Manufacturing Permutation Representations of Monodromy Groups of Polytopes

Barry Monson, University of New Brunswick

SCDO, Queenstown, NZ, February, 2016
(supported in part by NSERC)

Outline: there's no time for an outline!

But

L.Berman, D.Oliveros, and G.Williams

are part of the project. Thanks as well to
D. Pellicer and M. Mixer.

Abstract Polytopes

Thinking combinatorially (abstractly), an n-polytope \mathcal{P} is a poset with properties modelled on those of the face lattice of a convex n-polytope.

Symmetry is described by $\operatorname{Aut}(\mathcal{P})$, the group of all automorphisms $=$ order-preserving bijections on \mathcal{P}.

Abstract Polytopes

Thinking combinatorially (abstractly), an n-polytope \mathcal{P} is a poset with properties modelled on those of the face lattice of a convex n-polytope.

Symmetry is described by $\operatorname{Aut}(\mathcal{P})$, the group of all automorphisms $=$ order-preserving bijections on \mathcal{P}.

An n-polytope \mathcal{P} is regular if $\operatorname{Aut}(\mathcal{P})$ is transitive on flags.
(But most polytopes of rank $n \geq 3$ are not regular.)

Abstract Polytopes

Thinking combinatorially (abstractly), an n-polytope \mathcal{P} is a poset with properties modelled on those of the face lattice of a convex n-polytope.

Symmetry is described by $\operatorname{Aut}(\mathcal{P})$, the group of all automorphisms $=$ order-preserving bijections on \mathcal{P}.

An n-polytope \mathcal{P} is regular if $\operatorname{Aut}(\mathcal{P})$ is transitive on flags.
(But most polytopes of rank $n \geq 3$ are not regular.)
If \mathcal{P} is regular, then $\operatorname{Aut}(\mathcal{P})=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ is a string C-group. From such a group (with specified generators) we can reconstruct \mathcal{P} as a coset geometry (using a combinatorial Wythoff's construction).

Abstract Polytopes

Thinking combinatorially (abstractly), an n-polytope \mathcal{P} is a poset with properties modelled on those of the face lattice of a convex n-polytope.

Symmetry is described by $\operatorname{Aut}(\mathcal{P})$, the group of all automorphisms $=$ order-preserving bijections on \mathcal{P}.

An n-polytope \mathcal{P} is regular if $\operatorname{Aut}(\mathcal{P})$ is transitive on flags.
(But most polytopes of rank $n \geq 3$ are not regular.)
If \mathcal{P} is regular, then $\operatorname{Aut}(\mathcal{P})=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ is a string C-group. From such a group (with specified generators) we can reconstruct \mathcal{P} as a coset geometry (using a combinatorial Wythoff's construction).

But now let us disassemble \mathcal{P}.

$\operatorname{Mon}(\mathcal{P})$ scrambles the flags of an n-polytope \mathcal{P}

The diamond condition on the n-polytope \mathcal{P} amounts to this: for each flag Φ and proper rank $j(0 \leq j \leq n-1)$ there exists a unique flag Φ^{j} which is j-adjacent to Φ.

$\operatorname{Mon}(\mathcal{P})$ scrambles the flags of an n-polytope \mathcal{P}

The diamond condition on the n-polytope \mathcal{P} amounts to this:
for each flag Φ and proper rank $j(0 \leq j \leq n-1)$ there exists a unique flag Φ^{j} which is j-adjacent to Φ.

So $r_{j}: \Phi \mapsto \Phi^{j}$ defines a fixed-point-free involution on the flag set $\mathcal{F}(\mathcal{P})$.
Defn. The monodromy group $\operatorname{Mon}(\mathcal{P}):=\left\langle r_{0}, \ldots, r_{n-1}\right\rangle$
(a subgroup of the symmetric group acting on $\mathcal{F}(\mathcal{P})$).

