Amalgamations of 2-orbit polytopes

J. Collins ${ }^{1}$
${ }^{1}$ UNAM

Amalgamations

Definition

We call a $(n+1)$-polytope \mathscr{P} an amalgamation of the rank n polytopes \mathscr{P}_{1} and \mathscr{P}_{2} if every facet of \mathscr{P} is isomorphic to \mathscr{P}_{1} and every vertex figure is isomorphic to \mathscr{P}_{2}.

Our subject

Definition

A two-orbit amalgamation of the polytopes \mathscr{P}_{1} and \mathscr{P}_{2} is an amalgamation \mathscr{P} (of \mathscr{P}_{1} and \mathscr{P}_{2}) that is a two-orbit polytope

Definition

An amalgamation of the polytopes \mathscr{P}_{1} and \mathscr{P}_{2} is called locally toroidal if \mathscr{P}_{1} and \mathscr{P}_{2} are either toroidal or spherical, with at least one of them being of toroidal type.

This talk will be about two-orbit locally toroidal amalgamations (TOLTAs)

Our subject

Definition

A two-orbit amalgamation of the polytopes \mathscr{P}_{1} and \mathscr{P}_{2} is an amalgamation \mathscr{P} (of \mathscr{P}_{1} and \mathscr{P}_{2}) that is a two-orbit polytope

Definition

An amalgamation of the polytopes \mathscr{P}_{1} and \mathscr{P}_{2} is called locally toroidal if \mathscr{P}_{1} and \mathscr{P}_{2} are either toroidal or spherical, with at least one of them being of toroidal type.

This talk will be about two-orbit locally toroidal amalgamations (TOLTAs)

Our subject

Definition

A two-orbit amalgamation of the polytopes \mathscr{P}_{1} and \mathscr{P}_{2} is an amalgamation \mathscr{P} (of \mathscr{P}_{1} and \mathscr{P}_{2}) that is a two-orbit polytope

Definition

An amalgamation of the polytopes \mathscr{P}_{1} and \mathscr{P}_{2} is called locally toroidal if \mathscr{P}_{1} and \mathscr{P}_{2} are either toroidal or spherical, with at least one of them being of toroidal type.

This talk will be about two-orbit locally toroidal amalgamations (TOLTAs)

- Spherical Polytope: Face lattice of convex polytope.
- Toroidal Polytope: Face lattice of (some) quotients of euclidead tilings.

Two-orbit Polytopes

Definition

We call the n-polytope \mathscr{P} a two-orbit polytope if Aut (\mathscr{P}) induces exactly two orbits on its flag set $\mathscr{F}(\mathscr{P})$

Examples

Some notation

Definition

Let $I \subsetneq\{0,1, \ldots, n-1\}$, we say that the two-orbit n-polytope \mathscr{P} is in class 2 , if Φ^{i} is in the same orbit as Φ, for some flag Φ of \mathscr{P}.

Some notation

Definition

Let $I \subsetneq\{0,1, \ldots, n-1\}$, we say that the two-orbit n-polytope \mathscr{P} is in class 2 , if Φ^{i} is in the same orbit as Φ, for some flag Φ of \mathscr{P}.

Some notation

Some notation

Some notation

Two-orbit polytopes have at most two orbits in sections G / F determined by the i-faces F and the j-faces G

Schläfli symbol

We associate to every two-orbit polytope the double Schläfli symbol

$$
\left\{\begin{array}{cccc}
p_{1} & p_{2} & \ldots & p_{n-1} \\
q_{1} & q_{2} & \ldots & q_{n}
\end{array}\right\}
$$

Some notation

Regular Spherical Polytopes.

