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Note that h takes the vertical part of L and stretches it around the
upper semi-circle of 3 and stretches the horizontal part of L around
the lower semi-circle of 3. Using exercise 1-5 one can verify that

h and h™! are continuous.

We must show that (i) V¥ v € N, B a (v) = v and D) YTET, ag (T) =T.

(i) Suppose v € N. By definition,
X B o (v) Aiff VU c X satisfying x € U and Y yeU, y¥ X-0U),
we have UN A # ¢ .
If xe€X, A, UcX satisfy x € U and V¥ y €U, yb (X-U) but
UNA=¢, then ACX-U, so by Near 4 and Near 2, V y ¢ U,
y #» A; in particular x € U, so «x $A. Thus x vA=x8a (V) A.

If xBa (V) A but x %A, then U = {y € X/ y % A} contains x
and satisfies V y € U, y % (X-U) [forV¥z €e€X-U » zVvA so by
Near 4, y v (X-U) =y vA], Thus UN A # ¢ which contradicts
Near 2. Thus x B a (v) A=>xv A,

(ii) Suppose T € T. By definition,
aB (M ={VcX/V¥xev, 30T » xe€UC V}.
By Open 4, a B (T) ¢ T and clearly T ca g (T). Thus a g (T) = T.

CHAPTER 3

Let x, y € X be distinct points in an infinite space X having the
cofinite topology and let U and V be open neighbourhoods of x and
y respectively: thus X - U and X - V are finite. Hence

X-U0)U X-V) =X - (UNV) is finite, so cannot be all of X and
hence UNV # ¢.

Let X, denote X with the discrete topology and X, denote X with
any Hausdorff topology. Define h :X1 — X, to be the identity function.
Since it has a discrete domain, h 1is continuous. Clearly h is a
bijection. Further, X is compact since X is finite. Hence, since

1

X2 is Hausdorff, theorem 6 tells us that h is a homeomorphism, and

hence by continuity of h! » every subset of X, 1is open, i.e. X, is

discrete.
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(a) ¢ is the only compact set. R 1is not compact because it is not
bounded. {x € Q@ / 0=<x<1} and {x €0/ 0< x < 1} are not
compact because they are not closed: for example 1/V2  1is near

each of these sets but is not a member of either.

(b) Only the third set is compact since it is the only one which is
both closed and bounded. The first two sets are not bounded, for
example they each contain the points (n,1/2n) for any positive
integer n. The last set is not closed, for example (0,1) is

near this set but is not a member of it.

(i) Let A be a subset of a discrete space. Then {{a} / a € A} is
an open cover of A: the only subcover is the whole family itself,
which is finite iff A is finite. Thus only the finite subsets of

a discrete space are compact.

(i1) No open cover of a subset of a concrete space can have more than two
members, so it is already finite. Thus every subset of a concrete

space is compact.

Two details need checking.

(1) {£71W) /U €U} is a cover of C. Indeed, if x € C then
f(x) € £(C), so f(x) €U for some U € U. This implies that
x ¢ £y .

(ii) {Ui / i=1,...,n} 1is a cover of f(C). Indeed, if y € £(C),
then y = f(x) for some x € C, so 3i > x ¢ f—l(Ui) . Thus
y = f(x) € Ui'

Let X be a concrete space having at least two elements and let A C X

be a non-empty proper subset. Then A is compact but not closed.

Suppose C 1is a compact subset of R. Since R is Hausdorff, theorem
5 tells us that C is closed. Consider the family {(-n,n) / n ¢ IN}
of open subset of R. This family covers R and hence also forms an
~open cover of C. Since C is compact this cover reduces to a finite
subcover and since the members of the cover get larger as n increases,
C 1is contained in the largest member of the finite subcover. Thus

C < (-n,n) for some n and hence C is bounded.
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Conversely, if C is a closed and bounded subset of R, then C c [a,b]
for some a, b € R; we may assume a < b. Now [a,b] is homeomorphic to
[0,1], the function h:[0,1]—>[a,b] defined by h(t) = (b-a) t + a

being a homeomorphism. Thus compactness of [0,1] implies compactness of

[a,b] and hence of its closed subset C .

