CHAPTER 1

- 1. (a) $x \lor A$ because if r > 0 then (r/2,0) is an element of A within r of x.
 - (b) $x \not A$ because A contains only points with integer coordinates, which are at least one unit apart, and $x \not \in A$.
 - (c) $x \lor A$ because if r > 0 then we can find a rational number q with 0 < q < r. Then $(q,0) \in A$ and (q,0) is within r of x.
 - (d) $x \lor A$ because if r>0 then we can find an irrational number s with 0 < s < r. Then $(s,0) \in A$ and (s,0) is within r of x.
 - (e) $x \lor A$ because if r > 0 then (1-s,0) is an element of A within r of x, where s = r/2 if $r \le 1$ and s = 1 if r > 1.
 - (f) $x \lor A$ because if r > 0 then $(s, -\sqrt{1-s^2})$ is an element of A within r of x, where 1 r/2 < s < 1.
 - (g) $x \ \nu \ A$ because if r>0 then $(1/n\pi,0)$ is an element of A within r of x, where n is an integer, with $n>1/\pi r$.

2. Usual nearness relation on \mathbb{R}^n :

- Near 1: If $x \lor A$ then $\exists \ a \in A$ with |x-a| < 1 (take r=1 in the definition). Since $a \in A$, we have $A \neq \phi$.
- Near 2: If $x \in A$, then $\forall r > 0$, letting a = x, we have $a \in A$ and |x-a|(=0) < r, so $x \lor A$.
- Near 3: We verify the equivalent condition: $x \vee (A \cup B)$ and $x \not \wedge A \Rightarrow x \vee B$. Suppose $x \vee (A \cup B)$ and $x \not \wedge A$. To show $x \vee B$, let r > 0: we must find $b \in B$ with |x-b| < r. Since $x \not \wedge A$, $\exists s > 0$ so that whenever $a \in A$, $|x-a| \ge s$. Since $x \vee (A \cup B)$, $\exists c \in A \cup B$ with |x-c| < r. If $r \le s$, then $c \not \in A$, so $c \in B$ and we could take b = c. If r > s, then it might happen that $c \in A$ so we need to try something different. Note that since s > 0, $\exists d \in A \cup B$ with |x-d| < s. Again $d \not \in A$ so $d \in B$; moreover |x-d| < r, so we may take b = d. Thus in either case $\exists b \in B$ with |x-b| < r.

Near 4: Suppose $x \ v \ A$ and $\forall \ a \in A$, $a \ v \ B$. Let r > 0. Then r/2 > 0 so $\exists \ a \in A$ with |x-a| < r/2. Also $\exists \ b \in B$ with |a-b| < r/2. Since $|x-b| \le |x-a| + |a-b|$, by the triangle inequality, we deduce that |x-b| < r.

Discrete nearness relation:

Near 1: If $x v_d A$ then $x \in A$, so $A \neq \phi$.

Near 2: If $x \in A$ then $x v_d^{} A$ by definition.

Near 3: If $x \nu_d$ (A U B) then $x \in A \cup B$ so either $x \in A$ (in which case $x \nu_d$ A) or $x \in B$ (in which case $x \nu_d$ B).

Near 4: If $x v_d A$ then $x \in A$ from which the condition $\forall \ a \in A$, $a v_d B$ immediately implies $x v_d B$.

Concrete nearness relation:

Near 1: If $x \nu_c A$ then $A \neq \phi$ by definition.

Near 2: If $x \in A$ then $A \neq \phi$, so $x \lor_c A$.

Near 3: If $x v_c$ (A U B) then A U B $\neq \phi$, so either A $\neq \phi$ (in which case $x v_c$ A) or B $\neq \phi$ (in which case $x v_c$ B).

Near 4: If $x \vee_C A$ then $A \neq \phi$, say $a' \in A$. The condition $\forall \ a \in A$, $a \vee B$ implies that $a' \vee B$, from which $B \neq \phi$ and hence $x \vee_C B$.

Cofinite nearness relation:

Near 1: If $x \lor A$ then either A is infinite or $x \in A$, either of which implies that $A \neq \phi$.

Near 2: If $x \in A$ then $x \cup A$ by definition.

