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RANDOM MATRICES

N × N matrices with random matrix elements. N → ∞

Ensemble
orthogonal
unitary
simplectic

Dyson Ensembles

Matrix elements
real
complex

2 × 2 matrices
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RANDOM MATRIX THEORY

Eα - spectrum (set of eigenvalues)

- mean level spacing

- ensemble averaging

- spacing between 
consecutive eigenvalues

- distribution function

Spectral Rigidity
Level repulsion
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Noncrossing rule (theorem)
Suggested by Hund (Hund F. 1927 Phys. v.40, p.742)

Justified by von Neumann & Wigner (v. Neumann J. & Wigner E.
1929 Phys. Zeit. v.30, p.467)                                     . . . .

Usually textbooks present a simplified version of the justification 
due to Teller (Teller E., 1937 J. Phys. Chem 41 109).

Arnold V. I., 1972 Funct. Anal. Appl.v. 6, p.94

Mathematical Methods of Classical Mechanics 
(Springer-Verlag: New York), Appendix 10, 1989
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In general, a multiple spectrum in 
typical families of quadratic forms 
is observed only for two or more 
parameters, while in one-
parameter families of general 
form the spectrum is simple for 
all values of the parameter. Under 
a change of parameter in the 
typical one-parameter family the 
eigenvalues can approach 
closely, but when they are 
sufficiently close, it is as if they 
begin to repel one another. The 
eigenvalues again diverge, 
disappointing the person who 
hoped, by changing the 
parameter to achieve a multiple 
spectrum.

Arnold V.IArnold V.I., Mathematical Methods of Classical Mechanics 
(Springer-Verlag: New York), Appendix 10, 1989
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1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus
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1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

3. Complex H12 (unitary ensemble)        both Re(H12) and 
Im(H12) are statistically independent      three independent 
random variables should be small

( ) 0P s → 0 :s →Reason for                           when

11 12

12 22

ˆ
H H

H
H H∗

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

( )2 2
2 1 22 11 12E E H H H− = − +

small small small

( ) 1P s s β∝ =

2( ) 2P s s β∝ =



Poisson – completely 
uncorrelated 
levels

Wigner-Dyson; GOE
Poisson

Gaussian
Orthogonal
Ensemble

Orthogonal 
β=1

Unitary
β=2

Simplectic
β=4



N × N matrices with random matrix elements. N → ∞

Ensemble
orthogonal
unitary

simplectic

Dyson Ensembles

    β
    1

    2
    

4

T-inv potential
broken T-invariance 
(e.g., by magnetic 
field)
T-inv, but with spin-
orbital coupling

Matrix elements
real
complex

2 × 2 matrices

Spectral Rigidity 
Level repulsion ( )1 1,2, 4P s sβ β<< ∝ =

Realizations



Finite size quantum physical systems

Atoms
Nuclei
Molecules
.
.
.

Quantum 
Dots



ATOMS

NUCLEI

Main goal is to classify the eigenstates 
in terms of the quantum numbers

For the nuclear excitations this 
program does not work 

N. Bohr, Nature 
137 (1936) 344.
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sP(s)

Particular 
nucleus

166Er

Spectra of 
several 
nuclei 
combined 
(after 
spacing)
rescaling 
by the 
mean level

P(s)

N. Bohr, Nature 
137 (1936) 344.



ATOMS

NUCLEI

Main goal is to classify the eigenstates 
in terms of the quantum numbers

For the nuclear excitations this 
program does not work 

E.P. Wigner
(Ann.Math, v.62, 1955)

Study spectral statistics of 
a particular quantum system 
– a given nucleus 

• Particular quantum system

• Spectral averaging (over α)

• Ensemble

• Ensemble averaging

Atomic NucleiRandom Matrices

Nevertheless Statistics of the nuclear spectra 
are almost exactly the same as the 
Random Matrix Statistics



T-invariance (CP) violation – crossover 
between Orthogonal and Unitary 
ensembles



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Original 
answer:

These are systems with a large 
number of degrees of freedom, and 
therefore the  “complexity” is high

Later it
became
clear that

there exist very “simple” systems 
with as many as 2 degrees of 
freedom (d=2), which demonstrate  
RMT - like spectral statistics
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Integrable 
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Classical (h =0) Dynamical Systems with d degrees of freedom
The variables can be 
separated and the problem 
reduces to d one-
dimensional problems

d integrals 
of motion

ExamplesExamples
1. A ball inside rectangular billiard; d=2
• Vertical motion can be 

separated from the  
horizontal one

• Vertical and horizontal
components of the 

momentum, are both 
integrals of motion

2. Circular billiard; d=2
• Radial motion can be 

separated from the  
angular one

• Angular momentum 
and energy are the 
integrals of motion
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Stadium

