Skew-morphisms of Groups and Regular Cayley maps

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

Queenstown, New Zealand, Feb. 18, 2016
Outline

Skew-morphism

Regular Cayely map

Skew-morphisms of dihedral groups
Skew-morphism

Skew-morphism: A *skew-morphism* \(\varphi \) of a finite group \(G \) is a permutation on \(G \) such that \(\varphi(1) = 1 \) and \(\varphi(gh) = \varphi(g)\varphi^{\pi(g)}(h) \) for all \(g, h \in G \), where \(\pi \) is a function from \(G \) to the cyclic group \(\mathbb{Z}_{|\varphi|} \), called the *power function* of \(\varphi \). (R. Jajcay and J. Širáň, 2002)
Skew-morphism

Skew-morphism: A *skew-morphism* \(\varphi \) of a finite group \(G \) is a permutation on \(G \) such that \(\varphi(1) = 1 \) and \(\varphi(gh) = \varphi(g)\varphi^\pi(g)(h) \) for all \(g, h \in G \), where \(\pi \) is a function from \(G \) to the cyclic group \(\mathbb{Z}_{|\varphi|} \), called the *power function* of \(\varphi \). (R. Jajcay and J. Širáň, 2002)

Kernel of a skew-morphism: The set \(\text{Ker} \varphi = \{ g \in G \mid \pi(g) = 1 \} \) is a subgroup of \(G \), called the *kernel* of \(\varphi \). (R. Jajcay and J. Širáň, 2002)
Skew-morphism

Skew-morphism: A *skew-morphism* φ of a finite group G is a permutation on G such that $\varphi(1) = 1$ and $\varphi(gh) = \varphi(g)\varphi^\pi(g)(h)$ for all $g, h \in G$, where π is a function from G to the cyclic group $\mathbb{Z}_{|\varphi|}$, called the *power function* of φ. (R. Jajcay and J. Širáň, 2002)

Kernel of a skew-morphism: The set $\text{Ker} \, \varphi = \{ g \in G \mid \pi(g) = 1 \}$ is a subgroup of G, called the *kernel* of φ. (R. Jajcay and J. Širáň, 2002)

Skew-type: A skew-morphism φ is said to be of *skew-type* k provided its power function π takes on exactly k values in $\mathbb{Z}_{|\varphi|}$. (J. Y. Zhang, 2014)
Skew-morphism

Skew-morphism: A skew-morphism \(\varphi \) of a finite group \(G \) is a permutation on \(G \) such that \(\varphi(1) = 1 \) and \(\varphi(gh) = \varphi(g)\varphi^\pi(g)(h) \) for all \(g, h \in G \), where \(\pi \) is a function from \(G \) to the cyclic group \(\mathbb{Z}_{|\varphi|} \), called the *power function* of \(\varphi \). (R. Jajcay and J. Širáň, 2002)

Kernel of a skew-morphism: The set \(\text{Ker} \varphi = \{ g \in G \mid \pi(g) = 1 \} \) is a subgroup of \(G \), called the *kernel* of \(\varphi \). (R. Jajcay and J. Širáň, 2002)

Skew-type: A skew-morphism \(\varphi \) is said to be of *skew-type* \(k \) provided its power function \(\pi \) takes on exactly \(k \) values in \(\mathbb{Z}_{|\varphi|} \). (J. Y. Zhang, 2014)

Core of a skew-morphism: The set

\[
\text{Core} \varphi := \{ x \in G \mid \pi(\varphi^i(x)) = 1, i = 0, 1, 2, \ldots \}
\]

is a normal subgroup of \(G \), called the *core* of \(\varphi \). (J. Y. Zhang, 2015)
Important formulas

\[\text{Aut}(G) \subseteq \text{Skew}(G) \subseteq \langle \text{Skew}(G) \rangle \subseteq \text{Sym}(G) \]

