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X v A because if r > 0 then (r/2,0) is an element of A within

r of x.

X ¥ A because A
which are at least
x v A because if
with 0<q<or.
X v A because if
with 0<s<r.
x v A because if

r of x, where

S

contains only points with integer coordinates,

one unit apart, and x £ A.

r > 0 then we can find a rational number q

Then (q,0) € A and (q,0) is within r of x.
r > 0 then we can find an irrational number s
Then (s,0) € A and (s,0) is within r of x.
r >0 then (1-s,0) is an element of A within

=r/2 if r =1 and s =1 if r > 1.

x v A because if t > 0 then (s,-V1-s2) 1is an element of A

within r of x,

where 1 - r/2 < s < 1.

X v A because if r > 0 then (1/nm,0) is an element of A within

r of x, where

n

is an integer, with n > 1/rr.

. n
Usual nearness relation on IR :

Near 1: If x v A then 3 a € A with [x-al < 1 (take r=1 in

the definition). Since a € A, we have A # ¢.

Near 2: If x € A, then Y r > 0, letting a = x, we have

a € A and

|x-al(=0)<r, so xvA.

Near 3: We verify the equivalent condition: xv (A U B) and
X% A=xvB. Suppose x v(AUB) and x ¥ A. To

show x v B, let r > 0: we must find b € B with

lX-—b! <

T.

Since x » A, 3 s> 0 so that whenever

a €A, |x-al=s. Since xvAUB), 3ceAUB

with Ix-—c] < T. If r =s, then ¢c £A, so c € B

and we could take b =c¢. If r > s, then it might

happen that ¢ € A so we need to try something different.
Note that since s >0, 3d € AUB with |x-d| <s.

Again d £ A so d € B; moreover lx-—di < T, S0 we

may take b = d. Thus in either case 3 b € B with

fx-—b! <

.




Near 4:

Suppose x v A and Ya €A, avB., Let r>0.
Then r/2>0 so Ja €A with |x-a] < r/2. Also
3b €B with |a-b| < /2. Since |x-b] = |x-al +
]a-b] » by the triangle inequality, we deduce that

[x-—b] <rT.

Discrete nearness relation:

Near 1:

Near 2:

Near 3:

Near 4:

If xv, A then x €A, so A#5.

d
If x € A then x V4 A by definition.

If x Vg (AUB) then x € AUB so either x € A

(in which case x V4 A) or x € B (in which case x Vg B).

If x V4 A then x € A from which the condition

VacecA, a vg B immediately implies x vy B.

Concrete nearness relation:

Near 1:

Near 2:

Near 3:

Near 4:

If x V. A then A # ¢ by definition.
If x €A then A# ¢, so x v, A,

If x Ve (AUB) then AUBG# ¢, so either A # ¢

(in which case x v, A) or B # ¢ (in which case x V. B).

If x v, A then A # ¢, say a’ € A. The condition
Vae€¢A, avB implies that a’ v B, from which B £ 6

and hence x Vc B.

Cofinite nearness relation:

Near 1:

Near 2:

Near 3:

If x v A then either A 1is infinite or x € A , either

of which implies that A # ¢ .
If x €A then x v A by definition.

If xv (AUB) then either A U B is infinite or
x € AUB. If AUB is infinite then at least one of
A and B is infinite, say A, so xvA. If x €¢AUB

then either x € A (so x vA) or x € B (so x v B).




Near 4: Suppose x vA and VY a € A, av B, Either A is
infinite or x € A. 1In the latter case x v B. If A
is infinite then so is B for either A ¢ B or
da €A - B fromwhich a v B implies that B is

infinite.

By Near 1, 0 6 ¢, and by Near 2, 0 v {0} and 0 v {0,1}, for any
nearness relation v on {0,1}. Thus the only subset A of {0,1}

for which it is uncertain whether 0 v A is the set A = {1},

Similarly it is uncertain whether 1 v {0}. Either 0 v {1} or 0 b {1},
and either 1 v {0} or 1 ¥ {0}, giving rise to four distinct possibili-

ties, although we must check whether they all give rise to nearness spaces.

(i) 0v {1} and 1 v {0}. This gives rise to the discrete nearness
relation.

(ii) 0 % {1} and 1 % {0}. This gives rise to the concrete nearness
relation.

(iii) 0 v {1} and 1 % {0}. This gives rise to a nearness relation.
It is routine to verify Near 3 and Near 4 as in exercise 2.

(iv) 0% {1} and 1 v {0}. This also gives rise to a nearness

relation.

