Cyclic *m*-cycle systems of near-complete graphs

Joy Morris based on joint work with Heather Jordon

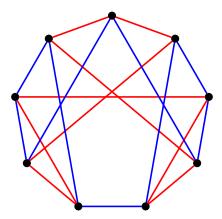
University of Lethbridge

SCDO, Queenstown, February 15, 2016

An *m*-cycle system of a graph G is a set C of *m*-cycles in G whose edges partition the edge set of G.

An *m*-cycle system of a graph G is a set C of *m*-cycles in G whose edges partition the edge set of G. An *m*-cycle system is called *hamiltonian* if m = |V(G)|.

An *m*-cycle system of a graph G is a set C of *m*-cycles in G whose edges partition the edge set of G. An *m*-cycle system is called *hamiltonian* if m = |V(G)|.



• The degree of every vertex must be even;

- The degree of every vertex must be even;
- If the cycles are hamiltonian, the graph must be regular;

- The degree of every vertex must be even;
- If the cycles are hamiltonian, the graph must be regular;
- *m* must be no bigger than the number of vertices;

- The degree of every vertex must be even;
- If the cycles are hamiltonian, the graph must be regular;
- *m* must be no bigger than the number of vertices;
- The number of edges must be divisible by the length of the cycles.

- The degree of every vertex must be even;
- If the cycles are hamiltonian, the graph must be regular;
- *m* must be no bigger than the number of vertices;
- The number of edges must be divisible by the length of the cycles.

Most work on this problem has been done on the case where the graph being decomposed is a complete graph, K_n , if n is odd, or $K_n - I$ if n is even, where I is any 1-factor (matching); the latter case is what is referred to in the title as a "near-complete graph."

- The degree of every vertex must be even;
- If the cycles are hamiltonian, the graph must be regular;
- *m* must be no bigger than the number of vertices;
- The number of edges must be divisible by the length of the cycles.

Most work on this problem has been done on the case where the graph being decomposed is a complete graph, K_n , if n is odd, or $K_n - I$ if n is even, where I is any 1-factor (matching); the latter case is what is referred to in the title as a "near-complete graph."

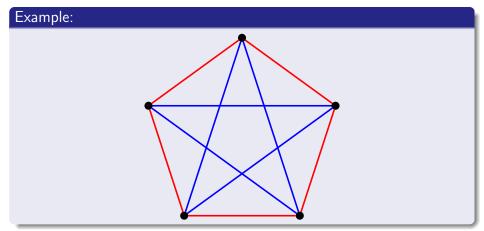
Theorem (Alspach, Gavlas; Šajna)

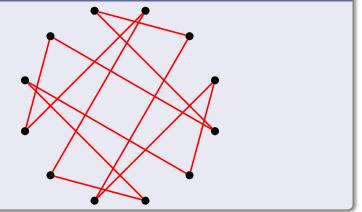
The "obvious" necessary conditions are also sufficient; that is, an m-cycle system of K_n or $K_n - I$ exists if and only if $n \ge m$, every vertex of K_n or $K_n - I$ has even degree, and m divides the number of edges in K_n or $K_n - I$, respectively.

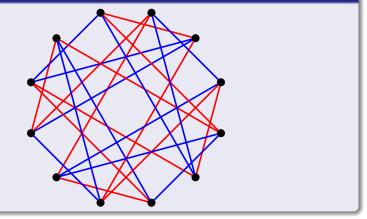
Throughout this talk, ρ will denote the permutation (0 1 ... n-1), so $\langle \rho \rangle = \mathbb{Z}_n$.

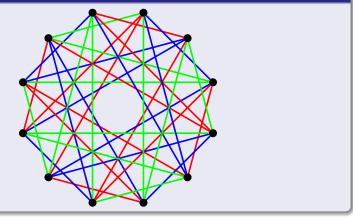
Throughout this talk, ρ will denote the permutation (0 1 ... n-1), so $\langle \rho \rangle = \mathbb{Z}_n$.

