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Definitions and examples 1

A generalised quadrangle (GQ) of order (s, t) is a
point–line incidence geometry Q = (P,L) such that

(i) every point (line) is incident with t + 1 lines (s + 1 points);
(i) every two points are incident with at most one common line;
(ii) for every non-incident point–line pair (P, `), there is a

unique line concurrent with ` and incident with P.

Assume Q is thick, i.e. s > 2 and t > 2.
Introduced by Tits (1959) in an attempt to find geometric
models for simple groups of Lie type.
Classical examples: low-rank polar spaces, admitting
PSp(4,q), PSU(4,q), PSU(5,q).
Examples constructed from “hyperovals” in PG(2,2f ).
Other ‘synthetic’ constructions.
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Symmetry: conjectures and existing results 2

The classical GQs have automorphism groups acting
primitively on both P and L, and transitively on flags.
Only two non-classical flag-transitive GQs are known: both
from hyperovals, both point-primitive but line-imprimitive.
It is conjectured that there are no other flag-transitive GQs
(e.g. Kantor 1991; possibly earlier).
Classification is a hard problem, but it also makes sense to
ask about primitivity (where we have O’Nan–Scott, CFSG).
Bamberg–Giudici–Morris–Royle–Spiga, 2012:

(i) if G 6 Aut(Q) is point- and line-primitive, then G is almost
simple;

(ii) if G is point-primitive, flag-transitive and almost simple, then
soc(G) is not alternating or sporadic.
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Affine type 3

Here P is identified with a vector space N = Fd
p , and

G 6 N o G0 6 AGL(d ,p) with G0 6 GL(d ,p) irreducible.
BGPP, 2014: if G is point-primitive and line-transitive, then
Q is one of the two flag-transitive ‘hyperoval’ examples.
Idea of proof:

(i) Show that d = 3n and p = 2.
(ii) Lines incident with 0 ∈ P comprise a ‘pseudo-hyperoval’ in

PG(3n − 1,2f ) (corresponds to a hyperoval in PG(2,2nf )).
(iii) Classify pseudo-hyperovals with irred. transitive stabiliser.

Problem seems too hard without line-transitivity, because
every hyperoval yields a GQ.
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Holomorph type(s) 4

G has two point-regular normal subgroups isomorphic to
N ∼= T k , with T a non-abelian finite simple group, k > 1.
N o Inn(N) 6 G 6 N o Aut(N).
BPP, 2015: if G 6 Aut(Q) is point-primitive and
line-transitive, then G cannot have holomorph type.
Idea of proof:

(i) Again show that lines incident with 1 ∈ N = P are
subgroups (use G1 > Inn(N) instead of N abelian).

(ii) After some arguments, this forces k 6 2.
(iii) k 6 2 handled using CFSG: (i) implies inequalities of the

form |T | 6 c|Out(T )|4, which usually fail.
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Diagonal types 5

Simple diagonal: soc(G) = T k , N = T k/Diag(T k ) ∼= T k−1

point-regular, Inn(T ) 6 G1 6 Aut(T )× Sym(k).
Compound diagonal: G 6 H wr Sym(r) for some SD-type
primitive group H and some r > 2.
Results so far (BPP, 2016):

If a CD-type example exists, then r = 2 or 3.
Moreover, every conjugacy class of T must have size at
least |T |3/5, which rules out arbitrarily large Lie rank.
e.g. if T ∼= PSL(n,q) or PSU(n,q) then n 6 5 (roughly).
SD is harder, but adding flag-transitivity implies k 6 6.
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Diagonal types: idea of proof 6

(i) Lemma: let (P ′,L′) be the substructure of Q fixed by some
θ ∈ Aut(Q). Then (with some assumptions) |P ′| 6 |P|4/5.

(ii) For CD-type with r > 4, we can always find some θ that
fixes enough points of Q to contradict the lemma.

(iii) For r 6 3 (and also for SD case), use the lemma to show
that all conjugacy classes of T must be ‘large’.

(iv) The hardest case is SD:
If the primitive group P permuting the simple direct factors
of T k contains Alt(k), the lemma implies k 6 6.
Else P is small (e.g. Maróti, 2002), flag-transitivity implies
|T | 6 polynomial in |Out(T )| when k > 7, use CFSG.
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To do (remaining O’Nan–Scott types) 7

Twisted wreath: seems hard; needs more thought.
Product action: some ideas from CD case should adapt.
Almost simple: any examples apart from classical ones?

Thank you!
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