Equivelar toroids with few flag-orbits

Antonio Montero ${ }^{1}$ José Collins ${ }^{2}$
${ }^{1}$ Centro de Ciencias Matemáticas UNAM 2Instituto de Matemáticas UNAM

Symmetries and Covers of Discrete Objects Queenstown, New Zealand February 2016

Tessellations

An Euclidean Tessellation \mathcal{U} of \mathbb{E}^{n} is a family of convex n-polytopes such that

* \mathcal{U} is a cover of \mathbb{E}^{n} and the cells tile \mathbb{E}^{n} in a face-to-face manner.
* \mathcal{U} is locally finite.

Tessellations

Tessellations

Tessellations

* A flag of a tessellation is an incident tuple $\left(F_{0}, F_{1}, \ldots F_{n}\right)$ where $\operatorname{dim}\left(F_{i}\right)=i$.

Tessellations

* A flag of a tessellation is an incident tuple $\left(F_{0}, F_{1}, \ldots F_{n}\right)$ where $\operatorname{dim}\left(F_{i}\right)=i$.

Tessellations

* A flag of a tessellation is an incident tuple $\left(F_{0}, F_{1}, \ldots F_{n}\right)$ where $\operatorname{dim}\left(F_{i}\right)=i$.
* A symmetry of a tessellation \mathcal{U} is an isometry of \mathbb{E}^{n} that preserves \mathcal{U}. We denote the group of symmetries of \mathcal{U} by $G(\mathcal{U})$.

Tessellations

* A flag of a tessellation is an incident tuple $\left(F_{0}, F_{1}, \ldots F_{n}\right)$ where $\operatorname{dim}\left(F_{i}\right)=i$.
* A symmetry of a tessellation \mathcal{U} is an isometry of \mathbb{E}^{n} that preserves \mathcal{U}. We denote the group of symmetries of \mathcal{U} by $G(\mathcal{U})$.
* $G(\mathcal{U})$ acts on the set of flags of \mathcal{U}. We say that \mathcal{U} is regular if this action is transitive.

Regular Tessellations

Regular tessellations are well-known:

* If $n=2$:
- Cubic tessellation $\{4,4\}$.
- Triangular tessellation $\{3,6\}$.
- Hexagonal tessellation $\{6,3\}$.

Regular Tessellations

Regular tessellations are well-known:

* If $n=2$:
- Cubic tessellation $\{4,4\}$.
- Triangular tessellation $\{3,6\}$.
- Hexagonal tessellation $\{6,3\}$.
* If $n=4$:
- Cubic tessellation $\{4,3,3,4\}$.
- Tessellation with cross-polytopes $\{3,3,4,3\}$.
- Tessellation with 24 -cells $\{3,4,3,3\}$.

Regular Tessellations

Regular tessellations are well-known:

* If $n=2$:
- Cubic tessellation $\{4,4\}$.
- Triangular tessellation $\{3,6\}$.
- Hexagonal tessellation $\{6,3\}$.
* If $n=4$:
- Cubic tessellation $\{4,3,3,4\}$.
- Tessellation with cross-polytopes $\{3,3,4,3\}$.
- Tessellation with 24 -cells $\{3,4,3,3\}$.
* If $n \in\{3,5,6 \ldots\}$:
- Cubic tessellation $\left\{4,3^{n-2}, 4\right\}$

Toroids

An $(n+1)$-toroid is the quotient of a tessellation \mathcal{U} of \mathbb{E}^{n} by a rank n lattice group $\Lambda \leqslant G(\mathcal{U})$.

Toroids

An $(n+1)$-toroid is the quotient of a tessellation \mathcal{U} of \mathbb{E}^{n} by a rank n lattice group $\Lambda \leqslant G(\mathcal{U})$.

Toroids

An $(n+1)$-toroid is the quotient of a tessellation \mathcal{U} of \mathbb{E}^{n} by a rank n lattice group $\Lambda \leqslant G(\mathcal{U})$.

Toroids

An $(n+1)$-toroid is the quotient of a tessellation \mathcal{U} of \mathbb{E}^{n} by a rank n lattice group $\Lambda \leqslant G(\mathcal{U})$.

Toroids

* Toroids are generalizations of maps in the torus (3-toroids).

