distance $\frac{1}{2}$ from 0 radially outwards. If the points h(y) and h(z) of the solution to exercise 3.8 are such that $\beta(h(y)) = h(z)$, then we may let the required g be β . Otherwise, we find a diffeomorphism γ of \mathbb{R}^m so that $\beta\gamma h(y) = \gamma h(z)$ and let the required g be $\gamma^{-1}\beta\gamma$, which is 1 outside the bounded set $\gamma^{-1}B(0;1)$. For example, γ might be the composition $\zeta \in \delta$, where δ and ζ are translations and ε a contraction defined by

$$\delta: x \longmapsto x - h(y) \text{ , } \epsilon: x \mapsto \frac{x}{k \left| h(z) - h(y) \right|} \text{ , } \zeta: x \mapsto x + \frac{h(z) - h(y)}{2 \left| h(z) - h(y) \right|} \text{ .}$$

7. Write $V_y = f(U_x)$ when $x \in f^{-1}(y)$. Then V_y is open in M, by Invariance of Domain. Let

$$B = \{ (V_y, (f | U_x)^{-1}) / x \in f^{-1}(y) \text{ and } y \in M \}.$$

Surjectivity of f guarantees that \mathcal{B} is an atlas. Suppose $\left(V_y, \left(f \mid U_x\right)^{-1}\right), \left(V_\eta, \left(f \mid U_\xi\right)^{-1}\right) \in \mathcal{B}$. Then

$$\mathbf{U}_{\mathbf{x}} \cap \mathbf{f}^{-1}(\mathbf{V}_{\mathbf{y}}) \xrightarrow{\mathbf{f}} \mathbf{V}_{\mathbf{y}} \cap \mathbf{V}_{\mathbf{y}} \xrightarrow{(\mathbf{f} \mid \mathbf{U}_{\xi})^{-1}} \mathbb{R}^{\mathbf{m}}$$

is C^r at each point of its domain. Indeed, let $z \in U_x \cap f^{-1}(V_{\eta})$ and set $z' = (f \mid U_{\xi})^{-1} f(z)$. Then the coordinate transformation when restricted to $U_x \cap f^{-1}(V_{\eta}) \cap U_z$ (a neighbourhood of z in \mathbb{R}^m) is also the restriction of $(f \mid U_z)^{-1} (f \mid U_z)$ which, by hypothesis, is C^r .

CHAPTER 6

- 1. Let M denote the upper half plane and N the plane minus the nonnegative real axis. Give M and N the orientations determined by the bases $\{(M,\phi)\}$, $\{(N,\phi)\}$ respectively, where ϕ is the forgetful function given by $\phi(x+iy)=(x,y)$. Then $\phi f \phi^{-1}(x,y)=\phi f(x+iy)=\phi(x^2-y^2+i\cdot 2xy)$, so $\Delta(\phi f \phi^{-1})(x,y)=2(x^2+y^2)>0$ for each $(x,y)\in \phi(M)$. Thus f is orientation preserving.
- 2. Orient \mathbb{R}^3 , \mathbb{R}^3 $\{(x,0,z) \ / \ x \ge 0\}$ and $(0,\infty) \times (0,2\pi) \times (0,\pi)$ using the identity charts. The diffeomorphism is a composition of two, viz a standard orientation preserving diffeomorphism $\mathbb{R}^3 \to (0,\infty) \times (0,2\pi) \times (0,\pi)$ and, in the notation of the solution to exercise 4.2, the diffeomorphism

- T . In that solution, it was found that $\Delta T(r,\theta,\phi)=-r^2\sin\phi$, which is negative when $\phi\in(0,\pi)$, so T , and hence also the diffeomorphism $\mathbb{R}^3\to\mathbb{R}^3$ $\{(x,0,z)\ /\ x\geq 0\}$, is orientation reversing.
- 3. Let $\textbf{M}^{\textbf{m}}$ be a connected manifold having orientation \mathcal{B} . Let

$$\mathcal{B}' = \{(U, \rho\phi) / (U, \phi) \in \mathcal{B}\},\$$

where $\rho:\mathbb{R}^{\mathbb{M}}\to\mathbb{R}^{\mathbb{M}}$ is the reflection of lemma 2. It is readily checked that \mathcal{B}' is (a basis for) an orientation of M, and that $\mathcal{B}\neq\mathcal{B}'$, so that M has at least two orientations. On the other hand, if C is another orientation for M, then $\exists (U,\phi) \in \mathcal{C}$ for which U is connected, so by lemma 2, either $(U,\phi) \in \mathcal{B}$ or $(U,\phi) \in \mathcal{B}'$: suppose the former. It is claimed that $\mathcal{B} \subset \mathcal{C}$ and hence by maximality that $\mathcal{B} = \mathcal{C}$. It is enough to show that if $(V,\psi) \in \mathcal{B}$ is such that V is connected and $U \cap V \neq \phi$ then $(V,\psi) \in \mathcal{C}$ since, by exercise 5.6, such charts form a basis for \mathcal{B} . If (V,ψ) is such a chart, then by lemma 2 either $(V,\psi) \in \mathcal{C}$ or $(V,\rho\psi) \in \mathcal{C}$. The latter is impossible since (U,ϕ) , $(V,\psi) \in \mathcal{B} \Rightarrow \phi\psi^{-1}$ is orientation preserving so that $\phi(\rho\psi)^{-1}$ is orientation reversing yet $(U,\phi) \in \mathcal{C}$. Thus $(V,\psi) \in \mathcal{C}$.

