Hemisystems and Relative Hemisystems of Generalised Quadrangles and their Generalisations

Joint work with John Bamberg and Michael Giudici

Melissa Lee

The University of Western Australia

SCDO Queenstown
17th February 2016

A train analogy and m-covers

- Is it possible to choose a set of train lines such that every station is on exactly m of them?
- Such a set of lines is called an m-cover.
- When $m=1$, it is called a spread.

Generalised Quadrangles

A generalised quadrangle of order (s, t) is an incidence structure of points and lines such that:

- Any two points are incident with at most one line.
- Every point is incident with $t+1$ lines.
- Every line is incident with $s+1$ points.
- For any point P and line ℓ that are not
 incident, there is a unique point K on ℓ that is collinear with P.

Examples of Generalised Quadrangles

$G Q(3,1)$

$G Q(2,2)$

Hermitian and Symplectic Spaces

- A Hermitian space, denoted $\mathrm{H}\left(3, q^{2}\right)$, is a generalised quadrangle of order $\left(q^{2}, q\right)$.
- A symplectic space, denoted $\mathrm{W}(3, q)$, is a generalised quadrangle of order (q, q).

These are both examples of polar spaces.

Dualising

The dual of a generalised quadrangle of order (s, t) (achieved by swapping the points and lines) is a generalised quadrangle of order (t, s).

Dualising

The dual of a generalised quadrangle of order (s, t) (achieved by swapping the points and lines) is a generalised quadrangle of order (t, s).

- Any two points are incident with at most one line.
- Every line is incident with $t+1$ points.
- Every point is incident with $s+1$ lines.
- For any point P and line ℓ that are not incident, there is a unique line a on P that is collinear with ℓ.

Hemisystems

- In 1965, B. Segre proved that the only (non-trivial) m-covers on $\mathrm{H}\left(3, q^{2}\right)$ have $m=\frac{q+1}{2}$.

$q+1$ lines
- Called these $\frac{q+1}{2}$-covers hemisystems.
- Gave an example of a hemisystem on $\mathrm{H}\left(3,3^{2}\right)$.

$$
\frac{q+1}{2} \text { lines }
$$

History of m-covers

1978 Bruen and Hirschfeld show that $\mathrm{H}\left(3, q^{2}\right)$ has no m-covers for q even.

History of m-covers

1978 Bruen and Hirschfeld show that $\mathrm{H}\left(3, q^{2}\right)$ has no m-covers for q even.

1995 Thas conjectures that there are no hemisystems on $\mathrm{H}\left(3, q^{2}\right)$ for odd $q>3$.

History of m-covers

1978 Bruen and Hirschfeld show that $\mathrm{H}\left(3, q^{2}\right)$ has no m-covers for q even.

1995 Thas conjectures that there are no hemisystems on $\mathrm{H}\left(3, q^{2}\right)$ for odd $q>3$.

2005 Penttila and Cossidente discover an infinite family of hemisystems on $\mathrm{H}\left(3, q^{2}\right)$.

History of m-covers

1978 Bruen and Hirschfeld show that $\mathrm{H}\left(3, q^{2}\right)$ has no m-covers for q even.

1995 Thas conjectures that there are no hemisystems on $\mathrm{H}\left(3, q^{2}\right)$ for odd $q>3$.

2005 Penttila and Cossidente discover an infinite family of hemisystems on $\mathrm{H}\left(3, q^{2}\right)$.

2011 Penttila and Williford define relative hemisystems on $\mathrm{H}\left(3, q^{2}\right)$ relative to $\mathrm{W}(3, q)$ for q even.

History of m-covers

1978 Bruen and Hirschfeld show that $\mathrm{H}\left(3, q^{2}\right)$ has no m-covers for q even.

1995 Thas conjectures that there are no hemisystems on $\mathrm{H}\left(3, q^{2}\right)$ for odd $q>3$.

2005 Penttila and Cossidente discover an infinite family of hemisystems on $\mathrm{H}\left(3, q^{2}\right)$.

2011 Penttila and Williford define relative hemisystems on $\mathrm{H}\left(3, q^{2}\right)$ relative to $\mathrm{W}(3, q)$ for q even.

Structures arising from hemisystems

- Strongly regular graphs,
- Cometric Q-antipodal association schemes.
- Partial quadrangles with parameters $\left(\frac{q-1}{2}, q^{2}, \frac{(q-1)^{2}}{2}\right)$,

What about Higher Dimensions?

A regular near $2 d$-gon of order (s, t) is an incidence structure of points and lines such that

- Any two points are incident with at most one line.
- The point graph of the structure is connected with diameter $d \geq 1$.
- For each point P and line ℓ, there is a unique point Q on ℓ that is "closest" to P.

Examples of closeness

GQ axiom

Regular n-gon

Dual polar spaces

We can construct a dual polar space from a polar space like $\mathrm{H}\left(2 d-1, q^{2}\right)$ in a similar way to dualising generalised quadrangles.

Dual polar space	Polar space
points	maximals
lines	next to maximals
k-dimensional subspaces	$(d-k)$-dimensional subspaces

Dual polar spaces

We can construct a dual polar space from a polar space like $\mathrm{H}\left(2 d-1, q^{2}\right)$ in a similar way to dualising generalised quadrangles.