Toroids

* Toroids are generalizations of maps in the torus (3-toroids).
* Provide examples of abstract polytopes.

Symmetries of toroids

* A flag in a toroid \mathcal{U} / Λ is the orbit of a flag of \mathcal{U} under Λ.

Symmetries of toroids

* A flag in a toroid \mathcal{U} / Λ is the orbit of a flag of \mathcal{U} under Λ.
* What is a symmetry of a toroid?

Symmetries of toroids

* A flag in a toroid \mathcal{U} / Λ is the orbit of a flag of \mathcal{U} under Λ.
* What is a symmetry of a toroid?

Symmetries of toroids

* Such $\bar{\gamma}$ exists if and only if γ normalizes Λ.

Symmetries of toroids

* Such $\bar{\gamma}$ exists if and only if γ normalizes Λ.
* Every symmetry of \mathcal{U} / Λ is given this way.

Symmetries of toroids

* Such $\bar{\gamma}$ exists if and only if γ normalizes Λ.
* Every symmetry of \mathcal{U} / Λ is given this way.
* Every element of Λ acts trivially in \mathcal{U} / Λ.

Symmetries of toroids

* Such $\bar{\gamma}$ exists if and only if γ normalizes Λ.
* Every symmetry of \mathcal{U} / Λ is given this way.
* Every element of Λ acts trivially in \mathcal{U} / Λ.
* Define $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{G(\mathcal{U})}(\Lambda) / \Lambda$.

Symmetries of toroids

* Such $\bar{\gamma}$ exists if and only if γ normalizes Λ.
* Every symmetry of \mathcal{U} / Λ is given this way.
* Every element of Λ acts trivially in \mathcal{U} / Λ.
* Define $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{G(\mathcal{U})}(\Lambda) / \Lambda$.
* Translations of \mathcal{U} and $\chi: x \mapsto-x$ always normalize Λ.

Symmetries of toroids

* Such $\bar{\gamma}$ exists if and only if γ normalizes Λ.
* Every symmetry of \mathcal{U} / Λ is given this way.
* Every element of Λ acts trivially in \mathcal{U} / Λ.
* Define $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{G(\mathcal{U})}(\Lambda) / \Lambda$.
* Translations of \mathcal{U} and $\chi: x \mapsto-x$ always normalize Λ.
* $\mathcal{U} / \Lambda \cong \mathcal{U} / \Lambda^{\prime}$ if and only if Λ and Λ^{\prime} are conjugate.

Toroids

* A toroid $\mathcal{T}:=\mathcal{U} / \Lambda$ is regular if $\operatorname{Aut}(\mathcal{T})$ acts transitively on the flags of \mathcal{T}.

Toroids

* A toroid $\mathcal{T}:=\mathcal{U} / \Lambda$ is regular if $\operatorname{Aut}(\mathcal{T})$ acts transitively on the flags of \mathcal{T}.
* \mathcal{T} is said to be k-orbits if $\operatorname{Aut}(\mathcal{T})$ has k orbits on flags.

Toroids

* A toroid $\mathcal{T}:=\mathcal{U} / \Lambda$ is regular if $\operatorname{Aut}(\mathcal{T})$ acts transitively on the flags of \mathcal{T}.
* \mathcal{T} is said to be k-orbits if $\operatorname{Aut}(\mathcal{T})$ has k orbits on flags.
* A toroid \mathcal{T} is chiral if it is 2-orbits and adjacent flags belong to different orbits.

Toroids

* A toroid $\mathcal{T}:=\mathcal{U} / \Lambda$ is regular if $\operatorname{Aut}(\mathcal{T})$ acts transitively on the flags of \mathcal{T}.
* \mathcal{T} is said to be k-orbits if $\operatorname{Aut}(\mathcal{T})$ has k orbits on flags.
* A toroid \mathcal{T} is chiral if it is 2-orbits and adjacent flags belong to different orbits.
* A toroid \mathcal{T} is equivelar if it is induced by a regular tessellation.

Toroids What do we know?

* Regular toroids are classified:
- If $n=2$ there are two families. (Coxeter, 1948)
- If $n \geqslant 3$ there are three families. (McMullen and Schulte, 1996)

Toroids What do we know?

