Skew-morphisms of Groups and Regular Cayley maps

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

Queenstown, New Zealand, Feb. 18, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Skew-morphism

Regular Cayely map

Skew-morphisms of dihedral groups

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

Skew-morphism

Skew-morphism: A skew-morphism φ of a finite group G is a permutation on G such that $\varphi(1) = 1$ and $\varphi(gh) = \varphi(g)\varphi^{\pi(g)}(h)$ for all $g, h \in G$, where π is a function from G to the cyclic group $\mathbf{Z}_{|\varphi|}$, called the *power function* of φ . (R. Jajcay and J. Širáň, 2002)

School of mathematics and statistics, Minnan Normal University

Skew-morphism

Skew-morphism: A skew-morphism φ of a finite group G is a permutation on G such that $\varphi(1) = 1$ and $\varphi(gh) = \varphi(g)\varphi^{\pi(g)}(h)$ for all $g, h \in G$, where π is a function from G to the cyclic group $\mathbf{Z}_{|\varphi|}$, called the *power function* of φ . (R. Jajcay and J. Širáň, 2002)

Kernel of a skew-morphism: The set $\text{Ker } \varphi = \{g \in G \mid \pi(g) = 1\}$ is a subgroup of G, called the *kernel* of φ . (R. Jajcay and J. Širáň, 2002)

(b) A (B) b

Skew-morphism

Skew-morphism: A skew-morphism φ of a finite group G is a permutation on G such that $\varphi(1) = 1$ and $\varphi(gh) = \varphi(g)\varphi^{\pi(g)}(h)$ for all $g, h \in G$, where π is a function from G to the cyclic group $\mathbf{Z}_{|\varphi|}$, called the *power function* of φ . (R. Jajcay and J. Širáň, 2002)

Kernel of a skew-morphism: The set $\text{Ker } \varphi = \{g \in G \mid \pi(g) = 1\}$ is a subgroup of G, called the *kernel* of φ . (R. Jajcay and J. Širáň, 2002)

Skew-type: A skew-morphism φ is said to be of *skew-type* k provided its power function π takes on exactly k values in $\mathbf{Z}_{|\varphi|}$. (J. Y. Zhang, 2014)

A (1) > A (1) > A

Skew-morphism

Skew-morphism: A skew-morphism φ of a finite group G is a permutation on G such that $\varphi(1) = 1$ and $\varphi(gh) = \varphi(g)\varphi^{\pi(g)}(h)$ for all $g, h \in G$, where π is a function from G to the cyclic group $\mathbf{Z}_{|\varphi|}$, called the *power function* of φ . (R. Jajcay and J. Širáň, 2002)

Kernel of a skew-morphism: The set $\text{Ker } \varphi = \{g \in G \mid \pi(g) = 1\}$ is a subgroup of G, called the *kernel* of φ . (R. Jajcay and J. Širáň, 2002)

Skew-type: A skew-morphism φ is said to be of *skew-type* k provided its power function π takes on exactly k values in $\mathbf{Z}_{|\varphi|}$. (J. Y. Zhang, 2014)

Core of a skew-morphism: The set

Core
$$\varphi := \{x \in G \mid \pi(\varphi^i(x)) = 1, i = 0, 1, 2, ...\}$$

is a normal subgroup of G, called the *core* of φ . (J. Y. Zhang, 2015)

< ∃ >

Important formulas

 $\operatorname{Aut}(G) \subseteq \operatorname{Skew}(G) \subseteq \langle \operatorname{Skew}(G) \rangle \subseteq \operatorname{Sym}(G)$

Unlike Aut(G), Skew(G) is not necessary a subgroup of Sym(G).

< □ > < □ > < Ξ > < Ξ > < Ξ > Ξ
 *)

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

Important formulas

 $\operatorname{Aut}(G) \subseteq \operatorname{Skew}(G) \subseteq \langle \operatorname{Skew}(G) \rangle \subseteq \operatorname{Sym}(G)$ Unlike $\operatorname{Aut}(G)$, $\operatorname{Skew}(G)$ is not necessary a subgroup of $\operatorname{Sym}(G)$.

 $\varphi^{k}(gh) = \varphi^{k}(g)\varphi^{\sum_{i=0}^{k-1}\pi(\varphi^{i}(g))}(h) \quad (\mathsf{R. Jajcay and J. \check{\mathsf{S}}\mathsf{i}\mathsf{r}\check{\mathsf{a}}\check{\mathsf{n}}, 2002)$

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

→ Ξ →

Important formulas

 $\operatorname{Aut}(G) \subseteq \operatorname{Skew}(G) \subseteq \langle \operatorname{Skew}(G) \rangle \subseteq \operatorname{Sym}(G)$ Unlike $\operatorname{Aut}(G)$, $\operatorname{Skew}(G)$ is not necessary a subgroup of $\operatorname{Sym}(G)$.

