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Abstract

Our main result is a generalisation of the Baire category theorem: if Xi,...,X is a
finite collection of topological spaces so that X7 is Baire, and when k > 1 each X; except
possibly X}, has a countable pseudo-base and each X; except possibly X7 is quasi-regular
and strongly countably complete, if (C,,) is a sequence of separately semi-closed subsets of
the product Hle Xi;and O C Hle X; is a non-empty open set such that O c |J,—, C,.,
then there is an integer m such that O N Con #* .
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Throughout we assume that all topological spaces are non-empty.

1 Separately open sets

Let Xi,..., X} be a finite collection of topological spaces and let X = [[" ; X;. Say that
a subset S C X is separately open (called linearly open in [12]) provided that for each
z = (z;) € X and each j = 1,...n there is a neighbourhood N; of z; in Xj; such that
[Ti=; Ni C S, where N; = {z;} when i # j. A separately closed set is one whose complement
is separately open. The separately open sets form a topology, see [6] and [8], for example; we
will call this the topology of separately open sets. By the separate closure of the set S C X
we mean the set ST C X which is the closure of S when we use the topology of separately
open sets: note that ST C S. Similarly we can define the separate interior and note that
for any set S the interior of the separate interior of S is the same as the interior of S.

Note that we cannot expect to obtain S* by taking the union of the closures of each
‘slice’ in the factor spaces. For example if we take S to be the open unit square in R? then
ST is the closed unit square but the union of the closures of all of the slices will miss the
corners of the square.

In [3] the reviewer states that ‘although it seems to be of importance and non-trivial,
the author fails to offer an example of a linearly open set which is not open.” Perhaps the
simplest example of such a set involves the familiar separately continuous but discontinuous
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ey i (z,y) # (0,0)
0 if (z,y) = (0,0)
separately open but not open for any € between 0 and 1. In the following two examples we
exhibit separately open sets which are dense and codense hence have empty interior. In the
second example the complement is also separately open.

function f : R? — R given by f(z,y) = : then f=1(—¢,¢) is

Example 1 Let X and Y be Baire, T, dense-in-themselves and second countable spaces.
Then X x'Y contains a separately open, dense and codense set which therefore has empty
interior.

Let {B, / n=1,2,...} be a countable base for X x Y. Then by [7, Proposition 1.32, page
17] each B, is uncountable. Pick (z1,y1) € Bi. Suppose that (x;,y;) € B; has been chosen
for each i < n such that x,, # z; and y,, # y; when i < n. Choose (2,41, Yn+1) € Bpy1 such
that xp11 # x; and yp41 # y; when ¢ < n+ 1: such choice is possible as By is uncountable
and open. Now let S = X XY — {(z;,v;) /i = 1,2,...}. Then S satisfies the conditions
demanded. n

Example 2 A product space X may possess a pair of disjoint separately open, dense subsets
whose union is all of X.

Let X = (QnNJ0,1])2. Note that a subset S C X is separately open if for each point z € S
there is a ‘cross’ centred at x (ie the union of an open horizontal and an open vertical segment
each containing x) which lies in S.

Write X = {z, / n=0,1,...} with zp = (0,0). Let m; : X — R be projection onto the
ith coordinate. We first construct two sequences (A4,) and (By,) of subsets of X satisfying
the following properties:

An—l C An and Bn—l C Bn,

zn € Ap U By;

when n > 1 each small square in X bounded by the lines z = 21;11 , T = an;l , Y = 2],;11

)

(ii) A, N B, = g;
)
)

and y = 2,3—,1 meets both A,, and By;

(v) for each m and each x € A,,, U B, there is n such that either A,, or B,, contains a cross
centred at .

Let Ag={0,1} xQUQ x {0,1} and By = &.

Now suppose that A, 1 and B,_1 have been constructed to satisfy (i)-(iv). Let Hy =
75 N (ma(2)) and Vo = 77 (m1(2,)) and let H; = w3 '(Z22) and V; = 77 ' (%51) when 1 <
i < 271 then each H; is a horizontal line and each V; is a vertical line in X. We set
ApUB, = Ay_1UB,_1U(U;<on—1(H;UV;)) and now indicate which points of U;<on—1 (H; UV;)

are in A, and which are in B, (i) dictating the fate of points of A, 1 U B,,_1.

