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Outline: there’s no time for an outline!

But

L.Berman, D.Oliveros, and G.Williams

are part of the project. Thanks as well to

D. Pellicer and M. Mixer.
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Abstract Polytopes

Thinking combinatorially (abstractly), an n-polytope P is a poset with
properties modelled on those of the face lattice of a convex n-polytope.

Symmetry is described by Aut(P), the group of all
automorphisms = order-preserving bijections on P.

An n-polytope P is regular if Aut(P) is transitive on flags.

(But most polytopes of rank n ≥ 3 are not regular.)

If P is regular, then Aut(P) = 〈ρ0, . . . , ρn−1〉 is a string C-group. From
such a group (with specified generators) we can reconstruct P as a coset
geometry (using a combinatorial Wythoff’s construction).

But now let us disassemble P.
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Mon(P) scrambles the flags of an n-polytope P

The diamond condition on the n-polytope P amounts to this:

for each flag Φ and proper rank j (0 ≤ j ≤ n − 1) there exists a unique
flag Φj which is j-adjacent to Φ.

So rj : Φ 7→ Φj defines a fixed-point-free involution on the flag set F(P).

Defn. The monodromy group Mon(P) := 〈r0, . . . , rn−1〉

(a subgroup of the symmetric group acting on F(P)).
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More on Mon(P) = 〈r0, . . . , rn−1〉

• Mon(P) encodes combinatorial essence of P:

eg. flag connectedness of P ⇒ Mon(P) transitive on F(P)

• Mon(P) says a lot about how P can be covered by an abstract
regular n-polytope R

• Mon(P) is an sggi ( = string group generated by involutions):
rj and rk commute if |j − k | > 1

• Th actions of Mon(P) and Aut(P) on F(P) commute: for
g ∈ Mon(P), α ∈ Aut(P), flag Φ ∈ F(P)

(Φα)g = (Φg )α

Barry Monson, University of New Brunswick , SCDO, Queenstown, NZ, February, 2016 , (supported in part by NSERC)Manufacturing Permutation Representations of Monodromy Groups of Polytopes



More on Mon(P) = 〈r0, . . . , rn−1〉

• Mon(P) encodes combinatorial essence of P:

eg. flag connectedness of P ⇒ Mon(P) transitive on F(P)

• Mon(P) says a lot about how P can be covered by an abstract
regular n-polytope R

• Mon(P) is an sggi ( = string group generated by involutions):
rj and rk commute if |j − k| > 1

• Th actions of Mon(P) and Aut(P) on F(P) commute: for
g ∈ Mon(P), α ∈ Aut(P), flag Φ ∈ F(P)

(Φα)g = (Φg )α

Barry Monson, University of New Brunswick , SCDO, Queenstown, NZ, February, 2016 , (supported in part by NSERC)Manufacturing Permutation Representations of Monodromy Groups of Polytopes



More on Mon(P) = 〈r0, . . . , rn−1〉

• Mon(P) encodes combinatorial essence of P:

eg. flag connectedness of P ⇒ Mon(P) transitive on F(P)

• Mon(P) says a lot about how P can be covered by an abstract
regular n-polytope R

• Mon(P) is an sggi ( = string group generated by involutions):
rj and rk commute if |j − k| > 1

• Th actions of Mon(P) and Aut(P) on F(P) commute: for
g ∈ Mon(P), α ∈ Aut(P), flag Φ ∈ F(P)

(Φα)g = (Φg )α

Barry Monson, University of New Brunswick , SCDO, Queenstown, NZ, February, 2016 , (supported in part by NSERC)Manufacturing Permutation Representations of Monodromy Groups of Polytopes



More on Mon(P) = 〈r0, . . . , rn−1〉

• Mon(P) encodes combinatorial essence of P:

eg. flag connectedness of P ⇒ Mon(P) transitive on F(P)

• Mon(P) says a lot about how P can be covered by an abstract
regular n-polytope R

• Mon(P) is an sggi ( = string group generated by involutions):
rj and rk commute if |j − k| > 1

• Th actions of Mon(P) and Aut(P) on F(P) commute: for
g ∈ Mon(P), α ∈ Aut(P), flag Φ ∈ F(P)

(Φα)g = (Φg )α

Barry Monson, University of New Brunswick , SCDO, Queenstown, NZ, February, 2016 , (supported in part by NSERC)Manufacturing Permutation Representations of Monodromy Groups of Polytopes



Mon(P) can be a beast to compute ...