Near 3: If $x \vee (A \cup B)$ then either $A \cup B$ is infinite or $x \in A \cup B$. If $A \cup B$ is infinite then at least one of A and B is infinite, say A, so $x \vee A$. If $x \in A \cup B$ then either $x \in A$ (so $x \vee A$) or $x \in B$ (so $x \vee B$).

- Near 4: Suppose $x \lor A$ and $\forall a \in A$, $a \lor B$. Either A is infinite or $x \in A$. In the latter case $x \lor B$. If A is infinite then so is B for either $A \subset B$ or $\exists a \in A B$ from which $a \lor B$ implies that B is infinite.
- 3. By Near 1, 0 % φ, and by Near 2, 0 ν {0} and 0 ν {0,1}, for any nearness relation ν on {0,1}. Thus the only subset A of {0,1} for which it is uncertain whether 0 ν A is the set A = {1}.
 Similarly it is uncertain whether 1 ν {0}. Either 0 ν {1} or 0 % {1}, and either 1 ν {0} or 1 % {0}, giving rise to four distinct possibilities, although we must check whether they all give rise to nearness spaces.
 - (i) 0 ν {1} and 1 ν {0}. This gives rise to the discrete nearness relation.
 - (ii) $0 \ \% \ \{1\}$ and $1 \ \% \ \{0\}$. This gives rise to the concrete nearness relation.
 - (iii) 0 ν {1} and 1 $\not \nu$ {0}. This gives rise to a nearness relation. It is routine to verify Near 3 and Near 4 as in exercise 2.
 - (iv) 0 $\not >$ {1} and 1 \lor {0}. This also gives rise to a nearness relation.

The only distinct pair of the four relations above giving rise to homeomorphic nearness spaces is that defined by (iii) and (iv), the function $f:\{0,1\} \rightarrow \{0,1\}$ defined by f(0)=1 and f(1)=0 being a homeomorphism between these two nearness spaces.

- 4. Let $A = \{(x_1, x_2) \in S^1 / x_2 < 0\}$. The solution to exercise 1(f) tells us that $(1,0) \vee A$. Now f(0) = (1,0), so g(1,0) = 0, and $f(\pi, 2\pi) = A$, so $g(A) = (\pi, 2\pi)$. Thus $g(1,0) \not > g(A)$ and so g is not continuous at (1,0).
- 5. Suppose $x \in X$ and $A \subseteq X$ with $x \vee A$. Since $A = (A \cap X_1) \cup (A \cap X_2)$, by Near 3 $x \vee (A \cap X_1)$ or $x \vee (A \cap X_2)$: suppose the former. Since $A \cap X_1 \subseteq X_1$, by Near 4 $x \vee X_1$ and hence $x \in X_1$. Thus $x \in X_1$ and $A \cap X_1 \subseteq X_1$ satisfy $x \vee (A \cap X_1)$ and so by continuity of $f \mid X_1$ we have $f(x) \vee f(A \cap X_1)$ and hence $f(x) \vee f(A)$.

- Let r > 0, and set $B = \{a \in A \ / \ |f(x) f(a)| < r\}$. If $x \not > B$ then 6. by Near 3, x v (A - B) so that f(x) v f(A - B), which contradicts the definition of B: thus $x \lor B$. Continuity of g implies that $g(x) \ v \ g(B)$, so $\exists \ a \in B \ \ni \ \big| g(x) - g(a) \big| < r$. This $a \in A$ and also satisfies |f(x) - f(a)| < r.
- Suppose $(x,y) \in \mathbb{R}^2$ and $A \subset \mathbb{R}^2$ are such that $(x,y) \ v \ A$. 7. To verify that $s(x,y) \ v \ s(A)$ and $p(x,y) \ v \ p(A)$, let r>0.

Firstly, \exists (a,b) \in A with |(x,y) - (a,b)| < r/2, so |x-a| < r/2and |y-b| < r/2 and hence $|s(x,y)-s(a,b)| \le |x-a| + |y-b| < r$.

Secondly, if $x \neq 0$ then $\min\{r/2|y|, r/3|x|, |x|/2\}$ is positive so \exists (a,b) \in A with |(x,y) - (a,b)| less than this positive number. In particular, |x-a| < r/2|y|, |x-a| < |x|/2and |y-b| < r/3|x|, from which |a| < 3|x|/2 and |y-b| < r/2|a|, and hence |p(x,y) - p(a,b)| = |xy - ay + ay - ab| $\leq |x-a| \cdot |y| + |y-b| \cdot |a|$

< r.

