CHAPTER 11

1. Let $e: \mathbb{R}^2 \to T^2$ be an embedding and let $M=T^2$ - $e(\operatorname{Int}\ B^2)$ and $N=e(B^2)$. Then M and N are manifolds with boundary for which $\partial M=\partial N\ (\approx S^{\bullet})$.

One can perform a surgery in which N is replaced by M as follows: Suppose Q^2 is any 2-manifold and $f: \mathbb{R}^2 \to Q$ is an embedding. Then $fe^{-1} \mid N$ enbeds N in Q. Define $\alpha: Int \ B^2 - \{0\} \to \mathbb{R}^2 - B^2$ by $\alpha(rx) = x/r$ where $r \in (0,1)$ and $x \in S^1$. One could say that the adjunction manifold $[Q-f(0)] \cup_{e \in f} -1[M-\partial M]$ is obtained from Q by a surgery which replaces N by M. In this construction, T^2 could be replaced by any m-manifold and e by an embedding of \mathbb{R}^m in that manifold: Q would then be an m-manifold.

2. Suppose N = X(m,e). Define $f: S^{n-1} \times Int B^m \to N$ by f(x,y) = (y,x). Then f is an embedding. Let

$$\beta: S^{n-1} \times [Int B^m - \{0\}] \rightarrow [Int B^n - \{0\}] \times S^{m-1}$$

be defined by $\beta(v,ru)=(rv,u)$, where $u\in S^{m-1}$, $v\in S^{n-1}$ and $r\in (0,1)$. It is claimed that M is diffeomorphic to $\chi(N,f)=[N-f(S^{n-1}\times\{0\})]\cup_{\beta f^{-1}}[\operatorname{Int} B^n\times S^{m-1}]$. Indeed, define $g:M\to\chi(N,f)$ and $h:\chi(N,f)\to M$ by g(x)=x if $x\in M-e(S^{m-1}\times\{0\})$ and if $e(u,rv)\in e(S^{m-1}\times\operatorname{Int} B^n)$ set g(e(u,rv))=(rv,u); if $\chi\in M-e(S^{m-1}\times\{0\})\subset\chi(N,f)$ then set h(x)=x, if $(ru,v)\in[\operatorname{Int} B^m-\{0\}]\times S^{n-1}$ set h(ru,v)=e(u,rv) and if $(rv,u)\in\operatorname{Int} B^n\times S^{m-1}$, set h(rv,u)=e(u,rv). One can check that g and h are well-defined, hence smooth, and that g and h are mutual inverses. Thus M is diffeomorphic to $\chi(N,f)$.

3. Let M_1 and M_2 be two Möbius bands, with no boundary. Let C_1 and and C_2 denote the central circles of M_1 and M_2 . Then M_1 - C_1 is diffeomorphic to $S^1 \times (-1,1)$: say $\phi_1: S^1 \times (-1,1) \to M_1$ is an embedding with $\phi_1\left(S^1 \times (-1,1)\right) = M_1 - C_1 \to \text{points of } C_1$ are near $\phi_1\left(S^1 \times (-1,0)\right)$: thus for each $u \in S^1$, as $t \to -1^+$, $\phi_1\left(u,t\right) \to C_1$. Limerick 1.II says that $M_1 \cup_{\phi_2} f\phi_1^{-1} M_2$ is diffeomorphic to the Klein

bottle, where $f: S^1 \times (-1,1) \to S^1 \times (-1,1)$ is defined by f(u,t) = (u,-t). As in this module, we have glued M_1 and M_2 along a neighbourhood of the edges then omitted the edges to ensure smoothness. The following sequence of pictures illustrates that $M_1 \cup_{\phi_2 f \phi_1^{-1} M_2}$ is diffeomorphic to K^2 . Numbered arrows indicate that the corresponding edges are the same (cf figure 13).

