Regular maps with a given automorphism group, and with emphasis on twisted linear groups

Jozef Širáň

Open University and Slovak University of Technology

SCDO Queenstown, 18th February 2016

通 ト イヨ ト イヨト

Jozef Širáň Open University and SlovaRegular maps with a given automorphism gro

イロト イポト イヨト イヨト

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Here, $\operatorname{Aut}^+(\mathcal{M})$ and $\operatorname{Aut}(\mathcal{M})$ act regularly on arcs and flags, respectively.

イロト イポト イヨト イヨト

Here, $\operatorname{Aut}^+(\mathcal{M})$ and $\operatorname{Aut}(\mathcal{M})$ act regularly on arcs and flags, respectively. Such maps (cellular embeddings of connected graphs) on arbitrary surfaces are called orientably-regular and regular (generalising the Platonic maps).

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

An orientable map \mathcal{M} is orientably-regular if $\operatorname{Aut}^+(\mathcal{M})$ is a transitive (and hence regular) permutation group on the *arc set* of \mathcal{M} .

An orientable map \mathcal{M} is orientably-regular if $\operatorname{Aut}^+(\mathcal{M})$ is a transitive (and hence regular) permutation group on the *arc set* of \mathcal{M} .

If r and s are rotations of M about the centre of a face and about an incident vertex, then $G = Aut^+(M)$ has a presentation of the form

$$G = \langle r, s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$$

An orientable map \mathcal{M} is orientably-regular if $\operatorname{Aut}^+(\mathcal{M})$ is a transitive (and hence regular) permutation group on the *arc set* of \mathcal{M} .

If r and s are rotations of \mathcal{M} about the centre of a face and about an incident vertex, then $G = \operatorname{Aut}^+(\mathcal{M})$ has a presentation of the form

$$G = \langle r, s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$$

The group G is then a quotient of the triangle group

$$T_{\ell,m} = \langle R,S \ | \ R^\ell = S^m = (RS)^2 = 1 \rangle$$
 ,

i.e., $G = T_{\ell,m}/K$ for a torsion-free $K \triangleleft T_{\ell,m}$; equivalently, $\mathcal{M} = U_{\ell,m}/K$, where $U_{\ell,m}$ is an (ℓ, m) -tessellation of a simply connected surface.

(本間) (本語) (本語) (二語)

An orientable map \mathcal{M} is orientably-regular if $\operatorname{Aut}^+(\mathcal{M})$ is a transitive (and hence regular) permutation group on the *arc set* of \mathcal{M} .

If r and s are rotations of \mathcal{M} about the centre of a face and about an incident vertex, then $G = \operatorname{Aut}^+(\mathcal{M})$ has a presentation of the form

$$G = \langle r, s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$$

The group G is then a quotient of the triangle group

$$T_{\ell,m} = \langle R,S \ | \ R^\ell = S^m = (RS)^2 = 1 \rangle$$
 ,

i.e., $G = T_{\ell,m}/K$ for a torsion-free $K \triangleleft T_{\ell,m}$; equivalently, $\mathcal{M} = U_{\ell,m}/K$, where $U_{\ell,m}$ is an (ℓ, m) -tessellation of a simply connected surface.

Conversely, given any epimorphism from $T_{\ell,m}$ onto a finite group G with torsion-free kernel, the corresponding orientably-regular map of type (ℓ, m) can be constructed using (right) cosets of the images of $\langle R \rangle$, $\langle S \rangle$ and $\langle RS \rangle$ as faces, vertices and edges. (Works with cosets of $\langle r \rangle$, $\langle s \rangle$, $\langle rs \rangle$.)

イロト 不得下 イヨト イヨト 二日

イロト イポト イヨト イヨト

• Presentation: Aut⁺(\mathcal{M}) = $\langle r, s | r^4 = s^4 = (rs)^2 = r^2 s^2 r s^{-1} = 1 \rangle$

- Presentation: Aut⁺(\mathcal{M}) = $\langle r, s | r^4 = s^4 = (rs)^2 = r^2 s^2 r s^{-1} = 1 \rangle$
- This map is chiral (no reflection).

イロン イヨン イヨン イヨン

- Presentation: Aut⁺(\mathcal{M}) = $\langle r, s | r^4 = s^4 = (rs)^2 = r^2 s^2 r s^{-1} = 1 \rangle$
- This map is chiral (no reflection).
- ullet Algebraic theory of reflexible maps and non-orientable regular maps: imes

<ロ> (日) (日) (日) (日) (日)

Jozef Širáň Open University and SlovaRegular maps with a given automorphism gro

3

イロト イポト イヨト イヨト

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m) ;
- group presentations $\langle r, s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell,m}$.

イロト 不得下 イヨト イヨト 二日

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m) ;
- group presentations $\langle r,s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell,m}$.

Maps, Riemann surfaces, and Galois theory:

イロト イポト イヨト イヨト 三日

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m) ;
- group presentations $\langle r,s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle;$
- torsion-free normal subgroups of triangle groups $T_{\ell,m}$.

Maps, Riemann surfaces, and Galois theory:

A compact Riemann surface S can be *uniformised* by representing it in the form $S \cong U/F$ for some Fuchsian group F < PSL(2, R).

イロト イポト イヨト イヨト 三日

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m) ;
- group presentations $\langle r,s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell,m}$.

Maps, Riemann surfaces, and Galois theory:

A compact Riemann surface S can be *uniformised* by representing it in the form $S \cong \mathcal{U}/F$ for some Fuchsian group F < PSL(2, R). But S can also be defined by a complex polynomial eq'n P(x, y) = 0 as a many-valued function y = f(x).

