Amalgamations of 2-orbit polytopes

J. Collins¹

¹UNAM

J. Collins Amalgamations of 2-orbit polytopes

< A

▶ ∢ ≣ ▶

Amalgamations

Definition

We call a (n+1)-polytope \mathscr{P} an **amalgamation** of the rank n polytopes \mathscr{P}_1 and \mathscr{P}_2 if every facet of \mathscr{P} is isomorphic to \mathscr{P}_1 and every vertex figure is isomorphic to \mathscr{P}_2 .

A (1) < (1) < (1) </p>

Our subject

Definition

A *two-orbit amalgamation* of the polytopes \mathscr{P}_1 and \mathscr{P}_2 is an amalgamation \mathscr{P} (of \mathscr{P}_1 and \mathscr{P}_2) that is a two-orbit polytope

Definition

An amalgamation of the polytopes \mathscr{P}_1 and \mathscr{P}_2 is called **locally toroidal** if \mathscr{P}_1 and \mathscr{P}_2 are either toroidal or spherical, with at least one of them being of toroidal type.

This talk will be about two-orbit locally toroidal amalgamations (TOLTAs)

Our subject

Definition

A *two-orbit amalgamation* of the polytopes \mathscr{P}_1 and \mathscr{P}_2 is an amalgamation \mathscr{P} (of \mathscr{P}_1 and \mathscr{P}_2) that is a two-orbit polytope

Definition

An amalgamation of the polytopes \mathscr{P}_1 and \mathscr{P}_2 is called **locally toroidal** if \mathscr{P}_1 and \mathscr{P}_2 are either toroidal or spherical, with at least one of them being of toroidal type.

This talk will be about two-orbit locally toroidal amalgamations (TOLTAs)

Our subject

Definition

A *two-orbit amalgamation* of the polytopes \mathscr{P}_1 and \mathscr{P}_2 is an amalgamation \mathscr{P} (of \mathscr{P}_1 and \mathscr{P}_2) that is a two-orbit polytope

Definition

An amalgamation of the polytopes \mathscr{P}_1 and \mathscr{P}_2 is called **locally toroidal** if \mathscr{P}_1 and \mathscr{P}_2 are either toroidal or spherical, with at least one of them being of toroidal type.

This talk will be about two-orbit locally toroidal amalgamations (TOLTAs)

- Spherical Polytope: Face lattice of convex polytope.
- Toroidal Polytope: Face lattice of (some) quotients of euclidead tilings.

Definition and basic properties

Two-orbit Polytopes

Definition

We call the *n*-polytope \mathscr{P} a **two-orbit** polytope if Aut(\mathscr{P}) induces exactly two orbits on its flag set $\mathscr{F}(\mathscr{P})$

< D > < P > < P > < P >

Definition and basic properties

Examples

◆□ > ◆□ > ◆豆 > ◆豆 >

Some notation

Definition and basic properties

Definition

Let $I \subsetneq \{0, 1, ..., n-1\}$, we say that the two-orbit *n*-polytope \mathscr{P} is in class 2_I if Φ^i is in the same orbit as Φ , for some flag Φ of \mathscr{P} .

< D > < P > < P > < P >

Some notation

Definition and basic properties

Definition

Let $I \subsetneq \{0, 1, ..., n-1\}$, we say that the two-orbit *n*-polytope \mathscr{P} is in class 2_I if Φ^i is in the same orbit as Φ , for some flag Φ of \mathscr{P} .

< D > < P > < P > < P >

Definition and basic properties

Some notation

◆□ > ◆□ > ◆豆 > ◆豆 >

Definition and basic properties

Some notation

J. Collins Amalgamations of 2-orbit polytopes

(日) (同) (三)

-

Some notation

Definition and basic properties

Two-orbit polytopes have at most two orbits in sections G/F determined by the *i*-faces F and the *j*-faces G

Schläfli symbol

We associate to every two-orbit polytope the double Schläfli symbol

$$\left\{\begin{array}{ccc}p_1 & p_2 & \dots & p_{n-1}\\q_1 & q_2 & \dots & q_n\end{array}\right\}$$

Definition and basic properties

Some notation

◆□ > ◆□ > ◆豆 > ◆豆 >

Regular Polytopes Two-orbit Polytopes

Regular Spherical Polytopes.

