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CHAPTER 11

Let e: R2 — T2 be an embedding and let M = T2 - ¢(Int B2) and
N=e®B2). Then M and N are manifolds with boundary for which
oM = oN (& S1),

One can perform a surgery in which N is replaced by M as follows:
Suppose Q% s any 2-manifold and f: R? — Q is an embedding. Then
fe'|N enbeds N in Q. Define o: Int B2 . {0} — R2 - B2 by
a(rx) = x/r where 71t € (0,1) and x € S!', One could say that the
adjunction manifold [Q- £(0)] U eaf-lfM-aM] is obtained from Q by
a surgery which replaces N by M. In this construction, T2 could
be replaced by any m-manifold and e by an embedding of RM™ in that

manifold: Q would then be an m-manifold.

Suppose N = X(m,e). Define f£:S"™ ! x Int 8™ —» N by f(x,y) = (y,x).
Then f is an embedding. Let

8: 8" x [Int B" - {0}] — [Int B" - {0}] x s"!

-1 ond

be defined by g(v,ru) = (rv,u) , where u ¢ ™! , V€S
r € (0,1). It is claimed that M is diffeomorphic to

X (N,£) = [N-£" I x o] U ge=1 [Int B xS"1]. Indeed, define
giM—XM,£) and h:X(N,f) =M by g(x) = x if x € M-o(S" ! x {0})
and if e(u,rv) € e(Sm—1><Int Bn) set g(e(u,rv)) = (rv,u); if

X €M - e(Sm_1>¢{0}) ¢ X(N,f) then set h(x) = x, if

(ru,v) € [Int Bm-¥{0}] x gh1 set h(ru,v) = e(u,rv) and if

(rv,u) € Int B" x s™! » set h(rv,u) = e(u,rv) . One can check that

g and h are well-defined, hence smooth, and that g and h are

mutual inverses. Thus M is diffeomorphic to X(N,f).

Let M, and M, be two Mdbius bands, with no boundary. Let C, and
and C, denote the central circles of M, and M, . Then Mi - Ci
is diffeomorphic to S! x (-1,1) :  say 05 8t x (-1,1) — Mi is an
embedding with @i(Sl><(—1,1)) = M.1 - Ci > points of Ci are near
@i(Sl><{—1,0)) : thus for each u ¢ S! s as t — 17 s @i(u,t) — Ci'

Limerick 1.II says that M, U -1 M, is diffeomorphic to the Klein
. 1 (pzfq)l 2
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bottle, where f: Sl><(—1,1)'—+ Slx (-1,1) 1is defined by f(u,t) = (u,-t).
As in this module, we have glued M1 and M, along a neighbourhood of
the edges then omitted the edges to ensure smoothness. The following

2
to K2. Numbered arrows indicate that the corresponding edges are the

sequence of pictures illustrates that M, U 0. £ -1 M, 1is diffeomorphic

same (cf figure 13).
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CHAPTER 12

Firstly, h is well-defined because if (q,t) € [M_1 —EISA_I x{01)]=x[-1,1]
and (x,y) € Py,m-) Tepresent the same point of w(M_lag), then by
definition, B(g’l(q), t) = (x,y), so that if q =’g(u,rv), then by
definition of B, (x,y) must be that point on the curve Y@(q)

satisfying -|x|2 + ly|2 = t. Since ¢ carries integral curves on

M to integral curves on PA noy * We must have h(q,t) = @_l(x,y).
-

Secondly, h is smooth and has rank m at each point of its domain

since its restriction to the separate parts (each open) of its domain are.
Thirdly, h is a bijection with continuous inverse.

Thus h is a diffeomorphism.



- 36 -

It is easily checked that h(ail w (M~1’S)) = Mi1'

Finally, if (q,t) € [M_l--S(SX"1 x {0}] x [-1,1] then fth(q,t) = t
= g(q,t) by definition, and if (x,y) € PA o) then
fFh(x,y) = fo ' (x,y) = -|x|2 + |y|2 = g(x,y) .
CHAPTER 13

The following sequences of pictures show, firstly, five different levels
on Pl,l and, secondly, five different levels of the trace of a twisting
surgery based on the twisting surgery illustrated by figure 60. The
arrows in the first sequence indicate an orientation of the levels of

P consistent with an orientation of the levels of the trace. Height

1,1
increases to the right.

