Hemisystems and Relative Hemisystems of Generalised Quadrangles and their Generalisations

Joint work with John Bamberg and Michael Giudici

Melissa Lee

The University of Western Australia

SCDO Queenstown 17th February 2016

- Is it possible to choose a set of train lines such that every station is on exactly *m* of them?
- Such a set of lines is called an *m*-cover.
- When m = 1, it is called a spread.

A generalised quadrangle of order (s, t) is an incidence structure of points and lines such that:

- Any two points are incident with at most one line.
- Every point is incident with t + 1 lines.
- Every line is incident with s + 1 points.
- For any point P and line ℓ that are not incident, there is a unique point K on ℓ that is collinear with P.

Examples of Generalised Quadrangles

GQ(3, 1)

GQ(2, 2)

- A Hermitian space, denoted H(3, q²), is a generalised quadrangle of order (q², q).
- A symplectic space, denoted W(3, q), is a generalised quadrangle of order (q, q).

These are both examples of **polar spaces**.

The **dual** of a generalised quadrangle of order (s, t) (achieved by swapping the points and lines) is a generalised quadrangle of order (t, s).

The **dual** of a generalised quadrangle of order (s, t) (achieved by swapping the points and lines) is a generalised quadrangle of order (t, s).

- Any two points are incident with at most one line.
- Every **line** is incident with t + 1 **points**.
- Every **point** is incident with s + 1 lines.
- For any point P and line ℓ that are not incident, there is a unique line a on P that is collinear with ℓ.

• In 1965, B. Segre proved that the only (non-trivial) *m*-covers on $H(3, q^2)$ have $m = \frac{q+1}{2}$.

q+1 lines

- Called these $\frac{q+1}{2}$ -covers hemisystems.
- Gave an example of a hemisystem on $H(3, 3^2)$.

1978 Bruen and Hirschfeld show that $H(3, q^2)$ has no *m*-covers for q even.

- 1978 Bruen and Hirschfeld show that $H(3, q^2)$ has no *m*-covers for q even.
- 1995 Thas conjectures that there are no hemisystems on $H(3, q^2)$ for odd q > 3.

- 1978 Bruen and Hirschfeld show that $H(3, q^2)$ has no *m*-covers for q even.
- 1995 Thas conjectures that there are no hemisystems on $H(3, q^2)$ for odd q > 3.
- 2005 Penttila and Cossidente discover an infinite family of hemisystems on $H(3, q^2)$.

- 1978 Bruen and Hirschfeld show that $H(3, q^2)$ has no *m*-covers for q even.
- 1995 Thas conjectures that there are no hemisystems on $H(3, q^2)$ for odd q > 3.
- 2005 Penttila and Cossidente discover an infinite family of hemisystems on $H(3, q^2)$.
- 2011 Penttila and Williford define relative hemisystems on $H(3, q^2)$ relative to W(3, q) for q even.

- 1978 Bruen and Hirschfeld show that $H(3, q^2)$ has no *m*-covers for q even.
- 1995 Thas conjectures that there are no hemisystems on $H(3, q^2)$ for odd q > 3.
- 2005 Penttila and Cossidente discover an infinite family of hemisystems on $H(3, q^2)$.
- 2011 Penttila and Williford define relative hemisystems on $H(3, q^2)$ relative to W(3, q) for q even.

- Strongly regular graphs,
- Cometric *Q*-antipodal association schemes.
- Partial quadrangles with parameters $(\frac{q-1}{2}, q^2, \frac{(q-1)^2}{2})$,

A **regular near** 2d-gon of order (s, t) is an incidence structure of points and lines such that

- Any two points are incident with at most one line.
- The point graph of the structure is connected with diameter $d \ge 1$.
- For each point P and line ℓ , there is a unique point Q on ℓ that is "closest" to P.

Examples of closeness

We can construct a **dual polar space** from a polar space like $H(2d - 1, q^2)$ in a similar way to dualising generalised quadrangles.

Dual polar space	Polar space
points	maximals
lines	next to maximals
k-dimensional subspaces	(d - k)-dimensional subspaces

We can construct a **dual polar space** from a polar space like $H(2d - 1, q^2)$ in a similar way to dualising generalised quadrangles.

