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HOMOGENEOUS AND INHOMOGENEOUS MANIFOLDS

PAUL GARTSIDE, DAVID GAULD, AND SINA GREENWOOD

Abstract. All metaLindelöf, and most countably paracompact, homogeneous

manifolds are Hausdorff. Metacompact manifolds are never rigid. Every count-

able group can be realized as the group of autohomeomorphisms of a Lindelöf
manifold. There is a rigid foliation of the plane.

.

1. Introduction

Inspired by a recent paper, Manifolds: Hausdorffness versus homogeneity by
Baillif and Gabard [1], we investigate the topology of non Hausdorff manifolds and
give applications to foliations. By a manifold we mean a connected space which
is locally homeomorphic to Rn for some n. Manifolds are necessarily T1, but not
guaranteed to be Hausdorff. Non Hausdorff manifolds arise naturally as quotients
of Hausdorff manifolds, for example as the leaf space of a foliation [5, 6, 7]; as
reduced twistor spaces in relativity theory [10]; and as models of space–time in
‘many-worlds’ interpretations of quantum mechanics [8].

It is easy to prove that Hausdorff manifolds are always homogeneous, but this is
not necessarily true of T1 manifolds. For example, take R×{0, 1} and identify (x, 0)
with (x, 1) for all x except x = 0. The resulting space, commonly called the ‘split
origin’ space, is a non homogeneous Lindelöf one manifold. In [1] two examples of
homogeneous non Hausdorff manifolds are presented, but it is also shown that a
Lindelöf homogeneous manifold is always Hausdorff (and hence metrizable). One
is naturally led to consider under which circumstances homogeneous manifolds are
Hausdorff, particularly covering properties weaker than ‘Lindelöf’. We prove here
that every metaLindelöf homogeneous manifold is Hausdorff (indeed metrizable)
and that most countably paracompact homogeneous manifolds are Hausdorff – but
not necessarily metrizable. Further one wants to know how ‘badly’ non Hausdorff
manifolds can fail to be homogeneous. A space whose sole autohomeomorphism
is the identity map is said to be ‘rigid’. Thus rigidity and homogeneity are polar
opposites. We show that metacompact manifolds are never rigid, but there is a rigid
Lindelöf one manifold. Using this space we further show that every countable group
can be realized as the group of autohomeomorphisms of a Lindelöf one manifold.
Finally we give applications of our results to foliations of the plane. From our rigid
manifold we describe an explicit construction of a rigid foliation of the plane.
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2. Covering Properties of Non Hausdorff Manifolds

Recall that a topological space is ‘Lindelöf’ if every open cover has a countable
subcover. Further, a space is ‘paracompact’ if every open cover has a locally finite
open refinement, and is ‘metacompact’ if every open cover has a point-finite open
refinement. Finally, a space is ‘metaLindelöf’ if every open cover has a point-
countable open refinement.

It is easy to see, because manifolds are locally second countable, that ‘second
countable’ and ‘Lindelöf’ coincide in manifolds.

Paracompact vs Metacompact vs MetaLindelöf in Manifolds.

Lemma 2.1. Lindelöf and metaLindelöf are equivalent in manifolds.

Proof. We show that a metaLindelöf manifold is Lindelöf. We need two facts.
First every point-countable open cover of a locally separable space has a star-
countable open refinement (each element of the cover meets only countably many
other members of the cover). Second any star-countable collection V can be written
V =

⋃
λ∈Λ Vλ where each Vλ is countable and (

⋃
Vλ)∩(

⋃
Vλ′) = ∅ whenever λ 6= λ′.

Thus given any open cover U of a metaLindelöf manifold M , let V be a point-
countable open refinement andW a star-countable open refinement of V. Partition
W as above. Since M is connected there can only be one element of Λ, and so W
is countable and hence U has a countable subcover. �

Since ‘paracompact’ implies ‘metacompact’ which implies ‘metaLindelöf’:

Corollary 2.2. Metacompact (so paracompact) manifolds are second countable.

Example 2.3. There is a second countable manifold which is not metacompact.

Proof. Let M = R ∪ (Q× N× [0,∞)) with the topology in which points of R and
{(q, n)} × (0,∞) have their standard neighbourhoods (here q ∈ Q and n ∈ N), and
a basic neighbourhood of (q, n, 0) is B(q, n, ε) = (q − ε, q) ∪ {(q, n)} × [0, ε), where
ε > 0. Then M is a one dimensional second countable manifold.