Chaotic 
Systems

The variables can not be separated there is only one 
integral of motion - energy

ExamplesExamples

Sinai billiard

Kepler problem 
in magnetic field 

B

Yakov Sinai Johnnes KeplerLeonid Bunimovich



Classical Chaos 
h =0

•Nonlinearities
•Lyapunov exponents
•Exponential dependence on 
the original conditions

•Ergodicity

Q: What does it mean Quantum Chaos ?

Quantum description of any System Quantum description of any System 
with a finite number of the degrees with a finite number of the degrees 
of freedom is a linear problem of freedom is a linear problem ––
Shrodinger equation Shrodinger equation 
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Bohigas – Giannoni – Schmit conjecture

Chaotic 
classical analog

Wigner- Dyson 
spectral statistics

0≠h

No quantum 
numbers except 

energy



Chaotic
classical 
analog

Two possible definitions

Wigner -
Dyson-like 
spectrum

Q: What does it mean Quantum Chaos ?



Wigner-
Dyson

?
Classical

Poisson

Quantum

?
Chaotic

Integrable



Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
potential potential –– disordered conductordisordered conductor e

Scattering centers, e.g., impurities



Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
potential potential –– disordered conductordisordered conductor e

Scattering centers, e.g., impurities

••As well as in the case of Random As well as in the case of Random 
Matrices Matrices (RM) there is a luxury (RM) there is a luxury 
of ensemble averaging.of ensemble averaging.

••The problem is much richer than The problem is much richer than 
RM theoryRM theory

••There is still a lot of universality.There is still a lot of universality.

Anderson 
localization (1956) 

At strong enough  At strong enough  
disorder all eigenstates disorder all eigenstates 
are are localizedlocalized in spacein space



Anderson Insulator Anderson Metal 

f = 3.04 GHz f = 7.33 GHz



Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
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Scattering centers, e.g., impurities
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Randomly located impuritiesRandomly located impurities ( )( ) i
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Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
potential potential –– disordered conductordisordered conductor e

Scattering centers, e.g., impurities

Models of disorder:Models of disorder:
Randomly located impuritiesRandomly located impurities ( )( ) i

i

U r u r r= −∑r r r

White noise potentialWhite noise potential ( ) ( ) 0 imu r r cλδ λ→ → → ∞
r r

Anderson modelAnderson model –– tighttight--binding model with binding model with onsiteonsite disorderdisorder

Lifshits model Lifshits model –– tighttight--binding model with binding model with offdiagonaloffdiagonal disorderdisorder
......



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij =
I   i and j are nearest 

neighbors

0 otherwise
-W < εi <W
uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition



Localization of single-electron wave-functions:

extended

localized



Localization of single-electron wave-functions:

extended

localized

d=1; All states are localized

d=2; All states are localized

d>2; Anderson transition



I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition

The eigenstates, which  are 
localized at different places 

will not repel each other

Any two extended 
eigenstates repel each other

Poisson spectral statistics Wigner – Dyson spectral statistics



Disorder W

Zharekeschev & Kramer.
Exact diagonalization of the Anderson model
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1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
e r

gy

L is the system size;

d is the number of
dimensions

L

g = ET / δ1

Quantum particle in a random potentialQuantum particle in a random potential ((Thouless, 1972))
Energy scales



The same statistics of the 
random spectra and one-
particle wave functions 

(eigenvectors)

g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Ν  × Ν
Random Matrices

Quantum Dots 
with Thouless 

conductance g

Ν→ ∞ g→ ∞

Thouless Conductance and
One-particle Spectral Statistics



Scaling theory of Localization
(Abrahams, Anderson, Licciardello and Ramakrishnan 1979)

L = 2L = 4L = 8L ....

ET ∝ L-2 δ1 ∝ L-d 

without quantum corrections

g = Gh/e2g = ET / δ1
Dimensionless Thouless 

conductance



Scaling theory of Localization
(Abrahams, Anderson, Licciardello and Ramakrishnan 1979)

L = 2L = 4L = 8L ....