This reasoning requires a slight modification if y = 0. Interchanging the roles of x and y allows us to assert that \exists (a,b) $\in A \Rightarrow |p(x,y) - p(a,b)| < r \text{ when either } x \neq 0 \text{ or }$ $y \neq 0$. If (x,y) = 0, then choosing $(a,b) \in A$ with $|(x,y) - (a,b)| < \min\{1,r\}, \text{ we have } |a| = |x-a| < r \text{ and }$ |b| = |y - b| < 1, so again $|p(x,y) - p(a,b)| = |a| \cdot |b| < r$

(b) Method I. We could generalise the solution to (a) to cover this situation. Suppose $x \in X$ and $A \subset X$ satisfy $x \vee A$, and that r > 0.

Firstly, by exercise 6, $\exists a \in A \rightarrow |f(x) - f(a)| < r/2$ |g(x) - g(a)| < r/2. Then $|(f+g)(x) - (f+g)(a)| \le |f(x) - f(a)|$ + |g(x) - g(a)| < r.

Secondly, if $f(x) \neq 0$, then exercise 6 assures us that $\exists a \in A \Rightarrow |f(x) - f(a)| < \min\{r/2|g(x)|, |f(x)|/2\}$ and |g(x) - g(a)| < r/3 |f(x)|, from which $|(f.g)(x) - (f.g)(a)| \le$ $|f(x) - f(a)| \cdot |g(x)| + |g(x) - g(a)| \cdot |f(a)| < r$, with the appropriate modification if g(x) = 0. As in (a), we can

interchange the roles of f and g to take care of the case $g(x) \neq 0$. The case f(x) = g(x) = 0 is similar to the corresponding case in (a).

Method II. We can express f + g and $f \cdot g$ as compositions $X \xrightarrow{\Delta} X \times X \xrightarrow{f \times g} \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} .$

where the last map is s for f + g and p for f . g. The map $\Delta: X \to X \times X$ is defined by $\Delta(x) = (x,x)$ and $f \times g: X \times X \to \mathbb{R} \times \mathbb{R}$ is defined by $(f \times g)(x,y) = (f(x),g(y))$. One can impose natural nearness relations on $X \times X$ and $\mathbb{R} \times \mathbb{R}$ so that the composant functions are continuous from which the result follows.

A way of defining the natural nearness relation on $X_1 \times X_2$, where (X_1, v) and (X_2, v) are two nearness spaces is:

$$(x_1,x_2) \ \lor \ A \subset X_1 \ \times \ X_2 \ \ \text{iff} \ \ \forall \ N_i \subset X_i \ \ni \ x_i \not > (X_i - N_i), \ \ i = 1, 2,$$
 we have
$$(N_1 \times N_2) \ \cap \ A \neq \phi \ .$$

However, it is much easier to define products in the context of topological spaces: see exercise 2-6.

8. Discrete. Suppose that (X,ν) is a discrete nearness space and (Y,μ) a nearness space homeomorphic to (X,ν) , say $h:X\to Y$ is a homeomorphism. We must show that (Y,μ) is discrete, i.e. $\forall \ y\in Y$, $\forall \ B\subset Y$, we have $y\mu$ B iff $y\in B$. Let $y\in Y$ and $B\subset Y$. If $y\mu$ B then by continuity of $h^{-1}:Y\to X$, we have $h^{-1}(y)\nu$ $h^{-1}(B)$ and hence $h^{-1}(y)\in h^{-1}(B)$ since (X,ν) is discrete. This implies that $y\in B$. Conversely if $y\in B$ then Near 2 implies that $y\nu$ B.

Concrete. Suppose (X,ν) , (Y,μ) and $h:X \to Y$ are as above except that now (X,ν) is concrete. We show that for $y \in Y$ and $B \subset Y$, $y \mu B$ iff $B \neq \emptyset$. Let $y \in Y$ and $B \subset Y$. If $y \mu B$ then by Near 1, $B \neq \emptyset$. Conversely if $B \neq \emptyset$ then $h^{-1}(B) \neq \emptyset$ and so, since (X,ν) is concrete, $h^{-1}(y) \nu h^{-1}(B)$. Continuity of h now implies that $hh^{-1}(y) \mu hh^{-1}(B)$, i.e. $y \mu B$.