* Regular toroids are classified:
- If $n=2$ there are two families. (Coxeter, 1948)
- If $n \geqslant 3$ there are three families. (McMullen and Schulte, 1996)
* Chiral toroids are classified, they only exist in dimension 2 (chiral maps). (Hartley, McMullen and Schulte, 1999)

Toroids What about higher dimensions?

* Toroids of dimension two are classified (Brehm and Kühnel, 2008)

Toroids What about hicher dimensions?

* Toroids of dimension two are classified (Brehm and Kühnel, 2008)
* Toroids of dimension three are classified (Hubard, Orbanić, Pellicer and Weiss, 2012)

Toroids

$$
\{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
K / \Lambda \\
K \leqslant G(\mathcal{U})=T \rtimes S \\
\langle T, \chi\rangle \leqslant K
\end{array}\right\}
$$

Toroids

$$
\begin{aligned}
& \{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
K / \Lambda \\
\left.K \leqslant \begin{array}{c}
G(\mathcal{U})=T \rtimes S \\
\langle T, \chi\rangle \leqslant K
\end{array}\right\}
\end{array}\right. \\
& \{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
\left.K \leqslant \begin{array}{c}
G(\mathcal{U})=T \rtimes S \\
\langle T, \chi\rangle \leqslant K
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

Toroids

$$
\begin{aligned}
& \{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
K / \Lambda \\
K \leqslant G(\mathcal{U})=T \rtimes S \\
\langle T, \chi\rangle \leqslant K
\end{array}\right\} \\
& \{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
K \leqslant G(\mathcal{U})=T \rtimes S \\
\langle T, \chi\rangle \leqslant K
\end{array}\right\}
\end{aligned}
$$

$\{$ Symetry type of toroids $\} \longrightarrow\left\{\langle\chi\rangle \leqslant K^{\prime} \leqslant S\right\}$

Toroids

$$
\begin{aligned}
& \{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
K / \Lambda \\
K \leqslant G(\mathcal{U})=T \rtimes S \\
\langle T, \chi\rangle \leqslant K
\end{array}\right\} \\
& \{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
K \leqslant G(\mathcal{U})=T \rtimes S \\
\langle T, \chi\rangle \leqslant K
\end{array}\right\}
\end{aligned}
$$

$\{$ Symetry type of toroids $\} \longrightarrow\left\{\langle\chi\rangle \leqslant K^{\prime} \leqslant S\right\}$
$\{$ Symetry type of toroids $\} \longrightarrow\left\{\begin{array}{c}\text { Congujacy classes of } \\ \langle\chi\rangle \leqslant K^{\prime} \leqslant S\end{array}\right\}$

Toroids

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Candidates for } \\
\text { automorphism group }
\end{array}\right\}
$$

Toroids

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Candidates for } \\
\text { automorphism group }
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \Longrightarrow \begin{gathered}
\text { Classification } \\
\text { of toroids }
\end{gathered}
$$

Toroids

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Candidates for } \\
\text { automorphism group }
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \Longrightarrow \begin{gathered}
\text { Classification } \\
\text { of toroids }
\end{gathered}
$$

Tow problems:

* It only solves half of the problem.

Toroids

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Candidates for } \\
\text { automorphism group }
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \Longrightarrow \begin{gathered}
\text { Classification } \\
\text { of toroids }
\end{gathered}
$$

Tow problems:

* It only solves half of the problem.
* Not practical

Toroids

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Candidates for } \\
\text { automorphism group }
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \Longrightarrow \begin{gathered}
\text { Classification } \\
\text { of toroids }
\end{gathered}
$$

Tow problems:

* It only solves half of the problem.
* Not practical, the group S is HUGE: $2^{n} n!$.

Toroids

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Candidates for } \\
\text { automorphism group }
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle\chi\rangle \leqslant K^{\prime} \leqslant S
\end{array}\right\} \Longrightarrow \begin{gathered}
\text { Classification } \\
\text { of toroids }
\end{gathered}
$$

Tow problems:

* It only solves half of the problem.
* Not practical, the group S is HUGE: $2^{n} n!$.
* Still useful...

Few-orBits toroids

* Corollary (HPOW): There are no 2-orbits equivelar $(3+1)$-toroids.

Few-orBits toroids

* Corollary (HPOW): There are no 2-orbits equivelar $(3+1)$-toroids.
* Q: Can we classify (equivelar) 2-orbits ($n+1$)-toroids?

