ S for each v ∈ V . A subset T of Σ is called full if T ∩Σ+(s) 6= ∅
implies that Σ+(s) ⊂ T for every s ∈ Σ.

The standard topology on Σ is defined with the aid of the following neighborhood
bases B(t) = {Vt,m : m < ω} of t ∈ T :

Vt,m = {t} ∪ {(t, n, s) ∈ T : n ≥ m}.

Of course, the standard topology is of countable character (11).
We observe that Vt,m is open and closed. Indeed if t 6= r ∈ Vt,m then there

is a finite (possibly empty) sequence p such that r = (t, n, p) with n ≥ m, hence
Vr,0 = T ↑(r) ⊂ Vt,m. On the other hand, if s /∈ Vt,m, then let r = min{t, s}. If r < t
then there is m such that (r, m) ≤ t and then Vr,m+1 is a neighborhood of s and
t /∈ Vr,m+1. If r = t then there exist n < m and a finite (possibly empty) sequence
p such that s = (t, n, p) and thus T ↑(s) ∩ Vt,m = ∅. We infer that the standard
topology is Hausdorff zero-dimensional, in particular regular.

Given a natural number p, let T be the subset of the sequential tree Σ consisting
of the elements of level less or equal to p, considered with the standard topology
induced from Σ. We shall say that T is a (standard) cascade of rank r(T ) = p.
A subcascade S of a cascade is a subset of T such that oT ∈ S and for every
s ∈ S\max T , the set S+(s) is an infinite subset of T+(s). A subcascade of cascade
T of rank p is also a cascade (that is, can be embedded in Σ) and the standard
topology induced from T coincides with that induced from Σ.

10Cascades are order-isomorphic to full closed-down subsets of the “naturally ordered” sequen-
tial tree (of finite subsequences of natural numbers) [5, Theorem 3.1]. As we need here only rather
simple cascades, we will restrict ourselves to the corresponding subsets of the sequential tree.

11One can perform an analogous reduction to combinatorics also on starting from the natural
topology of the sequential tree (one can find the definition in [5] for example).
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If N (t) stands for the neighborhood filter of t for the standard topology of T ,
then denote by N (l)

(k)(t) the restriction of the neighborhood filter of t, of level k, to
the level T (l) of T . Of course, this notation is redundant, but spares the necessity
of repeating that lT (t) = k.

The closure (from the level l to the level k) is defined by

t ∈ cl(l)(k) A⇔ A ∈
(
N (l)

(k)(t)
)#

.

Hence we can decompose the closure

cl A =
⋃

k≤l≤r(T )

cl(l)(k) A.

It is straightforward that

Lemma 5.1. For the standard topology of a monotone cascade of finite rank,

(5.1)
(
cl(m)

(l)

)\

N (m)
(k) (t) = N (l)

(k)(t)

for k < l < m.

More generally, if V(t) stands for the vicinity filter of a pretopology defined on
T and t is of level k, then V(l)

(k)(t) stands for the restriction of V(t) to the level T (l)

of T .
A pretopology on a standard cascade T is standard if its vicinity filters V(t)

have the following property: for every 0 ≤ k < l ≤ r(T ) either V(l)
(k)(t) = N (l)

(k)(t) or

V(l)
(k)(t) is degenerate for every t of level k.

Example 5.2. The topology π of Example 3.2 is a standard pretopology on a
cascade T of rank 2, which is not equal to the standard topology of T . We ob-
serve that rπ is the standard topology of T . Notice that Vπ

(1)
(0)(o) is degenerate,

Vπ
(2)
(0)(o) = Vrπ

(2)
(0)(o) and Vπ

(2)
(1)(t) = Vrπ

(2)
(1)(t) for each t of level 1.

6. States

We denote the interval {k, k + 1, . . . , l} of natural numbers by [k, l]. A state on
[0, n] is a collection of intervals [k, l] of [0, n] such that k < l (12). We order states
by the inverse inclusion, that is, S ≥ T whenever S ⊂ T .