9. We must show that h is a bijection and that both h: $(-1,1) \to \mathbb{R}$ and $h^{-1}: \mathbb{R} \to (-1,1)$ are continuous. It is readily checked that if $g: \mathbb{R} \to (-1,1)$ is defined by g(y) = y / (1+|y|) then g and h are mutual inverses. Thus h is a bijection with $h^{-1} = g$.

It is clear that if $x \in \mathbb{R}$ and $A \subset \mathbb{R}$ satisfy $x \vee A$ then $(1 \pm |x|) \vee (1 \pm |A|)$, where $1 \pm |A| = \{1 \pm |t| / t \in A\}$. Thus the functions $x \mapsto 1 - |x|$ and $x \mapsto 1 + |x|$ are continuous, and hence the functions h and h^{-1} are quotients of continuous functions in which the denominator is never 0. It is a standard result from elementary calculus that quotients of continuous functions are continuous. This may be proved as in exercise 7.

- 10. (a) ϕ and \mathbb{R} are connected: they are intervals. The sets $\{0\} \cup \{1/k \ / \ k=1,2,\ldots\}$ and $\{x \in \mathbb{Q} \ / \ 0 \le x \le 1\}$ are not connected because they are not intervals.
 - (b) S^1 is connected by theorem 4, since it is the union of the two connected sets $\{(x_1,x_2)\in S^1 \ / \ x_2\geq 0\},\ \{(x_1,x_2)\in S^1 \ / \ x_2\leq 0\}$ [each being homeomorphic to the closed interval $[-1,1]\subset \mathbb{R}$] having the point (1,0) in common.

The set $\{(x_1,x_2)\in\mathbb{R}^2\ /\ x_1x_2>0\}$ is not connected, the function δ defined by $\delta(x_1,x_2)=0$ if $x_1>0$ and $x_2>0$ and $\delta(x_1,x_2)=1$ if $x_1<0$ and $x_2<0$, being a disconnection.

 $\{(x_1,x_2)\in\mathbb{R}^2\ /\ x_1x_2\geq 0\}$ is connected by theorem 4. Indeed, it is the union of all lines through the origin having positive slope together with the x_2 -axis. As lines, these sets are connected, and they have (0,0) in common.

 $\{(x_1,x_2)\in\mathbb{R}^2\ /\ x_1=0\ \text{or}\ x_2=0\ \text{or}\ x_1x_2=1\} \text{ is not connected, the function }\delta\text{ defined by }\delta(x_1,x_2)=0\text{ if }x_1x_2=0 \text{ and }\delta(x_1,x_2)=1\text{ if }x_1x_2\neq0\text{ being a disconnection.}$

 $\{(x_1,x_2)\in\mathbb{R}^2\ /\ x_1=0\ \text{ and } -1\leq x_2\leq 1\}\ \cup\ \{(x_1,x_2)\in\mathbb{R}^2\ /\ x_1>0\ \text{ and } x_2=\sin(1/x_1)\}\ \text{ is connected. Indeed, the two pieces are homeomorphic to } [-1,1]\ \text{ and } (0,\infty)\ \text{ respectively and hence, connected, by theorem 5. Let }\delta\ \text{ be a continuous function from that set to 2. We may assume that }\delta\big(\{(x_1,x_2)\in\mathbb{R}^2\ /\ x_1>0\ \text{ and }x_2=\sin(1/x_1)\}\big)=\{0\}.\ \text{Now } (0,0)\ v\ \{(x_1,x_2)\in\mathbb{R}^2\ /\ x_2>0\ \text{ and }x_2=\sin(1/x_1)\}, \text{ by exercise }1(g).\ \text{Thus }\delta(0,0)\ v\ \{0\}\ \text{ and hence}$