IfH; ¢ A, 1UBy 1 then A, 1UB,,_1 subdivides H; into a number of segments: we need
to show how each such segment is assigned to A, and B,. If one end point of the segment
is in A, 1 and the other is in B, _; then choose a point p in the segment such that 71 (p) is
irrational and assign all points of the segment between p and the end point which is in A,,_;



to A, and all other points to B,,. If both end points are in the same one of A, 1 and B,,_1,
say Ap—_1, then choose two distinct points p,q in the segment with m(p) and m1(¢q) both
irrational and assign all points between p and ¢ to B,, and all others to A,, interchanging
the roles of A,, and B, if the end points are in B,_; instead. Similar allocation rules apply
to segments of V; but now all we require is that the allocation of points within the segment
should be consistent with the allocation of the end points to A,,_1 or B,,_1 and of the point
H;NVjto A, or By,.

y ||

A2 E— By

Conditions (i)-(iv) are easily verified. Given z € A,, U B,,,, then z = z, for some n and
A, or B,, contains a cross centred at z,, so (v) is also satisfied.

Now let A =J;2 5 A, and B = {J;_, By. Then from (i) and (ii) A and B are disjoint.
Their union is all of X from (iii). By (iv) each of A and B is dense in X and from (v) A
and B are separately open. n

For constructions of separately open sets in ‘big’ products, such as X* where k > w, see
[10], [11] and [13].

When the product space is R™ for some n > 1 we can also consider the following notion:
a subset S C R" is linearly open if its intersection with every straight line is relatively open.
Contrast this with the definition of ‘linearly open’ in [12], where the only lines considered
are those parallel with the axes. It is not difficult to see that there are linearly open sets in
R? which are not open: for example take R? — {(1, L) /n=1,2,...} or

{(z,y) eR? / Jy| > 2*} U {(2,9) € R® / |y| < %} u{(0,0)}-

Of course we could define notions of openness along curves of higher order, for example say
that a set S C R™ is quadratically open provided that the intersection of S with any parabola
is relatively open. By taking the curves determining the sets above to be cubic instead of
parabolic we get sets which are quadratically open but not open. We could even take sets
such as

_ L
e «?

}U{(0.9) / y € R},

{(z,y) €R® / |yl > e @} U{(a,y) €R? / |y| <




2 Other definitions

A space X is Baire provided that the intersection of countably many dense open (equivalently,
dense Gg) subsets is dense.

A subset A C X of a topological space is semi-open provided that A C A and semi-

closed provided that its complement is semi-open, ie that A C A. Let X1,..., X} be a finite
collection of topological spaces and let X = [[;"; X;. Say that a subset S C X is separately
semi-closed provided that .S is semi-closed when we use the topology of separately open sets.

Note that we cannot expect a set S to be separately semi-open if and only if each ‘slice’
is open in the factor spaces. For example take S = R? — Q x {0}, a separately semi-open
subset of R? but the slice consisting of the part of S on the z-axis has projection onto the
first factor just the irrationals and that set has empty interior.

A function f : X — Y is quasi-continuous, [5, definition (32.1)], provided that the inverse
image of every open subset of Y is semi-open in X; equivalently that the inverse image of
every closed set is semi-closed. In the case where X = Hle X; then f is separately quasi-
continuous if it is quasi-continuous when the topology of separately open sets is used on

X.

A pseudo-base for a topological space X is a collection B of non-empty open sets such
that for any non-empty open set U C X there is B € B such that B C U. In what follows
we will assume that a space has a countable pseudo-base. In the latter case we may assume
that the base is indexed as (B,) so that for each non-empty open U C X and each positive
integer m there is an integer n > m such that B,, C U; we will say that such an ordered
countable pseudo-base is micely ordered. Note that an open subspace of a space with a
countable pseudo-base has a countable pseudo-base and a finite product of spaces each with
a countable pseudo-base also has a countable pseudo-base.

Following J.C. Oxtoby [9], we say that a topological space is quasi-reqular if for every
non-empty open set U, there is a non-empty open set V such that V' C U. Obviously, every
regular space is quasi-regular.