It is clear that each component of an orientable manifold may be oriented in one of two ways independently of the orientation of the other components. Thus an orientable manifold with c components has $2^{\rm c}$ orientations.

4. Since $\{U \ / \ \exists \ \phi \ \Rightarrow \ (U,\phi) \in \mathcal{D}\}$ covers M, $\{U \cap N \ / \ \exists \ \phi \ \Rightarrow \ (U,\phi) \in \mathcal{D}\}$ covers N, each of the sets being open in N. Thus E is an atlas on M. Note that because N is open, U \(\text{N} \) N is open in M so $\phi(U \cap N)$ is open in \mathbb{R}^m whenever $(U,\phi) \in \mathcal{D}$. Condition DS1 is clearly satisfied by E because we are just restricting differentiable functions to open subsets. Thus E is at least a basis for a differential structure on N. If (V,ψ) belongs to this differential structure then, since V is open in M also, we must have $(V,\psi) \in \mathcal{D}$ (by DS2 applied to \mathcal{D}). By definition, $(V,\psi) \in \mathcal{E}$, so E also satisfies DS2. Note that $E \subset \mathcal{D}$.

Now suppose (N,E) is not orientable. By theorem 3, \exists charts (U,ϕ) , $(V,\psi) \in E$ for which U and V are connected but $\Delta(\phi\psi^{-1})$ does not have constant sign. Since $E \subset \mathcal{D}$, we have (U,ϕ) , $(V,\psi) \in E$ also, so by theorem 3, (M,\mathcal{D}) is not orientable.

Since P^2 contains a Möbius strip as an open subset, one can show that P^2 is not orientable by showing that the Möbius strip is not. This may be achieved by taking as U and V two open connected subsets, one of which goes about half way round and the other the rest with some overlap at each end. However ϕ and ψ are chosen so that (U,ϕ) and (V,ψ) lie in the differential structure, $\Delta(\phi\psi^{-1})$ must change sign.

- 5. Let $\sigma:\mathbb{R}^n\to S^n$ be the inverse of stereographic projection $S^n-\{(0,\ldots,0,1)\}\to\mathbb{R}^n$ and $\pi:S^n\to P^n$ the standard projection. Then $\pi\sigma:\mathbb{R}^n\to P^n$ satisfies the conditions of the function f in exercise 5.7. Thus $\pi\sigma$ determines a differential structure on P^n . Because $\pi\sigma$ is an immersion with respect to the differential structure constructed on P^n in the text, the two structures are the same.
- 6. Because it contains a Möbius strip which is not orientable, by exercise 4 the Klein bottle is not orientable.

CHAPTER 7

1. Let \mathcal{D} , E and F be the respective differential structures, m, n and p the respective dimensions, and suppose $x \in M$. Let $(U,\phi) \in E$ and $(V,\psi) \in F$ satisfy $x \in U \cap V$, $\phi^{-1}(\mathbb{R}^m) = U \cap M$, $\psi^{-1}(\mathbb{R}^n) = V \cap N$, $(U \cap M, \phi \mid U \cap M) \in \mathcal{D}$ and $(V \cap N, \psi \mid V \cap N) \in E$. The formula

$$\chi\left(y\right) \; = \; \left(\phi\psi^{-1}\left(\psi_{1}\left(y\right),\ldots,\psi_{n}\left(y\right),0,\ldots,0\right),\; \psi_{n+1}\left(y\right),\ldots,\psi_{p}\left(y\right)\right)$$

defines a function $X:W\to {\rm I\!R}^p$, for W some open neighbourhood of x. Moreover, $(W,X)\in {\cal F}$, $X^{-1}({\rm I\!R}^m)=W\cap M$ and $(W\cap M,X\mid W\cap M)\in {\cal D}$.

2. Define $F: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ by

$$F(\alpha,\beta,r) = \left(\left(2 + (r+1)\cos \beta \right) \cos \alpha, \left(2 + (r+1)\cos \beta \right) \sin \alpha, (r+1)\sin \beta \right)$$

Then for α , $\beta \in [0,2\pi)$, $F(\alpha,\beta,0)$ is that point of T^2 with latitude α and longitude β .

$$DF(\alpha,\beta,r) = \begin{bmatrix} -(2+(r+1)\cos\beta)\sin\alpha & -(r+1)\sin\beta\cos\alpha & \cos\alpha\cos\beta\cos\alpha \\ (2+(r+1)\cos\beta)\cos\alpha & -(r+1)\sin\beta\sin\alpha\cos\alpha\cos\beta\sin\alpha \\ 0 & (r+1)\cos\beta & \sin\beta \end{bmatrix},$$

so $\Delta F(\alpha,\beta,r)=(r+1)\left(2+(r+1)\cos\beta\right)$, which is non-zero if -1< r<1. By the Inverse Function Theorem, F is a local diffeomorphism.