Unlike \(\text{Aut}(G) \), \(\text{Skew}(G) \) is not necessarily a subgroup of \(\text{Sym}(G) \).
Important formulas

\[\text{Aut}(G) \subseteq \text{Skew}(G) \subseteq \langle \text{Skew}(G) \rangle \subseteq \text{Sym}(G) \]

Unlike \(\text{Aut}(G) \), \(\text{Skew}(G) \) is not necessarily a subgroup of \(\text{Sym}(G) \).

\[
\varphi^k(gh) = \varphi^k(g) \sum_{i=0}^{k-1} \pi(\varphi^i(g)) (h)
\]

(R. Jajcay and J. Širáň, 2002)
Important formulas

\[\text{Aut}(G) \subseteq \text{Skew}(G) \subseteq \langle \text{Skew}(G) \rangle \subseteq \text{Sym}(G) \]

Unlike \(\text{Aut}(G) \), \(\text{Skew}(G) \) is not necessarily a subgroup of \(\text{Sym}(G) \).

\[\varphi^k(gh) = \varphi^k(g) \varphi_{i=0}^{k-1} \pi(\varphi^i(g)) (h) \quad (\text{R. Jajcay and J. Širáň, 2002}) \]

\[\pi(gh) \equiv \sum_{i=0}^{\pi(g)-1} \pi(\varphi^i(h)) \pmod{|\varphi|} \quad (\text{R. Jajcay and J. Širáň, 2002}) \]
Important formulas

\[\text{Aut}(G) \subseteq \text{Skew}(G) \subseteq \langle \text{Skew}(G) \rangle \subseteq \text{Sym}(G) \]

Unlike \text{Aut}(G), \text{Skew}(G) is not necessarily a subgroup of \text{Sym}(G).

\[\varphi^k(gh) = \varphi^k(g) \sum_{i=0}^{k-1} \pi(\varphi^i(g)) \varphi^{-1}(h) \quad \text{(R. Jajcay and J. Širáň, 2002)} \]

\[\pi(gh) \equiv \sum_{i=0}^{\pi(g)-1} \pi(\varphi^i(h)) \pmod{|\varphi|} \quad \text{(R. Jajcay and J. Širáň, 2002)} \]

For a \(\varphi \)-orbit \(X \) satisfying \(X = X^{-1} \), let \(\chi(x) \) be the smallest nonnegative integer such that \(\varphi^{\chi(x)}(x) = x^{-1} \). Then

\[\pi(x) \equiv \chi(\varphi(x)) - \chi(x) + 1 \pmod{|X|} \quad \text{for all } x \in X. \]

(R. Jajcay and J. Širáň, 2002)
Skew-product

Skew-product: Let $L_G := \{L_g \mid g \in G\}$ be the left regular representation of a finite group G and let φ be a permutation on G. Then φ is a skew-morphism of G if and only if $L_G\langle \varphi \rangle$ is a subgroup of $\text{Sym}(G)$. For a skew-morphism φ of G with power function π, we have

$$\varphi L_g = L_{\varphi(g)} \varphi^{\pi(g)} \text{ for any } g \in G.$$

The group $L_G\langle \varphi \rangle$ is called the skew-product of L_G by φ. (M. Conder, R. Jajcay, T. Tucker, 2007)
Skew-product

Skew-product: Let $L_G := \{L_g \mid g \in G\}$ be the left regular representation of a finite group G and let φ be a permutation on G. Then φ is a skew-morphism of G if and only if $L_G\langle \varphi \rangle$ is a subgroup of $\text{Sym}(G)$. For a skew-morphism φ of G with power function π, we have

$$\varphi L_g = L_{\varphi(g)}^{\pi(g)} \quad \text{for any } g \in G.$$

The group $L_G\langle \varphi \rangle$ is called the skew-product of L_G by φ. (M. Conder, R. Jajcay, T. Tucker, 2007)

Proposition (J.Y Zhang & S. F. Du, 2015).