Recall the classification for the regular spherical polytopes

Name	Rank	Schläfli	Automorphism Group
<i>p</i> -gon	2	{ <i>p</i> }	D _{2.p}
Tetrahedron	3	∫ 2 2]	S,
(3-simplex)	5	13,35	54
Hexahedron	3	∫⊿ રો	$S_4 \times C_2 \simeq C^3 \rtimes S_2$
(3-cube)	5	[+,J]	$54 \times c_2 = c_2 \times 53$
Octahedon	3	<i>∫</i> 3 <u>/</u>]	$S_n \times C_n \simeq C^n \rtimes S_n$
(3-cross polytope)	5	{J,+}	$J_4 \wedge C_2 = C_2 \wedge J_n$
Dodecahedron	3	$\{5,3\}$	$A_5 imes C_2$
lcosahedron	3	{3,5}	$A_5 imes C_2$
5-cell	1	1333	<u>۲</u> _
(4-simplex)	-	13,3,35	5

< D > < P > < P > < P >

Regular Polytopes Two-orbit Polytopes

Regular Spherical Polytopes

Name	Rank	Schläfli	Automorphism Group
8-cell (4-cube)	4	{4,3,3}	$C_2^4 \rtimes S_4$
16-cell (4-cross polytope)	4	{3,3,4}	$C_2^4 \rtimes S_4$
24-cell	4	{3,4,3}	$((C_2^4)^+ \rtimes S_4) \rtimes S_3$
120-cell	4	{5,3,3}	H ₄
600-cell	4	{3,3,5}	H ₄
<i>n</i> -simplex	<i>n</i> > 4	$\{3, 3^{n-2}, 3\}$	<i>S</i> _{<i>n</i>+1}
<i>n</i> -cube	<i>n</i> > 4	$\{4, 3^{n-2}, 3\}$	$C_2^n \rtimes S_n$
<i>n</i> -cross polytope	<i>n</i> > 4	$\{3, 3^{n-2}, 4\}$	$C_2^n \rtimes S_n$

< 一型

▶ < ∃ ▶

-

Regular Polytopes Two-orbit Polytopes

Regular Toroidal Polytopes

And the classification for toroidal polytopes

Name	Parameters	Rank
$\{4,4\}_{(s,t)}$	$st(s-t) = 0$, $(s,t) \neq (1,0), (1,1)$	2
$\{3,6\}_{(s,t)}$	st(s-t)=0, $(s,t) eq(1,0)$	2
$\{6,3\}_{(s,t)}$	st(s-t)=0, $(s,t) eq(1,0)$	2
$\{3,4,3,3\}_{s}$	${f s}=(s^k,0^{n-k}),\;s\geq 2,\;k=1,2$	5
$\{3,3,4,3\}_{s}$	$\mathbf{s} = (s^k, 0^{n-k}), \ s \ge 2, \ k = 1, 2$	5
$\{4, 3^{n-2}, 4\}_{s}$	$n \ge 3$, $\mathbf{s} = (s^k, 0^{n-k})$, $s \ge 2$, $k \in \{1, 2, n\}$	n+1

Regular Polytopes Two-orbit Polytopes

Regular Toroidal Polytopes

$$\{4,4\}_{(4,0)}$$

< ロ > < 同 > < 回 > <

Regular Polytopes Two-orbit Polytopes

Two-orbit Spherical Polytopes

Matteo classified the Two-orbit spherical polytopes

Name	Schläfli	Group	Class
Cuboctahedron r{4,3}	$\left\{\begin{array}{c}3\\4\end{array},4\right\}$	$\mathbb{Z}_2^3 \rtimes S_3$	2 _{0,1}
Rhombic dodecahedron $r{4,3}^*$	$\left\{4, \begin{array}{c}3\\4\end{array}\right\}$	$\mathbb{Z}_2^3 \rtimes S_3$	2 _{1,2}
lcosidodecahedron r {3,5}	$\left\{\begin{array}{c}3\\5\end{array},4\right\}$	$A_5 imes C_2$	2 _{0,1}
Rhombic triacontahedron $r{3,5}^*$	$\left\{4, \frac{3}{5}\right\}$	$A_5 imes C_2$	2 _{1,2}

< D > < P > < P > < P >

Regular Polytopes Two-orbit Polytopes

Two-orbit Spherical Polytopes

< ロ > < 同 > < 回 > <

Regular Polytopes Two-orbit Polytopes

Two-orbit Toroidal Polytopes

The equivelar two-orbit toroidal polytopes are classified by Hubard, Orbanić and Pellicer and Weiss up to rank four and are are arranged in six families.