Now let $(x,y,z) \in T^2$. Then \exists open set U containing $(x,y,z) \neq \varphi = F^{-1}$ is defined on U and $\varphi: U \to \mathbb{R} \times \mathbb{R} \times (-1,1) \subset \mathbb{R}^3$ is an embedding. Moreover, (U,φ) is in the usual structure of \mathbb{R}^3 . Further, $\varphi^{-1}(\mathbb{R}^2) = U \cap T^2$ and $(U \cap T^2, \varphi \mid U \cap T^2)$ is in the structure of T^2 .

- 3. The case m = n is trivial, so assume m < n, Let S = S^n {(0,...,0,1)} and $\sigma: S \to \mathbb{R}^n$ be stereographic projection from (0,...,0,1). Note that $\sigma \mid S^m$ is the inclusion. Suppose $x \in S^m$. Since S^m is a submanifold of \mathbb{R}^n , \exists chart (V,ψ) in the usual structure of $\mathbb{R}^n \to x \in V$, $\psi^{-1}(\mathbb{R}^m) = V \cap S^m$ and $(V \cap S^m, \psi \mid V \cap S^m)$ is in the structure of S^m . Let $U = \sigma^{-1}(V)$ and $\phi: U \to \mathbb{R}^n$ be $\psi(\sigma \mid U)$. Then (U,ϕ) is in the structure of S^n , $x \in U$, $\phi^{-1}(\mathbb{R}^m) = U \cap S^m$ and $(U \cap S^m, \phi \mid U \cap S^m)$ is in the structure of S^m .
- 4. Again assume m < n. Let $x \in P^m$, and pick $y \in S^m \to \pi(y) = x$, where $\pi : S^n \to P^n$ is the standard projection. By problem 3, \exists chart (V,ψ) in the structure of $S^n \to y \in V$, $\phi^{-1}(\mathbb{R}^m) = V \cap S^m$ and $(V \cap S^m, \psi \mid V \cap S^m)$ is in the structure of S^m . We may assume that $z \in V \Rightarrow -z \notin V$. Let $U = \pi(V)$ and $\phi : U \to \mathbb{R}^n$ be $\psi(\pi \mid V)^{-1}$. Then (U,ϕ) is in the structure of P^n , $x \in U$, $\phi^{-1}(\mathbb{R}^m) = U \cap P^m$ and $(U \cap P^m, \phi \mid U \cap P^m)$ is in the structure of P^m .
- 8. Replacing e by f, choose (V,ψ) and (W,X) as in the proof but further so that f $\mid V$ is an embedding. In this case the chosen (U,ϕ) , together with (V,ψ) , will satisfy the requirements.

6. By exercise 2-6(c), $\phi \times \psi : U \times V \to \mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{m+n}$ is an embedding so $M \times N$ is a topological manifold [it is easy to show that $M \times N$ is Hausdorff]. Clearly $\{(U \times V, \phi \times \psi) / (U, \phi) \in \mathcal{D}, (V, \psi) \in \mathcal{E}\}$ is an atlas. Suppose $(U_i, \phi_i) \in \mathcal{D}$ and $(V_i, \psi_i) \in \mathcal{E}$ (i = 1,2). Then $(\phi_2 \times \psi_2) (\phi_1 \times \psi_1)^{-1} = (\phi_2 \phi_1^{-1}) \times (\psi_2 \psi_1^{-1})$, which is differentiable, so the atlas satisfies DS1 and hence is a basis for a differential structure.

The function $\gamma:M\to\Gamma(f)$ is a homeomorphism, so $\gamma(\mathcal D)$ is a differential structure on $\Gamma(f)$.

Suppose $\Gamma(f)$ is a submanifold of $M \times N$. Then $\gamma: M \to M \times N$ is differentiable since if $(W,X) \in \mathcal{D} \times E$ satisfies $\chi^{-1}(\mathbb{R}^m) = W \cap \Gamma(f)$ and $(W \cap \Gamma(f), \chi \mid W \cap \Gamma(f)) \in \gamma(\mathcal{D})$, then $(W \cap \Gamma(f), \chi \mid W \cap \Gamma(f)) = (\gamma(U), \phi \gamma^{-1})$ for some $(U,\phi) \in \mathcal{D}: \chi \gamma \phi^{-1} = \chi (\phi \gamma^{-1})^{-1}$ is just the inclusion so is differentiable. Further, $\pi: M \times N \to N$ defined by $\pi(x,y) = y$ is also differentiable: if $(x,y) \in M \times N$, pick a chart $(U \times V, \phi \times \psi)$ from the basis for $\mathcal{D} \times E \to (x,y) \in U \times V$; then (V,ψ) is a chart about y and $\psi \pi (\phi \times \psi)^{-1}: \mathbb{R}^{m+n} \to \mathbb{R}^n$ is projection on the last n coordinates so is differentiable. Thus $f = \pi \gamma$ is differentiable.