Dual polar space	Polar space
points	maximals
lines	next to maximals
k-dimensional subspaces	$(d-k)$-dimensional subspaces

- A dual polar space is a regular near polygon.
- $\mathrm{DH}\left(2 d-1, q^{2}\right)$ is a regular near $2 d$-gon

Spreads to ovoids

- An m-ovoid S is a set of points such that every line meets S in m points.

Spreads to ovoids

- An m-ovoid S is a set of points such that every line meets S in m points.
- An m-cover of $\mathrm{H}\left(3, q^{2}\right)$ is an m-ovoid of $\mathrm{DH}\left(3, q^{2}\right)$.

Spreads to ovoids

- An m-ovoid S is a set of points such that every line meets S in m points.
- An m-cover of $\mathrm{H}\left(3, q^{2}\right)$ is an m-ovoid of $\mathrm{DH}\left(3, q^{2}\right)$.
- Not true in higher dimensions because the lines of $\mathrm{H}\left(2 d-1, q^{2}\right)$ are no longer the points of $\mathrm{DH}\left(2 d-1, q^{2}\right)$

What about $(q+1) / 2$-ovoids in higher dimensions?

Theorem (Vanhove 2011)

Suppose S is a $\frac{q+1}{2}$-ovoid of $\mathrm{DH}\left(2 d-1, q^{2}\right), q$ odd. Then the subgraph induced by S on the point graph of $\mathrm{DH}\left(2 d-1, q^{2}\right)$ is distance regular, with classical parameters

$$
(d, b, \alpha, \beta)=\left(d,-q,-\frac{q+1}{2},-\left(\frac{(-q)^{d}+1}{2}\right)\right)
$$

An open question

Vanhove (2011)

Does there exist any $\frac{q+1}{2}$-ovoids of the dual polar space $\mathrm{DH}\left(2 d-1, q^{2}\right)$ when $d \geq 3$?

- This is a hard problem!
- An example would give us a new distance regular graph with classical parameters $\left(d,-q,-\frac{q+1}{2},-\left(\frac{(-q)^{d}+1}{2}\right)\right)$.

The search for $\frac{q+1}{2}$-ovoids

- Use GAP to construct the polar space and associated automorphism group.

The search for $\frac{q+1}{2}$-ovoids

- Use GAP to construct the polar space and associated automorphism group.
- Encode a $\frac{q+1}{2}$-ovoid as a list of linear programming constraints.

The search for $\frac{q+1}{2}$-ovoids

- Use GAP to construct the polar space and associated automorphism group.
- Encode a $\frac{q+1}{2}$-ovoid as a list of linear programming constraints.
- Use the automorphism group to generate a computation tree to provide further constraints.

The search for $\frac{q+1}{2}$-ovoids

- Use GAP to construct the polar space and associated automorphism group.
- Encode a $\frac{q+1}{2}$-ovoid as a list of linear programming constraints.
- Use the automorphism group to generate a computation tree to provide further constraints.
- Search for solutions in each branch of the tree using Gurobi.

The search for $\frac{q+1}{2}$-ovoids

- Use GAP to construct the polar space and associated automorphism group.
- Encode a $\frac{q+1}{2}$-ovoid as a list of linear programming constraints.
- Use the automorphism group to generate a computation tree to provide further constraints.
- Search for solutions in each branch of the tree using Gurobi.

There are no $\frac{q+1}{2}$-ovoids of $\mathrm{DH}\left(5,3^{2}\right)$.

Simplifyng the problem

Lemma (L. 2015)

A $\frac{q+1}{2}$-ovoid of $\mathrm{DH}\left(5, q^{2}\right)$ induces a $\frac{q+1}{2}$-ovoid of an embedded $\operatorname{DW}(5, q)$.

- So no $\frac{q+1}{2}$-ovoid of an embedded $\operatorname{DW}(5, q) \Longrightarrow$ no $\frac{q+1}{2}$-ovoid of $\mathrm{DH}\left(5, q^{2}\right)$.
- Use the same technique as before in GAP and Gurobi.

Simplifyng the problem

Lemma (L. 2015)

A $\frac{q+1}{2}$-ovoid of $\mathrm{DH}\left(5, q^{2}\right)$ induces a $\frac{q+1}{2}$-ovoid of an embedded $\operatorname{DW}(5, q)$.

- So no $\frac{q+1}{2}$-ovoid of an embedded $\operatorname{DW}(5, q) \Longrightarrow$ no $\frac{q+1}{2}$-ovoid of $\mathrm{DH}\left(5, q^{2}\right)$.
- Use the same technique as before in GAP and Gurobi.
- DW $(5,3)$ and $\operatorname{DW}(5,5)$ have no $\frac{q+1}{2}$-ovoids.

Open problems

Conjecture

There are no $\frac{q+1}{2}$-ovoids of $\mathrm{DH}\left(5, q^{2}\right)$ for any q odd.

Other questions

- Are there $\frac{q+1}{2}$-ovoids of $\mathrm{DH}\left(2 d-1, q^{2}\right)$ for $d>3$?
- Are there $\frac{q+1}{2}$-ovoids of $\operatorname{DW}(5, q)$?
- Are there $\frac{q+1}{2}$-ovoids of regular near $2 d$-gons that are not dual polar spaces?