We show that M is not metacompact. Let U = {R} ∪ {{(q, n)} × (0,∞) : q ∈
Q, n ∈ N} ∪ {B(q, n, 1/n) : q ∈ Q, n ∈ N}, an open cover of M . Suppose V is any
open refinement. For each (q, n) pick εq,n > 0 such that B(q, n, εq,n) is contained
in some element of V. Note that εq,n < 1/n.

Let Wn =
⋃
q∈Q(q−εq,n, q), which is an open dense subset of the reals, and hence

there is an x ∈
⋂
nWn. So for each n there is qn ∈ Q with x ∈ (qn − εqn,n, qn).

If infinitely many of the elements qn are different, then we see that the point x
of M is in infinitely many (distinct) elements of V. On the other hand, if infinitely
many of the elements qn are all equal (say to q), since εq,n → 0, we see that x is
again in infinitely many elements of V. In either case V is not point-finite. �

Example 2.4. There is a metacompact manifold which is not paracompact.

Proof. Let X = R× N. For each x < 0 in the real line, identify (x, n) with (x,m)
for all n,m ∈ N, and call it x. Let M be the resulting quotient space. Then M is
a one dimensional second countable manifold which can be described as ‘the line
with a countable infinity of branches at the origin’.

Take any open cover U of M . Since (−∞, 0) ∪
⋃
n(0,∞)× {n} is metacompact,

there is a partial point-finite open refinement V ′ of U covering all points except the
points (0, n). For each n pick mn ≥ n so that Vn = (−1/mn, 0)∪ [0, 1/mn)×{n} is
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contained in some element of U . Now V = V ′ ∪ {Vn : n ∈ N} is a point-finite open
refinement of U , as required for M to be metacompact.

Since every neighbourhood of (0,m) meets every neighbourhood of (0, n) it is
clear M is not paracompact. �

3. When Homogeneous Manifolds are Hausdorff

We start with a general discussion of ‘points of Hausdorffness’ and ‘points of
regularity’ in manifolds. This will be applied below and in the next section.

For any subset A of a space X, let R(A) consist of all points of A with a neigh-
bourhood base in X of closed sets. Obviously X is regular if and only if R(X) = X.
Define H(A) to be all points of X which can be separated by disjoint open sets
from every other point of A, and NH(A) = X \H(A). Write NH(x) for NH({x}),
so NH(x) consists of all points that cannot be Hausdorff separated from x.

In the case of a manifold we clearly have:

Lemma 3.1. For an m-manifold M , R(M) = all points with a closed neighbour-
hood homeomorphic to a closed ball in Rm. Hence R(M) is open.

Lemma 3.2. In a manifold M , the set NH(x) is closed for every point x of M .

Lemma 3.3. Let M be a manifold. Then R(M) = ∅ if and only if NH(M) is
dense. Also, R(M) is not dense if and only if NH(M) is somewhere dense (dense
in some non empty open set).

Proof. If R(M) is non empty then it contains a (non empty) open set. This set
clearly can not contain any non Hausdorff points, so NH(M) is not dense.

If NH(M) is not dense then H(M) contains a point with a compact neighbour-
hood homeomorphic to a Euclidean closed ball, K. Every point of M \K can be
separated from K by an open set so K is closed in M , and Lemma 3.1 applies.

The second claim follows similarly. �

Lemma 3.4. If R(M) 6= ∅ where M is a homogeneous manifold then M is regular
(R(M) = M) (and Hausdorff, of course).

Corollary 3.5. MetaLindelöf homogeneous manifolds are Hausdorff (indeed metriz-
able).

Proof. This follows from Lemma 2.1 and [1, Theorem 1.1] �

A space is ‘countably compact’ (‘countably paracompact’) if every countable
open cover has a finite subcover (a locally finite open refinement). Countably com-
pact spaces are countably paracompact. The long line is a Hausdorff manifold which
is countably compact but not Lindelöf. We now show that in most circumstances,
countably paracompact homogeneous manifolds are Hausdorff.

Let X be a space, and A,B any subsets of X. Define ρ(A,B) (the ‘reflection’ of
A in B) to be ρ(A,B) = {x ∈ B : NH(x) ∩A 6= ∅}.