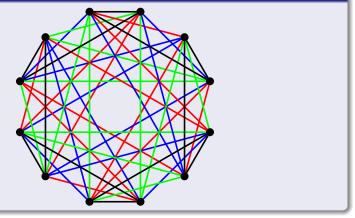
An *m*-cycle system C of a graph G with vertex set \mathbb{Z}_n is *cyclic* if, for every cycle $C = (v_1, v_2, \ldots, v_m)$ in C, the cycle $\rho(C) = (\rho(v_1), \rho(v_2), \ldots, \rho(v_m))$ is also in C.



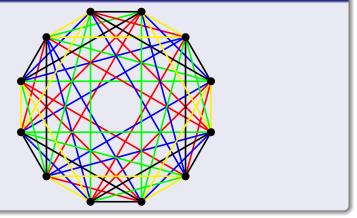








Joy Morris (University of Lethbridge)



Let C be an *m*-cycle in K_n or $K_n - I$.

Let C be an *m*-cycle in K_n or $K_n - I$. Since $\rho(C) \in C$ whenever $C \in C$, we can consider the action of \mathbb{Z}_n as a permutation group acting on the elements of C.

Let C be an *m*-cycle in K_n or $K_n - I$. Since $\rho(C) \in C$ whenever $C \in C$, we can consider the action of \mathbb{Z}_n as a permutation group acting on the elements of C. The length of the orbit of C (under the action of \mathbb{Z}_n) is the least positive integer k such that $\rho^k(C) = C$.

Let *C* be an *m*-cycle in K_n or $K_n - I$. Since $\rho(C) \in C$ whenever $C \in C$, we can consider the action of \mathbb{Z}_n as a permutation group acting on the elements of *C*. The length of the orbit of *C* (under the action of \mathbb{Z}_n) is the least positive integer *k* such that $\rho^k(C) = C$. The orbit-stabilizer theorem tells us that *k* divides *n*.

There is a cyclic hamiltonian cycle system of K_n if and only if n is odd, $n \neq 15$ and $n \notin \{p^{\alpha} \mid p \text{ is an odd prime and } \alpha \geq 2\}$.

There is a cyclic hamiltonian cycle system of K_n if and only if n is odd, $n \neq 15$ and $n \notin \{p^{\alpha} \mid p \text{ is an odd prime and } \alpha \geq 2\}$.

Why not 15 or p^{α} ?

There is a cyclic hamiltonian cycle system of K_n if and only if n is odd, $n \neq 15$ and $n \notin \{p^{\alpha} \mid p \text{ is an odd prime and } \alpha \geq 2\}$.

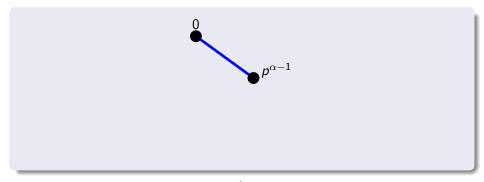
Why not 15 or p^{α} ? Suppose $n = p^{\alpha}$.

There is a cyclic hamiltonian cycle system of K_n if and only if n is odd, $n \neq 15$ and $n \notin \{p^{\alpha} \mid p \text{ is an odd prime and } \alpha \geq 2\}$.

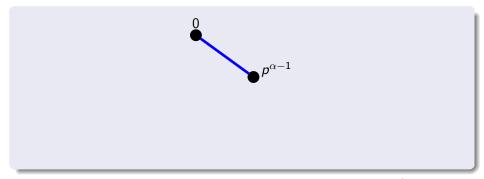
Why not 15 or p^{α} ? Suppose $n = p^{\alpha}$. Consider the edge from 0 to $p^{\alpha-1}$, and the cycle *C* containing this edge in K_n .

