
2 SEPARATION AXIOMS

Definition 2.1 A space X is a T0 space iff it satisfies the T0 axiom, i.e. for each x, y ∈ X
such that x 6= y there is an open set U ⊂ X so that U contains one of x and y but not the other.

Obviously the property T0 is a topological property. An arbitrary product of T0 spaces is
T0. Discrete spaces are T0 but indiscrete spaces of more than one point are not T0.

Definition 2.2 A space X is a T1 space or Frechet space iff it satisfies the T1 axiom, i.e. for
each x, y ∈ X such that x 6= y there is an open set U ⊂ X so that x ∈ U but y /∈ U .

T1 is obviously a topological property and is product preserving. Every T1 space is T0.

Example 2.3 The set {0, 1} furnished with the topology {∅, {0}, {0, 1}} is called Sierpinski
space. It is T0 but not T1.

Proposition 2.4 X is a T1 space iff for each x ∈ X, the singleton set {x} is closed.

Proof. Easy.

Definition 2.5 A space X is a T2 space or Hausdorff space iff it satisfies the T2 axiom, i.e.
for each x, y ∈ X such that x 6= y there are open sets U, V ⊂ X so that x ∈ U , y ∈ V and
U ∩ V = ∅.

T2 is a product preserving topological property. Every T2 space is T1.

Example 2.6 Recall the cofinite topology on a set X defined in Section 1, Exercise 3. If X
is finite it is merely the discrete topology. In any case X is T1, but if X is infinite then the
cofinite topology is not T2.

Proposition 2.7 Let f, g : X → Y be maps with Y Hausdorff. Then {x ∈ X / f(x) = g(x)}
is closed.

Proof. Let A = {x ∈ X / f(x) 6= g(x)}, and suppose x ∈ A. Since f(x) 6= g(x), there are
open sets U, V ⊂ Y so that f(x) ∈ U , g(x) ∈ V and U ∩ V = ∅. Let W = f−1(U) ∩ g−1(V ).
Then W is open and x ∈ W . Moreover, W ⊂ A. Thus A is open, so {x ∈ X / f(x) = g(x)} is
closed.

In particular if X is T2 and f : X → X is a map then the fixed-point set of f [i.e. the set
of points x for which f(x) = x] is closed.

Definition 2.8 A space X is regular iff for each x ∈ X and each closed C ⊂ X such that
x /∈ C there are open sets U, V ⊂ X so that x ∈ U , C ⊂ V and U ∩ V = ∅. A regular T1 space
is called a T3 space.

The properties T3 and regular are both topological and product preserving. Every T3 space
is T2.

Example 2.9 The slit disc topology on R2 is T2 but not regular, hence not T3.

Take X = R2 and let P = {(x, y) ∈ R2 / x 6= 0} and L = {(0, y) ∈ R2}. Topologise X as
follows (c.f. Theorem 1.12):

• if z ∈ P , let the open discs in R2 centred at z form a basis of neighbourhoods of z;
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• if z ∈ L let the sets of the form {z} ∪ (P ∩D) form a basis of neighbourhoods of z where
D is an open disc in the plane centred at z.

Clearly X is T2. However, note that L is a closed subset of X and that as a subspace, L
is discrete. Thus any subset of L is closed in X; in particular, L − {(0, 0)} is closed and does
not contain (0, 0), although every open set containing (0, 0) meets every open set containing
L− {(0, 0)}. Thus X is not regular and hence not T3.

Example 2.10 Every indiscrete space is vacuously regular but no such space (of more than 1
point!) is T0 and hence also no such space is T2.

Theorem 2.11 A space X is regular iff for each x ∈ X, the closed neighbourhoods of x form
a basis of neighbourhoods of x.

Proof. ⇒: given x ∈ X, and a neighbourhood N of x, there is an open set O ⊂ X such
that x ∈ O ⊂ N . Consider the point x and the closed set X −O, which does not contain x. By
regularity, there are open sets U and V such that x ∈ U , X − O ⊂ V and U ∩ V = ∅. Thus
x ∈ U ⊂ X − V ⊂ O ⊂ N , so X − V is a closed neighbourhood of X contained in the given
neighbourhood N of x.