Now let A be an open covering of a space X. Then a subset S of X is said to be A-small
if S is contained in a member of A. A space X is said to be strongly countably complete [4],
if there is a sequence (A; / i =1,2,...) of open coverings of X such that a sequence (F}) of
non-empty closed sets of X has a non-empty intersection provided that F;;1 C F; for all ¢
and each F; is A;-small.

Remark 1. The class of strongly countably complete spaces includes locally compact
Hausdorff spaces and complete metric spaces. This follows from the theorem of Arhangel’skii

and Frolik which states that a completely regular space is strongly countably complete if and
only if it is Cech-complete, see [2, p. 252].

Remark 2. If X is a quasi-regular, strongly countably complete space, then whenever
the closed sets F; mentioned in the definition of strong countable completeness are such that
Fo+1 C F,, , then ﬂ?il F;, = n;.il F;, + o.

3 Preliminary Results

Lemma 3 Fvery quasi-reqular, strongly countably complete space is Baire.



Proof. Suppose that X is a quasi-regular, strongly countably complete space, say (A;) is
a sequence of open covers as in the definition of strongly countably complete. Let (D;) be
a sequence of open dense subsets and let U C X be any non-empty open set. As X is
quasi-regular and strongly countably complete there is a non-empty open As-small set Uy
such that U; € U N Dy. Continue inductively to construct a sequence (U,) of non-empty
open sets such that U, C U,_1 N D,_1 and U, is A, 41-small.

Now (U,,) is a decreasing sequence of non-empty closed sets and U, is A,-small. Thus
@+, U, cUN (N, D,) so X is Baire. u

Lemma 4 Suppose that X is a Baire space, (Ay) is a sequence of closed subsets of X and
U C X is a non-empty open subset such that U C \J;2 | An. Then there is m such that
UNA,, #92.

Proof. Suppose to the contrary that U N Ay =@ for allm. Let B, = X — (A, — An) Then
B,, is open and U C |J;2 (A — An) so that U N(\,_,; B, = @ and hence ;2 By, is not
dense in X. As X is Baire it follows that there is some m for which B,, is not dense. Then
there is a nonempty open set V' C X such that VN B, =@. Then V C A4,, — fclm, which is
impossible. L

Lemma 5 Let Xq,..., X be a finite collection of topological spaces so that Xy is Baire, and
when k > 1 each X; except possibly Xy, has a countable pseudo-base and each X; except pos-
sibly X1 is quasi-reqular and strongly countably complete Suppose that (Ay,) is an increasing
sequence of separately closed subsets of X = HZ 1 X and U; C X; are non-empty open sets
such that U = HZ Ui C U A,. Then there is an integer m such that U N A,, # @.

n=1

Proof. Use induction on k, the result following from Lemma 4 when £ = 1. Suppose
that the claim is true for any product of £ — 1 spaces but there are k spaces for which it is
false, and assume that the spaces X1i,..., Xy form a collection of such spaces. Let (B,) be
a nicely ordered countable pseudo-base for Hf:_ll Ui and (A; : i=1,2,...) a sequence of
open coverings of X}, exhibiting strong countable completeness.

We will construct a nested sequence (C,, : n =0,1,...) of closed subsets of X} having
non-empty interior such that for each n the set C), is A,-small, where Ay = {X}. Given
C.,, we will also choose a point a,41 € Hf:_ll X;. Begin the inductive construction by using
quasi-regularity of X to choose a closed subset Cj of X such that Cy C Uy and Co #* .

Now suppose that C;, i < n, has been constructed. As we are assuming that A, does
not meet HZ 1 Ui it follows that B, x Cn 1 ¢ A, so there is a,, € B,, and open P, C C’n 1
such that P, # @ and ({a,} x P,) N 4, = &. We may assume that P, is A,-small. By
quasi-regularity of X we may choose a closed set C,, C X such that C’n # @ and C,, C P,.

Note that C, is A,-small, closed and has non-empty interior, C,, C Cp_1, and ({an} x
Cp)NA, =

Consider the sequence (C,). By strong countable completeness of Xj, we have
N2, Cr # 25 let ¢ € %2, Cy: then ¢ € Up. Let A, = {z € [["Z' X : (z,0) € A}
Then Al is separately closed in Hi.:ll X; imd Hf;ll U; C UA] . Thus by inductive hypothesis
there is an integer m so that (Hf:_l1 U;)NAl, # @&. Because the pseudo-base is nicely ordered,
there is an integer n > m so that B,, C (H;:ll U)n A,



Now a,, € B, C Al and hence (ap, c) € A, C Ay, which contradicts ({an } xCp)NA, = @.