イロト 不得下 イヨト イヨト 二日

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m) ;
- group presentations $\langle r,s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell,m}$.

Maps, Riemann surfaces, and Galois theory:

A compact Riemann surface S can be *uniformised* by representing it in the form $S \cong \mathcal{U}/F$ for some Fuchsian group F < PSL(2, R). But S can also be defined by a complex polynomial eq'n P(x, y) = 0 as a many-valued function y = f(x). We have a tower of branched coverings: $\mathcal{U} \to S \to \overline{\mathcal{C}}$.

イロト 不得下 イヨト イヨト 二日

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m) ;
- group presentations $\langle r, s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell,m}$.

Maps, Riemann surfaces, and Galois theory:

A compact Riemann surface S can be *uniformised* by representing it in the form $S \cong \mathcal{U}/F$ for some Fuchsian group F < PSL(2, R). But S can also be defined by a complex polynomial eq'n P(x, y) = 0 as a many-valued function y = f(x). We have a tower of branched coverings: $\mathcal{U} \to S \to \overline{\mathcal{C}}$.

[Weil 1950, Belyj 1972]: S is definable by a P with algebraic coefficients if and only if $S = U_{\ell,m}/K$ for some finite-index subgroup K of some $T_{\ell,m}$ (loosely speaking, iff the complex structure on S "comes from a map").

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m) ;
- group presentations $\langle r, s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell,m}$.

Maps, Riemann surfaces, and Galois theory:

A compact Riemann surface S can be *uniformised* by representing it in the form $S \cong \mathcal{U}/F$ for some Fuchsian group F < PSL(2, R). But S can also be defined by a complex polynomial eq'n P(x, y) = 0 as a many-valued function y = f(x). We have a tower of branched coverings: $\mathcal{U} \to S \to \overline{\mathcal{C}}$.

[Weil 1950, Belyj 1972]: S is definable by a P with algebraic coefficients if and only if $S = U_{\ell,m}/K$ for some finite-index subgroup K of some $T_{\ell,m}$ (loosely speaking, iff the complex structure on S "comes from a map").

This way the absolute Galois group acts on maps! [Grothendieck 1981]

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m) ;
- group presentations $\langle r,s \mid r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell,m}$.

Maps, Riemann surfaces, and Galois theory:

A compact Riemann surface S can be *uniformised* by representing it in the form $S \cong \mathcal{U}/F$ for some Fuchsian group F < PSL(2, R). But S can also be defined by a complex polynomial eq'n P(x, y) = 0 as a many-valued function y = f(x). We have a tower of branched coverings: $\mathcal{U} \to S \to \overline{\mathcal{C}}$.

[Weil 1950, Belyj 1972]: S is definable by a P with algebraic coefficients if and only if $S = U_{\ell,m}/K$ for some finite-index subgroup K of some $T_{\ell,m}$ (loosely speaking, iff the complex structure on S "comes from a map").

This way the absolute Galois group acts on maps! [Grothendieck 1981] Faithful on orientably-regular maps! [González-Diez, Jaikin-Zapirain 2013]

э

・ロト ・ 一下・ ・ ヨト・

3

イロト イポト イヨト イヨト

By underlying graphs:

[Gardiner, Nedela, Škoviera, Š 1999] A connected regular graph of degree ≥ 3 underlies an orientably-regular map if and only if its automorphism group contains a subgroup regular on arcs, with cyclic vertex stabilisers.

By underlying graphs:

[Gardiner, Nedela, Škoviera, Š 1999] A connected regular graph of degree ≥ 3 underlies an orientably-regular map if and only if its automorphism group contains a subgroup regular on arcs, with cyclic vertex stabilisers.

By carrier surfaces:

If $G = \operatorname{Aut}^+(\mathcal{M})$ for an orientably-regular map of type (ℓ, m) on a surface of genus $g \ge 2$, then, by Euler's fomula, $|G|(\ell m - 2\ell - 2m) = 4\ell m(g-1)$. Extremes: g - 1 divides |G| and (g - 1, |G|) = 1. Hard from here on...

イロト イポト イヨト イヨト 三日

By underlying graphs:

[Gardiner, Nedela, Škoviera, Š 1999] A connected regular graph of degree ≥ 3 underlies an orientably-regular map if and only if its automorphism group contains a subgroup regular on arcs, with cyclic vertex stabilisers.

By carrier surfaces:

If $G = \operatorname{Aut}^+(\mathcal{M})$ for an orientably-regular map of type (ℓ, m) on a surface of genus $g \ge 2$, then, by Euler's fomula, $|G|(\ell m - 2\ell - 2m) = 4\ell m(g-1)$. Extremes: g - 1 divides |G| and (g - 1, |G|) = 1. Hard from here on...

By automorphism groups:

If $G = \langle r, s \rangle$ with rs of order 2, then one needs to find *all* presentations $G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$ up to equivalence within $\operatorname{Aut}(G)$; the triples (G, r, s) and (G, r', s') give rise to isomorphic orientably-regular maps if and only if there is an automorphism of G s.t. $(r, s) \mapsto (r', s')$.

