Regular maps with a given automorphism group, and with emphasis on twisted linear groups

Jozef Širáň

Open University and
Slovak University of Technology

SCDO Queenstown, 18th February 2016

Instead of an introduction: The five Platonic maps \mathcal{M}

Instead of an introduction: The five Platonic maps \mathcal{M}

Instead of an introduction: The five Platonic maps \mathcal{M}

Here, $\operatorname{Aut}^{+}(\mathcal{M})$ and $\operatorname{Aut}(\mathcal{M})$ act regularly on arcs and flags, respectively.

Instead of an introduction: The five Platonic maps \mathcal{M}

Here, $\operatorname{Aut}^{+}(\mathcal{M})$ and $\operatorname{Aut}(\mathcal{M})$ act regularly on arcs and flags, respectively. Such maps (cellular embeddings of connected graphs) on arbitrary surfaces are called orientably-regular and regular (generalising the Platonic maps).

Orientably-regular maps - an introduction

Orientably-regular maps - an introduction

An orientable map \mathcal{M} is orientably-regular if $\operatorname{Aut}^{+}(\mathcal{M})$ is a transitive (and hence regular) permutation group on the arc set of \mathcal{M}.

Orientably-regular maps - an introduction

An orientable map \mathcal{M} is orientably-regular if $\operatorname{Aut}^{+}(\mathcal{M})$ is a transitive (and hence regular) permutation group on the arc set of \mathcal{M}.

If r and s are rotations of \mathcal{M} about the centre of a face and about an incident vertex, then $G=\operatorname{Aut}^{+}(\mathcal{M})$ has a presentation of the form

$$
G=\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle .
$$

Orientably-regular maps - an introduction

An orientable map \mathcal{M} is orientably-regular if $\operatorname{Aut}^{+}(\mathcal{M})$ is a transitive (and hence regular) permutation group on the arc set of \mathcal{M}.

If r and s are rotations of \mathcal{M} about the centre of a face and about an incident vertex, then $G=\operatorname{Aut}^{+}(\mathcal{M})$ has a presentation of the form

$$
G=\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle .
$$

The group G is then a quotient of the triangle group

$$
T_{\ell, m}=\left\langle R, S \mid R^{\ell}=S^{m}=(R S)^{2}=1\right\rangle,
$$

i.e., $G=T_{\ell, m} / K$ for a torsion-free $K \triangleleft T_{\ell, m}$; equivalently, $\mathcal{M}=U_{\ell, m} / K$, where $U_{\ell, m}$ is an (ℓ, m)-tessellation of a simply connected surface.

Orientably-regular maps - an introduction

An orientable map \mathcal{M} is orientably-regular if $\mathrm{Aut}^{+}(\mathcal{M})$ is a transitive (and hence regular) permutation group on the arc set of \mathcal{M}.

If r and s are rotations of \mathcal{M} about the centre of a face and about an incident vertex, then $G=\operatorname{Aut}^{+}(\mathcal{M})$ has a presentation of the form

$$
G=\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle .
$$

The group G is then a quotient of the triangle group

$$
T_{\ell, m}=\left\langle R, S \mid R^{\ell}=S^{m}=(R S)^{2}=1\right\rangle,
$$

i.e., $G=T_{\ell, m} / K$ for a torsion-free $K \triangleleft T_{\ell, m}$; equivalently, $\mathcal{M}=U_{\ell, m} / K$, where $U_{\ell, m}$ is an (ℓ, m)-tessellation of a simply connected surface.
Conversely, given any epimorphism from $T_{\ell, m}$ onto a finite group G with torsion-free kernel, the corresponding orientably-regular map of type (ℓ, m) can be constructed using (right) cosets of the images of $\langle R\rangle,\langle S\rangle$ and $\langle R S\rangle$ as faces, vertices and edges. (Works with cosets of $\langle r\rangle,\langle s\rangle,\langle r s\rangle$.)

Example of an orientably-regular map: K_{5} on a torus

Example of an orientably-regular map: K_{5} on a torus

- Presentation: $\operatorname{Aut}^{+}(\mathcal{M})=\left\langle r, s \mid r^{4}=s^{4}=(r s)^{2}=r^{2} s^{2} r s^{-1}=1\right\rangle$

Example of an orientably-regular map: K_{5} on a torus

- Presentation: $\operatorname{Aut}^{+}(\mathcal{M})=\left\langle r, s \mid r^{4}=s^{4}=(r s)^{2}=r^{2} s^{2} r s^{-1}=1\right\rangle$
- This map is chiral (no reflection).

Example of an orientably-regular map: K_{5} on a torus

- Presentation: $\operatorname{Aut}^{+}(\mathcal{M})=\left\langle r, s \mid r^{4}=s^{4}=(r s)^{2}=r^{2} s^{2} r s^{-1}=1\right\rangle$
- This map is chiral (no reflection).
- Algebraic theory of reflexible maps and non-orientable regular maps:

Orientably-regular maps and exciting mathematics

Orientably-regular maps and exciting mathematics

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m);
- group presentations $\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell, m}$.

Orientably-regular maps and exciting mathematics

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m);
- group presentations $\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell, m}$.

Maps, Riemann surfaces, and Galois theory:

Orientably-regular maps and exciting mathematics

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m);
- group presentations $\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell, m}$.

Maps, Riemann surfaces, and Galois theory:
A compact Riemann surface \mathcal{S} can be uniformised by representing it in the form $\mathcal{S} \cong \mathcal{U} / F$ for some Fuchsian group $F<\operatorname{PSL}(2, R)$.

Orientably-regular maps and exciting mathematics

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m);
- group presentations $\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell, m}$.

Maps, Riemann surfaces, and Galois theory:
A compact Riemann surface \mathcal{S} can be uniformised by representing it in the form $\mathcal{S} \cong \mathcal{U} / F$ for some Fuchsian group $F<\operatorname{PSL}(2, R)$. But \mathcal{S} can also be defined by a complex polynomial eq'n $P(x, y)=0$ as a many-valued function $y=f(x)$.

Orientably-regular maps and exciting mathematics

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m);
- group presentations $\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell, m}$.