The only distinct pair of the four relations above giving rise to
homeomorphic nearness spaces is that defined by (iii) and (iv), the
function f:{0,1} » {0,1} defined by f£(0) = 1 and f(1) = 0 being

a homeomorphism between these two nearness spaces.

Let A =’{(x1,x2) ¢ st / X, < 0}. The solution to exercise 1(f) tells
us that (1,0) v A. Now f(0) = (1,0), so g(1,0) = 0, and
f(r,2m) = A, so g(A) = (w,2r). Thus g(1,0) ¥ g(A) and so g is

not continuous at (1,0).

Suppose x € X and A c X with x vA. Since A = (AN Xl) U @an Xz),
by Near 3 x v (A D XIJ or xv (AN X2) :  suppose the former. Since
ANX, c X;, by Near 4 x v X; and hence x ¢ X; . Thus x ¢ X; and
AN X, ¢ X; satisfy xv (A ﬁ Xl) and so by continuity of lel we
have f(x) v f(A N Xl) and hence f£(x) v f(A).
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Let >0, and set B = {a ¢ A/ ]f(x)»f(a)l <r}. If x % B then
by Near 3, x v (A - B) so that f(x) v f(A - B), which contradicts the
definition of B: thus x v B. Continuity of g implies that

g(x) vg(B), so Ta€eB > ]g(x) —g(a)] <r. This a € A and also

satisfies lf(x) - f(a)[ < T,

(a) Suppose (x,y) € RZ and A c R2 are such that (x,y) v A.
To verify that s(x,y) v s(A) and p(x,y) vp(A), let T > 0.
Firstly, 4 (a,b) € A with I(X,y) - (a,b)l <r/2, so Ix—a]<r/2
and [y—b[ < r/2 and hence [s(x,y) -s(a,b)l = [x-al + Iy-—b|<r .

Secondly, if x # 0 then min{r/2|y|, r/3]x|, |x|/2} is
positive so 3 (a,b) € A with ](x,y) - (a,b)l less than this
positive number. In particular, |x-al < r/2ly], |x-al < |x]/2
and |y-b| < r/3|x|, from which la] < 3|x|/2 and ly -b] < r/2]al,

and hence ]p(x,y) —p(a,b)l = [xy— ay +ay - ab]
< [x-a| . |y| + ly-b].|a]
<T.
This reasoning requires a slight modification if y = 0. Inter-

changing the roles of x and y allows us to assert that
3 (a,b) €A > |p(x,y)-p(a,b)] <t when either x # 0 or
y#0. If (x,y) =0, then choosing (a,b) € A with

| (x,y) - (a,b)| < min{1,r}, we have la] = !x-a[ < T and

bl = |y-b| <1, soagain |p(x,y) -p(a,b)| = |a] . |b] < =

(b) Method I. We could generalise the solution to {a) to cover this
situation. Suppose x € X and A c X satisfy x v A, and that

r>0,

Firstly, by exercise 6, 3 a € A > [f(x) - f(a)l < r/2
lg(x)-g@] < /2. Then |(£+@)(x)- (F+g)(@)] = [£(x) - £(a)]
* et -g@] <.

Secondly, if f(x) # 0, then exercise 6 assures us that
da€eA > [f(x) -f(a)] < min{r/Zlg(x)I, ]f(x)!/Z} and
lg() - g@ ] < v/3]£0|, from which |(f.g)(x) - (f.g) ()] =
[FG)-f@] . [ex)] + Jg) -g@] . |[f@)]| < r, with the

appropriate modification if g(x) = 0. As in (a), we can




interchange the roles of f and g to take care of the case
g(x) # 0. The case f(x) = g(x) = 0 is similar to the corres-

ponding case in (a).
Method II. We can express f +g and f . g as compositions

A
X —— X x X

g+ Rx R —— R,

where the last map is s for f+ g and p for f . g. The
map A:X -> X x X is defined by A(x) = (x,x) and f x g:
X xX— R x IR is defined by (fxg)(x,y) = (f(x),g(y)). One
can impose natural nearness relations on X x X and IR x R
so that the composant functions are continuous from which the
result follows.

A way of defining the natural nearness relation on Xy x X5,

where (Xl,v) and (Xz,v) are two nearness spaces is:

(xl,xz) v AC X1 x X, iff Vv Ni C Xi > X; Y4 (Xi-—Ni), i=1, 2,

2

we have Ny xN,) NA £ ¢.

However, it is much easier to define products in the context of

topological spaces: see exercise 2-6.