Jozef Širáň Open University and SlovaRegular maps with a given automorphism gro

(人間) トイヨト イヨト

 regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]
- regular maps with *almost-Sylow-cyclic* automorphism groups (every odd-order Sylow subgroup is cyclic and the even-order one has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010]
 in the solvable case independent of [Zassenhaus 1936]

- 本間 ト 本臣 ト 本臣 ト 二臣

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]
- regular maps with almost-Sylow-cyclic automorphism groups (every odd-order Sylow subgroup is cyclic and the even-order one has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010]
 – in the solvable case independent of [Zassenhaus 1936]
- orientably regular maps with automorphism groups isomorphic to PSL(2,q) and PGL(2,q) [McBeath 1967, Sah 1969]

イロト 不得下 イヨト イヨト 二日

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]
- regular maps with almost-Sylow-cyclic automorphism groups (every odd-order Sylow subgroup is cyclic and the even-order one has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010]
 – in the solvable case independent of [Zassenhaus 1936]
- orientably regular maps with automorphism groups isomorphic to PSL(2,q) and PGL(2,q) [McBeath 1967, Sah 1969]
- non-orientable regular maps with automorphism groups isomorphic to PSL(2,q) and PGL(2,q) [Conder, Potočnik and Š 2008]

イロト イポト イヨト イヨト 三日

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]
- regular maps with almost-Sylow-cyclic automorphism groups (every odd-order Sylow subgroup is cyclic and the even-order one has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010]
 – in the solvable case independent of [Zassenhaus 1936]
- orientably regular maps with automorphism groups isomorphic to PSL(2,q) and PGL(2,q) [McBeath 1967, Sah 1969]
- non-orientable regular maps with automorphism groups isomorphic to PSL(2,q) and PGL(2,q) [Conder, Potočnik and Š 2008]
- Suzuki simple groups for maps of type (4,5) [Jones 1993]

イロト 不得下 イヨト イヨト 二日

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]
- regular maps with almost-Sylow-cyclic automorphism groups (every odd-order Sylow subgroup is cyclic and the even-order one has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010]
 – in the solvable case independent of [Zassenhaus 1936]
- orientably regular maps with automorphism groups isomorphic to PSL(2,q) and PGL(2,q) [McBeath 1967, Sah 1969]
- non-orientable regular maps with automorphism groups isomorphic to PSL(2,q) and PGL(2,q) [Conder, Potočnik and Š 2008]
- Suzuki simple groups for maps of type (4,5) [Jones 1993]
- Ree simple groups for maps of type (3,7), (3,9) and (3,p) for primes $p \equiv -1 \mod 12$ [Jones 1994]

イロト 不得下 イヨト イヨト 二日

Twisted linear fractional groups

Jozef Širáň Open University and SlovaRegular maps with a given automorphism gro

э

イロト イポト イヨト イヨト

Twisted linear fractional groups

F – a field, S_F and N_F – non-zero squares and non-squares. The groups PSL(2, F) and PGL(2, F) consist of permutations of $F \cup \{\infty\}$ given by

$$z \mapsto \frac{az+b}{cz+d}$$

if $ad - bc \in S_F$ and $ad - bc \in S_F \cup N_F$, respectively.

Twisted linear fractional groups

F – a field, S_F and N_F – non-zero squares and non-squares. The groups PSL(2, F) and PGL(2, F) consist of permutations of $F \cup \{\infty\}$ given by

$$z \mapsto \frac{az+b}{cz+d}$$

if $ad - bc \in S_F$ and $ad - bc \in S_F \cup N_F$, respectively.

If $F = GF(q^2)$ for an odd prime power q, and if $\sigma : x \mapsto x^q$ is the automorphism of F of order 2, the twisted linear fractional group $M(q^2)$ consists of the permutations of $F \cup \{\infty\}$ defined by

$$z \mapsto \frac{az+b}{cz+d}$$
 if $ad-bc \in S_F$ and $z \mapsto \frac{az^{\sigma}+b}{cz^{\sigma}+d}$ if $ad-bc \in N_F$.

Twisted linear fractional groups

F – a field, S_F and N_F – non-zero squares and non-squares. The groups PSL(2, F) and PGL(2, F) consist of permutations of $F \cup \{\infty\}$ given by

$$z \mapsto \frac{az+b}{cz+d}$$

if $ad - bc \in S_F$ and $ad - bc \in S_F \cup N_F$, respectively.

If $F = GF(q^2)$ for an odd prime power q, and if $\sigma : x \mapsto x^q$ is the automorphism of F of order 2, the twisted linear fractional group $M(q^2)$ consists of the permutations of $F \cup \{\infty\}$ defined by

$$z \mapsto \frac{az+b}{cz+d}$$
 if $ad-bc \in S_F$ and $z \mapsto \frac{az^{\sigma}+b}{cz^{\sigma}+d}$ if $ad-bc \in N_F$.

By a major result of Zassenhaus (1936), the groups PGL(2, F) for an arbitrary finite field F, and $M(q^2)$ for fields of order q^2 for an odd prime power q, are precisely the finite, sharply 3-transitive permutation groups.

Jozef Širáň Open University and SlovaRegular maps with a given automorphism gro

э

ヘロト 人間ト 人団ト 人団ト

Notation: $G = M(q^2)$, $\overline{G} = M(q^2)\langle\sigma\rangle$, $F = GF(q^2) = GF(p^{2f})$, $F_{2e} = GF(p^{2e})$. Matrices: dia(u, v), off(u, v).

