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distance % from 0 radially outwards. If the points h(y) and h(z) of
the solution to exercise 3.8 are such that B(h(y)) = h(z) , then we may
let the required g be Bg. Otherwise, we find a diffeomorphism + of
R™  so that Byh(y) = vh(z) and let the required g be Y_lﬁy , which
is 1 outside the bounded set Y_IB(O;l). For example, +y might be the
composition % e §, where § and Z are translations and ¢ a
contraction defined by

X ) . _h(z)-h(y)
k|h(z)-h(y) ]’ Zixibex 2[h(z)-h(y) ]

§:X+>x - h(y), e:xt~

Write Vy = f(UX) when x ¢ f—l(y) . Then Vy is open in M, by
Invariance of Domain. Let
: ' -1 -1
B:{(vy, (f]UX) )/ x€fty) and y e M},

Surjectivity of f guarantees that B 1is an atlas. Suppose
: -1 -1
(vy, (£lu)™), (vn, (f | Uy) ) € B. Then

m

) £ (flug)’l
u.n £l VNV — 5 . R
X n y m

is ¢’ at each point of its domain. Indeed, let 1z € UX N f_l(Vn) and
set z' = (f [U )'lf(z) . Then the coordinate transformation when
restricted to UX N f_l(Vn) N UZ (a neighbourhood of =z in IRm) is
also the restriction of (f ]UZ,)_l(f [UZ) which, by hypothesis, is CY.

CHAPTER 6

Let M denote the upper half plane and N the plane minus the non-

negative real axis. Give M and N the orientations determined by the
bases {(M,e)}, {(N,)} respectively, where ¢® 1is the forgetful function
given by o(x+iy) = (x,y) . Then ofp '(x,y) = of(x+iy) = o(x2 - y2 +1i-2xy),
S0 A(@fw_l)(x,y) = 2(x2+y?) > 0 for each (x,y) ¢ oM) . Thus f is

orientation preserving.

Orient 1IR3, R3. {(x,0,2z) / x= 0} and (0,o) x (0,2m) x (0,7) wusing
the identity charts. The diffeomorphism is a composition of two, viz a
standard orientation preserving diffeomorphism IR3 — (0,®) x (0,2m) x (0,m)

and, in the notation of the solution to exercise 4.2, the diffeomorphism
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T. In that solution, it was found that AT(r,0,0) = -r2 sin ¢ ., Which
is negative when o € (0,7), so T , and hence also the diffeomorphism

R3 — R3 - {(x,0,z) / x= 0}, is orientation reversing.

Let M" be a connected manifold having orientation B . Let

B' = {(U,00) / (U,p) € B},

where o : R™ Rr™ is the réflection of lemma 2, It is readily checked
that B' 1is (a basis for) an orientation of M , and that B # B', so
that M has at least two orientations. On the other hand, if € is
another orientation for M, then 3 (U,e) € C for which U is connected,
so by lemma 2, either (U,p) € B or (U,p) € B': suppose the former.

It is claimed that B ¢ C and hence by maximality that B = C. It is
enough to show that if (V,W) € B is such that V is connected and
UNV #¢ then (V,¥) € C since, by exercise 5.6, such charts form a
basis for B. If (V,y) is such a chart, then by lemma 2 either

(V,2¥) € C or (V,pW) € C. The latter is impossible since

U,p), (V,I) € B = @¢_1 is orientation preserving so that @(pW)_l is
orientation reversing yet (U,p) € C. Thus (V,&) €C.

It is clear that each component of an orientable manifold may be
oriented in one of two ways independently of the orientation of the other
components. Thus an orientable manifold with c components has 2

orientations.