Recall the classification for the regular spherical polytopes

Name	Rank	Schläfli	Automorphism Group
p-gon	2	$\{p\}$	$D_{2 \cdot p}$
Tetrahedron (3-simplex)	3	$\{3,3\}$	S_{4}
Hexahedron (3-cube)	3	$\{4,3\}$	$S_{4} \times C_{2} \cong C_{2}^{3} \rtimes S_{3}$
Octahedon (3-cross polytope)	3	$\{3,4\}$	$S_{4} \times C_{2} \cong C_{2}^{n} \rtimes S_{n}$
Dodecahedron	3	$\{5,3\}$	$A_{5} \times C_{2}$
Icosahedron	3	$\{3,5\}$	$A_{5} \times C_{2}$
5-cell (4-simplex)	4	$\{3,3,3\}$	S_{5}

Regular Spherical Polytopes

Name	Rank	Schläfli	Automorphism Group
8-cell (4-cube)	4	$\{4,3,3\}$	$C_{2}^{4} \rtimes S_{4}$
16-cell (4-cross polytope)	4	$\{3,3,4\}$	$C_{2}^{4} \rtimes S_{4}$
24-cell	4	$\{3,4,3\}$	$\left(\left(C_{2}^{4}\right)^{+} \rtimes S_{4}\right) \rtimes S_{3}$
120-cell	4	$\{5,3,3\}$	H_{4}
600-cell	4	$\{3,3,5\}$	H_{4}
n-simplex	$n>4$	$\left\{3,3^{n-2}, 3\right\}$	S_{n+1}
n-cube	$n>4$	$\left\{4,3^{n-2}, 3\right\}$	$C_{2}^{n} \rtimes S_{n}$
n-cross polytope	$n>4$	$\left\{3,3^{n-2}, 4\right\}$	$C_{2}^{n} \rtimes S_{n}$

Regular Toroidal Polytopes

And the classification for toroidal polytopes

Name	Parameters	Rank
$\{4,4\}_{(s, t)}$	$s t(s-t)=0,(s, t) \neq(1,0),(1,1)$	2
$\{3,6\}_{(s, t)}$	$s t(s-t)=0,(s, t) \neq(1,0)$	2
$\{6,3\}_{(s, t)}$	$s t(s-t)=0,(s, t) \neq(1,0)$	2
$\{3,4,3,3\}_{\mathbf{s}}$	$\mathbf{s}=\left(s^{k}, 0^{n-k}\right), s \geq 2, k=1,2$	5
$\{3,3,4,3\}_{\mathbf{s}}$	$\mathbf{s}=\left(s^{k}, 0^{n-k}\right), s \geq 2, k=1,2$	5
$\left\{4,3^{n-2}, 4\right\}_{\mathbf{s}}$	$n \geq 3, \mathbf{s}=\left(s^{k}, 0^{n-k}\right), s \geq 2, k \in\{1,2, n\}$	$n+1$

Regular Polytopes

Two-orbit Polytopes

Regular Toroidal Polytopes

$\{4,4\}_{(4,0)}$

$\{3,6\}_{(2,2)}$

Two-orbit Spherical Polytopes

Matteo classified the Two-orbit spherical polytopes

Name	Schläfli	Group	Class
Cuboctahedron $r\{4,3\}$	$\left\{\begin{array}{c}3 \\ 4\end{array}, 4\right\}$	$\mathbb{Z}_{2}^{3} \rtimes S_{3}$	$2_{0,1}$
Rhombic dodecahedron $r\{4,3\}^{*}$	$\left\{\begin{array}{c}4, \\ 4 \\ \hline\end{array}\right\}$	$\mathbb{Z}_{2}^{3} \rtimes S_{3}$	$2_{1,2}$
Icosidodecahedron $r\{3,5\}$	$\left\{\begin{array}{c}3 \\ 5\end{array}, 4\right\}$	$A_{5} \times C_{2}$	$2_{0,1}$
Rhombic triacontahedron $r\{3,5\}^{*}$	$\left\{\begin{array}{c}4, \\ 5\end{array}\right\}$	$A_{5} \times C_{2}$	$2_{1,2}$

Two-orbit Spherical Polytopes

Two-orbit Toroidal Polytopes

The equivelar two-orbit toroidal polytopes are classified by Hubard, Orbanić and Pellicer and Weiss up to rank four and are are arranged in six families.