Discrete. Suppose that (X,v) is a discrete nearness space and (Y,u)

a nearness space homeomorphic to (X,v), say h:X — Y is a homeo-
morphism. We must show that (Y,u) is discrete, i.e. Vy €Y, ¥ BcCY,
we have y u B iff y € B, Let y €Y and BcY. If y u B then

by continuity of h™!:Y — X , we have h™'(y) v h™1(B) and hence
h'lty) € h"1(B) since (X,v) 1is discrete. This implies that y € B.

Conversely if y € B then Near 2 implies that y v B.

Concrete. Suppose (X,v), (Y,u) and h:X — Y are as above except
that now (X,v) 1is concrete. We show that for y €Y and BcCY,
yuB iff B#¢. Let y €Y and BcyY, If y u B then by Near 1,
B # ¢. Conversely if B # ¢ then h—l(B) # ¢ and so, since (X,v) is
concrete, hﬁl(y) v h_l(B). Continuity of h now implies that

hh™ly) w hhN(B), i.e. y u B.
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We must show that h is a bijection and that both h: (-1,1) — IR
and h"'!': R — (-1,1) are continuous. It is readily checked that if
g: R — (-1,1) 1is defined by g(y) =y / (1+]y]) then g and h
are mutual inverses. Thus h is a bijection with h™' = g.

It is clear that if x € R and A ¢ R satisfy x v A then

(1% |x]) v (1£]A]), where 1 % |A] = {12 |t] / t € A}. Thus the

I+

functions x+» 1 - |x| and x+> 1 + |x| are continuous, and hence
the functions h and h™. are quotients of continuous functions in
which the denominator is never 0. It is a standard result from

elementary calculus that quotients of continuous functions are con-

tinuous. This may be proved as in exercise 7.

(a) ¢ and TR are connected: they are intervals. The sets
{0} U{1/k / k=1,2,...} and {x €Q/ 0=<x<1} are not

connected because they are not intervals.

(b) sl is connected by theorem 4, since it is the union of the two
connected sets {(xl,xz) € sty X, = 0}, {(xl,xz) € sty X, = 0}
[each being homeomorphic to the closed interval [-1,1] ¢ R]

having the point (1,0) in common.

The set {(xl,xz) € R2 / X, X, > 0} 1is not connected, the
function & defined by 6(x1,x2) =0 if X; >0 and X, >0

and 6(x1,x2) =1 if X, < 0 and X, < 0, being a disconnection.

{(xl,xzj € R?2 / XX, = 0} 1is connected by theorem 4. Indeed,
it is the union of all lines through the origin having positive
slope together with the x,-axis. As lines, these sets are

connected, and they have (0,0) in common.

{(xl,xz) € R2 / X, =0 or x, =0 or XX, = 1} is not
connected, the function & defined by 6(x1,x2) =0 if X;X, = 0

and 6(xy,x,) =1 if X;X, # 0 being a disconnection.
2 - ’ 2
{(xl,xz) € IRZ / x, =0 and -1= X, < 1} U {(x;,x,) € R* /

Xy >0 and x, = sin(l/xl)} is connected. Indeed, the two pieces

are homeomorphic to [-1,1] and (0,«) respectively and hence,
connected, by theorem 5. Let & be a continuous function from
that set to 2. We may assume that 6({(x1,x2) € R2 / X, >0 and
X, = sin(l/xl)}) = {0}. Now (0,0) v'{(xl,xz) € R2 / x, > 0 and

X, = sin(l/xl)}, by exercise 1(g). Thus &(0,0) v {0} and hence



§(0,0) = 0. Connectedness of {(xl,xz) € R2 / X, = 0 and

-1 =x, =1} now implies that & is constant.

{c) Both shl (assuming n > 1) and the x -axis in R" are connected.
n-1
S
n-1 - ‘ n-1 >
{(xl,...,xn) €S / x = 0} and {(xl,...xn) €S / x =z 0}
and {(x ,...,xn) € sn-1 x = 0} having the point (1,0,...,0)

is connected because it is the union of the two connected sets

in common: these sets are connected because they are homeomorphic

n-1 which is the union of all line segments (connected!) of

n-1

to B
unit length emanating from 0 ¢ R The xl-axis is homeomorphic

to R and hence is comnected.

(i) Inspection of figure 3 suggests that the only connected subsets of
the discrete space are the empty set and the one-point subsets, and
this is the case. If A 1is any subset of a discrete space, with
A containing at least two points, then &:A — 2 defined by
6(x) = 0 and &(A-{x}) = {1}, where x 1is some element of A,

is a disconnection.