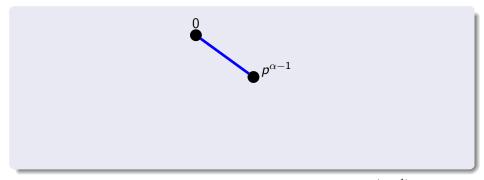
There is a cyclic hamiltonian cycle system of K_n if and only if n is odd, $n \neq 15$ and $n \notin \{p^{\alpha} \mid p \text{ is an odd prime and } \alpha \geq 2\}$.

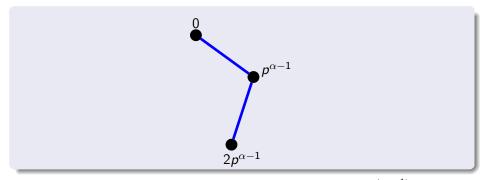
Why not 15 or p^{α} ? Suppose $n = p^{\alpha}$. Consider the edge from 0 to $p^{\alpha-1}$, and the cycle *C* containing this edge in K_n . Let *k* be the length of the orbit of *C*, and recall that we must have k|n, so *k* is a power of *p*.

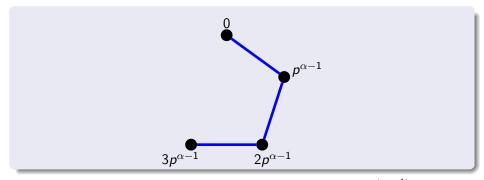


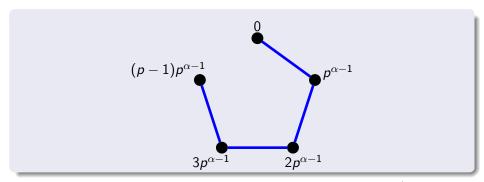
k divides p^{α} . Suppose *k* divides $p^{\alpha-1}$.

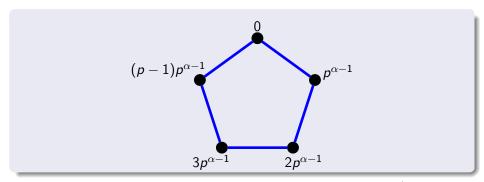


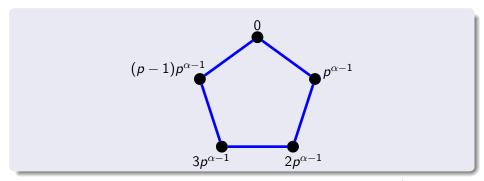




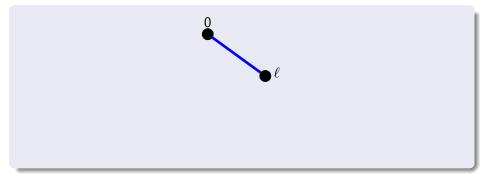




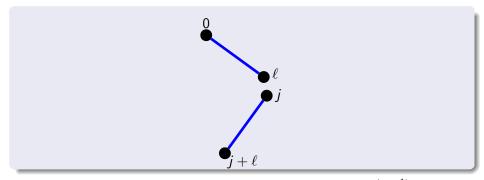




k divides p^{α} . Suppose *k* divides $p^{\alpha-1}$. Since $\rho^k(C) = C$, $\rho^{(p^{\alpha-1})}(C) = C$. Apply this *p* times. But *C* is a hamiltonian cycle, and n > p.

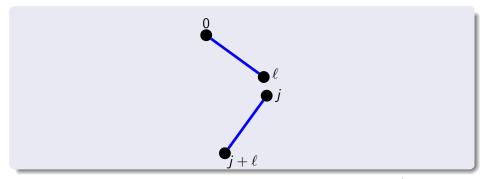


k divides p^{α} . Suppose *k* divides $p^{\alpha-1}$. Since $\rho^k(C) = C$, $\rho^{(p^{\alpha-1})}(C) = C$. Apply this *p* times. But *C* is a hamiltonian cycle, and n > p. The only remaining possibility is $k = p^{\alpha}$.