- $\delta(0,0)$ = 0. Connectedness of $\{(x_1,x_2)\in\mathbb{R}^2~/~x_1=0~\text{ and }-1\leq x_2\leq 1\}$ now implies that δ is constant.
- (c) Both S^{n-1} (assuming n>1) and the x-axis in \mathbb{R}^n are connected. S^{n-1} is connected because it is the union of the two connected sets $\{(x_1,\ldots,x_n)\in S^{n-1}\mid x_n\geq 0\}$ and $\{(x_1,\ldots x_n)\in S^{n-1}\mid x_n\geq 0\}$ and $\{(x_1,\ldots x_n)\in S^{n-1}\mid x_n\geq 0\}$ having the point $(1,0,\ldots,0)$ in common: these sets are connected because they are homeomorphic to \mathbb{B}^{n-1} which is the union of all line segments (connected!) of unit length emanating from $0\in \mathbb{R}^{n-1}$. The x_1 -axis is homeomorphic to \mathbb{R} and hence is connected.
- 11. (i) Inspection of figure 3 suggests that the only connected subsets of the discrete space are the empty set and the one-point subsets, and this is the case. If A is any subset of a discrete space, with A containing at least two points, then $\delta: A \to 2$ defined by $\delta(x) = 0$ and $\delta(A \{x\}) = \{1\}$, where x is some element of A, is a disconnection.
 - (ii) Inspection of figure 4 suggests that there is no way of disconnecting any subset of a concrete space, i.e. all subsets of a concrete space are connected. Indeed, since every subspace of a concrete space is itself concrete, it is enough to show that concrete spaces are connected. Let (X,v) be a concrete space and let $f:X\to 2$ be continuous. Let $x\in X$. If $y\in X$, then $y\in X$, so $f(y) \in \{f(x)\}$, i.e. f(y) = f(x). Thus f is constant, hence cannot be a disconnection.

CHAPTER 2

1. A is both open and closed; Int A = Cl A = Fr A = ϕ .

B is both open and closed (in R); Int B = Cl B = R, Fr B = ϕ .

C is closed but not open and D is open but not closed;

Int C = Int D = (0,1), Cl C = Cl D = [0,1], Fr C = Fr D = {0,1}.

E is closed but not open and F is neither open nor closed;

Int E = Int F = (-184,405), Cl E = Cl F = [-184,405] U {1000},

Fr E = Fr F = {-184,405,1000}.

G is open but not closed; Int G = $(-\infty, 1000)$ U $(1000, \infty)$, CL G = IR, Fr G = $\{1000\}$.

H is closed but not open; Int H = ϕ , Cl H = Sⁿ⁻¹, Fr H = Sⁿ⁻¹. Assuming that i runs through the positive integers, I is open but not closed and J is closed but not open; Int I = Int J = I, Cl I = Cl J = J, Fr I = Fr J = $\{0\}$ U $\overset{\infty}{\cup}$ $\{x \in \mathbb{R}^n \ / \ |x| = 1/i\}$.

2. Only in cases (a) and (b), and case (c) when n=1, are the given sets N neighbourhoods of 0. Using the criterion illustrated by figure 8, we show that in cases (c) (when n>1), (d) and (e) the given sets N are not neighbourhoods of 0. Suppose r>0. Then $(r/2,0,\ldots,0)\in B(0;r)$ but, when n>1, $(r/2,0,\ldots,0)$ does not lie in the set N of (c). If $q\in \mathbb{Q}$ satisfies 0< q< r, then $(q,0,\ldots,0)\in B(0;r)$ but $(q,0,\ldots,0)$ does not lie in the set N of (d). If m is any positive integer with 1/m < r, then $(1/m,0,\ldots,0)\in B(0;r)$ but $(1/m,0,\ldots,0)$ does not lie in the set N of (e).

3. Usual topology on \mathbb{R}^n :

- Open 1: The condition $\forall x \in U$, $\exists r > 0 \Rightarrow B(x;r) \subseteq U$ is vacuously satisfied when $U = \phi$, so ϕ is open.
- Open 2: Since $B(x;r) \subset \mathbb{R}^n$, the condition for \mathbb{R}^n to be open is trivially satisfied.
- Open 3: Suppose U and V are open in \mathbb{R}^n , and let $x \in U \cap V$. Since U is open and $x \in U$, $\exists s > 0 \Rightarrow B(x;s) \subset U$ and since V is open and $x \in V$, $\exists t > 0 \Rightarrow B(x;t) \subset V$. Let $r = \min\{s,t\}$. Then r > 0 and $B(x;r) \subset B(x;s) \subset U$ and $B(x;r) \subset B(x;t) \subset V$, so $B(x;r) \subset U \cap V$. Thus $U \cap V$ is open.
- Open 4: Suppose $\{U_{\alpha} / \alpha \in A\}$ is a family of open subsets of \mathbb{R}^n and let $x \in U_{\alpha \in A} U_{\alpha}$. For some $\beta \in A$, $x \in U_{\beta}$. Since U_{β} is open, $\exists \ r > 0 \rightarrow B(x;r) \subset U_{\beta}$. Then $B(x;r) \subset U_{\alpha \in A} U_{\alpha}$, so the latter set is open.