⇐: given x ∈ X and the closed set C ⊂ X −{x}, since X −C is open and contains x, there
is a closed neighbourhood N of x so that N ⊂ X − C. Let V = X −N . Then V is open and
C ⊂ V . Since N is a neighbourhood of x, there is an open set U such that x ∈ U ⊂ N . Then
U ∩ V ⊂ N ∩ (X −N) = ∅, so X is regular.

Definition 2.12 A space X is normal iff for each pair A,B of disjoint closed subsets of X,
there is a pair U, V of disjoint open subsets of X so that A ⊂ U , B ⊂ V and U ∩ V = ∅. A
normal T1 space is called a T4 space.

The properties T4 and normal are both topological properties but, perhaps surprisingly, are
not product preserving. Every T4 space is clearly a T3 space, but it should not be surprising
that normal spaces need not be regular.

Example 2.13 Sierpinski’s space is vacuously normal but is not regular since 0 and {1} cannot
be separated.

Example 2.14 The tangent-discs topology on R2 is T3 but not normal, hence not T4.

Let X, P and L be as in Example 2.9 but topologise X as follows:

• if z ∈ P , let the open discs in R2 centred at z form a basis of neighbourhoods of z;

• if z ∈ L let the sets of the form {z} ∪D form a basis of neighbourhoods of z where D is
the union of two open discs in P tangent to L at z, one to the left of L and the other to
the right of L.

Clearly X is T1.
X is regular, hence T3. Indeed, suppose z ∈ X and N ∈ N (z). If z ∈ P , then there is an

open disc D centred at z so that z ∈ D ⊂ N . The closed disc of half the radius also centred at
z is a closed neighbourhood of z and lies in N . If z ∈ L, then there is D as in the definition
of the neighbourhood basis of z so that {z} ∪ D ⊂ N . The union of the closed discs of half
the radii of those of D also tangent to L at z is a closed neighbourhood of z contained in N .
Thus in either case, closed neighbourhoods form a neighbourhood basis so by Theorem 2.11, X
is regular.
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Suppose that X is normal. Let M = {(x, y) / x, y ∈ Q}. As in Example 2.9, every subset of
L is a closed subset of X. Thus to each A ⊂ L, we can assign open sets UA and VA of X so that
A ⊂ UA, L−A ⊂ VA and UA∩VA = ∅. Let MA = M ∩UA. We show that the function sending
A to MA is injective. This will lead to a contradiction because L is uncountable whereas M is
countable, so it is impossible to find an injective function from the power set of L to that of
M . Loosely speaking, if X were normal then there would need to be more open subsets of X
than there are.

To show that the function constructed in the last paragraph really is injective, let A,B ⊂ L
be such that A 6= B: to show that MA 6= MB. Either A − B 6= ∅ or B − A 6= ∅: assume the
former. We have ∅ 6= A−B = A∩ (L−B) ⊂ UA∩VB. Since UB and VB are disjoint and open,
we must have UB ∩ VB = ∅, so VB ⊂ X − UB, and hence ∅ 6= UA ∩ VB ⊂ UA − UB. Every
non-empty open subset of X meets M so, since UA−UB is open, we have: ∅ 6= M∩(UA−UB) ⊂
M ∩ (UA−UB) = MA−MB. Thus if A−B 6= ∅ then MA−MB 6= ∅. Similarly, if B −A 6= ∅
then MB −MA 6= ∅, so the function is injective as promised.

Example 2.15 Let S be the real line with the right half-open interval topology of Example 1.4.
Then S is normal but S × S is not normal. The space S × S is sometimes called Sorgenfrey’s
square.

Suppose that A and B are disjoint subsets of S. Since B is closed, for each a ∈ A, there
is a′ > a so that [a, a′) ∩ B = ∅. Let U = ∪a∈A[a, a′). Then U is an open set containing A.
Similarly define V = ∪b∈B[b, b′), where for each b ∈ B, b′ > b is chosen so that [b, b′) ∩ A = ∅.
V too is open and contains B. It is claimed that U ∩ V = ∅, for suppose not. Then there
are a ∈ A, b ∈ B such that [a, a′) ∩ [b, b′) 6= ∅. Thus either b ∈ [a, a′) or a ∈ [b, b′), so either
[a, a′)∩B 6= ∅ or [b, b′)∩A 6= ∅, contrary to the choice of a′ and b′. Hence U ∩ V = ∅, so S is
normal.