Since {U /3¢ > (U,p) €D} covers M, {(UNN/ ¢ > (U,p) € D}
covers N, each of the sets being open in N. Thus E is an atlas

on M. Note that because N is open, U ﬁ N is open in M so

®(U N N) is open in R™ whenever (U,p) € D, Condition DS1 is
clearly satisfied by E because we are just restricting differentiable
functions to open subsets. Thus FE is at least a basis for a differen-
tial structure on N, If (V,¥) belongs to this differential structure
then, since V is open in M also, we must have (V,¥) € D (by DS2
applied to D). By definition, (V,¢) € £, so E also satisfies DS2.
Note that E c D .
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Now suppose (N,E) is not orientable. By theorem 3, 3 charts
(U,e), (V,¥) € E for which U and V are connected but A(@Wal) does
not have constant sign. Since FE c D, we have U,0), (V,¥) ¢ E also,

so by theorem 3, (M,D) is not orientable,

Since P? contains a Mtbius strip as an open subset, one can show
that P2 is not orientable by showing that the Msbius strip is not.
This may be achieved by taking as U and V two open connected subsets,
one of which goes about half way round and the other the rest with some
overlap at each end. However ¢ and W are chosen so that (U,p) and

(V,¥) 1lie in the differential structure, A(@Wﬁl) must change sign.

Let o: R" — g0 be the inverse of stereographic projection

st . 100,...,0,1)} - R" and .80 _, pt the standard projection.
Then mo : R" - pn satisfies the conditions of the function f in
exercise 5.7. Thus 7o determines a differential structure on P",
Because 7o is an immersion with Trespect to the differential structure

constructed on P" in the text, the two structures are the same.

Because it contains a Msbius strip which is not orientable, by

exercise 4 the Klein bottle is not orientable.

CHAPTER 7

Let D, £ and F be the respective differential structures, m, n and
P the respective dimensions, and suppose x € M. Let (U,p) € E and
(V,9) € F satisfy x CUNV, o' @™ =unmM, ¢ LmrY =VAN,
WNM o|UNM €D and (VAN, ¥|VNON) € E. The formila

X(y) = (w*{wlm,...,gvn(y),o,...,o), A COPRPRN¢5)

defines a function X :W — TRP , for W some open neighbourhood of x.
Moreover, (W,X) € F X_I(IRm) =W0OM and (WNM, X |WNM) €D.

Define F: IR3 — IR3 by

F(a,B,r) = ((Z-F(f-Fl)cos B)cos a, (2-*(r-+1)cos B)sin a, (r+1)sin 6}
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Then for o, 8 € [0,27), F(a,8,0) is that point of T2 with latitude

o and longitude B8 .

—(24‘(r-F1)cos B)sin o -(r+1)sin B cos & cos B cos &]
DF(a,B,r) = (2-+(r-+1)cos B)cos o -(r+1)sin 8 sin o cos B sin o ,

0 (r+1)cos B sin B

so AF(o,B,r) = (r-*l)(Z-F(r-fl)cos B), which is non-zero if -1 < r < 1.

By the Inverse Function Theorem, F 1is a local diffeomorphism.

Now let (x,y,z) € T2. Then 3 open set U containing (x,y,z) >
® = Flois defined on U and ¢ :U -— IR x R x (-1,1) ¢ R3 is an
embedding. Moreover, (U,p) 1is in the usual structure of R3, Further,
o 1(R?) =UN T2 and UNT?, o |UNT2) is in the structure of T2 ,

The case m=n is trivial, so assume m< n, Let S = " —‘{[O,...,O,l)}
and ¢:S — R" pe stereographic projection from (0,...,0,1). Note

that o ]Sm is the inclusion. Suppose x € s™ . Since S" is a sub-
manifold of Bfl, 3 chart (V,W) in the usual structure of R" » x ¢ Vv,
VHR™ = v s™ and (vn s, ¥ v s™ is in the structure of ST,
Let U = chl(V) and ¢ :U — R® pe V(o |U). Then (U,p) is in the
structure of S" , X €U, @_I(IRm) =uns" and un Sm, © IU N Sm)

is in the structure of Sm.