(1i) Inspection of figure 4 suggests that there is no way of disconnecting
any subset of a concrete space, i.e. all subsets of a concrete space
are connected. Indeed, sinceevery subspace of a concrete space is
itself concrete, it is enough to show that concrete spaces are
connected. Let (X,v) be a concrete space and let f:X — 2 be
continuous. Let x € X. If y € X, then y v {x}, so
f(y) v {£(x)}, i.e. f(y) = £f(x). Thus f is constant, hence

cannot be a disconnection.

CHAPTER 2

A is both open and closed; Int A =CL A =Fr A =¢.

B is both open and closed (in IR); Int B=C2 B=1R, FrB=¢.
C 1is closed but not open and D 1is open but not closed;

Int C = Int D = (0,1), C& C = C2 D = [0,1], Fr C = Fr D = {0,1}.
E is closed but not open and F is neither open nor closed;
Int E = Int F = (-184,405), CL E = C& F = [-184,405] U {1000},
Fr E = Fr F = {-184,405,1000}.




G 1is open but not closed; Int G (-»,1000) U (1000,=), C¢ G = IR,

Fr G = {1000}.
. n-1 n-1
H is closed but not open; Int H= ¢, CL H =8 s Fr H=3S

Assuming that i runs through the positive integers, is open but not

I
closed and J 1is closed but not open; Int I = Int J = I,
C#I=CJ=J, FrI=FrJ={0}U U{xeRr"/ |x|=1/i}.
i=1

Only in cases (a) and (b), and case (c) when n = 1, are the given sets
N neighbourhoods of 0. Using the criterion illustrated by figure 8,
we show that in cases (c) (when n > 1), (d) and (e) the given sets N
are not neighbourhoods of 0 . Suppose r > 0. Then (r/2,0,...,0) €
B(0;r) but, when n > 1, (r/2,0,...,0) does not lie in the set N of
(c). If q € Q@ satisfies 0 < q<r, then (q,0,...,0) € B(0;r) but
(9,0,...,0) does not lie in the set N of (d). If m is any positive
integer with 1/m < r, then (1/m,0,...,0) € B(0O;r) but (1/m,0,...,0)

does not lie in the set N of (e).

Usual topology on R":

Open 1: The condition Y x ¢ U, 3r>0 > B(x;r) ¢U is

vacuously satisfied when U = ¢, so ¢ is open.

Open 2: Since B(x;r) ¢ Hft the condition for R" to be open

is trivially satisfied.

Open 3: Suppose U and V are open in R™, and let x €UNV.
Since U isopenand x €U, I3 s>0 > B(x;s) c U and
since V 1is open and x €V >, 3t>0 > B(x;t) cV.
Let r = min{s,t}. Then r > 0 and B(x;r) € B(x;s) c U
and B(x;r) € B(x;t) ¢V, so B(x;r) cUN V. Thus

UNV is open.

Open 4: Suppose v{Ua / o € A} is a family of open subsets of R
and let x ¢ Ua cA Ua . For some B € A, x ¢ UB' Since

UB isopen, 3 r >0 > B(x;r) c UB . Then

B(x;r) ¢ Ua A Ua » so the latter set is open.




Discrete topology: Let X be any set. Then ¢ and X are subsets of

X, the intersection of any two subsets of X is again a subset of X
and the union of any family of subsets of X is again a subset of X.

Hence the collection of all subsets of X forms a topology on X.

Concrete topology: Let X be any set. The family {¢,X} clearly forms

a topology on X.

Suppose that the cofinite and discrete topologies on X agree. If
X =¢ then X is finite. If X # ¢, pick x € X. Then {x}, being
open in the discrete topology is also open in the cofinite topology,

i.e. has a finite complement. Thus X is finite, being the union of

the two finite sets {x} and X - {x}.

Conversely if X 1is finite then every subset of X has a finite
complement hence is open in the cofinite topology: thus the two topolo-

gies are the same.

Int X-Y) €X-Y, so X- Int (X~-Y) 2> X - (X-Y) =Y. Thus
X - Int (X-Y), being closed, is one of the closed sets whose intersection

forms C¢ Y. Hence CL Y c X - Int (X-Y). v

CRYDY so X-CLycy- Y. Thus X -CLY s being open, is
one of the open sets whose union forms Int (X-Y). Hence X - Cr Y C
Int (X-Y) and hence Cg v > X~ Int (X-Y).

(a) Wewverify the criterion given in proposition 2. Let
F={TxUcXx x Y/ T€ET and U € U .
Since X € T and Y ¢ (g > we have X xY e€F, 6 so UF = Xxvy,
Suppose Tl x U1 , T2 X U2 € F. Then (T1><U1) n (T2><U2) =
(TI(]Tz) X (UerUZ) € F, so the second part of the criterion is
also satisfied.