Notation: $G = M(q^2)$, $\overline{G} = M(q^2)\langle\sigma\rangle$, $F = GF(q^2) = GF(p^{2f})$, $F_{2e} = GF(p^{2e})$. Matrices: dia(u, v), off(u, v). Encoding elements of G:

$$\left(z \mapsto \frac{az+b}{cz+d}, ad-bc \in S_F\right) \mapsto [A,0]; A \in \mathrm{PSL}(2,F)$$

$$\left(z \mapsto \frac{az^{\sigma} + b}{cz^{\sigma} + d}, ad - bc \in N_F\right) \mapsto [A, 1]; A \in \mathrm{PGL}(2, F) \setminus \mathrm{PSL}(2, F)$$

Notation: $G = M(q^2)$, $\overline{G} = M(q^2)\langle \sigma \rangle$, $F = GF(q^2) = GF(p^{2f})$, $F_{2e} = GF(p^{2e})$. Matrices: dia(u, v), off(u, v). Encoding elements of G: $\left(z \mapsto \frac{az+b}{cz+d}, ad-bc \in S_F\right) \mapsto [A,0]; A \in PSL(2,F)$ $\left(z \mapsto \frac{az^{\sigma}+b}{cz^{\sigma}+d}, ad-bc \in N_F\right) \mapsto [A,1]; A \in PGL(2,F) \setminus PSL(2,F)$

• Every element of the form $[A, 1] \in G$ is conjugate in \overline{G} to [B, 1] with $B = \operatorname{dia}(\lambda, 1)$ or $B = \operatorname{off}(\lambda, 1)$ for some $\lambda \in N_F$.

(日) (四) (王) (王) (王)

Notation: $G = M(q^2)$, $\overline{G} = M(q^2)\langle\sigma\rangle$, $F = GF(q^2) = GF(p^{2f})$, $F_{2e} = GF(p^{2e})$. Matrices: dia(u, v), off(u, v). Encoding elements of G: $\left(z \mapsto \frac{az+b}{cz+d}, ad-bc \in S_F\right) \mapsto [A,0]; A \in PSL(2,F)$

$$\left(z \mapsto \frac{az^{\sigma} + b}{cz^{\sigma} + d}, ad - bc \in N_F\right) \mapsto [A, 1]; A \in \mathrm{PGL}(2, F) \setminus \mathrm{PSL}(2, F)$$

• Every element of the form $[A, 1] \in G$ is conjugate in \overline{G} to [B, 1] with $B = \operatorname{dia}(\lambda, 1)$ or $B = \operatorname{off}(\lambda, 1)$ for some $\lambda \in N_F$.

• If, in addition, $[AA^{\sigma}, 0] = [C, 0]$ for some $C \in PSL(2, p^{2e})$ with f/e odd, then $[B, 1] = [P, 0]^{-1}[A, 1][P, 0]$ for some $P \in PGL(2, p^{2e})$, and $\lambda \lambda^{\sigma} \in F_{2e}$ or $\lambda/\lambda^{\sigma} \in F_{2e}$, depending on whether B is equal to dia $(\lambda, 1)$ or off $(\lambda, 1)$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Notation: $G = M(q^2)$, $\overline{G} = M(q^2)\langle\sigma\rangle$, $F = GF(q^2) = GF(p^{2f})$, $F_{2e} = GF(p^{2e})$. Matrices: dia(u, v), off(u, v). Encoding elements of G: $\left(z \mapsto \frac{az+b}{cz+d}, ad-bc \in S_F\right) \mapsto [A, 0]; A \in PSL(2, F)$

$$\left(z \mapsto \frac{az^{\sigma} + b}{cz^{\sigma} + d}, ad - bc \in N_F\right) \mapsto [A, 1]; A \in \mathrm{PGL}(2, F) \setminus \mathrm{PSL}(2, F)$$

• Every element of the form $[A, 1] \in G$ is conjugate in \overline{G} to [B, 1] with $B = \operatorname{dia}(\lambda, 1)$ or $B = \operatorname{off}(\lambda, 1)$ for some $\lambda \in N_F$.

• If, in addition, $[AA^{\sigma}, 0] = [C, 0]$ for some $C \in PSL(2, p^{2e})$ with f/e odd, then $[B, 1] = [P, 0]^{-1}[A, 1][P, 0]$ for some $P \in PGL(2, p^{2e})$, and $\lambda \lambda^{\sigma} \in F_{2e}$ or $\lambda/\lambda^{\sigma} \in F_{2e}$, depending on whether B is equal to dia $(\lambda, 1)$ or off $(\lambda, 1)$.

• Every element of G not in $PSL(2, q^2)$ has order a multiple of 4.

Jozef Širáň Open University and SlovaRegular maps with a given automorphism gro

э

イロト イポト イヨト イヨト

• Let ξ be a primitive element of F and let [A, 1] be an element of G. Then, exactly one of the following two cases occur:

- 4 同 6 4 日 6 4 日 6

- Let ξ be a primitive element of F and let [A, 1] be an element of G. Then, exactly one of the following two cases occur:
 - 1. There exists exactly one odd $i \in \{1, 2, \dots, (q-1)/2\}$ such that [A, 1] is conjugate in \overline{G} to [B, 1] with $B = \operatorname{dia}(\xi^i, 1)$; the order of [A, 1] in G is then $2(q-1)/\operatorname{gcd}\{q-1, i\}$.

・ロト ・聞 ト ・ 回 ト ・ 回 ト …

• Let ξ be a primitive element of F and let [A, 1] be an element of G. Then, exactly one of the following two cases occur:

- 1. There exists exactly one odd $i \in \{1, 2, \dots, (q-1)/2\}$ such that [A, 1] is conjugate in \overline{G} to [B, 1] with $B = \operatorname{dia}(\xi^i, 1)$; the order of [A, 1] in G is then $2(q-1)/\operatorname{gcd}\{q-1, i\}$.
- 2. There exists exactly one odd $i \in \{1, 2, \dots, (q+1)/2\}$ such that [A, 1] is conjugate in \overline{G} to [B, 1] with $B = \text{off}(\xi^i, 1)$, and the order of [A, 1] in G is $2(q+1)/ \text{gcd}\{q+1, i\}$.