Again assume m< n. Let x ¢ Pm, and pick y ¢ s™ > T(y) = x,
where m:S" — P0 is the standard projection. By problem 3, 3 chart
(V,¥)  in the structure of 5" > y eV, o (R™ =vns® and

vn Sm, ¢ ]V N Sm) is in the structure of S™. We may assume that

z €V=-z £V, Let U= 7(V) and 9:U0 — R pe &(ﬂ [V)_l . Then
(U,p) 1is in the structure of PO , X €U, @_I(IRm) = U ﬁ P™  and

{Uun Pm, 0] IU ﬁ Pm) is in the structure of PM .

Replacing e by f, choose (V,¥) and (W,X) as in the proof but
further so that f [V is an embedding. In this case the chosen (U,op),
together with (V,¥) , will satisfy the requirements.
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By exercise 2-6(c), ¢ x V:lUx V— R" x ®R" - IRm+n is an embedding so

M x N is a topological manifold [1t is easy to show that M x N is
Hausdorff]. Clearly {(UxV, ¢x¥) / (Uy,p) €D, (V,W) € £} is an atlas.
Suppose (Ul,wl) €D and (Vi,wi) €L (i=1,2). Then

(9, x¥,) (o, x40 7" = (0,071 x (v,¥7"), which is differentiable, so

the atlas satisfies DS1 and hence is a basis for a differential

structure.

The function v :M — T'(f) is a homeomorphism, so +(D) is a

differential structure on r{).

Suppose T'(f) is a submanifold of M x N. Then Y:M-—Mx N
is differentiable since if (W,X) € D x E satisfies X L (BR™) = w0
and (WNT(E, x|wn T(f)) € v(D), then (WN T(£), X | WN )
(Y(U), ®Y_1) for some (U,p) € D:Xyp ! = X(Qynl)"l is just the inclusion
so is differentiable. Further, =w:M x N — N defined by w(x,y) =y is
also differentiable: if (x,y) € M x N, pick a chart UxV, ¢ x ¢)

from the basis for U x E > (x,y) € Ux V; then (V,W) is a chart

about y and WW(@><¢)_1 : R™T D is projection on the last n

I(f)

coordinates so is differentiable. Thus f = #y 1is differentiable,

Conversely, if f is differentiable and (x,f(x)) € I'(f), pick
charts (U,p) €D, (V,¥) € E with x € U and f(U) c v wf@-l is
differentiable. The formula X(E,n) = (@(g) WCn)-—Wf(g)) defines a
function X : W — H€n+n for W some open nelghbourhood of +v(x) in
M x N. Further, (W,X) € D x E, (D{ ) =WNT() and
W T, x| WA @) € yd). Thus T'(f) is a submanifold of M x N .

CHAPTER 8

It is clear that F(X,V) 1is closed under addition and scalar multiplica-
tion. Associativity and commutativity of addition follow from properties
of IR. The additive identity is the function 0:X — V defined by
0(x) =0 Y x€X. For f:X-—1V define -f:X — V by

- (x) = -f(x) : -f 1is the additive inverse of f. The distributive
laws follow from those for R, for example, (r+s)f = rf + sf because
if x € X then ((r-*s)f)(x) = (r+s) - £f(x) =1+ f(x) + s s f(x) =
(rf+sf) (x). Associativity of scalar multiplication follows from

multiplicative associativity in IR, and 1f=f because (1) (x) =1~ £(x) = £(x).
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We must show that u + v satisfies Tang 2 and Tang 3 and that v

satisfies Tang 1, Tang 2 and Tang 3.

u + v satisfies Tang 2 because if f, g ec” (M,R), then

u(fxg) +v(fxg) (definition of vector addition)

(u+v)(fxg)

u(f)g(p) + £(plulg) +v(Hglp) + £(p)v(g) (u and v satisfy
Tang 1)

(u®) +vO) ) + £0) (ule) *+v(g)) (axioms for R)

4

(ur*v)(f)g(p)-*f(p)01+\0(g)(definition of vector addition).