More on $\operatorname{Mon}(\mathcal{P})=\left\langle r_{0}, \ldots, r_{n-1}\right\rangle$

- $\operatorname{Mon}(\mathcal{P})$ encodes combinatorial essence of \mathcal{P} :
eg. flag connectedness of $\mathcal{P} \Rightarrow \operatorname{Mon}(\mathcal{P})$ transitive on $\mathcal{F}(\mathcal{P})$

Barry Monson, University of New Brunswick , SCDO, Queenstc Manufacturing Permutation Representations of Monodromy G

More on $\operatorname{Mon}(\mathcal{P})=\left\langle r_{0}, \ldots, r_{n-1}\right\rangle$

- $\operatorname{Mon}(\mathcal{P})$ encodes combinatorial essence of \mathcal{P} :
eg. flag connectedness of $\mathcal{P} \Rightarrow \operatorname{Mon}(\mathcal{P})$ transitive on $\mathcal{F}(\mathcal{P})$
- $\operatorname{Mon}(\mathcal{P})$ says a lot about how \mathcal{P} can be covered by an abstract regular n-polytope \mathcal{R}

More on $\operatorname{Mon}(\mathcal{P})=\left\langle r_{0}, \ldots, r_{n-1}\right\rangle$

- $\operatorname{Mon}(\mathcal{P})$ encodes combinatorial essence of \mathcal{P} :
eg. flag connectedness of $\mathcal{P} \Rightarrow \operatorname{Mon}(\mathcal{P})$ transitive on $\mathcal{F}(\mathcal{P})$
- $\operatorname{Mon}(\mathcal{P})$ says a lot about how \mathcal{P} can be covered by an abstract regular n-polytope \mathcal{R}
- $\operatorname{Mon}(\mathcal{P})$ is an sggi (= string group generated by involutions): r_{j} and r_{k} commute if $|j-k|>1$

More on $\operatorname{Mon}(\mathcal{P})=\left\langle r_{0}, \ldots, r_{n-1}\right\rangle$

- $\operatorname{Mon}(\mathcal{P})$ encodes combinatorial essence of \mathcal{P} :
eg. flag connectedness of $\mathcal{P} \Rightarrow \operatorname{Mon}(\mathcal{P})$ transitive on $\mathcal{F}(\mathcal{P})$
- $\operatorname{Mon}(\mathcal{P})$ says a lot about how \mathcal{P} can be covered by an abstract regular n-polytope \mathcal{R}
- $\operatorname{Mon}(\mathcal{P})$ is an sggi (= string group generated by involutions): r_{j} and r_{k} commute if $|j-k|>1$
- Th actions of $\operatorname{Mon}(\mathcal{P})$ and $\operatorname{Aut}(\mathcal{P})$ on $\mathcal{F}(\mathcal{P})$ commute: for $g \in \operatorname{Mon}(\mathcal{P}), \alpha \in \operatorname{Aut}(\mathcal{P})$, flag $\Phi \in \mathcal{F}(\mathcal{P})$

$$
(\Phi \alpha)^{g}=\left(\Phi^{g}\right) \alpha
$$

$\operatorname{Mon}(\mathcal{P})$ can be a beast to compute ...

If \mathcal{P} is regular then $\operatorname{Mon}(\mathcal{P}) \simeq \operatorname{Aut}(\mathcal{P})$ (as sggi's).
But typically $\operatorname{Mon}(\mathcal{P})$ is far larger than $\operatorname{Aut}(\mathcal{P})$ and is obscurely structured.

Our main result here is a simple way to build manageable and (one hopes) useful permutation representations of $\operatorname{Mon}(\mathcal{P})$.

Permutation representations of $\operatorname{Mon}(\mathcal{P})$

Theorem [B.M. et al, 2015]. Say G any subgroup of $\operatorname{Aut}(\mathcal{P})$. Choose any base flag $\Psi \in \mathcal{F}(\mathcal{P})$ and let \mathcal{O} be the G-orbit of Ψ in $\mathcal{F}(\mathcal{P})$. Then (a) For each $g \in \operatorname{Mon}(\mathcal{P})$, the set \mathcal{O}^{g} is the G-orbit of the flag Ψ^{g}. (b) $B:=\left\{\mathcal{O}^{g}: g \in \operatorname{Mon}(\mathcal{P})\right\}$ is a partition of the flag set $\mathcal{F}(\mathcal{P})$. (c) We get a permutation representation in B :

$$
\begin{aligned}
f: \operatorname{Mon}(\mathcal{P}) & \rightarrow \operatorname{Sym}(B) \\
h & \mapsto \pi_{h}
\end{aligned}
$$

where $\left(\mathcal{O}^{g}\right) \pi_{h}=\mathcal{O}^{g h}$.
(d) If G is core-free in $\operatorname{Aut}(\mathcal{P})$, then f is injective.

