Affine flag-transitive biplanes with a prime number of points

Patricio Ricardo García Vázquez

Institute of Mathematics, UNAM

February 17, 2016, SCDO

Some definitions.

- A biplane $D=(P, B)$ is a $(v, k, 2)$-symmetric design.

Some definitions.

- A biplane $D=(P, B)$ is a $(v, k, 2)$-symmetric design.
- The set of all the permutations of the points that preserve the block structure of the design D together with the composition as operation is called $\operatorname{Aut}(D)$.

Some definitions.

- A biplane $D=(P, B)$ is a $(v, k, 2)$-symmetric design.
- The set of all the permutations of the points that preserve the block structure of the design D together with the composition as operation is called $\operatorname{Aut}(D)$.
- A flag of D is an incident point-block pair (p, c), we say that $\operatorname{Aut}(D)$ is flag-transitive if it is transitive on the flags of D.

Some definitions.

- A biplane $D=(P, B)$ is a $(v, k, 2)$-symmetric design.
- The set of all the permutations of the points that preserve the block structure of the design D together with the composition as operation is called $\operatorname{Aut}(D)$.
- A flag of D is an incident point-block pair (p, c), we say that $\operatorname{Aut}(D)$ is flag-transitive if it is transitive on the flags of D.
- We say that $\operatorname{Aut}(D)$ is primitive if it is transitive on P and the only partition of P preserved by $\operatorname{Aut}(D)$ is the one consisting of the singletons $\{\alpha\}$ with $\alpha \in P$.

Some definitions.

- A biplane $D=(P, B)$ is a $(v, k, 2)$-symmetric design.
- The set of all the permutations of the points that preserve the block structure of the design D together with the composition as operation is called $\operatorname{Aut}(D)$.
- A flag of D is an incident point-block pair (p, c), we say that $\operatorname{Aut}(D)$ is flag-transitive if it is transitive on the flags of D.
- We say that $\operatorname{Aut}(D)$ is primitive if it is transitive on P and the only partition of P preserved by $\operatorname{Aut}(D)$ is the one consisting of the singletons $\{\alpha\}$ with $\alpha \in P$.

Example

The complement of the Fano plane is a flag-transitive (7, 4, 2) biplane with $\operatorname{Aut}(D)=P S L_{2}(7)$.

A classical theorem by O'Nan-Scott says that the primitive groups can be classified into five types: Affine, Almost simple, Simple diagonal, Product and Twisted wreath.

A classical theorem by O'Nan-Scott says that the primitive groups can be classified into five types: Affine, Almost simple, Simple diagonal, Product and Twisted wreath.

Theorem (O'Reilly-Regueiro, 2005)

If $D=(P, B)$ is a non-trivial biplane with a primitive, flag-transitive automorphism group G, then one of the following holds:
(1) D has parameters $(16,6,2)$.
(2) $G \leq A \Gamma L_{1}(q)$, for some odd prime power q.
(3) G is of almost simple type.

Theorem (O'Reilly-Regueiro, 2005)

If $D=(P, B)$ is a non-trivial biplane with a primitive, flag-transitive automorphism group G, then one of the following holds:
(1) D has parameters $(16,6,2)$.
(2) $G \leq A \Gamma L_{1}(q)$, for some odd prime power q.
(3) G is of almost simple type.
(O'Reilly-Regueiro, 2005, 2007, 2008.) The only biplanes with a primitive and flag-transitive automorphism group of almost simple type are the Fano complement with parameters $(7,4,2)$ and the unique Hadamard design of order 3 with parameters $(11,5,2)$.

Here, we will discuss the second case, when $G \leq A \Gamma L_{1}(p)$.

Here, we will discuss the second case, when $G \leq A \Gamma L_{1}(p)$.

- We can identify P with the set of points of the field \mathbb{F}_{p}, so if g is a primitive root of \mathbb{F}_{p}, then $P=\left\{0, g, g^{2}, \ldots g^{p-1}\right\}$

Here, we will discuss the second case, when $G \leq A \Gamma L_{1}(p)$.

- We can identify P with the set of points of the field \mathbb{F}_{p}, so if g is a primitive root of \mathbb{F}_{p}, then $P=\left\{0, g, g^{2}, \ldots g^{p-1}\right\}$
- We know that in a finite field with prime order $\operatorname{Aut}\left(\mathbb{F}_{p}\right)=1$, so $A \Gamma L_{1}(p)=A G L_{1}(p)$.

Here, we will discuss the second case, when $G \leq A \Gamma L_{1}(p)$.