To show that Sorgenfrey’s square is not normal, let X = S × S and set L = {(x, y) ∈
X / x + y = 0} and M = {(x, y) / x, y ∈ Q}.

Without a single change in notation, we can apply the proof of non-normality of the tangent-
discs topology in Example 2.14 to the present X, L and M to show that Sorgenfrey’s square is
not normal, hence not T4.

Although the definition of normality does not seem to be very different from the previous
definitions, we have already seen in Example 2.15 that there is a rather significant difference
between this property and the previous separation properties. There are other important dis-
tinctions too in that normality is equivalent to some seemingly very different conditions, making
the property very rich and important. We now consider some such properties. The first char-
acterisation is not very different but the remaining ones, Urysohn’s lemma, Tietze’s extension
theorem, the cover shrinking theorem and the partition of unity theorem are all so different
from the definition (and even from each other!!) that this is the source of their importance in
topology and also in other branches of mathematics.

Proposition 2.16 The space X is normal iff for each A,U ⊂ X with A closed, U open and
A ⊂ U , there is an open set V such that A ⊂ V ⊂ V̄ ⊂ U .

Proof. Easy.

Definition 2.17 Say that two subsets A and B of X are completely separated in X iff there
is a continuous function f : X → [0, 1] with f(A) = 0 and f(B) = 1. [0, 1] may be replaced by
[a, b] with a < b. Let X be a space. By a Urysohn family in X we mean a family {Ur / r ∈ D}
of open subsets of X satisfying:
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(i) D̄ = R;

(ii) ∪r∈DUr = X and ∩r∈DUr = ∅;

(iii) if r < s then Ur ⊂ Us.

Lemma 2.18 Let U = {Ur / r ∈ D} be a Urysohn family in the space X and define a function
ϕU : X → R by ϕU (x) = inf{r ∈ D / x ∈ Ur}. Then ϕU is continuous.

Proof. Note that ϕU is well-defined because by (ii), for any x, {r ∈ D / x ∈ Ur} is non-empty
and bounded below.

Let ϕ = ϕU and let (a, b) ⊂ R. By Theorem 1.19(iii) it is enough to show that ϕ−1((a, b))
is open. Let x ∈ ϕ−1((a, b)). Then a < ϕ(x) < b so by (i), there are r, s, t ∈ D so that
a < r < t < ϕ(x) < s < b. Then x /∈ Ut so by (iii), x /∈ Ur; also x ∈ Us. Thus Us − Ur is an
open neighbourhood of x: note that Us − Ur ⊂ ϕ−1(a, b), so ϕ is continuous.

Lemma 2.19 Let A and B be subsets of a space X. Then A and B are completely separated
in X iff there is a Urysohn family {Ur / r ∈ D} with A ⊂ U0 and B ⊂ X − U1.

Proof. ⇒: Let f : X → [0, 1] be continuous with f(A) = 0 and f(B) = 1. For each r ∈ R
let Ur = {x ∈ X / f(x) < r+1

2 }. Then {Ur / r ∈ R} is a Urysohn family of the desired form.
⇐: Let U = {Ur / r ∈ D} be a Urysohn family with A ⊂ U0 and B ⊂ X − U1, and let

ϕ = ϕU : X → R be as in Lemma 2.18. Define f : X → [0, 1] by

f(x) =


0 : if ϕ(x) ≤ 0
ϕ(x) : if ϕ(x) ∈ [0, 1]
1 : if ϕ(x) ≥ 1.

By theorem 1.22 f is continuous. Furthermore, if x ∈ A then for each r > 0, x ∈ Ur; so ϕ(x) ≤ 0
and hence f(x) = 0. On the other hand, if x ∈ B then for each r < 1, x /∈ Ur; so ϕ(x) ≥ 1 and
hence f(x) = 1.