Two intervals [i, j] and [k, l] are called consecutive if j = k and cofinal if j = l.
If i < k, we define the cofinal difference

[i, l] ∼ [k, l] = [i, k].

A state S is regular if k < l < m and [k, m], [l, m] ∈ S implies that [k, l] ∈ S.
For a state T on [0, n], an element k of [0, n] is regular (with respect to S) if
[k, m], [l, m] ∈ T with k < l < m implies that [k, l] ∈ T ; otherwise, we say that k
is irregular. Of course, a state is regular if and only if every point is regular with
respect to it. The least regular state that includes S is denoted by RS. The partial
regularization rS of a state S consists of S and of all (possible) cofinal differences
of the elements of S. The irregularity of a state S is the least number n such that
rnS is regular.

12We notice that there are 2
n(n+1)

2 states on [0, n].
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A state is topological if [k, l], [l,m] ∈ S, then [k, m] ∈ S. For a given state T ,
a point k is topological if [k, l], [l,m] ∈ T implies that [k,m] ∈ T . Sure enough,
a state is topological if and only if every point is topological with respect to it.
If S is a state, then TS denotes the least topological state that includes S . It
is straightforward that TS consists of all the finite unions of consecutive intervals
from S.

There is a one-to-one correspondence between standard pretopologies on a cas-
cade of rank n and states on [0, n], namely if V denotes the vicinity system of such
a pretopology, then the corresponding state S is defined by [k, l] ∈ S if and only if
V(l)

(k)(t) is non-degenerate (for all t of level k).
Let us notice that

Lemma 6.1. For a standard pretopology, V(m)
(l) (V(l)

(k)(t)) is non-degenerate if and

only if V(m)
(k) (t) is non-degenerate.

Proposition 6.2. If S is the state of a standard pretopology π then rS is the state
of rπ.

Proof. Notice that
(
adh(m)

(l)

)\

V(m)
(k) is non-degenerate if and only if V(m)

(k) and V(m)
(l)

are non-degenerate, and in this case
(
adh(m)

(l)

)\

V(m)
(k) = N (l)

(k) by Lemma 5.1. Hence

Vrπ
(l)
(k) is non-degenerate if and only if Vπ

(m)
(k) and Vπ

(m)
(l) are non-degenerate, and

thus [k, l] ∈ rS whenever there is m > l > k such that [k,m], [l,m] ∈ S.

Proposition 6.3. A standard pretopology is topological (resp., regular) if and only
if its state is topological (resp., regular).

Proof. Consider a standard pretopology on T , and let V(t) be the vicinity filter
of t for this pretopology. Let S be the state corresponding to the pretopology.
This pretopology is a topology if and only if V(t) ⊂ V(V(t)) for every t, which
holds if and only if V(m)

(l) (V(l)
(k)(t)) is non-degenerate, provided that V(m)

(l) and V(l)
(k)

are non-degenerate for each m > l > k. By Lemma 6.1, this is equivalent to the
following condition on S: if [k, l], [l, m] ∈ S then [k,m] ∈ S. The second part of the
proposition follows from Proposition 6.2.

Combinatorics related to irregularity is studied in detail in [6]. We mention here
only few facts. It is proved that the maximal irregularity of the states on [0, n] is n.
A state on [0, n] is maximally irregular if its irregularity is n. Maximally irregular
states are characterized in [6]. If S is a maximally irregular state on [1, n], then
there are two maximally irregular states on [0, n] whose restriction to [1, n] is equal
to S, one is equal to S ∪ {[0, 2]} and the other is S ∪ {[0, k], [1, 2]} where k ≤ n is
a unique natural number such that [1, k] ∈ S.

There is only one state on [0, 1] (it is {[0, 1]}) and it is regular. The states below
are on [0, 2], [0, 3] and [0, 4] respectively:

[0, 2], [1, 2]←


[0, 3], [1, 2], [2, 3]←

{
[0, 4], [1, 2], [2, 3], [3, 4]
[0, 3], [1, 2], [2, 4], [3, 4]

[0, 2], [1, 3], [2, 3]←
{

[0, 2], [1, 4], [2, 3], [3, 4]
[0, 2], [1, 3], [2, 4], [3, 4]
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The arrows indicate the restriction of rS to [0, n] of a state S on [0, n + 1]. Notice
that the only topological state in the table above is that on [0, 2]. In order to better
distinguish graphically the intervals forming a state, we present them as arrows.

