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An m-cycle system of a graph G is a set C of m-cycles in G whose edges
partition the edge set of G .

An m-cycle system is called hamiltonian if
m = |V (G )|.
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Necessary conditions to note:

• The degree of every vertex must be even;

• If the cycles are hamiltonian, the graph must be regular;

• m must be no bigger than the number of vertices;

• The number of edges must be divisible by the length of the cycles.

Most work on this problem has been done on the case where the graph
being decomposed is a complete graph, Kn, if n is odd, or Kn − I if n is
even, where I is any 1-factor (matching); the latter case is what is referred
to in the title as a “near-complete graph.”

Theorem (Alspach, Gavlas; Šajna)

The “obvious” necessary conditions are also sufficient; that is, an m-cycle
system of Kn or Kn − I exists if and only if n ≥ m, every vertex of Kn or
Kn − I has even degree, and m divides the number of edges in Kn or
Kn − I , respectively.
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Throughout this talk, ρ will denote the permutation (0 1 . . . n − 1), so
〈ρ〉 = Zn.

An m-cycle system C of a graph G with vertex set Zn is cyclic if, for every
cycle C = (v1, v2, . . . , vm) in C, the cycle ρ(C ) = (ρ(v1), ρ(v2), . . . , ρ(vm))
is also in C.

Example:
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Fancier example: K12 − I
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Orbits of cycles

Let C be an m-cycle in Kn or Kn − I .

Since ρ(C ) ∈ C whenever C ∈ C, we
can consider the action of Zn as a permutation group acting on the
elements of C. The length of the orbit of C (under the action of Zn) is the
least positive integer k such that ρk(C ) = C . The orbit-stabilizer theorem
tells us that k divides n.
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Theorem (Buratti, Del Fra)

There is a cyclic hamiltonian cycle system of Kn if and only if n is odd,
n 6= 15 and n 6∈ {pα | p is an odd prime and α ≥ 2}.

Why not 15 or pα?
Suppose n = pα. Consider the edge from 0 to pα−1, and the cycle C
containing this edge in Kn. Let k be the length of the orbit of C , and
recall that we must have k |n, so k is a power of p.
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Proof that Kpα has no cyclic hamiltonian cycle system

0

pα−1

k divides pα. Suppose k divides pα−1.

Since ρk(C ) = C , ρ(p
α−1)(C ) = C .

Apply this p times. But C is a hamiltonian cycle, and n > p.
The only remaining possibility is k = pα. If there is more than one edge of
any length ` in C , then ρj(C ) = C , a contradiction. So C has n distinct
edge lengths. But Kn has only (n − 1)/2 distinct edge lengths.
There is a similar argument for n = 15.
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The hamiltonian problem is also solved for near-complete graphs.

Theorem (Jordon, M)

For an even integer n ≥ 4, there exists a cyclic hamiltonian cycle system of
Kn − I if and only if n ≡ 2, 4 (mod 8) and n 6= 2pα where p is prime and
α ≥ 1.

The proof that 2pα doesn’t work, is similar to the proof that pα doesn’t
work, above. The requirement that n ≡ 2, 4 (mod 8) is essentially a parity
condition: it turns out that the number of even edge lengths must be even.
The existence proof is constructive.
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There are numerous results on cyclic m-cycle systems of Kn, but fewer for
Kn − I . The obvious necessary conditions include that m divides
n(n − 2)/2.

The case where 2m divides n − 2 is solved.

Theorem (Bryant, Gavlas, Ling)

There is a cyclic m-cycle system of K2mk+2 − I if and only if mk ≡ 0, 3
(mod 4).
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The case where m is even, and m divides n is now done.

Theorem (Jordon, M)

Let m be even, and t be an integer. There is a cyclic m-cycle system of
Kmt − I if and only if one of the following occurs:

• t ≡ 0, 2 (mod 4) and m ≡ 0 (mod 8);

• t ≡ 0, 1 (mod 4) and m ≡ 2 (mod 8) where t > 1 if m = 2pα where
p is prime and α ≥ 1;

• t ≥ 1 and m ≡ 4 (mod 8); or

• t ≡ 0, 3 (mod 4) and m ≡ 6 (mod 8).

Most of the cases where there is no system, are eliminated by parity
conditions like those in the hamiltonian case.
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Open questions

For m-cycle systems of Kn − I , we require 2m|n(n − 2) and n even.

• what if m is odd and m divides n?

• what if m is even and m divides n − 2 but 2m does not divide n − 2?

• what if m divides n(n − 2) but m divides neither n nor n − 2?

There is another congruence condition for the existence of cyclic m-cycle
systems of K2n − I , due to Buratti and Rinaldi, that will impact some of
these questions. Answers are known for small values of m in some cases.
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systems of K2n − I , due to Buratti and Rinaldi, that will impact some of
these questions. Answers are known for small values of m in some cases.
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Thank you!
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