u * v satisfies Tang 3 because if f, g € c® M,R) and f|U-=g IU

for some neighbourhood U of p, then

(u+v)(£) = u(f) + v(f) (definition)
= u(g) + v(g) (Tang 3)
= (u+v)(g) (definition).

rv satisfies Tang 1 because if a, 8 € R and f, g ¢ c” (M,IR), then

(xv) (af + 8g) = T - v(af + Bg) (definition)
= rLav(£) +gv(g)] (Tang 1)
= arv(f) + Brv(g) (axioms for IR)
= a(rv) (£) + B(xv) (g) (definition)

v satisfies Tang 2 because if f, gec” (M,IR), then

(rv)(£xg) = r + v(fxg) (definition)
= rfv(©)g@) * f(pIv(g)] (Tang 2)
= v(fglp) + £(p)rv(g) (axioms for IR)
= (xv) (F)g(p) + £(p) (rv) (g) (definition)

v satisfies Tang 3 because if f, g € C* M,IR) and f IU =g IU for

some neighbourhood U of P, then .

(xv) (£) = vv(£) = rv(g) = (xv)(g) .
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Since ¢(0,1,0) = (0,1) and from the calculation in chapter 6,

D(Ww_l)(O,l) = [?1 f] » the required components are given by
0

-1 0 1 -1
[ ]l:‘J = [.J > 1.e. the components of v with respect to (V,y)
0 =110 0

are (-1,0). Since {(t,1) / t € R} is a curve in R2 with direction
ratios (1,0), the curve o {(t 1) / t € R}, more precisely +y : IR — §2
defined by «v(t) = (t 1), has velocity \
vector v at (0,1,0).

dﬂﬁu+ﬂ =d%ﬁu)+cﬁb@),:&rif g €C° (N,R), then

dﬂﬁu+VNg)=(ﬁ+v)@f) weﬁniuQnofdﬂQ
= u(gf) + v(gf) (definition of addition)
= dfp(u)(g) + dfp(v)(g) (definition of dfp)

(dfp (w) +df ) ) ()

Similarly dfp(rv) = rdfp(v), S0 dfp is a linear transformation.

Let (U,p) and (V,w) be any two charts about p and f(p)
respectively with f£(U) ¢ V. The rank of f at p is the rank of
the Jacobian matrix D(Wf¢ )(@(p)) On the other hand the rank of
dfb is the rank of the matrix representation of dfp chosen with

respect to any bases on TMp and TNf(p) . The proof of theorem 1

provides bases: {5%; I)// i= 1,...,m} and {5%;- f(p)///i = 1,...,n}

respectively. The matrix representation of dfp with respect to these

. o n 0 .
A = —— A
bases is (aij), where dfp{aq)j p} Zk=1 akj S ! £(p) * s in the

proof of theorem 1, we may extend the restriction of W to some

neighbourhood of f(p) over all of N, calling such an extension of

Wi also. Then the previous equatlon when applied to W yields
. oV .
. =a.,., since — is 0 if k #1 and 1 if k =

So; AT {p T Yij 3y
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 fp 1
Now —§-(Wif) _ d3(Y;fe™")

which is the (i,j) entry of
095 P 3x (i,3) Y

o(p)”’

D(Wf¢—1)(@(p)) . Thus the matrix representation of df_ is just the

P
Jacobian matrix D(Wf¢_1)(@(p)) , and so the rank of dfp is the rank

of f at p.

To transfer the Jacobian to a manifold, we must think of it as

. . . m .
representing a linear transformation on the tangent space [but TRp 1s
naturally identifiable with IRm]. This linear transformation carries

over to manifolds,

natural embedding of dfp(TS;) in IR3

‘tangent hyperplane to S? at £(p)

If y:1I — 8l 45 any curve with +(0) = p, then the natural embedding
of dfp(TSé) in R3 contains the tangent line to the curve f& at 0.
More generally, for arbitrary immersion f:M — N , the natural embedding
of dfp(TMp) in R4 contains the tangent line at f(p) to any curve

fy, where y is a curve in M.