- The chiral family $\{4,4\}_{(a,b),(-b,a)}$.
- The two families of class $2_{0,2}$ toroids which are of the form $\{4,4\}_{(a,0),(0,b)}$ and $\{4,4\}_{(a,b),(a,-b)}$.
- The two families belonging to 2_1 of the form $\{4,4\}_{(a,a),(-b,b)}$ and $\{4,4\}_{(a,b),(b,a)}$.
- The two families of chiral toroids of the form $\{3,6\}_{(a,b),(-b,a+b)}$ and $\{6,3\}_{(a,b),(-b,a+b)}$.

Regular Polytopes Two-orbit Polytopes

Two-orbit Toroidal Polytopes

The equivelar two-orbit toroidal polytopes are classified by Hubard, Orbanić and Pellicer and Weiss up to rank four and are are arranged in six families.

- The chiral family $\{4,4\}_{(a,b),(-b,a)}$.
- The two families of class $2_{0,2}$ toroids which are of the form $\{4,4\}_{(a,0),(0,b)}$ and $\{4,4\}_{(a,b),(a,-b)}$.
- The two families belonging to 2_1 of the form $\{4,4\}_{(a,a),(-b,b)}$ and $\{4,4\}_{(a,b),(b,a)}$.
- The two families of chiral toroids of the form $\{3,6\}_{(a,b),(-b,a+b)}$ and $\{6,3\}_{(a,b),(-b,a+b)}$.

Regular Polytopes Two-orbit Polytopes

Two-orbit Toroidal Polytopes

The equivelar two-orbit toroidal polytopes are classified by Hubard, Orbanić and Pellicer and Weiss up to rank four and are are arranged in six families.

- The chiral family $\{4,4\}_{(a,b),(-b,a)}$.
- The two families of class $2_{0,2}$ toroids which are of the form $\{4,4\}_{(a,0),(0,b)}$ and $\{4,4\}_{(a,b),(a,-b)}$.
- The two families belonging to 2_1 of the form $\{4,4\}_{(a,a),(-b,b)}$ and $\{4,4\}_{(a,b),(b,a)}$.
- The two families of chiral toroids of the form $\{3,6\}_{(a,b),(-b,a+b)}$ and $\{6,3\}_{(a,b),(-b,a+b)}$.

Regular Polytopes Two-orbit Polytopes

Two-orbit Toroidal Polytopes

The equivelar two-orbit toroidal polytopes are classified by Hubard, Orbanić and Pellicer and Weiss up to rank four and are are arranged in six families.

- The chiral family $\{4,4\}_{(a,b),(-b,a)}$.
- The two families of class $2_{0,2}$ toroids which are of the form $\{4,4\}_{(a,0),(0,b)}$ and $\{4,4\}_{(a,b),(a,-b)}$.
- The two families belonging to 2_1 of the form $\{4,4\}_{(a,a),(-b,b)}$ and $\{4,4\}_{(a,b),(b,a)}$.
- The two families of chiral toroids of the form $\{3,6\}_{(a,b),(-b,a+b)}$ and $\{6,3\}_{(a,b),(-b,a+b)}$.

4 A > 4 > 1

Regular Polytopes Two-orbit Polytopes

Two-orbit Toroidal Polytopes

 $\{4.4\}_{(2,2),(-3,3)}$

 $\{4.4\}_{(4,1),(-1,4)}$

・ロト ・ 一下・ ・ 日 ト

Regular Polytopes Two-orbit Polytopes

Two-orbit Toroidal Polytopes

The higher rank equivelar toroids fall into four categories.

- Two families of class $2_{\{1,\ldots,2k-1\}}$, of the form $\{4,3^{2(k-1)},4\}/s\Lambda_k$ and $\{4,3^{2(k-1)},4\}/s\Delta_k$, with k,s > 1, and Λ_k and Δ_k being rank 2k lattices of $\Gamma(\{4,3^{2(k-1)},4\})$.
- The family of {3,3,4,3}/sΔ₂ toroids in class 2_{3,4}, with s > 1 and Δ₂ as defined before; and their duals in class 2_{{0,1}}.

