Cyclic m-cycle systems of near-complete graphs

Joy Morris
based on joint work with Heather Jordon
University of Lethbridge
SCDO, Queenstown, February 15, 2016

An m-cycle system of a graph G is a set \mathcal{C} of m-cycles in G whose edges partition the edge set of G.

An m-cycle system of a graph G is a set \mathcal{C} of m-cycles in G whose edges partition the edge set of G. An m-cycle system is called hamiltonian if $m=|V(G)|$.

An m-cycle system of a graph G is a set \mathcal{C} of m-cycles in G whose edges partition the edge set of G. An m-cycle system is called hamiltonian if $m=|V(G)|$.

Necessary conditions to note:

- The degree of every vertex must be even;

Necessary conditions to note:

- The degree of every vertex must be even;
- If the cycles are hamiltonian, the graph must be regular;

Necessary conditions to note:

- The degree of every vertex must be even;
- If the cycles are hamiltonian, the graph must be regular;
- m must be no bigger than the number of vertices;

Necessary conditions to note:

- The degree of every vertex must be even;
- If the cycles are hamiltonian, the graph must be regular;
- m must be no bigger than the number of vertices;
- The number of edges must be divisible by the length of the cycles.

Necessary conditions to note:

- The degree of every vertex must be even;
- If the cycles are hamiltonian, the graph must be regular;
- m must be no bigger than the number of vertices;
- The number of edges must be divisible by the length of the cycles.

Most work on this problem has been done on the case where the graph being decomposed is a complete graph, K_{n}, if n is odd, or $K_{n}-I$ if n is even, where I is any 1 -factor (matching); the latter case is what is referred to in the title as a "near-complete graph."

Necessary conditions to note:

- The degree of every vertex must be even;
- If the cycles are hamiltonian, the graph must be regular;
- m must be no bigger than the number of vertices;
- The number of edges must be divisible by the length of the cycles.

Most work on this problem has been done on the case where the graph being decomposed is a complete graph, K_{n}, if n is odd, or $K_{n}-I$ if n is even, where I is any 1 -factor (matching); the latter case is what is referred to in the title as a "near-complete graph."

Theorem (Alspach, Gavlas; Šajna)

The "obvious" necessary conditions are also sufficient; that is, an m-cycle system of K_{n} or $K_{n}-I$ exists if and only if $n \geq m$, every vertex of K_{n} or $K_{n}-I$ has even degree, and m divides the number of edges in K_{n} or $K_{n}-I$, respectively.

Throughout this talk, ρ will denote the permutation ($01 \ldots n-1$), so $\langle\rho\rangle=\mathbb{Z}_{n}$.

Throughout this talk, ρ will denote the permutation ($01 \ldots n-1$), so $\langle\rho\rangle=\mathbb{Z}_{n}$.
An m-cycle system \mathcal{C} of a graph G with vertex set \mathbb{Z}_{n} is cyclic if, for every cycle $C=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ in \mathcal{C}, the cycle $\rho(C)=\left(\rho\left(v_{1}\right), \rho\left(v_{2}\right), \ldots, \rho\left(v_{m}\right)\right)$ is also in \mathcal{C}.

Example:

Fancier example: $K_{12}-I$

Orbits of cycles

Let C be an m-cycle in K_{n} or $K_{n}-I$.

Orbits of cycles

Let C be an m-cycle in K_{n} or $K_{n}-I$. Since $\rho(C) \in \mathcal{C}$ whenever $C \in \mathcal{C}$, we can consider the action of \mathbb{Z}_{n} as a permutation group acting on the elements of \mathcal{C}.

Orbits of cycles

Let C be an m-cycle in K_{n} or $K_{n}-I$. Since $\rho(C) \in \mathcal{C}$ whenever $C \in \mathcal{C}$, we can consider the action of \mathbb{Z}_{n} as a permutation group acting on the elements of \mathcal{C}. The length of the orbit of C (under the action of \mathbb{Z}_{n}) is the least positive integer k such that $\rho^{k}(C)=C$.

Orbits of cycles

Let C be an m-cycle in K_{n} or $K_{n}-I$. Since $\rho(C) \in \mathcal{C}$ whenever $C \in \mathcal{C}$, we can consider the action of \mathbb{Z}_{n} as a permutation group acting on the elements of \mathcal{C}. The length of the orbit of C (under the action of \mathbb{Z}_{n}) is the least positive integer k such that $\rho^{k}(C)=C$. The orbit-stabilizer theorem tells us that k divides n.