Lemma 6 Let X1,...,X; be a finite collection of topological spaces so that X1 is Baire,
and when k > 1 each X; except possibly Xy has a countable pseudo-base and each X; except
possibly X1 is quasi-reqular and strongly countably complete. Suppose that A, B C H?Zl X;
are separately closed subsets, and U; C X; are non-empty open sets such that Hle U; C
AU B. Then either (Hf:1 U)NA or (Hf:1 U;) N B is non-empty.

Proof. Use induction on k, the result following from Lemma 4 when k = 1. Suppose that
the claim is true for any product of £ — 1 spaces but there are k spaces for which it is false.
Let {B, : n=1,2,...} be a countable pseudo-base for Hffl Uiand let (A; : i=1,2,...)

be a sequence of open coverings of X exhibiting its strong_countable completeness.

We will construct a nested sequence (C),, : n =0,1,...) of closed subsets of X} having
non-empty interior such that for each n the set Cy, is A,-small, where Ay = {X}. Given C,
we will also choose points a1, bp41 € H;:ll X;. Begin the inductive construction by using
quasi-regularity of X} to choose a closed subset Cjy of X such that Cy C V and Cy # 2.

Now suppose that C;, i < n, has been constructed. As we are assuming that A does
not meet Hle U; it follows that B,, X é’n,l ¢ A so there is a,, € B, and open P, C Co’n,1
such that P, # & and ({a,,} x P,) N A = @. Similarly there is b, € B,, and open @Q,, C P,
such that @, # @ and ({b,} x @,) N B = @. We may assume that @, is A,-small. By
quasi-regularity of X we may choose a closed set C,, C X} such that C, # @ and C,, C Q.

Note that C,, is A,-small, closed and has non-empty interior, C,, C 1, and ({an} x
Ch)NA=({bn} xCp)NB=g.

Consider the sequence (C),). By strong countable completeness of Xy, we have ()72, C;, #
&; let ¢ € (2, Cyp: then ¢ € Uy. Let

k-1 k—1
A’:{:CEHXZ-:(x,c)EA} and B':{xEHXi:(:v,c)EB}.
i=1 i=1

Then A’ and B’ are separately closed in Hf:_f X; and H;:ll U, ¢ AU B, so there is a
non-empty open set O C Hfz_ll U; such that either O C A’ or O C B’; say O C A’. Choose
n so that B,, C O.

Now a,, € B, C O C A" and hence (a,, c) € A which contradicts ({a,} x Cp,) NA=2.m
Corollary 7 Let Xq,..., X, be a finite collection of topological spaces so that X1 is Baire,
and when k > 1 each X; except possibly Xy has a countable pseudo-base and each X; except
possibly Xy is quasi-reqular and strongly countably complete. Suppose that Ai,..., A, C

Hle X, are separately closed subsets, and U; C X; are mon-empty open sets such that
Hle U CAiU...UA,. Then (Hf:1 U;) N A; is non-empty for some i.

Proof. Use Lemma 6 and induction on n. Note that A=A U...UA,_1 and B = A,, are
separately closed so by Lemma 6 the interior of one of them meets Hle U;. =

4 Main Result

The following generalises [12, Theorem 1].



Theorem 8 Let Xy,..., Xy be a finite collection of topological spaces so that X1 is Baire,
and when k > 1 each X; except possibly Xi has a countable pseudo-base and each X; except
possibly X1 is quasi-reqular and strongly countably complete. Suppose that (Cy) is a sequence
of separately closed subsets of the product Hle X;. Let O C H?:l X; be a non-empty open
set such that O C |J;2 Cn. Then there is an integer m such that O N Crm #* .

Proof. The proof is by induction on k. When k& = 1 the result follows from Lemma 4.