Conversely, if f is differentiable and $(x,f(x))\in\Gamma(f)$, pick charts $(U,\phi)\in\mathcal{D}$, $(V,\psi)\in\mathcal{E}$ with $x\in U$ and $f(U)\subset V$; $\psi f\phi^{-1}$ is differentiable. The formula $X(\xi,\eta)=\left(\phi(\xi)\,,\,\psi(\eta)-\psi f(\xi)\right)$ defines a function $X:W\to\mathbb{R}^{m+n}$ for W some open neighbourhood of $\gamma(x)$ in M × N . Further, $(W,X)\in\mathcal{D}\times\mathcal{E}$, $X^{-1}(\mathbb{R}^m)=W\cap\Gamma(f)$ and $\left(W\cap\Gamma(f)\,,\,X\mid W\cap\Gamma(f)\right)\in\gamma(\mathcal{D})$. Thus $\Gamma(f)$ is a submanifold of M × N .

CHAPTER 8

1. It is clear that F(X,V) is closed under addition and scalar multiplication. Associativity and commutativity of addition follow from properties of \mathbb{R} . The additive identity is the function $0:X\to V$ defined by 0(x)=0 \forall $x\in X$. For $f:X\to V$ define $-f:X\to V$ by (-f)(x)=-f(x): -f is the additive inverse of f. The distributive laws follow from those for \mathbb{R} , for example, (r+s)f=rf+sf because if $x\in X$ then $\{(r+s)f\}(x)=(r+s)\cdot f(x)=r\cdot f(x)+s\cdot f(x)=(r+s)f(x)$. Associativity of scalar multiplication follows from multiplicative associativity in \mathbb{R} , and 1f=f because $(1f)(x)=1\cdot f(x)=f(x)$.

2. We must show that u+v satisfies Tang 2 and Tang 3 and that v satisfies Tang 1, Tang 2 and Tang 3.

u + v satisfies Tang 2 because if f, g \in C $^{\infty}$ (M, \mathbb{R}), then

$$(u+v)(f\times g) = u(f\times g) + v(f\times g) \qquad \text{(definition of vector addition)}$$

$$= u(f)g(p) + f(p)u(g) + v(f)g(p) + f(p)v(g) \qquad \text{(u and v satisfy }$$

$$= (u(f) + v(f))g(p) + f(p)(u(g) + v(g)) \qquad \text{(axioms for } \mathbb{R})$$

$$= (u+v)(f)g(p) + f(p)(u+v)(g) \qquad \text{(definition of vector addition)}.$$

u + v satisfies Tang 3 because if $f,\,g\in C^{\infty}$ (M, $\rm I\!R)$ and $f\mid U$ = $g\mid U$ for some neighbourhood U of p, then

$$(u + v)(f) = u(f) + v(f)$$
 (definition)

$$= u(g) + v(g)$$
 (Tang 3)

$$= (u + v)(g)$$
 (definition).

rv satisfies Tang 1 because if α , $\beta \in \mathbb{R}$ and f, $g \in C^{\infty}$ (M, \mathbb{R}), then

$$(rv) (\alpha f + \beta g) = r \cdot v(\alpha f + \beta g)$$
 (definition)

$$= r[\alpha v(f) + \beta v(g)]$$
 (Tang 1)

$$= \alpha rv(f) + \beta rv(g)$$
 (axioms for IR)

$$= \alpha (rv) (f) + \beta (rv) (g)$$
 (definition)

rv satisfies Tang 2 because if f, g \in C $^{\infty}$ (M, \mathbb{R}), then

$$(rv) (f \times g) = r \cdot v(f \times g)$$
 (definition)
$$= r[v(f)g(p) + f(p)v(g)]$$
 (Tang 2)
$$= rv(f)g(p) + f(p)rv(g)$$
 (axioms for \mathbb{R})
$$= (rv) (f)g(p) + f(p)(rv)(g)$$
 (definition)

rv satisfies Tang 3 because if f, g \in C $^{\infty}$ (M,IR) and f | U = g | U for some neighbourhood U of p, then

$$(rv)(f) = rv(f) = rv(g) = (rv)(g)$$
.

3. Since $\varphi(0,1,0)=(0,1)$ and from the calculation in chapter 6, $D\left(\psi\varphi^{-1}\right)(0,1)=\begin{bmatrix}-1&0\\0&-1\end{bmatrix}, \text{ the required components are given by}$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \text{ i.e. the components of } v \text{ with respect to } (V, \psi)$$

are (-1,0). Since $\{(t,1) \ / \ t \in \mathbb{R}\}$ is a curve in \mathbb{R}^2 with direction ratios (1,0), the curve $\phi^{-1}\{(t,1) \ / \ t \in \mathbb{R}\}$, more precisely $\gamma: \mathbb{R} \to S^2$ defined by $\gamma(t) = \phi^{-1}(t,1)$, has velocity vector v at (0,1,0).

4.
$$df_p(u+v) = df_p(u) + df_p(v)$$
, for if $g \in C^{\infty}$ (N, \mathbb{R}), then

$$\begin{array}{ll} \mathrm{d} f_p(u+v)(g) = (u+v)(gf) & (\mathrm{definition\ of\ d} f_p) \\ &= u(gf) + v(gf) & (\mathrm{definition\ of\ addition}) \\ &= \mathrm{d} f_p(u)(g) + \mathrm{d} f_p(v)(g) & (\mathrm{definition\ of\ d} f_p) \\ &= \left(\mathrm{d} f_p(u) + \mathrm{d} f_p(v)\right)(g) & \\ \end{array}$$

Similarly $df_p(rv) = rdf_p(v)$, so df_p is a linear transformation.