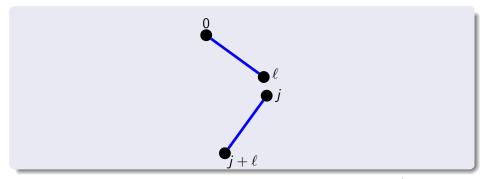
k divides p^{α} . Suppose *k* divides $p^{\alpha-1}$. Since $\rho^k(C) = C$, $\rho^{(p^{\alpha-1})}(C) = C$. Apply this *p* times. But *C* is a hamiltonian cycle, and n > p. The only remaining possibility is $k = p^{\alpha}$. If there is more than one edge of any length ℓ in *C*, then $\rho^j(C) = C$, a contradiction.

Proof that $K_{p^{\alpha}}$ has no cyclic hamiltonian cycle system



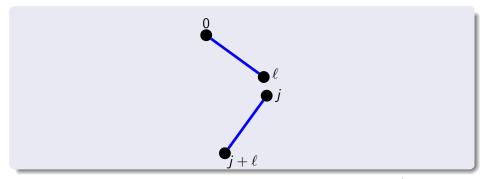
k divides p^{α} . Suppose *k* divides $p^{\alpha-1}$. Since $\rho^k(C) = C$, $\rho^{(p^{\alpha-1})}(C) = C$. Apply this *p* times. But *C* is a hamiltonian cycle, and n > p. The only remaining possibility is $k = p^{\alpha}$. If there is more than one edge of any length ℓ in *C*, then $\rho^j(C) = C$, a contradiction. So *C* has *n* distinct edge lengths.

Proof that $K_{p^{\alpha}}$ has no cyclic hamiltonian cycle system



k divides p^{α} . Suppose *k* divides $p^{\alpha-1}$. Since $\rho^k(C) = C$, $\rho^{(p^{\alpha-1})}(C) = C$. Apply this *p* times. But *C* is a hamiltonian cycle, and n > p. The only remaining possibility is $k = p^{\alpha}$. If there is more than one edge of any length ℓ in *C*, then $\rho^j(C) = C$, a contradiction. So *C* has *n* distinct edge lengths. But K_n has only (n-1)/2 distinct edge lengths.

Proof that $K_{p^{\alpha}}$ has no cyclic hamiltonian cycle system



k divides p^{α} . Suppose k divides $p^{\alpha-1}$. Since $\rho^k(C) = C$, $\rho^{(p^{\alpha-1})}(C) = C$. Apply this p times. But C is a hamiltonian cycle, and n > p. The only remaining possibility is $k = p^{\alpha}$. If there is more than one edge of any length ℓ in C, then $\rho^j(C) = C$, a contradiction. So C has n distinct edge lengths. But K_n has only (n-1)/2 distinct edge lengths. There is a similar argument for n = 15.

Theorem (Jordon, M)

For an even integer $n \ge 4$, there exists a cyclic hamiltonian cycle system of $K_n - I$ if and only if $n \equiv 2, 4 \pmod{8}$ and $n \ne 2p^{\alpha}$ where p is prime and $\alpha \ge 1$.

Theorem (Jordon, M)

For an even integer $n \ge 4$, there exists a cyclic hamiltonian cycle system of $K_n - I$ if and only if $n \equiv 2, 4 \pmod{8}$ and $n \ne 2p^{\alpha}$ where p is prime and $\alpha \ge 1$.

The proof that $2p^{\alpha}$ doesn't work, is similar to the proof that p^{α} doesn't work, above. The requirement that $n \equiv 2, 4 \pmod{8}$ is essentially a parity condition: it turns out that the number of even edge lengths must be even.