Figure 1. Maximally irregular states on [0, 3]

7. Irregularity spectra

Recall that the irregularity spectrum σ(x) = σ(x, ξ) of an element x with respect
to a convergence ξ is the set of ordinals α for which x is irregular for rαξ. If
σ(x) = ∅ then x is called intrinsically regular.

Example 7.1. Let

T = {[0, 3], [2, 4], [3, 4], [1, 6], [4, 5], [5, 6]}.

Then

rT \T = {[2, 3], [1, 5]},
r2T \rT = {[0, 2], [1, 4]},
r3T \r2T = {[1, 3], [1, 2]},

r4T \r3T = {[0, 1]}.

The state r4T is already regular. It follows that σ(0) = {1, 3} and the irregularity
of 0 is 4. On the other hand, σ(1) = {0, 1, 2}, σ(2) = {0} and 3, 4, and 5 are
intrinsically regular.

Observe a fascinating phenomenon: 0 is regular for T , but irregular for rT , that
is, 1 is in its spectrum, but 0 is not. Then again it is regular for r2T and irregular
for r3T ; in other words, 3 is in its spectrum, but 4 is not. Of course, one could,
in a similar way, construct states in which an element has an arbitrarily prescribed
spectrum.

Theorem 7.2. For every finite subset F of natural numbers, there is a state T
such that σ(0, T ) = F .

Proof. Use induction on maxF . If maxF = 0 then the empty state will do. Suppose
that k > 0, the claim is true for maxF < k and let max F = k. If T is a state on
{0, n} such that σ(0, T ) = F\{k} then W = T ∪ U where

U = {[0, n + 1], [n, n + k]} ∪ {[n + 1, n + 2], [n + 2, n + 3], . . . , [n + k − 1, n + k]}
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is a required state on {0, n + k}. Indeed, as all the elements of T have the ends in
{0, n}, for every 1 ≤ p ≤ k − 1, we have

rpW = rpT ∪ rpU

and rk−1U\rk−2U = [n, n+1] so that rkW = rkT ∪{[0, n]}, that is, [0, n] converges
to 0 for rkU but does not converge for rpU as p < k.

8. Irregular points for pretopologies of countable character

A convergence ξ is of countable character (first-countable) if x ∈ limξ F implies
the existence of a countably based filter G ⊂ F such that x ∈ limξ G. In particular,
a pretopology is of countable character, whenever every vicinity filter is countably
based.

Proposition 8.1. Let π be a pretopology of countable character. An element x is
irregular with respect to π if and only if there exists a sequence (xn)n such that

(8.1) x ∈ limrπ(xn)n\ adhπ(xn)n.

Proof. An element x is irregular for π if and only if adh\
π Vπ(x) does not converge

to x, that is, whenever there is V ∈ Vπ(x) and a decreasing filter base (Vn) of Vπ(x)
such that for every n < ω there is xn ∈ adhπ Vn\V . Hence (xn)n converges to x in
rπ but x /∈ adhπ(xn), which implies that x is irregular for π.

We observe that no separation axiom has been used in Proposition 8.1. The
characterization above cannot be extended to arbitrary convergences (not even
pseudotopologies) of countable character (13). Proposition 8.1 leads to the following,
more explicit, characterization

Proposition 8.2. Let π be a pretopology of countable character. An element x is
irregular with respect to π if and only if there exists a sequence (xn) and a bisequence
(xn,k) such that (xn,k)k is free for each n < ω, x /∈ adhπ(xn)n, but xn ∈ limπ(xn,k)k

for every n < ω, and

x ∈ limπ

∫
(n)

(xn,k)k.