CHAPTER 9

Set S ={p €M/ fis regular at p} and let p € S. Let (U,p) and
(V,¥) be charts as in theorem 1. Clearly ¢f¢_1 has rank n throughout
o), i.e. f has rank n throughout U. Thus U c § » SO S 1is open.

We consider the critical point (1,0,0) and modify the latitude/longitude
chart of chapter 5. As in the solution to exercise 7.2, the inverse of

the function (a,B) — ((2-+cos B)cos a, (2+cos B)sin o, sin B)



- 29 -

defines a chart about (1,0,0), with (o,B8) near (0,7) : denote this chart

by (U,p) . Then f(p-l(oz,B) = (2+cos B)cos a. Since £(1,0,0) = 1 5

we require a diffeomorphism \1/ from a neighbourhood of (0,m) onto a
neighbourhood of (0,0) so that fcpnlxj/-l(g,n) =1-z%+ n? . Writing

V(@,8) = (§,m) , we want v(0,r) = (0,0) and 1 - &2 + n2 = (2+cos 8)cosa .

When B8 = 7, m will have to be 0 » S0 the equation reduces to
1-%2=cosa, so =% Vi-cos . Trying 1 - £2 = cos o even

when B # 7, we get cos o + n% = (2 +cos B)cos a, so mn2= (1+cos Blcos a ,

and m =% V(1+cosB)cosa.

Now % t sina a—g—-o M _ g (*cospising and

- > - k4
oa 2V1 - cosa 38 da 2V(1+ cos B) cos a

an sin B cos o
— =+ Defining ¥ by
98 2V(1 + cos B)cos o

V{a,B) = ((sign o)V1-cosa, (sign(B - T/ (1 + cos B)cos o ] ,

one checks that \l/ is a diffeomorphism from a neighbourhood of (0,m)

- 1im {signhT-cos h 1

0 h=o h V.2

onto a neighbourhood of (0,0) ,:e,g, %,

= 1im 9——, SO G is continuous at 0 ; similarly the other partial
derivatives are continuous in a neighbourhood of (0,7), and hence ¥

is differentiable near (0,v). On the other hand, D(\!/) (0,m) = {1/V2 0
0 1/V2

which is non-singular, so ¥ is a local diffeomorphism by the Inverse
Function Theorem.| Making U smaller if necessary, we obtain a chart

(U,¥¢) about (1,0,0). Further, f(P_l\j/_lCE,Y}) = fCP—l[@igni}COS—l(l -£2),

2
- 1) is understood

- 2 -
cos 1(;-?-%—5- 1)] =1-%82+n2, yhere cos 1(1ngz

to be in (m,3w/2) if m > 0 and in (n/2,7) if m<oO.
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Let h:R — R be as in lemma 4.1. Then £ - h: R — R is a (2
function, being a product of such functions. Since f-h' agrees with

f on [-%,%], f+h has infinitely many non-degenerate critical points.
Further, since f+h is identically zero outside [-1,1], it may be
used to define a function g: st - R of the required type. For

1

example, set g(x,y) = f(2x)h(2x) if y>0 and g(x,y) =0 if y< &,

The statement is false, for if f: IR — IR 1is defined by f(x) = x*,
then C = {0}, with the critical point being degenerate. However,

C-{0}=¢, so 0%C - {0}.

Let g:M— R be g Morse function. By corollary 5, g has only

finitely many critical points, all isolated. Suppose P 1s a critical

point of g. Let (U,p) be a chart as given by Morse's theorem.
Defining h:M — R by h(q) = g(q) - g(p) , we have

-1 _ A2 m 2 . .
he " (x) = —Zizlxi + Zi=k+lxi Vxeol). Since ¢(U) is a
neighbourhood of 0, it contains B(O;r) for some r > 0. As in

lemma 4.6, we can find a ¢~ function a: B(0;r) — R which agrees

' on B(0;r) - B(0;r/2), has a single critical point which

with he~
is at 0, is non-degenerate and has index X, and satisfies

a(0) # h(q) VY critical point q of h (hence g). Define f:M — R
by £(q) =h(@) if q €M - o ' (B(0;r/2)) and £(q) = an(q) if

q € w_l(B(O;r)) . Then f 1is a Morse function and the critical point
p has a different value from those of all of the other critical points

of f. Continuing finitely many times we obtain the result.