- We can identify P with the set of points of the field \mathbb{F}_{p}, so if g is a primitive root of \mathbb{F}_{p}, then $P=\left\{0, g, g^{2}, \ldots g^{p-1}\right\}$
- We know that in a finite field with prime order $\operatorname{Aut}\left(\mathbb{F}_{p}\right)=1$, so $A \Gamma L_{1}(p)=A G L_{1}(p)$.
- Since G is transitive in $P, G=T \rtimes G_{0}$, where $G_{0} \leq\langle\hat{g}\rangle=G L_{1}(p)$ is the point stabilizer of 0 and \hat{g} denotes multiplication by g.

Here, we will discuss the second case, when $G \leq A \Gamma L_{1}(p)$.

- We can identify P with the set of points of the field \mathbb{F}_{p}, so if g is a primitive root of \mathbb{F}_{p}, then $P=\left\{0, g, g^{2}, \ldots g^{p-1}\right\}$
- We know that in a finite field with prime order $\operatorname{Aut}\left(\mathbb{F}_{p}\right)=1$, so $A \Gamma L_{1}(p)=A G L_{1}(p)$.
- Since G is transitive in $P, G=T \rtimes G_{0}$, where $G_{0} \leq\langle\hat{g}\rangle=G L_{1}(p)$ is the point stabilizer of 0 and \hat{g} denotes multiplication by g.
- The $(37,9,2)$ biplane with $G=\mathbb{Z}_{37} \rtimes \mathbb{Z}_{9}$ is the only known example.

Conjecture

Let D be a non-trivial biplane that admits a primitive flag-transitive automorphism group G such that $G \leq A G L_{1}(p)$, where p is prime. Then D is the unique flag-transitive $(37,9,2)$ biplane.

Conjecture

Let D be a non-trivial biplane that admits a primitive flag-transitive automorphism group G such that $G \leq A G L_{1}(p)$, where p is prime. Then D is the unique flag-transitive $(37,9,2)$ biplane.
This is true when $p<10^{7}$

Lemma

If D is a biplane with a flag-transitive group
$G=T \rtimes G_{0} \leq A G L_{1}(p)$, then G_{0} also stabilizes a block b not incident with 0 and the points of b form a G_{0}-orbit.

Lemma

If D is a biplane with a flag-transitive group
$G=T \rtimes G_{0} \leq A G L_{1}(p)$, then G_{0} also stabilizes a block b not incident with 0 and the points of b form a G_{0}-orbit.

Lemma
If G is the automorphism group of a biplane $D=(P, D)$ and $G \leq A G L_{1}(p)$ is flag-transitive, then G is flag-regular.

Special pairs

A pair (p, n) is special if $p=n k+1$ is a prime such that $D_{n}=\left\{x^{n} \mid x \in \mathbb{F}_{p}^{\times}\right\}$is a $(p, k,(k-1) / n)$-difference set of \mathbb{F}_{p}. That is, every element of $\mathbb{F}_{p} \backslash 0$ can be represented as the difference of two elements of D_{n} and the number of different representations is $(k-1) / n$.

Theorem (K. Thas, D. Zagier, 2008)
If D is a (p, k, λ)-symmetric design with a flag-regular automorphism group, then $k=(p-1) / n, \lambda=(k-1) / n$ and (p, n) is a special pair.

Theorem (K. Thas, D. Zagier, 2008)
Let p be a prime and $n \mid(p-1)$. Then (p, n) is a special pair in each in the following five cases:
(a) $n=1, p$ arbitrary.
(b) $n=2, p \equiv 3(\bmod 4)$.
(c) $n=4, p=4 b^{2}+1$ with b odd.
(d) $n=8, p=64 b^{2}+9=8 d^{2}+1$ with b and d integers.
(e) $n=p-1, p$ arbitrary.

It is conjectured that the only special pairs are the ones listed in the previous theorem. In the same paper they found that for $p<10^{7}$ this are the only special pairs. This was done through some computations that check that the number of distinct representations of every element $\alpha \in \mathbb{F}_{p} \backslash 0$ is constant, regardless of the choice of α.

Summing up

Suppose that D is a $(p, k, 2)$ biplane and that $\operatorname{Aut}(D) \leq A G L_{1}(p)$ and that p is a prime less than 10^{7}.

Summing up

Suppose that D is a $(p, k, 2)$ biplane and that $\operatorname{Aut}(D) \leq A G L_{1}(p)$ and that p is a prime less than 10^{7}.
$\Rightarrow \operatorname{Aut}(D)$ is flag-regular.