Proof. Indeed, by Proposition 8.1 there is a sequence (xn) such that (8.1) holds.
In particular, if (Vm) is a decreasing base of Vπ(x) then for every m < ω there is
nm > nm−1 such that xn ∈ adhπ Vm for n ≥ nm. Consequently, for each such a n
there exists a sequence (xn,k)k on Vm for which xn ∈ limπ(xn,k)k. Since

∫
(n)

(xn,k)k

is finer than Vπ(x), it converges to x in π. If (xn,k)k were not free for infinitely
many n, then

∫
(n)

(xn,k)k would be coarser than a subsequence of (xn)n, which must
not converge to x in π in view of (8.1). Therefore, (xn,k)k is free for almost all n ,
hence for all n after having dropped a finite number of them.

Classical simplest examples of non-regular topologies are of countable character.

13It holds however for paratopologies of countable character. A convergence is a paratopology
[3] whenever x /∈ limF implies the existence of a countably based filter H that meshes with F
such that x /∈ adhH.
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Example 8.3. [12, Example 1.5.6] Consider the unit interval [0, 1] in which a
basic family of closed sets consists of the closed sets for the natural topology and of

{ 1
n

: n < ω}. In this topology x = 0 is irregular. Then xn =
1
n

and xn,k =
1
n

+
1
k

verify Proposition 8.2.

Example 8.4. Consider the unit disc in R2, the interior of which carries the
natural topology, while a neighborhood base of an element x∞ of the border is of the
form

{x : ‖x‖ < 1, ‖x− x∞‖ <
1
n
} ∪ {x∞}.

To illustrate Proposition 8.2 take any sequence (xn) of distinct terms on the border
converging to x∞ in the natural topology, and let (xn,k)k be a sequence converging
to xn from inside. We can also ask that the family {xn,k : k < ω} where n < ω be
discrete.

It is well-known that (14)

Proposition 8.5. The class of convergences of countable character is a concretely
coreflective subcategory of convergences.

In particular, every infimum of convergences of countable character is of count-
able character. This however is no longer the case in the category of pretopologies.

Example 8.6. Consider a countable fan, that is, the disjoint union {∞}∪{(n, k) :
n, k < ω} and let πm be a convergence defined by {∞} = limπm F for a free
filter F whenever F is finer than the cofinite filter of {(n, k) : k < ω, n ≤ m}.
The other points are isolated. This defines a descending sequence of Hausdorff
pretopologies of countable character (actually sequential), and clearly

∧
m<ω πm is

a convergence of countable character. But the infimum in the lattice of pretopologies∧P
m<ω πm = P

(∧
m<ω πm

)
is the well-known fan topology, which is Fréchet but not

of countable character.

Proposition 8.7. Countable character is preserved by the partial regularization.

Proof. In fact, if ξ is of countable character and if x ∈ limrξ F , then there is
a countably based filter G such that x ∈ limξ G and adh\

ξ G ≤ F . Of course,
x ∈ limrξ(adh\

ξ G) and adh\
ξ G is countably based.

It follows from Propositions 8.5 and 8.7 that every iterated partial regularization
of a convergence of countable character is of countable character. Hence

Theorem 8.8. [18, Proposition 7.1] The regularization of a convergence of count-
able character is of countable character.

However an infinitely iterated partial pretopological regularization of a pretopol-
ogy of countable character need not be of countable character, which is due to the
fact that the pretopological infimum in general does not preserve the character.
Indeed, consider

14More generally, the class of convergences of a fixed character is a concretely coreflective
subcategory of convergences.
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Example 8.9. Let A =
⊔

n,m<ω An,m be a sink endowed with its natural conver-
gence. We extend the convergence of A to X = {∞}∪A so that F0 converges to ∞.
This defines a topology τ of countable character. Notice that adh\

rkτ
F0 =

∧
m≤k Fk,

thus
∧

k<ω Fk is the coarsest free filter that converges to ∞ in rω
P τ , which shows

that rω
P τ is not of countable character.

Proposition 8.10. If a pretopology π of countable character is Hausdorff, then rπ
is Hausdorff.