CHAPTER 12

1. Firstly, h is well-defined because if $(q,t) \in [M_{-1} - e(S^{\lambda-1} \times \{0\})] \times [-1,1]$ and $(x,y) \in P_{\lambda,m-\lambda}$ represent the same point of $\omega(M_{-1},e)$, then by definition, $\beta(e^{-1}(q),t) = (x,y)$, so that if q = e(u,rv), then by definition of β , (x,y) must be that point on the curve $\gamma_{\phi}(q)$ satisfying $-|x|^2 + |y|^2 = t$. Since ϕ carries integral curves on M to integral curves on $P_{\lambda,m-\lambda}$, we must have $h(q,t) = \phi^{-1}(x,y)$.

Secondly, h is smooth and has rank m at each point of its domain since its restriction to the separate parts (each open) of its domain are.

Thirdly, h is a bijection with continuous inverse.

Thus h is a diffeomorphism.

It is easily checked that $h\left(\partial_{\pm 1} \omega \left(M_{-1},\underline{e}\right)\right) = M_{\pm 1}$. Finally, if $(q,t) \in \left[M_{-1} - \underline{e}(S^{\lambda-1} \times \{0\}] \times [-1,1]\right]$ then fh(q,t) = t = g(q,t) by definition, and if $(x,y) \in P_{\lambda,m-\lambda}$, then $fh(x,y) = f\phi^{-1}(x,y) = -|x|^2 + |y|^2 = g(x,y)$.

CHAPTER 13

1. The following sequences of pictures show, firstly, five different levels on $_{1,1}^{p}$ and, secondly, five different levels of the trace of a twisting surgery based on the twisting surgery illustrated by figure 60. The arrows in the first sequence indicate an orientation of the levels of $_{1,1}^{p}$ consistent with an orientation of the levels of the trace. Height increases to the right.

To construct a picture of the trace as in figure 61, beginning at the bottom with a circle which does not cross itself, we must somehow get two parts of the circle into a form suitable for attaching the patch. We might begin as follows:

Shrinking the loop in the middle of the last three pictures, which corresponds to concentrating much of the change about the critical point, yields the following:

which is rather like the apparent levels near the critical point in figure 61. An alternative, as illustrated by figure 67, is to separate the self-crossing away from the critical point:

etc as in the second sequence above

2. It suffices to verify the following lemma.

Lemma. Let $e:\mathbb{R}^m \to \mathbb{R}^m$ be an orientation preserving embedding. Then there is a diffeomorphism $g:\mathbb{R}^m \to \mathbb{R}^m$ and $\epsilon > 0 \to g$ has compact support (i.e. is the identity outside some compact subset of \mathbb{R}^m) and $g \mid \epsilon B^m = e \mid \epsilon B^m$.

Proof that the lemma \Rightarrow the exercise: Let e and f be as in the exercise. \exists a diffeomorphism $h_1:\mathbb{R}^m\to\mathbb{R}^m$ with compact support \Rightarrow $h_1e(0)=f(0)$. Thus h_1ef^{-1} is an embedding defined on a neighbourhood of f(0). Strictly, to apply the lemma to h_1ef^{-1} , we want f(0)=0 and h_1ef^{-1} to have domain \mathbb{R}^m : this can be arranged by a normalisation process. By the lemma, \exists diffeomorphism $g:\mathbb{R}^m\to\mathbb{R}^m$ with compact support \Rightarrow g and h_1ef^{-1} agree in a neighbourhood of f(0). Let $h=g^{-1}h_1$.

Proof of the 1emma:

Case I: Assume e(0)=0 and De(0) is the identity. Firstly note that if U is an open convex subset of ${\rm I\!R}^{\rm m}$ and $f:U\to {\rm I\!R}^{\rm m}$ a C^1

function \Rightarrow \forall i, j, $\left|\frac{\partial f_i}{\partial x_j} - \delta_{ij}\right| < \frac{1}{m}$ throughout U (where $\delta_{ij} = 1$ if i = j and 0 if $i \neq j$), then f is an embedding. Indeed, f has rank n throughout U, so we need only show that f is injective.