Let (U,ϕ) and (V,ψ) be any two charts about p and f(p) respectively with $f(U) \subset V$. The rank of f at p is the rank of the Jacobian matrix $D(\psi f \phi^{-1})(\phi(p))$. On the other hand the rank of df_p is the rank of the matrix representation of df_p chosen with respect to any bases on TM_p and $TN_f(p)$. The proof of theorem 1 provides bases: $\left\{ \frac{\partial}{\partial \phi_i} \middle| p \middle/ i = 1, \ldots, m \right\}$ and $\left\{ \frac{\partial}{\partial \psi_i} \middle| f(p) \middle/ i = 1, \ldots, n \right\}$ respectively. The matrix representation of df_p with respect to these bases is (a_{ij}) , where $df_p\left(\frac{\partial}{\partial \phi_j} \middle| p \right) = \sum_{k=1}^n a_{kj} \frac{\partial}{\partial \psi_k} \middle| f(p)$. As in the proof of theorem 1, we may extend the restriction of ψ_i to some neighbourhood of f(p) over all of N, calling such an extension of ψ_i also. Then the previous equation, when applied to ψ_i , yields $\frac{\partial}{\partial \phi_j} (\psi_i f) \middle| p = a_{ij}$, since $\frac{\partial \psi_i}{\partial \psi_k}$ is 0 if $k \neq i$ and 1 if k = i.

Now $\frac{\partial}{\partial \phi_j} (\psi_i f) \Big|_p = \frac{\partial (\psi_i f \phi^{-1})}{\partial x_j} \Big|_{\phi(p)}$, which is the (i,j) entry of $D(\psi f \phi^{-1}) (\phi(p))$. Thus the matrix representation of df_p is just the Jacobian matrix $D(\psi f \phi^{-1}) (\phi(p))$, and so the rank of df_p is the rank of f at f.

To transfer the Jacobian to a manifold, we must think of it as representing a linear transformation on the tangent space [but \mathbb{T}_p^m is naturally identifiable with \mathbb{R}^m]. This linear transformation carries over to manifolds.

natural embedding of $df_p(TS_p^1)$ in \mathbb{R}^3 f(p) tangent hyperplane to S^2 at f(p)

If $\gamma:I\to S^1$ is any curve with $\gamma(0)=p$, then the natural embedding of $df_p(TS^1)$ in \mathbb{R}^3 contains the tangent line to the curve f_γ at 0. More generally, for arbitrary immersion $f:M\to N$, the natural embedding of $df_p(TM)$ in \mathbb{R}^q contains the tangent line at f(p) to any curve $f\gamma$, where γ is a curve in M.

CHAPTER 9

- 1. Set $S = \{p \in M \mid f \text{ is regular at } p\}$ and let $p \in S$. Let (U, ϕ) and (V, ψ) be charts as in theorem 1. Clearly $\psi f \phi^{-1}$ has rank n throughout $\phi(U)$, i.e. f has rank n throughout U. Thus $U \subset S$, so S is open.
- 2. We consider the critical point (1,0,0) and modify the latitude/longitude chart of chapter 5. As in the solution to exercise 7.2, the inverse of the function $(\alpha,\beta) \mapsto \left((2+\cos\beta)\cos\alpha, (2+\cos\beta)\sin\alpha, \sin\beta\right)$

defines a chart about (1,0,0), with (α,β) near $(0,\pi)$: denote this chart by (U,ϕ) . Then $f\phi^{-1}(\alpha,\beta)=(2+\cos\beta)\cos\alpha$. Since f(1,0,0)=1, we require a diffeomorphism ψ from a neighbourhood of $(0,\pi)$ onto a neighbourhood of (0,0) so that $f\phi^{-1}\psi^{-1}(\xi,\eta)=1-\xi^2+\eta^2$. Writing $\psi(\alpha,\beta)=(\xi,\eta)$, we want $\psi(0,\pi)=(0,0)$ and $1-\xi^2+\eta^2=(2+\cos\beta)\cos\alpha$.

When $\beta=\pi$, η will have to be 0, so the equation reduces to $1-\xi^2=\cos\alpha$, so $\xi=\pm\sqrt{1-\cos\alpha}$. Trying $1-\xi^2=\cos\alpha$ even when $\beta\ne\pi$, we get $\cos\alpha+\eta^2=(2+\cos\beta)\cos\alpha$, so $\eta^2=(1+\cos\beta)\cos\alpha$, and $\eta=\pm\sqrt{(1+\cos\beta)\cos\alpha}$.