Discrete topology: Let X be any set. Then ϕ and X are subsets of X, the intersection of any two subsets of X is again a subset of X and the union of any family of subsets of X is again a subset of X. Hence the collection of all subsets of X forms a topology on X. Concrete topology: Let X be any set. The family $\{\phi,X\}$ clearly forms a topology on X.

4. Suppose that the cofinite and discrete topologies on X agree. If $X = \phi$ then X is finite. If $X \neq \phi$, pick $x \in X$. Then $\{x\}$, being open in the discrete topology is also open in the cofinite topology, i.e. has a finite complement. Thus X is finite, being the union of the two finite sets $\{x\}$ and $X - \{x\}$.

Conversely if X is finite then every subset of X has a finite complement hence is open in the cofinite topology: thus the two topologies are the same.

5. Int $(X-Y) \subset X-Y$, so X- Int $(X-Y) \supset X-$ (X-Y)=Y. Thus X- Int (X-Y), being closed, is one of the closed sets whose intersection forms $Cl\ Y$. Hence $Cl\ Y \subset X-$ Int (X-Y).

Cl Y \supset Y so X - Cl Y \subset X - Y. Thus X - Cl Y, being open, is one of the open sets whose union forms Int (X - Y). Hence X - Cl Y \subset Int (X - Y) and hence Cl Y \supset X - Int (X - Y).

- 6. (a) We verify the criterion given in proposition 2. Let $F = \{T \times U \subset X \times Y \ / \ T \in T \ \text{ and } \ U \in U\}.$ Since $X \in T$ and $Y \in U$, we have $X \times Y \in F$, so $U = X \times Y$. Suppose $T_1 \times U_1$, $T_2 \times U_2 \in F$. Then $(T_1 \times U_1) \cap (T_2 \times U_2) = (T_1 \cap T_2) \times (U_1 \cap U_2) \in F$, so the second part of the criterion is also satisfied.
 - (b) Let T denote the usual topology on \mathbb{R} , U the usual topology on \mathbb{R}^2 and P the product topology on \mathbb{R}^2 . We must show that P=U.

To show that $P \subset U$ it is enough to show that the basis for P is contained in U. Let T, $U \in T$, so that $T \times U$ is a typical member of the basis for P. Let $(x,y) \in T \times U$. Since T and U are open in the usual topology T, $\exists \ r > 0 \ \Rightarrow \ (x-r,x+r) \subset T$

and $(y-r,y+r) \subset U$. Thus $B((x,y);r) \subset (x-r,x+r) \times (y-r,y+r) \subset T \times U$, so $T \times U \in U$ and hence $P \subset U$.

On the other hand, if $V \in \mathcal{U}$ and $(x,y) \in V$ then $\exists \ r > 0 \Rightarrow B((x,y);r) \subset V$. Note that $(x-r/2,x+r/2) \times (y-r/2,y+r/2) \subset B((x,y);r)$, so that V is expressible as a union of members of the basis for P and hence $V \in P$. Thus $\mathcal{U} \subset P$.

- (c) We use criterion (e) of theorem 4, taking as basis for the topology on $Y_1 \times Y_2$ the basis defined in part (a) of this exercise. If $V_1 \times V_2$ is a typical member of this basis then V_1 is open in Y_1 for i = 1, 2. Further, $(f_1 \times f_2)^{-1}(V_1 \times V_2) = (f_1^{-1}(V_1)) \times (f_2^{-1}(V_2))$, which is open in $X_1 \times X_2$ since continuity of f_1 means that $f_1^{-1}(V_1)$ is open in X_1 .
- 7. The sets divide into the following homeomorphism classes:
 - I. A, R;
 - II. B, 8;
 - III. C, J, L, M, N, S, U, V, W, 1, 2, 3, 5, 7, 2nd knot, 3rd knot;
 - IV. D, 0, 1st knot;
 - V. E, F, G, T, Y;
 - VI. H, I;
 - VII. K, X;
 - VIII. P, Q, 6, 9;
 - IX. 4.