Few-orBits toroids

* Corollary (HPOW): There are no 2-orbits equivelar $(3+1)$-toroids.
* Q: Can we classify (equivelar) 2-orbits $(n+1)$-toroids?
* Q: Do they even exist if $n>3$?

Few-orBits toroids

An $(n+1)$-toroid \mathcal{T} is a few-orbit toroid if the number of flag-orbits of $\operatorname{Aut}(\mathcal{T})$ is less than n.

Few-orBits toroids

An $(n+1)$-toroid \mathcal{T} is a few-orbit toroid if the number of flag-orbits of Aut (\mathcal{T}) is less than n.

* Regular toroids are few-orbit toroids.

Few-orBits toroids

An $(n+1)$-toroid \mathcal{T} is a few-orbit toroid if the number of flag-orbits of Aut (\mathcal{T}) is less than n.

* Regular toroids are few-orbit toroids.
* If $n \geqslant 3$, all 2 -orbits ($n+1$)-toroids are few-orbits toroids.

Few-orbits toroids Cubic toroids

* Regular toroids.

Few-orbits toroids Cubic toroids

* Regular toroids.
* Two orbit toroids:
- If n is odd, there are no 2-orbit toroids.

Few-orbits toroids Cubic toroids

* Regular toroids.
* Two orbit toroids:
- If n is odd, there are no 2-orbit toroids.
- If n is even, there exists one family in class $2_{\{1,2, \ldots, n-1\}}$.

Few-orbits toroids Cusic toroids

* Regular toroids.
* Two orbit toroids:
- If n is odd, there are no 2-orbit toroids.
- If n is even, there exists one family in class $2_{\{1,2, \ldots, n-1\}}$.
* If $n \geqslant 5$, there are no cubic toroids with k orbits if $2<k<n$.

Few-orBits toroids
 (4+1)-toroids

Cubic toroids:

* Regular toroids: three families.
* 2-orbits toroids: one family in class $2_{\{1,2,3\}}$.

Few-orbits toroids (4+1)-toroids

Cubic toroids:

* Regular toroids: three families.
* 2-orbits toroids: one family in class $2_{\{1,2,3\}}$.
* 3-orbits toroids: one family.

Few-orBits toroids

(4+1)-toroids

Cubic toroids:

* Regular toroids: three families.
* 2-orbits toroids: one family in class $2_{\{1,2,3\}}$.
* 3-orbits toroids: one family.

Toroids of type $\{3,3,4,3\}$ (or $\{3,4,3,3\}$):

Few-orbits toroids $(4+1)$-toroids

Cubic toroids:

* Regular toroids: three families.
* 2-orbits toroids: one family in class $2_{\{1,2,3\}}$.
* 3-orbits toroids: one family.

Toroids of type $\{3,3,4,3\}$ (or $\{3,4,3,3\}$):

* Regular toroids: two families.

Few-orbits toroids $(4+1)$-toroids

Cubic toroids:

* Regular toroids: three families.
* 2-orbits toroids: one family in class $2_{\{1,2,3\}}$.
* 3-orbits toroids: one family.

Toroids of type $\{3,3,4,3\}$ (or $\{3,4,3,3\}$):

* Regular toroids: two families.
* 2-orbits toroids: one family in class $2_{\{3,4\}}$.

Few-orBits toroids $(4+1)$-toroids

Cubic toroids:

* Regular toroids: three families.
* 2-orbits toroids: one family in class $2_{\{1,2,3\}}$.
* 3-orbits toroids: one family.

Toroids of type $\{3,3,4,3\}$ (or $\{3,4,3,3\}$):

* Regular toroids: two families.
* 2-orbits toroids: one family in class $2_{\{3,4\}}$.
* 3-orbits toroids: two families with different symmetry type.

Open problems/Future work

* Classify few-orbits non-equivelar toroids.

Open problems/Future work

* Classify few-orbits non-equivelar toroids.
* Study few-orbits structures in other Euclidean space forms.

Open problems/Future work

* Classify few-orbits non-equivelar toroids.
* Study few-orbits structures in other Euclidean space forms.
* Achieve a complete classification of toroids.

Thank you!

And happy Birthday conference to Marston, Gareth and Steve.