ET ∝ L-2 δ1 ∝ L-d 

without quantum corrections

ET ET ET ET

δ1  δ1  δ1  δ1

g g g g

d log g( )
d log L( )=β g( )

g = Gh/e2g = ET / δ1
Dimensionless Thouless 

conductance



β - function ( )g
Ld
gd β=

log
log

β(g)

g

3D

2D

1D-1

1
1≈cg

unstable
fixed point

Metal – insulator transition in 3D
All states are localized for d=1,2



Conductance g



Anderson transition in terms of 
pure level statistics

P(s)



Square
billiard

Sinai
billiard

Disordered 
localized

Disordered 
extended

Integrable Chaotic
All chaotic 
systems 
resemble 
each other.

All integrable 
systems are 
integrable in 
their own way



Disordered 
Systems:

11 >> gET ;δ

11 << gET ;δ

Is it a generic scenario for the  
Wigner-Dyson to Poisson crossoverQ: ?

Speculations

Anderson metal; 
Wigner-Dyson spectral 
statistics

Anderson insulator; 
Poisson spectral statistics

Consider an integrable system. Each state is characterized by a set of 
quantum  numbers.

It can be viewed as a point in the space of quantum numbers. The 
whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements 
of the hopping between different sites (Anderson model !?)



Consider an integrable system. Each state is 
characterized by a set of quantum  numbers.

It can be viewed as a point in the space of quantum 
numbers. The whole set of the states forms a lattice in 
this space.

A perturbation that violates the integrability provides 
matrix elements of the hopping between different sites 
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson

Does Anderson localization provide  
a generic scenario for the  Wigner-
Dyson to Poisson crossover

Q: ?



The very definition of the localization is 
not invariant – one should specify in which 
space the eigenstates are localized.

Level statistics is invariant:

Poissonian 
statistics

basis where the 
eigenfunctions are localized∃

Wigner -Dyson 
statistics ∀basis the eigenfunctions 

are extended



e

Example 1 Doped semiconductor
Low concentration 
of donors

Electrons are localized on 
donors Poisson

Higher donor
concentration

Electronic states are 
extended Wigner-Dyson



Ly

e

Example 1 Doped semiconductor
Low concentration 
of donors

Electrons are localized on 
donors Poisson

Higher donor
concentration

Electronic states are 
extended Wigner-Dyson

Example 2
Rectangular billiard

Lx

Two 
integrals 
of motion x

y
x

x L
mp

L
np ππ

== ;

Lattice in the 
momentum space
py

px

Line (surface) 
of constant 
energy Ideal billiard   – localization in the 

momentum space
Poisson

Deformation or 
smooth random 
potential

– delocalization in the 
momentum space 

Wigner-Dyson



Localization 
and diffusion 
in the angular 
momentum 
space

R
a

≡ε 0>ε

0→ε

Chaotic
stadium

Integrable circular billiard

1;0 <<= εh

Diffusion in the 
angular momentum 
space 25ε∝D

Angular momentum is 
the integral of motion



Localization 
and diffusion 
in the angular 
momentum 
space

R
a

≡ε 0>ε

0→ε

Chaotic
stadium

Integrable circular billiard

1;0 <<= εh

Diffusion in the 
angular momentum 
space 25ε∝D

Angular momentum is 
the integral of motion

ε=0.01
g=0.012

ε=0.1
g=4

Poisson

Wigner-Dyson



D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain
( ) ∑∑∑
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ii
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iiii nnVnnUcccctH

Onsite 
interaction

n. neighbours
interaction

Hubbard 
model integrable0=V

extended 
Hubbard 

model
nonintegrable0≠V



1D Hubbard Model on a periodic chain
( ) ∑∑∑
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ii
i

ii
i

iiii nnVnnUcccctH

Onsite 
interaction

n. neighbors 
interaction

Hubbard 
model integrable0=V

extended 
Hubbard 

model
nonintegrable0≠V

12 sites
3 particles
Zero total spin
Total momentum π/6

U=4  V=0 U=4  V=4

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993



D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D t-J model on 
a periodic chain

t

J exchange

hopping



D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D t-J model on 
a periodic chain

t

J

forbidden

exchange

hopping

1d t-J
model



J=t J=2t J=5t

N=16; one hole

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D t-J model on 
a periodic chain

t

J

forbidden

exchange

hopping

1d t-J
model



Chaos in Nuclei – Delocalization?

Fermi Sea

generations
1 2 3 4 5 6

. . . .
Delocalization 
in Fock space