Now
$$\frac{\partial \xi}{\partial \alpha} = \pm \frac{\sin \alpha}{2\sqrt{1 - \cos \alpha}}$$
, $\frac{\partial \xi}{\partial \beta} = 0$, $\frac{\partial \eta}{\partial \alpha} = \mp \frac{(1 + \cos \beta) \sin \alpha}{2\sqrt{(1 + \cos \beta) \cos \alpha}}$ and $\frac{\partial \eta}{\partial \beta} = \mp \frac{\sin \beta \cos \alpha}{2\sqrt{(1 + \cos \beta) \cos \alpha}}$. Defining ψ by

 $\psi(\alpha,\beta) = ((\sin \alpha)\sqrt{1-\cos \alpha}, (\sin(\beta-\pi))\sqrt{(1+\cos \beta)\cos \alpha}),$

one checks that ψ is a diffeomorphism from a neighbourhood of $(0,\pi)$

onto a neighbourhood of (0,0) $\left[\text{e.g.} \frac{\partial \xi}{\partial \alpha}\right|_{0} = \lim_{h \to 0} \frac{(\text{sign h})\sqrt{1-\cos h}}{h} = \frac{1}{\sqrt{2}}$

= $\lim_{\alpha \to 0} \frac{\partial \xi}{\partial \alpha}$, so $\frac{\partial \xi}{\partial \alpha}$ is continuous at 0; similarly the other partial derivatives are continuous in a neighbourhood of $(0,\pi)$, and hence ψ is differentiable near $(0,\pi)$. On the other hand, $D(\psi)(0,\pi) = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{bmatrix}$,

which is non-singular, so ψ is a local diffeomorphism by the Inverse Function Theorem. Making U smaller if necessary, we obtain a chart $(U,\psi\phi)$ about (1,0,0). Further, $f\phi^{-1}\psi^{-1}(\xi,\eta)=f\phi^{-1}\left(sign\xi\right)cos^{-1}(1-\xi^2)$, $cos^{-1}\left(\frac{\eta^2}{1-\xi^2}-1\right)=1-\xi^2+\eta^2$, where $cos^{-1}\left(\frac{\eta^2}{1-\xi^2}-1\right)$ is understood to be in $(\pi,3\pi/2)$ if $\eta>0$ and in $(\pi/2,\pi)$ if $\eta<0$.

- 3. Let $h: \mathbb{R} \to \mathbb{R}$ be as in lemma 4.1. Then $f \cdot h: \mathbb{R} \to \mathbb{R}$ is a \mathbb{C}^2 function, being a product of such functions. Since $f \cdot h$ agrees with f on $[-\frac{1}{2},\frac{1}{2}]$, $f \cdot h$ has infinitely many non-degenerate critical points. Further, since $f \cdot h$ is identically zero outside [-1,1], it may be used to define a function $g: \mathbb{S}^1 \to \mathbb{R}$ of the required type. For example, set g(x,y) = f(2x)h(2x) if y > 0 and g(x,y) = 0 if $y < \frac{1}{2}$.
- 4. The statement is false, for if $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^{4}$, then $C = \{0\}$, with the critical point being degenerate. However, $C \{0\} = \emptyset$, so $0 \not> C \{0\}$.
- 5. Let $g:M\to\mathbb{R}$ be a Morse function. By corollary 5, g has only finitely many critical points, all isolated. Suppose p is a critical point of g. Let (U,ϕ) be a chart as given by Morse's theorem. Defining $h:M\to\mathbb{R}$ by h(q)=g(q)-g(p), we have $h\phi^{-1}(x)=-\Sigma_{i=1}^{\lambda}x_i^2+\Sigma_{i=\lambda+1}^{m}x_i^2$ $\forall~x\in\phi(U)$. Since $\phi(U)$ is a neighbourhood of 0, it contains B(0;r) for some r>0. As in lemma 4.6, we can find a C^{∞} function $\alpha:B(0;r)\to\mathbb{R}$ which agrees with $h\phi^{-1}$ on B(0;r)-B(0;r/2), has a single critical point which is at 0, is non-degenerate and has index λ , and satisfies $\alpha(0)\neq h(q)$ \forall critical point q of h (hence g). Define $f:M\to\mathbb{R}$ by f(q)=h(q) if $q\in M-\phi^{-1}\big(B(0;r/2)\big)$ and $f(q)=\alpha\phi(q)$ if $q\in\phi^{-1}\big(B(0;r)\big)$. Then f is a Morse function and the critical point p has a different value from those of all of the other critical points of f. Continuing finitely many times we obtain the result.

CHAPTER 10

1. The family $\{\hat{\phi}^{-1}(V\times W) \ / \ (U,\phi) \in \mathcal{D}, \ V \ \text{and} \ W \ \text{are open in} \ \mathbb{R}^m \ \text{and} \ V \subset \phi(U) \}$ forms a basis for the topology on TM. The sets \hat{U} lie in this basis so are open. Further the function $\hat{\phi}$ are embeddings. Thus $\{(\hat{U},\hat{\phi}) \ / \ (U,\phi) \in \mathcal{D}\}$ forms an atlas.