Theorem 2.20 (Urysohn’s lemma) A space X is normal iff any two disjoint closed subsets
are completely separated in X.

Proof. ⇐: easy.
⇒: Let A and B be two disjoint closed subsets of X. We find a Urysohn family as in Lemma

2.19.
For each non-negative integer n, let

Dn = {0, 1} ∪
{ m

2n
/ m is a positive integer and m ≤ 2n

}
,

and set D = (−∞, 0) ∪ (1,∞) ∪ [∪n≥0Dn]. Then D̄ = R.
For r < 0 set Ur = ∅ and for r >1 set Ur = X. We define Ur for r ∈ D ∩ [0, 1] inductively

as follows: induction is on n with Ur defined for r ∈ Dn. By Proposition 2.16, there is an open
set U0 such that A ⊂ U0 ⊂ U0 ⊂ X −B and an open set U1 such that U0 ⊂ U1 ⊂ U1 ⊂ X −B.
Now suppose n is such that Ur has been defined for r ∈ Dn so that if r, s ∈ Dn are such
that r < s, then Ur ⊂ Us. Let t ∈ Dn+1 − Dn, and let r = max{p ∈ Dn / p < t} and
s = min{p ∈ Dn / p > t}. Then we have Ur ⊂ Us so by Proposition 2.16, there is an open set
Ut such that Ur ⊂ Ut ⊂ Ut ⊂ Us. Thus the induction continues and hence we obtain a Urysohn
family as needed by Lemma 2.19.
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Theorem 2.21 (Tietze’s extension theorem) A space X is normal iff every bounded con-
tinuous function f : C → R, where C is a closed subset of X, has a bounded continuous extension
to X, i.e. there is a continuous function f̂ : X → R so that for each x ∈ C, f̂(x) = f(x).

Proof. ⇒: Given f , let β be an upper bound for |f(C)|, and for each n ∈ N let rn = β
(

2
3

)n−1.
We construct a sequence 〈gn : X → R〉 of continuous functions so that for each n, |gn(X)| ≤ rn

and |f −
∑n

i=1(gi|C)| ≤ 2rn.
Define g1 : X → R to be the function sending X to 0. Now suppose g1, . . . , gn−1 have been

constructed. The function f−
∑n−1

i=1 (gi|C) : C → [−2rn−1, 2rn−1] = [−3rn, 3rn] is continuous, so
the sets A = {x ∈ C / f(x)−

∑n−1
i=1 (gi(x)) ≤ −rn} and B = {x ∈ C / f(x)−

∑n−1
i=1 (gi(x)) ≥ rn}

are closed and disjoint. Hence there is a continuous function gn : X → [−rn, rn] ⊂ R with
gn(A) = −rn and gn(B) = rn.

Suppose that x ∈ C: we show that |f(x)−
∑n

i=1(gi(x))| ≤ 2rn. There are three possibilities:
either x ∈ A or x ∈ B or x ∈ C − (A ∪ B). If x ∈ A then gn(x) = −rn and −3rn ≤
f(x) −

∑n−1
i=1 (gi(x)) ≤ −rn , so −2rn ≤ f(x) −

∑n
i=1(gi(x)) ≤ 0. Similarly if x ∈ B then

0 ≤ f(x)−
∑n

i=1(gi(x)) ≤ 2rn. If x ∈ C−(A∪B) then both of f(x)−
∑n−1

i=1 (gi(x)) and gn(x) lie
between −rn and rn so that they are within 2rn of each other, i.e. −2rn ≤ f(x)−

∑n
i=1(gi(x)) ≤

2rn. Thus the induction proceeds.
We now have a sequence 〈gn〉, with its corresponding series

∑∞
n=1 gn. This series is uniformly

convergent since
∑∞

n=1 rn = β
∑∞

n=1

(
2
3

)n−1 = 3β, and so, setting f̂ =
∑∞

n=1 gn, it is seen that f̂

is continuous and for each x ∈ X, |f̂(x)| ≤ 3β. If x ∈ C then for each n, |f(x)−
∑n

i=1 gi| ≤ 2rn,
so, letting n →∞, we obtain |f(x)− f̂(x)| ≤ 2. limn→∞ rn = 0, i.e., f̂(x) = f(x).