• Let ξ be a primitive element of F and let [A, 1] be an element of G. Then, exactly one of the following two cases occur:

- 1. There exists exactly one odd $i \in \{1, 2, \dots, (q-1)/2\}$ such that [A, 1] is conjugate in \overline{G} to [B, 1] with $B = \operatorname{dia}(\xi^i, 1)$; the order of [A, 1] in G is then $2(q-1)/\operatorname{gcd}\{q-1, i\}$.
- 2. There exists exactly one odd $i \in \{1, 2, \ldots, (q+1)/2\}$ such that [A, 1] is conjugate in \overline{G} to [B, 1] with $B = \text{off}(\xi^i, 1)$, and the order of [A, 1] in G is $2(q+1)/ \operatorname{gcd} \{q+1, i\}$.

Stabilisers of twisted elements - only one case presented here:

• Let ξ be a primitive element of F and let [A, 1] be an element of G. Then, exactly one of the following two cases occur:

- 1. There exists exactly one odd $i \in \{1, 2, \dots, (q-1)/2\}$ such that [A, 1] is conjugate in \overline{G} to [B, 1] with $B = \operatorname{dia}(\xi^i, 1)$; the order of [A, 1] in G is then $2(q-1)/\operatorname{gcd}\{q-1, i\}$.
- 2. There exists exactly one odd $i \in \{1, 2, \dots, (q+1)/2\}$ such that [A, 1] is conjugate in \overline{G} to [B, 1] with $B = \text{off}(\xi^i, 1)$, and the order of [A, 1] in G is $2(q+1)/ \text{gcd}\{q+1, i\}$.

Stabilisers of twisted elements - only one case presented here:

• The stabiliser of [B,1] for $B = \operatorname{dia}(\lambda,1)$, $\lambda \in N_F$, in \overline{G} is isomorphic to $Z_{2(q-1)}$ generated by (conjugation by) [P,1] for $P = \operatorname{dia}(\mu\lambda,1)$ with a suitable $(q-1)^{\operatorname{th}}$ root of unity μ , except when λ is a $(q+1)^{\operatorname{th}}$ root of -1and $q \equiv -1 \mod 4$; then the stabiliser is isomorphic to $N_G(D_{2(q-1)})$.

Jozef Širáň Open University and SlovaRegular maps with a given automorphism gro

э

・ロト ・四ト ・ヨト ・ヨト

Recall: Enumeration of orientably-regular maps \mathcal{M} , $\operatorname{Aut}^+(\mathcal{M}) \cong G$, \mapsto enumeration of triples (G, r, s), $G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and (G, r', s') equivalent if there is an automorphism of G: $(r, s) \mapsto (r', s')$.

イロン イロン イヨン イヨン 三日

Recall: Enumeration of orientably-regular maps \mathcal{M} , $\operatorname{Aut}^+(\mathcal{M}) \cong G$, \mapsto enumeration of triples (G, r, s), $G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and (G, r', s') equivalent if there is an automorphism of G: $(r, s) \mapsto (r', s')$.

If $M(p^{2f}) = G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, then r = [A, 1] and s = [B, 1]; wlog B in standard form (and with conditions imposed on A).

・ロト ・四ト ・ヨト ・ヨト - ヨ

Recall: Enumeration of orientably-regular maps \mathcal{M} , $\operatorname{Aut}^+(\mathcal{M}) \cong G$, \mapsto enumeration of triples (G, r, s), $G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and (G, r', s') equivalent if there is an automorphism of G: $(r, s) \mapsto (r', s')$.

If $M(p^{2f}) = G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, then r = [A, 1] and s = [B, 1]; wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs [A, 1], [B, 1] that do not generate G or a twisted subgroup of G isomorphic to $M(p^{2e})$ for f/e odd:

・ロト ・四ト ・ヨト ・ヨト - ヨ

Recall: Enumeration of orientably-regular maps \mathcal{M} , $\operatorname{Aut}^+(\mathcal{M}) \cong G$, \mapsto enumeration of triples (G, r, s), $G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and (G, r', s') equivalent if there is an automorphism of G: $(r, s) \mapsto (r', s')$.

If $M(p^{2f}) = G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, then r = [A, 1] and s = [B, 1]; wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs [A, 1], [B, 1] that do not generate G or a twisted subgroup of G isomorphic to $M(p^{2e})$ for f/e odd:

(i) both [A, 1] and [B, 1] have order 4,

《曰》 《聞》 《臣》 《臣》 三臣

Recall: Enumeration of orientably-regular maps \mathcal{M} , $\operatorname{Aut}^+(\mathcal{M}) \cong G$, \mapsto enumeration of triples (G, r, s), $G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and (G, r', s') equivalent if there is an automorphism of G: $(r, s) \mapsto (r', s')$.

If $M(p^{2f}) = G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, then r = [A, 1] and s = [B, 1]; wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs [A, 1], [B, 1] that do not generate G or a twisted subgroup of G isomorphic to $M(p^{2e})$ for f/e odd:

- (i) both [A, 1] and [B, 1] have order 4,
- (ii) $B = \operatorname{dia}(\lambda, 1)$ and A is an upper- or a lower-triangular matrix,

Recall: Enumeration of orientably-regular maps \mathcal{M} , $\operatorname{Aut}^+(\mathcal{M}) \cong G$, \mapsto enumeration of triples (G, r, s), $G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and (G, r', s') equivalent if there is an automorphism of G: $(r, s) \mapsto (r', s')$.