Set $T = L_G\langle \varphi \rangle$ and write $L_{\text{Core } \varphi} := \{L_x \mid x \in \text{Core } \varphi\}$. Then

$$\text{Core}_T(L_G) = L_{\text{Core } \varphi}.$$
Some general results

Suppose that \(G = \langle x_i \mid 1 \leq i \leq t \rangle \), \(\varphi \) is a skew-morphism of \(G \) with the power \(\pi \). Then: (i) \(|\varphi| = \text{lcm}\{ |O_{x_1}|, |O_{x_2}|, \ldots, |O_{x_t}| \} \); (ii) for any \(c \in G \), \(c \in \text{Ker} \varphi \) if and only if \(\pi(c) \equiv 1 \pmod{|O_{x_i}|} \) for all \(i = 1, 2, \ldots, t \).
Some general results

Suppose that $G = \langle x_i \mid 1 \leq i \leq t \rangle$, φ is a skew-morphism of G with the power π. Then: (i) $|\varphi| = \text{lcm}\{|O_{x_1}|, |O_{x_2}|, \ldots, |O_{x_t}|\}$; (ii) for any $c \in G$, $c \in \text{Ker}\varphi$ if and only if $\pi(c) \equiv 1 \pmod{|O_{x_i}|}$ for all $i = 1, 2, \ldots, t$.

Suppose that A is a cyclic group with two subgroups K and M such that $A = \langle K, M \rangle$. Let φ be a skew-morphism of A preserving both K and M. If $\varphi|_K \in \text{Aut}(K)$ and $\varphi|_M \in \text{Aut}(M)$, then $\varphi \in \text{Aut}(A)$.
Some general results

Theorem A (J.Y Zhang & S. F. Du, 2015).

Suppose that $G = \langle x_i \mid 1 \leq i \leq t \rangle$, φ is a skew-morphism of G with the power π. Then: (i) $|\varphi| = \text{lcm}\{|O_{x_1}|, |O_{x_2}|, \ldots, |O_{x_t}|\}$; (ii) for any $c \in G$, $c \in \text{Ker} \varphi$ if and only if $\pi(c) \equiv 1 \pmod{|O_{x_i}|}$ for all $i = 1, 2, \ldots, t$.

Corollary (J.Y Zhang & S. F. Du, 2015).

Suppose that A is a cyclic group with two subgroups K and M such that $A = \langle K, M \rangle$. Let φ be a skew-morphism of A preserving both K and M. If $\varphi|_K \in \text{Aut}(K)$ and $\varphi|_M \in \text{Aut}(M)$, then $\varphi \in \text{Aut}(A)$.

Theorem B (J.Y Zhang & S. F. Du, 2015).

Let H be a normal subgroup of G and write $\overline{G} = G/H$. Let φ be a skew-morphism of G. If φ preserves H, then it induces a permutation $\overline{\varphi} : \overline{G} \to \overline{G}$, $\overline{g} \mapsto \overline{\varphi(g)}$, which defines a skew-morphism of \overline{G}.
Regular Cayely maps

Map: A *map* is a 2-cell embedding of a connected graph into a closed surface. An *automorphism* of a map is an automorphism of the underlying graph which can be extended to a self-homeomorphism of the supporting surface. For a map on an orientable surface, the group of all its orientation-preserving automorphisms acts always semi-regularly on the set of its arcs. If it acts regularly, then the map is called *orientably-regular* (or regular for simplicity).
Regular Cayley maps

Map: A *map* is a 2-cell embedding of a connected graph into a closed surface. An *automorphism* of a map is an automorphism of the underlying graph which can be extended to a self-homeomorphism of the supporting surface. For a map on an orientable surface, the group of all its orientation-preserving automorphisms acts always semi-regularly on the set of its arcs. If it acts regularly, then the map is called *orientably-regular* (or regular for simplicity).