⇐: Suppose that A and B are disjoint closed subsets of X. Define f : A ∪ B → [0, 1] by
f(A) = 0 and f(B) = 1. By Theorem 1.22(ii), f is continuous so has an extension f̂ . Then
f̂−1((−∞, 1

2)) and f̂−1((1
2 ,∞)) are disjoint open sets containing A and B. Thus X is normal.

Corollary 2.22 There is a continuous surjection [0, 1] → [0, 1]× [0, 1].

Proof. Let C be Cantor’s ternary set as defined in Exercise 12 of Section 1. Define f :
C → [0, 1] × [0, 1] as follows. Let x ∈ C. Then there is a sequence 〈an〉 of 0’s and 2’s so that
x =

∑∞
n=1

an
3n . If we set f(x) = (

∑∞
n=1

a2n−1

2n+1 ,
∑∞

n=1
a2n
2n+1 ), then f is continuous and surjective.

By Tietze’s extension theorem, f extends to a continuous function [0, 1] → [0, 1]× [0, 1] which
must be a surjection.

Definition 2.23 Let X be a space. A cover of X is a family of subsets whose union is all of
X. An (open) [closed] cover is a cover in which all subsets are (open) [closed]. A family of
subsets is (point-finite) [locally finite] iff each point of X (lies in) [has a neighbourhood which
meets] only finitely many members of the family. By a shrinkage of a cover {Uα / α ∈ A} of
the space X is meant another cover {Vα / α ∈ A} so that for each α ∈ A, Vα ⊂ Uα.

Theorem 2.24 Let X be a space. Then the following three conditions are equivalent:

(i) X is normal;

(ii) every point-finite open cover of X has an open shrinkage;

(iii) every locally finite open cover of X has an open shrinkage.

Proof. (i)⇒(ii): let {Uα / α ∈ A} be a point-finite open cover of X, and let S be the set of
all functions V : B → T , where T is the topology of X, satisfying:

(a) B ⊂ A;
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(b) for each α ∈ B, V (α) ⊂ Uα;

(c) X = (∪α∈BV (α)) ∪ (∪α∈A−BUα).

Partially order S by extension. The trivial function (B = ∅) belongs to S, so S 6= ∅.
Suppose R = {Vλ : Bλ → T / λ ∈ Λ} is a totally ordered set of elements of S. Then R

has an upper bound in S, for let B = ∪λBλ and define V : B → T by V (α) = Vλ(α) when
α ∈ Bλ. The total ordering of R implies well-definition of V . Clearly V satisfies (a) and (b).
Suppose x ∈ X − (∪α∈A−BUα). Point-finiteness of {Uα} implies that the set {α ∈ A / x ∈ Uα},
which is a subset of B, is finite so there are finitely many elements λi of Λ such that
{α ∈ A / x ∈ Uα} ⊂ ∪n

i=1Bλi
. Thus since {Bλ / λ ∈ Λ} is totally ordered by inclusion,

there is λ ∈ Λ so that if x ∈ Uα then α ∈ Bλ. Hence x /∈ ∪α∈A−Bλ
Uα , so by (c) for the

function Vλ, x ∈ ∪α∈Bλ
Vλ(α) ⊂ ∪α∈BV (α). Thus (c) is also satisfied by the function V , which,

therefore, is an upper bound for R.
Applying Zorn’s lemma, S has a maximal element, call it V : B → T . It suffices to show

that B = A, for then conditions (b) and (c) tell us that the family {V (α) / α ∈ A} is a shrinkage
of {Uα / α ∈ A}.

Suppose B 6= A, say β ∈ A−B. By (c), X − [(∪α∈BV (α)) ∪ (∪α∈A−B−{β}Uα)] ⊂ Uβ , so by
normality and Proposition 2.16, there is an open set V (β) so that

X − [(∪α∈BV (α)) ∪ (∪α∈A−B−{β}Uα)] ⊂ V (β) ⊂ V (β) ⊂ Uβ.

This extends V to a function from B∪{β} → T which is also an element of S, contradicting
the maximality of V . Thus B = A and the proof is complete.