Lemma 3.6. Let M be a manifold. If U and V are Euclidean open sets in M ,
then ρ(V,U) is nowhere dense in U .

Proof. Let I be the interior of the closure of ρ(V,U) in the subspace U , and suppose
that I 6= ∅. Note that ρ(V,U) is dense in I; take any p ∈ ρ(V,U) ∩ I and any
p′ ∈ NH(p) ∩ V . Each neighbourhood of p′ meets each neighbourhood of p, so
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V ∩I 6= ∅. Now V ∩I is open in I and ρ(V,U) is dense in I, hence ρ(V,U)∩V ∩I 6= ∅,
a contradiction as V ∩ ρ(V,U) = ∅ since V is Euclidean open. �

Theorem 3.7. Let M be a countably paracompact homogeneous manifold. If for
some x ∈M either (i) NH(x) is not countably compact or (ii) NH(x) is Lindelöf,
then M is Hausdorff.

Proof. Let M be a homogeneous non Hausdorff manifold. We show that if either
(i) or (ii) hold, then the manifold is not countably paracompact.

(i): First suppose x is in M and NH(x) is not countably compact, equivalently
NH(x) contains an infinite closed discrete subspace, C = {xn}n∈N. Since NH(x)
is closed in M , C is closed discrete in M . For each xn pick an open Euclidean
neighbourhood, Tn, witnessing closed discreteness. Now U = {M\C}∪{Tn : n ∈ N}
is a countable open cover of M , no open refinement of which is locally finite at x.

(ii): Now suppose that x is in M and NH(x) is Lindelöf. By homogeneity and
non Hausdorffness of M , every NH(y) is (Lindelöf and) non empty. Fix Euclidean
open U containing x. We claim there are sequences (xn)n and (x′n)n where: each xn
is in U and xn → x; and x′n ∈ NH(xn), for each n; but C = {x′n : n ∈ N} is closed
discrete. Let Tn witness closed discreteness for xn. Then U = {M\C}∪{Tn : n ∈ N}
is a countable open cover of M no open refinement of which is locally finite at x.

To establish the claim, note that if (xn) is a sequence on U converging to x, and
x′n is in NH(xn) for each n, then (x′n) can converge only to elements of NH(x).

For each y ∈ NH(x) pick a Euclidean open Vy containing y. As NH(x) is
Lindelöf, we can find a countable subcollection Vy1 , Vy2 , . . . covering NH(x). By
Lemma 3.6, ρ(Vyi

, U) is nowhere dense in U . So U \
⋃∞
i=1 ρ(Vyi

, U) is dense in U .
Thus we can pick a sequence (xn)n from this set converging to x, and pick x′n in
NH(xn) for each n. No x′n is in any Vyi otherwise xn is in ρ(Vyi , U). Hence they
can not converge to anything in NH(x) (or, as observed above, anything else). �

4. Rigidity and Non–Rigidity

We start this section by giving conditions under which a manifold is not rigid.
Then we construct a variety of rigid manifolds, and manifolds with specified auto-
homeomorphism or homeotopy group.

Conditions for Non–Rigidity.

Lemma 4.1. If M is a manifold and R(M) 6= ∅ then M is not rigid; indeed, the
autohomeomorphism group of M contains many uncountable free subgroups.

Proof. To see this fix an open set U in M homeomorphic to some Rm with closure
homeomorphic to the closed ball in Rm. Then any non-identity homeomorphism of
the closure of U which is the identity on the boundary of U can be extended to a
non-trivial homeomorphism of M which is the identity everywhere outside U .

A minor modification of the argument in [2] shows that in fact the group of all
autohomeomorphisms of the closed ball in Rm fixing the boundary is ‘almost free’
(almost all, in the sense of Baire category, n-tuples of autohomeomorphisms freely
generate a free subgroup). Hence, see [4], almost all (again in the sense of Baire
category) uncountable compact subsets of the autohomeomorphism group freely
generate a free subgroup. �

Theorem 4.2. Every metacompact manifold M has (open) dense R(M), and hence
is far from being rigid.



HOMOGENEOUS AND INHOMOGENEOUS MANIFOLDS 5

Proof. The ‘and hence’ part follows because as R(M) is open and dense it is non
empty and Lemma 4.1 applies.