If P is regular then Mon(P) ' Aut(P) (as sggi’s).

But typically Mon(P) is far larger than Aut(P) and is obscurely
structured.

Our main result here is a simple way to build manageable
and (one hopes) useful permutation representations of Mon(P).
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Permutation representations of Mon(P)

Theorem [B.M. et al, 2015]. Say G any subgroup of Aut(P). Choose
any base flag Ψ ∈ F(P) and let O be the G -orbit of Ψ in F(P). Then

(a) For each g ∈ Mon(P), the set Og is the G -orbit of the flag Ψg .

(b) B := {Og : g ∈ Mon(P)} is a partition of the flag set F(P).

(c) We get a permutation representation in B:

f : Mon(P) → Sym(B)

h 7→ πh

where (Og )πh = Ogh.
(d) If G is core-free in Aut(P), then f is injective.
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Test Case 1: the truncated icosahedron.

In 2010 M. Hartley & G. Williams computed the monodromy group for
each Archimedean polyhedron. Some surface topology motivated a
complicated presentation, which was then analyzed in GAP.

Challenge: have a somewhat limited human do the truncated icosahedron
P by hand.

(From H-W above, the order of the monodromy group for this polyhedron
was known to be 2592000.)

A chiral example
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First the regular icosahedron {3, 5}

Its automorphism group is the Coxeter group H3 = 〈ρ0, ρ1, ρ2〉 with
diagram

• 3 • 5 •
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A subgroup G < H3

Notice that H3 ' A5 × C2 has a subgroup G ' A4. Indeed, G is the group
of rotations preserving 3 mutually orthogonal golden rectangles inscribed
in {3, 5}:

It is easy to check that

G = 〈ρ0ρ1, (ρ0ρ2)ρ1ρ2〉

is (to conjugacy) the
largest core-free subgroup of H3.
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A fragment of the truncated icosahedron P
(with some icosahedral scaffolding)

Still Aut(P) = H3:
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The truncated icosahedron P
has three symmetry classes of flags, hence 360 flags.
Here are three base flags:

Type 1 - orange (pent.
to hexa.)
Type 2 - cyan (hexa. to
penta.)
Type 3 - magenta (hexa.
to hexa.)
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Apply the Theorem.

• we found G largest core-free subgroup, order 12.

• get a faithful representation of degree 30 = 360/12.

• let γ = ρ0ρ1ρ2, a Coxeter element; order 10.

• so powers γj , taking j (mod 10), give a transversal to G in H3.

• Upshot: Mon(P) faithfully represented on {1, 2, . . . , 30}.
For 1 ≤ i ≤ 3, 1 ≤ j ≤ 10,
the number 10(i − 1) + j represents

the G -orbit of the image under γj of the base type i flag.
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Using just a model of the icosahedron

(and several patient minutes) we get that Mon(P) ' 〈r0, r1, r2〉, where

r0 = (1, 4)(2, 7)(3, 10)(5, 8)(6, 9)(11, 14)(12, 17)(13, 20)

(15, 18)(16, 19)(21, 26)(22, 29)(23, 30)(24, 27)(25, 28)

r1 = (1, 6)(2, 3)(4, 5)(7, 8)(9, 10)(11, 21)(12, 22)(13, 23)

(14, 24)(15, 25)(16, 26)(17, 27)(18, 28)(19, 29)(20, 30)

r2 = (1, 11)(2, 12)(3, 13)(4, 14)(5, 15)(6, 16)(7, 17)(8, 18)

(9, 19)(10, 20)(21, 26)(22, 23)(24, 25)(27, 28)(29, 30)
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Experiment a bit ...