V(XL
05

To construct a picture of the trace as in figure 61, begiﬁning at the

bottom with a circle which does not cross itself, we must somehow get
two parts of the circle into a form suitable for attaching the patch.

We might begin as follows:
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Shrinking the loop in the middle of the last three pictures, which
corresponds to concentrating much of the change about the critical:

point, yields the following:

which is rather like the apparent levels near the critical point in
figure 61. An alternative, as illustrated by figure 67, is to separate

the self-crossing away from the critical point:

etc as in the second sequence above

It suffices to verify the following lemma.

Lemma, Let e¢:R™ — ®r™ be an orientation preserving embedding.
Then there is a diffeomorphism g : R™ — r™ and € >0 > g has
compact support (i.e. is the identity outside some compact subset of

IRm) and g [eBm = e [sBm.

Proof that the lemma = the exercise: Let e and f be as in the
exercise. 3 a diffeomorphism h, : R™ — T with compact support

> hle(O) = £(0) . Thus hlef_1 is an embedding defined on a neigh-
bourhood of £(0). Strictly, to apply the lemma to hlezf_l, we want
£f(0) = 0 and hlef—1 to have domain R™: this can be arranged by

a normalisation process. By the lemma, 3 diffeomorphism g : R" — RT
with compact support > g and hlef_1 agree in a neighbourhood of
£(0) . Let h =g 'h .

Proof of the lemma:
Case I: Assume e(0) = 0 and De(0) is the identity. Firstly note

that if U 1is an open convex subset of IR™ and f:U — R™ 5 ¢!
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of;
-1 _ Gij
an

if i = j and 0 if i # j), then f is an embedding. Indeed, f has

function > V i, j, <1_111_ throughout U (where 6ij =1

rank n throughout U, so we need only show that f is injective.
m ]af; 1
Define f':U -~ R by f'(x) = f(x) - x. Then ,——‘ <5 SO
oX+
J

by exercise 15.1, ¥ x, y €u, lf'(x) —f’(y)[ < [x—y[ > with equality
only if x=y. Thus x #7y = | £1(x) -f'(y)] < lx—y] . Now

X =E0 - £10) = x-y| S E@ - £ ¢ [£100 - B 0] < (£ - £ | +
[x—y[, S0 [f(x) —f(y)[ >0, i.e. £(x) # f(y).

Now let e be as in this case of the lemma, let h: IR — IR be

as in lemma 4.1 and let ¢ > 0. Define g by
g(x) = h([x|/2e)e(x) + [1-h(|x|/2e)]x.

For |x| = 2¢, g(x) = x and for lx] e, g(x) = e(x). Further, if

e 1is small enough, g is a diffeomorphism. Indeed,

984 _ de; . o ’X,J X3
3, MU e sl 20T+ (e 6 ) < {EZ e
ag. .
SO |—= - §. . < —ai— .. +—1-le.(x)—x.[-’h'(—l§-l—)v
9X; 1] axj iy 2 74 i 2¢

| £(x) - x| _

Since De(0) is the identity, 1lim =0, soif e is small

X0 [x]
enough, then —- le. (x) -x,| -« |n -,X—l) <Ll uhen |x| = 3¢, and by
’ 2e i i 2¢ 2m - ’
o . oej 1
continuity, again if ¢ is small enough, |—= - §..| <« =— when [xf =3e.
3x5 1] 2m
o8 1 m . .
Thus |—=-68..| <= on 3eB" and by the previous paragraph, g is an
an 1] m
embedding on 3eB™. On the other hand, if x, y ¢ R" with [x] = 2¢
and |y| = 3¢, then g(y) = Y, soif g(x) = g(y), then
h(lx[/Ze) e(x) + [1—h(|xl/25)] X=y, i.e, h([x[/Ze) {e(x) —x) =y - X
and hence |e(x) -x| = ly-x| 2 e. On the other hand, since [x| = 3¢,

-2-]-;-:— [ei(x) —xi[ . ,h'(le/Zs), < 1/2m from which |e(x) -x| <e, a
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contradiction. Thus g(x) # g(y) . In all other cases where X, y € Rr"

with X # y it is clear that g(x) # g(y). Thus g is a diffeomorphism,

Case II: Assume that e(0) = 0. Since e is orientation preserving,

1 a diffeomorphism with compact support h: R" . RM > Dh(0) = De(0) :
h might restrict on B™ to the linear transformation whose matrix
representation is De(0) . If also h(0) = 0 then hnle satisfies the
conditions of case I, so given g : R™ . )™ > g' = h—le on some

ball around 0, we may let g = hg'.