Maps, Riemann surfaces, and Galois theory:
A compact Riemann surface \mathcal{S} can be uniformised by representing it in the form $\mathcal{S} \cong \mathcal{U} / F$ for some Fuchsian group $F<\operatorname{PSL}(2, R)$. But \mathcal{S} can also be defined by a complex polynomial eq'n $P(x, y)=0$ as a many-valued function $y=f(x)$. We have a tower of branched coverings: $\mathcal{U} \rightarrow \mathcal{S} \rightarrow \overline{\mathcal{C}}$.

Orientably-regular maps and exciting mathematics

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m);
- group presentations $\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell, m}$.

Maps, Riemann surfaces, and Galois theory:
A compact Riemann surface \mathcal{S} can be uniformised by representing it in the form $\mathcal{S} \cong \mathcal{U} / F$ for some Fuchsian group $F<\operatorname{PSL}(2, R)$. But \mathcal{S} can also be defined by a complex polynomial eq'n $P(x, y)=0$ as a many-valued function $y=f(x)$. We have a tower of branched coverings: $\mathcal{U} \rightarrow \mathcal{S} \rightarrow \overline{\mathcal{C}}$.
[Weil 1950, Belyj 1972]: \mathcal{S} is definable by a P with algebraic coefficients if and only if $\mathcal{S}=U_{\ell, m} / K$ for some finite-index subgroup K of some $T_{\ell, m}$ (loosely speaking, iff the complex structure on \mathcal{S} "comes from a map").

Orientably-regular maps and exciting mathematics

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m);
- group presentations $\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell, m}$.

Maps, Riemann surfaces, and Galois theory:
A compact Riemann surface \mathcal{S} can be uniformised by representing it in the form $\mathcal{S} \cong \mathcal{U} / F$ for some Fuchsian group $F<\operatorname{PSL}(2, R)$. But \mathcal{S} can also be defined by a complex polynomial eq'n $P(x, y)=0$ as a many-valued function $y=f(x)$. We have a tower of branched coverings: $\mathcal{U} \rightarrow \mathcal{S} \rightarrow \overline{\mathcal{C}}$.
[Weil 1950, Belyj 1972]: \mathcal{S} is definable by a P with algebraic coefficients if and only if $\mathcal{S}=U_{\ell, m} / K$ for some finite-index subgroup K of some $T_{\ell, m}$ (loosely speaking, iff the complex structure on \mathcal{S} "comes from a map").
This way the absolute Galois group acts on maps! [Grothendieck 1981]

Orientably-regular maps and exciting mathematics

Up to isomorphism, 1-1 correspondence between:

- orientably-regular maps of type (ℓ, m);
- group presentations $\left\langle r, s \mid r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$;
- torsion-free normal subgroups of triangle groups $T_{\ell, m}$.

Maps, Riemann surfaces, and Galois theory:
A compact Riemann surface \mathcal{S} can be uniformised by representing it in the form $\mathcal{S} \cong \mathcal{U} / F$ for some Fuchsian group $F<\operatorname{PSL}(2, R)$. But \mathcal{S} can also be defined by a complex polynomial eq'n $P(x, y)=0$ as a many-valued function $y=f(x)$. We have a tower of branched coverings: $\mathcal{U} \rightarrow \mathcal{S} \rightarrow \overline{\mathcal{C}}$.
[Weil 1950, Belyj 1972]: \mathcal{S} is definable by a P with algebraic coefficients if and only if $\mathcal{S}=U_{\ell, m} / K$ for some finite-index subgroup K of some $T_{\ell, m}$ (loosely speaking, iff the complex structure on \mathcal{S} "comes from a map").

This way the absolute Galois group acts on maps! [Grothendieck 1981]
Faithful on orientably-regular maps! [González-Diez, Jaikin-Zapirain 2013]

Classification of (orientably-) regular maps

Classification of (orientably-) regular maps

By underlying graphs:

[Gardiner, Nedela, Škoviera, Š 1999] A connected regular graph of degree ≥ 3 underlies an orientably-regular map if and only if its automorphism group contains a subgroup regular on arcs, with cyclic vertex stabilisers.

Classification of (orientably-) regular maps

By underlying graphs:

[Gardiner, Nedela, Škoviera, Š 1999] A connected regular graph of degree ≥ 3 underlies an orientably-regular map if and only if its automorphism group contains a subgroup regular on arcs, with cyclic vertex stabilisers.

By carrier surfaces:
If $G=$ Aut $^{+}(\mathcal{M})$ for an orientably-regular map of type (ℓ, m) on a surface of genus $g \geq 2$, then, by Euler's fomula, $|G|(\ell m-2 \ell-2 m)=4 \ell m(g-1)$. Extremes: $g-1$ divides $|G|$ and $(g-1,|G|)=1$. Hard from here on...

Classification of (orientably-) regular maps

By underlying graphs:
[Gardiner, Nedela, Škoviera, Š 1999] A connected regular graph of degree ≥ 3 underlies an orientably-regular map if and only if its automorphism group contains a subgroup regular on arcs, with cyclic vertex stabilisers.

By carrier surfaces:

If $G=$ Aut $^{+}(\mathcal{M})$ for an orientably-regular map of type (ℓ, m) on a surface of genus $g \geq 2$, then, by Euler's fomula, $|G|(\ell m-2 \ell-2 m)=4 \ell m(g-1)$. Extremes: $g-1$ divides $|G|$ and $(g-1,|G|)=1$. Hard from here on...

By automorphism groups:
If $G=\langle r, s\rangle$ with $r s$ of order 2 , then one needs to find all presentations $G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$ up to equivalence within $\operatorname{Aut}(G)$; the triples (G, r, s) and $\left(G, r^{\prime}, s^{\prime}\right)$ give rise to isomorphic orientably-regular maps if and only if there is an automorphism of G s.t. $(r, s) \mapsto\left(r^{\prime}, s^{\prime}\right)$.