CHAPTER 10

The family {é_l(v><W) / U,p) €D, Vand W are open in R"™ and v c e U)}
forms a basis for the topology on TM. The sets U 1lie in this basis
S0 are open. Further the function ¢ are embeddings. Thus

{{,0) / (U,0) € D} forms an atlas.

Suppose  (U,9), (V,¥) € D. Then
P87 00m = (W 1), D™ W* ) Viny) € 5NT) . where by
D(W@_l)(x)* we mean the transpose of the Jacobian D(W@’l)(x) T it
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converts components of a vector with respect to (U,p) into components

with respect to (V,y). Since Yo ' is cF , D(&@_l)( )* is 7L,

Aa=l - . -
Thus Vo is cf! » SO we have a basis for a €' 1 structure on TM.

) dx; dy; . -t
The equations —= = _x, and —2J = y. have solutions x. = A e and
dt 1 dt J 1 1
v = Bjet , so that (x,y) = (Ae”%, Bel), where A = (A, ,...,A) and
B = (Bl""’Bm-A) are constants. Thus t r+'@_i(Ae_t,Bet), are
integral curves for & within U. When 0 < A < m, we have
Ix] « ly] = |a]e™® « |Blet = |A| « |B|], which is constant. When ) = 0,

there are no x-coordinates and t F+-@"I(Bet) are integral curves for

£ within U; in this case as t — «, ly] — « also and the curves

emanate radially (with respect to (U,@)) from p. When A =nm s, there
are no y-coordinates and t F»p@_l(Ae~t) are integral curves for &

within U; as t — o, lx] — 0 and the curves converge radially towards

P .

Let (U,9) and (V,y) be charts about (0,0,-1) and (0,0,1) >

BTl 0uy) = 1 v y2 and BTN00y) = 1o 2 <32 ¥ () € o)

and YV (x,y) € ¥ (V) respectively. We may assume that o(U) = V(V) = B(0;1)
for some r € (0,1): thus (x,y,z) €U iff 7z <« -1 + r2 and

(X,y,z) €V iff 7z > 1 - 12, Let (W,X) and (X,w) be charts >
WUX=52-{(0,0,-1),(0,0,1)} and X(x,y,z) and w(x,y,z) are each

(6,%5, where (x,y,z) has spherical polar coordinates (1,6,35.

(a) Let E£(p) have components ¢ (p) with respect to {U,p) for
p€o  (B(0;1/2));
Let &(p) have components -y (p) with respect to (V,¥) for
p €y (B(051/2));
Let &(p) have components (0,1) with respect to W,X) or (X,w)
for »p 6'{(x,y,z) € 82/ —1-+3r2/4152251-3r2/4}. Note that the
integral curves of & as defined so far are parts of lines of
longitude. Moreover the definition of g€ on part of WU X may
be extended over all of W U X : thus 3 a smooth function
k: (-1,-1+12) — (0,») > ¥YpeU —'{(0,0,—1)}, the vector field
with components at p equal to (0,1) with respect to (W,X) or
(X,w) has components kf(p) < o(p) with respect to (U,p). Letting
h: R — IR be the function of lemma 4.1, define 2 : (-1,-1+1r2) —

(0,=) by



- 32 -

2(t) = h{t+21+%) * k(t)[l—h[t+21+%ﬂ :
T T
For t=-1+7r%4, 2(t) =1 and for t> -1+ 3r2/4, 2(t) = k(t).
Thus we may extend & over {(x,y,z) / -1+12/4 < 7 < -1+ 3r2/4}
by letting £(p) have components 2£(p) - ¢(p) with respect to
(U,p). Similarly we may extend & over the corresponding annulus
in the northern hemisphere. Such extension is smootﬁ, and satisfies

the requirements.