- The chiral family $\{4,4\}_{(a, b),(-b, a)}$.
- The two families of class 20,2 toroids which are of the form $\{4,4\}_{(a, 0),(0, b)}$ and $\{4,4\}_{(a, b),(a,-b)}$.
- The two families belonging to 2_{1} of the form $\{4,4\}(a, a),(-b, b)$ and $\{4,4\}_{(a, b),(b, a)}$
- The two families of chiral toroids of the form $\{3,6\}_{(a, b),(-b, a+b)}$ and $\{6,3\}_{(a, b),(-b, a+b)}$

Two-orbit Toroidal Polytopes

The equivelar two-orbit toroidal polytopes are classified by Hubard, Orbanić and Pellicer and Weiss up to rank four and are are arranged in six families.

- The chiral family $\{4,4\}_{(a, b),(-b, a)}$.
- The two families of class $2_{0,2}$ toroids which are of the form

$$
\{4,4\}_{(a, 0),(0, b)} \text { and }\{4,4\}_{(a, b),(a,-b)} .
$$

- The two families belonging to 21 of the form $\{4,4\}(a, a),(-b, b)$ and $\{4,4\}_{(a, b),(b, a)}$
- The two families of chiral toroids of the form $\{3,6\}_{(a, b),(-b, a+b)}$ and $\{6,3\}_{(a, b),(-b, a+b)}$

Two-orbit Toroidal Polytopes

The equivelar two-orbit toroidal polytopes are classified by Hubard, Orbanić and Pellicer and Weiss up to rank four and are are arranged in six families.

- The chiral family $\{4,4\}_{(a, b),(-b, a)}$.
- The two families of class $2_{0,2}$ toroids which are of the form $\{4,4\}_{(a, 0),(0, b)}$ and $\{4,4\}_{(a, b),(a,-b)}$.
- The two families belonging to 2_{1} of the form $\{4,4\}_{(a, a),(-b, b)}$ and $\{4,4\}_{(a, b),(b, a)}$.
- The two families of chiral toroids of the form $\{3,6\}_{(a, b),(-b, a+b)}$ and $\{6,3\}_{(a, b),(-b, a+b)}$

Two-orbit Toroidal Polytopes

The equivelar two-orbit toroidal polytopes are classified by Hubard, Orbanić and Pellicer and Weiss up to rank four and are are arranged in six families.

- The chiral family $\{4,4\}_{(a, b),(-b, a)}$.
- The two families of class $2_{0,2}$ toroids which are of the form $\{4,4\}_{(a, 0),(0, b)}$ and $\{4,4\}_{(a, b),(a,-b)}$.
- The two families belonging to 2_{1} of the form $\{4,4\}_{(a, a),(-b, b)}$ and $\{4,4\}_{(a, b),(b, a)}$.
- The two families of chiral toroids of the form $\{3,6\}_{(a, b),(-b, a+b)}$ and $\{6,3\}_{(a, b),(-b, a+b)}$.

Two-orbit Toroidal Polytopes

$\{4.4\}_{(2,2),(-3,3)}$

$\{4.4\}_{(4,1),(-1,4)}$

Two-orbit Toroidal Polytopes

The higher rank equivelar toroids fall into four categories.

- Two families of class $2_{\{1, \ldots, 2 k-1\}}$, of the form $\left\{4,3^{2(k-1)}, 4\right\} / s \Lambda_{k}$ and $\left\{4,3^{2(k-1)}, 4\right\} / s \Delta_{k}$, with $k, s>1$, and Λ_{k} and Δ_{k} being rank $2 k$ lattices of $\Gamma\left(\left\{4,3^{2(k-1)}, 4\right\}\right)$.

Two-orbit Toroidal Polytopes

The higher rank equivelar toroids fall into four categories.

- Two families of class $2_{\{1, \ldots, 2 k-1\}}$, of the form $\left\{4,3^{2(k-1)}, 4\right\} / s \Lambda_{k}$ and $\left\{4,3^{2(k-1)}, 4\right\} / s \Delta_{k}$, with $k, s>1$, and Λ_{k} and Δ_{k} being rank $2 k$ lattices of $\Gamma\left(\left\{4,3^{2(k-1)}, 4\right\}\right)$.
- The family of $\{3,3,4,3\} / s \Delta_{2}$ toroids in class $2_{\{3,4\}}$, with $s>1$ and Δ_{2} as defined before; and their duals in class $2_{\{0,1\}}$.