Define $f':U \to \mathbb{R}^m$ by f'(x) = f(x) - x. Then $\left|\frac{\partial f_i^i}{\partial x_i}\right| < \frac{1}{m}$, so

by exercise 15.1, \forall x, y \in U, $|f'(x) - f'(y)| \le |x - y|$, with equality only if x = y. Thus $x \ne y \Rightarrow |f'(x) - f'(y)| < |x - y|$. Now $x = f(x) - f'(x) \Rightarrow |x - y| \le |f(x) - f(y)| + |f'(x) - f'(y)| < |f(x) - f(y)| + |x - y|$, so |f(x) - f(y)| > 0, i.e. $f(x) \ne f(y)$.

Now let $\,e\,$ be as in this case of the lemma, let $\,h: {\rm I\!R} \,\to {\rm I\!R}\,$ be as in lemma 4.1 and let $\,\epsilon > 0\,$. Define $\,g\,$ by

$$g(x) = h(|x|/2\varepsilon)e(x) + [1 - h(|x|/2\varepsilon)]x$$
.

For $|x| \ge 2\varepsilon$, g(x) = x and for $|x| \le \varepsilon$, g(x) = e(x). Further, if ε is small enough, g is a diffeomorphism. Indeed,

$$\frac{\partial g_{i}}{\partial x_{j}} = h(|x|/2\varepsilon) \frac{\partial e_{i}}{\partial x_{j}} + \left[1 - h(|x|/2\varepsilon)\right] \delta_{ij} + \left(e_{i}(x) - x_{i}\right) \cdot h'\left(\frac{|x|}{2\varepsilon}\right) \frac{x_{j}}{2\varepsilon|x|},$$

so
$$\left| \frac{\partial g_i}{\partial x_j} - \delta_{ij} \right| \le \left| \frac{\partial e_i}{\partial x_j} - \delta_{ij} \right| + \frac{1}{2\epsilon} \left| e_i(x) - x_i \right| \cdot \left| h \cdot \left(\frac{|x|}{2\epsilon} \right) \right|$$
.

Since De(0) is the identity, $\lim_{x\to 0} \frac{|f(x)-x|}{|x|} = 0$, so if ε is small

enough, then $\frac{1}{2\epsilon} \left| e_i(x) - x_i \right| \cdot \left| h! \left(\frac{|x|}{2\epsilon} \right) \right| < \frac{1}{2m}$ when $|x| \le 3\epsilon$, and by

continuity, again if ϵ is small enough, $\left|\frac{\partial e_i}{\partial x_j} - \delta_{ij}\right| < \frac{1}{2m}$ when $|x| \le 3\epsilon$.

Thus $\left|\frac{\partial g_i}{\partial x_j} - \delta_{ij}\right| < \frac{1}{m}$ on $3\epsilon B^m$ and by the previous paragraph, g is an

embedding on $3\epsilon B^m$. On the other hand, if $x, y \in \mathbb{R}^m$ with $|x| \le 2\epsilon$ and $|y| \ge 3\epsilon$, then g(y) = y, so if g(x) = g(y), then $h(|x|/2\epsilon) = e(x) + [1 - h(|x|/2\epsilon)] = y$, i.e. $h(|x|/2\epsilon)(e(x) - x) = y - x$ and hence $|e(x) - x| \ge |y - x| \ge \epsilon$. On the other hand, since $|x| \le 3\epsilon$, $\frac{1}{2\epsilon} |e_i(x) - x_i| \cdot |h'(|x|/2\epsilon)| < 1/2m$ from which $|e(x) - x| < \epsilon$, a

contradiction. Thus $g(x) \neq g(y)$. In all other cases where $x, y \in \mathbb{R}^m$ with $x \neq y$ it is clear that $g(x) \neq g(y)$. Thus g is a diffeomorphism. Case II: Assume that e(0) = 0. Since e is orientation preserving, \exists a diffeomorphism with compact support $h: \mathbb{R}^m \to \mathbb{R}^m \to Dh(0) = De(0)$: h might restrict on B^m to the linear transformation whose matrix

h might restrict on B^m to the linear transformation whose matrix representation is De(0). If also h(0)=0 then $h^{-1}e$ satisfies the conditions of case I, so given $g':\mathbb{R}^m\to\mathbb{R}^m\to g'=h^{-1}e$ on some ball around 0, we may let g=hg'.