Suppose (U,ϕ) , $(V,\psi) \in \mathcal{D}$. Then $\widehat{\psi}\widehat{\phi}^{-1}(x,y) = (\psi\phi^{-1}(x), D(\psi\phi^{-1})(x)*(y)) \quad \forall (x,y) \in \widehat{\phi}(\widehat{U} \cap \widehat{V})$, where by $D(\psi\phi^{-1})(x)*$ we mean the transpose of the Jacobian $D(\psi\phi^{-1})(x)$: it

converts components of a vector with respect to (U,ϕ) into components with respect to (V,ψ) . Since $\psi\phi^{-1}$ is $C^{\mathbf{r}}$, $D(\psi\phi^{-1})$ ()* is $C^{\mathbf{r}-1}$. Thus $\hat{\psi}\,\hat{\phi}^{-1}$ is $C^{\mathbf{r}-1}$, so we have a basis for a $C^{\mathbf{r}-1}$ structure on TM.

- 2. The equations $\frac{dx_i}{dt} = -x_i$ and $\frac{dy_j}{dt} = y_j$ have solutions $x_i = A_i e^{-t}$ and $y_j = B_j e^t$, so that $(x,y) = (Ae^{-t}, Be^t)$, where $A = (A_1, \dots, A_{\lambda})$ and $B = (B_1, \dots, B_{m-\lambda})$ are constants. Thus $t \mapsto \phi^{-1}(Ae^{-t}, Be^t)$, are integral curves for ξ within U. When $0 < \lambda < m$, we have $|x| \cdot |y| = |A| e^{-t} \cdot |B| e^t = |A| \cdot |B|$, which is constant. When $\lambda = 0$, there are no x-coordinates and $t \mapsto \phi^{-1}(Be^t)$ are integral curves for ξ within U; in this case as $t \to \infty$, $|y| \to \infty$ also and the curves emanate radially (with respect to (U,ϕ)) from p. When $\lambda = m$, there are no y-coordinates and $t \mapsto \phi^{-1}(Ae^{-t})$ are integral curves for ξ within U; as $t \to \infty$, $|x| \to 0$ and the curves converge radially towards p.
- 3. Let (U,ϕ) and (V,ψ) be charts about (0,0,-1) and (0,0,1) \Rightarrow $f\phi^{-1}(x,y) = -1 + x^2 + y^2$ and $f\psi^{-1}(x,y) = 1 x^2 y^2 \ \forall \ (x,y) \in \phi(U)$ and $\forall \ (x,y) \in \psi(V)$ respectively. We may assume that $\phi(U) = \psi(V) = B(0;r)$ for some $r \in (0,1)$: thus $(x,y,z) \in U$ iff $z < -1 + r^2$ and $(x,y,z) \in V$ iff $z > 1 r^2$. Let (W,X) and (X,ω) be charts \Rightarrow $W \cup X = S^2 \{(0,0,-1),(0,0,1)\}$ and X(x,y,z) and $\omega(x,y,z)$ are each $(\theta,\widetilde{\phi})$, where (x,y,z) has spherical polar coordinates $(1,\theta,\widetilde{\phi})$.
 - (a) Let $\xi(p)$ have components $\varphi(p)$ with respect to (U,φ) for $p \in \varphi^{-1}\big(B(0;r/2)\big);$ Let $\xi(p)$ have components $-\psi(p)$ with respect to (V,ψ) for $p \in \psi^{-1}\big(B(0;r/2)\big);$ Let $\xi(p)$ have components (0,1) with respect to (W,X) or (X,ω) for $p \in \{(x,y,z) \in S^2 / -1 + 3r^2/4 \le z \le 1 3r^2/4\}.$ Note that the integral curves of ξ as defined so far are parts of lines of longitude. Moreover the definition of ξ on part of $W \cup X$ may be extended over all of $W \cup X$: thus \exists a smooth function $k: (-1,-1+r^2) \to (0,\infty) \to \forall p \in U \{(0,0,-1)\},$ the vector field with components at p equal to (0,1) with respect to (W,X) or (X,ω) has components $kf(p) \cdot \varphi(p)$ with respect to (U,φ) . Letting $h: \mathbb{R} \to \mathbb{R}$ be the function of lemma 4.1, define $\ell: (-1,-1+r^2) \to (0,\infty)$ by

$$\ell(t) = h\left(\frac{t+1}{r^2} + \frac{1}{4}\right) + k(t)\left[1 - h\left(\frac{t+1}{r^2} + \frac{1}{4}\right)\right].$$

For $t \le -1 + r^2/4$, $\ell(t) = 1$ and for $t > -1 + 3r^2/4$, $\ell(t) = k(t)$. Thus we may extend ξ over $\{(x,y,z) / -1 + r^2/4 \le z \le -1 + 3r^2/4\}$ by letting $\xi(p)$ have components $lf(p) \cdot \phi(p)$ with respect to $(U,\phi)_{\star}$. Similarly we may extend $\ \xi$ over the corresponding annulus in the northern hemisphere. Such extension is smooth, and satisfies the requirements.