Theorem (Buratti, Del Fra)

There is a cyclic hamiltonian cycle system of K_{n} if and only if n is odd, $n \neq 15$ and $n \notin\left\{p^{\alpha} \mid p\right.$ is an odd prime and $\left.\alpha \geq 2\right\}$.

Theorem (Buratti, Del Fra)

There is a cyclic hamiltonian cycle system of K_{n} if and only if n is odd, $n \neq 15$ and $n \notin\left\{p^{\alpha} \mid p\right.$ is an odd prime and $\left.\alpha \geq 2\right\}$.

Why not 15 or p^{α} ?

Theorem (Buratti, Del Fra)

There is a cyclic hamiltonian cycle system of K_{n} if and only if n is odd, $n \neq 15$ and $n \notin\left\{p^{\alpha} \mid p\right.$ is an odd prime and $\left.\alpha \geq 2\right\}$.

Why not 15 or p^{α} ?
Suppose $n=p^{\alpha}$.

Theorem (Buratti, Del Fra)

There is a cyclic hamiltonian cycle system of K_{n} if and only if n is odd, $n \neq 15$ and $n \notin\left\{p^{\alpha} \mid p\right.$ is an odd prime and $\left.\alpha \geq 2\right\}$.

Why not 15 or p^{α} ?
Suppose $n=p^{\alpha}$. Consider the edge from 0 to $p^{\alpha-1}$, and the cycle C containing this edge in K_{n}.

Theorem (Buratti, Del Fra)

There is a cyclic hamiltonian cycle system of K_{n} if and only if n is odd, $n \neq 15$ and $n \notin\left\{p^{\alpha} \mid p\right.$ is an odd prime and $\left.\alpha \geq 2\right\}$.

Why not 15 or p^{α} ?
Suppose $n=p^{\alpha}$. Consider the edge from 0 to $p^{\alpha-1}$, and the cycle C containing this edge in K_{n}. Let k be the length of the orbit of C, and recall that we must have $k \mid n$, so k is a power of p.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times. But C is a hamiltonian cycle, and $n>p$.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times. But C is a hamiltonian cycle, and $n>p$. The only remaining possibility is $k=p^{\alpha}$.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times. But C is a hamiltonian cycle, and $n>p$. The only remaining possibility is $k=p^{\alpha}$. If there is more than one edge of any length ℓ in C, then $\rho^{j}(C)=C$, a contradiction.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times. But C is a hamiltonian cycle, and $n>p$. The only remaining possibility is $k=p^{\alpha}$. If there is more than one edge of any length ℓ in C, then $\rho^{j}(C)=C$, a contradiction. So C has n distinct edge lengths.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times. But C is a hamiltonian cycle, and $n>p$. The only remaining possibility is $k=p^{\alpha}$. If there is more than one edge of any length ℓ in C, then $\rho^{j}(C)=C$, a contradiction. So C has n distinct edge lengths. But K_{n} has only $(n-1) / 2$ distinct edge lengths.

Proof that $K_{p^{a}}$ has no cyclic hamiltonian cycle system

k divides p^{α}. Suppose k divides $p^{\alpha-1}$. Since $\rho^{k}(C)=C, \rho^{\left(p^{\alpha-1}\right)}(C)=C$. Apply this p times. But C is a hamiltonian cycle, and $n>p$. The only remaining possibility is $k=p^{\alpha}$. If there is more than one edge of any length ℓ in C, then $\rho^{j}(C)=C$, a contradiction. So C has n distinct edge lengths. But K_{n} has only $(n-1) / 2$ distinct edge lengths.
There is a similar argument for $n=15$.

The hamiltonian problem is also solved for near-complete graphs.

The hamiltonian problem is also solved for near-complete graphs.
Theorem (Jordon, M)
For an even integer $n \geq 4$, there exists a cyclic hamiltonian cycle system of $K_{n}-I$ if and only if $n \equiv 2,4(\bmod 8)$ and $n \neq 2 p^{\alpha}$ where p is prime and $\alpha \geq 1$.

The hamiltonian problem is also solved for near-complete graphs.

Theorem (Jordon, M)

For an even integer $n \geq 4$, there exists a cyclic hamiltonian cycle system of $K_{n}-I$ if and only if $n \equiv 2,4(\bmod 8)$ and $n \neq 2 p^{\alpha}$ where p is prime and $\alpha \geq 1$.

The proof that $2 p^{\alpha}$ doesn't work, is similar to the proof that p^{α} doesn't work, above. The requirement that $n \equiv 2,4(\bmod 8)$ is essentially a parity condition: it turns out that the number of even edge lengths must be even.

The hamiltonian problem is also solved for near-complete graphs.