Fix a metacompact manifold M and suppose that R(M) is not dense. By
Lemma 3.3 NH(M) is dense in some open subset U of M homeomorphic to Rm.

Let U be an open cover of M by sets homeomorphic to some Rm. Let V be any
open refinement of U . We show V is not point-finite.

Let D = {xn}n∈N be a dense set of non Hausdorff points in U . Let D′ = {x′n}n∈N
be such that x′n cannot be Hausdorff separated from xn. Note that each x′n is not
in U , but is in U . For each n, pick Vn ∈ V so that x′n ∈ Vn. Let Wn = Vn ∩ U .
Then {Wn}n is a collection of open sets in Rm such that xn ∈Wn \Wn for each n.

We show this latter collection is not point-finite: set n1 = 1, select non empty
open S1 whose closure in U lies in Wn1 , and inductively pick ni so that xni ∈ Si−1,
select non empty open Si whose closure in U lies in Si−1 ∩Wni

⊆
⋂
j≤iWnj

. Then
there is a point z ∈

⋂
i∈N Si, and this point is in infinitely many of the sets Wn

(namely Wni
for each i). �

If every Lindelöf manifold had R(M) non empty, this would give an alternative
proof that Lindelöf homogeneous manifolds are Hausdorff. But this is not the case.

Example 4.3. There is a second countable manifold with empty R(M). The given
example is not rigid.

Proof. The manifold is called ‘La plume composée’ in [6]. We start by describing
the ‘plume’: the underlying set is P = R∪ (Q× [0,∞)), points in the ‘shaft’ (0,∞)
have their usual neighbourhoods, a basic neighbourhood of (q, 0) is B(q, 0, ε) =
{q} × [0, ε) ∪ (q, q + ε), and points on the ‘barb’ {q} × (0,∞) have their usual
neighbourhoods (in the ‘barb’).

Now we can get the ‘plume double’ by replacing each ‘barb’ by a ‘plume’ –
and iterate countably many times. This gives a second countable one dimensional
manifold M , the ‘plume composée’. Note that this manifold is far from being rigid.

The key property of this example is that the set of non Hausdorff points is dense.
Hence Lemma 3.3 applies. �

Rigid Manifolds.

Example 4.4. There is a second countable rigid 1-manifold.

Proof. For each n ≥ 1 let M(n) =
(
(−1, 0) ∪ ([0, 1)× {1, . . . , n})

)
× {n} with

topology where points with real part non-zero have their usual Euclidean neigh-
bourhoods, and a basic neighbourhood of (0, i) is B(0, i, ε) = (−ε, 0)∪ ([0, ε)× {i}).
Then M(n) is a second countable one dimensional manifold with an order inherited
from the order on the real parts. Call points with real part < 0 the ‘left part’ of
M(n), call points with real part > 0 the ‘right part’ of M(n), and call the points
(0, i) the ‘branch points’. The branch points are the non Hausdorff points of M(n).

Let X = (0, 1) ∪
⋃
n≥1M(n). Fix a countable dense set D of the union of (0, 1)

and the right parts of the M(n). Enumerate D = {xm}m≥1. For each m ≥ 1
fix a neighbourhood Um of xm and homeomorphism hm : (−1, 1) → Um so that
hm(0) = xm, xi /∈ Um for i < m and Um contains no branch points. We may
assume that hm preserves the order. We think of the domain of hm as being the
shaft of M(m), ie as

(
(−1, 0)∪([0, 1)× {1})

)
×{m}. Identify the left part of M(m)

with hm ((−1, 0)) via hm for each m. This gives a second countable 1-manifold M .
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(If we arrange that xm /∈ M(n) for n ≥ m, then M will have no ‘loops’, and so is
orientable.)

We prove that M is rigid. Note first that the non Hausdorff points, NH(M), are
the branch points and the points of D, and are dense. Take any autohomeomor-
phism h of M . Then h carries (non) Hausdorff points to (non) Hausdorff points.
Thus if h is the identity on NH(M) (which is dense), by Hausdorffness of all other
points of M , h is forced to be the identity on the whole of M .

It remains to show that h is indeed the identity on NH(M). To do this we
associate with each point of NH(M) an object which is invariant under homeo-
morphisms and so that distinct points of NH(M) receive different objects.