- (b) Let ξ be as in (a) on U U V, but introduce a spiral on the equatorial annulus $\{(x,y,z) \in S^2 / -1 + r^2 \le z \le -1 + r^2\}$. For example, with $h: \mathbb{R} \to \mathbb{R}$ as in (a), let $\xi(\chi^{-1}(\theta, \widetilde{\phi}))$ or $\xi(\omega^{-1}(\theta,\widetilde{\phi}))$ have components $\left(ch(\widetilde{\phi}/(1-r^2)), 1\right)$ with respect to (W,X) or (X, ω), where c is any constant: the value of c determines the number of times the integral curves spiral around S^2 .
- Define $h: S^1 \times [0,1] \rightarrow \{x \in \mathbb{R}^2 \ / \ 1 \le |x| \le 2\}$ by h(x,t) = (t+1)x. 4. Then h is a homeomorphism. Suppose $(\overline{x},\overline{t}) \in S^1 \times [0,1]$ with $\overline{x} = (\overline{x}_1, \overline{x}_2)$ where $\overline{x}_2 > 0$. Then $(x_1, x_2) \mapsto x_1$ determines a chart on S^1 about \overline{x} . Since $[0,1] \subset \mathbb{R}$, we may take ([0,1],1) as a chart on [0,1] about \overline{t} and the identity function also gives a chart on the range. Differentiability of h at $(\overline{x},\overline{t})$ transfers to differentiability of the function $(x_1,t) \mapsto ((t+1)x_1, (t+1)\sqrt{1-x_1^2})$ $(\overline{x}_1,\overline{t})$, and this is clearly differentiable since $x_1^2<1$. Moreover, its Jacobian matrix is $\begin{bmatrix} t+1 & x_1 \\ -x_1(t+1) & \sqrt{1-x_1^2} \end{bmatrix}, \text{ which is } \\ \frac{1}{\sqrt{1-x_1^2}} & \sqrt{1-x_1^2} \end{bmatrix}$

non-singular. Similar reasoning applies to other points of $S^1 \times [0,1]$. Thus h is a diffeomorphism.

By the Inverse Function Theorem, it suffices to show that Γ has rank m 5. at each point of its domain. The theory of differential equations tells us that in \mathbb{R}^{m} , in the absence of singularities, the integral curves determine a family of diffeomorphisms as follows: let $\,\beta_{\chi}\,$ denote the

integral curve through $x \to \beta_X(0) = x$ and define $B_t : \mathbb{R}^m \to \mathbb{R}^m$ by $B_t(x) = \beta_X(t)$. Each B_t is a diffeomorphism. Transferring this to M enables us to slide a chart in M up the integral curves and obtain a new chart.

Let $(p,t) \in M_c \times [c,d]$ and choose a chart (U,ϕ) about p in M for which $\phi(q) = (\phi \gamma_q(c), f(q) - c)$. Defining $g: U \to M$ by $g(q) = \gamma_q(t+f(q)-c)$, we obtain a chart $(g(U), \phi g^{-1})$ in M about $g(p) = \gamma_p(t)$. Now $\phi g^{-1} \Gamma((\phi \mid U \cap M_c) \times 1)^{-1}(x,s) = (x, s-t)$, whose Jacobian is the identity: thus Γ has rank m at (P,t).

- 6. Let the sequence (x_n) be as in the hint, and let (x_n) be a subsequence converging, say, to x. By compactness, $x \in M U$. On the other hand, by continuity of f, $f(x) = \lim_{k \to \infty} f(x_{n_k}) = b$, so that $x \in M_b \subset U$.
- Let $f: M \to IR$ be a Morse function having exactly two critical points. 7. Since M is compact, so is f(M) which, therefore, must contain its maximum and minimum. Thus f must have a maximum and a minimum, which must be the only critical points of f: call them p and q respectively, and suppose f(p) = 1, f(q) = -1. Let (U, φ) and (V, ψ) be charts about $\,p\,$ and $\,q\,$ given by Morse's theorem. Assume that $\,\phi\left(U\right)\,=\,\psi\left(V\right)\,=\,$ B(0;2r), where $0 < r < \frac{1}{2}$. By theorem 2, $f^{-1}([-1+r^2, 0])$ is diffeomorphic to $f^{-1}(-1+r^2) \times [-1+r^2, 0]$. But $f^{-1}(-1+r^2) =$ $\psi^{-1}\{(x_1,\ldots,x_m)\in\mathbb{R}^m \ / \ \Sigma x_i^2=r^2\}$, which is an (m-1)-sphere. Thus, using the diffeomorphism given by theorem 2, we may extend $\,\psi\,$ to a diffeomorphism $\psi: f^{-1}([-1,0]) \to B^{m}$. Similarly, ϕ may be extended to a diffeomorphism $\phi: \ f^{-1}([0,1]) \longrightarrow B^{m}$. It may be that ϕ and ψ disagree on $f^{-1}(0)$: let $\alpha:B^m\to B^m$ be a homeomorphism for which $\alpha \mid S^{m-1} = \phi (\psi \mid S^{m-1})^{-1}$. Define the required homeomorphism $h: S^m \to M$ by $h(x) = \psi^{-1}(x_1, \dots, x_m)$ if $x_{m+1} \le 0$ and $h(x) = \phi^{-1}\alpha(x_1, \dots, x_m)$ if $x_{m+1} \ge 0$. Note that h might not be a diffeomorphism since we cannot be sure that α is a diffeomorphism.