Classification of regular maps by automorphism groups

Classification of regular maps by automorphism groups

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]

Classification of regular maps by automorphism groups

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]
- regular maps with almost-Sylow-cyclic automorphism groups (every odd-order Sylow subgroup is cyclic and the even-order one has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010] - in the solvable case independent of [Zassenhaus 1936]

Classification of regular maps by automorphism groups

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]
- regular maps with almost-Sylow-cyclic automorphism groups (every odd-order Sylow subgroup is cyclic and the even-order one has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010] - in the solvable case independent of [Zassenhaus 1936]
- orientably regular maps with automorphism groups isomorphic to $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ [McBeath 1967, Sah 1969]

Classification of regular maps by automorphism groups

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]
- regular maps with almost-Sylow-cyclic automorphism groups (every odd-order Sylow subgroup is cyclic and the even-order one has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010] - in the solvable case independent of [Zassenhaus 1936]
- orientably regular maps with automorphism groups isomorphic to $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ [McBeath 1967, Sah 1969]
- non-orientable regular maps with automorphism groups isomorphic to $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ [Conder, Potočnik and Š 2008]

Classification of regular maps by automorphism groups

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]
- regular maps with almost-Sylow-cyclic automorphism groups (every odd-order Sylow subgroup is cyclic and the even-order one has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010]
- in the solvable case independent of [Zassenhaus 1936]
- orientably regular maps with automorphism groups isomorphic to PSL $(2, q)$ and PGL $(2, q)$ [McBeath 1967, Sah 1969]
- non-orientable regular maps with automorphism groups isomorphic to $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ [Conder, Potočnik and Š 2008]
- Suzuki simple groups for maps of type $(4,5)$ [Jones 1993]

Classification of regular maps by automorphism groups

- regular maps with nilpotent groups of class ≤ 3; orientably-regular maps with simple graphs on nilpotent groups of class c are quotients of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]
- regular maps with almost-Sylow-cyclic automorphism groups (every odd-order Sylow subgroup is cyclic and the even-order one has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010] - in the solvable case independent of [Zassenhaus 1936]
- orientably regular maps with automorphism groups isomorphic to PSL $(2, q)$ and PGL $(2, q)$ [McBeath 1967, Sah 1969]
- non-orientable regular maps with automorphism groups isomorphic to $\operatorname{PSL}(2, q)$ and PGL $(2, q)$ [Conder, Potočnik and Š 2008]
- Suzuki simple groups for maps of type $(4,5)$ [Jones 1993]
- Ree simple groups for maps of type $(3,7),(3,9)$ and $(3, p)$ for primes $p \equiv-1 \bmod 12$ [Jones 1994]

Twisted linear fractional groups

Twisted linear fractional groups

F - a field, S_{F} and N_{F} - non-zero squares and non-squares. The groups $\operatorname{PSL}(2, F)$ and PGL $(2, F)$ consist of permutations of $F \cup\{\infty\}$ given by

$$
z \mapsto \frac{a z+b}{c z+d}
$$

if $a d-b c \in S_{F}$ and $a d-b c \in S_{F} \cup N_{F}$, respectively.

Twisted linear fractional groups

F - a field, S_{F} and N_{F} - non-zero squares and non-squares. The groups $\operatorname{PSL}(2, F)$ and PGL $(2, F)$ consist of permutations of $F \cup\{\infty\}$ given by

$$
z \mapsto \frac{a z+b}{c z+d}
$$

if $a d-b c \in S_{F}$ and $a d-b c \in S_{F} \cup N_{F}$, respectively.
If $F=\mathrm{GF}\left(q^{2}\right)$ for an odd prime power q, and if $\sigma: x \mapsto x^{q}$ is the automorphism of F of order 2, the twisted linear fractional group $M\left(q^{2}\right)$ consists of the permutations of $F \cup\{\infty\}$ defined by

$$
z \mapsto \frac{a z+b}{c z+d} \quad \text { if } \quad a d-b c \in S_{F} \quad \text { and } \quad z \mapsto \frac{a z^{\sigma}+b}{c z^{\sigma}+d} \quad \text { if } \quad a d-b c \in N_{F} .
$$

Twisted linear fractional groups

F - a field, S_{F} and N_{F} - non-zero squares and non-squares. The groups $\operatorname{PSL}(2, F)$ and $\operatorname{PGL}(2, F)$ consist of permutations of $F \cup\{\infty\}$ given by

$$
z \mapsto \frac{a z+b}{c z+d}
$$

if $a d-b c \in S_{F}$ and $a d-b c \in S_{F} \cup N_{F}$, respectively.
If $F=\mathrm{GF}\left(q^{2}\right)$ for an odd prime power q, and if $\sigma: x \mapsto x^{q}$ is the automorphism of F of order 2 , the twisted linear fractional group $M\left(q^{2}\right)$ consists of the permutations of $F \cup\{\infty\}$ defined by

$$
z \mapsto \frac{a z+b}{c z+d} \quad \text { if } \quad a d-b c \in S_{F} \quad \text { and } \quad z \mapsto \frac{a z^{\sigma}+b}{c z^{\sigma}+d} \quad \text { if } \quad a d-b c \in N_{F} .
$$

By a major result of Zassenhaus (1936), the groups PGL $(2, F)$ for an arbitrary finite field F, and $M\left(q^{2}\right)$ for fields of order q^{2} for an odd prime power q, are precisely the finite, sharply 3 -transitive permutation groups.

Standard form of (twisted) elements

Standard form of (twisted) elements

Notation: $G=M\left(q^{2}\right), \bar{G}=M\left(q^{2}\right)\langle\sigma\rangle, F=\operatorname{GF}\left(q^{2}\right)=\operatorname{GF}\left(p^{2 f}\right)$, $F_{2 e}=\operatorname{GF}\left(p^{2 e}\right)$. Matrices: $\operatorname{dia}(u, v)$, off (u, v).

Standard form of (twisted) elements

Notation: $G=M\left(q^{2}\right), \bar{G}=M\left(q^{2}\right)\langle\sigma\rangle, F=\operatorname{GF}\left(q^{2}\right)=\operatorname{GF}\left(p^{2 f}\right)$, $F_{2 e}=\operatorname{GF}\left(p^{2 e}\right)$. Matrices: $\operatorname{dia}(u, v)$, off (u, v). Encoding elements of G :

$$
\begin{aligned}
& \left(z \mapsto \frac{a z+b}{c z+d}, a d-b c \in S_{F}\right) \mapsto[A, 0] ; A \in \operatorname{PSL}(2, F) \\
& \left(z \mapsto \frac{a z^{\sigma}+b}{c z^{\sigma}+d}, a d-b c \in N_{F}\right) \mapsto[A, 1] ; A \in \operatorname{PGL}(2, F) \backslash \operatorname{PSL}(2, F)
\end{aligned}
$$