Theorem (Jordon, M)

For an even integer $n \ge 4$, there exists a cyclic hamiltonian cycle system of $K_n - I$ if and only if $n \equiv 2, 4 \pmod{8}$ and $n \ne 2p^{\alpha}$ where p is prime and $\alpha \ge 1$.

The proof that $2p^{\alpha}$ doesn't work, is similar to the proof that p^{α} doesn't work, above. The requirement that $n \equiv 2, 4 \pmod{8}$ is essentially a parity condition: it turns out that the number of even edge lengths must be even. The existence proof is constructive.

There are numerous results on cyclic *m*-cycle systems of K_n , but fewer for $K_n - I$. The obvious necessary conditions include that *m* divides n(n-2)/2.

There are numerous results on cyclic *m*-cycle systems of K_n , but fewer for $K_n - I$. The obvious necessary conditions include that *m* divides n(n-2)/2. The case where 2m divides n-2 is solved.

There are numerous results on cyclic *m*-cycle systems of K_n , but fewer for $K_n - I$. The obvious necessary conditions include that *m* divides n(n-2)/2. The case where 2m divides n-2 is solved.

Theorem (Bryant, Gavlas, Ling)

There is a cyclic m-cycle system of $K_{2mk+2} - I$ if and only if $mk \equiv 0,3 \pmod{4}$.

The case where m is even, and m divides n is now done.

The case where m is even, and m divides n is now done.

Theorem (Jordon, M)

Let m be even, and t be an integer. There is a cyclic m-cycle system of $K_{mt} - I$ if and only if one of the following occurs:

- $t \equiv 0,2 \pmod{4}$ and $m \equiv 0 \pmod{8}$;
- $t \equiv 0,1 \pmod{4}$ and $m \equiv 2 \pmod{8}$ where t > 1 if $m = 2p^{\alpha}$ where p is prime and $\alpha \ge 1$;

•
$$t \ge 1$$
 and $m \equiv 4 \pmod{8}$; or

•
$$t \equiv 0,3 \pmod{4}$$
 and $m \equiv 6 \pmod{8}$.

The case where m is even, and m divides n is now done.

Theorem (Jordon, M)

Let *m* be even, and *t* be an integer. There is a cyclic *m*-cycle system of $K_{mt} - I$ if and only if one of the following occurs:

- $t \equiv 0,2 \pmod{4}$ and $m \equiv 0 \pmod{8}$;
- $t \equiv 0,1 \pmod{4}$ and $m \equiv 2 \pmod{8}$ where t > 1 if $m = 2p^{\alpha}$ where p is prime and $\alpha \ge 1$;

•
$$t \ge 1$$
 and $m \equiv 4 \pmod{8}$; or

•
$$t \equiv 0,3 \pmod{4}$$
 and $m \equiv 6 \pmod{8}$.

Most of the cases where there is no system, are eliminated by parity conditions like those in the hamiltonian case.

• what if *m* is odd and *m* divides *n*?

- what if *m* is odd and *m* divides *n*?
- what if m is even and m divides n-2 but 2m does not divide n-2?

- what if *m* is odd and *m* divides *n*?
- what if m is even and m divides n-2 but 2m does not divide n-2?
- what if *m* divides n(n-2) but *m* divides neither *n* nor n-2?

- what if *m* is odd and *m* divides *n*?
- what if m is even and m divides n-2 but 2m does not divide n-2?
- what if m divides n(n-2) but m divides neither n nor n-2?

There is another congruence condition for the existence of cyclic *m*-cycle systems of $K_{2n} - I$, due to Buratti and Rinaldi, that will impact some of these questions.

- what if *m* is odd and *m* divides *n*?
- what if m is even and m divides n-2 but 2m does not divide n-2?
- what if m divides n(n-2) but m divides neither n nor n-2?

There is another congruence condition for the existence of cyclic *m*-cycle systems of $K_{2n} - I$, due to Buratti and Rinaldi, that will impact some of these questions. Answers are known for small values of *m* in some cases.

Thank you!