Two-orbit Toroidal Polytopes

Non equivelar toroidal polytopes depend on the classification of two-orbit euclidean tilings, also by Matteo, and are as follows:

Schläfli	Name	Class
$\left\{\begin{array}{c}3 \\ 6\end{array}, 4\right\}$	$r\{3,6\}_{(a, 0),(0, a)}$	$2_{0,1}$
	$r\{3,6\}_{(a, a),(-a, a)}$	$2_{0,1}$
$\left\{\begin{array}{c}3 \\ 4 \\ 6\end{array}\right\}$	$r\{3,6\}_{(a, 0),(0, a)}^{*}$	$2_{1,2}$
	$r\{3,6\}_{(a, a),(-a, a)}^{*}$	$2_{1,2}$
$\left\{\begin{array}{c}4 \\ 3, \\ 3\end{array}, 4\right\}$	$\{4,3,4\}_{\mathbf{s}}^{a}$	$2_{0,1,2}$
$\left\{\begin{array}{c}4 \\ 4, \\ 3\end{array}, 3\right\}$	$\left(\{4,3,4\}_{\mathbf{s}}^{a}\right)^{*}$	$2_{1,2,3}$

Two-orbit Toroidal Polytopes

$r\{3,6\}_{(2,2)}$

$$
r\{3,6\}_{(2,2)}^{*}
$$

Some criteria

Proposition (Schläfli symbol criterion)

Let \mathscr{P} be a TOLTA of the polytopes \mathscr{P}_{1} and \mathscr{P}_{2} with Schläfli symbols $\left\{\begin{array}{cccc}p_{1} & p_{2} & \ldots & p_{n-1} \\ q_{1} & q_{2} & \ldots & q_{n-1}\end{array}\right\}$ and $\left\{\begin{array}{cccc}p_{1}^{\prime} & p_{2}^{\prime} & \ldots & p_{n-1}^{\prime} \\ q_{1}^{\prime} & q_{2}^{\prime} & \ldots & q_{n-1}^{\prime}\end{array}\right\}$, respectively. Then $p_{i+1}=p_{i}^{\prime}$ and $q_{i+1}=q_{i}^{\prime}$ for $i \in\{1, \ldots, n-2\}$.

Some criteria

Proposition (Symmetry class criterion)

If \mathscr{P} is a two-orbit n-polytope in class 2 , with facets and vertex figures isomorphic to \mathscr{P}_{1} and \mathscr{P}_{2}, then \mathscr{P}_{1} must be either regular or in class $2_{\backslash\{n\}}$ and \mathscr{P}_{2} must be either regular or in class $2_{1^{-}}$, respectively, where $I^{-}=\{i-1 \mid i \in I \backslash\{0\}\}$.

Possible Schläfli Symbols

By the classifications and previous criteria, the only pairs of two-orbit polyhedra we can amalgamate to get TOLTAs are:

Possible Schläfli Symbols

$$
\left.\begin{array}{l}
\{4,4\} \text { and }\{4,4\} \\
\{4,4\} \text { and }\left\{\begin{array}{ll}
3 \\
3
\end{array}\right\} \\
\{4,4\} \text { and }\left\{4, \begin{array}{l}
3 \\
4
\end{array}\right\}
\end{array}\right\} \begin{aligned}
& \{4,4\} \text { and }\left\{4, \begin{array}{l}
5 \\
5
\end{array}\right\} \\
& \left\{\begin{array}{l}
3 \\
6
\end{array}, 4\right\} \text { and }\left\{\begin{array}{ll}
3 \\
4, & 6
\end{array}\right\}
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
\left\{\begin{array}{l}
3 \\
6
\end{array}, 4\right\} \text { and }\left\{\begin{array}{ll}
4, & 3 \\
4
\end{array}\right\} \\
\left\{\begin{array}{l}
3 \\
6
\end{array}, 4\right\} \text { and }\left\{\begin{array}{l}
3 \\
4
\end{array}\right\} \\
\left\{\begin{array}{l}
3 \\
4
\end{array}\right\} \text { and }\left\{\begin{array}{l}
3 \\
6
\end{array}, 4\right\}
\end{array}\right\} \begin{array}{l}
3,4\} \text { and }\left\{4, \begin{array}{l}
3 \\
5
\end{array}\right\} \\
\left\{\begin{array}{l}
3 \\
4
\end{array}\right\} \text { and }\left\{\begin{array}{l}
3 \\
5
\end{array}, 4\right\}
\end{array}\right\} \begin{aligned}
& \{6,3\} \text { and }\{3,6\}
\end{aligned}\left\{\begin{array}{l}
\{3,6\} \text { and }\{6,3\}
\end{array}\right.
$$