Suppose M 1is connected and let x ¢ M. Set
A= {y € M/ 3 open neighbourhood U of both x and y >U is

homeomorphic to  R™} .
(i) A is open, being the union of some open neighbourhoods of x.

(ii) A 1is closed. Indeed, suppose z v A, Every neighbourhood of ¢z
must meet A. Since M is a manifold, z has a neighbourhood
homeomorphic to Hﬂn; let V be one such neighbourhood with x £ V
and let y € ANV. Since y €A, 3 open neighbourhood U of

M. Pick a homeomorphism

both x and y > U is homeomorphic to R
h:V-— R". Since Y, z €V, the two points h(y) and h(z)

are points of R" and there is a homeomorphism g : R™ — R™ which
is the identity outside some compact subset of RrR" > g(h(y)) = h(z).
[For example, let r € R be > h(y), h(z) € B(0;r). Set glw) = w
if we R™ . B(0;r) and set g(h(y)) = h(z). If w€CL B(O;r) -
{h(y)}, then the line from h(y) through w meets Fr B(0;r) at
exactly one point, say w. For some (unique) t € [0,1],

w=tw+ (1-t) h(y) : set g(w) = t w + (1-t) h(z). Continuity

of g at h(y) follows from the fact that if h(y) v A then A
contains points w for which in the expression w =t w + (1-t) hiy) ,
t can be arbitrarily small: such points can be used to show that

h(z) v g(A). It is now clear that g ] rR™ - B(0:r) and

g l CR B(O;r) are continuous as are their inverses, so by exercise
1.5, ¢ and g—1 are continuous.] Now define the homeomorphism
f:M—M by setting f(w) =w if w €M -V and f(w) = h_lg h(w)
if w € V. Exercise 1.5 again assures continuity of f and f_l.
The set f(U) 1is an open neighbourhood of f(x) = x and f(y) = 2

and is homeomorphic to R™. Thus z € A and hence A is closed.

By corollary 2.5, either A =¢ or A =M, but since x € A, we must

have A = M, and so the criterion is satisfied.
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Conversely, suppose that V x, y ¢ M, 3 open neighbourhood U of both
x and y >»U is homeomorphic to ]Rm. Pick any x €M, and V y €M,
let Uy be an open neighbourhood of both x and y with Uy homeo-

morphic to R™ . Each Uy is comnected, so by theorem 1-4 the union of

all of the sets Uy is commected. This union is M.

Let U cM be an open neighbourhood and h:U — R™ a homeomorphism
>h(x) = 0. Then h(UNN) is a neighbourhood of 0 so 3 r >0 for
which B(0;r) € h(UNN). The set hnl(B(O;r)) is a connected neighbour-
hood of x contained in N.

Set F={UcX/3Ja€eA > UcCc U, and ®, (U) 1is open in R"}. To
show that F is a basis for a topology on X, we verify the criterion

of proposition 2-2. Since each Ua € F and Uu €A Ua = X, we have
UF=X. Suppose U, V ¢ F, say o, B € A are such that U c Uu’

V c UB , and @, (U) and @B (V) are open in R™,  Now

®, (UFWUB) =0, (UafTUB) 0 o (U) , an open set in IRm, so by Invariance
of Domain, @B (UFTUB) is also open in R™. Thus g wunvy = @B (U(?UB) N
@6 (V) is also open in Bﬁn, and hence U NV € f. Therefore, F is

a basis for a topology on X.