 $\varphi^{k}(gh) = \varphi^{k}(g)\varphi^{\sum_{i=0}^{k-1}\pi\left(\varphi^{i}(g)\right)}(h) \quad (\mathsf{R. Jajcay and J. Širáň, 2002})$ $\pi(gh) \equiv \sum_{i=0}^{\pi(g)-1}\pi\left(\varphi^{i}(h)\right) \pmod{|\varphi|} \quad (\mathsf{R. Jajcay and J. Širáň, 2002})$

School of mathematics and statistics, Minnan Normal University

Important formulas

 $\operatorname{Aut}(G) \subseteq \operatorname{Skew}(G) \subseteq \langle \operatorname{Skew}(G) \rangle \subseteq \operatorname{Sym}(G)$ Unlike $\operatorname{Aut}(G)$, $\operatorname{Skew}(G)$ is not necessary a subgroup of $\operatorname{Sym}(G)$.

 $\varphi^{k}(gh) = \varphi^{k}(g)\varphi^{\sum_{i=0}^{k-1}\pi\left(\varphi^{i}(g)\right)}(h) \quad (\mathsf{R. Jajcay and J. \check{S}iráň, 2002})$ $\pi(gh) \equiv \sum_{i=0}^{\pi(g)-1}\pi\left(\varphi^{i}(h)\right) \pmod{|\varphi|} \quad (\mathsf{R. Jajcay and J. \check{S}iráň, 2002})$

For a φ -orbit X satisfying $X = X^{-1}$, let $\chi(x)$ be the smallest nonnegative integer such that $\varphi^{\chi(x)}(x) = x^{-1}$. Then

 $\pi(x) \equiv \chi\bigl(\varphi(x)\bigr) - \chi(x) + 1 \pmod{|X|} \text{ for all } x \in X.$

(R. Jajcay and J. Širáň, 2002)

イロン 不同 とくほう イロン

Skew-product

Skew-product: Let $L_G := \{L_g \mid g \in G\}$ be the left regular representation of a finite group G and let φ be a permutation on G. Then φ is a skew-morphism of G if and only if $L_G \langle \varphi \rangle$ is a subgroup of Sym(G). For a skew-morphism φ of G with power function π , we have

$$arphi L_g = L_{arphi(g)} arphi^{\pi(g)} \;\; ext{for any} \; g \in G.$$

The group $L_G \langle \varphi \rangle$ is called the skew-product of L_G by φ .(M. Conder, R. Jajcay, T. Tucker, 2007)

□→ < □→</p>

Skew-product

Skew-product: Let $L_G := \{L_g \mid g \in G\}$ be the left regular representation of a finite group G and let φ be a permutation on G. Then φ is a skew-morphism of G if and only if $L_G \langle \varphi \rangle$ is a subgroup of Sym(G). For a skew-morphism φ of G with power function π , we have

$$arphi L_g = L_{arphi(g)} arphi^{\pi(g)} \;\; ext{for any} \; g \in G.$$

The group $L_G \langle \varphi \rangle$ is called the skew-product of L_G by φ .(M. Conder, R. Jajcay, T. Tucker, 2007)

Proposition (J.Y Zhang & S. F. Du, 2015). Set $T = L_G \langle \varphi \rangle$ and write $L_{\operatorname{Core} \varphi} := \{L_x \mid x \in \operatorname{Core} \varphi\}$. Then $\operatorname{Core}_T(L_G) = L_{\operatorname{Core} \varphi}$.

Jun-Yang Zhang

< □ ▷ < 금 ▷ < 글 ▷ < 글 ▷ < 글 ▷ < 글 ▷ ○ </p>
School of mathematics and statistics, Minnan Normal University

Some general results

Theorem A (J.Y Zhang & S. F. Du, 2015).

Suppose that $G = \langle x_i | 1 \leq i \leq t \rangle$, φ is a skew-morphism of G with the power π . Then: (i) $|\varphi| = \operatorname{lcm}\{|\mathcal{O}_{x_1}|, |\mathcal{O}_{x_2}|, \ldots, |\mathcal{O}_{x_t}|\}$; (ii) for any $c \in G$, $c \in \operatorname{Ker} \varphi$ if and only if $\pi(c) \equiv 1 \pmod{|\mathcal{O}_{x_i}|}$ for all $i = 1, 2, \ldots, t$.

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

Some general results

Theorem A (J.Y Zhang & S. F. Du, 2015).

Suppose that $G = \langle x_i | 1 \leq i \leq t \rangle$, φ is a skew-morphism of G with the power π . Then: (i) $|\varphi| = \operatorname{lcm}\{|\mathcal{O}_{x_1}|, |\mathcal{O}_{x_2}|, \ldots, |\mathcal{O}_{x_t}|\}$; (ii) for any $c \in G$, $c \in \operatorname{Ker} \varphi$ if and only if $\pi(c) \equiv 1 \pmod{|\mathcal{O}_{x_i}|}$ for all $i = 1, 2, \ldots, t$.