If $M(p^{2f}) = G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, then r = [A, 1] and s = [B, 1]; wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs [A, 1], [B, 1] that do not generate G or a twisted subgroup of G isomorphic to $M(p^{2e})$ for f/e odd:

- (i) both [A, 1] and [B, 1] have order 4,
- (ii) $B = \operatorname{dia}(\lambda, 1)$ and A is an upper- or a lower-triangular matrix,
- (iii) $B = off(\lambda, 1)$ and A is a diagonal matrix.

Recall: Enumeration of orientably-regular maps \mathcal{M} , $\operatorname{Aut}^+(\mathcal{M}) \cong G$, \mapsto enumeration of triples (G, r, s), $G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and (G, r', s') equivalent if there is an automorphism of G: $(r, s) \mapsto (r', s')$.

If $M(p^{2f}) = G = \langle r, s; r^{\ell} = s^m = (rs)^2 = \ldots = 1 \rangle$, then r = [A, 1] and s = [B, 1]; wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs [A, 1], [B, 1] that do not generate G or a twisted subgroup of G isomorphic to $M(p^{2e})$ for f/e odd:

(i) both
$$[A,1]$$
 and $[B,1]$ have order 4,

(ii) $B = \operatorname{dia}(\lambda, 1)$ and A is an upper- or a lower-triangular matrix,

(iii) $B = off(\lambda, 1)$ and A is a diagonal matrix.

• If H is a subgroup of G generated by a non-singular pair ([A, 1], [B, 1]), then $H \cong M(p^{2e})$ for some divisor e of f with f/e odd.

• $\# \overline{G}$ -orbits of non-singular pairs in $G = M(q^2)$ is $(q^2 - 1)(q^2 - 2)/8$.

• $\# \overline{G}$ -orbits of non-singular pairs in $G = M(q^2)$ is $(q^2 - 1)(q^2 - 2)/8$.

• For each positive divisor e of f with f/e odd, the # of \overline{G} -orbits of non-singular pairs generating a subgroup of G isomorphic to $G_{2e} \cong M(p^{2e})$ is equal to the number $\operatorname{orb}(e)$ of \overline{G}_{2e} -orbits of such non-singular pairs.

画 ト イヨト イヨト

• $\# \overline{G}$ -orbits of non-singular pairs in $G = M(q^2)$ is $(q^2 - 1)(q^2 - 2)/8$.

• For each positive divisor e of f with f/e odd, the # of \overline{G} -orbits of non-singular pairs generating a subgroup of G isomorphic to $G_{2e} \cong M(p^{2e})$ is equal to the number $\operatorname{orb}(e)$ of \overline{G}_{2e} -orbits of such non-singular pairs.

• All subgroups $G_{2e} \cong M(p^{2e}) < G = M(p^{2f})$ are conjugate in G.

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

• $\# \overline{G}$ -orbits of non-singular pairs in $G = M(q^2)$ is $(q^2 - 1)(q^2 - 2)/8$.

• For each positive divisor e of f with f/e odd, the # of \overline{G} -orbits of non-singular pairs generating a subgroup of G isomorphic to $G_{2e} \cong M(p^{2e})$ is equal to the number $\operatorname{orb}(e)$ of \overline{G}_{2e} -orbits of such non-singular pairs.

• All subgroups $G_{2e} \cong M(p^{2e}) < G = M(p^{2f})$ are conjugate in G.

• Let $f = 2^n o$ with o odd and let $e = 2^n d$ for a divisor d of o. Letting $h(x) = (p^{2x} - 1)(p^{2x} - 2)/8$ and summing up the above facts, we have $\sum_e' \operatorname{orb}(e) = h(f)$, or $\sum_{d|o} \operatorname{orb}(2^n d) = h(2^n o)$.

• $\# \overline{G}$ -orbits of non-singular pairs in $G = M(q^2)$ is $(q^2 - 1)(q^2 - 2)/8$.

• For each positive divisor e of f with f/e odd, the # of \overline{G} -orbits of non-singular pairs generating a subgroup of G isomorphic to $G_{2e} \cong M(p^{2e})$ is equal to the number $\operatorname{orb}(e)$ of \overline{G}_{2e} -orbits of such non-singular pairs.

• All subgroups $G_{2e} \cong M(p^{2e}) < G = M(p^{2f})$ are conjugate in G.

• Let $f = 2^n o$ with o odd and let $e = 2^n d$ for a divisor d of o. Letting $h(x) = (p^{2x} - 1)(p^{2x} - 2)/8$ and summing up the above facts, we have $\sum_e' \operatorname{orb}(e) = h(f)$, or $\sum_{d|o} \operatorname{orb}(2^n d) = h(2^n o)$.

Applying Möbius inversion we obtain

$$\operatorname{orb}(f) = \operatorname{orb}(2^n o) = \sum_{d|o} \mu(o/d) h(2^n d)$$
.

• $\# \overline{G}$ -orbits of non-singular pairs in $G = M(q^2)$ is $(q^2 - 1)(q^2 - 2)/8$.

• For each positive divisor e of f with f/e odd, the # of \overline{G} -orbits of non-singular pairs generating a subgroup of G isomorphic to $G_{2e} \cong M(p^{2e})$ is equal to the number $\operatorname{orb}(e)$ of \overline{G}_{2e} -orbits of such non-singular pairs.