Case III: General case. As in the solution to exercise 5.6, we may find a diffeomorphism $h:\mathbb{R}^m\to\mathbb{R}^m$ with compact support \ni he(0) = 0. Now proceed as in case III.

3. Since S is not orientable, by theorem 6.3, \exists charts (U,ϕ) , (V,ψ) in the structure of S \ni U and V are connected but $\Delta(\psi\phi^{-1})$ does not have a constant sign throughout $\phi(U\cap V)$. Inspection of the proof of theorem 6.3 reveals that it may be assumed that $\phi(U) = \psi(V) = \mathbb{R}^{m}$. Moreover, given $x \in S$, we may assume that $x \in U \cap V$, for exercise 5.6 provides us with a chart with domain containing x and meeting U \cap V and image \mathbb{R}^{2} . Using a function of the type of g in the solution to exercise 5.6 and the chart about x we are able to modify the charts (U,ϕ) and (V,ψ) so that $x \in U \cap V$. Thus we have shown that \forall $x \in S$, \exists charts (U,ϕ) and $(V,\psi) \ni x \in U \cap V$, $\phi(U) = \psi(V) = \mathbb{R}^{2}$ and $\Delta(\psi\phi^{-1})$ does not have constant sign: it may be assumed that $\Delta(\psi\phi^{-1})(\phi(x)) > 0$.

Now let $A = \{x\} \cup \{y \in S \ / \ \exists \ charts \ (U,\phi), \ (V,\psi) \ \ni x, \ y \in U \cap V,$ $\phi(U) = \psi(V) = \mathbb{R}^2 \ , \ \Delta(\psi\phi^{-1}) \left(\phi(x)\right) > 0 \ , \ \Delta(\psi\phi^{-1}) \left(\phi(y)\right) < 0\}.$ Clearly $A - \{x\}$ is open; A is a neighbourhood of x, for if (U,ϕ) , (V,ψ) are charts about x as in the previous paragraph then $U \subset A$ because given $y \in U - \{x\}$, then as in the previous paragraph we can

modify (V,ψ) so that a point at which $\Delta(\psi\phi^{-1})$ is negative moves to y but ψ is unchanged at x. On the other hand, as in the solution to exercise 5.6, A is closed. Thus A = S.

Suppose given e, f: Int $B^2 \to S$ as in the exercise and suppose $e(\operatorname{Int}\ B^2) \cap f(\operatorname{Int}\ B^2) = \phi$. Then \exists charts (U,ϕ) and $(V,\psi) \to e(0)$, $f(0) \in U \cap V$, $\phi(U) = \psi(V) = \mathbb{R}^2$, $\Delta(\psi\phi^{-1})(\phi(x)) > 0$ and

 $\Delta(\psi\phi^{-1})\left(\phi(y)\right)<0\ .\ \ \ If\ \ \Delta(\phi e)\left(0\right)<0\ ,\ \ precede\ \phi\ \ and\ \psi\ \ by\ a$ reflection: the only change will be to ensure that $\Delta(\phi e)\left(0\right)>0\ .$ Either $\Delta(\phi f)\left(0\right)>0\ \ or\ \ \Delta(\phi f)\left(0\right)<0\ \ and\ in\ the\ latter\ case,$ $\Delta(\psi f)\left(0\right)>0\ .\ \ Thus\ for\ one\ of\ the\ charts\ (U,\phi)\ and\ (V,\psi)\ ,\ assume$ the former, we have $\Delta(\phi e)\left(0\right)>0\ \ and\ \ \Delta(\phi f)\left(0\right)>0\ ,\ i.e.\ \phi e\ \ and$ $\phi f\ \ are\ both\ orientation\ preserving\ at\ 0\ \ and\ hence\ in\ a\ neighbourhood$ of 0 . If the neighbourhood is not $\frac{3}{4}\ B^2\ \ then,\ in\ a\ now\ standard\ way,$ we can enlarge U within $e(Int\ B^2)\ U\ f(Int\ B^2)\ so\ that\ it\ does\ contain$ $e\left(\frac{3}{4}\ B^2\right)\ U\ f\left(\frac{3}{4}\ B^2\right)\ .$