Regular Polytopes Two-orbit Polytopes

Two-orbit Toroidal Polytopes

The higher rank equivelar toroids fall into four categories.

- Two families of class $2_{\{1,\ldots,2k-1\}}$, of the form $\{4,3^{2(k-1)},4\}/s\Lambda_k$ and $\{4,3^{2(k-1)},4\}/s\Delta_k$, with k,s > 1, and Λ_k and Δ_k being rank 2k lattices of $\Gamma(\{4,3^{2(k-1)},4\})$.
- The family of {3,3,4,3}/sΔ₂ toroids in class 2_{3,4}, with s > 1 and Δ₂ as defined before; and their duals in class 2_{{0,1}}.

Regular Polytopes Two-orbit Polytopes

Two-orbit Toroidal Polytopes

Non equivelar toroidal polytopes depend on the classification of two-orbit euclidean tilings, also by Matteo, and are as follows:

Schläfli	Name	Class
$\int 3_{4}$	$r{3,6}_{(a,0),(0,a)}$	2 _{0,1}
\ 6 , ' \	$r{3,6}_{(a,a),(-a,a)}$	2 _{0,1}
$\begin{cases} 4 & 3 \end{cases}$	$r{3,6}^*_{(a,0),(0,a)}$	21,2
[], 6 }	$r{3,6}^{*}_{(a,a),(-a,a)}$	2 _{1,2}
$\left\{3, \begin{array}{c}4\\3\end{array}, 4\right\}$	$\{4,3,4\}_{s}^{a}$	2 _{0,1,2}
$\left\{4, \frac{4}{3}, 3\right\}$	$(\{4,3,4\}^a_s)^*$	21,2,3

Regular Polytopes Two-orbit Polytopes

Two-orbit Toroidal Polytopes

э

Some criteria

Proposition (Schläfli symbol criterion)

Let \mathscr{P} be a TOLTA of the polytopes \mathscr{P}_1 and \mathscr{P}_2 with Schläfli symbols $\begin{cases} p_1 & p_2 & \dots & p_{n-1} \\ q_1 & q_2 & \dots & q_{n-1} \end{cases}$ and $\begin{cases} p'_1 & p'_2 & \dots & p'_{n-1} \\ q'_1 & q'_2 & \dots & q'_{n-1} \end{cases}$, respectively. Then $p_{i+1} = p'_i$ and $q_{i+1} = q'_i$ for $i \in \{1, \dots, n-2\}$.

伺 ト く ヨ ト

Some criteria

Proposition (Symmetry class criterion)

If \mathscr{P} is a two-orbit n-polytope in class 2_I with facets and vertex figures isomorphic to \mathscr{P}_1 and \mathscr{P}_2 , then \mathscr{P}_1 must be either regular or in class $2_{I\setminus\{n\}}$ and \mathscr{P}_2 must be either regular or in class 2_{I^-} , respectively, where $I^- = \{i - 1 | i \in I \setminus \{0\}\}$.

Possible Schläfli Symbols

By the classifications and previous criteria, the only pairs of two-orbit polyhedra we can amalgamate to get *TOLTAs* are:

Possible Schläfli Symbols

$$\begin{cases} 4,4 \} \text{ and } \{4,4 \} \\ \{4,4 \} \text{ and } \begin{cases} 4, & 3 \\ 6 \\ 4,4 \} \text{ and } \begin{cases} 4, & 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 6 \\ 5 \\ \end{cases} \\ \begin{cases} 3 \\ 6 \\ 6 \\ 4 \\ 4 \\ 6 \\ \end{cases}$$