(ii)⇒(iii): trivial, because every locally finite family is point-finite.
(iii)⇒(i): Suppose that A and B are disjoint closed subsets of X. Then {X−A,X−B} is a

locally finite (!) open cover of X. Let {U, V } be an open shrinkage. Since Ū ⊂ X−A, X− Ū is
an open set containing A while X−V̄ is an open set containing B. Further, X = U∪V = Ū∪V̄ ,
so (X − Ū) ∩ (X − V̄ ) = ∅.

Definition 2.25 Let X be a space. For any continuous function f : X → R, the support of f
is the closure of the set {x ∈ X / f(x) 6= 0}. A family of maps {κα : X → [0, 1] / α ∈ A} is a
partition of unity on X iff

(i) the supports of the maps κα form a locally finite cover of X;

(ii)
∑

α∈A κα(x) = 1, for each x ∈ X.

Note that the sum in (ii) is really only finite for each x. Let {Uα / α ∈ A} be an open cover
of X. A partition of unity {κα : X → [0, 1] / α ∈ A} is subordinate to {Uα} iff the support of
each κα lies in Uα.

Theorem 2.26 A space X is normal iff every locally finite open cover of X has a subordinate
partition of unity.

Proof. ⇒: Let {Uα / α ∈ A} be a locally finite open cover of X. Then by Theorem 2.24,
{Uα} has a shrinkage, say {Vα / α ∈ A}. This cover is also locally finite, so it must also have a
shrinkage, say {Wα / α ∈ A}. Since W̄α ⊂ Vα, the two closed sets W̄α and X − Vα are disjoint,
so by Urysohn’s lemma, there is a map λα : X → [0, 1] with λα(W̄α) = 1 and λα(X − Vα) = 0.
Note that the support of λα lies in V̄α ⊂ Uα.
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Consider
∑

α∈A λα: by local finiteness of {Uα}, in a neighbourhood of each point this sum
is finite, hence continuous. Thus if we define κα : X → [0, 1] by

κα(x) =
λα(x)∑

β∈A λβ(x)

then κα, the quotient of a continuous function by a positive continuous function, is continuous.
The support of κα is the same as that of λα, so lies inside Uα and hence the supports of the

maps κα are locally finite. Since the support of κα contains Wα, and {Wα / α ∈ A} is a cover
of X, condition (i) for a partition of unity is satisfied. Condition (ii) is obviously satisfied as is
the subordinacy requirement.

⇐: Let A and B be disjoint closed subsets of X. Then {X − A,X − B} is a locally finite
open cover of X. Let κ, λ : X → [0, 1] be continuous so that κ + λ = 1 and the supports of κ
and λ lie, respectively, in X−A and X−B. Then for each x ∈ A, κ(x) = 0 and for each x ∈ B,
λ(x) = 0, so that for each x ∈ B, κ(x) = 1. Let U = κ−1([0, 1

2)) and V = κ−1((1
2 , 1]). Then U

and V are disjoint open sets containing, respectively, A and B.
Urysohn’s lemma suggests a strengthening of the definition of regular spaces, giving a con-

dition which is distinct from that of regularity.

Definition 2.27 A space X is completely regular iff for each x ∈ X and each closed set C ⊂ X
so that x /∈ C, there is a continuous function f : X → [0, 1] such that f(x) = 0 and f(C) = 1.
Completely regular T1 spaces are called Tychonoff or T3 1

2
spaces.

Clearly completely regular spaces are regular, and Urysohn’s lemma tells us that T4 spaces
are T3 1

2
.

Sierpinski’s space is normal but not completely regular. It may be verified that any product
of completely regular spaces is completely regular.

Let S be the real line with the right half-open interval topology, discussed in Example 1.4.
Then, as noted in 2.15, S is normal but S × S is not normal. Clearly S is also T1 , so S is T4

and hence Tychonoff, so S×S is Tychonoff. Hence S×S is a space which is Tychonoff but not
normal.

There are examples of T3 spaces in which every real-valued map is constant, eg Hewitt’s
condensed corkscrew in Steen & Seebach “Counterexamples in topology”. Such a space will not
in general be completely regular.