Case III: General case. As in the solution to exercise 5.6, we may find
a diffeomorphism h : R" — R™ with compact support > he(0) = 0.

Now proceed as in case III.

Since S is not orientable, by theorem 6.3, 3 charts (U,9), (V,W) in
the structure of S > U and V are connected but A(w@—l) does not
have a constant sign throughout @(Uf]V) .  Inspection of the proof of
theorem 6.3 reveals that it may be assumed that o(U) = ¥(V) = R®,
Moreover, given x € S » We may assume that x € UN V, for exercise
5.6 provides us with a chart with domain containing x and meeting
UNV and image R2, Using a function of the type of g in the
solution to exercise 5.6 and the chart about x we are able to modi fy
the charts (U,p) and (V,&) so that x € UN V. Thus we have shown that
VX €S, 3 charts (U,g) and (V,9) > x €UNV, o(U) = §(V) = R
and A(Wm_l) does not have constant sign: it may be assumed that

80 D () > 0.

Now let A = {x} U {y €S / 3 charts U,9), (V,¥) >x, yeunyv,
o) =y (M) =R2, a(ko ) (0(x)) >0, A{p™H) (e(») <o03.
Clearly A - {x} is open; A is a neighbourhood of x » for if (U,¢),
(V,W) are charts about x as in the previous paragraph then U c A
because given y € U - {x} » then as in the previous paragraph we can
modi fy (V,w) so that a point at which A(¢¢—1) is negative moves to y
but ¥ 1is unchanged at x . On the other hand, as in the solution to

exercise 5.6, A is closed. Thus A = S.

Suppose given e, f:1Int B2 — S ag in the exercise and suppose
e(Int B2) N f(Int B2) - ¢ . Then 3 charts (U,p) and (V,¥) > e(0),
£0) €UNV, o) = y(V) = R?, Ao (0(x)) > 0 and
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A(W@_ll(@(y)) <0. If A(pe)(0) <0, precede ¢ and ¥ by a
reflection: the only change will be to ensure that Aoe) (0) > 0,
Either A(ef)(0) > 0 or Alef) (0) < 0 and in the latter case,
A[&f)(O) > 0. Thus for one of the charts (U,¢) and (V,W), assume
the former, we have A{pe)(0) > 0 and Alef)(0) >0, 1i.e. pe and
¢f are both orientation preserving at 0 and hence in a neighbourhood
of 0. If the neighbourhood is not E-B2 then, in a now standard way,
we can enlarge U within e(Int B?) U f(Int B2) so that it does contain
o2 82) U £ 5?) .

Finally since g¢e, of :E-B2 — IR? are orientation preserving and
may be extended to orientation preserving embeddings as in exercise 2,
3 a diffeomorphism g: R2 —s TR2 3 goe / eB2 = ¢f for some & > 0
and g 1is the identity outside some compact subset of R2, Let h be
1 outside the image under @—1 of this compact subset and @_1g@

inside U.

If e and f are as in the exercise, then we can introduce a
third embedding e': Int B2 — § whose image is disjoint from those of
e and f, and using the procedure of the previous paragraph, construct
two diffeomorphisms hi, h, 1S — S so that h;e | B2 = et | €B2  and
h e’ | eB2 = f | eB2. Then h = h2hl :S— S is a diffeomorphism and
helaBz=ff8B2.

Let h;:S—=S bea diffeomorphism as given by exercise 3 > V x ¢ eB2 |
h e(l x) = £(1,x) . Consider the two embeddings Int B2 — S given by
X F¢~h1e(—1,x) and x F»-hlf(—l,x). Again by exercise 3 3 a diffeo-
morphism h,:S — S > Y x ¢ ¢B2 hohe(-1,x) = £(-1,x) . Moreover

as constructed in exercise 3, h2 is the identity outside some chart:

it may be assumed that this chart is disjoint from h e({1}><eB2)