Standard form of (twisted) elements

Notation: $G=M\left(q^{2}\right), \bar{G}=M\left(q^{2}\right)\langle\sigma\rangle, F=\operatorname{GF}\left(q^{2}\right)=\operatorname{GF}\left(p^{2 f}\right)$, $F_{2 e}=\operatorname{GF}\left(p^{2 e}\right)$. Matrices: $\operatorname{dia}(u, v)$, off (u, v). Encoding elements of G :

$$
\begin{aligned}
& \left(z \mapsto \frac{a z+b}{c z+d}, a d-b c \in S_{F}\right) \mapsto[A, 0] ; A \in \operatorname{PSL}(2, F) \\
& \left(z \mapsto \frac{a z^{\sigma}+b}{c z^{\sigma}+d}, a d-b c \in N_{F}\right) \mapsto[A, 1] ; A \in \operatorname{PGL}(2, F) \backslash \operatorname{PSL}(2, F)
\end{aligned}
$$

- Every element of the form $[A, 1] \in G$ is conjugate in \bar{G} to $[B, 1]$ with $B=\operatorname{dia}(\lambda, 1)$ or $B=\operatorname{off}(\lambda, 1)$ for some $\lambda \in N_{F}$.

Standard form of (twisted) elements

Notation: $G=M\left(q^{2}\right), \bar{G}=M\left(q^{2}\right)\langle\sigma\rangle, F=\operatorname{GF}\left(q^{2}\right)=\operatorname{GF}\left(p^{2 f}\right)$, $F_{2 e}=\operatorname{GF}\left(p^{2 e}\right)$. Matrices: $\operatorname{dia}(u, v)$, off (u, v). Encoding elements of G :

$$
\begin{aligned}
& \left(z \mapsto \frac{a z+b}{c z+d}, a d-b c \in S_{F}\right) \mapsto[A, 0] ; A \in \operatorname{PSL}(2, F) \\
& \left(z \mapsto \frac{a z^{\sigma}+b}{c z^{\sigma}+d}, a d-b c \in N_{F}\right) \mapsto[A, 1] ; A \in \operatorname{PGL}(2, F) \backslash \operatorname{PSL}(2, F)
\end{aligned}
$$

- Every element of the form $[A, 1] \in G$ is conjugate in \bar{G} to $[B, 1]$ with $B=\operatorname{dia}(\lambda, 1)$ or $B=\operatorname{off}(\lambda, 1)$ for some $\lambda \in N_{F}$.
- If, in addition, $\left[A A^{\sigma}, 0\right]=[C, 0]$ for some $C \in \operatorname{PSL}\left(2, p^{2 e}\right)$ with f / e odd, then $[B, 1]=[P, 0]^{-1}[A, 1][P, 0]$ for some $P \in \operatorname{PGL}\left(2, p^{2 e}\right)$, and $\lambda \lambda^{\sigma} \in F_{2 e}$ or $\lambda / \lambda^{\sigma} \in F_{2 e}$, depending on whether B is equal to $\operatorname{dia}(\lambda, 1)$ or off $(\lambda, 1)$.

Standard form of (twisted) elements

Notation: $G=M\left(q^{2}\right), \bar{G}=M\left(q^{2}\right)\langle\sigma\rangle, F=\operatorname{GF}\left(q^{2}\right)=\operatorname{GF}\left(p^{2 f}\right)$, $F_{2 e}=\operatorname{GF}\left(p^{2 e}\right)$. Matrices: $\operatorname{dia}(u, v)$, off (u, v). Encoding elements of G :

$$
\begin{aligned}
& \left(z \mapsto \frac{a z+b}{c z+d}, a d-b c \in S_{F}\right) \mapsto[A, 0] ; A \in \operatorname{PSL}(2, F) \\
& \left(z \mapsto \frac{a z^{\sigma}+b}{c z^{\sigma}+d}, a d-b c \in N_{F}\right) \mapsto[A, 1] ; A \in \operatorname{PGL}(2, F) \backslash \operatorname{PSL}(2, F)
\end{aligned}
$$

- Every element of the form $[A, 1] \in G$ is conjugate in \bar{G} to $[B, 1]$ with $B=\operatorname{dia}(\lambda, 1)$ or $B=\operatorname{off}(\lambda, 1)$ for some $\lambda \in N_{F}$.
- If, in addition, $\left[A A^{\sigma}, 0\right]=[C, 0]$ for some $C \in \operatorname{PSL}\left(2, p^{2 e}\right)$ with f / e odd, then $[B, 1]=[P, 0]^{-1}[A, 1][P, 0]$ for some $P \in \operatorname{PGL}\left(2, p^{2 e}\right)$, and $\lambda \lambda^{\sigma} \in F_{2 e}$ or $\lambda / \lambda^{\sigma} \in F_{2 e}$, depending on whether B is equal to $\operatorname{dia}(\lambda, 1)$ or off $(\lambda, 1)$.
- Every element of G not in $\operatorname{PSL}\left(2, q^{2}\right)$ has order a multiple of 4 .

Conjugacy in twisted linear groups

Conjugacy in twisted linear groups

- Let ξ be a primitive element of F and let $[A, 1]$ be an element of G. Then, exactly one of the following two cases occur:

Conjugacy in twisted linear groups

- Let ξ be a primitive element of F and let $[A, 1]$ be an element of G.

Then, exactly one of the following two cases occur:

1. There exists exactly one odd $i \in\{1,2, \ldots,(q-1) / 2\}$ such that $[A, 1]$ is conjugate in \bar{G} to $[B, 1]$ with $B=\operatorname{dia}\left(\xi^{i}, 1\right)$; the order of $[A, 1]$ in G is then $2(q-1) / \operatorname{gcd}\{q-1, i\}$.

Conjugacy in twisted linear groups

- Let ξ be a primitive element of F and let $[A, 1]$ be an element of G.

Then, exactly one of the following two cases occur:

1. There exists exactly one odd $i \in\{1,2, \ldots,(q-1) / 2\}$ such that $[A, 1]$ is conjugate in \bar{G} to $[B, 1]$ with $B=\operatorname{dia}\left(\xi^{i}, 1\right)$; the order of $[A, 1]$ in G is then $2(q-1) / \operatorname{gcd}\{q-1, i\}$.
2. There exists exactly one odd $i \in\{1,2, \ldots,(q+1) / 2\}$ such that $[A, 1]$ is conjugate in \bar{G} to $[B, 1]$ with $B=\operatorname{off}\left(\xi^{i}, 1\right)$, and the order of $[A, 1]$ in G is $2(q+1) / \operatorname{gcd}\{q+1, i\}$.