Proof. If x is isolated, then the singleton {x} constitutes a base for π at x, hence
adhπ{x} = {x} is a base of x for rπ. If x is not isolated then there is a base (Vn)n

of the vicinity Vπ(x) such that Vn\Vn+1 6= ∅ for every n < ω, and
⋂

n<π Vn = {x}.
As π is Hausdorff,

{x} = limπ Vπ(x) = adhπ Vπ(x) =
⋂

n<ω

adhπ Vn,

hence rπ is Hausdorff, because the intersection of the base {adhπ Vn : n < ω} of
the vicinity filter of x in rπ is {x}.

A filter E on X is sequential if there exists a sequence (xn)n of elements of X
such that {{xk : k ≥ n} : n > ω} is a base of E . Proposition 8.2 will be now
extended to

Lemma 8.11. If π is a pretopology of countable character, and xo ∈ limrπ F ,
then there is F ∈ F and for each x ∈ F there is a sequential filter E(x) such that
x ∈ limπ E(x) and xo ∈ limπ E(F). If moreover xo /∈ adhπ F , then we can choose
E(x) to be free.

Proof. If (Vm)m<ω is a decreasing base of the vicinity filter Vπ(xo), then xo ∈
limrπ F amounts to adh\

π Vπ(xo) ≤ F , that is, adhπ Vm ∈ F for each m < ω. Let
V∞ =

⋂
m<ω adhπ Vm, and decompose F into F0 = F ∨ V c

∞ and F1 = F ∨ V∞,
where either F0 or F1 can be degenerate.

If x ∈ adhπ Vm\ adhπ Vm+1 (we do not exclude the case where the difference is
empty), then there is a sequential filter E(x) such that Vm ∈ E(x) and x ∈ limπ E(x).
As adhπ Vm ∈ F for each m < ω, then E(F0) ≥ Vπ(xo) provided that F0 is non-
degenerate.

On the other hand, if x ∈ V∞ =
⋂

m<ω adhπ Vm = adhπ Vπ(xo) (the latter holds
because π is a pretopology), then there is a sequential filter E(x) ≥ Vπ(xo) such
that x ∈ limπ E(x), hence E(V∞) ≥ Vπ(xo). Hence if F1 is non-degenerate, then
E(F1) ≥ E(V∞) ≥ Vπ(xo). Therefore E(F) = E(F0) ∧ E(F1) ≥ Vπ(xo).

If xo /∈ adhπ F and there is H ∈ F# such that E(x) is not free for every x ∈ H,
then the principal filter Nι(x) of x is finer than E(x), hence xo ∈ limπNι(F ∨H)
by the first part of the proof, which yields a contradiction, because Nι(F ∨H) =
F ∨H.

Proposition 8.12. An element x of a Hausdorff pretopology of countable character
is irregular if and only if there is at x a homeomorphically embedded standard
irregular pretopology of rank 2.

Proof. Let π be a Hausdorff pretopology of countable character, and x an irregular
point. By Proposition 8.2 there is a sequence (xn) and a bisequence (xn,k) such
that xn = limπ(xn,k)k for each n < ω, x = limπ

∫
(n)

(xn,k)k but x /∈ adhπ(xn)n.
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Therefore, by taking a subsequence if necessary, we can assume that all the terms
of (xn)n are distinct, because rπ is Hausdorff and a fortiori T1. As {xn} ∪ {xn,k :
k < ω} is compact in π for every n < ω, and x = limπ

∫
(n)

(xn,k)k, we can, by taking
subsequences of (xn)n and of (xn,k)k for n < ω if necessary, find a neighborhood
base (Vn)n of x such that xn,k ∈ Vn\Vn+1 for every n < ω. It is clear that the
pretopology induced on {x} ∪ {x : n < ω} ∪ {xn,k : n, k < ω} coincides with the
standard irregular topology (of rank 2).

9. Ramified standard cascades

Proposition 8.12 characterizes irregular elements of Hausdorff pretopologies of
countable character in terms of a homeomorphically embedded standard irregular
pretopology of rank 2. In an attempt at characterizing elements of irregularity
n > 1 of such spaces, one encounters a new phenomenon already for irregularity 2.