Test Case 1: the truncated icosahedron.

In 2010 M. Hartley \& G. Williams computed the monodromy group for each Archimedean polyhedron. Some surface topology motivated a complicated presentation, which was then analyzed in GAP.

Challenge: have a somewhat limited human do the truncated icosahedron \mathcal{P} by hand.
(From H-W above, the order of the monodromy group for this polyhedron was known to be 2592000.)

- A chiral example

First the regular icosahedron $\{3,5\}$

Its automorphism group is the Coxeter group $H_{3}=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$ with diagram

A subgroup $G<H_{3}$

Notice that $H_{3} \simeq A_{5} \times C_{2}$ has a subgroup $G \simeq A_{4}$. Indeed, G is the group of rotations preserving 3 mutually orthogonal golden rectangles inscribed in $\{3,5\}$:

It is easy to check that

$$
G=\left\langle\rho_{0} \rho_{1},\left(\rho_{0} \rho_{2}\right)^{\rho_{1} \rho_{2}}\right\rangle
$$

is (to conjugacy) the largest core-free subgroup of H_{3}.

A fragment of the truncated icosahedron \mathcal{P} (with some icosahedral scaffolding)

Still $\operatorname{Aut}(\mathcal{P})=H_{3}$:

The truncated icosahedron \mathcal{P}

has three symmetry classes of flags, hence 360 flags. Here are three base flags:

Type 1 - orange (pent. to hexa.)
Type 2 - cyan (hexa. to penta.)
Type 3 - magenta (hexa. to hexa.)

Apply the Theorem.

- we found G largest core-free subgroup, order 12 .

Barry Monson, University of New Brunswick , SCDO, Queenst Manufacturing Permutation Representations of Monodromy Gr

Apply the Theorem.

- we found G largest core-free subgroup, order 12 .
- get a faithful representation of degree $30=360 / 12$.

Barry Monson, University of New Brunswick , SCDO, Queenst (Manufacturing Permutation Representations of Monodromy Gr

Apply the Theorem.

- we found G largest core-free subgroup, order 12 .
- get a faithful representation of degree $30=360 / 12$.
- let $\gamma=\rho_{0} \rho_{1} \rho_{2}$, a Coxeter element; order 10.

Apply the Theorem.

- we found G largest core-free subgroup, order 12.
- get a faithful representation of degree $30=360 / 12$.
- let $\gamma=\rho_{0} \rho_{1} \rho_{2}$, a Coxeter element; order 10.
- so powers γ^{j}, taking $j(\bmod 10)$, give a transversal to G in H_{3}.
- Upshot: $\operatorname{Mon}(\mathcal{P})$ faithfully represented on $\{1,2, \ldots, 30\}$. For $1 \leq i \leq 3,1 \leq j \leq 10$, the number $10(i-1)+j$ represents the G-orbit of the image under γ^{j} of the base type i flag.

Using just a model of the icosahedron

(and several patient minutes) we get that $\operatorname{Mon}(\mathcal{P}) \simeq\left\langle r_{0}, r_{1}, r_{2}\right\rangle$, where

$$
\begin{aligned}
r_{0}= & (1,4)(2,7)(3,10)(5,8)(6,9)(11,14)(12,17)(13,20) \\
& (15,18)(16,19)(21,26)(22,29)(23,30)(24,27)(25,28) \\
r_{1}= & (1,6)(2,3)(4,5)(7,8)(9,10)(11,21)(12,22)(13,23) \\
& (14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30) \\
r_{2}= & (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18) \\
& (9,19)(10,20)(21,26)(22,23)(24,25)(27,28)(29,30)
\end{aligned}
$$

Experiment a bit ...