$$\left\{ \begin{array}{c} 3 \\ 6 \end{array}, 4 \right\} \text{ and } \left\{ \begin{array}{c} 4 \\ 4 \end{array}, \begin{array}{c} 3 \\ 6 \end{array}, 4 \right\} \text{ and } \left\{ \begin{array}{c} 4 \\ 4 \end{array}, \begin{array}{c} 3 \\ 5 \end{array} \right\} \\ \left\{ \begin{array}{c} 4 \\ 6 \end{array}, \begin{array}{c} 3 \\ 6 \end{array}, 4 \right\} \text{ and } \left\{ \begin{array}{c} 3 \\ 6 \end{array}, 4 \right\} \\ \left\{ \begin{array}{c} 3 \\ 5 \end{array}, 4 \right\} \text{ and } \left\{ \begin{array}{c} 3 \\ 6 \end{array}, 4 \right\} \\ \left\{ \begin{array}{c} 3 \\ 5 \end{array}, 4 \right\} \text{ and } \left\{ \begin{array}{c} 4 \\ 5 \end{array}, \begin{array}{c} 3 \\ 5 \end{array} \right\} \\ \left\{ \begin{array}{c} 4 \\ 5 \end{array}, \begin{array}{c} 3 \\ 5 \end{array}, 4 \right\} \text{ and } \left\{ \begin{array}{c} 3 \\ 5 \end{array}, 4 \right\} \\ \left\{ \begin{array}{c} 4 \\ 5 \end{array}, \begin{array}{c} 3 \\ 5 \end{array}, 4 \right\} \\ \left\{ \begin{array}{c} 6 \\ 5 \end{array}, 4 \right\} \\ \left\{$$

Possible Schläfli Symbols

Note that for rank *n* greater than 3, the Schläfli symbol criterion excludes the possibility of a *TOLTA* of a pair of two-orbit polytopes, except for the pair $\{4,3,3,4\}$ and $\{3,3,4,3\}$ which can't be amalgamated by the symmetry class criterion.

Possible Class Amalgamations

- The only two-orbit classes that are represented in the spherical and toroidal polyhedra are 2_{\emptyset} , 2_1 , $2_{0,2}$, $2_{0,1}$ and $2_{1,2}$.
- The only polytopes that can be amalgamated are: the chiral polytopes with other chiral ones; the ones in class 2_1 with polytopes in class $2_{0,2}$; and the elements of $2_{0,2}$ with the ones in $2_{1,2}$. (Symmetry class criterion)

Possible Class Amalgamations

- The only two-orbit classes that are represented in the spherical and toroidal polyhedra are 2_{\emptyset} , 2_1 , $2_{0,2}$, $2_{0,1}$ and $2_{1,2}$.
- The only polytopes that can be amalgamated are: the chiral polytopes with other chiral ones; the ones in class 2_1 with polytopes in class $2_{0,2}$; and the elements of $2_{0,2}$ with the ones in $2_{1,2}$. (Symmetry class criterion)

Schläfli symbols again

If we try to amalgamate a two-orbit polytope with a regular one, we separate the only possible combinations of Schläfli symbols in three lists.

Schläfli symbols again

 With spherical regular facet and toroidal two-orbit vertex figure:

$$\begin{array}{l} \{3,3\} \text{ and } \{3,6\} \\ \{3,4\} \text{ and } \{4,4\} \\ \{3,4\} \text{ and } \left\{4, \begin{array}{c}3\\6\end{array}\right\} \\ \{4,3\} \text{ and } \{3,6\} \\ \{5,3\} \text{ and } \{3,6\} \\ \{3,3,3,4\} \text{ and } \{3,3,4,3\} \end{array}$$

Schläfli symbols again

• With toroidal regular facet and spherical two-orbit vertex figure:

- ∢ ≣ ▶

Schläfli symbols again

• With toroidal regular facet and toroidal two-orbit vertex figure: $\{4,4\}$ and $\{4,4\}$ $\{4,4\}$ and $\{4, \frac{3}{6}\}$ $\{3,6\}$ and $\{6,3\}$ $\{6,3\}$ and $\{3,6\}$ $\{3,4,3,3\}$ and $\{4,3,3,4\}$ $\{4,3,3,4\}$ and $\{3,3,4,3\}$

About the symmetry type criterion

Note that if \mathscr{P} is a class 2_I two-orbit amalgamation of the *n*-polytopes \mathscr{P}_1 and \mathscr{P}_2 , with \mathscr{P}_1 being regular and \mathscr{P}_2 two-orbit, then the vertex coloring of $\mathscr{F}(\mathscr{P})$ induces a subgroup of index 2 in $\Gamma(\mathscr{P}_1)$