Dual polar space	Polar space
points	maximals
lines	next to maximals
k-dimensional subspaces	(d - k)-dimensional subspaces

- A dual polar space is a regular near polygon.
- $DH(2d-1, q^2)$ is a regular near 2*d*-gon

• An *m*-**ovoid** *S* is a set of points such that every line meets *S* in *m* points.

- An *m*-**ovoid** *S* is a set of points such that every line meets *S* in *m* points.
- An *m*-cover of $H(3, q^2)$ is an *m*-ovoid of $DH(3, q^2)$.

- An *m*-**ovoid** *S* is a set of points such that every line meets *S* in *m* points.
- An *m*-cover of $H(3, q^2)$ is an *m*-ovoid of $DH(3, q^2)$.
- Not true in higher dimensions because the lines of H(2d − 1, q²) are no longer the points of DH(2d − 1, q²)

Theorem (Vanhove 2011)

Suppose S is a $\frac{q+1}{2}$ -ovoid of $DH(2d-1,q^2)$, q odd. Then the subgraph induced by S on the point graph of $DH(2d-1,q^2)$ is **distance regular**, with classical parameters

$$(d, b, \alpha, \beta) = \left(d, -q, -\frac{q+1}{2}, -\left(\frac{(-q)^d+1}{2}\right)\right)$$

Vanhove (2011)

Does there exist any $\frac{q+1}{2}$ -ovoids of the dual polar space $DH(2d - 1, q^2)$ when $d \ge 3$?

- This is a hard problem!
- An example would give us a new distance regular graph with classical parameters $\left(d, -q, -\frac{q+1}{2}, -\left(\frac{(-q)^d+1}{2}\right)\right)$.

• Use GAP to construct the polar space and associated automorphism group.

- Use GAP to construct the polar space and associated automorphism group.
- Encode a $\frac{q+1}{2}$ -ovoid as a list of linear programming constraints.

- Use GAP to construct the polar space and associated automorphism group.
- Encode a $\frac{q+1}{2}$ -ovoid as a list of linear programming constraints.
- Use the automorphism group to generate a computation tree to provide further constraints.

- Use GAP to construct the polar space and associated automorphism group.
- Encode a $\frac{q+1}{2}$ -ovoid as a list of linear programming constraints.
- Use the automorphism group to generate a computation tree to provide further constraints.
- Search for solutions in each branch of the tree using Gurobi.

- Use GAP to construct the polar space and associated automorphism group.
- Encode a $\frac{q+1}{2}$ -ovoid as a list of linear programming constraints.
- Use the automorphism group to generate a computation tree to provide further constraints.
- Search for solutions in each branch of the tree using Gurobi.

There are **no** $\frac{q+1}{2}$ -ovoids of DH(5, 3²).

Lemma (L. 2015)

A $\frac{q+1}{2}$ -ovoid of DH(5, q^2) induces a $\frac{q+1}{2}$ -ovoid of an embedded DW(5, q).

- So no $\frac{q+1}{2}$ -ovoid of an embedded $DW(5, q) \Longrightarrow$ no $\frac{q+1}{2}$ -ovoid of $DH(5, q^2)$.
- Use the same technique as before in GAP and Gurobi.

Lemma (L. 2015)

A $\frac{q+1}{2}$ -ovoid of DH(5, q^2) induces a $\frac{q+1}{2}$ -ovoid of an embedded DW(5, q).

- So no $\frac{q+1}{2}$ -ovoid of an embedded $DW(5, q) \Longrightarrow$ no $\frac{q+1}{2}$ -ovoid of $DH(5, q^2)$.
- Use the same technique as before in GAP and Gurobi.
- DW(5,3) and DW(5,5) have no $\frac{q+1}{2}$ -ovoids.

Conjecture

There are no $\frac{q+1}{2}$ -ovoids of $DH(5, q^2)$ for any q odd.

Other questions

- Are there $\frac{q+1}{2}$ -ovoids of $DH(2d-1,q^2)$ for d > 3?
- Are there $\frac{q+1}{2}$ -ovoids of DW(5, q)?
- Are there $\frac{q+1}{2}$ -ovoids of regular near 2*d*-gons that are not dual polar spaces?