Conjugacy in twisted linear groups

- Let ξ be a primitive element of F and let $[A, 1]$ be an element of G.

Then, exactly one of the following two cases occur:

1. There exists exactly one odd $i \in\{1,2, \ldots,(q-1) / 2\}$ such that $[A, 1]$ is conjugate in \bar{G} to $[B, 1]$ with $B=\operatorname{dia}\left(\xi^{i}, 1\right)$; the order of $[A, 1]$ in G is then $2(q-1) / \operatorname{gcd}\{q-1, i\}$.
2. There exists exactly one odd $i \in\{1,2, \ldots,(q+1) / 2\}$ such that $[A, 1]$ is conjugate in \bar{G} to $[B, 1]$ with $B=\operatorname{off}\left(\xi^{i}, 1\right)$, and the order of $[A, 1]$ in G is $2(q+1) / \operatorname{gcd}\{q+1, i\}$.

Stabilisers of twisted elements - only one case presented here:

Conjugacy in twisted linear groups

- Let ξ be a primitive element of F and let $[A, 1]$ be an element of G.

Then, exactly one of the following two cases occur:

1. There exists exactly one odd $i \in\{1,2, \ldots,(q-1) / 2\}$ such that $[A, 1]$ is conjugate in \bar{G} to $[B, 1]$ with $B=\operatorname{dia}\left(\xi^{i}, 1\right)$; the order of $[A, 1]$ in G is then $2(q-1) / \operatorname{gcd}\{q-1, i\}$.
2. There exists exactly one odd $i \in\{1,2, \ldots,(q+1) / 2\}$ such that $[A, 1]$ is conjugate in \bar{G} to $[B, 1]$ with $B=\operatorname{off}\left(\xi^{i}, 1\right)$, and the order of $[A, 1]$ in G is $2(q+1) / \operatorname{gcd}\{q+1, i\}$.
Stabilisers of twisted elements - only one case presented here:

- The stabiliser of $[B, 1]$ for $B=\operatorname{dia}(\lambda, 1), \lambda \in N_{F}$, in \bar{G} is isomorphic to $Z_{2(q-1)}$ generated by (conjugation by) $[P, 1]$ for $P=\operatorname{dia}(\mu \lambda, 1)$ with a suitable $(q-1)^{\text {th }}$ root of unity μ, except when λ is a $(q+1)^{\text {th }}$ root of -1 and $q \equiv-1 \bmod 4$; then the stabiliser is isomorphic to $N_{G}\left(D_{2(q-1)}\right)$.

Generating pairs of twisted elements

Generating pairs of twisted elements

Recall: Enumeration of orientably-regular maps $\mathcal{M}, \operatorname{Aut}^{+}(\mathcal{M}) \cong G$, \mapsto enumeration of triples $(G, r, s), G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and $\left(G, r^{\prime}, s^{\prime}\right)$ equivalent if there is an automorphism of $G:(r, s) \mapsto\left(r^{\prime}, s^{\prime}\right)$.

Generating pairs of twisted elements

Recall: Enumeration of orientably-regular maps $\mathcal{M}, \operatorname{Aut}^{+}(\mathcal{M}) \cong G, \mapsto$ enumeration of triples $(G, r, s), G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and $\left(G, r^{\prime}, s^{\prime}\right)$ equivalent if there is an automorphism of $G:(r, s) \mapsto\left(r^{\prime}, s^{\prime}\right)$.
If $M\left(p^{2 f}\right)=G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, then $r=[A, 1]$ and $s=[B, 1] ;$ wlog B in standard form (and with conditions imposed on A).

Generating pairs of twisted elements

Recall: Enumeration of orientably-regular maps $\mathcal{M}, \operatorname{Aut}^{+}(\mathcal{M}) \cong G, \mapsto$ enumeration of triples $(G, r, s), G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and $\left(G, r^{\prime}, s^{\prime}\right)$ equivalent if there is an automorphism of $G:(r, s) \mapsto\left(r^{\prime}, s^{\prime}\right)$.
If $M\left(p^{2 f}\right)=G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, then $r=[A, 1]$ and $s=[B, 1]$; wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs $[A, 1],[B, 1]$ that do not generate G or a twisted subgroup of G isomorphic to $M\left(p^{2 e}\right)$ for f / e odd:

Generating pairs of twisted elements

Recall: Enumeration of orientably-regular maps $\mathcal{M}, \operatorname{Aut}^{+}(\mathcal{M}) \cong G, \mapsto$ enumeration of triples $(G, r, s), G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and $\left(G, r^{\prime}, s^{\prime}\right)$ equivalent if there is an automorphism of $G:(r, s) \mapsto\left(r^{\prime}, s^{\prime}\right)$.
If $M\left(p^{2 f}\right)=G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, then $r=[A, 1]$ and $s=[B, 1]$; wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs $[A, 1],[B, 1]$ that do not generate G or a twisted subgroup of G isomorphic to $M\left(p^{2 e}\right)$ for f / e odd:
(i) both $[A, 1]$ and $[B, 1]$ have order 4 ,

Generating pairs of twisted elements

Recall: Enumeration of orientably-regular maps $\mathcal{M}, \operatorname{Aut}^{+}(\mathcal{M}) \cong G, \mapsto$ enumeration of triples $(G, r, s), G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and $\left(G, r^{\prime}, s^{\prime}\right)$ equivalent if there is an automorphism of $G:(r, s) \mapsto\left(r^{\prime}, s^{\prime}\right)$.
If $M\left(p^{2 f}\right)=G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, then $r=[A, 1]$ and $s=[B, 1]$; wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs $[A, 1],[B, 1]$ that do not generate G or a twisted subgroup of G isomorphic to $M\left(p^{2 e}\right)$ for f / e odd:
(i) both $[A, 1]$ and $[B, 1]$ have order 4 ,
(ii) $B=\operatorname{dia}(\lambda, 1)$ and A is an upper- or a lower-triangular matrix,

Generating pairs of twisted elements

Recall: Enumeration of orientably-regular maps $\mathcal{M}, \operatorname{Aut}^{+}(\mathcal{M}) \cong G, \mapsto$ enumeration of triples $(G, r, s), G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and $\left(G, r^{\prime}, s^{\prime}\right)$ equivalent if there is an automorphism of $G:(r, s) \mapsto\left(r^{\prime}, s^{\prime}\right)$.
If $M\left(p^{2 f}\right)=G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, then $r=[A, 1]$ and $s=[B, 1]$; wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs $[A, 1],[B, 1]$ that do not generate G or a twisted subgroup of G isomorphic to $M\left(p^{2 e}\right)$ for f / e odd:
(i) both $[A, 1]$ and $[B, 1]$ have order 4 ,
(ii) $B=\operatorname{dia}(\lambda, 1)$ and A is an upper- or a lower-triangular matrix,
(iii) $B=o f f(\lambda, 1)$ and A is a diagonal matrix.