- All subgroups $G_{2e} \cong M(p^{2e}) < G = M(p^{2f})$ are conjugate in G.
- Let $f = 2^n o$ with o odd and let $e = 2^n d$ for a divisor d of o. Letting $h(x) = (p^{2x} 1)(p^{2x} 2)/8$ and summing up the above facts, we have $\sum_e' \operatorname{orb}(e) = h(f)$, or $\sum_{d|o} \operatorname{orb}(2^n d) = h(2^n o)$.
- Applying Möbius inversion we obtain

$$\operatorname{orb}(f) = \operatorname{orb}(2^n o) = \sum_{d|o} \mu(o/d) h(2^n d)$$
.

• Final step: If a non-singular pair ([A, 1], [B, 1]) generates G and gives rise to an orbit O under conjugation in \overline{G} , then the action of the group $\operatorname{Aut}(M(q^2)) \cong \operatorname{P}\Gamma\operatorname{L}(2, q^2)$ fuses the f orbits O^{p^j} for $j \in \{0, 1, \ldots, f-1\}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Jozef Širáň Open University and SlovaRegular maps with a given automorphism gro

æ

・ロト ・聞ト ・ヨト ・ヨトー

Theorem. Let $q = p^f$, $f = 2^n o$; p, o odd. The number of orientably-regular maps \mathcal{M} with $\operatorname{Aut}^+(\mathcal{M}) \cong M(q^2)$ is, up to isomorphism, equal to

$$\frac{1}{f}\sum_{d\mid o}\mu(o/d)h(2^nd) \ ,$$

where $h(x) = (p^{2x} - 1)(p^{2x} - 2)/8$ and μ is the Möbius function.

イロト イポト イヨト イヨト 三日

Theorem. Let $q = p^f$, $f = 2^n o$; p, o odd. The number of orientably-regular maps \mathcal{M} with $\operatorname{Aut}^+(\mathcal{M}) \cong M(q^2)$ is, up to isomorphism, equal to

$$\frac{1}{f}\sum_{d|o}\mu(o/d)h(2^nd) \ ,$$

where $h(x) = (p^{2x} - 1)(p^{2x} - 2)/8$ and μ is the Möbius function.

A group-theoretic interpretation: Counting generating pairs (r,s) of $G = M(q^2)$ such that $(rs)^2 = 1$, up to conjugacy in Aut(G).

Theorem. Let $q = p^f$, $f = 2^n o$; p, o odd. The number of orientably-regular maps \mathcal{M} with $\operatorname{Aut}^+(\mathcal{M}) \cong M(q^2)$ is, up to isomorphism, equal to

$$\frac{1}{f}\sum_{d\mid o}\mu(o/d)h(2^nd) \ ,$$

where $h(x) = (p^{2x} - 1)(p^{2x} - 2)/8$ and μ is the Möbius function.

A group-theoretic interpretation: Counting generating pairs (r,s) of $G = M(q^2)$ such that $(rs)^2 = 1$, up to conjugacy in Aut(G).

Theorem. The number of reflexible maps \mathcal{M} with $\operatorname{Aut}^+(\mathcal{M}) \cong M(q^2)$ is

$$\frac{1}{f} \sum_{d|o} \mu(o/d) k(2^n d) \; ,$$

where $k(x) = (p^{2x} - 1)(3p^x - 2)/8$ and μ is the Möbius function.

(日) (四) (三) (三) (三)

The results are strikingly different from those for the groups PGL(2, q):

3

ヘロト 人間ト 人団ト 人団ト

The results are strikingly different from those for the groups PGL(2, q):

• all the orientably-regular maps for $\mathrm{PGL}(2,q)$ are reflexible, while this is not the case for $M(q^2)$;

・ 同 ト ・ 三 ト ・ 三 ト

The results are strikingly different from those for the groups PGL(2, q):

- all the orientably-regular maps for ${\rm PGL}(2,q)$ are reflexible, while this is not the case for $M(q^2);$
- groups $\mathrm{PGL}(2,q)$ are also automorphism groups of non-orientable regular maps, while the groups $M(q^2)$ are not;

通 ト イヨ ト イヨト

The results are strikingly different from those for the groups PGL(2, q):

- all the orientably-regular maps for $\mathrm{PGL}(2,q)$ are reflexible, while this is not the case for $M(q^2)$;
- groups ${\rm PGL}(2,q)$ are also automorphism groups of non-orientable regular maps, while the groups $M(q^2)$ are not;
- for any even $\ell, m \geq 4$ not both equal to 4 there are orientably-regular maps of type (ℓ, m) with automorphism group $\mathrm{PGL}(2,q)$ for infinitely many values of q, while for infinitely many such pairs (ℓ, m) there are no orientably-regular maps for $M(q^2)$ of that type for any q.

◆□▶ ◆圖▶ ◆注▶ ◆注▶ ─ 注

The results are strikingly different from those for the groups PGL(2, q):

- all the orientably-regular maps for $\mathrm{PGL}(2,q)$ are reflexible, while this is not the case for $M(q^2)$;
- \bullet groups ${\rm PGL}(2,q)$ are also automorphism groups of non-orientable regular maps, while the groups $M(q^2)$ are not;
- for any even $\ell, m \geq 4$ not both equal to 4 there are orientably-regular maps of type (ℓ, m) with automorphism group $\mathrm{PGL}(2,q)$ for infinitely many values of q, while for infinitely many such pairs (ℓ, m) there are no orientably-regular maps for $M(q^2)$ of that type for any q.