Cayley map: A *Cayley map* $CM(G, X, \sigma)$ is a 2-cell embedding of the Cayley graph $C(G, X)$ into an orientable surface with the same local rotation induced by the permutation σ at every vertex, where σ is a cyclic permutation on X.
Regular Cayley maps

Map: A *map* is a 2-cell embedding of a connected graph into a closed surface. An *automorphism* of a map is an automorphism of the underlying graph which can be extended to a self-homeomorphism of the supporting surface. For a map on an orientable surface, the group of all its orientation-preserving automorphisms acts always semi-regularly on the set of its arcs. If it acts regularly, then the map is called *orientably-regular* (or regular for simplicity).

Cayley map: A *Cayley map* $CM(G, X, \sigma)$ is a 2-cell embedding of the Cayley graph $C(G, X)$ into an orientable surface with the same local rotation induced by the permutation σ at every vertex, where σ is a cyclic permutation on X.

Proposition (R. Jajcay & J. Širáň, 2002)

A Cayley map $CM(G, X, \sigma)$ is regular if and only if there exists a skew-morphism φ of G such that $\varphi|_X = \sigma$.
Skew-morphisms of dihedral groups I

Let $D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ and $\varphi \in \text{Skew}(D_{2n})$.

- If φ preserves $\langle a \rangle$ set-wise, then the following hold:
 1. φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
 2. $a^2 \in \text{Ker} \varphi$ and φ is of skew-type 1, 2, or 4;
 3. φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;
 4. φ is of skew-type 1 or 2 if n is a prime power.

$\text{Ker} \varphi < \langle a \rangle$ if and only if φ is of skew-type 4 and preserves $\langle a \rangle$.

If n is an odd number not divisible by 3, then φ must be an automorphism.
Skew-morphisms of dihedral groups I

Let $D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ and $\varphi \in \text{Skew}(D_{2n})$.

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

1. φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
2. $a^2 \in \text{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;
3. φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;
4. φ is of skew-type 1 or 2 if n is a prime power.

$\text{Ker} \varphi < \langle a \rangle$ if and only if φ is of skew-type 4 and preserves $\langle a \rangle$.

If n is an odd number not divisible by 3, then φ must be an automorphism.
Skew-morphisms of dihedral groups I

Let $D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ and $\varphi \in \text{Skew}(D_{2n})$.

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

1. φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
2. $a^2 \in \text{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;
3. φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;
4. φ is of skew-type 1 or 2 if n is a prime power.

$\text{Ker} \varphi < \langle a \rangle$ if and only if φ is of skew-type 4 and preserves $\langle a \rangle$.

If n is an odd number not divisible by 3, then φ must be an automorphism.
Skew-morphisms of dihedral groups I

Let $D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ and $\varphi \in \text{Skew}(D_{2n})$.

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

1. φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
2. $a^2 \in \text{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;
3. φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;
4. φ is of skew-type 1 or 2 if n is a prime power.

$\text{Ker} \varphi \langle a \rangle$ if and only if φ is of skew-type 4 and preserves $\langle a \rangle$.

If n is an odd number not divisible by 3, then φ must be an automorphism.
Skew-morphisms of dihedral groups I

Let $D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ and $\varphi \in \text{Skew}(D_{2n})$.

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

1. φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
2. $a^2 \in \text{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;
3. φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;
4. φ is of skew-type 1 or 2 if n is a prime power.
Skew-morphisms of dihedral groups

Let $D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ and $\varphi \in \text{Skew}(D_{2n})$.

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

1. φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
2. $a^2 \in \text{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;
3. φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;
4. φ is of skew-type 1 or 2 if n is a prime power.

$\text{Ker} \varphi < \langle a \rangle$ if and only if φ is of skew-type 4 and preserves $\langle a \rangle$.