Indeed, let x be an element of irregularity 2 of a Hausdorff pretopology π of
countable character on X. This means that x is irregular for rπ, which is of count-
able character and Hausdorff by Proposition 8.10, and thus by Proposition 8.12,
there is a standard irregular pretopological space T of rank 2, and a homeomor-
phism f : T → f(T ) ⊂ X such that f(o) = x; in particular, f(n) = limrπ f(n, k)k

and x = limrπ f(V(2)
(0) (o)), but x /∈ adhrπ f(n)n.

Case 1. Now, if x ∈ adhπ f(V(2)
(0) (o)), then by taking a subcascade if necessary, we

can assume that x = limπ f(V(2)
(0) (o)).

Case 2. Otherwise by Lemma 8.11, T can be extended to a standard cascade S of
rank 3, and f to a map F : S → X so that F (t, k)k is free and F (t) =
limπ F (t, k)k for every t ∈ max T , and x = limπ F (V(3)

(0) (o)).

Consider now another alternative regarding f : T → X.
Case A. If f(n) = limπ f(n, k)k for infinitely many n, then by taking a subcascade

corresponding to those n, we may suppose that this holds for each n < ω.
Case B. If on the contrary, there is n0 such that f(n) 6= limπ(f(n, k))k for n ≥ n0,

then by taking a subcascade corresponding to those n, we can assume that
the property holds for each n < ω. This means that f(n) is irregular
(with respect to π) for each n, and thus by Proposition 8.12, there is an
extension V of rank 3 of T , and an extension G of f to V such that G|V ↑(n)

is a homeomorphically embedded standard irregular bisequence for each
n < ω.

If Cases 1. and A. occurred simultaneously, then we would get a characterization
of the irregularity 1 of x, that is, [0, 2], [1, 2]. If Cases 1. and B. hold then the cascade
G is of the type [0, 2], [1, 3], [2, 3]. If Cases 2. and A. hold then the cascade F is of
the type [0, 3], [1, 2], [2, 3].

As for the simultaneity of Cases 2. and B., no state corresponds to it. In this
case, the map F ∪G : S ∪V → X presents a new type of embedding, which will be
referred to as [0, 30], [2, 30], [1, 31], [2, 31].

We see that standard pretopologies are not sufficient to reflect possible types
of irregularity of points. We need ramified standard pretopologies and their corre-
sponding ramified states.

A ramified level tree L is the binary tree of height ω, that is, such that for each
l ∈ L, the set L+(l) of immediate successors of l contains two elements. A ramified
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Figure 2. The ramified state [0, 30], [2, 30], [1, 31], [2, 31]

level tree can be represented as the tree of finite sequences, the terms of which are
0 or 1. As every tree, the ramified level tree admits the level (ordinal) function:
the root is of level 0, and if the level hL(l) has been defined till m < ω, then the
minimal elements of {l ∈ L : hL(l) > m} are of level m + 1. A ramified type is a
downwards closed subtree of L with finite branches. Therefore each non-maximal
element of a ramified type has either one or two immediate successors.

Let L be a ramified type. A (sequential) ramified cascade T of type L is a
monotone sequential cascade for which a map λ : T → L is defined so that

λ(o) = o,

λ(T+(t)) = L+(λ(t)),

l 6= o⇒ cardλ−1(l) =∞.

If t ∈ T then λ(t) is called the ramified level of t.
A standard pretopology of a sequential ramified cascade T of type L is defined

analogously as for a sequential cascade, that is, for every r, s ∈ L with r < s either
Vs

r (t) = N s
r (t) or Vs

r (t) is degenerate for every t with λ(t) = r . Here V stands
for the vicinity system of a pretopology and N for the neighborhood system of the
natural topology of T , while Vs

r (t) and N s
r (t) stand respectively for the restrictions

of the vicinity and the neighborhood filters of t with λ(t) = r to the elements of
ramified level s. Also the definition of standard pretopologies obviously extends
that for usual sequential cascades.

A map f : T →W (from one ramified cascade to another) is level-preserving if
there is a map ϕ : λT (T )→ λW (W ) (called the level map of f) such that

λW ◦ f = ϕ ◦ λT .