Theorem (Jordon, M)

For an even integer $n \geq 4$, there exists a cyclic hamiltonian cycle system of $K_{n}-I$ if and only if $n \equiv 2,4(\bmod 8)$ and $n \neq 2 p^{\alpha}$ where p is prime and $\alpha \geq 1$.

The proof that $2 p^{\alpha}$ doesn't work, is similar to the proof that p^{α} doesn't work, above. The requirement that $n \equiv 2,4(\bmod 8)$ is essentially a parity condition: it turns out that the number of even edge lengths must be even. The existence proof is constructive.

There are numerous results on cyclic m-cycle systems of K_{n}, but fewer for $K_{n}-I$. The obvious necessary conditions include that m divides $n(n-2) / 2$.

There are numerous results on cyclic m-cycle systems of K_{n}, but fewer for $K_{n}-I$. The obvious necessary conditions include that m divides $n(n-2) / 2$. The case where $2 m$ divides $n-2$ is solved.

There are numerous results on cyclic m-cycle systems of K_{n}, but fewer for $K_{n}-I$. The obvious necessary conditions include that m divides $n(n-2) / 2$. The case where $2 m$ divides $n-2$ is solved.

Theorem (Bryant, Gavlas, Ling)

There is a cyclic m-cycle system of $K_{2 m k+2}-I$ if and only if $m k \equiv 0,3$ $(\bmod 4)$.

The case where m is even, and m divides n is now done.

The case where m is even, and m divides n is now done.

Theorem (Jordon, M)

Let m be even, and t be an integer. There is a cyclic m-cycle system of $K_{m t}$ - I if and only if one of the following occurs:

- $t \equiv 0,2(\bmod 4)$ and $m \equiv 0(\bmod 8)$;
- $t \equiv 0,1(\bmod 4)$ and $m \equiv 2(\bmod 8)$ where $t>1$ if $m=2 p^{\alpha}$ where p is prime and $\alpha \geq 1$;
- $t \geq 1$ and $m \equiv 4(\bmod 8)$; or
- $t \equiv 0,3(\bmod 4)$ and $m \equiv 6(\bmod 8)$.

The case where m is even, and m divides n is now done.

Theorem (Jordon, M)

Let m be even, and t be an integer. There is a cyclic m-cycle system of $K_{m t}-I$ if and only if one of the following occurs:

- $t \equiv 0,2(\bmod 4)$ and $m \equiv 0(\bmod 8)$;
- $t \equiv 0,1(\bmod 4)$ and $m \equiv 2(\bmod 8)$ where $t>1$ if $m=2 p^{\alpha}$ where p is prime and $\alpha \geq 1$;
- $t \geq 1$ and $m \equiv 4(\bmod 8)$; or
- $t \equiv 0,3(\bmod 4)$ and $m \equiv 6(\bmod 8)$.

Most of the cases where there is no system, are eliminated by parity conditions like those in the hamiltonian case.

Open questions

For m-cycle systems of $K_{n}-I$, we require $2 m \mid n(n-2)$ and n even.

- what if m is odd and m divides n ?

Open questions

For m-cycle systems of $K_{n}-I$, we require $2 m \mid n(n-2)$ and n even.

- what if m is odd and m divides n ?
- what if m is even and m divides $n-2$ but $2 m$ does not divide $n-2$?

Open questions

For m-cycle systems of $K_{n}-I$, we require $2 m \mid n(n-2)$ and n even.

- what if m is odd and m divides n ?
- what if m is even and m divides $n-2$ but $2 m$ does not divide $n-2$?
- what if m divides $n(n-2)$ but m divides neither n nor $n-2$?

Open questions

For m-cycle systems of $K_{n}-I$, we require $2 m \mid n(n-2)$ and n even.

- what if m is odd and m divides n ?
- what if m is even and m divides $n-2$ but $2 m$ does not divide $n-2$?
- what if m divides $n(n-2)$ but m divides neither n nor $n-2$?

There is another congruence condition for the existence of cyclic m-cycle systems of $K_{2 n}-I$, due to Buratti and Rinaldi, that will impact some of these questions.

Open questions

For m-cycle systems of $K_{n}-I$, we require $2 m \mid n(n-2)$ and n even.

- what if m is odd and m divides n ?
- what if m is even and m divides $n-2$ but $2 m$ does not divide $n-2$?
- what if m divides $n(n-2)$ but m divides neither n nor $n-2$?

There is another congruence condition for the existence of cyclic m-cycle systems of $K_{2 n}-I$, due to Buratti and Rinaldi, that will impact some of these questions. Answers are known for small values of m in some cases.

Thank you!

