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Abstract. Using topological games we investigate connections between
properties of topological spaces and their spaces of continuous functions
with the compact-open topology. This leads to new criteria for metris-
ability of a manifold. We show that a manifold M is metrisable if and
only if a winning strategy applies to certain topological games played
on Ck(M). We also show that M is metrisable if and only if Ck(M) is
Baire, and even if and only if it is Volterra.
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1. Introduction and Topological Games

Topological games have become a valuable tool in the study of topological
properties and many games are now well-studied. Hithertoo we are unaware
of any connections between topological games, particularly played on func-
tion spaces, and the problem of metrisability of topological manifolds. After
investigating games and the relationship between topological properties of
function spaces we describe a number of conditions equivalent to metrisabil-
ity of a manifold. In particular we show that a manifold is metrisable if and
only if the corresponding space of real-valued functions with the compact-
open topology is a Baire space (indeed, we can even weaken the latter to
Volterra as defined in [GGP]).

Unfortunately there seems to be some inconsistency with the naming of
topological games so we shall describe explicitly the games we are discussing.

Definition 1.1. Suppose that players α and β play a game on a topological
space X which involves them taking turns at choosing points and/or subsets
of X. A strategy for α is a function which tells α what points or sets to select
given all the previous points and sets chosen by β. A stationary strategy for
α is a function which tells α what points or sets to select given only the

Date: July 31, 2006.
1,2Work on this paper began during these two authors’ visit to Sultan Qaboos Uni-

versity, Sultanate of Oman in 2005; the visit was sponsored in part by Sultan Qaboos
University. Also, the first author was partially supported by the Marsden Fund research
grant, UOA0422, administered by the Royal Society of New Zealand and a New Zealand
Science and Technology Post-Doctoral Fellowship.

1



2 J. CAO, D. GAULD, S. GREENWOOD, AND A. MOHAMAD

most recent choice of points and sets chosen by β. A winning (stationary)
strategy for α is a (stationary) strategy which guarantees that α will win
whatever moves β might make.

One of the most basic games is the following.

Definition 1.2. Two players α and β play alternately on a topological space
X. Player β begins by choosing a non-empty open V0 ⊂ X. After that
the players choose successive non-empty open subsets of their opponent’s
previous move; denote by Un (respectively Vn) the nth choice of player α
(respectively β). Player α wins if the intersection of the sets is non-empty;
otherwise player β wins. This game is called the Banach-Mazur game in
[CP, p.1], [MN86, p.204] and [Zs, p. 200], and the Choquet game in [Gr,
p.19] and [Ke, p. 43]. We shall call this the Banach-Mazur game.

Definition 1.3. Again two players α and β play alternately on a topological
space X. Player β begins by choosing a point x0 and an open set V0 with
x0 ∈ V0 ⊂ X. When β has chosen point xn and open set Vn with xn ∈
Vn ⊂ X, player α chooses an open Un ⊂ Vn with xn ∈ Un. Then β chooses
xn+1 and Vn+1 with xn+1 ∈ Vn+1 ⊂ Un and Vn+1 open. Player α wins if the
intersection of the sets is non-empty; otherwise player β wins. This game is
called the Choquet game in [CP, p.1] and the strong Choquet game in [Ke,
p. 44] and [Zs, p. 200]. We shall call this the Choquet game.

At least the following terms seem to have general agreement.

Definition 1.4. A space X is weakly α-favourable (also called Choquet in
[Gr, p.19]) if player α has a winning strategy in any Banach-Mazur game
played on X. The space X is α-favourable if player α has a stationary
winning strategy in any Banach-Mazur game played on X. The space X is
strongly α-favourable if player α has a stationary winning strategy in any
Choquet game played on X. The fourth possibility for X, that player α
has a winning strategy in any Choquet game played on X, is called strongly
Choquet in [Ke, Definition 8.14].

In [Gr] the following game is also discussed.

Definition 1.5. Let X be a topological space. The game Go
K,L(X) has, at

the nth stage, player K choose a compactum Kn ⊂ X after which player L
chooses another compactum Ln ⊂ X so that Ln ∩Ki = ∅ for each i ≤ n.
Player K wins if {Ln}n<ω has a discrete open expansion.

Recall that an open expansion of a family {Sα / α ∈ A} of subsets of
X consists of a family {Uα / α ∈ A} of open sets such that Sα ⊂ Uα for
each α ∈ A, and that a family S of sets is discrete if each point of X has a
neighbourhood which meets at most one member of S.