Suppose x, y € X with x#y. If Ja €A > X, y € Ua , then
the Hausdorff condition for x and y is easily verified. More generally,
we may have x € Ua and y € UB for some o, B € A. For the Hausdorff
condition to be satisfied, we need to be able to find U, VeF >» x €U,
y €V and U ﬁ V= ¢. This will be possible provided the following
condition is satisfied:
Va, BE€A, ¥V xc¢ Ua , Yy € UB , if x#y, then JUC Ua s, Vcu

> x €U, yeV, UNV=4¢ and ®y (U) and o

g (V) are open. ’
Finally, if the condition for the topology to be Hausdorff is
satisfied then X is an m-manifold. To verify this we must exhibit,
for each x € X, an open neighbourhood U of x and a homeomorphism
¢ : U — R™. Let «x € X, and choose o € A with x € Uu . Since
¢, (Ua) is an open neighbourhood of ®, (x) in IRm, dr >0 >
B(x;r) C ?, (Uu) . Let U= @&1(B(x;r)) . By definition, U is an
open neighbourhood of x. Moreover, ¢, [U is a homeomorphism from

U to B(x;r), for if V is any open subset of B(x;r) then @&l(v)
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is, by definition, an open subset of X, hence of U so ¢, ]U is
continuous, and if V 1is any member of the basis for the topology on
X, so that U ﬁ V. is a typical member of the basis for the topology on
U, then 38 €A >» Vc UB and @B
discussion above showing that F is a basis for a topology, ®, unv)
is open in R™ and hence in B{x;r), so (@a [U)_l is continuous.

Follow the homeomorphism e, IU by a homeomorphism B(x;r) — R"

(V) is open in R™. As in our

(cf exercise 1-9) to get the required homeomorphism ¢ .

CHAPTER 4

We have Df(x,y) = [2x+ 2y 2x+2y |, so Af(x,y) = 2(x+y)2(x-y).
{;24'2xy 2xy4-x%]

Now rank(f) = 2 iff Af(x,y) # 0 iff x # * y, so f has rank 2 at
those points off the lines y = x and y = -x. Next, rank(f) = 0 iff
all entries in Df(x,y) are 0 iff x =y =0, so f has rank 0 at
the origin. Finally f has rank 1 at those points where it does not
have rank 0 or 2, i. e. at all points on either, but not both, of the
lines y = x and y = -x. Since f does not have rank 2 everywhere,

f cannot be a diffeomorphism.

Denote the transformation by T:[0,»)x[0,2r)x[0,7] — R3. Then

coS ¢ sin ¢ -r sin®sing 7T cos B cos ¢
DT(r,8,p) = |sin 6 sin o r cos 6 sin o T sin 6 cos ¢ , and hence
cOSs @ 0 -T sin o
AT(r,6,p) = -r2 sin ®. Thus T has rank 3 unless r =0 or ¢ =0 or

m, i.e. T has rank 3 on (0,2) x [0,2m) x (0,7). By inspection, when
r = 0 the matrix DT(0,0,9) has rank 1, so there T has rank 1. When
=0 or m but r # 0, DT(r,0,0) has rank 2, so T has rank 2 on

(0,*) x [0,2m) x {0,7}.

Since T has rank 3 on (0,~) x (0,27) x (0,m), and T is clearly
a homeomorphism when restricted to this set, T restricts to a diffeo-
morphism (0,2} x (0,2r) x (0,7) — T((0,=) x (0,27) x (0,m)). The domain
of this diffeomorphism is diffeomorphic to R3 and the range consists

of all points of TR3 except those which are expressible in spherical
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polar coordinates in which r =0, 6 =0, 9o =0 or © =7, i.e.
RS - {(x,y,z) ¢ R® / y =0and x > 0}, Thus this set is diffeomorphic
to R3,

1 2
Since Df(x,y) = 1 1 has its first two rows linearly independent,
y+ 2 X+3

the proof of corollary 3 suggests defining F: R2 x R — R3 by
F(x,y,z) = £(x,y) + (0,0,z) = (x+2y, x+y, xy+2x+3y+z). To find an
inverse of F around 0, set F(x,y,z) = (§,m,2) and solve the
equations for x, y, z in terms of &, n, . Weget x+ 2y =§&,
Xx+ty=mn and xy + 2x + 3y + z = Z , having solutions