Proposition 9.1. A level-preserving map f : T → W is continuous if and only if
f(Vs

r (t)) ≥ Vϕ(s)
ϕ(r) (f(t)) for every couple r < s of ramified levels of T and for each t

of level r, where ϕ is the level map of f .

A state S on a ramified level tree L is a finite set of intervals of cardinality at
least 2 of L. The (ramified) type of S is the downwards closure of the elements of
S. Of course, it is a subtree of L. The rank of a state is that of its ramified type.

A state T associated with a standard pretopology is defined by [r, s] ∈ T if and
only if Vs

r is non-degenerate.15 Regularity, partial regularization and topologicity of

15that is, Vs
r (t) is degenerate for each t of ramified level r.
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a state on a ramified type are defined in the same way as for a state on an interval
of natural numbers. It is a straightforward generalization of Proposition 6.3 that

Proposition 9.2. A standard pretopology on a ramified cascade is topological
(resp., regular) if and only if its state is topological (resp., regular).

Let T,W be ramified cascades considered with standard pretopologies, and let
T ,W be the corresponding ramified states.

If a map f : T →W between sequential cascades is continuous, then

f(T+(t))\W+(f(t) ∪ {f(t)}
is finite for every t ∈ T\max T . By removing, for every t, the finite number of
successors that derogate from that inclusion, we get a restriction of f , which is
order-preserving. Consider a level-preserving map f : T → W , and its level map
ϕ : λT (T )→ λW (W ). Then

Proposition 9.3. If a level-preserving map f : T →W is continuous then its level
map fulfills ϕ(T ) ⊂ W.

Proof. Let f be continuous and let [r, s] ∈ T . This means that Vs
r (t) is non-

degenerate for every t ∈ λ−T (r). As f is level-preserving, λW (f(t)) = ϕ(r) and
λW (f(v)) = ϕ(s) for every v ∈ λ−T (s), and f(Vs

r (t)) ≥ Vϕ(s)
ϕ(r) (f(t)), because f is

continuous. This implies that Vϕ(s)
ϕ(r) (w) is non-degenerate (for each w of level ϕ(r)),

hence [ϕ(r), ϕ(s)] ∈ W.

As we will see, only a special subclass of maximally irregular states is sufficient
to characterize finite irregularity of pretopologies of countable character. We define
elementary states by induction on the rank. If T is a state starting at 1 with the
property that there is a unique ramified level t such that [1, t] ∈ T , then

T ∗ = T \[1, t] ∪ [0, t].

The elementary state of rank 1 is the unique state of rank 1 that is {[0, 1]}. The
elementary state of rank 2 is the unique maximally irregular state of rank 2, that is
{[0, 2], [1, 2]}. Suppose that we have defined elementary states S of rank less than
or equal to m with the property that⋃

S ∩ {l ∈ L : hL(l) ≤ 2} is a chain,(9.1)

∃!s0,s1∈L [0, s0] ∈ S, [1, s1] ∈ S,(9.2)

an elementary state S of rank m + 1 is of the form

(9.3) S = S1 ∪ S∗0 ,

where S0,S1 are elementary states starting from 1, of ranks 1 ≤ r(S0), r(S1) ≤ m
with m = max(r(S0), r(S1)). It is clear that S given by (9.3) fulfills (9.1) and (9.2).

We call a standard pretopology on a sequential cascade elementary if the corre-
sponding state is elementary.

Theorem 9.4. If π is a Hausdorff pretopology of countable character, m ≥ 1 and

(9.4) x ∈ limrmπ(xn)n\ adhrm−1π(xn)n,

then there exists a homeomorphic embedding f of an elementary cascade of rank
m + 1 and of irregularity m such that f(o) = x and f(n) = xn for each n < ω.
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Proof. This is true for m = 1 because of Propositions 8.1 and 8.12. So suppose
that the claim holds for m ≥ 1, and let π be a Hausdorff pretopology of countable
character on X such that

x ∈ limrm+1π(xn)n\ adhrmπ(xn)n.