A number of topological invariants assist one in the division above. For example, A has a closed path and two 3-way junctions, both topological invariants. Thus A differs from H because H has no closed path and from P because P has only one 3-way junction. As an example, it is shown that L and 3 are homeomorphic. Firstly we identify these shapes algebraically as subsets of \mathbb{R}^2 . Let

L = {(x,y)
$$\in \mathbb{R}^2$$
 / either x = 0 and 0 \le y \le 1 or y = 0 and 0 \le x \le 1}
3 = {(x,y) $\in \mathbb{R}^2$ / x \ge 0 and either x² + (y-1)² = 1 or x + (y+1)² = 1}.

Define
$$h: L \to 3$$
 by $h(x,y) = \begin{cases} (2\sqrt{y-y^2}, 2y) & \text{if } x = 0 \\ (2\sqrt{x-x^2}, -2x) & \text{if } y = 0. \end{cases}$

Note that h takes the vertical part of L and stretches it around the upper semi-circle of 3 and stretches the horizontal part of L around the lower semi-circle of 3. Using exercise 1-5 one can verify that h and h^{-1} are continuous.

- 8. We must show that (i) $\forall \ \nu \in \mathbb{N}$, $\beta \ \alpha \ (\nu) = \nu$ and (ii) $\forall \ T \in \mathbb{T}$, $\alpha \ \beta \ (T) = T$.
 - (i) Suppose $v \in N$. By definition, $x \beta \alpha (v) \text{ A iff } \forall \ U \subset X \text{ satisfying } x \in U \text{ and } \forall \ y \in U \text{ , } y \not \Rightarrow (X-U),$ we have $U \cap A \neq \phi$.

If $x \in X$, A, $U \subset X$ satisfy $x \in U$ and $\forall y \in U$, $y \not \bowtie (X-U)$ but $U \cap A = \phi$, then $A \subset X - U$, so by Near 4 and Near 2, $\forall y \in U$, $y \not \bowtie A$; in particular $x \in U$, so $x \not \bowtie A$. Thus $x \lor A \Rightarrow x \not \bowtie \alpha$ (v) A. If $x \not \bowtie \alpha$ (v) A but $x \not \bowtie A$, then $U = \{y \in X / y \not \bowtie A\}$ contains $x \not \bowtie A$.

If $X \beta \alpha$ (v) A but $x \not N A$, then $U = \{y \in X / y \not N A\}$ contains x and satisfies $\forall y \in U$, $y \not N (X-U)$ [for $\forall z \in X-U$, $z \lor A$ so by Near 4, $y \lor (X-U) \Rightarrow y \lor A$]. Thus $U \cap A \neq \phi$ which contradicts Near 2. Thus $x \beta \alpha$ (v) $A \Rightarrow x \lor A$.

(ii) Suppose $T \in T$. By definition, $\alpha \ \beta \ (T) \ = \ \{ V \subset X \ / \ \forall \ x \in V \ , \ \exists \ U \in T \ \Rightarrow \ x \in U \subset V \} \ .$ By Open 4, $\alpha \ \beta \ (T) \subset T$ and clearly $T \subset \alpha \ \beta \ (T)$. Thus $\alpha \ \beta \ (T) \ = T$.

CHAPTER 3

- 1. Let $x, y \in X$ be distinct points in an infinite space X having the cofinite topology and let U and V be open neighbourhoods of x and y respectively: thus X U and X V are finite. Hence $(X U) \cup (X V) = X (U \cap V)$ is finite, so cannot be all of X and hence $U \cap V \neq \phi$.
- 2. Let X_1 denote X with the discrete topology and X_2 denote X with any Hausdorff topology. Define $h: X_1 X_2$ to be the identity function. Since it has a discrete domain, h is continuous. Clearly h is a bijection. Further, X_1 is compact since X is finite. Hence, since X_2 is Hausdorff, theorem 6 tells us that h is a homeomorphism, and hence by continuity of h^{-1} , every subset of X_2 is open, i.e. X_2 is discrete.