Generalised quadrangles with primitive automorphism groups

Tomasz Popiel (UWA)

Joint work with John Bamberg, S. P. Glasby, and Cheryl E. Praeger

Symmetries and Covers of Discrete Objects (SCDO) Queenstown, New Zealand

17 February 2016

ヘロト 人間 ト ヘヨト ヘヨト

æ

- A generalised quadrangle (GQ) of order (s, t) is a point–line incidence geometry Q = (P, L) such that
 - (i) every point (line) is incident with t + 1 lines (s + 1 points);
 - (i) every two points are incident with at most one common line;
 - (ii) for every non-incident point–line pair (P, ℓ), there is a unique line concurrent with ℓ and incident with P.
- Assume Q is thick, i.e. $s \ge 2$ and $t \ge 2$.
- Introduced by Tits (1959) in an attempt to find geometric models for simple groups of Lie type.
- Classical examples: low-rank polar spaces, admitting PSp(4, q), PSU(4, q), PSU(5, q).
- Examples constructed from "hyperovals" in PG(2,2^f).
- Other 'synthetic' constructions.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- The classical GQs have automorphism groups acting primitively on both \mathcal{P} and \mathcal{L} , and transitively on flags.
- Only two non-classical flag-transitive GQs are known: both from hyperovals, both point-primitive but line-imprimitive.
- It is conjectured that there are no other flag-transitive GQs (e.g. Kantor 1991; possibly earlier).
- Classification is a hard problem, but it also makes sense to ask about primitivity (where we have O'Nan–Scott, CFSG).
- Bamberg–Giudici–Morris–Royle–Spiga, 2012:
 - (i) if G ≤ Aut(Q) is point- and line-primitive, then G is almost simple;
 - (ii) if G is point-primitive, flag-transitive and almost simple, then soc(G) is not alternating or sporadic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Here \mathcal{P} is identified with a vector space $N = \mathbb{F}_p^d$, and $G \leq N \rtimes G_0 \leq AGL(d, p)$ with $G_0 \leq GL(d, p)$ irreducible.
- BGPP, 2014: if *G* is point-primitive and line-transitive, then Q is one of the two flag-transitive 'hyperoval' examples.
- Idea of proof:
 - (i) Show that d = 3n and p = 2.
 - (ii) Lines incident with $0 \in \mathcal{P}$ comprise a 'pseudo-hyperoval' in $PG(3n 1, 2^{f})$ (corresponds to a hyperoval in $PG(2, 2^{nf})$).
 - (iii) Classify pseudo-hyperovals with irred. transitive stabiliser.

ヘロン ヘアン ヘビン ヘビン

 Problem seems too hard without line-transitivity, because every hyperoval yields a GQ.

- *G* has two point-regular normal subgroups isomorphic to $N \cong T^k$, with *T* a non-abelian finite simple group, $k \ge 1$.
- $N \rtimes \operatorname{Inn}(N) \leqslant G \leqslant N \rtimes \operatorname{Aut}(N)$.
- BPP, 2015: if G ≤ Aut(Q) is point-primitive and line-transitive, then G cannot have holomorph type.
- Idea of proof:
 - (i) Again show that lines incident with $1 \in N = \mathcal{P}$ are subgroups (use $G_1 \ge \text{Inn}(N)$ instead of N abelian).
 - (ii) After some arguments, this forces $k \leq 2$.
 - (iii) $k \leq 2$ handled using CFSG: (i) implies inequalities of the form $|T| \leq c |Out(T)|^4$, which usually fail.

<ロ> (四) (四) (三) (三) (三)

- Simple diagonal: $soc(G) = T^k$, $N = T^k / Diag(T^k) \cong T^{k-1}$ point-regular, $Inn(T) \leq G_1 \leq Aut(T) \times Sym(k)$.
- Compound diagonal: $G \le H$ wr Sym(r) for some SD-type primitive group H and some $r \ge 2$.
- Results so far (BPP, 2016):
 - If a CD-type example exists, then r = 2 or 3.
 - Moreover, every conjugacy class of T must have size at least |T|^{3/5}, which rules out arbitrarily large Lie rank.
 - e.g. if $T \cong \mathsf{PSL}(n,q)$ or $\mathsf{PSU}(n,q)$ then $n \leq 5$ (roughly).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• SD is harder, but adding flag-transitivity implies $k \leq 6$.

- (i) Lemma: let $(\mathcal{P}', \mathcal{L}')$ be the substructure of \mathcal{Q} fixed by some $\theta \in \operatorname{Aut}(\mathcal{Q})$. Then (with some assumptions) $|\mathcal{P}'| \leq |\mathcal{P}|^{4/5}$.
- (ii) For CD-type with $r \ge 4$, we can always find some θ that fixes enough points of Q to contradict the lemma.
- (iii) For $r \leq 3$ (and also for SD case), use the lemma to show that all conjugacy classes of T must be 'large'.
- (iv) The hardest case is SD:
 - If the primitive group *P* permuting the simple direct factors of *T^k* contains Alt(*k*), the lemma implies *k* ≤ 6.
 - Else *P* is small (e.g. Maróti, 2002), flag-transitivity implies $|T| \leq \text{polynomial in } |\text{Out}(T)|$ when $k \geq 7$, use CFSG.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- Twisted wreath: seems hard; needs more thought.
- Product action: some ideas from CD case should adapt.
- Almost simple: any examples apart from classical ones?

Thank you!

- Twisted wreath: seems hard; needs more thought.
- Product action: some ideas from CD case should adapt.
- Almost simple: any examples apart from classical ones?

Thank you!