Finally since φe , $\varphi f: \frac{3}{4} \ B^2 \to \mathbb{R}^2$ are orientation preserving and may be extended to orientation preserving embeddings as in exercise 2, \exists a diffeomorphism $g: \mathbb{R}^2 \to \mathbb{R}^2 \to g\varphi e / \varepsilon B^2 = \varphi f$ for some $\varepsilon > 0$ and g is the identity outside some compact subset of \mathbb{R}^2 . Let h be 1 outside the image under φ^{-1} of this compact subset and $\varphi^{-1}g\varphi$ inside U.

If e and f are as in the exercise, then we can introduce a third embedding e': Int $B^2 \to S$ whose image is disjoint from those of e and f, and using the procedure of the previous paragraph, construct two diffeomorphisms $h_1, h_2: S \to S$ so that $h_1 e \mid \epsilon B^2 = e^{i} \mid \epsilon B^2$ and $h_2 e^{i} \mid \epsilon B^2 = f \mid \epsilon B^2$. Then $h = h_2 h_1: S \to S$ is a diffeomorphism and $he \mid \epsilon B^2 = f \mid \epsilon B^2$.

- 4. Let $h_1:S\to S$ be a diffeomorphism as given by exercise $3 \to \forall \ x \in \epsilon B^2$, $h_1e(1,x)=f(1,x)$. Consider the two embeddings Int $B^2\to S$ given by $x\mapsto h_1e(-1,x)$ and $x\mapsto h_1f(-1,x)$. Again by exercise $3\exists a$ diffeomorphism $h_2:S\to S\to \forall \ x\in \epsilon B^2$, $h_2h_1e(-1,x)=f(-1,x)$. Moreover as constructed in exercise 3, h_2 is the identity outside some chart: it may be assumed that this chart is disjoint from $h_1e(\{1\}\times \epsilon B^2)$. Let $h=h_2h_1$.
- 5. Let $h:S \to S$ be the diffeomorphism given by exercise 4. Define $g: X(S,e) \to X(S,f)$ by letting g(x) = h(x) if $x \in S e(S^0 \times \{0\})$ and g(ru,v) = (ru,v) if $(ru,v) \in \epsilon$ Int $B^1 \times S^1$. This g is well-defined for in X(S,e), x and (ru,v) represent the same element iff $\alpha e^{-1}(x) = (ru,v)$ iff x = e(u,rv), in which case $g(x) = h(x) = he(u,rv) = f(u,rv) = f\alpha^{-1}(ru,v) = f\alpha^{-1}g(ru,v)$: thus g(x) and g(ru,v) represent the same element of X(S,f). One can check that g is a diffeomorphism.

CHAPTER 14

- 1. Choose a chart (U,ϕ) on $S \neq \phi(x) = 0$, $[-1,1] \times [0,1] \subset \phi(U)$ and the components of ξ with respect to (U,ϕ) are (0,1). Assume that the second integral curve emanating from s does not meet U. Let $h: \mathbb{R} \to \mathbb{R}$ be the function of lemma 4.1. Since h'(t) = 0 for $|t| \geq 1$, by compactness h' is bounded, say $k \in \mathbb{R}$ satisfies $\forall t \in \mathbb{R}$, |h'(t)| < k. Define $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ by $\alpha(t,u) = \{t + h(2t) \cdot h(u)/2k, u\}$. Then α is the identity outside $[-1,1] \times [-1,1]$ and within that square, displaces part of the u-axis horizontally. The components of $\xi(\phi^{-1}(t,u))$ with respect to $(U,\alpha\phi)$ are $(h(2t) \cdot h'(u)/2k, 1)$. Let $\xi'(\phi^{-1}(t,u))$ have components $(h(2t) \cdot h'(u)/2k, 1)$ with respect to (U,ϕ) when $(t,u) \in (-1,1) \times (0,1)$ and let ξ' agree with ξ elsewhere.
- 2. As in exercise 5.6, we may find a chart (U,ϕ) from the orientation for $S \ni e(1,0)$, $f(1,0) \in U$ and $\phi(U) = \mathbb{R}^2$. Using this chart as in the solution to exercise 13.3, we may construct a diffeomorphism $h_1: S \to S$ so that $h_1e \mid \{1\} \times \epsilon B^2 = f \mid \{1\} \times \epsilon B^2$. Similarly we may construct a diffeomorphism $h_2: S \to S$ so that $h_2h_1e \mid \{-1\} \times \epsilon B^2 = f \mid \{-1\} \times \epsilon B^2$, and as in the solution to exercise 13.4, we may assume that h_2 is the identity on $h_1e(\{1\} \times \epsilon B^2)$. Let $h = h_2h_1$.
- 3. Let T have m handles and suppose m≥n. Then T may be obtained from S by adding m-n handles, i.e. by performing m-n surgeries of type (1,2). Reversing these surgeries, S may be obtained from T by performing m-n surgeries of type (2,1), and hence from S by performing m+1-n surgeries of type (2,1). Each such surgery increases the genus by at least 1, as illustrated by figure 78. Repeating the cycle of surgeries & times, we deduce that S has infinite genus.