Because rmπ is of countable character and Hausdorff (by Proposition 8.10), we can
apply Proposition 8.12 to rmπ to infer the existence of an elementary cascade f
and a homeomorphic embedding into X endowed with rmπ so that f(o) = x and
f(n) = xn. Moreover, by Hausdorffness, we can require that there is a collection
(Wn)n of disjoint subsets of X such that Wn ∈ Vrmπ(xn) for every n < ω.

Let p be the least natural number such that xn ∈ limrpπ(xn,k)k for almost all
n < ω, where xn,k = f(n, k). Because p ≤ m, by inductive assumption, for every
such n there is a homeomorphic embedding fn of an elementary ramified cascade
Tn of rank p+1 to Wn, such that fn(o) = xn and fn(k) = xn,k for each n, k < ω. Of
course, in case p = 0, the cascades Tn are of rank 1 hence endowed with a regular
topology. Because there are finitely many types of elementary ramified cascades of
finite rank, by taking a subsequence of (n)n if necessary, we can assume that Tn

are all of the same type.
Let q be the least natural number such that the filter F ≈ {{f(n, k) : k < ω} :

n < ω} converges to x in rqπ. Then m = max(p, q) for otherwise x ∈ adhrmπ(xn)n,
contrary to the assumption.

By Hausdorffness, we can assume that there is a collection {Wn,k : n, k < ω} of
disjoint sets such that Wn,k ∈ Vrqπ(xn,k).

If q = 0 then x ∈ limπ F . Otherwise, by Lemma 8.11, for every (n, k) there
exists a free sequential filter E(n, k) ≈ (xn,k,l)l, which converges to xn,k in rq−1π,
and such that the filter G ≈ {{xn,k,l : k, l < ω} : n < ω} converges to x in rq−1π.

Let v be the least natural number such that E(n, k) converges to xn,k in rvπ
for almost n, k. Of course, v ≤ q − 1. Hence, by inductive assumption, there is a
homeomorphic embedding fn,k of an elementary cascade Sn,k to Wn,k of rank v +1
such that fn,k(o) = xn,k and fn,k(l) = xn,k,l for each n, k, l < ω. Of course, in case
v = 0, each Sn,k is of rank 1, hence endowed with a regular topology. Because there
are finitely many types of elementary cascades of finite rank, by taking a subcascade
R of {o} ∪ {(n) : n < ω} ∪ {(n, k) : n, k < ω} if necessary, we can assume that Sn,k

are all of the same type.
Let w be the least natural number such that x ∈ limrwπ G. Of course, q − 1 =

max(v, w) for otherwise x ∈ limrqπ F . If w = 0 then we stop the construction.
Otherwise we continue on applying Lemma 8.11 to G, and so on.

We construct now a ramified cascade by taking the disjoint union of R, Tn, Sn,k

and possibly of other cascades resulting from the construction described. Then we
quotient so that oTn

coincides with n ∈ R, T+
n (oTn

) coincides with R+(n), oSn,k

coincides (n, k) ∈ R, and so on. The constructed component embeddings coincide
at the points that we have identified. Moreover we took care that the individual
component cascades have ranges in disjoint vicinities of distinct points. Therefore
the constructed mapping is an injection. The pretopology of the constructed cas-
cade is induced with the component cascades with the exception of the vicinity of
the least element o. There is only one non-zero ramified level s for which V(s)

0 (o) is
non-degenerate. If in our construction q = 0, then it will correspond to the filter F ,
if w = 0 then it will correspond to the filter G, and so on. The constructed cascade
is elementary of rank m + 1.
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Because a map between pretopologies of countable character, is continuous if
and only if it is sequentially continuous, the constructed injective map is a homeo-
morphic embedding.

Corollary 9.5. If m is the irregularity of an element x of a Hausdorff pretopology
of countable character, then there exists a homeomorphic embedding f from an
elementary cascade of rank m + 1 and irregularity m such that f(o) = x.

The converse is true only for irregularity 1. More generally, it holds only if the
image of a considered homeomorphic embedding is open.
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