(b) Let T denote the usual topology on R, U the usual topology on
R? and P the product topology on R2 . We must show that P = (.

To show that P c ( it is enough to show that the basis for
P is contained in U. Let T, U ¢ T, sothat T xU is a typical
member of the basis for P. Let (x,y) € TxU. Since T and

U are open in the usual topology T, Jr =0 > (X-r,x+71) CT




- 10 -

and (y-r,y+r) ¢ U. Thus B((x,y);r) C (x-r,x*71) x (y-r,y+r) C
TxU, so TxUE€U and hence P c .

On the other hand, if V € U and (x,y) €V then I >0 >
B((x,y);r) c V. Note that (x-r/2,x+1/2) x (y-r/2,y+71/2) C
B((x,y);r) , s0 that V 1is expressible as a union of members of

the basis for P and hence V € P, Thus U c P.

(c) We use criterion (e) of theorem 4, taking as basis for the topology
on Y; x Y, the basis defined in part (a) of this exercise. If

V, xV, 1is a typical member of this basis then Vi is open in Yi
. -1 -1 -1

for i =1,2. Further, (£, x£,)7 (V, xV,) = [fl (vl)) X (fz (vz)),

which is open in X, x X, since continuity of fi means that

-1 . .
fi (Vi) is open in Xi‘

The sets divide into the following homeomorphism classes:

I. A, R;

IT. B, 8;

IIT.  C, d, L, M, N, S, U, V, W, 1, 2, 3, 5, 7, 2nd knot, 3rd knot;
1v, D, 0, 1st knot;

V. E, F, G, T, Y;

VI. H, I;

VII. K, X;

VIII. P, Q, 6, 9;

IX. 4.

A number of topological invariants assist one in the division above. For
example, A has a closed path and two 3-way junctions, both topological
invariants. Thus A differs from H because H has no closed path and
from P because P has only one 3-way junction. As an example, it is
shown that L and 3 are homeomorphic. Firstly we identify these

shapes algebraically as subsets of R2, Let

0 and 0 < x < 1}
or x + (y+1)2=1},

{(x,y) € R? / either x = 0 and 0 < y<lory
{(x,y) € R? / x= 0 and either x2 + (y-1)2 =

[y

Define h:L — 3 by h(x,y) =} (2/y-y2, 2y) if x =0
(2Vx-x2, -2x) if y =0.
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Note that h takes the vertical part of L and stretches it around the
upper semi-circle of 3 and stretches the horizontal part of L around
the lower semi-circle of 3. Using exercise 1 -5 one can verify that

h and h™! are continuous.

We must show that (i) V¥ v € N, Ba (v) =v and (ii) YT €T, a8 (T) =T.

(i) Suppose v € N. By definition,
x Ba (v) Aiff VU c X satisfying x € U and V y €U, vy X-1),
we have UN A £ ¢.
If xe€X, A, UcX satisfy x €U and Yy €U, y % (X-U) but
UNA=¢, then ACX -U, so by Near 4 and Near 2, ¥V y € U,
y ¥ A; in particular x €U, so x$A. Thus x v A=x28 q (v) A,

If xBa (V) A but x4 A, then U={y € X/ y % A} contains x
and satisfies VY y €U, y % X-U) [forV¥z e¢X -U, zvA so by
Near 4, y v X-U) =y vA]. Thus UN A # ¢ which contradicts
Near 2. Thus x B o (V) A=>x v A.

(ii) Suppose T € T. By definition,
aB (M) ={VcX/V¥xeVv, 30T >» x€UcV}.
By Open 4, o 8 (T) ¢ T and clearly T ca 8 (T). Thus a B8 m =T7.

CHAPTER 3

Let x, y € X be distinct points in an infinite space X having the
cofinite topology and let U and V be open neighbourhoods of x and
y respectively: thus X - U and X - V are finite. Hence

X-U) U (X-V) =X - (UNV) is finite, so cannot be all of X and
hence U NV # ¢.

Let X, denote X with the discrete topology and X, denote X with
any Hausdorff topology. Define h :X1 - X, to be the identity function.
Since it has a discrete domain, h is continuous. Clearly h is a
bijection. Further, X1 is compact since X is finite. Hence, since
X2 is Hausdorff, theorem 6 tells us that h is a homeomorphism, and
hence by continuity of h! » every subset of X, 1is open, i.e. X, is

discrete,