We know from general theory that $\operatorname{Mon}(\mathcal{P})$ is a string C-group of Schläfli type $\{30,3\}$. The ' 30 ' prompts a look at the cycle structure of

$$
\begin{aligned}
r_{0} r_{1}= & (1,5,7,3,9)(2,8,4,6,10)(11,24,17,22,19,26) \\
& (12,27,14,21,16,29)(13,30)(15,28)(18,25)(20,23)
\end{aligned}
$$

so that

$$
\left(r_{0} r_{1}\right)^{6}=(1,5,7,3,9)(2,8,4,6,10)
$$

a 'parallel product' of 5-cycles supported only by type 1 flag blocks.

Continuing this way we soon find that

- $\operatorname{Mon}(\mathcal{P})$ has a normal subgroup $K \simeq A_{5} \times A_{5} \times A_{5}$, of order $60^{3}=216000$. The exponent 3 derives from the three flag classes.

Continuing this way we soon find that

- $\operatorname{Mon}(\mathcal{P})$ has a normal subgroup $K \simeq A_{5} \times A_{5} \times A_{5}$, of order $60^{3}=216000$. The exponent 3 derives from the three flag classes.
- The centre of $\operatorname{Mon}(\mathcal{P})$ is generated by the involution

$$
\begin{aligned}
z=\left(r_{0} r_{1} r_{2}\right)^{9}= & (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17) \\
& (13,18)(14,19)(15,20)(21,26)(22,27) \\
& (23,28)(24,29)(25,30)
\end{aligned}
$$

Continuing this way we soon find that

- $\operatorname{Mon}(\mathcal{P})$ has a normal subgroup $K \simeq A_{5} \times A_{5} \times A_{5}$, of order $60^{3}=216000$. The exponent 3 derives from the three flag classes.
- The centre of $\operatorname{Mon}(\mathcal{P})$ is generated by the involution

$$
\begin{aligned}
z=\left(r_{0} r_{1} r_{2}\right)^{9}= & (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17) \\
& (13,18)(14,19)(15,20)(21,26)(22,27) \\
& (23,28)(24,29)(25,30)
\end{aligned}
$$

- The subgroup $T=\left\langle z, r_{1}, r_{2}\right\rangle \simeq C_{2} \times S_{3}$ is of order 12 and is transverse to K.

Summing up ...

- $\operatorname{Mon}(\mathcal{P}) \simeq\left(C_{2} \times S_{3}\right) \ltimes\left(A_{5} \times A_{5} \times A_{5}\right)$, a semidirect product.

Barry Monson, University of New Brunswick , SCDO, Queenst Manufacturing Permutation Representations of Monodromy Gr

Summing up ...

- $\operatorname{Mon}(\mathcal{P}) \simeq\left(C_{2} \times S_{3}\right) \ltimes\left(A_{5} \times A_{5} \times A_{5}\right)$, a semidirect product.
- The minimal regular cover \mathcal{R} of the truncated icosahedron is a map of Schläfli type $\{30,3\}$ and having 2592000 flags.

Test Case 2: the finite chiral 5-Polytope \mathcal{P}

of type $\{3,4,4,3\}$ (described by Conder, Hubard, Pisanski in 2008).
Here $\operatorname{Aut}(\mathcal{P})=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4},\right\rangle \simeq \operatorname{Sym}_{6}$ with

$$
\begin{aligned}
\sigma_{1} & =(1,2,3) \\
\sigma_{2} & =(1,3,2,4) \\
\sigma_{3} & =(1,5,4,3) \\
\sigma_{4} & =(1,2,3)(4,6,5)
\end{aligned}
$$

Test Case 2: the finite chiral 5-Polytope \mathcal{P}

of type $\{3,4,4,3\}$ (described by Conder, Hubard, Pisanski in 2008).
Here $\operatorname{Aut}(\mathcal{P})=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4},\right\rangle \simeq \operatorname{Sym}_{6}$ with

$$
\begin{aligned}
\sigma_{1} & =(1,2,3) \\
\sigma_{2} & =(1,3,2,4) \\
\sigma_{3} & =(1,5,4,3) \\
\sigma_{4} & =(1,2,3)(4,6,5)
\end{aligned}
$$

$\operatorname{Aut}(\mathcal{P})$ has 2 flag orbits (as in any chiral polytope) so \mathcal{P} has $1440=2 \cdot 720$ flags.