Now suppose the result is true for a product of k—1 spaces. For each n, let 4,, = i, Ci.
Then each A, is separately closed and A, C A,41. Furthermore, O C ;2 ; An. Moreover
(Ay) is a nested sequence of separately closed subsets of Hle X; and there are non-empty
open subsets U; C X; such that H;C:l U; C O, so that Hle Ui C Uy Ay

Thus by Lemma 5 there is an integer n such that (Hf:1 U)n A,, # @. 1t now follows
from Corollary 7 that O N C},, # @ for some m < n. m

Corollary 9 Let X = Hle X; be the Cartesian product of Polish spaces. Let (Cy) be a
sequence of separately closed sets in X, and let U C X be a non-empty open subset such that
Uc U, Cy. Then there is an integer m such that U N Cp, # &.

Corollary 10 Let X1,..., X} be a finite collection of topological spaces so that X1 is Baire,
and when k > 1 each X; except possibly Xy has a countable pseudo-base and each X; except
possibly X1 is quasi-reqular and strongly countably complete. Suppose that (Cy,) is a sequence
of separately semi-closed subsets of the product Hle X;. Let O C Hle X; be a non-empty
open set such that O C ;2 ; Cy. Then there is an integer m such that O N o #+ .

Proof. Apply Theorem 8 to the sequence (C;). Then O C |J;2, C;F as Cy, C C;f. Thus by
Theorem 8, there is an integer m so that O NintC}, # @. As C,, is separately semi-closed
it, follows that intC);, C C,, so that O N C,, # @. "

5 Applications

Theorem 11 Let X1,..., X be a finite collection of topological spaces so that X1 is Baire,
and when k > 1 each X; except possibly Xy has a countable pseudo-base and each X; except
possibly X1 is quasi-regular and strongly countably complete. Let F be a family of separately
quasi-continuous functions from the product space X = Hle X toaspaceY. Let {D,, /| n =
1,2,...} be a closed cover of Y. Suppose that for each x € X there is n such that f(x) € D,
for each f € F. Then for every non-empty open set O C X there is a non-empty open set
U C O and an integer n such that f(x) € Dy, for all x € U and all f € F.

Proof. For each n let C, = Ngerf Y(Dy). For each f € F, as f is separately quasi-
continuous it follows that f1(D,,) is separately semi-closed and hence so is C,. Note that
U ,Cp = X. Thus given a non-empty open set O C X we have O C U>2;C), so by Corollary
10 there is an integer n such that O N Cy #+2.8etU=0nN C,. =

This result generalises [1, Theorem 4]: take k =1, Y =R, D, = [-n,n| and O = X.
Another example of the application of this theorem is to the situation where the range is a
metric space and (D,,) is a sequence of balls of radius n.



Now we attempt generalising [12, Theorem 3|. Our version applies when the domain is
a product of two spaces.

Recall that for a function f : X — Y, where X is any topological space and Y is a metric
space, the oscillation w¢(z) of f at x is given by

wf(x) = inf{diamf(U) / U is a neighbourhood of z}.

For A C X we have w¢(A) = sup{wy(z) / = € A}

For Theorem 12 we need the following concepts. Call a space X uniformly first countable
if each point x € X has a countable neighbourhood base {N;(z) / ¢ = 1,2,...} such that
Nit1(z) C Ni(z) and for each £ € N;(x) there is j such that for each 2’ € N;j(z) we have
€ € N;(z'). Such a collection of neighbourhood bases will be called a uniform neighbourhood
base. The space X will be called symmetrically uniformly first countable if in addition
¢ € Ni(z) if and only if z € N;(&) for all ,£ € X and ¢ = 1,2,.... Such a collection of
neighbourhood bases will be called a symmetrical uniform neighbourhood base. Note that
every metrisable space is symmetrically uniformly first countable and every symmetrically
uniformly first countable space is semi-metrisable.

Theorem 12 Let X and Y be spaces satisfying the following conditions:

e X and Y are uniformly first countable with one of them symmetrically so;
e X andY are quasi-reqular;
e X has a countable pseudo-base;

e X is Baire;

Y is strongly countably complete.

Let (Z,d) be a metric space. Suppose that (f, : X XY — Z) is a sequence of separately
continuous functions converging pointwise to a function f : X xY — Z. Then the set, C(f),
of points of continuity of f is dense in X xX Y.

Proof Let U C X x Y be a nonempty open set: we must show that U contains a point at
which f is continuous. We first show that for each € > 0 there is a nonempty open set VC U
such that wy(V) <e.