CHAPTER 15

1. Since $f_i(x) - f_i(y) = Df_i(z_i) \cdot (x - y)$, by the Cauchy-Schwarz inequality,

$$\begin{split} \left|f_{\mathbf{i}}\left(x\right)-f_{\mathbf{i}}\left(y\right)\right| &\leq \left|\mathrm{D}f_{\mathbf{i}}\left(z_{\mathbf{i}}\right)\right| \cdot \left|x-y\right| \\ &\leq b\sqrt{n} \cdot \left|x-y\right| \quad \text{since each entry} \\ \text{in } \mathrm{D}f_{\mathbf{i}}(z_{\mathbf{i}}) \quad \text{lies between } -b \quad \text{and} \quad b \ . \quad \text{Thus} \\ \left|f(x)-f(y)\right|^2 &\leq \Sigma_{\mathbf{i}=1}^n \left(b\sqrt{n} \, \left|x-y\right|\right)^2 = b^2n^2 \left|x-y\right|^2 \,, \\ \text{so} \qquad \left|f(x)-f(y)\right| &\leq bn \left|x-y\right| \,. \end{split}$$

- 2. It is sufficient to consider sets in \mathbb{R}^q for some q. Let (S_i) be a sequence of sets $\ni \forall i \ \theta_n(S_i) = 0$, and let $S = \bigcup_{i=1}^{\infty} S_i$. Given $\epsilon > 0$, $\forall i \exists$ open balls $\{B(x_{ij};r_{ij}) \ / \ j = 1,2,...\}$ covering $S_i \ \ni \sum_{j=1}^{\infty} r_{ij}^n < \epsilon \ / \ 2^i$. Then the balls $\{B(x_{ij};r_{ij}) \ / \ i, \ j = 1,2,...\}$ cover S and $\sum_{i,j=1}^{\infty} r_{ij}^n < \epsilon$, so $\theta_n(S) = 0$.
- 3. As a closed ball in \mathbb{R}^n , each member of A is compact and convex. Clearly A is countable since \mathbb{Q} is, and the union of the members of A lies in U. On the other hand, if $x \in U$, then $\exists \ r > 0 \rightarrow B(x;r) \subset U$. Let $q \in \mathbb{Q} \cap (0,r/2)$. Then $B(x;q) \cap A \neq \phi$, say $y \in B(x;q) \cap A$. We have $x \in C \ell B(y;q) \subset B(x;2q) \subset B(x;r) \subset U$. Thus $C \ell B(y;q)$ is a member of A containing x, so U is the union of the members of A.
- 4. If Cl (M-S) \neq M, say $x \in M$ Cl (M-S), then \exists chart (U, ϕ) about $x \to U \subset S$. Thus $\theta_m(U) = 0$, which means that $\theta_m(\phi(U)) = 0$. But $\phi(U)$ is a non-empty open subset of \mathbb{R}^m and no such set has m-dimensional Hausdorff measure 0. Thus Cl (M-S) = M.