Possible Schläfli Symbols

Note that for rank n greater than 3, the Schläfli symbol criterion excludes the possibility of a TOLTA of a pair of two-orbit polytopes, except for the pair $\{4,3,3,4\}$ and $\{3,3,4,3\}$ which can't be amalgamated by the symmetry class criterion.

Possible Class Amalgamations

- The only two-orbit classes that are represented in the spherical and toroidal polyhedra are $2_{\emptyset}, 2_{1}, 2_{0,2}, 2_{0,1}$ and $2_{1,2}$.
- The only polytopes that can be amalgamated are: the chiral polytopes with other chiral ones; the ones in class 2_{1} with polytopes in class $2_{0,2}$; and the elements of $2_{0,2}$ with the ones in $2_{1,2}$. (Symmetry class criterion)

Possible Class Amalgamations

- The only two-orbit classes that are represented in the spherical and toroidal polyhedra are $2_{\emptyset}, 2_{1}, 2_{0,2}, 2_{0,1}$ and $2_{1,2}$.
- The only polytopes that can be amalgamated are: the chiral polytopes with other chiral ones; the ones in class 2_{1} with polytopes in class $2_{0,2}$; and the elements of $2_{0,2}$ with the ones in $2_{1,2}$. (Symmetry class criterion)

Schläfli symbols again

If we try to amalgamate a two-orbit polytope with a regular one, we separate the only possible combinations of Schläfli symbols in three lists.

Schläfli symbols again

- With spherical regular facet and toroidal two-orbit vertex figure:
$\{3,3\}$ and $\{3,6\}$
$\{3,4\}$ and $\{4,4\}$
$\{3,4\}$ and $\left\{\begin{array}{l}\left.4, \begin{array}{l}3 \\ 6\end{array}\right\}\end{array}\right.$
$\{4,3\}$ and $\{3,6\}$
$\{5,3\}$ and $\{3,6\}$
$\{3,3,3,4\}$ and $\{3,3,4,3\}$

Schläfli symbols again

- With toroidal regular facet and spherical two-orbit vertex figure:
$\{4,4\}$ and $\left\{\begin{array}{l}\left.4, \begin{array}{l}3 \\ 4\end{array}\right\}\end{array}\right.$
$\{4,4\}$ and $\left\{4, \begin{array}{l}3 \\ 5\end{array}\right\}$

Schläfli symbols again

- With toroidal regular facet and toroidal two-orbit vertex figure:
$\{4,4\}$ and $\{4,4\}$
$\{4,4\}$ and $\left\{4, \begin{array}{l}3 \\ 6\end{array}\right\}$
$\{3,6\}$ and $\{6,3\}$
$\{6,3\}$ and $\{3,6\}$
$\{3,4,3,3\}$ and $\{4,3,3,4\}$
$\{4,3,3,4\}$ and $\{3,3,4,3\}$

About the symmetry type criterion

Note that if \mathscr{P} is a class 2, two-orbit amalgamation of the n-polytopes \mathscr{P}_{1} and \mathscr{P}_{2}, with \mathscr{P}_{1} being regular and \mathscr{P}_{2} two-orbit, then the vertex coloring of $\mathscr{F}(\mathscr{P})$ induces a subgroup of index 2 in $\Gamma\left(\mathscr{P}_{1}\right)$