The following game was introduced in [KKM] in order to study automatic
continuity of group operations of a semi-topological group.
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Definition 1.6. Let X be a topological space, and D ⊂ X a dense subset.
The game GS(D), involves two players α and β. Players β and α choose
alternately non-empty open subsets Vn and Un in X just as in the Banach-
Mazur game. Player α wins a game if

⋂
n<ω Un is non-empty and each

sequence 〈xn〉n<ω with xn ∈ Un ∩D for all n < ω has a cluster point in X.
The space X is strongly Baire if X is regular and there is a dense subset
D ⊂ X such that β does not have a winning strategy in the game GS(D)
played in X.

Theorem 1.7 ([KKM]). Every strongly Baire semi-topological group is a
topological group.

Remark 1.8. It is a well-known and standard result that X is Baire if
and only if player β does not have a (stationary) winning strategy in the
Banach-Mazur game, see [Ke, p.43] or [SR].

It is clear that Čech complete spaces are strongly Baire, and strongly
Baire spaces are Baire. Note that a metric space is Baire if and only if it is
strongly Baire. Thus, strong Baireness and (weak, strong) α-favourability
are distinct properties, even in the class of metric spaces. In general, there
is a Baire space which fails to be strongly Baire, e.g., the Sorgenfrey line.

Remark 1.9. [MN92] Every completely metrisable space both is strongly
α-favourable and provides player α a winning strategy in the game GS(D)
played on X for any dense subset D ⊂ X.

2. Properties of a space and its function space.

In this section we find connections between properties of a topological
space and properties of its space of real-valued functions with the compact-
open topology which, for a given space X, we denote by Ck(X). Recall that
sets of the form N (f, C, ε) = {g ∈ Ck(X) / |g(x)−f(x)| < ε for each x ∈ C}
form a neighbourhood basis for f ∈ Ck(X) as C ranges through compacta
in X and ε > 0.

Recall that a space X is a k-space if any subset A ⊂ X is closed if and
only if A ∩K is closed for each compact K ⊂ X and is hemicompact, [Are,
p.486], if there is a sequence 〈Kn〉 of compact subsets so that each compact
K ⊂ X is contained in some Kn. The definition of cosmic is found, for
example, in [GM].

Proposition 2.1. [MN88, Corollary 5.2.5(a)] Let X be any space. Then
Ck(X) is Polish if and only if X is a hemicompact, cosmic k-space.

Proposition 2.2. Suppose that X is locally compact, Hausdorff and path-
connected and that Ck(X) is a space of second category. Then X is hemi-
compact.

Proof. We may assume that X is non-compact; choose a point x0 ∈ X. Set

K = {K / x0 ∈ K ⊂ X and K is compact }.
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Because X is connected and non-compact it follows that each member of K
has non-empty boundary. For each n < ω set

Un = {f ∈ Ck(X) / f(∂K) > n for some K ∈ K}.

Clearly each set Un is open. Each Un is also dense in Ck(X). Indeed,
suppose that U is a non-empty open subset of Ck(X): in order to show that
U ∩ Un 6= ∅ we assume that U = N (f, C, ε) for some f ∈ Ck(X), compact
C ⊂ X and ε > 0. Using local compactness of X and compactness of C
we may find a compact subset K ⊂ X containing x0 and C in its interior.
Then K ∈ K. Applying Tietze’s Extension Theorem to the normal space K
we may find a function gn ∈ Ck(X) which agrees with f on C and is n + 1
on ∂K ∪ (X r K). Then gn ∈ N (f, C, ε) ∩ Un, so Un is dense. As Ck(X)
is of second category it follows that ∩n<ωUn 6= ∅; choose g ∈ ∩Un. Now
choose Kn ∈ K so that g(∂Kn) > n. It is claimed that X = ∪n<ωKn. This
will show that X is σ-compact and hence hemicompact because X is also
locally compact.

Suppose that x ∈ X but x /∈ ∪n<ωKn. Choose a path π : [0, 1] → X
from x0 to x. For each n, as x0 ∈ Kn while x /∈ Kn, it follows that there
is tn ∈ [0, 1] such that π(tn) ∈ ∂Kn. The sequence 〈tn〉 has a convergent
subsequence; by deleting some of the sets Kn if necessary we may assume
that 〈tn〉 converges, say to t. As tn → t, it follows that gπ(tn) → gπ(t).
This gives a contradiction as gπ(tn) > n for each n.

We observe that the requirement that X be path-connected in Proposition
2.2 can be weakened to requiring that each pair of points of X should lie in
a sequentially compact, connected subset of X.

Related to this result is the following. We require the following concept,
which reduces to a q-point when D = X.

Definition 2.3. Let X be a topological space and D ⊂ X a dense subset.
We shall call a point x ∈ X a qD-point if there is a sequence 〈Un〉n<ω of
open neighbourhoods of x such that if xn ∈ Un∩D for each n < ω, then the
sequence 〈xn〉n<ω has a cluster point in X.