Generating pairs of twisted elements

Recall: Enumeration of orientably-regular maps \mathcal{M}, $\operatorname{Aut}^{+}(\mathcal{M}) \cong G, \mapsto$ enumeration of triples $(G, r, s), G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, up to conjugation in $\operatorname{Aut}(G)$, that is, by considering triples (G, r, s) and $\left(G, r^{\prime}, s^{\prime}\right)$ equivalent if there is an automorphism of $G:(r, s) \mapsto\left(r^{\prime}, s^{\prime}\right)$.
If $M\left(p^{2 f}\right)=G=\left\langle r, s ; r^{\ell}=s^{m}=(r s)^{2}=\ldots=1\right\rangle$, then $r=[A, 1]$ and $s=[B, 1] ;$ wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs $[A, 1],[B, 1]$ that do not generate G or a twisted subgroup of G isomorphic to $M\left(p^{2 e}\right)$ for f / e odd:
(i) both $[A, 1]$ and $[B, 1]$ have order 4 ,
(ii) $B=\operatorname{dia}(\lambda, 1)$ and A is an upper- or a lower-triangular matrix,
(iii) $B=o f f(\lambda, 1)$ and A is a diagonal matrix.

- If H is a subgroup of G generated by a non-singular pair $([A, 1],[B, 1])$, then $H \cong M\left(p^{2 e}\right)$ for some divisor e of f with f / e odd.

Intermediate results towards enumeration, $q=p^{f}$

Intermediate results towards enumeration, $q=p^{f}$

- \# \bar{G}-orbits of non-singular pairs in $G=M\left(q^{2}\right)$ is $\left(q^{2}-1\right)\left(q^{2}-2\right) / 8$.

Intermediate results towards enumeration, $q=p^{f}$

- \# \bar{G}-orbits of non-singular pairs in $G=M\left(q^{2}\right)$ is $\left(q^{2}-1\right)\left(q^{2}-2\right) / 8$.
- For each positive divisor e of f with f / e odd, the $\#$ of \bar{G}-orbits of non-singular pairs generating a subgroup of G isomorphic to $G_{2 e} \cong M\left(p^{2 e}\right)$ is equal to the number $\operatorname{orb}(e)$ of $\bar{G}_{2 e}$-orbits of such non-singular pairs.

Intermediate results towards enumeration, $q=p^{f}$

- \# \bar{G}-orbits of non-singular pairs in $G=M\left(q^{2}\right)$ is $\left(q^{2}-1\right)\left(q^{2}-2\right) / 8$.
- For each positive divisor e of f with f / e odd, the $\#$ of \bar{G}-orbits of non-singular pairs generating a subgroup of G isomorphic to $G_{2 e} \cong M\left(p^{2 e}\right)$ is equal to the number $\operatorname{orb}(e)$ of $\bar{G}_{2 e}$-orbits of such non-singular pairs.
- All subgroups $G_{2 e} \cong M\left(p^{2 e}\right)<G=M\left(p^{2 f}\right)$ are conjugate in G.

Intermediate results towards enumeration, $q=p^{f}$

- \# \bar{G}-orbits of non-singular pairs in $G=M\left(q^{2}\right)$ is $\left(q^{2}-1\right)\left(q^{2}-2\right) / 8$.
- For each positive divisor e of f with f / e odd, the $\#$ of \bar{G}-orbits of non-singular pairs generating a subgroup of G isomorphic to $G_{2 e} \cong M\left(p^{2 e}\right)$ is equal to the number $\operatorname{orb}(e)$ of $\bar{G}_{2 e}$-orbits of such non-singular pairs.
- All subgroups $G_{2 e} \cong M\left(p^{2 e}\right)<G=M\left(p^{2 f}\right)$ are conjugate in G.
- Let $f=2^{n} o$ with o odd and let $e=2^{n} d$ for a divisor d of o. Letting $h(x)=\left(p^{2 x}-1\right)\left(p^{2 x}-2\right) / 8$ and summing up the above facts, we have

$$
\sum_{e}^{\prime} \operatorname{orb}(e)=h(f), \quad \text { or } \quad \sum_{d \mid o} \operatorname{orb}\left(2^{n} d\right)=h\left(2^{n} o\right)
$$

Intermediate results towards enumeration, $q=p^{f}$

- \# \bar{G}-orbits of non-singular pairs in $G=M\left(q^{2}\right)$ is $\left(q^{2}-1\right)\left(q^{2}-2\right) / 8$.
- For each positive divisor e of f with f / e odd, the $\#$ of \bar{G}-orbits of non-singular pairs generating a subgroup of G isomorphic to $G_{2 e} \cong M\left(p^{2 e}\right)$ is equal to the number $\operatorname{orb}(e)$ of $\bar{G}_{2 e}$-orbits of such non-singular pairs.
- All subgroups $G_{2 e} \cong M\left(p^{2 e}\right)<G=M\left(p^{2 f}\right)$ are conjugate in G.
- Let $f=2^{n} o$ with o odd and let $e=2^{n} d$ for a divisor d of o. Letting $h(x)=\left(p^{2 x}-1\right)\left(p^{2 x}-2\right) / 8$ and summing up the above facts, we have

$$
\sum_{e}^{\prime} \operatorname{orb}(e)=h(f), \quad \text { or } \quad \sum_{d \mid o} \operatorname{orb}\left(2^{n} d\right)=h\left(2^{n} o\right)
$$

- Applying Möbius inversion we obtain

$$
\operatorname{orb}(f)=\operatorname{orb}\left(2^{n} o\right)=\sum_{d \mid o} \mu(o / d) h\left(2^{n} d\right)
$$