The relation ∼ on NH(M) given by x ∼ x′ if and only if x and x′ can not be
Hausdorff separated is, for this particular manifold, an equivalence relation. So
NH(M) is partitioned into equivalence classes Nm, for m ≥ 1, where Nm consists
of xm and the branch points of M(m). Note that the definition of Nm is purely
topological: it is the unique equivalence class of ∼ with precisely m+ 1 elements.

Let σ(x) = {{|Nm| : Nm ∩ U 6= ∅} : U is an open neighbourhood of x} for
x ∈ NH(M). Then it is easy to check that σ(x) = σ(h(x)) (so σ is invariant) and
σ(x) 6= σ(x′) for any distinct x, x′ ∈ NH(M) — as required. �

Example 4.5. There are rigid manifolds of arbitrarily large cardinality.

Proof. It is known that for every cardinal κ, there is a cardinal λ ≥ κ so that
ℵλ = λ. Here ℵα denotes the αth infinite cardinal.

Repeat the argument for Example 4.4 with the following changes. For each β ≤ λ
let M(ℵβ) =

(
(−1, 0) ∪ ([0, 1)× {ℵβ : β ≤ λ})

)
× {β} with obvious topology. Let

X = (0, 1) ∪
⋃
β≤λM(ℵβ). Let D be a dense subset of (0, 1) and the right parts of

the M(ℵβ) such that |D| = ℵλ. Now proceed as before. The ∼-equivalence classes
all have different cardinalities and so the invariant σ works as before. �

Realizing Groups as Autohomeomorphism Groups of Manifolds. Let G
be a group. The directed graph with vertices G and an edge from g to g′ of colour
h if and only if g.h = g′ is called the Cayley graph of G, denoted CG(G). An
automorphism of CG(G) is a permutation α of the vertices such that (g, g′) is an
edge of CG(G) if and only if (α(g), α(g′)) is an edge of CG(G). Further, α is said
to be colour preserving if for every edge (g, g′), the edges (g, g′) and (α(g), α(g′))
have the same colour. The key property of the Cayley graph is that its group of
colour preserving automorphisms, Aut(CG(G)), is isomorphic to G.

Theorem 4.6. For every countable group G there is a second countable one di-
mensional manifold M(G) such that the group of autohomeomorphisms of M(G) is
isomorphic to G.

Proof. Given a countable group G = {gn}n∈N we describe a second countable one
dimensional manifold M(G) whose group of autohomeomorphisms, H(M(G)), is
isomorphic to Aut(CG(G)) (and hence G). The rigid manifold M of Example 4.4
is the main building block, playing the role of both vertices and edges of the Cayley
graph of G. The terminology and notation of that example is used here.

Fix two disjoint countable subsets of (0, 1) in M , both disjoint from D, and label
them g1, g2, . . . and g′1, g

′
2, . . .. Think of the points gi and g′i as having ‘colour’ gi.

An edge joining gi to g′i will be considered to ‘start’ at gi and ‘end’ at g′i and will
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inherit their colour gi. Extend (0, 1) in M left and right to (−1, 2) in the natural
way to get manifold M ′ (so points of (−1, 2) have their standard neighbourhoods).

Let V = M×G. Think of M×{g} as being the vertex g. Let E = M ′×(G×G).
Think of M ′ × {g} × {h} as being an edge (as yet unattached) — once attached
(using the ‘flaps’ (−1, 0) and (1, 2)) — it will start at vertex g and end at vertex
g.h. Let X(G) = V ∪E.

For each g ∈ G and gi ∈ G identify the left part of a small neighbourhood of the
point gi in ‘vertex’ M×{g} with the ‘left flap’ (−1, 0) in the ‘edge’ M ′×{g}×{gi},
and identify the right part of a small neighbourhood of the point g′i in ‘vertex’
M × {g.gi} with the ‘right flap’ (1, 2) in the ‘edge’ M ′ × {g} × {gi}. This gives a
second countable one dimensional manifold M(G).

Then M(G) is as required: H(M(G)) = Aut(CG(G)), see the proof of Theorem 2
from [3] for a similar argument. �

Using Example 4.5 and the technique of the preceding theorem it is clear that:

Theorem 4.7. For every group G there is a manifold M whose autohomeomor-
phism group is isomorphic to G.

Isotopy. Let M be a manifold. Let I be all h ∈ H(M) which are isotopic to the
identity . Then I is a normal subgroup of H(M). The quotient H(M)/I is the
‘homeotopy group’ of M .