Corollary (J.Y Zhang & S. F. Du, 2015).

Suppose that A is a cyclic group with two subgroups K and M such that $A = \langle K, M \rangle$. Let φ be a skew-morphism of A preserving both K and M. If $\varphi|_K \in \operatorname{Aut}(K)$ and $\varphi|_M \in \operatorname{Aut}(M)$, then $\varphi \in \operatorname{Aut}(A)$.

A (10) > A (10) > A (10)

Some general results

Theorem A (J.Y Zhang & S. F. Du, 2015).

Suppose that $G = \langle x_i | 1 \leq i \leq t \rangle$, φ is a skew-morphism of G with the power π . Then: (i) $|\varphi| = \operatorname{lcm}\{|\mathcal{O}_{x_1}|, |\mathcal{O}_{x_2}|, \ldots, |\mathcal{O}_{x_t}|\}$; (ii) for any $c \in G$, $c \in \operatorname{Ker} \varphi$ if and only if $\pi(c) \equiv 1 \pmod{|\mathcal{O}_{x_i}|}$ for all $i = 1, 2, \ldots, t$.

Corollary (J.Y Zhang & S. F. Du, 2015).

Suppose that A is a cyclic group with two subgroups K and M such that $A = \langle K, M \rangle$. Let φ be a skew-morphism of A preserving both K and M. If $\varphi|_K \in \operatorname{Aut}(K)$ and $\varphi|_M \in \operatorname{Aut}(M)$, then $\varphi \in \operatorname{Aut}(A)$.

Theorem B (J.Y Zhang & S. F. Du, 2015).

Let H be a normal subgroup of G and write $\overline{G} = G/H$. Let φ be a skew-morphism of G. If φ preserves H, then it induces a permutation $\overline{\varphi}: \overline{G} \to \overline{G}, \ \overline{g} \mapsto \overline{\varphi(g)}$, which defines a skew-morphism of \overline{G} .

Regular Cayely maps

Map: A *map* is a 2-cell embedding of a connected graph into a closed surface. An *automorphism* of a map is an automorphism of the underlying graph which can be extended to a self-homeomorphism of the supporting surface. For a map on an orientable surface, the group of all its orientation-preserving automorphisms acts always semi-regularly on the set of its arcs. If it acts regularly, then the map is called *orientably-regular* (or regular for simplicity).

Regular Cayely maps

Map: A *map* is a 2-cell embedding of a connected graph into a closed surface. An *automorphism* of a map is an automorphism of the underlying graph which can be extended to a self-homeomorphism of the supporting surface. For a map on an orientable surface, the group of all its orientation-preserving automorphisms acts always semi-regularly on the set of its arcs. If it acts regularly, then the map is called *orientably-regular* (or regular for simplicity).

Cayely map: A *Cayley map* $CM(G, X, \sigma)$ is a 2-cell embedding of the Cayley graph C(G, X) into an orientable surface with the same local rotation induced by the permutation σ at every vertex, where σ is a cyclic permutation on X.

Regular Cayely maps

Map: A *map* is a 2-cell embedding of a connected graph into a closed surface. An *automorphism* of a map is an automorphism of the underlying graph which can be extended to a self-homeomorphism of the supporting surface. For a map on an orientable surface, the group of all its orientation-preserving automorphisms acts always semi-regularly on the set of its arcs. If it acts regularly, then the map is called *orientably-regular* (or regular for simplicity).

Cayely map: A *Cayley map* $CM(G, X, \sigma)$ is a 2-cell embedding of the Cayley graph C(G, X) into an orientable surface with the same local rotation induced by the permutation σ at every vertex, where σ is a cyclic permutation on X.

Proposition (R. Jajcay & J. Širáň, 2002)

A Cayley map $CM(G, X, \sigma)$ is regular if and only if there exists a skewmorphism φ of G such that $\varphi|_X = \sigma$.

Let $D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ and $\varphi \in \text{Skew}(D_{2n})$.

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

Let $D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ and $\varphi \in \text{Skew}(D_{2n})$.

Theorem C (J.Y Zhang & S. F. Du, 2015).

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

Let $D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ and $\varphi \in \text{Skew}(D_{2n})$.

Theorem C (J.Y Zhang & S. F. Du, 2015).

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

(1) φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;

Skew-morphisms of dihedral groups I

Let
$$D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$$
 and $\varphi \in \text{Skew}(D_{2n})$.

Theorem C (J.Y Zhang & S. F. Du, 2015).