Intermediate results towards enumeration, $q=p^{f}$

- \# \bar{G}-orbits of non-singular pairs in $G=M\left(q^{2}\right)$ is $\left(q^{2}-1\right)\left(q^{2}-2\right) / 8$.
- For each positive divisor e of f with f / e odd, the $\#$ of \bar{G}-orbits of non-singular pairs generating a subgroup of G isomorphic to $G_{2 e} \cong M\left(p^{2 e}\right)$ is equal to the number $\operatorname{orb}(e)$ of $\bar{G}_{2 e}$-orbits of such non-singular pairs.
- All subgroups $G_{2 e} \cong M\left(p^{2 e}\right)<G=M\left(p^{2 f}\right)$ are conjugate in G.
- Let $f=2^{n} o$ with o odd and let $e=2^{n} d$ for a divisor d of o. Letting $h(x)=\left(p^{2 x}-1\right)\left(p^{2 x}-2\right) / 8$ and summing up the above facts, we have

$$
\sum_{e}^{\prime} \operatorname{orb}(e)=h(f), \quad \text { or } \quad \sum_{d \mid o} \operatorname{orb}\left(2^{n} d\right)=h\left(2^{n} o\right)
$$

- Applying Möbius inversion we obtain

$$
\operatorname{orb}(f)=\operatorname{orb}\left(2^{n} o\right)=\sum_{d \mid o} \mu(o / d) h\left(2^{n} d\right)
$$

- Final step: If a non-singular pair $([A, 1],[B, 1])$ generates G and gives rise to an orbit O under conjugation in \bar{G}, then the action of the group $\operatorname{Aut}\left(M\left(q^{2}\right)\right) \cong \mathrm{P} \Gamma \mathrm{L}\left(2, q^{2}\right)$ fuses the f orbits $O^{p^{j}}$ for $j \in\{0,1, \ldots, f-1\}$.

Enumeration results

Enumeration results

Theorem. Let $q=p^{f}, f=2^{n} o ; p, o$ odd. The number of orientably-regular maps \mathcal{M} with Aut $^{+}(\mathcal{M}) \cong M\left(q^{2}\right)$ is, up to isomorphism, equal to

$$
\frac{1}{f} \sum_{d \mid o} \mu(o / d) h\left(2^{n} d\right)
$$

where $h(x)=\left(p^{2 x}-1\right)\left(p^{2 x}-2\right) / 8$ and μ is the Möbius function.

Enumeration results

Theorem. Let $q=p^{f}, f=2^{n} o ; p, o$ odd. The number of orientably-regular maps \mathcal{M} with $\operatorname{Aut}^{+}(\mathcal{M}) \cong M\left(q^{2}\right)$ is, up to isomorphism, equal to

$$
\frac{1}{f} \sum_{d \mid o} \mu(o / d) h\left(2^{n} d\right)
$$

where $h(x)=\left(p^{2 x}-1\right)\left(p^{2 x}-2\right) / 8$ and μ is the Möbius function.
A group-theoretic interpretation: Counting generating pairs (r, s) of $G=M\left(q^{2}\right)$ such that $(r s)^{2}=1$, up to conjugacy in $\operatorname{Aut}(G)$.

Enumeration results

Theorem. Let $q=p^{f}, f=2^{n} o ; p, o$ odd. The number of orientably-regular maps \mathcal{M} with $\operatorname{Aut}^{+}(\mathcal{M}) \cong M\left(q^{2}\right)$ is, up to isomorphism, equal to

$$
\frac{1}{f} \sum_{d \mid o} \mu(o / d) h\left(2^{n} d\right)
$$

where $h(x)=\left(p^{2 x}-1\right)\left(p^{2 x}-2\right) / 8$ and μ is the Möbius function.
A group-theoretic interpretation: Counting generating pairs (r, s) of $G=M\left(q^{2}\right)$ such that $(r s)^{2}=1$, up to conjugacy in $\operatorname{Aut}(G)$.

Theorem. The number of reflexible maps \mathcal{M} with $\operatorname{Aut}^{+}(\mathcal{M}) \cong M\left(q^{2}\right)$ is

$$
\frac{1}{f} \sum_{d \mid o} \mu(o / d) k\left(2^{n} d\right)
$$

where $k(x)=\left(p^{2 x}-1\right)\left(3 p^{x}-2\right) / 8$ and μ is the Möbius function.

Remarks

Remarks

The results are strikingly different from those for the groups PGL $(2, q)$:

Remarks

The results are strikingly different from those for the groups PGL $(2, q)$:

- all the orientably-regular maps for PGL $(2, q)$ are reflexible, while this is not the case for $M\left(q^{2}\right)$;

Remarks

The results are strikingly different from those for the groups PGL $(2, q)$:

- all the orientably-regular maps for $\operatorname{PGL}(2, q)$ are reflexible, while this is not the case for $M\left(q^{2}\right)$;
- groups PGL $(2, q)$ are also automorphism groups of non-orientable regular maps, while the groups $M\left(q^{2}\right)$ are not;

Remarks

The results are strikingly different from those for the groups PGL $(2, q)$:

- all the orientably-regular maps for $\operatorname{PGL}(2, q)$ are reflexible, while this is not the case for $M\left(q^{2}\right)$;
- groups PGL $(2, q)$ are also automorphism groups of non-orientable regular maps, while the groups $M\left(q^{2}\right)$ are not;
- for any even $\ell, m \geq 4$ not both equal to 4 there are orientably-regular maps of type (ℓ, m) with automorphism group $\operatorname{PGL}(2, q)$ for infinitely many values of q, while for infinitely many such pairs (ℓ, m) there are no orientably-regular maps for $M\left(q^{2}\right)$ of that type for any q.

Remarks

The results are strikingly different from those for the groups PGL $(2, q)$:

- all the orientably-regular maps for $\operatorname{PGL}(2, q)$ are reflexible, while this is not the case for $M\left(q^{2}\right)$;
- groups PGL $(2, q)$ are also automorphism groups of non-orientable regular maps, while the groups $M\left(q^{2}\right)$ are not;
- for any even $\ell, m \geq 4$ not both equal to 4 there are orientably-regular maps of type (ℓ, m) with automorphism group $\operatorname{PGL}(2, q)$ for infinitely many values of q, while for infinitely many such pairs (ℓ, m) there are no orientably-regular maps for $M\left(q^{2}\right)$ of that type for any q.
Proposition. If $\ell, m \equiv 0(\bmod 8)$ and $\ell \not \equiv m(\bmod 16)$ then there is no orientably-regular map of type (ℓ, m) with automorphism group isomorphic to $M\left(q^{2}\right)$ for any q.