For each p,q = 1,2,... let A, , = {(z,y) € X xY / d(fp(z,y), fy(z,y)) < %} and for
m=1,2,...1let Ay, = Np¢g>mApq Then

e A,, is separately closed. This follows because the complement of A, , is separately
open as fp and f, are separately continuous and the fact that the separately open sets
form a topology.

e U

m=1

A = X x Y. This is because f,,, — f pointwise.

These two points and Theorem 8 tell us that there is m such that A,, #@. As X xY is
quasiregular there is a closed set A C A,, having nonempty interior. We may assume that
A is regular closed.



Choose uniform neighbourhood bases for X and Y, with one set of bases being symmet-
rically so: we will denote the corresponding base at x € X UY by {Ni(z) /Il = 1,2,...},
assuming no confusion between X and Y.

For each [ = 1,2, ... let
B, = {(z,y) € A/ for each £ € Ni(z) and n € N;(y),
A(fn(@,9); fn(€.9)) < = and d(fn(@,9). foulw,m) < 5}
Then

e B is separately closed. This follows from the fact that the complement is separately
open as fp, is separately continuous. *

e U, By = A. This also follows from the fact that fy, is separately continuous.

By Theorem 8 there is [ such that B # &. Pick (a,b) € B,. Then there is an open set
V = Ni(a) x Ni(b) C By for some k > .

Let (z,y),(&,n) € V. Then

d(f(z,y), f(§n) <d(f(z,Y), fm(2,y) + d(fim(2,y), [ (& 1) + d(fm(€,m), f(§,m)) <e.
(

Indeed, d(f(z,v), fm(z,y) < €/3 and d(f(&,n), f(&,n) < /3 follow from the fact that
(z,y), (& n) € Ap. The inequality d(fn(z,vy), fm(§, 1)) < £/3 may be deduced as follows,
where we have assumed that X has a symmetric neighbourhood base (if instead it is Y then
replace (a,y) and (a,n) by (x,b) and (£, b) respectively):

d(fm (2, ), fm(§,n))
< d(fm(x,y), fm(a,y)) + d(fmla, y), fim(a, b)) +d(fm(a,b), fm(a,n)) + d(fm(a,n), fm(€,n))

Each of these terms is at most 55 because of the definition of B; and the location of the
points (a,b), (z,y) and (£,n). It follows that ws(V) < e.

We now define a sequence (C),) of nonempty, regular closed subsets of X x Y such that
Chmt1 C é’m, C1 U, wy(Cp) < % and each C, is A,,-small, where (A,) is a sequence of
open covers exhibiting strong countable completeness of X x Y. Given Cp, (or just U to
begin the induction) apply what we have proved to the nonempty open set Ch, (or U) to
get a nonempty open set Up,11 C Crn (or U) with wg(Up+1) < #ﬂ We may assume that
Unm+1 i8 App1-small. Let C,41 be a nonempty, regular closed subset of U,,+1. Note that
Cp, is Ap,-small for each m, so by choice of A,, the nested sequence (C),) has nonempty

intersection, say ¢ € N°_,Cy,. Then c € C(f)NU. n

An assumption close to Baireness is needed in Theorem 12. Indeed, if we let A, B C
(QN[0,1])? be the sets described in Example 2 then the function f : (Q N [0,1])? — R

1 if A . . .
defined by f(z) = { 0 ifi E g B separately continuous but not continuous at any point.

* We need to show that X xY — By is separately open. Suppose that (z,y) € X XY —By. If (z,y) ¢ A then
X xY — Ais an open, so separately open, set containing (z,y) and missing B;. If instead (z,y) € A then either
there is & € N;(x) such that d(fm(z,y), fm(§,y)) > 35 or there is n € N;(y) such that d(fm(z,y), fm(z, 7)) >
5 suppose the former. Find n large enough that & € Ni(z') for each ©’ € Nn(xz). As fm is separately
continuous at (x,y) then (again assuming n large enough) for each ¥’ € N, (z) we have

A (@), frr(@',)) < d(Fn (@ ). Fn(&,9)) = 15> 0)

s0 d(fm (', 9), fm (&, 9)) = d(fm(2,9), fm (€. 9)) — d(fm (2, y), fm (2, y)) > 16—2
Thus Ny (x) N B; # @.



Question 1 Do the hypotheses in Theorem 12 actually imply that the spaces X and Y are
metrisable?
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