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What is a Laguerre plane?

Definition
A finite Laguerre plane L = (P, C,G) of order n consists of a set P of
n(n + 1) points, a set C of n3 circles and a set G of n + 1 generators
(where circles and generators are both subsets of P) such that the
following three axioms are satisfied:

(G) G partitions P and each generator contains n points.

(C) Each circle intersects each generator in precisely one point.

(J) Three points no two of which are on the same generator can be
joined by a unique circle.

A finite Laguerre plane of order n is a transversal design TD1(3, n + 1, n),
or equivalently, an orthogonal array of strength 3 on n symbols, n + 1
constraints and index 1. In case n is odd the Laguerre plane corresponds
to an antiregular generalized quadrangle of order (n, n).
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Models of Laguerre planes
All known finite Laguerre planes are ovoidal, that is, they are obtained as
the geometry of non-trivial plane sections of a cone, minus its vertex, over
an oval in 3-dimensional projective space over a finite field F. In case the
oval is a conic one obtains the miquelian Laguerre plane over F.
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Derived incidence structures
The derived design at a point p of a finite Laguerre plane of order n is an
affine plane of order n. Circles not passing through p induce ovals in the
projective completion of the affine plane at p by adding the point ω at
infinity of vertical lines that come from generators of the Laguerre plane.

A planar representation of an ovoidal Laguerre plane L(f ) has point set
(F ∪ {∞})× F and circles are of the form

{(x , af (x) + bx + c) | x ∈ F} ∪ {(∞, a)}

where a, b, c ∈ F and f : F→ F is parabolic.

Theorem

• A finite Laguerre plane of odd order with a Desarguesian derivation is
miquelian. (Chen, Kaerlein 1973, Payne, Thas 1976)

• A Laguerre plane of order at most ten is ovoidal and, in fact,
miquelian except in case of order 8. (S. 1992, 2003)
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Laguerre homotheties

An automorphism of a Laguerre plane L is a permutation of the point set
that takes generators to generators and circles to circles.
A homothety of L is an automorphism of L that is either the identity or
fixes precisely two points on different generators and induces a homothety
in the derived affine plane at each of these two fixed points. One speaks of
a {p, q}-homothety if p, q are the two fixed points.

A group Γ of automorphisms of L is said to be {p, q}-transitive if Γ
contains a subgroup of {p, q}-homotheties that acts transitively on each
circle through p and q minus p and q.

Ruth Kleinewillinghöfer investigated the possible configurations H of all
unordered pairs of distinct points {p, q} for which the automorphism
group of L is {p, q}-transitive and found 13 feasible configurations.

One says that L is of type m if H is as in configuration m.
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Kleinewillinghöfer types w.r.t. homotheties

1. H = ∅.
...

5. There are a circle C and a fixed-point-free involution φ : C → C such
that H = {{p, φ(p)} | p ∈ C}.

...

8. There are two distinct generators F , G such that
H = {{p, q} | p ∈ F , q ∈ G}.

9. Each point of L is in exactly one pair in H.
...

11. There is a point p such that H = {{p, q} | q ∈ P \ [p]}.
12. There is a generator G such that H = {{p, q} | p ∈ G , q ∈ P \ G}.
13. H consists of all unordered pairs of points on different generators.
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Examples

A finite ovoidal Laguerre plane has Kleinewillinghöfer type 1, 8, 12 or 13.

The respective types are obtained as L(f ) over GF(2h) when

f (x) =


x1/6 + x3/6 + x5/6 where h ≥ 5 is odd;

x6 where h ≥ 5 is odd;

x2i where gcd(i , h) = 1;

x2 any h.
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Characterisations and exclusions

Theorem

• A Laguerre plane is of Kleinewillinghöfer type 13 if and only if it is
miquelian. (Hartmann, 1982)

• A finite Laguerre plane has Kleinewillinghöfer type 12 if and only if it
has even order and is ovoidal over a proper translation oval (not a
conic). (Hartmann, 1982, S. 2015)
(H = {{p, q} | p ∈ G , q ∈ P \ G})

• A finite Laguerre plane of Kleinewillinghöfer type 5 or 9 has odd
order. (Kleinewillinghöfer, 1979)
(type 5: H = {{p, φ(p)} | p ∈ C}, φ fixed-point-free involution on C ,
type 9: each point is in exactly one pair in H)
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Characterisations and exclusions, cont.

Theorem

• A finite Laguerre plane that contains a group of automorphisms of
Kleinewillinghöfer type 11 is miquelian or ovoidal over a translation
oval; the plane then is of type 13 or 12.
(H = {{p, q} | q ∈ P \ [p]})

• A finite Laguerre plane of type 8 is an elation Laguerre plane, that is,
the plane admits a group of automorphisms that acts trivially on the
set of generators and regularly on the set of circles.
(H = {{p, q} | p ∈ F , q ∈ G})

• A finite non-ovoidal elation Laguerre plane has type 1 or 8.
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