Take any countable group G, and consider the manifold M(G) of Theorem 4.6
whose group of autohomeomorphisms coincides with G. If M(G) were Hausdorff
then an isotopy between any two distinct autohomeomorphisms would give a non-
trivial path in H(M(G)) – which is impossible as non-trivial paths are uncountable
and H(M(G)) is countable. Since M(G) is not Hausdorff this argument cannot be
applied directly. Nevertheless, given h 6= g in H(M(G)) and a point x ∈ M(G)
with h(x) 6= g(x), an isotopy between h and g gives a non-trivial path in M(G)
which should only have countably many values and this is impossible in a manifold.
Thus:

Theorem 4.8. Every countable group can be realized as the homeotopy group of a
second countable manifold.

5. Applications to Foliations

A partition F = {Lα : α ∈ A} of an n-manifold M by arcwise connected subsets
is a k-dimensional foliation of M , where 0 ≤ k ≤ n, provided:

• for each p ∈ M there is a chart (U,ϕ) on M about p such that for each
α ∈ A if Lα ∩ U 6= ∅ then each arcwise component of ϕ(Lα ∩ U) is of the
form {(x1, . . . , xn) ∈ ϕ(U) : xk+1 = ck+1, . . . , xn = cn}, where ck+1, . . . , cn
are constants determined by the component.

Each set Lα is a leaf of the foliation. The set of leaves is the leaf space; it carries
the obvious quotient topology from M . By an oriented foliation we mean that
each leaf has been given an orientation in such a way that neighbouring leaves have
compatible orientations. See [9] for an introduction to foliations.

We are interested here only in foliations where n = 2, usually M = R2, and
k = 1. In this case every foliation is orientable, and the leaf space is a simply
connected, orientable, Lindelöf one manifold (not necessarily Hausdorff). Haefliger
and Reeb showed that plane foliations are nearly classified by their leaf spaces.
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A complete classification requires some additional structure on the non Hausdorff
points of the leaf space.

Let M be a simply connected, orientable, Lindelöf one manifold with oriented at-
lasA. Define equivalence relations∼+ and∼− onNH(M) as follows. Let x1 and x2

be two points of M which are not Hausdorff separated. Pick (U1, φ1), (U2, φ2) ∈ A
such that xi ∈ Ui and φi : (−1, 1) → Ui is an orientation preserving homeomor-
phism, for i = 1, 2. Set x1 ∼− x2 if ‘U1 and U2 meet on the left’: φ1[(−1, 0)] ∩
φ2[(−1, 0)] 6= ∅. Set x1 ∼+ x2 if ‘U1 and U2 meet on the right’: φ1[(0, 1)] ∩
φ2[(0, 1)] 6= ∅. These equivalence relations have countable equivalence classes.

An ‘order structure’ on a simply connected, orientable, Lindelöf one manifold is
an explicit total order structure on the ∼+ and ∼− equivalence classes.

Theorem 5.1 (Haefliger & Reeb, [6]). There is a bijective correspondence between
oriented foliations of the plane and Lindelöf, one dimensional, orientable, simply
connected manifolds with an order structure.

It is shown in [6] that a one manifold is simply connected if and only if every
point is a cut point (remove that point and the space is disconnected). This makes
identifying simply connected one manifolds very straightforward.

Thus, Examples 2.3 and 2.4 are both second countable, orientable, simply con-
nected 1-manifolds, so there are foliations of the plane whose leaf spaces are (1) not
metacompact and (2) metacompact but not paracompact, respectively.

An automorphism of an oriented foliation F is an orientation preserving au-
tohomeomorphism of the plane taking leaves to leaves. Denote the group of all
automorphisms of F by Aut(F). Call an automorphism ‘inner’ if it carries each
leaf to itself. Let Inn(F) be the collection of all inner automorphisms of F . Let
Out(F) = Aut(F)/Inn(F). Every automorphism of a foliation F induces an au-
tohomeomorphism of the leaf space. Two automorphisms of a foliation yield the
same autohomeomorphism of the leaf space if and only they differ only by an inner
automorphism. The correspondence theorem implies that any autohomeomorphism
of a leaf space can be lifted to an automorphism of the foliation provided it respects
the order structure.

Lemma 5.2. Let F be a foliation of the plane. Then Inn(F) contains an uncount-
able free subgroup. In particular, the full automorphism group is never trivial.