If n is an odd number not divisible by 3, then φ must be an automorphism.
Skew-morphisms of dihedral groups I

Let \(D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle \) and \(\varphi \in \text{Skew}(D_{2n}) \).

If \(\varphi \) preserves \(\langle a \rangle \) set-wise, then the following hold:

1. \(\varphi \) is an automorphism if the restriction of \(\varphi \) to \(\langle a \rangle \) is an automorphism;
2. \(a^2 \in \ker \varphi \) and \(\varphi \) is of skew-type 1, 2 or 4;
3. \(\varphi \) is of skew-type 1 or 2 if \(\varphi \) fixes an element in the coset \(\langle a \rangle b \);
4. \(\varphi \) is of skew-type 1 or 2 if \(n \) is a prime power.

\(\ker \varphi < \langle a \rangle \) if and only if \(\varphi \) is of skew-type 4 and preserves \(\langle a \rangle \).
Skew-morphisms of dihedral groups I

Let $D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ and $\varphi \in \text{Skew}(D_{2n})$.

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

1. φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
2. $a^2 \in \text{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;
3. φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;
4. φ is of skew-type 1 or 2 if n is a prime power.

$\text{Ker} \varphi < \langle a \rangle$ if and only if φ is of skew-type 4 and preserves $\langle a \rangle$.

If n is an odd number not divisible by 3, then φ must be an automorphism.
Skew-morphisms of dihedral groups II

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ. Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $\text{CM}(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.
Skew-morphisms of dihedral groups II

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ. Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $\text{CM}(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

1. φ is t-balanced, that is, $\varphi(xg) = \varphi(x) \varphi(tg)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)
2. n is an odd number; (I. Kovács, D. Marušič, M. Muzychuk, 2013)
3. φ is of skew-type 3; (J. Y. Zhang, 2015)
4. $\text{Core}(\varphi) = \{1\}$. (J. Y. Zhang, 2015)
Skew-morphisms of dihedral groups II

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ. Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $\text{CM}(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

1. φ is t-balanced, that is, $\varphi(xg) = \varphi(x)\varphi^t(g)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)

2. n is an odd number; (I. Kovács, D. Marušić, M. Muzychuk, 2013)

3. φ is of skew-type 3; (J. Y. Zhang, 2015)

4. $\text{Core } \varphi = \{1\}$. (J. Y. Zhang, 2015)
Skew-morphisms of dihedral groups II

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ. Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $CM(D_{2n}, X, \varphi \mid_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

1. φ is t-balanced, that is, $\varphi(xg) = \varphi(x)\varphi^t(g)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)
2. n is an odd number; (I. Kovács, D. Marušič, M. Muzychuk, 2013)
Skew-morphisms of dihedral groups II

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ. Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $\text{CM}(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

1. φ is t-balanced, that is, $\varphi(xg) = \varphi(x)\varphi^t(g)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)
2. n is an odd number; (I. Kovács, D. Marušič, M. Muzychuk, 2013)
3. φ is of skew-type 3; (J. Y. Zhang, 2015)
Skew-morphisms of dihedral groups II

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ. Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $\text{CM}(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

1. φ is t-balanced, that is, $\varphi(xg) = \varphi(x)\varphi^t(g)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)

2. n is an odd number; (I. Kovács, D. Marušič, M. Muzychuk, 2013)

3. φ is of skew-type 3; (J. Y. Zhang, 2015)

4. Core $\varphi = \{1\}$. (J. Y. Zhang, 2015)
Skew-morphisms of dihedral groups II

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ. Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $\text{CM}(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

(1) φ is t-balanced, that is, $\varphi(xg) = \varphi(x)\varphi^t(g)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)

(2) n is an odd number; (I. Kovács, D. Marušič, M. Muzychuk, 2013)

(3) φ is of skew-type 3; (J. Y. Zhang, 2015)

(4) Core $\varphi = \{1\}$. (J. Y. Zhang, 2015)

Problem

Classify all skew-morphisms of dihedral groups.
Thank you very much!