Definition 2.28 If X is a space and A a set then by the power XA we mean the product space
ΠαXα, where Xα = X, for each α ∈ A. Any power of [0, 1] is called a cube. A map e : X → Y
is an embedding iff the map e : X → e(X) is a homeomorphism. If there is an embedding
e : X → Y then we say that X can be embedded in Y .

Theorem 2.29 (Tychonoff’s embedding theorem) A space is Tychonoff iff it can be em-
bedded in a cube.

Proof. ⇒: Let X be a Tychonoff space and let A = {f : X → [0, 1] / f is continuous}. Define
e : X → [0, 1]A by e(x)(f) = f(x).

(i) e is injective: if x, y ∈ X with x 6= y, then there is f ∈ A so that f(x) = 0 and f(y) = 1.
Then e(x)(f) 6= e(y)(f), so e(x) 6= e(y).

(ii) e is continuous: this is immediate from Proposition 1.26 as πfe = f .
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(iii) e : X → e(X) carries open sets of X to open subsets of e(X): for let U be open in X and
let x ∈ U . Then there is f ∈ A so that f(x) = 0 and f(X − U) = 1. Let V = π−1

f ([0, 1)),
an open subset of [0, 1]A. Then e(x) ∈ V and if y ∈ X is such that e(y) ∈ V , then
e(y)(f) ∈ [0, 1), so f(y) < 1 and y ∈ U . Thus e(x) ∈ V ∩ e(X) ⊂ e(U).

(i), (ii) and (iii) together imply that e is an embedding.
⇐: [0, 1] is clearly Tychonoff so [0, 1]A is Tychonoff for any A. Any subspace of a Tychonoff

space is Tychonoff. Thus if X can be embedded in a cube, then X is homeomorphic to a
Tychonoff space and so is itself Tychonoff.

As has been observed Sorgenfrey’s square of Example 2.15 is Tychonoff but not normal. In
problem 4 of section 4 you are asked to show that every cube is normal. Thus a subspace of a
normal space need not be normal.

Here is another embedding theorem. It can be argued from this theorem that in order to
study topology in complete generality, one need only study finite spaces, powers of spaces and
subspaces. Note that the requirement U ∩ X = ∅ is not really a restriction; it can even be
deleted if we replace X in T U∪X by a set of the same size which is disjoint from U .

Theorem 2.30 Let (T, T ) be the 3-point topological space defined by T = {0, 1, 2} and T =
{∅, {0}, T}. Let (X,U) be any topological space and suppose that U ∩X = ∅ . Then there is
an embedding e : X → T U∪X .

Proof. For each U ∈ U , define fU : X → T by fU (y) = 0 if y ∈ U and fU (y) = 1 if y /∈ U . Then
fU is continuous. For each x ∈ X, define fx : X → T by fx(y) = 2 if y = x and fx(y) = 1 if
y 6= x. Then fx is also continuous.

Define e by ei(y) = fi(y) for each i ∈ U ∪X. Then

(i) e is injective, for if x, y ∈ X with x 6= y then ex(y) = 1 but ex(x) = 2, so ex(x) 6= ex(y)
and hence e(x) 6= e(y);

(ii) e is continuous because each fi is continuous;

(iii) e is open into e(X), for if U ∈ U and x ∈ U then V = π−1
U (0) is open in TU∪X . Further-

more, πUe(x) = 0, so e(x) ∈ V while if y ∈ X is such that e(y) ∈ V then πUe(y) = 0 and
hence y ∈ U . Thus V ∩ e(X) ⊂ e(U).

Exercises

1. Prove that a space X is T0 iff for each x, y ∈ X, if x 6= y then {x} 6= {y}.

2. Prove that a space X is T2 iff the diagonal ∆ = {(x, x) ∈ X ×X} is closed in X ×X.

3. Prove that every space which is T0 and regular is T1.

4. Prove that a space X is normal iff for each finite family {Ai / i = 1, . . . , k} of mutually
disjoint closed subsets, there is a family {Ui / i = 1, . . . , k} of mutually disjoint open sets
so that for each i, Ai ⊂ Ui.