Proposition. If $\ell, m \equiv 0 \pmod{8}$ and $\ell \not\equiv m \pmod{16}$ then there is no orientably-regular map of type (ℓ, m) with automorphism group isomorphic to $M(q^2)$ for any q.

・ロン ・聞と ・ 思と ・ 思と … ほ

Jozef Širáň Open University and SlovaRegular maps with a given automorphism gro

E

ヘロト 人間ト 人造ト 人造トー

Good progress towards determining the character table of $M(q^2)$;

(4月) (4日) (4日)

Good progress towards determining the character table of $M(q^2)$; if known:

Frobenius 1896: For $i \in \{1, 2, ..., k\}$ let C_i be conjugacy classes in a finite group G. Then, the number of solutions $(x_1, x_2, ..., x_k)$ of the equation $x_1x_2 \cdots x_k = 1$ with $x_i \in C_i$ is equal to

$$\frac{|\mathcal{C}_1|\cdots|\mathcal{C}_k|}{|G|}\sum_{\chi}\frac{\chi(x_1)\cdots\chi(x_k)}{\chi(1)^{k-2}}$$

where χ ranges over the irreducible complex characters of G.

くぼう くほう くほう しほ

Good progress towards determining the character table of $M(q^2)$; if known:

Frobenius 1896: For $i \in \{1, 2, ..., k\}$ let C_i be conjugacy classes in a finite group G. Then, the number of solutions $(x_1, x_2, ..., x_k)$ of the equation $x_1x_2 \cdots x_k = 1$ with $x_i \in C_i$ is equal to

$$\frac{|\mathcal{C}_1|\cdots|\mathcal{C}_k|}{|G|}\sum_{\chi}\frac{\chi(x_1)\cdots\chi(x_k)}{\chi(1)^{k-2}}$$

where χ ranges over the irreducible complex characters of G.

Letting $x_1 = r$, $x_2 = s$ and $x_3 = (rs)^{-1}$, presentations of $G = M(q^2)$ determining our orientably-regular maps of type (ℓ, m) have the form $G = \langle x_1, x_2, x_3; x_1^\ell = x_2^m = x_3^2 = \ldots = 1 \rangle$.

Good progress towards determining the character table of $M(q^2)$; if known:

Frobenius 1896: For $i \in \{1, 2, ..., k\}$ let C_i be conjugacy classes in a finite group G. Then, the number of solutions $(x_1, x_2, ..., x_k)$ of the equation $x_1x_2 \cdots x_k = 1$ with $x_i \in C_i$ is equal to

$$\frac{|\mathcal{C}_1|\cdots|\mathcal{C}_k|}{|G|}\sum_{\chi}\frac{\chi(x_1)\cdots\chi(x_k)}{\chi(1)^{k-2}}$$

where χ ranges over the irreducible complex characters of G.

Letting $x_1 = r$, $x_2 = s$ and $x_3 = (rs)^{-1}$, presentations of $G = M(q^2)$ determining our orientably-regular maps of type (ℓ, m) have the form $G = \langle x_1, x_2, x_3; x_1^{\ell} = x_2^m = x_3^2 = \ldots = 1 \rangle$. Our knowledge of triples generating proper subgroups of G and Möbius inversion would then give a refined enumeration of maps of given type.

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● ●

Good progress towards determining the character table of $M(q^2)$; if known:

Frobenius 1896: For $i \in \{1, 2, ..., k\}$ let C_i be conjugacy classes in a finite group G. Then, the number of solutions $(x_1, x_2, ..., x_k)$ of the equation $x_1x_2 \cdots x_k = 1$ with $x_i \in C_i$ is equal to

$$\frac{|\mathcal{C}_1|\cdots|\mathcal{C}_k|}{|G|}\sum_{\chi}\frac{\chi(x_1)\cdots\chi(x_k)}{\chi(1)^{k-2}}$$

where χ ranges over the irreducible complex characters of G.

Letting $x_1 = r$, $x_2 = s$ and $x_3 = (rs)^{-1}$, presentations of $G = M(q^2)$ determining our orientably-regular maps of type (ℓ, m) have the form $G = \langle x_1, x_2, x_3; x_1^{\ell} = x_2^m = x_3^2 = \ldots = 1 \rangle$. Our knowledge of triples generating proper subgroups of G and Möbius inversion would then give a refined enumeration of maps of given type. (Recall: ∞ types missing!)

Good progress towards determining the character table of $M(q^2)$; if known:

Frobenius 1896: For $i \in \{1, 2, ..., k\}$ let C_i be conjugacy classes in a finite group G. Then, the number of solutions $(x_1, x_2, ..., x_k)$ of the equation $x_1x_2 \cdots x_k = 1$ with $x_i \in C_i$ is equal to

$$\frac{|\mathcal{C}_1|\cdots|\mathcal{C}_k|}{|G|}\sum_{\chi}\frac{\chi(x_1)\cdots\chi(x_k)}{\chi(1)^{k-2}}$$

where χ ranges over the irreducible complex characters of G.

Letting $x_1 = r$, $x_2 = s$ and $x_3 = (rs)^{-1}$, presentations of $G = M(q^2)$ determining our orientably-regular maps of type (ℓ, m) have the form $G = \langle x_1, x_2, x_3; x_1^\ell = x_2^m = x_3^2 = \ldots = 1 \rangle$. Our knowledge of triples generating proper subgroups of G and Möbius inversion would then give a refined enumeration of maps of given type. (Recall: ∞ types missing!)

(: THANK YOU :)