(X,y,z) = 2n-&, £-m, £-& -n+E2 * 212 - 3tn). Thus we should define
the diffeomorphism g by g(x,y,z) = (2y-x, x-y, z-x-y+x2+2y2 - 3xy).
Case I. Suppose that the n x n matrix with (i,j) entry g;%- is
non-singular at 0, i.e. the first n columns of Df(0) are linearly
independent. Define F:U — R"' x R™™ py

F(xl,...,xm) = (f(xl,...,xm),xn+1,...,xm). Then DF(x) has the form

—————————————————— so0 is non-singular at 0. Let h be a local
0 :Identity

inverse of F as given by the Inverse Function Theorem. Then when
(xl,...,xm) lies in the domain of h, we have Fh(xl,...,xm) = (Xl,...,xm),
so, looking at the first n coordinates only we have

fh(xl,...,xm) = (Xl,...,Xn) as required.

Case II. General case. Some n columns of Df(0) are linearly
independent, say the columns il, cees in (in ascending order). Let
in+1’ . s im denote the remaining integers between 1 and m and
define the diffeomorphism p: R" — ®R" by p(xl,...,xm) = (xi seees Xy ).
Then fp-l tpU) — R" satisfies the conditions of Case I, so L 4 a m
diffeomorphism g of a neighbourhood of 0 in R™ onto another such
neighbcurhood > g(0) = 0 and fp-lg(xl,...,xm) = (xl,...,xn). We may

set h=plg.
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Df (x,y) = [10x -2y 4y - 2x], so Df(0) = [0 0] and hence 0 is a

critical point. Hf(x,y) = 10 -2{ , which is non-singular, so 0 1is
-2 4

a non-degenerate critical point. Finally, det(kl-—Hf(O)} = A2 - 14) + 36,

which has no negative roots, so the critical point has index O .

Dg(x,y) = [5y-6x 5x], so Dg(0) = [0 0] and hence 0 1is a critical

point. Hg(x,y) = |-6 5| , which is non-singular, so 0 is a non-

L5 o

degenerate critical point. Finally, det{kl-—Hg(O)) = A2 + 61 - 25, which

has 1 negative root, so the critical point has index 1.

Dh(x,y) = [y cos xy » cos(cos xy) X cos Xy * cos(cos xy)], so

Dh(0) = [0 0] and hence 0 is a critical point. Hh(0) = 0 cos 1§,
cos 1 0

which is non-singular, so 0 is a non-degenerate critical point. Finally,
det(kl-—Hh(O)) = A% - (cos 1)2 , which has 1 negative root, so the critical

point has index 1,

Di(x,y,z) = [y+z x+z y+x], so Di(0) = [0 0 0] and hence 0 is a

o 1 1
critical point. Hi(x,y,z) = |1 0 1|, which is non-singular, so the
1 1 90

critical point is non-degenerate. Finally, det(kl-—Hi(O)) =(A+ 12 -2),

which has 2 negative roots, so the critical point has index 2.

Dj(x,y,z) = [2x+y+z 2y+z+x 2z+x+y], so Dj(0) =[0 0 0] and

2 1 1
hence 0 is a critical point. Hj(x,y,z) = |1 2 1{ , which is non-
1 1 2

singular, so the critical point is non-degenerate. Finally,
det(Al-—Hj(O)) = (A-1)2(x - 4), which has no negative roots, so the