Proof. The group of all orientation preserving autohomeomorphisms of (−1, 1) con-
tains many uncountable free subgroups because it is almost free [4]. We show it
embeds inside Inn(F).

Fix any element U in a chart for F with U homeomorphic to (−2, 2)2 and the
leaves corresponding to horizontal lines. Take any orientation preserving autohome-
omorphism h of (−1, 1). Then h can be extended to an inner automorphism of F
as follows. First make it the identity outside U . Now identify U with (−2, 2)2, and
declare the extension to be the identity outside V = {(x, y) ∈ U : |x| + |y| < 1},
and to be

(
h(x/(1− |y|)), y

)
for (x, y) in V . �

A foliation is said to be ‘rigid’ if all its automorphisms are inner, in other words
Out is trivial, or equivalently its leaf space is a rigid manifold.

Example 5.3. There is a foliation of the plane which is rigid.
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Proof. The rigid manifold of Example 4.4 is a second countable one manifold, which
can be made to be orientable, as explained in the construction, and in this case it
is clear every point is a cut point. So the claim follows as explained above.

It seems interesting to provide an explicit construction of the rigid foliation
whose leaf space is homeomorphic to the rigid manifold of Example 4.4, particularly
because the procedure for generating a foliation from an oriented, simply connected,
second countable one manifold is not detailed in [6].

The ‘ingredients’ of the rigid manifold are: a copy of (0, 1); for each n ≥ 1, n
copies of [0, 1); and a ‘nice’ enumeration of a countable dense set of all the open
intervals (0, 1). The construction glues the ‘n copies of [0, 1)’ to the nth element of
the dense set. Denote by Mn the manifold obtained at the nth step of this process.

Analogously, the rigid foliation is made from: a copy of (0, 1)2 foliated by the
vertical lines (0); and for each n ≥ 1, n copies of [0, 1) × (0, 1) foliated by verti-
cal lines (n); and a nice enumeration of a dense countable family of leaves. We
think of each [0, 1) × (0, 1) as being ‘buckled over’, see the diagram. The ‘nice’
enumeration uses the natural enumeration of the dyadic rationals between 0 and
1, namely: 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, . . .. In fact the dense leaves are
enumerated: (1/2, 0); (1/4, 0), (1/2, 1, 1); (3/4, 0), (1/4, 1, 1), (1/2, 2, 1), (1/2, 2, 2);
(1/8, 0), (3/4, 1, 1), (1/4, 2, 1), (1/4, 2, 2), (1/2, 3, 1), (1/2, 3, 2), (1/2, 3, 3); . . .. Here
(x, 0) stands for the leaf {x} × (0, 1) in (0, 1)2, and (x, n,m) stands for the leaf
{x} × (0, 1) in the mth copy of [0, 1)× (0, 1) of the nth group.

The construction starts with F0 which is just the copy of (0, 1)2 foliated by the
vertical lines. At stage n of the construction the n ‘buckles’ are inserted into a
tubular neighbourhood of the nth dense leaf, as in the diagram for two buckles.
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This gives a foliation Fn whose leaf space is Mn. (The diagram above shows the
case n = 9.) In the limit we get our rigid foliation. �

Theorem 5.4. Every finite group can be realized as the outer automorphisms of a
foliation of an open (metrizable) surface.

Proof. Given a finite group G, construct the manifold M(G) of Theorem 4.6. This
has the property that its autohomeomorphism group is isomorphic to G. Since
M(G) is constructed from finitely many copies of the small rigid manifold (Exam-
ple 4.4) it is easy to see that M(G) is a non Hausdorff one manifold with finitely
generated fundamental group. Further, because of the property of the rigid mani-
fold, M , that the invariant σ(x) is different for every point of M , any autohomeo-
morphism of M(G) must respect any order structure placed upon it.

Haefliger ([5], page 8) has shown: for every orientable, non Hausdorff, Lindelöf
1-manifold with finitely generated fundamental group, M , there is an orientable
foliation F by lines on a (metrizable) surface S, such that the leaf space of F is M .

Now the surface S and foliation F for M(G) given by Haefliger’s result are as
required. �

Question 5.5. Which finite groups can be represented as the group of outer au-
tomorphisms of a foliation of the plane? What about the cyclic group of order
3?
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