Summing up

Suppose that D is a $(p, k, 2)$ biplane and that $\operatorname{Aut}(D) \leq A G L_{1}(p)$ and that p is a prime less than 10^{7}.
$\Rightarrow A u t(D)$ is flag-regular.
\Rightarrow we have that $p=n k+1$ and (p, n) is a special pair with $2=(k-1) / n$, so $p=2 n^{2}+n+1$.

Summing up

Suppose that D is a $(p, k, 2)$ biplane and that $\operatorname{Aut}(D) \leq A G L_{1}(p)$ and that p is a prime less than 10^{7}.
$\Rightarrow A u t(D)$ is flag-regular.
\Rightarrow we have that $p=n k+1$ and (p, n) is a special pair with $2=(k-1) / n$, so $p=2 n^{2}+n+1$.
$\Rightarrow D$ is a $\left(2 n^{2}+n+1,2 n+1,2\right)$ biplane and since $p<10^{7}$ then n must be $1,2,4,8$ or $p-1$.

Summing up

Suppose that D is a $(p, k, 2)$ biplane and that $\operatorname{Aut}(D) \leq A G L_{1}(p)$ and that p is a prime less than 10^{7}.
$\Rightarrow \operatorname{Aut}(D)$ is flag-regular.
\Rightarrow we have that $p=n k+1$ and (p, n) is a special pair with $2=(k-1) / n$, so $p=2 n^{2}+n+1$.
$\Rightarrow D$ is a $\left(2 n^{2}+n+1,2 n+1,2\right)$ biplane and since $p<10^{7}$ then n must be $1,2,4,8$ or $p-1$.

If $n=1$ then $p=4$ that is not prime.

Summing up

Suppose that D is a $(p, k, 2)$ biplane and that $\operatorname{Aut}(D) \leq A G L_{1}(p)$ and that p is a prime less than 10^{7}.
$\Rightarrow \operatorname{Aut}(D)$ is flag-regular.
\Rightarrow we have that $p=n k+1$ and (p, n) is a special pair with $2=(k-1) / n$, so $p=2 n^{2}+n+1$.
$\Rightarrow D$ is a $\left(2 n^{2}+n+1,2 n+1,2\right)$ biplane and since $p<10^{7}$ then n must be $1,2,4,8$ or $p-1$.

If $n=1$ then $p=4$ that is not prime.
If $n=2$ then $p=11$ and $k=5$, but the only $(11,5,2)$ biplane is the Hadamard design of order 3 with $\operatorname{Aut}(D)=P S L_{2}(11)$ that is not of affine type.

Summing up

Suppose that D is a $(p, k, 2)$ biplane and that $\operatorname{Aut}(D) \leq A G L_{1}(p)$ and that p is a prime less than 10^{7}.
$\Rightarrow \operatorname{Aut}(D)$ is flag-regular.
\Rightarrow we have that $p=n k+1$ and (p, n) is a special pair with $2=(k-1) / n$, so $p=2 n^{2}+n+1$.
$\Rightarrow D$ is a $\left(2 n^{2}+n+1,2 n+1,2\right)$ biplane and since $p<10^{7}$ then n must be $1,2,4,8$ or $p-1$.

If $n=1$ then $p=4$ that is not prime.
If $n=2$ then $p=11$ and $k=5$, but the only $(11,5,2)$ biplane is the Hadamard design of order 3 with $\operatorname{Aut}(D)=P S L_{2}(11)$ that is not of affine type.

If $n=4$ then $p=37$ and $k=9$. Then D is the $(37,9,2)$ biplane with $\operatorname{Aut}(D)=\mathbb{Z}_{37} \rtimes \mathbb{Z}_{9}$

If $n=4$ then $p=37$ and $k=9$. Then D is the $(37,9,2)$ biplane with $\operatorname{Aut}(D)=\mathbb{Z}_{37} \rtimes \mathbb{Z}_{9}$
If $n=8$ then $p=137$ and $k=17$, but the
$p=64 b^{2}+9=8 d^{2}+1$ condition is not satisfied.

If $n=4$ then $p=37$ and $k=9$. Then D is the $(37,9,2)$ biplane with $\operatorname{Aut}(D)=\mathbb{Z}_{37} \rtimes \mathbb{Z}_{9}$
If $n=8$ then $p=137$ and $k=17$, but the
$p=64 b^{2}+9=8 d^{2}+1$ condition is not satisfied.
if $n=p-1$ then $n+1=2 n^{2}+n+1$, a contradiction.

Thank you!