5. Would the statement of problem 4 hold if we merely assumed ∩Ai = ∅ and required
∩Ui = ∅ in place of mutual disjointedness?

6. Prove that a space is normal iff every pair of disjoint closed subsets have disjoint closed
neighbourhoods.
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7. A topological space X is called perfectly normal provided that for each pair A and B of
disjoint closed subsets there is a continuous function f : X → [0, 1] with f−1(0) = A and
f−1(1) = B; note the difference between this definition and the definition of completely
separated in Definition 2.17. Show that the following four conditions are equivalent:

(a) X is perfectly normal;

(b) For every closed subset A of X there is a continuous function f : X → [0, 1] with
f−1(0) = A;

(c) X is normal and every closed subset of X is a Gδ set [i.e. is the intersection of
countably many open sets];

(d) Every closed subset of X is a regular Gδ set [i.e. there are countably many open sets
containing the given closed set, the intersection of whose closures is the set].

8. Let P denote any one of the 9 topological properties: Ti (i = 0, 1, 2, 3, 31
2 , 4), regular,

completely regular, normal. Let T and U be two topologies on the same set X and
suppose that (X, T ) satisfies property P. In each of the two cases T ⊂ U and U ⊂ T decide
whether (X,U) must satisfy property P. Justify answers with proofs or counterexamples.

9. A topological property is (weakly) hereditary iff whenever a space possesses the property
so do all of its (closed) subspaces. Decide which of the 9 topological properties in problem
8 are (weakly) hereditary.

10. Let X be a set totally ordered by < and containing more than one element. For each
a, b ∈ X with a < b, let (a, b) = {x ∈ X / a < x < b}, L(b) = {x ∈ X / x < b} and
R(a) = {x ∈ X / a < x}. Prove that the collection of all subsets of the forms above is
a basis for a topology on X; this is called the order topology (cf the usual topology on
R, which is the order topology induced by the usual order on R). Prove that the order
topology is always T3.

11. Let A be a closed subset of the T3 space X. Let ∼ be the equivalence relation on X
defined by x ∼ y iff x = y or {x, y} ⊂ A. Let X/A denote the quotient space X/ ∼. Prove
that X/A is Hausdorff.

12. Prove that the word “bounded” can be removed from the statement of Tietze’s extension
theorem.

13. Prove that every metrisable space is T4: thus none of the examples of topological spaces
given in chapter 2 which are not T4 can be metrisable.

14. Prove that R with the right half-open interval topology is not metrisable.

15. Decide which of the 9 properties listed in Problem 8 are preserved by continuous functions
(i.e. if P is one of these properties, X is a P space and f : X → Y is a continuous
surjection, then Y is a P space).

16. Let A be a subset of a space X, let Y be a Hausdorff space and let f : A → Y be a
continuous function. Prove that there is at most one continuous function g : Ā → Y
extending f . Give examples where:

(a) this is false if Y is not assumed to be Hausdorff;

(b) there is no continuous extension to Ā.
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17. A function f : X → Y is called nearly continuous if for each open set V ⊂ Y , we
have f−1(V ) ⊂ intf−1(V ); and is quasicontinuous if for each open set V ⊂ Y , we have
f−1(V ) ⊂ intf−1(V ). Prove that:

(a) if f is continuous then f is both nearly continuous and quasicontinuous;

(b) if f is both nearly continuous and quasicontinuous and Y is regular then f is con-
tinuous.

18. Show that the tangent discs topology of 2.14 is Tychonoff but not normal.

19. Let S be the Sierpinski space and let (X, T ) be any T1 topological space. Prove that
there is an embedding e : X → ST .

20. Let X be as in Problem 18 of Section 1. Prove that X is not T4 .

21. Prove the following result, known as Jones’ Lemma. Suppose that X is normal, that
D ⊂ X is dense and that F ⊂ X is closed and discrete. Then 2|F | ≤ 2|D| and hence
|F | < 2|D|. (Hint: Extract a proof from the proof of the more special case of Jones’
Lemma given in Example 2.14.)
The comment in Example 2.15 raises a general issue across lots of Mathematics: if the
proofs of two results are nearly identical then there is surely a more general result which
gives the special cases as corollaries.
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