critical point has index 0.
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Special case: p =0 and f(x) = Z?zl £ x%. We have
2 0 0
D(£f)(0) = [+ 2x, *2x, inm] and hence H(f)(0) = | 0 .0
0..0 2
By the chain rule, D(fh)(q) = D(£)(0) -D(h)(q) = [0 ... 0], so q is
a critical point. Writing h = (hl,...,hm), the (i,j) entry of D(h)(q)
ohy
is —— , and hence
axj q
ERN) 0
ahj ahi
D(h) (q)* « H(£) (0) + D(h)(q) = |— J 0 o
9X; iq @xj
0..0 %2
] ]22 ohi
_aXi al L an
F_Zm ahy 3hy —J
k=1 77 ax 9x;lq )
On the other hand,
D(fh) (x) = D(£) (h(x)) + D(h) (x)
ohs
= [ 2h, (x) ... % 2h (x)][—-—l ]
m an X
ah
-— m .———-———-k
= [ék=1 + 2h (x) ax- J ,
3 oh
SO H(fh) (q) = Z§=1 £ 2 -;T-(h (x) -——k l ]

)
’ dhy oh
=Z§_12{k k + h H]
=1 3X3 3X; axiax- q

J
m _ dhy - ahy )
= {%k=1 2 g;;-'g;j-q since hk(q) =

J
D(h) (q)* « H(£) (0) « D(h) (q) .
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Since the three matrices D(h)(q)* , H(f)(0) and D(h) (g) are all non-
singular, so is H(fh) (q) and hence q 1s a non-degenerate critical

point of fh .

General case: Letting & be as in the hints, we have q = (enlh)nl(O)

and f6 is expressible as a sum of squares as was f in the special

case. Thus fh = (fe)(e'lh) has a non-degenerate critical point at q .

CHAPTER 5

x2  y2 g2 .
Let E = {(x,y,z) ¢ R3 ;, 2+ X 4 2_ _ 1} .  Then the function
Y 2 2T 2
a b C

h:E — S2 defined by h(x,y,z) = (x,y,z) / \/x2+y2+z2 is a homeo-
morphism. Let D be the usual € differential structure on s2 .

Define a differential structure E on E by setting
E = {(h'(W),eh) / (U,0) € D}.

Then h 1is a diffeomorphism from (E,E) to (S2,D).

Let Mm, N" and PP be differentiable manifolds of class at least Cr
and f:M— N and g:N -— P bpe CF functions. We use the criterion
of lemma 2 to show that gf is c’. Let x €M, and let (U,p) and
(W,X) be any charts in the structures of M and P respectively for
which x € U and gf(x) € W. Let (V,¥) be a chart in the structure of
N for which f(x) ¢ V. 1In a neighbourhood of ¢(x), we have

xgfo™! = (Xg¥ ) (Eo™1). Now Xgy! is ¥ at ¢E(x) and Vo™l s
C’ at ¢(x). Thus by the chain rule, ng¢—l is €' at o(x).

Now suppose f:M-—+ N and g:N — P gare CF diffeomorphisms.
Then gf is a CF homeomorphism and gf has rank m at each point of
its domain. Indeed, let x € M, and choose charts (U,p), (V,W) and (W,X)
in the structures of M, N and P > x ¢ U , f(x) €V and gf(x) € W.
Then $f@_1 and ng_l have rank m at o(x) and Vf(x) respectively
and hence D(&fw_l)(w(x)) and D(ng_lj(Wf(x)) are non-singular. Thus
D(ng@_l)(@(x)) is non-singular, so gf has rank m at x.
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A Cr+l structure on M is an atlas on M and it satisfies DS1

+ . .
because every ¢™ ! function is C

We take M= R and r =1, Let D be the usual C2 structure
on IR and let E be the C? structure on R having as basis {(R,h)},
where h: R - R is the homeomorphism defined by h(x) = x + x|x] .
Since h ismot C2, (R,h) ¢ D and so D # L. However, h is a C!
diffeomorphism, so {(R,1), (R,h)} form a basis for a C! structure on

R, and hence D and E are bases for the same Cl structure.

s! is a compact manifold. For each r > 0, let hr: R — R be
defined by hr(t) =t if t =0 and hr(t) =rt if t = 0. Define
i: (-m,2m) — 8! by i(t) = (cos t, sin t). Then