(b) Let & be as in (a) on U UV, but introduce a spiral on the
equatorial annulus {(x,y,z) € S2 / -1+ 712 <7< .1+ 12}, For
example, with h: R — IR as in (a), let g(x'l(e,$5) or
g(w“1(6,$5) have components {ch@?/(l-—rz)), 1) with respect to
W,X) or (X,w), where c¢ is any constant:the value of ¢
determines the number of times the integral curves spiral around

s2

Define h:S! x [0,1] — {x ¢ R2 / 1 < Ix| =2} by h(x,t) = (t+D)x.
Then h 1is a homeomorphism. Suppose (x,t) € S! x [0,1] with

X = (Ei,?é) where ié > 0. Then (xl,xzj > X; determines a chart
on S! about X. Since [0,1] ¢ R, we may take ([0,1], 1) as a
chart on [0,1] about t and the identity function also gives a chart
on the range. Differentiability of h at (x,t) transfers to

o V1 - x%)

at (§1,E), and this is clearly differentiable since x% < 1.

differentiability of the function (xl,t) wev((t-Fl)x

Moreover, its Jacobian matrix is t+1 Xy , which is

non-singular. Similar reasoning applies to other points of Sl><[0,1].

Thus h is a diffeomorphism.

By the Inverse Function Theorem, it suffices to show that I has rank m
at each point of its domain. The theory of differential equations tells
us that in Bgn, in the absence of singularities, the integral curves

determine a family of diffeomorphisms as follows: let By denote the
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integral curve through x > BX(O) = x and define Bt : R® . RO by
B (x) = (t) Each B is a diffeomorphism. Transferring this to
M enables us to slide a chart in M up the integral curves and obtain

a new chart.

Let (p,t) € M, x [c,d] and choose a chart (U,e) about p in M
for which o(q) = (@y (c), f(q)-—c). Defining g:U — M by
g(q) = Yq(t*—f(q)-—c) we obtain a chart (g(U), @g_l) in M about
g(p) =y (t). Now 0g F((@! Unw )><1] (x,s) = (x, s-t), whose
Jacobian is the identity: thus T has rank m at (P,t).

Let the sequence (xn) be as in the hint, and let (xnk) be a sub-
Seéquence converging, say, to x. By compactness, x € M - U. Onp
the other hand, by continuity of £f, fx) = 11m f(x ) » So that

X € Mb cu,

Let f:M— IR be a Morse function having exactly two critical points.
Since M is compact, so is f(M) which, therefore, must contain its
maximum and minimum. Thus f must have a maximum and a minimum, which

must be the only critical points of f: call thenm p and q respectively,
and suppose f(p) = 1 > £(q) = -1. Let (U,p) and (V,¥) be charts

about p and q given by Morse's theorem. Assume that ¢ (U) = V(V) =
B(0;2r), where 0 < r < I, By theorem 2, f_l([-l-frz, 0] is diffeo-
morphic to f‘l(-1+r2) x [-1+22, 0]. But f‘lc-1+r2) =

w_l{(x seees X ) € R™ / Zx2 = rz}, which is an (m-1)- Sphere Thus,

using the dlffeomorphlsm glven by theorem 2, we may extend V¥ ‘to a
diffeomorphism v : £~ ([ 1 0]) — g™ Similarly, ¢ may be extended

to a diffeomorphism ¢ : ([0,1]) — B" . It may be that ¢ and W
disagree on f-l(O) let o:B"™ — 8™ pe g homeomorphism for which

o !Sm- N/,Sm 1.-1

by h(x) =y~ 1(xl,...,x ) if X1 =0 and h(x) = o~ Lo (x seeea X ) if

Define the required homeomorphism h:s" sy

X Note that h might not be a dlffeomorphlsm since we cannot

=20.
mtl ~
be sure that o is a diffeomorphism.