Let h =nh ohy

Let h:S - S be the diffeomorphism given by exercise 4. Define

§ 1 X(S,e) — X(S,f) by letting g(x) = h(x) if x ¢S - e(S% x {o})

and g(ru,v) = (ru,v) if (ru,v) € ¢ Int B! x s} . This g 1is well-
defined for in X(S,e) > X and (ru,v) represent the same element iff
aeal(x) = (ru,v) iff x = e(u,rv), in which case

g(x) = h(x) = he(u,rv) = f(u,rv) = fo (ru v) = g(ru,v): thus g(x)
and g(ru,v) represent the same element of X(S,f). One can check that

g 1is a diffeomorphism.
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CHAPTER 14

Choose a chart (U,p) on S > ¢(x) = 0, [-1,1] x [0,1] € o (U) and the
components of & with respect to (U,p) are (0,1). Assume that the
second integral curve emanating from s does not meet U. Let

h:R — R be the function of lemma 4.1, Since h'(t) = 0 for [tl =1,
by compactness h' is bounded, say k € R satisfies VY t ¢ R,

|h'(t)| < k. Define o:R2 — R2 by a(t,u) = (t+h(2t) - h(uw/2k, u).
Then o 1is the identity outside [-1,1] x [-1,1] and within that square,
displaces part of the u-axis horizontally. The components of g(@_l(t,u))
with respeét to (U,oap) are [h(Zt) *h'(u)/2k, 1), Let g'(@—l(t,u)) have
components (h(Zt) h'(u)/2k, 1) with respect to (U,p) when

(t,u) € (-1,1) x (0,1) and let & agree with £ elsewhere.

As in exercise 5.6, we may find a chart (U,¢) from the orientation for
S > e(1,0), £(1,0) € U and o(U) = R?2, Using this chart as in the
solution to exercise 13.3, we may construct a diffeomorphism hy:S —5§
so that h,e | {1} x eB2 = f | {1} x eB2 . Similarly we may construct a
diffeomorphism h, :S — S so that hoh, e | {-1} x B2 = f]{-1} x B2,
and as in the solution to exercise 13.4, we may assume that h, is the

identity on hle({l} xeB2) . Let h = hzhl'

Let T have m handles and suppose m =2 n. Then T may be obtained
from S by adding m - n handles, i.e. by performing m - n surgeries
of type (1,2). Reversing these surgeries, S may be obtained from T
by performing m - n surgeries of type (2,1), and hence from S by
performing m + 1 - n surgeries of type C2,1). Each such surgery
increases the genus by at least 1, as illustrated by figure 78.
Repeating the cycle of surgeries & times, we deduce that S has

infinite genus.

CHAPTER 15

Since fi(x) - fi(y) = Dfi(zi) * (x-y), by the Cauchy-Schwarz

inequality,
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£, () - £, ()] = DE, 2 - [x-y]
sbvm ¢ |x-y] since each entry

in Dfi(zi) lies between -b and b, Thus

[£(x) - £(y) |2 = z?zlcbvﬁ'fx-y;)z = b2n2|x-y|2,

SO [f(x)-f(y)[ < bnjx-vy] .
It is sufficient to consider sets in RY for some q. Let (Si) be
a sequence of sets &V i en'(Si) =0, and let S = Uoio=1 Si . Given

e>0, Y i3 open balls {B(xij;rij) / j=1,2,...} covering
S, ¥ I.__r'. <e/ 2. Then the balls {B(x..;r..) /i, §=1,2,...}
i j=1 "ij _ n ij’7ij
cover S and 3. . r..<e, so 6 (S)=o0.

1,3=1 "1j n
As a closed ball in IRn, each member of A is compact and convex.
Clearly A is countable since ® is, and the union of the members of
A lies in U. On the other hand, if x ¢ U, then Jr >0 >
B(x;r) cU. Let q€QnN (0,r/2). Then B(x;9) N A # ¢, say
y € B(x;9) N A. We have x € C2 B(y;q) € B(x;29) € B(x;r) ¢ U. Thus
C2 B(y;q) 1is a member of A containing x, so U is the union of the

#
members of A .

If C4 (M-8) #M, say x €M ~ Cg (M-S), then 3 chart (U,9) about
X > UcS. Thus Gm(U) 0, which means that em(cp (U)) = 0. But
¢(U) 1is a non-empty open subset of R™  and no such set has m-dimensional

Hausdorff measure 0. Thus C% (M- S) =M.

]