We know from general theory that Mon(P) is a string C-group of Schläfli
type {30, 3}. The ‘30’ prompts a look at the cycle structure of

r0r1 = (1, 5, 7, 3, 9)(2, 8, 4, 6, 10)(11, 24, 17, 22, 19, 26)

(12, 27, 14, 21, 16, 29)(13, 30)(15, 28)(18, 25)(20, 23),

so that

(r0r1)6 = (1, 5, 7, 3, 9)(2, 8, 4, 6, 10),

a ‘parallel product’ of 5-cycles supported only by type 1 flag blocks.
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Continuing this way we soon find that

• Mon(P) has a normal subgroup K ' A5 × A5 × A5, of order
603 = 216000. The exponent 3 derives from the three flag classes.

• The centre of Mon(P) is generated by the involution

z = (r0r1r2)9 = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)(11, 16)(12, 17)

(13, 18)(14, 19)(15, 20)(21, 26)(22, 27)

(23, 28)(24, 29)(25, 30)

• The subgroup T = 〈z , r1, r2〉 ' C2 × S3 is of order 12 and is
transverse to K .
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Summing up ...

• Mon(P) ' (C2 × S3) n (A5 × A5 × A5), a semidirect product.

• The minimal regular cover R of the truncated icosahedron is a map
of Schläfli type {30, 3} and having 2592000 flags.

Let’s get out of this ...
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Test Case 2: the finite chiral 5-Polytope P

of type {3, 4, 4, 3} (described by Conder, Hubard, Pisanski in 2008).

Here Aut(P) = 〈σ1, σ2, σ3, σ4, 〉 ' Sym6 with

σ1 = (1, 2, 3)

σ2 = (1, 3, 2, 4)

σ3 = (1, 5, 4, 3)

σ4 = (1, 2, 3)(4, 6, 5)

Aut(P) has 2 flag orbits (as in any chiral polytope) so P has
1440 = 2 · 720 flags.
But the facet group G = 〈σ1, σ2, σ3〉 = Sym5 is core-free in Aut(P), so
we get a faithful representation of Mon(P) on 2 · 6 = 12 blocks (of 120
flags each).
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Test case 2, continued

When you ponder Aut(P) a bit you get (by hand+brain) this faithful
representation of Mon(P) = 〈r0, r1, r2, r3, r4〉 by permutations of degree
12:

r0 = (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)
r1 = (1, 7)(2, 8)(3, 10)(4, 11)(5, 9)(6, 12)
r2 = (1, 7)(2, 11)(3, 9)(4, 10)(5, 8)(6, 12)
r3 = (1, 8)(2, 7)(3, 11)(4, 10)(5, 9)(6, 12)
r4 = (1, 12)(2, 8)(3, 10)(4, 9)(5, 11)(6, 7)

(a considerable improvement over degree 1440).

We find that Mon(P) has order 518400.
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Test case 2, continued

Furthermore, Mon(P) has to be a a sggi and must also have type
{3, 4, 4, 3}. However, the intersection condition, which would give a
regular polytope from Mon(P), actually fails in Mon(P).

To ‘resolve this singularity’, we use a mixing technique of BM-Schulte to
produce a regular polytopal cover R of P. This R has Schläfli type
{3, 4, 4, 6} and 3732480000 flags.

Remarkably, this cover is minimal (among regular covers of P), even
though it covers P in a 2592000 : 1 fashion.

I have no idea how to comprehensively describe the minimal regular covers
of P. It is hardly likely that R is unique.
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MANY THANKS TO YOU
AND THE ORGANIZERS!
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