Future work: Characters

Future work: Characters

Good progress towards determining the character table of $M\left(q^{2}\right)$;

Future work: Characters

Good progress towards determining the character table of $M\left(q^{2}\right)$; if known:
Frobenius 1896: For $i \in\{1,2, \ldots, k\}$ let \mathcal{C}_{i} be conjugacy classes in a finite group G. Then, the number of solutions $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of the equation $x_{1} x_{2} \cdots x_{k}=1$ with $x_{i} \in \mathcal{C}_{i}$ is equal to

$$
\frac{\left|\mathcal{C}_{1}\right| \cdots\left|\mathcal{C}_{k}\right|}{|G|} \sum_{\chi} \frac{\chi\left(x_{1}\right) \cdots \chi\left(x_{k}\right)}{\chi(1)^{k-2}}
$$

where χ ranges over the irreducible complex characters of G.

Future work: Characters

Good progress towards determining the character table of $M\left(q^{2}\right)$; if known:
Frobenius 1896: For $i \in\{1,2, \ldots, k\}$ let \mathcal{C}_{i} be conjugacy classes in a finite group G. Then, the number of solutions $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of the equation $x_{1} x_{2} \cdots x_{k}=1$ with $x_{i} \in \mathcal{C}_{i}$ is equal to

$$
\frac{\left|\mathcal{C}_{1}\right| \cdots\left|\mathcal{C}_{k}\right|}{|G|} \sum_{\chi} \frac{\chi\left(x_{1}\right) \cdots \chi\left(x_{k}\right)}{\chi(1)^{k-2}}
$$

where χ ranges over the irreducible complex characters of G.
Letting $x_{1}=r, x_{2}=s$ and $x_{3}=(r s)^{-1}$, presentations of $G=M\left(q^{2}\right)$ determining our orientably-regular maps of type (ℓ, m) have the form $G=\left\langle x_{1}, x_{2}, x_{3} ; x_{1}^{\ell}=x_{2}^{m}=x_{3}^{2}=\ldots=1\right\rangle$.

Future work: Characters

Good progress towards determining the character table of $M\left(q^{2}\right)$; if known:
Frobenius 1896: For $i \in\{1,2, \ldots, k\}$ let \mathcal{C}_{i} be conjugacy classes in a finite group G. Then, the number of solutions $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of the equation $x_{1} x_{2} \cdots x_{k}=1$ with $x_{i} \in \mathcal{C}_{i}$ is equal to

$$
\frac{\left|\mathcal{C}_{1}\right| \cdots\left|\mathcal{C}_{k}\right|}{|G|} \sum_{\chi} \frac{\chi\left(x_{1}\right) \cdots \chi\left(x_{k}\right)}{\chi(1)^{k-2}}
$$

where χ ranges over the irreducible complex characters of G.
Letting $x_{1}=r, x_{2}=s$ and $x_{3}=(r s)^{-1}$, presentations of $G=M\left(q^{2}\right)$ determining our orientably-regular maps of type (ℓ, m) have the form $G=\left\langle x_{1}, x_{2}, x_{3} ; x_{1}^{\ell}=x_{2}^{m}=x_{3}^{2}=\ldots=1\right\rangle$. Our knowledge of triples generating proper subgroups of G and Möbius inversion would then give a refined enumeration of maps of given type.

Future work: Characters

Good progress towards determining the character table of $M\left(q^{2}\right)$; if known:
Frobenius 1896: For $i \in\{1,2, \ldots, k\}$ let \mathcal{C}_{i} be conjugacy classes in a finite group G. Then, the number of solutions $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of the equation $x_{1} x_{2} \cdots x_{k}=1$ with $x_{i} \in \mathcal{C}_{i}$ is equal to

$$
\frac{\left|\mathcal{C}_{1}\right| \cdots\left|\mathcal{C}_{k}\right|}{|G|} \sum_{\chi} \frac{\chi\left(x_{1}\right) \cdots \chi\left(x_{k}\right)}{\chi(1)^{k-2}}
$$

where χ ranges over the irreducible complex characters of G.
Letting $x_{1}=r, x_{2}=s$ and $x_{3}=(r s)^{-1}$, presentations of $G=M\left(q^{2}\right)$ determining our orientably-regular maps of type (ℓ, m) have the form $G=\left\langle x_{1}, x_{2}, x_{3} ; x_{1}^{\ell}=x_{2}^{m}=x_{3}^{2}=\ldots=1\right\rangle$. Our knowledge of triples generating proper subgroups of G and Möbius inversion would then give a refined enumeration of maps of given type. (Recall: ∞ types missing!)

Future work: Characters

Good progress towards determining the character table of $M\left(q^{2}\right)$; if known:
Frobenius 1896: For $i \in\{1,2, \ldots, k\}$ let \mathcal{C}_{i} be conjugacy classes in a finite group G. Then, the number of solutions $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of the equation $x_{1} x_{2} \cdots x_{k}=1$ with $x_{i} \in \mathcal{C}_{i}$ is equal to

$$
\frac{\left|\mathcal{C}_{1}\right| \cdots\left|\mathcal{C}_{k}\right|}{|G|} \sum_{\chi} \frac{\chi\left(x_{1}\right) \cdots \chi\left(x_{k}\right)}{\chi(1)^{k-2}}
$$

where χ ranges over the irreducible complex characters of G.
Letting $x_{1}=r, x_{2}=s$ and $x_{3}=(r s)^{-1}$, presentations of $G=M\left(q^{2}\right)$ determining our orientably-regular maps of type (ℓ, m) have the form $G=\left\langle x_{1}, x_{2}, x_{3} ; x_{1}^{\ell}=x_{2}^{m}=x_{3}^{2}=\ldots=1\right\rangle$. Our knowledge of triples generating proper subgroups of G and Möbius inversion would then give a refined enumeration of maps of given type. (Recall: ∞ types missing!)
(: THANK YOU :)