Test Case 2: the finite chiral 5-Polytope \mathcal{P}

of type $\{3,4,4,3\}$ (described by Conder, Hubard, Pisanski in 2008).
Here $\operatorname{Aut}(\mathcal{P})=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4},\right\rangle \simeq \operatorname{Sym}_{6}$ with

$$
\begin{aligned}
\sigma_{1} & =(1,2,3) \\
\sigma_{2} & =(1,3,2,4) \\
\sigma_{3} & =(1,5,4,3) \\
\sigma_{4} & =(1,2,3)(4,6,5)
\end{aligned}
$$

$\operatorname{Aut}(\mathcal{P})$ has 2 flag orbits (as in any chiral polytope) so \mathcal{P} has $1440=2 \cdot 720$ flags.
But the facet group $G=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle=\operatorname{Sym}_{5}$ is core-free in $\operatorname{Aut}(\mathcal{P})$, so we get a faithful representation of $\operatorname{Mon}(\mathcal{P})$ on $2 \cdot 6=12$ blocks (of 120 flags each).

Test case 2, continued

When you ponder $\operatorname{Aut}(\mathcal{P})$ a bit you get (by hand+brain) this faithful representation of $\operatorname{Mon}(\mathcal{P})=\left\langle r_{0}, r_{1}, r_{2}, r_{3}, r_{4}\right\rangle$ by permutations of degree 12 :

$$
\begin{aligned}
& r_{0}=(1,7)(2,8)(3,9)(4,10)(5,11)(6,12) \\
& r_{1}=(1,7)(2,8)(3,10)(4,11)(5,9)(6,12) \\
& r_{2}=(1,7)(2,11)(3,9)(4,10)(5,8)(6,12) \\
& r_{3}=(1,8)(2,7)(3,11)(4,10)(5,9)(6,12) \\
& r_{4}=(1,12)(2,8)(3,10)(4,9)(5,11)(6,7)
\end{aligned}
$$

(a considerable improvement over degree 1440).
We find that $\operatorname{Mon}(\mathcal{P})$ has order 518400.

Test case 2, continued

Furthermore, $\operatorname{Mon}(\mathcal{P})$ has to be a a sggi and must also have type $\{3,4,4,3\}$. However, the intersection condition, which would give a regular polytope from $\operatorname{Mon}(\mathcal{P})$, actually fails in $\operatorname{Mon}(\mathcal{P})$.

To 'resolve this singularity', we use a mixing technique of BM-Schulte to produce a regular polytopal cover \mathcal{R} of \mathcal{P}. This \mathcal{R} has Schläfli type $\{3,4,4,6\}$ and 3732480000 flags.

Remarkably, this cover is minimal (among regular covers of \mathcal{P}), even though it covers \mathcal{P} in a 2592000:1 fashion.

I have no idea how to comprehensively describe the minimal regular covers of \mathcal{P}. It is hardly likely that \mathcal{R} is unique.

MANY THANKS TO YOU AND THE ORGANIZERS!

Barry Monson, University of New Brunswick , SCDO, Queenst Manufacturing Permutation Representations of Monodromy

References

[1] L. Berman, B. Monson, D. Oliveros and G. Williams, Fully truncated simplices and their monodromy groups, under scrutiny.
[2] M. Conder, I. Hubard and T. Pisanski, Constructions for Chiral Polytopes, JLMS, 2008.
[3] M. Hartley and G. Williams, Representing the Sporadic Archimedean Polyhedra as Abstract Polytopes, Discrete Math., 2010.
[4] P. McMullen and E. Schulte, Abstract Regular Polytopes, CUP, 2002.
[5] B.Monson, D. Pellicer and G. Williams, Mixing and Monodromy of Abstract Polytopes, Trans. AMS., 2014.
[6] B.Monson and E. Schulte, Finite Polytopes have Finite Regular Covers, J. Algebr. Comb., 2014.