Proposition 2.4. For a Tychonoff space X, the following are equivalent:
(a) Ck(X) is strongly Baire.
(b) Ck(X) is Baire and X is hemicompact.

Proof. (b) ⇒ (a). It is a classical result of Arens in [Are] that if X is
hemicompact, then Ck(X) is metrisable. In addition, Baireness and strong
Baireness are equivalent for any metrisable space.

(a) ⇒ (b). Suppose that Ck(X) is strongly Baire. Since any strongly
Baire space is Baire, we only need to show that X is hemicompact. Let
D ⊂ Ck(X) be a dense subset such that β does not have a winning strategy
in the game GS(D) played in Ck(X). This means that for any strategy t that
β applies, there will be a sequence 〈Un〉n<ω of non-empty open subsets in
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Ck(X) such that
⋂

n<ω Un 6= ∅ and any sequence 〈fn〉n<ω with fn ∈ Un ∩D
has a cluster point in Ck(X). Thus each point of

⋂
n<ω Un is a qD-point. Let

g ∈
⋂

n<ω Un and let E = D− g, i.e. a translation of D. Then E is dense in
Ck(X), and the zero function f0 is a qE-point in Ck(X). For convenience, let
〈N (f0,Kn, εn)〉n<ω be a sequence of non-empty basic open neighbourhoods
of f0 in Ck(X) such that if gn ∈ N (f0,Kn, εn) ∩ E for each n < ω, then
〈gn〉n<ω clusters in Ck(X), where each Kn ⊂ X is compact and each εn > 0.

We first claim that X =
⋃

n<ω Kn. If not, there will be a point x0 ∈
X r

⋃
n<ω Kn. For each n < ω, we can pick a gn ∈ Ck(X) such that

gn(Kn) = 0 and gn(x0) = n. Furthermore, since E is dense in Ck(X), for
each n < ω, we can choose an hn ∈ Ck(X) such that

hn ∈ N (gn,Kn, εn) ∩N (gn, {x0}, 1/3) ∩ E.

It is clear that hn ∈ N (f0,Kn, εn)∩E for each n < ω, as f0 � Kn = gn � Kn

for each n < ω. But 〈hn〉n<ω cannot have any cluster point in Ck(X), simply
because hn(x0) ∈ (n− 1/3, n + 1/3) for all n < ω. This is a contradiction.

Next, choose a sequence 〈N (f0, Cn, δn)〉 of open neighbourhoods of f0,
where Cn is compact with Kn ⊂ Cn ⊂ Cn+1 and 0 < δn+1 < δn ≤ εn, such
that

{f0} =
⋂

n<ω

N (f0, Cn, δn) =
⋂

n<ω

N (f0, Cn, δn).

This may be done as follows. Define Oij = N (f0,Ki, 1/j) for i, j < ω
and relabel as sets Gn so that {Gn / n < ω} = {Oij / i, j < ω}. Note
that {f0} =

⋂
n<ω Gn. Regularity of Ck(X) allows us to shrink the sets

Gn to open sets Hn so that f0 ∈ Hn ⊂ Hn ⊂ Gn. Moreover, by shrinking
further if necessary, we may assume that each set Hn is of the required form
N (f0, Cn, δn).

If X is not hemicompact, then there will be some compact subset K ⊂ X
such that for each n < ω, K 6⊂ Cn. For each n < ω, we can pick a point
xn ∈ K r Cn, and a function pn ∈ Ck(X) such that pn(Cn) = {0} and
pn(xn) = 2. For each n < ω, we have N (f0, Cn, δn) ∩N (pn, {xn}, 1) 6= ∅ so
we may choose qn ∈ Ck(X) such that qn ∈ N (f0, Cn, δn)∩N (pn, {xn}, 1)∩E.
As qn ∈ N (f0, Cn, δn) ∩ E for each n < ω, f0 must be a cluster point of
〈qn〉n<ω. However, we have qn 6∈ N (f0,K, 1) for all n < ω. This is a
contradiction, which proves that X is hemicompact.

3. Applications to manifolds

The major result in this section explores metrisability of manifolds in
terms of games. Here a manifold is assumed to be a connected Hausdorff
space in which each point has a neighbourhood homeomorphic to euclidean
space Rn for some n (which is unique).

Note that all manifolds are locally compact, path-connected k-spaces. A
manifold M is metrisable if and only if any one of the following conditions
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holds for M : paracompact, σ-compact, hemicompact, cosmic. A fuller list
may be found in [Ga, Theorem 2].