{{iC-m,m, hr(i[(—ﬂ,w))_l), (i(0,2m), (i[(O,Zw))_l)} is a basis for a

differential structure Dr on St Furthermore, Dr = Ds iff r = s,

By lemma 1, 3 (V,¥), (9,X) €0 > ¥(x) = X(y) = 0. Since x g y, we

may assume VN W =¢. Let «a, g: R —» RO be the translations
defined by a(z) = z + u and B(z) =z + v. Now (V,ad), (W,BX) €7D
with oV (x) = u and BX(y) = v. Since u # Vv, we may assume that V

and W are small enough so that af (V) N BX(W) =¢. Set U=V UW
and define ¢ :U — RP by o ]V =af, o ]W = BX . It is readily checked

that (U,0) satisfies the requirements,

As in the solution to exercise 3.8, if M is connected and x € M, let
A={y €M/ 3 (U,p) €D with x, y € U and e(U) = RM},

It is clear that A is open and to follow the previous solution,

we need only prove that A is closed. The previous solution carries
over provided differentiability is respected. Thus (V,h) should
belong to 7. Unfortunately the g : R" . R™ constructed there is
not differentiable at either Fr B(0;r) or h(y), so that construction
must be modified. Let h: IR —s R  be as in lemma 4.1. Op [-1,1],
hence on R, h! is bounded, say x ¢ R = Ih'(x)[ < k. Define

o:R — R by a(x) = x + h(4(x-5))/4k . -Then VxeR, at(x)> 0,

o 1is surjective, so o is a diffeomorphism: a(x) = X unless
fx-%! =%, but o) £ L. Define g: R™ — RO by B(x) = a([x[)x/[xl

if x#0, and B(0) = 0. Note that if |x| <% then al(]x]) = |x]
so that a(]x])x/le reduces to x and hence 8 1is a diffeomorphism

of R" which is the identity outside B(0;1) but 8 moves points
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distance % from 0 radially outwards. If the points h(y) and h(z) of

the solution to exercise 3.8 are such that B(h(y)) = h(z) , then we may
let the required g be B . Otherwise, we find a diffeomorphism v of
R™ o that Bvyh(y) = vh(z) and let the required g be Y_IBY , which
is 1 outside the bounded set yhlB(Ogl). For example, v might be the
composition £ & §, where & and ¥ are translations and & a
contraction defined by

x _ . _h(z)-h(y)
B O E T R e ey

§:x+x - hiy), e:x

Write Vy = f(U) when x ¢ f_l(y] . Then Vy is open in M, by
Invariance of Domain. Let

B ='{(vy, Flu™) /xe£ly) and y €M),
Surjectivity of f guarantees that B is an atlas. Suppose
(vy, £lup™), (Vn’ (f | Ug)_l] € B. Then

- £ (£ u)™
8] f (v vni1lv ————-s R
X ( ﬂ) Y M

is ¢' at each point of its domain. Indeed, let =z € UX n f_l(Vn) and
set z' = (f IUE)"lf(z) . Then the coordinate transformation when
restricted to UX n f_l(Vn) N UZ (a neighbourhood of =z in IRm) is
also the restriction of (f ]UZ')_I(f [UZ) which, by hypothesis, is C¥.

CHAPTER 6

Let M denote the upper half plane and N the plane minus the non-

negative real axis. Give M and N the orientations determined by the
bases {(M,p)}, {(N,p)} respectively, where ¢ is the forgetful function
given by o(x+iy) = (x,y) . Then ofp ' (x,y) = of(x+iy) = o(x2-y2 +i-2xy),
so A(@f¢_l)(x,y) = 2(x2+y2) > 0 for each (x,y) € o(M). Thus £ is

orientation preserving.

Orient R3, R3- {(x,0,2z) / x= 0} and (0,%) x (0,27) x (0,7) wusing
the identity charts. The diffeomorphism is a composition of two, viz a
standard orientation preserving diffeomorphism IR3 — (0,) x (0,2w) x (0,w)

and, in the notation of the solution to exercise 4.2, the diffeomorphism