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

(1) φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;

(2) $a^2 \in \operatorname{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;

School of mathematics and statistics, Minnan Normal University

Skew-morphisms of dihedral groups I

Let
$$D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$$
 and $\varphi \in \text{Skew}(D_{2n})$.

Theorem C (J.Y Zhang & S. F. Du, 2015).

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

- (1) φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
- (2) $a^2 \in \operatorname{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;
- (3) φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;

Skew-morphisms of dihedral groups I

Let
$$D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$$
 and $\varphi \in \text{Skew}(D_{2n})$.

Theorem C (J.Y Zhang & S. F. Du, 2015).

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

- (1) φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
- (2) $a^2 \in \operatorname{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;
- (3) φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;
- (4) φ is of skew-type 1 or 2 if n is a prime power.

Let
$$D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$$
 and $\varphi \in \text{Skew}(D_{2n})$.

Theorem C (J.Y Zhang & S. F. Du, 2015).

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

- (1) φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
- (2) $a^2 \in \operatorname{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;
- (3) φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;
- (4) φ is of skew-type 1 or 2 if n is a prime power.

Corollary 1 (J.Y Zhang & S. F. Du, 2015).

 $\operatorname{Ker} \varphi < \langle a \rangle \text{ if and only if } \varphi \text{ is of skew-type } 4 \text{ and preserves } \langle a \rangle.$

Let
$$D_{2n} := \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$$
 and $\varphi \in \text{Skew}(D_{2n})$.

Theorem C (J.Y Zhang & S. F. Du, 2015).

If φ preserves $\langle a \rangle$ set-wise, then the following hold:

- (1) φ is an automorphism if the restriction of φ to $\langle a \rangle$ is an automorphism;
- (2) $a^2 \in \operatorname{Ker} \varphi$ and φ is of skew-type 1, 2 or 4;
- (3) φ is of skew-type 1 or 2 if φ fixes an element in the coset $\langle a \rangle b$;
- (4) φ is of skew-type 1 or 2 if n is a prime power.

Corollary 1 (J.Y Zhang & S. F. Du, 2015).

 $\operatorname{Ker} \varphi < \langle a \rangle$ if and only if φ is of skew-type 4 and preserves $\langle a \rangle$.

Corollary 2 (J.Y Zhang & S. F. Du, 2015).

If n is an odd number not divisible by 3, then φ must be an automorphism.

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ . Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $CM(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ . Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $CM(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

Skew-morphisms of dihedral groups II

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ . Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $CM(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

(1) φ is t-balanced, that is, $\varphi(xg) = \varphi(x)\varphi^t(g)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)

School of mathematics and statistics, Minnan Normal University

Skew-morphisms of dihedral groups II

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ . Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $CM(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

- (1) φ is t-balanced, that is, $\varphi(xg) = \varphi(x)\varphi^t(g)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)
- (2) n is an odd number; (I. Kovács, D. Marušič, M. Muzychuk, 2013)

< 🗇 > < 🖻 > <

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ . Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $CM(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

- (1) φ is t-balanced, that is, $\varphi(xg) = \varphi(x)\varphi^t(g)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)
- (2) *n* is an odd number; (I. Kovács, D. Marušič, M. Muzychuk, 2013)
- (3) φ is of skew-type 3; (J. Y. Zhang, 2015)

A (1) > A (1) > A

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ . Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $CM(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

- (1) φ is t-balanced, that is, $\varphi(xg) = \varphi(x)\varphi^t(g)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)
- (2) n is an odd number; (I. Kovács, D. Marušič, M. Muzychuk, 2013)
- (3) φ is of skew-type 3; (J. Y. Zhang, 2015)
- (4) Core $\varphi = \{1\}$. (J. Y. Zhang, 2015)

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University

Let φ be a skew-morphism of the group D_{2n} not preserving $\langle a \rangle$ and let X be the orbit of a under φ . Then $X \cap \langle a \rangle b \neq \emptyset$, $X^{-1} = X$, $D_{2n} = \langle X \rangle$ and $CM(D_{2n}, X, \varphi|_X)$ is a regular Cayley map.

Such skew-morphisms have been classified under the following conditions:

- (1) φ is t-balanced, that is, $\varphi(xg) = \varphi(x)\varphi^t(g)$ for any $x \in X$ and any $g \in D_{2n}$; (H. Kwak, Y.S. Kwon, R. Q. Feng, 2006)
- (2) n is an odd number; (I. Kovács, D. Marušič, M. Muzychuk, 2013)
- (3) φ is of skew-type 3; (J. Y. Zhang, 2015)
- (4) $\operatorname{Core} \varphi = \{1\}$. (J. Y. Zhang, 2015)

Problem

Classify all skew-morphisms of dihedral groups.

< 回 > < 三 > < 三 >

Thank you very much !

Jun-Yang Zhang

School of mathematics and statistics, Minnan Normal University