Definition 3.1 ([Gr]). Let X be a topological space. A family L of non-
empty compact subsets of X moves off compacta of X provided that for
each compact K ⊂ X there is L ∈ L such that K ∩ L = ∅. A space X has
the Moving Off Property (MOP) provided that for each family L of compact
subsets of X which moves off compact subsets of X there is an infinite subset
L′ ⊂ L which has a discrete open expansion.

In [Gr, Section 5] the author notes that in a normal or locally compact
space the Moving Off Property is equivalent to the Weak Moving Off Prop-
erty, which merely requires that the infinite subcollection should be discrete
rather than requiring an open expansion to be discrete. It is proved in [GMa]
that for a locally compact space X, Ck(X) is Baire if and only if X has the
MOP.

Definition 3.2. A topological space X is Volterra, [GGP], provided that
the intersection of any two dense Gδ-subsets is dense.

Of course every Baire space is Volterra but the converse is false in general.
Nevertheless situations under which the converse is true have been explored
by various authors, see [GGP], [GL], [CG] and [CJ] for example.

Theorem 3.3. For a manifold M , the following are equivalent:
(1) M is metrisable;
(2) Ck(M) is strongly α-favourable;
(3) Ck(M) is strongly Choquet;
(4) Ck(M) is α-favourable;
(5) Ck(M) is weakly α-favourable;
(6) K has a winning strategy in G0

K,L(M);
(7) Player α has a stationary winning strategy in GS(D) played in Ck(M)

for any dense subset D ⊂ Ck(M);
(8) Player α has a winning strategy in GS(D) played in Ck(M) for any

dense subset D ⊂ Ck(M);
(9) Ck(M) is a strongly Baire space;

(10) Ck(M) is a Baire space;
(11) Ck(M) is a Volterra space;
(12) M has the Moving Off Property.

Proof. (1) ⇒ (2) follows from Proposition 2.1 and Remark 1.9.
(2) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (5), as well as (7) ⇒ (8), (8) ⇒ (9)

and (9) ⇒ (10) ⇒ (11) are trivial.
By [Gr, Theorem 4.1], for a locally compact space X, K has a winning

strategy in G0
K,L(X) if and only if X is paracompact. Also, by [Ma, Theorem

1.2], a locally compact space X is paracompact if and only if Ck(X) is weakly
α-favourable. Since a manifold is paracompact if and only if it is metrisable,
we have (5) ⇔ (1) ⇔ (6).
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(1) ⇒ (7). If M is metrisable, then Ck(M) is completely metrisable and
thus player α has a stationary winning strategy in the game GS(D) played
in Ck(M) for any dense set D ⊂ Ck(M).

(11) ⇒ (10) follows from [CJ, Theorem 3.4].
(10) ⇔ (12) follows from [GMa, Theorem 2.1].
(10) ⇒ (1) follows from Proposition 2.2.

Most completeness properties in the literature relate complete metris-
ability and α-favourability. As an example, consider pseudo-completeness.
Thus, the following corollary improves equivalence condition 6 of [GM, The-
orem 2].

Corollary 3.4. Let M be a manifold. Then M is metrisable if and only if
Ck(M) is pseudo-complete.

Note that every manifold is locally compact, and so any manifold is
strongly α-favourable, and hence α-favourable, strongly Choquet and weakly
α-favourable. See, for example, [MN92].

Remark 3.5. A very similar argument to that in the proof of Proposition
2.4 shows that if X is a Tychonoff space then Cp(X) is strongly Baire if and
only if Cp(X) is Baire and X is countable. Hence there is no analogue of
Theorem 3.3 for Cp(M).

4. Open questions

Propositions 2.2 and 2.4 motivate the following question.

Question 4.1. For a Tychonoff space X is there any relation between the
Bairness of Ck(X) and hemicompactness of X?

The following questions also seem to be interesting in the light of Theo-
rem 3.3. The intention is that the property P should be similar in nature
to the Moving Off Property.

Question 4.2. Let X be a Tychonoff space. Is there a property P such that
X has P if and only if Ck(X) is strongly Baire?

Question 4.3. Are the following equivalent for a Tychonoff space X?
(1) Ck(X) is strongly α-favourable.
(2) Ck(X) is strongly Choquet.
(3) Ck(X) is α-favourable.
(4) Ck(X) is weakly α-favourable.

Remark 4.4. The answer to Question 4.3 is affirmative when X is locally
compact and paracompact, [NZ, Theorem 2.3]. More precisely, for a locally
compact space X, each of conditions (1), (2), (3) and (4) in Question 4.3
is equivalent to X being paracompact. Further, there is a locally compact
space X such that Ck(X) is Baire but not weakly α-favourable, see [GMa,
Example 4.1].
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